Molecular optimization in fluid catalytic cracking process: cartesian coordinate analysis for enhancing efficiency and quality in crude oil refining

Main Article Content

Sandra Elizabeth Trávez Osorio
Nancy Orlheni Nacimba Rivera
Milton Javier Robalino Cacuango
Alex Santiago Moreno Corrales

Abstract

Introduction: In crude oil refining, the Fluid Catalytic Cracking (FCC) process converts crude oil into high-quality petrochemical products. Understanding molecular interactions in FCC is crucial for optimization, efficiency, and quality purposes. This quantitative and descriptive study analyzes Cartesian coordinates of key compounds, employing computational chemistry for this purpose. Methodology: Quantitative and descriptive. Through a literature review, typical chemical compounds feeding into the FCC process were identified, including paraffins, olefins, aromatics, and naphthenes among others. These compounds were processed using computational chemistry to obtain their 3D coordinates, optimizing their molecular geometry to represent the real structure, ensuring reliable data accuracy in subsequent simulations and analysis. Analysis and Discussion of Results: Cartesian coordinates aid in understanding and identifying optimal operating conditions, enhancing the comprehension of molecular interactions in real time and facilitating the prediction of separation behaviors. These coordinates are envisaged to optimize crude oil refining processes in FCC, through modeling and visualization of atomic-level movements and collisions. Conclusions: Optimizing molecular geometry using the appropriate force field is crucial for obtaining precise Cartesian coordinates. These coordinates enable the simulation of molecular interactions at the atomic level, design of more efficient catalysts, and optimization of refining processes. Additionally, real-time monitoring with accurate molecular data could ensure consistent product quality in FCC.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Trávez Osorio, S. E., Nacimba Rivera, N. O., Robalino Cacuango, M. J., & Moreno Corrales, A. S. (2024). Molecular optimization in fluid catalytic cracking process: cartesian coordinate analysis for enhancing efficiency and quality in crude oil refining. Ciencia Digital, 8(3), 47-63. https://doi.org/10.33262/cienciadigital.v8i3.3079
Section
Artículos

References

Avogadro. (27 de Mayo de 2024). Preface. Retrieved from Editor and Molecular VisualisationPermanent link: https://avogadro.cc/
Borges, E., Braga, J., & Belchior, J. (2007). Coordenadas cartesianas moleculares a partir da geometria dos modos normais de vibração. Quimica nova, 30(2), 497-500. https://doi.org/10.1590/S0100-40422007000200046
Chaurand Padilla, A., Garcia Lugo, A., & García Chávez, F. (2022). Manual para uso de Gaussview 6.0. Universidad de Guanajuato. Retrieved from https://www.ugto.mx/investigacionyposgrado/veranos/images/manuales2022/1-Manual_Trejo_Durn-Castellanos_guila.pdf
ChemDraw. (27 de Mayo de 2024). Where there's chemistry, there's ChemDraw. Retrieved from https://revvitysignals.com/products/research/chemdraw
Chiluisa Cando, J. (2021). Estudio in silico, teórico computacional de las corrientes de ingreso y salida de una refinería de petróleo enfocado en el proceso de “craqueo catalítico” con énfasis en las estructuras químicas individuales para cada flujo, y el análisis de sus propiedades fisicoquímicas intrínsecas, conFigure ciones, conformaciones y potenciales interacciones intermoleculares entre sí. [Undergraduate, Universidad de las Fuerzas Armadas ESPE]. Institutional Repository of the University of the Armed Forces ESPE. Retrieved from http://repositorio.espe.edu.ec/handle/21000/25122
Fahim, M., Al-Sahhaf, T., & Elkilani, A. (2009). Fundamentals of petroleum refining. El Sevier. Retrieved from https://books.google.com.ec/books?id=UcFsv1mMFHIC&dq=Fundamentals+of+petroleum+refining.+FCC&lr=&hl=es&source=gbs_navlinks_s
Grabowski, S. (2020). Understanding Hydrogen Bonds: Theoretical and Experimental Views. Reino Unido: Royal Society of Chemistry. Retrieved from https://www.google.com.ec/books/edition/Understanding_Hydrogen_Bonds/ovIIEAAAQBAJ?hl=es-419&gbpv=0
Jorgensen, W., & Tirado-Rives, J. (2005). Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proceedings of the National Academy of Sciences, 102(19), 6665-6670. https://doi.org/10.1073/pnas.0408037102
Nazarova, G., Ivashkina, E., Ivanchina, E., & Mezhova, M. (2022). A Model of Catalytic Cracking: Catalyst Deactivation Induced by Feedstock and Process Variables. Catalysts, 12(1), 98. https://doi.org/10.3390/catal12010098
Paniagua, J., & Mota, F. (2008). Practicas de Introduccion a la Quimica Cuantica. Departament de Química Física de la Universitat de Barcelona. Retrieved from https://diposit.ub.edu/dspace/bitstream/2445/4721/7/guion2008-09.pdf
Sadeghbeigi, R. (2020). Fluid catalytic cracking handbook: An expert guide to the practical operation, design, and optimization of FCC units. Butterworth-Heinemann. Retrieved from https://books.google.es/books?id=9b7dDwAAQBAJ&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
San Fabián, E. (2023). Cálculos Computacionales de Estructuras Moleculares. Universidad de Alicante . Retrieved from https://web.ua.es/es/cuantica/docencia/pdf/ccem.pdf
Stratiev, D., Ivanov, M., Chavdarov, I., Argirov, G., & Strovegli, G. (2023). Revamping Fluid Catalytic Cracking Unit, and Optimizing Catalyst to Process Heavier Feeds. Applied Sciences, 13(3), 2017. https://doi.org/10.3390/app13032017
Vangunsteren, W., & Berendsen, H. (1990). Computer simulation of molecular dynamics: Methodology, applications, and perspectives in chemistry. Angewandte Chemie International Edition in English, 29(32), 992-1023. https://research.rug.nl/en/publications/computer-simulation-of-molecular-dynamics-methodology-application
Yan, X., & Duan, G. (2022). The Real-Time Prediction of Product Quality Based on the Equipment Parameters in a Smart Factory. Processes , 10(5), 967. https://doi.org/10.3390/pr10050967
Zhang, L., Zhao, S., Shi, Q., & Xu, C. (2020). Molecular characterization and modeling of petroleum refining process: Frontiers and challenges. United States Environmental Protection Agency. Health & Environmental Research Online, 20(2), 192-203. https://doi.org/10.1360/SSC-2019-0146