Life cycle analysis applied for environmental assessment in the reuse of rigid pavement. Case study via Cuenca- Giron- Santa Isabel

Main Article Content

Sandy Tamara Orellana Albán
Diego Fernando Coronel Sacoto

Abstract

Introduction: The state road network is exposed and vulnerable to natural disasters, and climate change increases the risks of destruction, threatening current and future infrastructure. The geographical location of Ecuador and its geomorphology make the roads of the national network prone to threats of earthquakes, landslides, floods and volcanic activity, conditions that generate interruptions in activities and services that depend on the national road network, added to this, the fact that many roads have already fulfilled their life cycle. Objective: The objective of this research is to analyze the possible environmental impacts that could be reduced with the reuse of rigid pavement, on the Cuenca-Giron-Santa Isabel road, applying the Life Cycle Analysis tool. Methodology: The standardized methodology of Life Cycle Analysis (LCA) was used, as established by ISO 14040, using the SimaPro 9.1.1 software, licensed by the Catholic University of Cuenca, using the cml-ia baseline evaluation method, and the Ecoinvent database, which allows the analysis of impact categories. Results: The results show that the categories with the greatest contribution to environmental impacts are: Abiotic depletion (80%), Global Warming (40%), Abiotic depletion (fossil fuels) (50%), Human toxicity (80%), Marine aquatic ecotoxicity (30%), Freshwater aquatic ecotox (30%), and the stage that contributes most to environmental pollution is the stage of transport of heavy cargo with 80% of emissions this due to the consumption and product of the combustion of diesel and other fuels. Conclusion: The reuse of rigid pavement if it presents less environmental impacts, however, the use and consumption of fuel would determine its feasibility in terms of the costs generated for the reuse of the pavement that has fulfilled its life cycle. The LCA methodology can be used as a tool with certain limitations, for environmental assessment and feasibility for dissemination in the country.

Downloads

Download data is not yet available.

Article Details

How to Cite
Orellana Albán, S. T., & Coronel Sacoto, D. F. (2021). Life cycle analysis applied for environmental assessment in the reuse of rigid pavement. Case study via Cuenca- Giron- Santa Isabel. ConcienciaDigital, 4(4.1), 131-151. https://doi.org/10.33262/concienciadigital.v4i4.1.1930
Section
Artículos

