Obtaining and characterizing a bioplastic from chickpea (cicer arietinum)

Main Article Content

Jonathan Alexander Barrera Pilataxi
Luis Santiago Carrera Almendáriz
Ana Gabriela Flores Huilcapi
Adrián Alejando Rodríguez Pinos

Abstract

Introduction: Plastic (polyethylene) is an important ally in the daily life of human beings; however, its use and excessive accumulation has generated a serious environmental problem. Objective: This research seeks to develop a biodegradable material based on chickpea starch with characteristics like plastic that can potentially be used as a coating for food. Methodology: A literature review was carried out to determine the extraction method of chickpea starch, selecting the wet method. A two-factor experimental design with two factors, starch weight (g) and volume of distilled water (mL), was carried out and 1.5 mL of glycerin (plasticizer) and 4 mL of acetic acid (chemical modifier) were added to each treatment. The mechanical properties of bioplastics are tested under NTE INEN 2635:2012 Test methods for tensile properties of thin films and their biodegradability under Technical Standard INEN 2643:2012. Specifications for compostable plastics. Results: The starch was characterized by physicochemical tests: 19% amylose, 81% amylopectin, 4.53 pH, 39249 mPas viscosity, 60ºC gelatinization temperature and 4.82 solubility index. The bioplastic formulation with better mechanical properties is constituted by: 3.5 % (1.5 mL) glycerin, 9.5 % (4 mL) acetic acid, 3.5 % (1.5 g) chickpea starch and 83.5 % (35 mL) distilled water. The selected biopolymer presents high aqueous biodegradability and physical characteristics: 4.9 Mpa modulus of elasticity, 24.2 % elongation, 2.8 N maximum load, 1 Mpa maximum stress.  Conclusion: The bioplastic obtained from chickpea starch presents mechanical properties comparable to low density polyethylene films and biodegradable properties that allow its use in food wrapping.

Downloads

Download data is not yet available.

Article Details

How to Cite
Barrera Pilataxi, J. A., Carrera Almendáriz , L. S., Flores Huilcapi, A. G., & Rodríguez Pinos, A. A. (2022). Obtaining and characterizing a bioplastic from chickpea (cicer arietinum) . ConcienciaDigital, 5(1), 57-69. https://doi.org/10.33262/concienciadigital.v5i1.1964
Section
Artículos

References

Adilah, A. N., Jamilah, B., Noranizan, M. A., & Hanani, Z. A. N. (2018). Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packaging and Shelf Life, 16(May 2017), 1–7. https://doi.org/10.1016/j.fpsl.2018.01.006
Alexandre, E. M. C., Lourenço, R. V., Bittante, A. M. Q. B., Morales, I. C. F., & Sobral, P. J. do A. (2016). Gelatin-based films reinforced with montmorillonite and activated with nano emulsion of ginger essential oil for food packaging applications. Food Packaging and Shelf Life, 10, 87–96. https://doi.org/10.1016/j.fpsl.2016.10.004
Astuti, P., & Erprihana, A. A. (2014). Antimicrobial Edible Film from Banana Peels as Food Packaging Abstract: 2(2), 65–70.
Fonseca-García, A., Jiménez-Regalado, E. J., & Aguirre-Loredo, R. Y. (2021). Preparation of a novel biodegradable packaging film based on corn starch-chitosan and poloxamers. Carbohydrate Polymers, 251(August 2020). https://doi.org/10.1016/j.carbpol.2020.117009
Herrera, T., Delgado, A., Ramírez, P., Licea de Anda, E., Moreno, M., & Machuca, C. (2014). ESTUDIO DE LA COMPOSICIÓN PROXIMAL DE VARIEDADES DE GARBANZO (Cicer arietinum L.) COSTA 2004 Y BLANORO. Ciencia y Tecnología Agropecuaria de México, 2(2), 9–15.
Hu, B. (2014). Biopolymer-based lightweight materials for packaging applications. ACS Symposium Series, 1175, 239–255. https://doi.org/10.1021/bk-2014-1175.ch013
Imre, B., García, L., Puglia, D., & Vilaplana, F. (2019). Reactive compatibilization of plant polysaccharides and biobased polymers: Review on current strategies, expectations, and reality. Carbohydrate Polymers, 2(2), 285–309. https://doi.org/https://doi.org/10.1016/j.carbpol.2018.12.082
Instituto Nacional de Estadísticas y Censos [INEC]. (2018). Metodología de Gestión de Residuos Sólidos. https://www.ecuadorencifras.gob.ec/documentos/web-inec/Encuestas_Ambientales/Municipios_2018/Residuos_solidos_2018
Jõgi, K., & Bhat, R. (2020). Valorization of food processing wastes and by-products for bioplastic production. Sustainable Chemistry and Pharmacy, 18. https://doi.org/10.1016/j.scp.2020.100326
Li, C., Hu, Y., Huang, T., Gong, B., & Yu, W. W. (2020). A combined action of amylose and amylopectin fine molecular structures in determining the starch pasting and retrogradation property. International Journal of Biological Macromolecules, 164, 2717–2725. https://doi.org/10.1016/j.ijbiomac.2020.08.123
López, R., Vaca, M., Terres, H., Lizardi, A., Morales, J., Flores, J., … Chávez, S. (2014). Kinetics modeling of the drying of chickpea (Cicer arietinum) with solar energy. Energy Procedia, 57, 1447–1454. https://doi.org/10.1016/j.egypro.2014.10.136
Park, M., Choi, I., Lee, S., Hong, S. Ju, Kim, A., Shin, J., … Kim, Y. W. (2020). Renewable malic acid-based plasticizers for both PVC and PLA polymers. Journal of Industrial and Engineering Chemistry, 88, 148–158. https://doi.org/10.1016/j.jiec.2020.04.007
Romero, H. M., & Zhang, Y. (2019). Physicochemical properties and rheological behavior of flours and starches from four bean varieties for gluten-free pasta formulation. Journal of Agriculture and Food Research, 1(149), 100001. https://doi.org/10.1016/j.jafr.2019.100001
Sawpan, M. A., Pickering, K. L., & Fernyhough, A. (2009). Characterization of hemp fiber reinforced Poly (Lactic Acid) composites. International Journal of Materials and Product Technology, 36(1/2/3/4), 229. https://doi.org/10.1504/ijmpt.2009.027834
Tian, K., & Bilal, M. (2019). Research progress of biodegradable materials in reducing environmental pollution. In Abatement of Environmental Pollutants: Trends and Strategies. https://doi.org/10.1016/B978-0-12-818095-2.00015-1
Xu, H., & Yang, Y. (2012). Bioplastics from waste materials and low-value byproducts. ACS Symposium Series, 1114, 113–140. https://doi.org/10.1021/bk-2012-1114.ch008