Indicators for the facility layout design in MSMEs in the textile sector with a resilient approach
Contenido principal del artículo
Resumen
Introduction. The capacity to respond and adapt to the risks and problems in an organization is critical for business success. Any type of weakness causes inefficient use of resources. On the contrary, flexible facilities can ensure the continuity of operations in the face of disruptive events, which significantly harm the company if they are not controlled. However, flexibility is not achieved only with the optimization of facilities, as resilient approaches can enhance it. Objective. To synthesize the variables and indicators with greater use in three different areas, business resilience, the textile industry, and the facility layout problem (FLP) in the textile industry. Methodology. The research is of a bibliographic-documentary nature. A systematic literature review was conducted, using the Fink methodology, considering 99 studies published between 2010 and 2021. The documents were analyzed using the Atlas.ti software; subsequently, a 4W (when, who, what, and where) analysis was used; finally, answers were given to three research questions posed through the PICO strategy. Results. The findings indicate that, there is a scarcity of studies about resilient FLPs, however, it is notable that the scientific interest regarding resilience has increased in the last six years, specifically in assessment methods and approaches to identify resilience factors and indicators in the industry through fuzzy mathematical models. Conclusions. Studies about resilience applied to FLP are not developed to a great extent worldwide, in the Ecuadorian context resilience has not been explored in depth. Eventually, the importance of indicators for an accurate model is highlighted and a series of indicators for the analysis of the behavior of facility layout with a resilient approach based on FLP factors is proposed.
Descargas
Detalles del artículo
Citas
Aleksić, A., Stefanović, M., Arsovski, S., & Tadić, D. (2013). An assessment of organizational resilience potential in SMEs of the process industry, a fuzzy approach. Journal of Loss Prevention in the Process Industries, 26(6), 1238–1245. https://doi.org/https://doi.org/10.1016/j.jlp.2013.06.004
Ates, A., & Bititci, U. (2011). Change process: a key enabler for building resilient SMEs. International Journal of Production Research, 49(18), 5601–5618. https://doi.org/10.1080/00207543.2011.563825
Azadeh, A., Moghaddam, M., Nazari, T., & Sheikhalishahi, M. (2015). Optimization of facility layout design with ambiguity by an efficient fuzzy multivariate approach. The International Journal of Advanced Manufacturing Technology, 84(1–4), 565–579. https://doi.org/10.1007/s00170-015-7714-x
Azadeh, A., & Moradi, B. (2014). Simulation optimization of facility layout design problem with safety and ergonomics factors. The International Journal of Industrial Engineering: Theory, Applications and Practice, 21(4), 209–230.
Azadeh, A., Nazari, T., & Charkhand, H. (2014). Optimization of facility layout design problem with safety and environmental factors by stochastic DEA and simulation approach. International Journal of Production Research, 53(11), 3370–3389. https://doi.org/10.1080/00207543.2014.986294
Azadeh, A., Salehi, V., Ashjari, B., & Saberi, M. (2014). Performance evaluation of integrated resilience engineering factors by data envelopment analysis: The case of a petrochemical plant. Process Safety and Environmental Protection, 92(3), 231–241. https://doi.org/10.1016/j.psep.2013.03.002
Bevilacqua, M., Ciarapica, F. E., Marcucci, G., & Mazzuto, G. (2020). Fuzzy cognitive maps approach for analyzing the domino effect of factors affecting supply chain resilience: a fashion industry case study. International Journal of Production Research, 58(20), 6370–6398. https://doi.org/10.1080/00207543.2019.1680893
Burnard, K., & Bhamra, R. (2011). Organizational resilience: development of a conceptual framework for organizational responses. International Journal of Production Research, 49(18), 5581–5599. https://doi.org/10.1080/00207543.2011.563827
Carvajal, R., Saltos, J., & Camacho, H. (2018). Determining factors of productivity: a multivariant analysis of the Ecuadorian industry. Ciencia Digital, 2(4), 236–256. https://doi.org/10.33262/cienciadigital.v2i4.228
De la Cruz, N. (2014). Distribución de planta para la optimización de los procesos de producción de calzado en la Empresa “Pionero” [Universidad Técnica de Ambato]. https://repositorio.uta.edu.ec/jspui/handle/123456789/8548
Diego-Mas, J. A., Santamarina-Siurana, M. C., Alcaide-Marzal, J., & Cloquell-Ballester, V. A. (2009). Solving facility layout problems with strict geometric constraints using a two-phase genetic algorithm. International Journal of Production Research, 47(6), 1679–1693. https://doi.org/10.1080/00207540701666253
Fink, A. (2019). Conducting research literature reviews: From the internet to paper (Fifth Edit). SAGE Publications.