References

Ávila, F. (2020). Identificación de fallas geológicas en la vía Girón - Pasaje (Azuay). http://www.dspace.uce.edu.ec/bitstream/25000/21655/1/T-UCE-0012-FIG-024-P.pdf
Baño Nieva, A., & Escalera del Pozo, A. V. (2005). Guía de construcción sostenible. Instituto Sindical de Trabajo, Ambiente y Salud (ISTAS) ISTAS, 1–63.
Banco Interamericano de Desarrollo [BID]. (2014). El Cambio Climático y el BID : Creación de Resiliencia y Reducción de Emisiones. https://publications.iadb.org/bitstream/handle/11319/6692/CC_SpanishBRIK.pdf?sequence=2&isAllowed=y
Banco Interamericano de Desarrollo [BID]. (2018). Documento de Marco Sectorial de Cambio Climático. División de cambio climático.
Banco Interamericano de Desarrollo [BID]. (2019). Un vistazo al futuro: Diseño de la Red Vial Nacional de Resiliencia de Ecuador. Jean Pol Armijos Leray - Pablo Daza Donoso - T. Luke Young. https://blogs.iadb.org/transporte/es/un-vistazo-al-futuro-diseno-de-la-red-vial-nacional-de-resiliencia-de-ecuador/#:~:text=La ubicación geográfica del Ecuador y su geomorfología,como también%2C incrementan la vulnerabilidad de las comunidades.
Camino Mogro, S., Bermudez Barrezuet, N., Chalen Vera, A., & Romero Vallejo, D. (2018). Productividad en la Industria Ecuatoriana de la Construcción. Dirección Nacional de Investigación y Estudios de La Superintendencia de Compañias, Valores y Seguros Del Ecuador, 1–30. file:///C:/Users/DELL/Downloads/investigacion cientifica/Planteamiento del problema/Productividad_en_la_industria_ecuatoriana_de_la_construccion_2013-2017.pdf
Carlson, A. (2011). Studies made in Europe. January 2011.
Ecoinvent.org. (s.f.). What do the shortcuts, such as CH, RER, RoW and GLO mean? https://www.ecoinvent.org/support/faqs/methodology-of-ecoinvent-3/what-do-the-shortcuts-such-as-ch-rer-row-and-glo-mean.html
Flintsch, G., & Bryce, J. (2014). Sustainable pavement management. Green Energy and Technology, 204, 373–392. https://doi.org/10.1007/978-3-662-44719-2_13
García-Navarro, J., González-Díaz, M. J., Martínez, E., & Redruello, I. (2012). Metodología para la evaluación de la sostenibilidad en autopistas: Cálculo del balance energético de la infraestructura. Informes de La Construccion, 64(528), 537–548. https://doi.org/10.3989/ic.11.156
Gobierno Provincial de Azuay. (2018). Plan de desarrollo y ordenamiento territorial del Azuay actualizado 2015 - 2030. Dk, 53(9), 1689–1699. http://app.sni.gob.ec/sni-link/sni/PORTAL_SNI/data_sigad_plus/sigadplusdocumentofinal/0160000190001_PDyOT_AZUAY 2015_17-08-2015_10-02-34.pdf
International Organization for Standardization [ISO]. (2004). Environmental Management - Life Cycle Assessment - Principles and Framework (ISO 14040:2006). Environmental Management System Requirements, 44(0).
MacK, J. W., Akbarian, M., Ulm, F. J., & Louhghalam, A. (2017). Pavement-Vehicle Interaction Research at the MIT Concrete Sustainability Hub. Airfield and Highway Pavements 2017: Pavement Innovation and Sustainability - Proceedings of the International Conference on Highway Pavements and Airfield Technology 2017, 2017-Augus, 160–173. https://doi.org/10.1061/9780784480946.015
Mendoza, J. F. (2014). Criterios de sustentabilidad para carreteras en méxico. 392.
Mercader, M. P., Marrero, M., Solís, J., Montes, M. V., & Ramírez, A. (2010). Cuantificación de los recursos materiales consumidos en la ejecución de la cimentación. Informes de La Construccion, 62(517), 125–132. https://doi.org/10.3989/ic.09.000
Ministerio de Transporte y Obras Públicas del Ecuador. (2013). Norma Ecuatoriana Vial - NEVI 12. Norma Ecuatoriana Vial - NEVI 12, 1(00598), 83. http://www.obraspublicas.gob.ec/wp-content/uploads/downloads/2013/12/01-12-2013_Manual_NEVI-12_VOLUMEN_1.pdf
Perelli, M., & Ruiz, L. P. (2017). Ciclo de vida ( CCV ) al caso particular de los firmes de carretera Approach from a Life Cycle Analysis and Life Cycle Cost Analysis. Revista Digital Del Cedex, 186(Ccv), 23–38.
PRÉ CONSULTANTS BV. (2018). PRÉ CONSULTANTS BV. SIMAPRO. https://simapro.com/about/
Remache-Vinueza, B. (2017). Estudio de factibilidad para la implementación de la metodología de Análisis de Ciclo de Vida (ACV) en la valoración del impacto ambiental del sistema de transporte público de Tulcán. II Congreso Internacional de Ciencias Sociales y Económicas: Herramientas Para Fortalecer La Competitividad Sistémica de La Provincia Del Carchi, March, 1–13. https://www.researchgate.net/publication/323588967_Estudio_de_factibilidad_para_la_implementacion_de_la_metodologia_de_Analisis_de_Ciclo_de_Vida_ACV_en_la_valoracion_del_impacto_ambiental_del_sistema_de_transporte_publico_de_Tulcan
Rivela Carvallal, B. (2012). Propuesto metodológica de aplicación sectorial de Análisis de Ciclo de Bida (ACV) para la evaluación ambiental de la edificación en España.
Stripple, H. (2001). Life Cycle Assessment of Road: A Pilot Study for Inventory Analysis. In IVL Swedish Environmental Research Institute.
Zapata, P., & Gambatese, J. A. (2005). Energy Consumption of Asphalt and Reinforced Concrete Pavement Materials and Construction. Journal of Infrastructure Systems, 11(1), 9–20. https://doi.org/10.1061/(asce)1076-0342(2005)11:1(9)