Classification of tourist routes through deep learning
Main Article Content
Abstract
Introduction. Currently deep learning or deep learning has applications of all kinds, tourism is not the exception, data mining has allowed optimizing processes within the tourism industry such as tourist demand, knowing the preference of people's tourist routes allows optimizing resources and propose improvements within this sector. Target. Determine if tourist routes can be classified by means of deep learning or deep learning tools. Methodology. The research design was qualitative, techniques such as the interview were used, for these two hypotheses are proposed, the first has to do with the relationship between the type of climate of the tourist destination and the preference of tourists, the second hypothesis is the verification of the conformation of tourist clusters based on the preference of the people. As verification tools, direct verification and the Weka program were used with the SimpleKMeans clusters option that allows the identification of tourists' preferences based on the data mining of 31 people. Results. The results indicate that the largest number of people interviewed prefer tourist destinations in hot climates, however, this was not a determining parameter in the formation of clusters. Conclusion. The study determined that it is possible to form clusters for the classification of tourist routes based on people's preferences.
Downloads
Article Details
References
Enseñat, F. (2020). Clasificación de las zonas arqueológicas según su nivel de atracción. Investigaciones geográficas, 102. https://doi.org/10.14350/rig.60146
Hao, X., Zhang, G., & Ma, S. (2016). Deep Learning. International Journal of Semantic Computing, 10(03), 417-439. https://doi.org/10.1142/S1793351X16500045
Jeong, C. S., Ryu, K. H., Lee, J. Y., & Jung, K. D. (2020). Deep Learning-based Tourism Recommendation System using Social Network Analysis. International Journal of Internet, Broadcasting and Communication, 12(2), 113-119. https://doi.org/10.7236/IJIBC.2020.12.2.113
Labzioui, H. (2020). Aplicación de Deep Learning a la predicción de turismo en la Costa del Sol. https://riuma.uma.es/xmlui/handle/10630/20490
Law, R., Li, G., Fong, D. K. C., & Han, X. (2019). Tourism demand forecasting: A deep learning approach. Annals of Tourism Research, 75, 410-423. https://doi.org/10.1016/j.annals.2019.01.014
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539
Ma, Y., Xiang, Z., Du, Q., & Fan, W. (2018). Effects of user-provided photos on hotel review helpfulness: An analytical approach with deep leaning. International Journal of Hospitality Management, 71, 120-131. https://doi.org/10.1016/j.ijhm.2017.12.008
Molinar, C. M. A., Espinoza, P. M., & Llamas, I. O. (2017). Evaluación de destinos turísticos mediante la tecnología de la ciencia de datos. Estudios y perspectivas en turismo, 26(2), 286-305. https://dialnet.unirioja.es/servlet/articulo?codigo=6327726
Renteria Ayquipa, R. A. (2021). Machine learning y realidad aumentada para el reconocimiento de recursos turísticos. Repositorio Institucional. http://repositorio.unap.edu.pe/handle/UNAP/16669
Rodríguez, C. R., & Abeal, J. P. (2016). El itinerario cultural urbano como producto turístico: El caso de Galicia. International journal of scientific management and tourism, 2(2), 373-396. https://dialnet.unirioja.es/servlet/articulo?codigo=5665888
Vinces, O. M., Cabrera, K. R., & Grunauer, M. N. (2021). Diseño de un modelo de aplicación móvil de las rutas turísticas del cantón Pasaje, Ecuador. 593 digital Publisher CEIT, 6(6), 196-211. https://dialnet.unirioja.es/servlet/articulo?codigo=8149604
Wang, D., Zhang, J., Cao, W., Li, J., & Zheng, Y. (2018, Abril 26). When Will You Arrive? Estimating Travel Time Based on Deep Neural Networks. Thirty-Second AAAI Conference on Artificial Intelligence. Thirty-Second AAAI Conference on Artificial Intelligence. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16657
Wang, M. (2020). Applying Internet information technology combined with deep learning to tourism collaborative recommendation system. PLOS ONE, 15(12), e0240656. https://doi.org/10.1371/journal.pone.0240656
Zhang, K., Chen, Y., & Li, C. (2019). Discovering the tourists’ behaviors and perceptions in a tourism destination by analyzing photos’ visual content with a computer deep learning model: The case of Beijing. Tourism Management, 75, 595-608. https://doi.org/10.1016/j.tourman.2019.07.002