Bandwidth geometry of a communication channel
Main Article Content
Abstract
The objective of this work is to show the results of a study carried out with a group of 50 Telecommunications engineering students to whom the cognitive construction of geometric elements in the determination of the bandwidth of a channel, it was applied as a learning test. Mathematical instruction in the epistemic and cognitive dimensions. In this search work were implement a didactic strategy and a construction methodology, designed on geometric elements to reason about conditional probability. The productions analyzed before and after the instruction. The purpose was to contribute to the construction of the meaning of the formula programmed in the software or firmware of a network interface, by promoting the ability to carry out the cognitive construction of the communication channel and its behavior in a work setting. Students who developed this skill showed less difficulty in their resolutions and came up with new ideas on optimizing.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Amado, J. P.-C. (2019). SOLUTION OF A P AND S WAVE PROPAGATION MODEL USING HIGH PERFORMANCE COMPUTATION. CT&F - Ciencia, Tecnología y Futuro, 9(1); 119-130.
Arnon, I. C. (2014). A framework for research and curriculum development in mathematics education. Springer. APOS Theory, doi: 10.1007/978-1-4614-7966-6. Obtenido de A framework for research and curriculum development in mathematics education.
Castro-Ladino, J. R.-B. (2019). Aplicación de metamateriales para estimar índices de refracción. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(167); 193-198.
DÍAZ, C. D. (2014). Razonamiento sobre Probabilidad Condicional e implicaciones para la enseñanza de la Estadística. Andalucía: Epsilon,.
Dorier, J. L. (2002). The teaching and learning of mathematics at university level. New ICMI Study Series, 7(3), 255-273.
Dubinsky, E. (1996). Aplicación de la perspectiva piagetiana a la educación matemática universitaria. Educación Matemática, , 8(3), 24-41.
Facchini, ,. H. (2020). Evaluación de métricas del comportamiento del tráfico de video en una red experimental multidifusión. Enfoque UTE; , 11(1); 15-27.
FONT, V., GODINO, J., & D’AMORE, B. (24 de 10 de 2012). Enfoque Ontosemiótico de las representaciones en Educación Matemática. v. 27, n. 2, p. 3-9. 2007. Obtenido de For the learning of mathematics, Montreal,:
García-Martinez, I. &. (2017). The basis step in the construction of the principle of mathematical induction based on APOS theory. The Journal of Mathematical Behavior, 46, 123-143.
GODINO, J. (2011). Indicadores de la idoneidad didáctica de procesos de enseñanza y aprendizaje de las matemáticas. CONFERENCIA INTERAMERICANA DE EDUCACIÓN MATEMÁTICA, (págs. p. 1-20.). CONFERENCIA INTERAMERICANA DE EDUCACIÓN MATEMÁTICA,.
GODINO, J., & BATANERO, C. S. (24 de 10 de 2012). Recherches en Didactique des Mathématiques. Obtenido de Grenoble,:
POLLATESK, A., WELL, A., KONOLD, C., HARDIMAN, P., & COBB, G. (1987). Understanding Conditional Probabilities. Organizational, Behavior and Human Decision Processes,, n. 40, p. 255-269.
Rafael-Valdivia, G. (2019). Modelo compacto con capacidad de predicción de parámetros físicos para amplificadores de RF. Revista Facultad de Ingeniería, 28(51); 73-87.
Vesga Ferreira, J. C. (2019). Optimización del ancho de banda en redes BPL usando las técnicas nucleolus y max-min fairness. Revista Ingenierías Universidad de Medellín, 18(34); 165-180.