Development and analysis of mechanical resistance of cement block-polyurethane-rubber powder.
Main Article Content
Abstract
The research was carried out under the need and alternative to innovate the construction industry, friendly to the environment, through an investigative process it was determined that the required rubber will be recycled consciously and processed correctly so that it can be reused in construction processes With all this background, 52.56% strength blocks have been manufactured, the main component being front cement, rubber powder, polyurethane (component A and B) of light gray texture, with a fine surface texture. For forming a mold was made under standard; In addition, after molding, the molding process was carried out quickly, since the drying process is quick due to the polyurethane property, with an estimated time of 30 minutes. The research and experimental work, contains a wide range of literature review that has allowed the development of the blocks. The analytical process carried out in the materials resistance laboratory of the Faculty of Mechanics of the Polytechnic Higher School of Chimborazo focused on the demonstration of the physical properties provided by the polyurethane-based block and rubber powder. Based on an investigative and analytical process, type B masonry blocks have been manufactured according to the technical parameters of the Ecuadorian Institute for Standardization, whose focus is to break the paradigms in the field of construction. The analysis of the advantages of the transformation of rubber dust in the construction of building blocks was made, thus being able to verify its feasibility in construction, with 3 types of mixing with 25% cement, 25% polyurethane and 50% rubber dust.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Aldana, S., Vereda, F., Hidalgo-Alvarez, R., & de Vicente, J. (2016). Facile synthesis of magnetic agarose microfibers by directed selfassembly. Polymer, 93, 61-64.
Berndtsson, J. C. (2010). Green roof performance towards management of runoff water quantity and quality: A review. Ecological Engineering.
Bhat, S., Tripathi, A., & Kumar, A. (2010). Supermacroprous chitosan-agarose-gelatin cryogels. in vitro characterization and in vivo assesment for cartilage tissue engineering. Journal of the Royal Society Interface, 1-15.
Bloqueras.org. (2019). Recuperado el 20 de Junio de 2019, de bloqueras.org Web site: https://bloqueras.org
Bossis, G., Marins, J., Kuzhir, P., Volkova, O., & Zubarev, A. (2015). Functionalized microfibers for field-responsive materials and biological applications. Journal of Intelligent Material Systems and Structures, 1-9.
Campos, R. O. (22 de 5 de 2017). Blog EcuRed. Recuperado el 29 de 6 de 2019, de Blog EcuRed Web site: https://www.ecured.cu
Castro, G. (2007). CAMPUS. Recuperado el 8 de Abril de 2019, de CAMPUS WEB SITE: https://campus.fi.uba.ar/file.php/295/Material_Complementario/Reutilizacion_Reciclado_y_Disposicion_final_de_Neumatico.pdf
Chimborazo, C. (2015). Cemento Chimborazo. Recuperado el 6 de 2019, de Cemento Chimborazo Web site: http://www.cementochimborazo.com
Construmática. (2015). Construmática. Recuperado el 28 de 2 de 2019, de Construmática Web site: www.construmatica.com
Cortés, J., Puig, J., Morales , J., & Mendizábal, E. (2011). Hidrogeles nanoestructurados termosensibles sintetizados mediante polimerización en microemulsión inversa. Revista Mexicana de Ingeniería Química., 10(3), 513-520.
Días, A., Hussain, A., Marcos, A., & Roque, A. (2011). A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnology Advances 29 , 29, 142–155.
Englebert, O. (2013). Neumatico lluvia Uni Royal. Recuperado el 30 de 06 de 2019, de neumaticos-uniroyal: https://www.neumaticos-uniroyal.es
Estrada Guerrero, R., Lemus Torres, D., Mendoza Anaya, D., & Rodriguez Lugo, V. (2010).
Hidrogeles poliméricos potencialmente aplicables en Agricultura. Revista Iberoamericana de Polímeros, 12(2), 76-87.
Fabricio, M. F. (2013). epositorio.utn. Recuperado el http://repositorio.utn.edu.ec30 de 6 de 2019, de epositorio.utn web site.
Franco, I. X. (2012). Puce. Recuperado el 23 de Junio de 2019, de http://repositorio.puce.edu.ec
Garcia, P. (8 de Mayo de 2013). vilssa. Recuperado el 09 de 04 de 2019, de vilssa magazine : http://vilssa.com
García-Cerda, L., Rodríguez-Fernández, O., Betancourt-Galindo, R., Saldívar-Guerrero, R., & Torres-Torres, M. (2003). Síntesis y propiedades de ferrofluidos de magnetita. Superficies y Vacío., 16(1), 28-31.
Giraldo, G. J. (14 de Febrero de 2017). Ciencia e ingeniería Neogranadina,. Obtenido de http://dx.doi.org/10.18359/rcin.2143
Ilg, P. (2013). Stimuli-responsive hydrogels cross-linked by magnetic nanoparticles. Soft Matter, 9, 3465-3468.
INEN, N. (2017). StudyLib. Recuperado el 20 de 06 de 2019, de StudyLib Web site: https://studylib.es/doc/5183705/nte-inen-638---servicio-ecuatoriano-de-normalizaci%C3%B3n
Inspiraction. (2014). InspiaAction. Recuperado el 6 de 2019, de InspirAction web site: https://www.inspiraction.org
Lewitus, D., Branch, J., Smith, K., Callegari, G., Kohn, J., & Neimark, A. (2011). Biohybrid carbon nanotube/agarose fibers for neural tissue engineering. Advanced Functional Materials, 21, 2624-2632.
Lin, Y.-S., Huang, K.-S., Yang, C.-H., Wang, C.-Y., Yang, Y.-S., Hsu, H.-C., . . . Tsai, C.-W. (2012). Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture. PLoS ONE, 7(3), 1-8.
Mattox, D., & Sequeda, F. (2019). Guías educativas: para el procesamiento, caracterización y aplicaciones de recubrimientos-capas delgadas (Vol. 2). Bogotá, Colombia: Programa Editorial Universidad del Valle. Obtenido de https://ebookcentral.proquest.com/lib/espochsp/detail.action?docID=5886263&query=llantas+contaminacion
Motorex. (s.f.). motorex.com. Recuperado el 30 de 6 de 2019, de motorex.com Web site: http://www.motorex.com.pe
Multinivell, C. H. (14 de 9 de 2007). cerclesbd.wordpress. Recuperado el 29 de 6 de 2019, de cerclesbd.wordpress web site: https://cerclesbd.wordpress.com
Peláez Arroyave, G. J., Velásquez Restrepo, S. M., & Giraldo Vásquez, D. H. (2017). Aplicaciones de caucho reciclado: una revisión. Ciencia e Ingeniería Neogran, 24.
Ruiz Estrada, G. (2004). Desarrollo de un Sistema de liberación de fármacos basado en nanopartículas magnéticas recubiertas con Polietilénglicol para el tratamiento de diferentes enfermedades. Madrid: Universidad Autónoma de Madrid. Departamento de Física Aplicada.
Samanta, A. (Mayo de 2015). Neumáticos. Recuperado el 10 de Abril de 2019, de https://tesis.ipn.mx/jspui/bitstream/123456789/20674/1/Elaboraci%C3%B3n%20de%20ladrillos%20a%20partir%20de%20neum%C3%A1ticos%20de%20reus%C3%B3.pdf
Tartaj, P., Morales, M., González-Carreño, T., Veintemillas-Verdaguer, S., & Serna, C. (2005). Advances in magnetic nanoparticles for biotechnology applications. Journal of Magnetism and Magnetic Materials, 290, 28-34.
Witoszek, B. (2004). Hormigón con fibras de caucho de recuperación de neumáticos usados y de polipropileno diseño del firme de hormigón de caucho. Madrid: Congreso Nacional de Firmes.
Wulff-Pérez , M., Martín-Rodríguez, A., Gálvez-Ruiz, M., & de Vicente, J. ( 2013 ). The effect of polymer surfactant on the rheological properties of nanoemulsions. Colloid and Polymer Science, 291, 709–716.
Zambrano Sandoval, A. B. (4 de 8 de 2016). “ESTUDIO DE LAS CARACTERÍSTICAS FÍSICOMECÁNICAS DE BLOQUES DE HORMIGÓN CON FIBRA DE CABUYA". Quito, Pichincha, Ecuador.
Zamora Mora, V., Soares, P., Echeverria, C., Hernández , R., & Mijangos, C. (2015). Composite chitosan/Agarose ferrogels for potential applications in magnetic hyperethermia. Gels., 1, 69-80.
Zarate, J. (s.f.). Academia. Recuperado el 28 de 6 de 2019, de Academia Web site: https://www.academia.edu