Synthesis of piridil-acetilene through a coupling of sonogashira assisted by microwaves

Main Article Content

Linda Mariuxi Flores Fiallos
Cristina Nataly Villegas Freire
María Augusta Guadalupe Alcoser

Abstract

The use of the microwave in organic synthesis to obtain pyridyl tolans has been bet, since it is capable of providing enough energy in such a way that it is possible to cross a certain energy barrier, its use provides a decrease in the reaction time resulting in high performance products in which it was possible to limit the purification processes. Thus, in the present work, the synthesis of palladium-catalyzed pyridyl-tolanes was carried out by means of a microwave-assisted Sonogashira coupling. The purification of the synthesized compounds was carried out by flash column chromatography using silica gel 60 GF254 with a positive pressure of nitrogen and with solvents suitable for the removal of undesirable inorganic matter (Cu residues). The characterization was made using Nuclear Magnetic Resonance of both Hydrogen and Carbon, in order to demonstrate the presence of the triple bond formed with the Sonogashira coupling. Nuclear Magnetic Resonance Spectra were recorded on a Bruker AMX-300 spectrophotometer equipped with a 5mm reverse multinuclear probe, using CDCl3 as the solvent. As a result, 2-pyridyl-tolane, 3-pyridyl-tolane and 4-pyridyl-tolane were obtained, which were synthesized with acceptable yields of 71, 73 and 78% respectively.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Flores Fiallos, L. M., Villegas Freire, C. N., & Guadalupe Alcoser, M. A. (2020). Synthesis of piridil-acetilene through a coupling of sonogashira assisted by microwaves . Ciencia Digital, 4(3), 95-106. https://doi.org/10.33262/cienciadigital.v4i3.1303
Section
Artículos

References

Bertus, P., Fecourt, F., Bauder, C., & Pale, P. (2004). New Journal of Chemistry, 12.
Bunge, S., Krueger, K., Boyle , T., Rodríguez, M., Headly, T., & Colvin, V. (2003). Materials Chemie, 1705-1709.
Cassar, L. (1975). Organomet. Chem, 253.
Dick, H., & Heck, F. (1975). Organomet. Chem, 259.
Dudley, G., Stiegman, A., & Rosana, M. (2013). Correspondence on microwave effects in organic synthesis. Angewandte Chemie International Edition, 7918-7923.
Gabriel, C., Gabriel, S., Grant, E., Halstead, B., & Mingos, D. (1998). Dielectric parameters relevant to microwave dielectric heating Chem. Soc. Chemical society reviews, 213-223.
Garro, R., Jiménez, P., & Vega, J. (2013). Síntesis Asistida Por Microondas Del Poli ( Adipato de 1 , 4 -Butadiol). . Rev. Iberoam. Polímeros, 304–312.
Gawande, M., Bonifacio, V., & Luque, R. (2012). Benign by design: Catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chemical Society Reviews, 5522-5551.
Gedye, R., Smith, F., Westaway, K., Ali, H., Baldisera, L., Laberge, L., & Rousell, J. (1986). The use of microwave-ovens for rapid organic-synthesis. Tetrahedron letters, 279-282.
Giguere, R., Bray, T., Duncan, S., & Majetich, G. (1986). Application of commercial microwave-ovens to organic-synthesis. Tetrahedron letters, 4945-4948.
Gou, L., Chipara, M., & Zaleski, J. (2007). Convenient, Rapid Synthesis of Ag Nanowires. Chemistry of Materials, 1755-1760.
Hopkins, C., & Collar, N. (2004). Tetrahedron Letters, 8087-8090.
Kamali, H., Khodaverdi, E., & Hadizadeh, F. (2018). Ring-Opening Polymerization of PLGA-PEG-PLGA Triblock Copolymer in Supercritical Carbon Dioxide. Supercrit. Fluids, 9–15.
Kappe, O. (2004). Controlled Microwave Heating in Modern Organic Synthesis. Angewandte Chemie International Edition, 6250-6284.
Kappe, O., Pieber, B., & Dallinger, D. (2013). Microwave effects in organic synthesis: Myth or reality? . Angewandte Chemie International Edition, 1088-1094.
Mazo, P., Rios, L., & Restrepo, G. (2011). Síntesis de Poli Ácido Láctico y Poli Ricinoleato Empleando Calentamiento Por Microondas y Su Utilización En La Producción de Termoplasticos de Poliuretano. Polímeros, 83-89.
Nguyen, H., Horton , P., Hursthouse, M., Legon, A., & Bruce, D. (2004). Journal of the American Chemical Society, 16-17.
Paresh, C. (2010). Size and Shape Dependent Second Order Nonlinear Optical Properties of Nanomaterials and Their Application in Biological and Chemical Sensing. Chemical reviews, 5332-5365.
Polshettiwar, V., & Varma, R. (2008). Microwave-Assisted Organic Synthesis and Transformations Using Benign Reaction Media. Accounts of chemical research, 629-639.
Sonogashira, K. (2003). Organomet. Chem, 46-49.