Experimental techniques to characterize photoconductive materials

Main Article Content

Cristian Daniel Arambulo Almendariz
Luis Santiago Carrera Almendáriz

Abstract

Introduction. Photoconductive materials are those that, when exposed to electromagnetic radiation, vary their electrical conductivity. Its applications are diverse and highly valuable in science and industry. Among the experimental techniques used to characterize these materials are scanning electron microscopy, optical microscopy, ray diffraction, the tunneling effect, among others. Objective. It presents a documentary review of the experimental techniques for the characterization of photoconductive materials. Methodology. The methodology was qualitative, related to the review of scientific papers, articles and texts, which allowed establishing an approximate state of the art in this field of study. Results. Among the relevant results, it was found that the characterization depends on the nature of the material and the source of electromagnetic radiation that is used to stimulate it, such as the intensity of the light, the frequency, the number of photons, among other properties. it is possible, with due caution, to use photoconductivity as a diagnostic tool in the study of new materials and electronic devices. Also, it was observed that the majority of samples analyzed and classified reveal a tendency to increase photoconduction, in addition to the use of numerical methods to carry out virtual experiments assisted by computer simulations, whose usefulness lies in the corroboration of the results obtained. by the empirical and analytical route.

Downloads

Download data is not yet available.

Article Details

How to Cite
Arambulo Almendariz, C. D., & Carrera Almendáriz, L. S. (2021). Experimental techniques to characterize photoconductive materials. ConcienciaDigital, 4(3), 196-210. https://doi.org/10.33262/concienciadigital.v4i3.1793
Section
Artículos

References

Faraldos, M., & Goberna, C. (2011). Técnicas de análisis y caracterización de Materiales. Biblioteca de Ciencias del Consejo Superior de Investigaciones Científicas., 10(3), 513-520.
Ko, T. S., Chen, Z. W., Lin, D. Y., Suh, J., & Chen, Z. S. (2017). Observation of persistent photoconductivity in Ni-doped MoS2. Japanese Journal of Applied Physics, 56(4). https://doi.org/10.7567/JJAP.56.04CP09.
Kronik, L., & Shapira, Y. (1999). Surface photovoltage phenomena: theory, experiment, and applications. Tel Avid: Universtity Tel-Avid. Department of Physical Electronics.
Koprio, L. (2019). Desarrollo y optimización de técnicas basadas en la fotoconductividad para la caracterización de semiconductores con aplicaciones fotovoltaicas. Santiago: Universidad Nacional del Litoral. Grupo de Física de Semiconductores.
Lee, G., Mun, B., Today, H. J.-A. M., & 2021, U. (2021). Observation of giant persistent photoconductivity on vanadium dioxide thin film device. Elsevier. https://www.sciencedirect.com/science/article/pii/S2352940720303425.
Peña N. (2011). Caracterización de polímeros fotoconductores mediante cromatografía con detección múltiple, técnicas de fluorescencia y mecánica y dinámica molecular. Alacalá: Universidad de Alcalá. Departamento de Química Física.
Pillai, S., Anderson, N., Wang, C., Bjuggren, J., & Jevric, M. (2019). Validation of Time-Resolved Microwave Conductivity (TRMC) as a screening tool for all-polymer solar cells. https://bridges.monash.edu/articles/Validation_of_TimeResolved_Microwave_Conductivity_TRMC_as_a_screening_tool_for_all-polymer_solar_cells/8313068.
Savenije, T., Thieme, J., & Wei, Z. (2020). Using Time-Resolved Photoconductivity Measurements to Reveal the Urbach Tail and Two Photon Absorption in MHPs. Hal.Archives-Ouvertes.Fr. https://hal.archives-ouvertes.fr/hal-03030584/.
Urreaga, R., S., Marín, O., Acquaroli, L., Comedi, D., Schmidt, J., & Koropecki, R. (2008). Aumento de la fotoconductividad y sintonización fina de la respuesta en microcavidades de silicio poroso nanoestructurado. Anales AFA, 20, 110-114.
Vega, A. (2019). Fuerza foto-electromotriz en películas de perovskita. Puebla: Instituto Nacional de Astrofísica, Óptica y Electrónica. Insituto de Óptica Aplicada.

Most read articles by the same author(s)