Structured programming algorithm, focused on the detection and intelligent counting of vehicles at an intersection
Main Article Content
Abstract
Introduction. The use of Matlab is approached through the creation of an algorithm with structured programming, implementing a software that determines the presence and classification of vehicles that pass through a road through a camera, considering it a traffic problem at peak hours. Objective. To propose an algorithm coded in Matlab that allows to recognize through a video the different cars on a road according to their dimensions. Methodology. The implemented methodology is a hybrid between software development and intelligent systems development. 8 tests were carried out to establish if the algorithm presents us with the expected results in the recognition of different cars, using tools and functions that come with Matlab. Results. The applied algorithm gives a margin of error of plus minus 8%, but to reach this it had to go from an error in the first test of 80% to 7.5% of it, since it is still necessary to make some adjustments in the performance of the algorithm with respect to the dimensions of the vehicles, especially when we have more of them and of different types. Conclusion. The importance is that based on this intelligent application, you can process videos that are captured from a camera at the intersection of the roads, with this you can obtain vehicular flow with up to 92% effectiveness, classification of vehicles daily and at peak hours . I consider that it is a very useful tool so that the problem of vehicular flow has a solution.
Downloads
Article Details
References
Gualdron, O., Duque, M. and Chacón, A. (2013). Diseño de un sistema de reconocimiento de rostros mediante la hibridación de técnicas de reconocimiento de patrones, visión artificial e IA, enfocado a la seguridad de interacción robótica social. Revista Dialnet edición 6, pág. 16-28.
López, G. (2016). Sistema inteligente de reconocimiento de patrones con visión artificial para la alerta automática de intrusos en las áreas de almacenamiento de las pymes. Ambato: Universidad Técnica de Ambato.
Mejia, F., Jaramillo, K. and Gutiérrez, J. (2019). Matlab básico para Ingenierías. CIDEPRO Editorial. Ecuador.
Meza, D. (2020). Esta inteligencia artificial puede detectar si las personas están guardando “la sana distancia”. Consultado el 20 de enero de 2021 en: https://nmas1.org/news/2020/04/22/vision-ia-distancia
Pajares Martinsanz, G. and Santos Peñas, M. (2006). Inteligencia artificial e ingeniería del conocimiento. México: Alfaomega Grupo Editor
Salazar, M. and Manzano Herrera, D. A. (2012). Sistema de visión artificial para conteo de objetos en movimiento. El Hombre y la Máquina - Facultad de Ingeniería, Universidad Autónoma de Occidente, 87-101.
Sisalima, F. (2018). Sistema para la detección y conteo vehicular aplicando técnicas de visión artificial. Tesis previa la obtención del título de ingeniero en sistemas. Loja: Universidad Nacional de Loja. Consultado el 15 de febrero del 2021 de: http://192.188.49.17/jspui/bitstream/123456789/20892/1/Sisalima%20Ortega%2C%20Fabricio%20Roberto.pdf
TIOBE. (2017) Historia a largo plazo de los mejores lenguajes de programación. http://www.tiobe.com/tiobe-index//?6671423=1
Toledano, L. (2019). Desarrollo de App en Matlab para rehabilitación de espasticidad con ayuda del robot colaborativo Kuka LBR IIWA. Universidad Carlos III. Madrid – España.