Socio-environmental efficiency of the Fenton reaction in the treatment of leachate
Main Article Content
Abstract
The research work focused on determining the conditions of socio-environmental efficiency of the Fenton process for the treatment of leachates from a landfill. The cost-benefit assessment of social and environmental variables of the treatment in winter and summer time has been carried out through the analysis of externalities and a strategic diagnosis defined by the area of direct influence and the chemical physical quality of the leachate to from the concentrations of ferrous sulfate, hydrogen peroxide, pH, optimal dose with jug test, turbidity and color. When the sanitary landfill was cataloged as a young landfill, from the results generated there were parameters with high concentrations, so the treatment process required optimal conditions of 400 mg / L for hydrogen peroxide, 1000 mg / L for ferrous sulfate and a pH of 3, values that generated an efficiency of 85% for biochemical oxygen demand, 73% for chemical oxygen demand, 91.0% turbidity and 33.3% alkalinity. These last parameters were indicators that the process represents a high socio-environmental cost - benefit for the sector under study.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Bigda, R. J. (1995). Consider Fenton chemistry for waste-water treatment. Chemical Engineering Progress, 0–62.
Borzacconi, L., López, I., & Anido, C. (1996). Metodología. Critical Review, March.
Chevez, W. (1975). Fenton’s Reagents revisited. Acc. Chem. Res., 8, 125-131 FG – 0.
Espinosa, C., López, M., Pellón, A., Robert, M., Diaz, S., González, A., Rodríguez, N., & Alejandro, F. (2010). Análisis del comportamiento de los lixiviados generados en un vertedero de residuos sólidos municipales de la ciudad de la Habana. Revista Internacional de Contaminación Ambiental, 26(4), 313–325.
Hermosilla, D., Cortijo, M., & Huang, C. P. (2009). Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes. The Science of the Total Environment, 407(11), 3473–3481. http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related Articles&IdsFromResult=19278717&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
Huichapa, A., Cuevas, G., & Arodí, M. (2003). Tratamiento De Lixiviados Generados En Un Sitio De Disposicion Disposicion Final De Rsu Mediante Los Procesos Fenton Y Fotofenton. Semarnat.
Isarain Chávez, E. (2010). Mineralization of the drug β-blocker atenolol by electro-Fenton and photoelectro-Fenton using an air-diffusion cathode for. Applied Environmental, 361–369.
Kavitha, V., & Palanivelu, K. (2003). Degradation of 2-chlorophenol by Fenton and photo-Fenton processes--a comparative study. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2115-1231 FG – 0.
Lau, I. W. C., Wang, P., & Fang, H. H. P. (2001). Organic removal of anaerobically treated leachate by Fenton Coagulation. Journal of Environmental Engineering, 127(7), 666–669. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:7(666)
Medina, C., Montero, E., & Cruz, L. (2012). Optimización del proceso fenton en el tratamiento de rellenos sanitarios. Universitas Psychologica, 11(1), 197–206.
Medina, C., Montero, E., & Cruz, L. (2016). Optimización Del Proceso Fenton En El Tratamiento De Lixiviados De Rellenos Sanitarios. Revista de La Sociedad Química Del Perú, 82, 454–466.
Medina Valderrama, C. J., Montero del Águila, E. M., & Cruz Pio, L. E. (2018). Optimización del proceso Fenton en el tratamiento de lixiviados de rellenos sanitarios. Revista de La Sociedad Química Del Perú, 84(3), 454–466.
Méndez, R., Castillo, E., Sauri, M., Quintal, C., Giacoman, G., & Jiménes, B. (2004). Tratamiento fisicoquímico de los lixiviados de un relleno sanitario. Ingeniería, 8(2), 155–163.
Méndez, R., García, R., Castillo, E., & Sauri, M. (2010). Tratamiento de lixiviados por oxidación Fenton. Ingenieria e Investigación, 30(1), 80–85.
Mireles, H., & Páramo, J. (2017). Tratamiento del lixiviado del antiguo relleno sanitario La Reserva mediante procesos Fenton y fisicoquímico. Revista de Ingeniería Tecnológica, 1–12.
Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination--a review. The Science of the Total Environment, 409(20), 4141–4166. http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related Articles&IdsFromResult=20956012&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
Pignatello, J. J. (1992). Dark and photoassisted Fe3+ catalyzed degradation of chlorophenox herbicides by hydrogen peroxide. Environ Sci Technol, 26, 944–951.
Primo, O. (2008). Mejoras en el tratamiento de lixiviados de vertedero de RSU mediante procesos de oxidacion avanzada. 109.
Rivas, F. J., Beltrán, F., Carvalho, F., Acedo, B., & Gimeno, O. (2004). Stabilized leachates: Sequential coagulation-flocculation + chemical oxidation process. Journal of Hazardous Materials, 116(1–2), 95–102. https://doi.org/10.1016/j.jhazmat.2004.07.022
Robles, F. M. (2005). Generación de biogás y lixiviados en los rellenos sanitarios.
Rubio, A., Chica, E., & Peñuela, G. (2014). Application of Fenton process for treating petrochemical wastewater. Scielo, 16(2), 211–223.
Sánchez, R. G., & García Gualoto, K. J. (2018). Tratamiento de aguas residuales con cargas industriales con oxidación avanzada en sistemas convencionales. La Granja, 27(1), 103–111. https://doi.org/10.17163/lgr.n27.2018.08
Słomczyńska, B., & Słomczyński, T. (2004). Physico-chemical and toxicological characteristics of leachates from MSW landfills. In Polish Journal of Environmental Studies (Vol. 13, Issue 6, pp. 627–637). http://www.pjoes.com/Physico-Chemical-and-Toxicological-Characteristics-r-nof-Leachates-from-MSW-Landfills,87707,0,2.html
Tang, W., & Tassos, S. (1997). Oxidation kinetics and mechanism of trihalomethanes by Fenton’s Reagent>. Water Research. 31, 0–11.
Tatsi, A. A., Zouboulis, A. I., Matis, K. A., & Samaras, P. (2003). Coagulation-flocculation pretreatment of sanitary landfill leachates. Chemosphere, 53(7), 737–744. http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related Articles&IdsFromResult=13129513&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum
Vilar, A. (2015). Evaluación del tratamiento integral del lixiviado de vertedero de residuos sólidos urbanos. Universidade Da Coruña., 228.
Yoo, H. C., Cho, S. H., & Ko, S. O. (2001). Modification of coagulation and Fenton oxidation processes for cost-effective leachate treatment. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 36(1), 39–48. http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&LinkName=pubmed_pubmed&LinkReadableName=Related Articles&IdsFromResult=11381784&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum