Labor performance in ceiling. Study case: Cuenca city

Main Article Content

Jorge Luis Zhicay Arbito
Carlos Julio Calle Castro
Nayra Mendoza Enríquez

Abstract

Introduction.  Ceiling installation is an essential task in construction, whose performance is key to efficient project planning and execution. However, current approaches to predicting performance in this activity are often simplistic in that they assume linearity in results, without considering the inherent variability in worker performance. Objective. The main objective of this study is the creation of an efficient mathematical model to project labor performance in ceiling installation projects in the city of Cuenca, particularly in the San Sebastian parish. Methodology. A relational-descriptive methodology with a quantitative approach was implemented. It began with an exhaustive review of the literature to identify possible factors that could influence labor performance. With this information, an observation form was designed and applied to 45 workers at six different construction sites within the study area. The data collected were analyzed using statistical software to establish a mathematical model to predict the performance of the workers based on the factors identified. Subsequently, these values were compared with the actual and theoretical performance obtained. Results. One of the most outstanding findings was the notable difference between the actual performance of the workers and the theoretical performance, indicating that performance does not follow a linear trend over time and varies according to various factors such as climatic conditions, equipment used, supervision and individual worker characteristics. Conclusion.  The mathematical model developed in this research proved to be effective in predicting worker performance based on the factors analyzed.

Downloads

Download data is not yet available.

Article Details

How to Cite
Zhicay Arbito, J. L., Calle Castro, C. J., & Mendoza Enríquez, N. (2024). Labor performance in ceiling. Study case: Cuenca city. ConcienciaDigital, 7(1.3), 91-112. https://doi.org/10.33262/concienciadigital.v7i1.3.2940
Section
Artículos

References

Ángeles López-Cabarcos, M., Vázquez-Rodríguez, P., y Quiñoá-Piñeiro, L. M. (2022). An approach to employees’ job performance through work environmental variables and leadership behaviours. Journal of Business Research, 140, 361-369. https://doi.org/10.1016/j.jbusres.2021.11.006
Arias, B. P. A., Garzón, P. V. D., y Quiroz, P. T. V. (2022). Anólisis del rendimiento y productividad de mano de obra en la ejecución de cielo raso liso en el cantón Cuenca. Dominio de las Ciencias, 8(4), Article 4. https://doi.org/10.23857/dc.v8i4.3034
Assaad, R., El-adaway, I., Hastak, M., y Needy, K. (2022). Key Factors Affecting Labor Productivity in Offsite Construction Projects. Journal of Construction Engineering and Management, 149, 04022158. https://doi.org/10.1061/JCEMD4.COENG-12654
Azeem, M., Ullah, F., Thaheem, M. J., y Qayyum, S. (2020). Competitiveness in the construction industry: A contractor’s perspective on barriers to improving the construction industry performance. Journal of Construction Engineering, 3, 193-219. https://doi.org/10.31462/jcemi.2020.03193219
Botero Botero, L. F. (2002). Análisis de Rendimientos y consumos de mano de obra en actividades de construcción. Revista Universidad EAFIT, 38(128), 9-21. http://repository.eafit.edu.co/handle/10784/17243
Cayetano Taype, D., y Zuñiga Gomez, J. (2015). Terminación del rendimiento de mano de obra en1 /4’ pavimentos rígidos de la ciudad de huancavelica, aplicando el modelo de regresión múltiple con variables ficticia. Repositorio Institucional - UNH. http://repositorio.unh.edu.pe/handle/UNH/1926
Diamantidis, A. D., y Chatzoglou, P. (2019). Factors affecting employee performance: An empirical approach. International Journal of Productivity and Performance Management, 68(1), 171-193. https://doi.org/10.1108/IJPPM-01-2018-0012
Dixit, S. (2019). Study of factors affecting the performance of construction projects in AEC industry. Organization, Technology and Management in Construction: An International Journal, 12(1), 2275-2282. https://doi.org/10.2478/otmcj-2020-0022
Encalada-Terreros, A. C., y Calle-Castro, C. J. (2021). Determinación del rendimiento para la actividad de excavación a mano en la ciudad de Cuenca. Dominio de las Ciencias, 7(2), 819-834. https://doi.org/10.23857/dc.v7i2.1830
Espinoza, L. A. C., Campoverde, J. D. Q., y Enríquez, N. M. (2023). Análisis de los rendimientos de mano de obra en rubros de mampostería en viviendas de dos plantas en la ciudad de Cuenca. ConcienciaDigital, 6(1.1), Article 1.1. https://doi.org/10.33262/concienciadigital.v6i1.1.2462
Fajardo Guapisaca, W. M., y Quizhpe Campoverde, J. D. (2021). Determinación de factores que afectan el rendimiento de la mano de obra en la actividad de colocación de cerámica en la ciudad de Cuenca. Dominio de las Ciencias, 7(Extra 4), 138. https://dialnet.unirioja.es/servlet/articulo?codigo=8383979
Lakhiar, M., Abdullah, A. H., y Lakhiar, M. (2021). Analysis of the Relationship Between the Working Environment and Employee Performance in Selected Construction Firms in Karachi City.
Manoharan, K., Dissanayake, P., Pathirana, C., Deegahawature, D., y Silva, R. (2022). Labour-related factors affecting construction productivity in Sri Lankan building projects: Perspectives of engineers and managers. Frontiers in Engineering and Built Environment, 2(4), 218-232. https://doi.org/10.1108/FEBE-03-2022-0009
Maulud, D., y Mohsin Abdulazeez, A. (2020). A Review on Linear Regression Comprehensive in Machine Learning. Journal of Applied Science and Technology Trends, 1, 140-147. https://doi.org/10.38094/jastt1457
Molina Fonseca, P. A., y Páez Sarmiento, C. M. (2013). Análisis de Rendimiento y/o Productividad de la Mano de Obra en la Construcción de Edificaciones en la Ciudad de Bucaramanga y su Área Metropolitana: Etapa de Estructuras. https://repository.upb.edu.co/handle/20.500.11912/5098
Shehata, M., y El-Gohary, K. (2019). Towards improving construction labor productivity and projects’ performance. Alexandria Engineering Journal, 50, 321-330. https://doi.org/10.1016/j.aej.2012.02.001
Tola, C. F. G., Mora, S. L. C., y Quiroz, P. T. V. (2023). Rendimiento de mano de obra en excavaciones a mano mediante regresión lineal. Caso de estudio: Ciudad de Cuenca. Ciencia Digital, 7(3), Article 3. https://doi.org/10.33262/cienciadigital.v7i3.2629
Van Tam, N., Quoc Toan, N., Tuan Hai, D., y Le Dinh Quy, N. (2021). Critical factors affecting construction labor productivity: A comparison between perceptions of project managers and contractors. Cogent Business y Management, 8(1), 1863303. https://doi.org/10.1080/23311975.2020.1863303
Wang, S., Feng, K., y Wang, Y. (2023). Modeling Performance and Uncertainty of Construction Planning under Deep Uncertainty: A Prediction Interval Approach. Buildings, 13(1), Article 1. https://doi.org/10.3390/buildings13010254