Synthesis of N-decyl-4 - ((3-formyl-4-hydroxyphenoxy) methyl) benzamide by reaction of 4-bromomethylbenzoic acid, decylamine and 2,5-dihydroxybenzaldehyde.

Main Article Content

Bryan David Lozano Mera
Luis Santiago Carrera Almendáriz
Ana Gabriela Flores Huilcapi

Abstract

Introduction: Current vaccines based on protein subunits require immunoadjuvants to reach optimal efficiency, for this, compounds have been synthesized that can achieve this capacity without affecting the human being. These types of vaccines offer significant advantages over traditional vaccines that use complete pathogens. Objective: To develop a synthetic route to obtain an organic compound that has the immuno-potentiating capacity for the human system. Methodology: The research is experimental in normal laboratory conditions. A synthetic route is designed in two stages, the first has the purpose of giving the resulting molecule solubility in an apolar medium, through the formation of an amide by the reaction between decylamine with 4-bromomethylbenzoic acid, allowing the molecule to pass through the cell membrane, unlike the second stage, which is to obtain the structure responsible for the immuno-potentiating capacity. Thin-layer chromatography isolation systems are used to define the solvent systems that were used in liquid chromatography and reaction guides to facilitate the formation of specific functional groups Results: The first stage of the synthesis of N-decyl-4 - ((3-formyl-4-hydroxyphenoxy) methyl) benzamide achieves a reaction yield of 78.66% and in the second stage 53.22%. Conclusion: The compound N-decyl-4 - ((3-formyl-4-hydroxyphenoxy) methyl) benzamide is synthesized according to the characterized NMR spectrum.

Downloads

Download data is not yet available.

Article Details

How to Cite
Lozano Mera, B. D., Carrera Almendáriz, L. S., & Flores Huilcapi, A. G. (2021). Synthesis of N-decyl-4 - ((3-formyl-4-hydroxyphenoxy) methyl) benzamide by reaction of 4-bromomethylbenzoic acid, decylamine and 2,5-dihydroxybenzaldehyde. ConcienciaDigital, 4(2), 169-184. https://doi.org/10.33262/concienciadigital.v4i2.1638
Section
Artículos

References

Aldana, S., Vereda, F., Hidalgo-Alvarez, R., & de Vicente, J. (2016). Facile synthesis of magnetic agarose microfibers by directed selfassembly. Polymer, 93, 61-64.
Bhat, S., Tripathi, A., & Kumar, A. (2010). Supermacroprous chitosan-agarose-gelatin cryogels. in vitro characterization and in vivo assesment for cartilage tissue engineering. Journal of the Royal Society Interface, 1-15.
Bossis, G., Marins, J., Kuzhir, P., Volkova, O., & Zubarev, A. (2015). Functionalized microfibers for field-responsive materials and biological applications. Journal of Intelligent Material Systems and Structures, 1-9.
Cortés, J., Puig, J., Morales , J., & Mendizábal, E. (2011). Hidrogeles nanoestructurados termosensibles sintetizados mediante polimerización en microemulsión inversa. Revista Mexicana de Ingeniería Química., 10(3), 513-520.
Dias, A., Hussain, A., Marcos, A., & Roque, A. (2011). A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnology Advances 29 , 29, 142–155.
Estrada Guerrero, R., Lemus Torres, D., Mendoza Anaya, D., & Rodriguez Lugo, V. (2010). Hidrogeles poliméricos potencialmente aplicables en Agricultura. Revista Iberoamericana de Polímeros, 12(2), 76-87.
García-Cerda, L., Rodríguez-Fernández, O., Betancourt-Galindo, R., Saldívar-Guerrero, R., & Torres-Torres, M. (2003). Síntesis y propiedades de ferrofluidos de magnetita. Superficies y Vacío., 16(1), 28-31.
Ilg, P. (2013). Stimuli-responsive hydrogels cross-linked by magnetic nanoparticles. Soft Matter, 9, 3465-3468.
Lewitus, D., Branch, J., Smith, K., Callegari, G., Kohn, J., & Neimark, A. (2011). Biohybrid carbon nanotube/agarose fibers for neural tissue engineering. Advanced Functional Materials, 21, 2624-2632.
Lin, Y.-S., Huang, K.-S., Yang, C.-H., Wang, C.-Y., Yang, Y.-S., Hsu, H.-C., . . . Tsai, C.-W. (2012). Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture. PLoS ONE, 7(3), 1-8.
Ruiz Estrada, G. (2004). Desarrollo de un Sistema de liberación de fármacos basado en nanopartículas magnéticas recubiertas con Polietilénglicol para el tratamiento de diferentes enfermedades. Madrid: Universidad Autónoma de Madrid. Departamento de Física Aplicada.
Song , J., King, S., Yoon , S., Cho, D., & Jeong, Y. (2014). Enhanced spinnability of narbon nanotube fibers by surfactant addition. Fiberes and Polymers, 15(4), 762-766.
Tartaj, P., Morales, M., González-Carreño, T., Veintemillas-Verdaguer, S., & Serna, C. (2005). Advances in magnetic nanoparticles for biotechnology applications. Journal of Magnetism and Magnetic Materials, 290, 28-34.
Wulff-Pérez , M., Martín-Rodriguez, A., Gálvez-Ruiz, M., & de Vicente, J. ( 2013 ). The effect of polymer surfactant on the rheological properties of nanoemulsions. Colloid and Polymer Science, 291, 709–716.
Zamora Mora, V., Soares, P., Echeverria, C., Hernández , R., & Mijangos, C. (2015). Composite chitosan/Agarose ferrogels for potential applications in magnetic hyperethermia. Gels., 1, 69-80.

Most read articles by the same author(s)