Vehicular and pedestrian traffic, an urban sustainability indicator for the city of Cuenca
Main Article Content
Abstract
Both vehicular and pedestrian traffic is a problem that developing cities are currently experiencing, with the growth of the population and the number of vehicles, the spaces of mobilization are experiencing congestion, affecting the sustainability of the city. To achieve an early analysis of this problem, indicators have been created to describe a phenomenon qualitatively or quantitatively, but their extensive study has generated an extensive list of these, where regions with limited resources and without a culture of data collection, are inapplicable and unreliable. Therefore, the objective of this study is to evaluate a framework of sustainable indicators that describe the phenomenon of vehicular and pedestrian traffic for a specific area, and to obtain a list of applicable and relevant indicators. The methodology begins with the identification of bibliographic sources and the selection of indicators already evaluated to obtain an initial list, as a second step, this list of indicators was zoned based on expert opinion, fulfilling the criteria imposed, and finally it was verified that these indicators are applicable. In this study, a list of verified, measurable and applicable indicators was obtained for any zone of the city of Cuenca and a methodology of analysis that presents a wide potential for the zoning of sustainable indicators, this selection is absolutely based on the opinion of expert judgment.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Ahvenniemi, H., Huovila, A., Pinto-Seppä, I., & Airaksinen, M. (2017). What are the differences between sustainable and smart cities? Cities, 60, 234–245. https://doi.org/10.1016/j.cities.2016.09.009
AL21 Red de redes de desarrollo local sostenible. (2010). Sistema municipal de indicadores de sostenibilidad. https://www.mitma.gob.es/recursos_mfom/pdf/82B973EA-5970-46F0-8AE6-65370D40A1F5/111505/SIST_MUNI_INDI_SOSTE_tcm7177732.pdf
Banco Interamericano de Desarrollo. (2016). Guía Metodológica Programa de Ciudades Emergentes y Sostenibles (pp. 1–492). Tercera Edición. https://publications.iadb.org/publications/spanish/document/Gu%C3%ADa-Metodol%C3%B3gica-Programa-de-Ciudades-Emergentes-y-Sostenibles-Tercera-edici%C3%B3n.pdf
Bandeira, R. A. M., D’Agosto, M. A., Ribeiro, S. K., Bandeira, A. P. F., & Goes, G. v. (2018). A fuzzy multi-criteria model for evaluating sustainable urban freight transportation operations. Journal of Cleaner Production, 184, 727–739. https://doi.org/10.1016/j.jclepro.2018.02.234
Bibri, S. E., & Krogstie, J. (2017). Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustainable Cities and Society, 31, 183–212. https://doi.org/10.1016/j.scs.2017.02.016
Bosch, P., Jongeneel, S., Rovers, V., Neumann, H.-Ma., Airaksinen, M., & Huovila, A. (2016). Deliverable 1.4. Smart city KPIs and related methodology. 1–276.
BREEAM Communities. (2012). Communities’ technical manual. Technical Manual. https://files.bregroup.com/breeam/technicalmanuals/communitiesmanual/#03_step03/00_step_3_designing_the_details.htm%3FTocPath%3DStep%25203%2520Designing%2520the%2520details%7C_____0
Bueno, P. C., Vassallo, J. M., & Cheung, K. (2015). Sustainability Assessment of Transport Infrastructure Projects: A Review of Existing Tools and Methods. Transport Reviews, 35(5), 622–649. https://doi.org/10.1080/01441647.2015.1041435
Camagni, R., Capello, R., & Nijkamp, P. (1998). Towards sustainable city policy: An economy-environment technology nexus. Ecological Economics, 24(1), 103–118. https://doi.org/10.1016/S0921-8009(97)00032-3
Campos, V. B. G., Ramos, R. A. R., & Miranda, D. de. (2008). Multi-Criteria Analysis Procedure for Sustainable Mobility Evaluation in Urban Areas Vânia Barcellos Gouvêa Campos. Journal of Advanced Transportation, 43(4), 371–390.
