Design and implementation of a single axis solar tracker for the optimization of a 100 W photovoltaic system applying mathematical calculations and industrial automation
Main Article Content
Abstract
This work focuses on the design of a single-axis solar tracker, which will allow the optimization of energy capture from a 100-watt photovoltaic solar system implemented in the city of Riobamba, province of Chimborazo. Initially, mathematical calculations are carried out on environmental and physical parameters important in the selection of the optimal materials for the mechanical structure of the solar tracking system and its construction, also important for the proper selection of the electronic and automatic control elements necessary for the single-axis solar tracker. The designed system is composed of electronic sensors of current, voltage, irradiance and HDR's, which make it possible to calculate the nominal power generated by the solar tracker, the total irradiance captured by the solar panel over time during the day, solar elevation angle (altitude) and solar azimuth angle; values from which and using mathematical methods, programming and automatic control techniques, have allowed in this work to design and program 2 solar tracking algorithms: solar tracking by astronomical programming and solar tracking by light point, guaranteeing with them an incidence perpendicular to the sun on the system during the day and thus achieving the objective of maximum energy capture and maximum production of the photovoltaic system. In the system, the information obtained from the census variables and the calculated values is stored on a microSD memory card and through an ethernet connection the user can view them in real time through a graphic interface (HMI). Finally, once the monitoring algorithms have been implemented and the system is in operation, using as a reference a 100 W photovoltaic system with fixed positioning installed in the city of Riobamba under the same conditions as the single axis solar monitoring system, it is carried out a comparison between this and the photovoltaic system for solar tracking of a horizontal axis, counteracting the values of the surveyed variables and the calculated values of nominal power, irradiance, solar elevation angle (altitude) and solar azimuth angle measured for each one systems. From which it is concluded that the one-axis solar tracking system exceeds the fixed photovoltaic system in efficiency in values between 8.51% to 35.46%.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Bhuvaneswari, C., Rajeswari, R., & Kalaiarasan, C. (2013). Analysis of solar energy based street light with auto tracking system. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2(7), 3422-3428.
García Reyes, P. D., & Peñate Santos, R. A. (2016). Implementación de un seguidor solar en eje horizontal controlado con hardware y software. [Trabajo de grado, Ingeniería Eléctrica]. Universidad del el Salvador].
Arrieta Morelo, D. J., & Puello Bravo, S. Y. (2018). Diseño y construcción de un seguidor solar para aumentar el rendimiento energético en paneles fotovoltaicos de un sistema de bombeo.[Trabajo de grado, Ingeniería Mecánica, Universidad de Córdoba]. Repositorio Institucional- Universidad de Córdoba. https://repositorio.unicordoba.edu.co/handle/ucordoba/700
Bahrami, A., Okoye, C. O., & Atikol, U. (2016). The effect of latitude on the performance of different solar trackers in Europe and Africa. Applied energy, 177, 896-906. http://dx.doi.org/10.1016/j.apenergy.2016.05.103.
Seme, S., Štumberger, B., & Hadžiselimović, M. (2016). A novel prediction algorithm for solar angles using second derivative of the energy for photovoltaic sun tracking purposes. Solar Energy, 137, 201-211. https://doi.org/10.1016/j.solener.2016.08.001
Alonso Montes, J. I., Fernández Durán, A., Jiménez Suárez, C., Lecuona Ribot, A., Mellado García, F., Plaza Fernández, J. F., ... & Sala Pano, G. (2007). Energía Solar Fotovoltaica. Colegio Oficial de Ingenieros de Telecomunicación. http: //www.coit.es%0A.
Rana, S. (2013). A study on automatic dual axis solar tracker system using 555 timer. International Journal of Scientific & Technology Research, 1(4), 77-85.
SÁNCHEZ, A. (Director). (2016). Estructuras Para Módulos Fotovoltaicos. [Video] Centro de vestigación en Energía, UNAM
Volkov, S. N., Samokhvalov, I. V., Du Cheong, H., & Kim, D. (2016). Optical model and calibration of a sun tracker. Journal of Quantitative Spectroscopy and Radiative Transfer, 180, 101-108. https://doi.org/10.1016/j.jqsrt.2016.04.020
Tejada Duque, C. A., & Motoche Rivera, L. C. (2012). Posicionamiento de paneles solares usando lógica difusa para prácticas de laboratorio de control automático. [Trabajo de grado, Ingeniería Electrónica, Universidad Politécnica Salesiana]. Repositorio Institucional- Universidad Politécnica Salesiana. http://dspace.ups.edu.ec/handle/123456789/3278
Llangarí Yaguachi, F. A. (2015). Diseño y desarrollo de un sistema de posicionamiento automático seguidor de la luz solar de un eje, controlado por medio de un microcontrolador y un motor paso a paso como actuador, empleando un control con lógica difusa. [Trabajo de grado, Ingeniería Electrónica, Universidad Politécnica Salesiana]. Repositorio Institucional- Universidad Politécnica Salesiana. http://dspace.ups.edu.ec/handle/123456789/9146