Determination of statistical dependence of the working temperature of rigid bearings in industrial processes using ANOVA in RStudio

Main Article Content

Luis Stalin López Telenchana
Marco Vinicio Yanqui Avilés
Ximena Alexandra Quintana López

Abstract

Introduction: Nowadays the operating temperature has become the most important variable in the technical evaluation of the overall performance of a deep groove bearing. This is mainly since several critical factors have a greater or lesser dependence on the working temperature, operating factors such as lubricant viscosity, load carrying capacity, load distribution and power loss, which have been shown to be proportional in various investigations. Objective: In this article, the dependence of the working temperature of a 618 deep groove ball bearing on operating variables such as lubricant film density and operating speed to which this element is exposed in the industrial process of mineral crushing is determined. Results: 27 in situ measurements of the working temperature were carried out at operating speeds between 1200 and 3600 revolutions per minute and lubricant densities between 100 and 135 centistokes. These data obtained were processed by means of multifactorial ANOVA to establish the influence of the above-mentioned variables in relation to the working temperature. As a result, it was established that the operating speed has a direct influence on the variation of the working temperature of the deep groove ball bearing under study, which implies that this variable should be analyzed when the bearing is replaced or sized. Conclusions: It was concluded that the working temperature has a direct dependence with the operating speed of the bearing under study and with the type of lubricant used in it, in addition it could be determined that the present study contributes significantly in the execution of maintenance tasks, in the elaboration of production plans and in the root cause analysis of failures in assets with rotating elements under operational contexts with different operating variables at industrial level.

Downloads

Download data is not yet available.

Article Details

How to Cite
López Telenchana, L. S., Yanqui Avilés, M. V., & Quintana López, X. A. (2024). Determination of statistical dependence of the working temperature of rigid bearings in industrial processes using ANOVA in RStudio. ConcienciaDigital, 7(1), 82-99. https://doi.org/10.33262/concienciadigital.v7i1.2904
Section
Artículos

References

Kim, D., Kim, M., Ryu, G., & Park, J. (2023). On heat, temperature, and cavity oil volume fraction of an under-race lubricated angular contact ball bearing, Tribology International, 187: 108715, ISSN 0301-679X, https://doi.org/10.1016/j.triboint.2023.108715.
Estévez, J., & Bernal de Lázaro, José. (2019). Análisis de los rodamientos usados en electro-ventiladores del sistema de refrigeración de motores Hyundai. Ingeniería Mecánica, 22(2): 85-91. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1815-59442019000200085&lng=es&tlng=es.
Gao S., Wang Y., & Zhang Y. (2023). Thermal behavior study and experimental testing of deep groove ball bearings. Journal of Mechanical Science and Technology, 37(12): 6679-6689. https://link.springer.com/article/10.1007/s12206-023-1039-8
Hernández, S., & Díaz, M. (2018). Evaluación de un proceso industrial de producción de biodiésel mediante análisis de ciclo de vida. Revista internacional de contaminación ambiental, 34(3): 453-465. https://doi.org/10.20937/rica.2018.34.03.08
Ji, H., Wang, J., Zhang, W., Zhao, Z., & Li, Y. (2023). Prediction of maximum temperature of fluid-lubricated bearing based on machine learning algorithm, International Communications in Heat and Mass Transfer, Volume 149, 107109, ISSN 0735-1933, https://doi.org/10.1016/j.icheatmasstransfer.2023.107109.
Li, Y., Xie, G., Sunden, B., Lu, Y., Wu, Y., & Qin, J. (2018). Performance study on a single-screw compressor for a portable natural gas liquefaction process. Energy, 148, 1032-1045. ISSN 0360-5442, https://doi.org/10.1016/j.energy.2018.02.003.
Lombardi L., Mendecka B., & Carnevale E. (2018). Comparative life cycle assessment of alternative strategies for energy recovery from used cooking oil. J. Environ. Manage, (216): 235-245. doi:10.1016/j.jenvman.2017.05.016
López, M., & Osorio, D. (2015). Influencia del proceso de fabricación sobre las propiedades mecánicas de los concretos de ultra alto desempeño (UHPC), Trabajo de grado, Maestría en Ingeniería Civil, Facultad de Ingeniería Pontificia Universidad Javeriana, Bogotá D.C., Colombia.
Oropesa, E., & Martínez C. (2015). Gestión de cambios en plantas industriales de procesos y la prevención de accidentes laborales. Salud de los Trabajadores, 23(1): 49-54. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1315-01382015000100006&lng=es&tlng=es.
Rao, T., Rani, A., Mohamed, M., Ya, H., Awang, M., & Hashim, F. (2019). Analysis of magnetohydrodynamic partial slip laser bump texture slider and journal bearing. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 233(12), 1921-1938. https://journals.sagepub.com/doi/abs/10.1177/1350650119852568
Shan, W., Chen, Y., Huang, J., Wang, X., Han, Z., & Wu, K. (2023). A multiphase flow study for lubrication characteristics on the internal flow pattern of ball bearing, Results in Engineering, 20: 101429, ISSN 2590-1230, https://doi.org/10.1016/j.rineng.2023.101429.
Song, F., Yang, X., Dong, W., Zhu, Y., Wang, Z., & Wu, M. (2022). Research and prospect of textured sliding bearing. The International Journal of Advanced Manufacturing Technology, 121(1-2), 1-25. https://link.springer.com/article/10.1007/s00170-022-09281-2
Takabi, J., & Khonsari, M. (2013). Experimental testing and thermal analysis of ball bearings, Tribology International, 60(2013): 93-103, ISSN 0301-679X, https://doi.org/10.1016/j.triboint.2012.10.009.
Xiang, G., Han, Y., He, T., Wang, J., Xiao, K., & Li, J. (2020). Transient tribo-dynamic model for journal bearings during start-up considering 3D thermal characteristic. Tribology International, 144, 106123. ISSN 0301-679X, https://doi.org/10.1016/j.triboint.2019.106123.
Zhu, S., Sun, J., Li, B., & Zhu, G. (2020). Thermal turbulent lubrication analysis of rough surface journal bearing with journal misalignment. Tribology International, 144, 106109. ISSN 0301-679X, https://doi.org/10.1016/j.triboint.2019.106109.