Influence of a higher fairing on the pulling force of a truck
Main Article Content
Abstract
Introduction: The consumption of diesel fuel in the country represented 36.61 [%] of the demand for petroleum derivatives in 2019, which is why it seeks to propose savings alternatives in the land freight transport sector. For this reason, the influence of an upper cabin fairing (windbreaker) on the drag force, which is generated when the truck moves forward, displacing a large amount of air that flows through the exterior and interior of the truck, was analyzed. Objective: To analyze the influence of a higher fairing on the drag force of a truck using the one-dimensional equation of the drag force and computational fluid dynamics software. Methodology: This effect was estimated using the one-dimensional drag force equation, which relates the drag coefficient, air density, frontal area, air speed and truck speed, with the help of a software of computational fluid dynamics (CFD), which requires a simplified geometry at 1: 1 scale of the truck and the upper fairing, the domain is generated and the boundary conditions governing the physical phenomenon are taken. Results: A decrease of 0.102 [kN] is obtained at a truck speed of 40 [km / h], as the speed increases to 120 [km / h], the force decreases by 0.788 [kN]. Conclusions: There is a reduction of 8.734 [%] in the drag force when using the upper cabin fairing, this is complemented by the study carried out on fuel consumption on the road where there is a saving of 4.63 [%] with the use of the upper cabin fairing.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Aguilar, Y., Caldas, I., Rivera, A., & Tapia, E. (2017). Estudio de la influencia de la apertura de las ventanas y la velocidad de circulación en la aerodinámica de un vehículo turismo. Cuenca: INGENIUS.
Ansys. (2018). CFX - Help support. ANSYS, Inc.
Balance-Energético. (2016). Balance Energético Nacional. Quito: Ministerio de Energías y recursos naturales no renovables.
Bayindirli, C., Salman, M., & Akansu, Y. (2016). The Determination of Aerodynamic Drag Coefficient of Truck and Trailer Model by Wind Tunnel Tests. Turkey: Academicpaper.
CENAM. (21 de 06 de 2020). Cálculo de la densidad del aire utilizando la formula del CIPM-2007. Obtenido de http://www.cenam.mx/publicaciones/cdensidad.aspx
Ehsani, M., Gao, Y., Gay, S., & Emadi, A. (2014). Vehículos Modernos Eléctricos, Híbridos Eléctricos y de Celdas de Combustible. USA: CRC PRES.
Hino-Motors. (2014). Especificaciones Hino 500 modelo GD8JLSA. Japon: Hino Motors, Ltd.
Hirsch, C. (2007). Fundamentos de dinámica computacional de fluidos. India: JohnWiley & Sons.
Hirz, M., & Stadler, S. (2013). A new approach for the reduction of aerodynamic drag of long-distance transportation vehicles. USA: SAE.
INAMHI. (2020). Boletín meteorológico N°03. Quito: INAMHI.
INAMHI. (28 de 06 de 2020). Red de estaciones automáticas hidrometeorológicas . Recuperado el 21 de 07 de 2020, de http://186.42.174.236/InamhiEmas/#
Jhon D., A. (1991). Fundamentos de Aerodinámica. USA: McGraw-Hill.
Pachacama, D., & Simbaña, J. (2017). Evaluación del consumo de combustible de un camión con la implementación de un deflector de aire. Quito: EPN.
Petroecuador. (2019). Informe estadístico anual . Quito: EP Petroecuador.
Remache, A., Tipanluisa, L., Salvador, J., & Erazo, W. (2015). Análisis aerodinámico regional mediante cfd de un semirremolque cisterna para transporte de cemento. Perú: UNASAM.
SAE-J2188. (2018). Commercial Truck and Bus SAE Recommended Procedure for Vehicle Performance Prediction and Charting. USA: SAE.
Villalobos, J., Arancibia, N., Retamal, S., Olivo, P., & Vásquez, J. (2011). Impacto de la aerdinámica para el ahorro de combustible. Chile: AChEE.
Villalobos, J., Gavilan, C., Salazar, C., & Rojas, C. (2012). Impacto del diseño de cabinas en el consumo de combsutible. Chile: AChEE.