Flores, N. (2021). The importance of resilience in times of Covid-19. ConcienciaDigital, 4(1.2), 269–285. https://doi.org/10.33262/concienciadigital.v4i1.2.1593
Flores, P., Siguenza, L., Lema, F., Tigre, F., Vanegas, P., & Aviles, J. (2021). A systematic literature review of facility layout problems and resilience factors in the industry. International Journal on Advanced Science, Engineering and Information Technology, 11.
Gordon, C. (2015). Auditoría de gestión como herramienta para la toma de decisiones en la empresa textil {PARMITEX} [Facultad de Contabilidad y Auditoría, Universidad Técnica de Ambato]. http://repositorio.uta.edu.ec/jspui/handle/123456789/16744
Gunasekaran, A., Rai, B. K., & Griffin, M. (2011). Resilience and competitiveness of small and medium size enterprises: empirical research. International Journal of Production Research, 49(18), 5489–5509. https://doi.org/10.1080/00207543.2011.563831
Hosseini-Nasab, H., Fereidouni, S., Fatemi Ghomi, S. M. T., & Fakhrzad, M. B. (2018). Classification of facility layout problems: a review study. International Journal of Advanced Manufacturing Technology, 94(1–4), 957–977. https://doi.org/10.1007/s00170-017-0895-8
Jain, P., Pasman, H. J., Waldram, S., Pistikopoulos, E. N., & Mannan, M. S. (2018). Process Resilience Analysis Framework (PRAF): A systems approach for improved risk and safety management. Journal of Loss Prevention in the Process Industries, 53, 61–73. https://doi.org/10.1016/j.jlp.2017.08.006
Lin, L., & Sharp, G. (1999). Quantitative and qualitative indices for the plant layout evaluation problem. European Journal of Operational Research, 116(1), 100–117. https://doi.org/10.1016/S0377-2217(98)00046-0
López, E. (2014). Distribución de planta para la optimización del manejo de materiales en la empresa de calzado DAV-SPORT de la Ciudad de Ambato [Universidad Técnica de Ambato]. https://repositorio.uta.edu.ec/jspui/handle/123456789/6977
MacKenzie, C. A., & Hu, C. (2019). Decision making under uncertainty for design of resilient engineered systems. Reliability Engineering & System Safety, 192, 106171. https://doi.org/10.1016/j.ress.2018.05.020
Macuzić, I., Tadić, D., Aleksić, A., & Stefanović, M. (2016). A twostep fuzzy model for the assessment and ranking of organizational resilience factors in the process industry. Journal of Loss Prevention in the Process Industries, 40, 122–130. https://doi.org/https://doi.org/10.1016/j.jlp.2015.12.013
Mehrjerdi, Y. Z., & Shafiee, M. (2021). A resilient and sustainable closed-loop supply chain using multiple sourcing and information sharing strategies. Journal of Cleaner Production, 289, 125141. https://doi.org/10.1016/j.jclepro.2020.125141
Miniguano, M. (2014). Gestión por procesos para el área de producción de la Empresa Textil Tex - Moda [Facultad de Ingeniería en Sistemas, Electrónica e Industrial, Universidad Técnica de Ambato]. http://repositorio.uta.edu.ec/handle/123456789/8549
Montava, I., García, R., Bonet, A., & Díaz, P. (2010). Textile industry indicators for management. Total Quality Management & Business Excellence, 21(1), 1–9. https://doi.org/10.1080/14783360903492470
Moosavi, J., & Hosseini, S. (2021). Simulation-based assessment of supply chain resilience with consideration of recovery strategies in the COVID-19 pandemic context. Computers & Industrial Engineering, 160, 107–593. https://doi.org/10.1016/j.cie.2021.107593
Navazi, F., Tavakkoli-Moghaddam, R., & Memari, P. (2021). Layout optimization of injection process by considering integrated resilience engineering: a fuzzy-DEA approach. International Journal of Modelling and Simulation, 41(1), 52–66. https://doi.org/10.1080/02286203.2019.1670325
Perez, P. (2016). An approach to industrial facility layout evaluation using a performance index. RAE-Revista de Administracao de Empresas, 56(5), 533–546. https://doi.org/10.1590/S0034.759020160507