Carrillo-Rodríguez, J. (2013). Desempeño sostenible en Bogotá: construcción de un indicador a partir del desempeño local. 39, 165–190. https://doi.org/10.4067/S0250-71612013000200008
Castillo, H., & Pitfield, D. E. (2010). ELASTIC - A methodological framework for identifying and selecting sustainable transport indicators. Transportation Research Part D: Transport and Environment, 15(4), 179–188. https://doi.org/10.1016/j.trd.2009.09.002
Errampalli, M., Patil, K. S., & Prasad, C. S. R. K. (2020). Evaluation of integration between public transportation modes by developing sustainability index for Indian cities. Case Studies on Transport Policy, 8(1), 180–187. https://doi.org/10.1016/j.cstp.2018.09.005
Feleki, E., Vlachokostas, C., & Moussiopoulos, N. (2020). Holistic methodological framework for the characterization of urban sustainability and strategic planning. Journal of Cleaner Production, 243, 1–13. https://doi.org/10.1016/j.jclepro.2019.118432
Fernandes, P., Vilaça, M., Macedo, E., Sampaio, C., Bahmankhah, B., Bandeira, J. M., Guarnaccia, C., Rafael, S., Fernandes, A. P., Relvas, H., Borrego, C., & Coelho, M. C. (2019). Integrating road traffic externalities through a sustainability indicator. Science of the Total Environment, 691, 483–498. https://doi.org/10.1016/j.scitotenv.2019.07.124
GAD Municipal de Cuenca. (2015). Plan de Movilidad. https://www.cuenca.gob.ec/node/13696
Garau, C., & Pavan, V. M. (2018). Evaluating urban quality: Indicators and assessment tools for smart sustainable cities. Sustainability (Switzerland), 10(3), 1–18. https://doi.org/10.3390/su10030575
Hallowell, M. R., & Gambatese, J. A. (2010). Qualitative Research: Application of the Delphi Method to CEM Research. Journal of Construction Engineering and Management, 136, 99–107. https://doi.org/10.1061/ASCECO.1943-7862.0000137
Huovila, A., Bosch, P., & Airaksinen, M. (2019). Comparative analysis of standardized indicators for Smart sustainable cities: What indicators and standards to use and when? Cities, 89, 141–153. https://doi.org/10.1016/j.cities.2019.01.029
Illinois Department of Transportation. (2012). Illinois - Livable and Sustainable Transportation Rating System and Guide (I-LAST). https://idot.illinois.gov/transportation-system/environment/index
Instituto Nacional de Estadísticas y Censos [INEC]. (2021). Proyecciones y estudios demográficos. https://sni.gob.ec/proyecciones-y-estudios-demograficos
ISO 37120. (2014). Sustainable development of communities. In Centre for Livable Cites, Singapore. https://www.iso.org/
Kaklauskas, A., Zavadskas, E. K., Radzeviciene, A., Ubarte, I., Podviezko, A., Podvezko, V., Kuzminske, A., Banaitis, A., Binkyte, A., & Bucinskas, V. (2018). Quality of city life multiple criteria analysis. Cities, 72, 82–93. https://doi.org/10.1016/j.cities.2017.08.002
Kumar, A., & Pushplata. (2013). Building regulations for environmental protection in Indian hill towns. International Journal of Sustainable Built Environment, 2, 224–231. https://doi.org/10.1016/j.ijsbe.2014.04.003
Mansourianfar, M. H., & Haghshenas, H. (2018). Micro-scale sustainability assessment of infrastructure projects on urban transportation systems: Case study of Azadi district, Isfahan, Iran. Cities, 72, 149–159. https://doi.org/10.1016/j.cities.2017.08.012
Mitchell, V. ‐W, & McGoldrick, P. J. (1994). The Role of Geodemographics in Segmenting and Targeting Consumer Markets: A Delphi Study. European Journal of Marketing, 28, 54–72. https://doi.org/10.1108/03090569410062032
Mondschein, A., & Taylor, B. D. (2017). Is traffic congestion overrated? Examining the highly variable effects of congestion on travel and accessibility. Journal of Transport Geography, 64, 65–76. https://doi.org/10.1016/j.jtrangeo.2017.08.007
Munier, N. (2011). Methodology to select a set of urban sustainability indicators to measure the state of the city, and performance assessment. Ecological Indicators, 11, 1020–1026. https://doi.org/10.1016/j.ecolind.2011.01.006
Naciones Unidas. (1987). Informe de la Comisión Mundial sobre el Medio Ambiente y el Desarrollo (pp. 1–416).
Robles Garrote, P., & Rojas, M. del C. (2015). La validación por juicio de expertos: dos investigaciones cualitativas en Lingüística aplicada. Revista Nebrija, 18, 124–139. https://doi.org/https://doi.org/10.26378/rnlael918259
Serra, L. M., Lozano, M. A., Ramos, J., Ensinas, A. v., & Nebra, S. A. (2009). Polygeneration and efficient use of natural resources. Energy, 34, 575–586. https://doi.org/10.1016/j.energy.2008.08.013
Talavera-García, R., Soria-Lara, J. A., & Valenzuela-Montes, L. M. (2014). La calidad peatonal como método para evaluar entornos de movilidad urbana. Documents d’Anàlisi Geogràfica, 60, 161–187.
Tanguay, G. A., Rajaonson, J., & Lanoie, P. (2010). Measuring the sustainability of cities: An analysis of the use of local indicators. 10, 407–418. https://doi.org/10.1016/j.ecolind.2009.07.013
Tran, N. H., Yang, S. H., & Huang, T. (2021). Comparative analysis of traffic-and-transportation-planning-related indicators in sustainable transportation infrastructure rating systems. International Journal of Sustainable Transportation, 15, 203–216. https://doi.org/10.1080/15568318.2020.1722868
Tran, N. H., Yang, S. H., Tsai, C. Y., Yang, N. C., & Chang, C. M. (2021). Developing transportation livability-related indicators for green urban road rating system in Taiwan. Sustainability (Switzerland), 13. https://doi.org/10.3390/su132414016
Zhao, P., & Hu, H. (2019). Geographical patterns of traffic congestion in growing megacities: big data analytics from Beijing. Cities, 92, 164–174. https://doi.org/10.1016/j.cities.2019.03.022