Aluminum-silicon alloy materials applied in the manufacture of parts of alternative internal combustion engines Part I

Main Article Content

Gustavo Barona López
Luis Efraín Velasteguí

Abstract

This paper presents a systematic knowledge of the chemical composition, type of molding and treatment, mechanical and thermal properties, of aluminium-silicon (Al-Si) alloys applied in the manufacture of structural parts of reciprocating internal combustion engines (RICE), with the aim of providing support for the development of researches when compare, analyze or select the presented alloys. For which, a first paper is presented, which indicates, the structural parts of these types of engines are manufactured with Al-Si alloys. The paper begins with concepts, characteristics and classification of RICE. Subsequently, the characteristics, function of the parts, work cycles and other aspects of the Otto four- and two-stroke RICE are described, in addition to the Al-Si alloy cylinder block, and the structural parts of Otto engines made of Al-Si alloys are shown. To deepen the issue, the characteristics and the duty cycle of diesel engines have been written. Finally, a summary of characteristics of the Diesel and Otto engine was prepared. The paper shows as a result a systematization of the subjects investigated where Al-Si alloys integrate the structural parts of the RICE used in different industrial applications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Barona López, G., & Velasteguí, L. E. (2019). Aluminum-silicon alloy materials applied in the manufacture of parts of alternative internal combustion engines Part I. Ciencia Digital, 3(3.2), 302-313. https://doi.org/10.33262/cienciadigital.v3i3.2.758
Section
Artículos

References

ASM HANDBOOK. (1998). VOLUME 15 Casting. USA: ASM International.
Barona, G. A., & Guilcamaigua, J. C. (2018). Caracterización de un material compuesto de matriz aleación de aluminio-silicio reforzada con partículas de carburo de silicio (Tesis de Maestría). Escuela Politécnica Nacional. Quito.
Dobosz, S. M., & Major-Gabryś, K. (2010). Strength properties of moulding sands with chosen biopolymer binders. Archives of Foundry Engineering, 10(3), 17-20.
Dobosz, S. M., Jelinek, P., & Major-Gabrys, K. (2011). Development tendencies of moulding and core sands. China Foundry, 8(4), 438-446.
Dobosz, St. M., Grabarczyk, A., Major-Gabryś, K., & Jakubski, J. (2015). Influence of Quartz Sand Quality on Bending Strength and Thermal Deformation of Moulding Sands with Synthetic Binders. Archives of Foundry Engineering, 15(2), 9-12.
Elío de Bengy, S. D., Tremps Guerra, E., Fernández Segovia, D., & Enríquez Berciano, J. L. (2012). Fabricación de camisas para motores diesel.
Esquivel Herrera, A. (2010). Desarrollo de un aglutinante orgánico para la fabricación de moldes y corazones de arena (Tesis Doctoral). Universidad Autónoma de Nuevo León. México.
European Aluminium Association. (2002). The Aluminium Automotive Manual Manufacturing-Casting methods. Recuperado de http://european-aluminium.eu/resource-hub/aluminium-automotive-manual/
Fedoryszyn, A., Dańko, J., Dańko, R., Asłanowicz, M., Fulko, T., & Ościłowski, A. (2013). Characteristic of core manufacturing process with use of sand, bonded by ecological friendly nonorganic binders. Archives of Foundry Engineering, 13(3), 19-24.
Gieniec, A., Müller, J., Vacelet, P., ASK Chemicals GmbH, Hilden. (2013). Innovative binders for eco-friendly and highly productive processes. Giesserei-Verlag, 8-10.
Major-Gabryś, K., Dobosz, S., & Jakubski, J. (2011). The estimation of harmfulness for environment of moulding sands with biopolimer binder based on polylactide. Archives of Foundry Engineering, 11(1), 69-72.
Major-Gabryś, K., Grabarczyk, A., & Dobosz, St. M. (2016). The Compositions: Biodegradable Material– Synthetic Resins as Moulding Sands Binders. Archives of Foundry Engineering, 16(4), 75-78.
Ministerio de Empleo y Seguridad Social del Gobierno de España. SITUACIONES DE EXPOSICIÓN A AGENTES QUÍMICOS. Elaboración de moldes de fundición con resinas autofraguantes: exposición a formaldehído, alcohol furfurílico y fenol. (BASEQUIM 018A). 2018. España: Instituto nacional de seguridad, salud y bienestar del trabajo.
Mohanty, A. K., Misra, M., & Drzal, L. T. (Eds.). (2005). Natural fibers, biopolymers, and biocomposites. Boca Raton: CRC press.
Pezarski, F., Smoluchowska, E., & Izdebska-Szanda, I. (2008). Application of geopolimer binder in manufacturing of casting from ferrous alloys. The Transactions of the Foundry Research Institute, 2, 19-34.
PrometalRCT. (19 de octubre, 2010). Rapid Prototyping and Digital Sand Casting Services [YouTube]. Recuperado de https://www.youtube.com/watch?v=Z8MaVaqNr3U
Sáenz Valdez, A. A. (2010). Desarrollo de un aglutinante inorgánico para la producción de corazones en la industria automotriz (Tesis de Maestría). Universidad Autónoma de Nuevo León. México.
Sertucha, J., & Suárez, R. (2005). Materiales inorgánicos aplicados en la fabricación de piezas de fundición. In Anales de la Real Sociedad Española de Química (No. 3, pp. 17-27). Real Sociedad Española de Química.
Weissenbek, E., Kautz, T., Brotzki, J., & Müller, J. (2012). Tomorrow’s Cylinder Head Production Ecology, Economy and Material Enhancement Brought in Line. Auto Tech Review, 1(4), 54-59.
Zaretskiy, L. (2016). Modified Silicate Binders New Developments and Applications. International Journal of Metalcasting, 10(1), 88-99.