Piprani, A. Z., Jaafar, N. I., & Mohezar Ali, S. (2020). Prioritizing resilient capability factors of dealing with supply chain disruptions: an analytical hierarchy process (AHP) application in the textile industry. Benchmarking: An International Journal, 27(9), 2537–2563. https://doi.org/10.1108/BIJ-03-2019-0111
Pournader, M., Rotaru, K., Kach, A. P., & Razavi Hajiagha, S. H. (2016). An analytical model for system-wide and tier-specific assessment of resilience to supply chain risks. Supply Chain Management: An International Journal, 21(5), 589–609. https://doi.org/10.1108/SCM-11-2015-0430
Quispe, H., Takahashi, M., Cárdenas, L., Carvallo, E., & Macassi, I. (2020). Combined model of SLP and TPM for the improvement of production efficiency in a MYPE of the Peruvian textile sector. Proceedings of the 18th LACCEI International Multi-Conference for Engineering, Education, and Technology: Engineering, Integration, And Alliances for A Sustainable Development”, 18. https://doi.org/10.18687/laccei2020.1.1.322
Raman, D., Nagalingam, S., & Lin, G. (2009). Towards measuring the effectiveness of a facilities layout. Robotics and Computer-Integrated Manufacturing, 25(1), 191–203. https://doi.org/10.1016/j.rcim.2007.06.003
Ramos, E., Velastegui, L., Carrasco, T., & Cepeda, E. (2018). Quality management system and its impact on the productivity of the textile sector. Visionario Digital, 2(1), 25–37. https://doi.org/10.33262/visionariodigital.v2i1.34
Reyes, T., Gouvinhas, R. P., Laratte, B., & Chevalier, B. (2020). A method for choosing adapted life cycle assessment indicators as a driver of environmental learning: a French textile case study. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 34(1), 68–79. https://doi.org/10.1017/S0890060419000234
Santos, C. M. da C., Pimenta, C. A. de M., & Nobre, M. R. C. (2007). The PICO strategy for the research question construction and evidence search. Revista Latino-Americana de Enfermagem, 15(3), 508–511. https://doi.org/10.1590/S0104-11692007000300023
Shirali, G. A., Mohammadfam, I., & Ebrahimipour, V. (2013). A new method for quantitative assessment of resilience engineering by PCA and NT approach: A case study in a process industry. Reliability Engineering & System Safety, 119, 88–94. https://doi.org/https://doi.org/10.1016/j.ress.2013.05.003
Tayal, A., & Singh, S. P. (2019). Formulating multi-objective stochastic dynamic facility layout problem for disaster relief. Annals of Operations Research, 283(1), 837–863. https://doi.org/10.1007/s10479-017-2592-2
Thoma, K., Scharte, B., Hiller, D., & Leismann, T. (2016). Resilience Engineering as Part of Security Research: Definitions, Concepts and Science Approaches. European Journal for Security Research, 1(1), 3–19. https://doi.org/10.1007/s41125-016-0002-4
Ugail, H., Aggarwal, R., Iglesias, A., Howard, N., Campuzano, A., Suárez, P., Maqsood, M., Aadil, F., Mehmood, I., Gleghorn, S., Kadry, S., & Muhammad, K. (2021). Social distancing enhanced automated optimal design of physical spaces in the wake of the COVID-19 pandemic. Sustainable Cities and Society, 68. https://doi.org/10.1016/j.scs.2021.102791
Villalba, R., Mancheno, M., & Llamuca, S. (2018). The management of quality and productivity in the industry of footwear. Ciencia Digital, 2(1), 406–427. https://doi.org/10.33262/cienciadigital.v2i1.29
Vitayasak, S., Pongcharoen, P., & Hicks, C. (2017). A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm. International Journal of Production Economics, 190, 146–157. https://doi.org/10.1016/j.ijpe.2016.03.019
Yépez, R. (2017). Aumento de la productividad de líneas de confección textil a través de la reducción de desperdicio [Facultad de Ciencias Administrativas, Universidad Técnica de Ambato]. http://repositorio.uta.edu.ec/jspui/handle/123456789/26997
Zhao, L., & Kim, K. (2021). Responding to the COVID-19 Pandemic: Practices and Strategies of the Global Clothing and Textile Value Chain. Clothing and Textiles Research Journal, 39(2), 157–172. https://doi.org/10.1177/0887302X21994207