Analysis of the lipophilicity of compounds in the refinery alkylation process upstream using computational chemistry
Main Article Content
Abstract
Introduction: Refinery alkylation is crucial for the production of high-octane gasoline with low emissions, meeting environmental requirements and demands of today's automotive industry. This study provides data obtained by computational chemistry analysis of the chemical compounds in the refinery alkylation process input stream, which is expected to significantly improve fuel quality and process efficiency. Objective: The objective of this study is to analyse the lipophilicity values of chemical compounds in the refinery alkylation process input stream, which are identified through an exhaustive literature search and analysed by computational chemistry using the iLOGP, XLOGP3, MLOGP, WLOGP and SILICOS-IT methods. The aim is to understand how the lipophilicity of these compounds influences their behaviour during this crude oil refining process, in order to improve the efficiency and selectivity of this process. Methodology: In this study, observation, measurement, experimentation and systematic and rigorous interpretation of the results are carried out. By means of analysis and bibliographic search, the compounds present in the input flow to the alkylation process in the refinery are determined. These compounds are processed by computational chemistry to obtain the lipophilicity values of each molecule. Subsequently, these values and their influence on the relevant variables of the refining process are meticulously analysed. Results: Consensus Log Po/w combines computational methods to estimate the Log Po/w of each molecule, improving the accuracy of the predictions. This study focuses on analysing the lipophilicity of compounds in the inlet stream for refinery alkylation. Propylene has the lowest value, while n-pentane has the highest. Lipophilicity ensures the solubility and efficiency of the process. Conclusions: The lipophilic characteristics of compounds in the alkylation feed stream are crucial in crude oil refining. Understanding and predicting lipophilicity can be achieved with computational methods such as iLOGP, XLOGP3, WLOGP, MLOGP and SILICOS-IT. Consensus values of lipophilicity range from 1.35 to 2.45, affecting solubility in organic phases and interaction with catalysts, which influences the efficiency and yield of alkylation in refinery.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Ancheyta, J. (2011). Modeling and Simulation of Catalytic Reactors for Petroleum Refining. (J. W. Sons, Ed.) Wiley. Obtenido de https://books.google.com.ec/books?id=86shQ7GZOWIC
Arias, T. (2002). Glosario de medicamentos: desarrollo, evaluación y uso. Organización Panamericana de la Salud. Obtenido de https://iris.paho.org/bitstream/handle/10665.2/751/9275323054.pdf
ChemDraw. (14 de Mayo de 2024). Harness the Power of your Data for Scientific Breakthroughs in Pharma & Biotech, Chemicals & Materials. Obtenido de Millions of downloads: #1 trusted chemical drawing solution since 1985: https://revvitysignals.com/products/research/chemdraw
Daina, A., & Zoete, V. (2016). A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 11(11), 1117-1121. https://doi.org/10.1002/cmdc.201600182
Daina, A., Michielin, O., & Zoete, V. (2014). iLOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. Journal of chemical information and modeling, 54 12, 3284-301. DOI:10.1021/ci500467k
Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7, 42717. https://doi.org/10.1038/srep42717
Delgado Cirilo, A., Minguillón Llombart, C., Joglar Tamargo, J. (2003). Introducción a la química terapéutica. España: Díaz de Santos. https://www.google.com.ec/books/edition/Introducci%C3%B3n_a_la_qu%C3%ADmica_terap%C3%A9utica/4LwpfcjAhoMC?hl=es-419&gbpv=1
Dhiman, N., Awasthi, R., Sharma, B., Kharkwal, H., & Kulkarni, G. T. (2021). Lipid nanoparticles as carriers for bioactive delivery. Frontiers in chemistry, 9, 580118. https://doi.org/10.3389/fchem.2021.580118
Espin, W. & Travez, S. (2021). Estudio in silico, teórico computacional de las corrientes de ingreso y salida de una refinería de petróleo enfocado en el proceso de “Polimerización y Alquilación” con énfasis en las estructuras químicas individuales para cada flujo, y el análisis de sus propiedades fisicoquímicas intrínsecas, configuraciones, conformaciones y potenciales interacciones intermoleculares entre sí [Tesis de pregrado, Universidad de las Fuerzas Armadas ESPE]. Repositorio de la Universidad de las Fuerzas Armadas ESPE. http://repositorio.espe.edu.ec/handle/21000/25027
Kumar, B., & Raj Mohan, B. (2015). Microwave-Assisted Extraction of Wax from Oily Sludge: An Experimental Study and its Process Variables Optimization Using Response Surface Methodology. Soil and Sediment Contamination: An International Journal, 24(5), 588–607. https://doi.org/10.1080/15320383.2015.988780
Mäki-Arvela, P., Kaka khel, T. A., Azkaar, M., Engblom, S., & Murzin, D. Y. (2018). Catalytic hydroisomerization of long-chain hydrocarbons for the production of fuels. Catalysts, 8(11), 534. https://doi.org/10.3390/catal8110534
Mansouri, K., Ringsted, T., Ballabio, D., Todeschini, R., & Consonni, V. (2013). Quantitative structure–activity relationship models for ready biodegradability of chemicals. Journal of chemical information and modeling, 53(4), 867-878. https://doi.org/10.1021/ci4000213
Mishra, S., & Dahima, R. (2019). In Vitro Adme Studies Of Tug-891, A Gpr-120 Inhibitor Using Swiss Adme Predictor. Journal of Drug Delivery and Therapeutics, 9(2-s), 366-369. DOI:10.61744/hjp.v2i2.54
Parveen, S., & Alnoman, R. B. (2021). Potential exploration of recent FDA-approved anticancer drugs against models of SARS-CoV-2’s main protease and spike glycoprotein: a computational study. Biointerface Research in Applied Chemistry, 11(3), 10059-10073. https://doi.org/10.33263/BRIAC113.1005910073
PennState College of Earth and Mineral Sciences. (20 de Mayo de 2024). John A. Dutton Institute for Teaching and Learning Excellence. Obtenido de FSC 432 Petroleum Processing: https://www.e-education.psu.edu/fsc432/content/alkylation
Saha, S., & Pal, D. (2017). log P. Encyclopedia of Physical Organic Chemistry (1ª ed.). USA: Zerong Wang. https://www.researchgate.net/publication/314216649_Log_P_in_Encyclopedia_of_Physical_Organic_Chemistry
Saldívar-González F. I., Chávez-Hernández, A. L., Prado-Romero, D. L., & González-Medina, M. (2023). ¿Por qué hay que hablar de mujeres en Química Computacional y no sólo de Química Computacional?. Revista Ciencia UANL, 26(121), 8-19. https://doi.org/10.29105/cienciauanl26.121-1
Sempere Pérez, I. (2020). Diastereoselective Deacylative Addition Of 3-Acetyl-3-Fluorooxindoles to Aldehydes. [Tesi de màster, Universitat d' Alacant]. Repositorio de la Universitat d' Alacant. Obtenido de http://hdl.handle.net/10045/107742
Shokri, A., & Karimi, S. (2021). A review in linear Alkylbenzene (LAB) production processes in the petrochemical industry. Russian Journal of Applied Chemistry, 94(11), 1546-1559. Doi: 10.1134/S1070427221110094
Singh, N., Sharma, P., Pal, M. K., Kahera, R., Badoni, H., Pant, K., Sharma, N., & Bhist, B. (2024). In silico targeting of the nacht/pyd domain in nlrp3 inflammasome using phytochemical alkaloids: a computational drug discovery approach. https://doi.org/10.21203/rs.3.rs-4149517/v1
SwissADME. (1 de Mayo de 2024). Swiss Institute of Bioinformatics. Obtenido de https://www.molecular-modelling.ch/swiss-drug-design.html
Udugade, S. B., Doijad, R. C., & Udugade, B. V. (2019). In silico evaluation of pharmacokinetics, drug-likeness and medicinal chemistry friendliness of momordicin1: an active chemical constituent of momordica charantia. Journal of Advanced Scientific Research, 10(03 Suppl 1), 222-229. Retrieved from http://www.sciensage.info/index.php/JASR/article/view/369
Velmourougane, G. (16 de Mayo de 2024). Understanding Lipinski’s Rule of 5 and the Role of LogP Value in Drug Design and Development. Obtenido de https://www.sailife.com/understanding-lipinskis-rule-of-5-and-the-role-of-logp-value-in-drug-design-and-development/
Wang, Z., Jeffries, B. F., Felstead, H. R., Wells, N. J., Chiarparin, E., & Linclau, B. (2019). A New Straightforward Method for Lipophilicity (logP) Measurement using 19F NMR Spectroscopy. JoVE (Journal of Visualized Experiments), (143), e58567. doi:10.3791/58567
Wildman, S. A., & Crippen, G. M. (1999). Prediction of physicochemical parameters by atomic contributions. Journal of chemical information and computer sciences, 39(5), 868-873. https://doi.org/10.1021/ci990307l