Stochastic mathematical model to diagnose water and sediment quality in areas influenced by oil activity in the province of Orellana.

Main Article Content

Carlos Rolando Rosero Erazo
Fausto Manolo Yaulema Garces
Jorge Luis Yaulema Castañeda

Abstract

Introduction. Contamination of water by heavy metals due to oil activity constitutes one of the problems of greatest concern at the local, regional and global levels, since it constitutes a danger to aquatic biota and human health. Objective. Determine the stochastic mathematical model to diagnose water and sediment quality in areas influenced by oil activity in the province of Orellana, Methodology. Data was collected through the 24 monitoring points currently active within the province, in the case of sediments, except Mini Culebra station, because they do not have data for the established years 2015-2019. The concentrations of the non-conservative compounds under study were recorded, such as: cadmium, nickel, lead and total petroleum hydrocarbons, through descriptive statistics, the river or natural channel of the first order (Napo river) and the second order (river Payamino, Coca River, Jivino River, Huamayacu River, Blanco River and Sacha River). Results. Once the mathematical model was applied in the SWAT modeling, it indicated that the TPH cover a greater range of sedimentation with a concentration of 18,704.4 to 90080 mg / ha in most micro-watersheds, the sedimentation of (Ni) ranges from 1332.68 to 1512.34 mg / ha. With the highest concentration in the micro-basins of the north and central-east zone, the concentration of (Pb) ranges from 269,948 to 323.55 mg / ha in the micro-basins of the north zone, and lastly (Cd) which is the pollutant with the lowest sedimentation presents with a concentration of 49.49 to 187.88 mg / ha, Conclusion. The data obtained exceed the carrying capacity, assuming a virtual accumulation of said pollutants analyzed in the rivers, so it is recommended to establish an environmental management plan for the control and treatment of hydrocarbon emissions caused by oil activity in the province of Orellana.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rosero Erazo, C. R., Yaulema Garces, F. M., & Yaulema Castañeda, J. L. (2021). Stochastic mathematical model to diagnose water and sediment quality in areas influenced by oil activity in the province of Orellana . ConcienciaDigital, 4(3), 177-195. https://doi.org/10.33262/concienciadigital.v4i3.1789
Section
Artículos

References

Arreguín, F., Alcocer, V., & Hernández, D. (2010). Model ación de redes de agua potable con enfoques determinísticos y estocásticos. Tecnología y Ciencias del Agua, antes Ingeniería hidráulica en México, 1(4), 119-136.
Autoridad Nacional De Licencias Ambientales (ANLA). (2013). Metodología para la definición de la longitud de influencia de vertimientos sobre corrientes de agua superficial. Bogotá D.C.: Ministerio de Ambiente y Desarrollo Sostenible. Obtenido de https://www.anla.gov.co/documentos/ciudadania/03_partic_ciudadana/con-pub/Metodologia_-_Longitud_de_Influencia_de_Vertimientos.pdf
Barrabino, A., Keleşoğlu, S., Eftekhardadkhah, M., Simon, S., & Sjöblom, J. (2017). Enhanced Sedimentation and Coalescence of Petroleum Crude Oil Emulsions by New Generation of Environmentally Friendly Yellow Chemicals. Journal of Dispersion Science and Technology, 38(12), 1677-1686. doi:https://doi.org/10.1080/01932691.2015.1004410
Bojorge, M., & Cantoral, E. (2016). La importancia ecológica de las algas en los ríos. Hidrobiológica, 26(1), 1-8.
Gobierno Autónomo Descentralizado de la Provincia de Orellana. (2019). Plan de Desarrollo y Ordenamiento Territorial. Gobierno Autónomo Descentralizado de la Provincia de Orellana. https://www.gporellana.gob.ec/wp-content/uploads/2017/03/Plan_de_ordenamiento_2016.pdf
Guzmán, G., Thalasso, F., Ramírez, E., Rodríguez, S., Guerrero, A., y Avelar, F. (2011). Evaluación espacio–temporal de la calidad del agua del río San Pedro en el Estado de Aguascalientes, México. Revista internacional de contaminación ambiental, 27(2), 89-102.
Marusic, G. (2013). A study on the mathematical modeling of water quality in "river-type" aquatic systems. Wseas transactions on fluid mechanic, 8(2), 80-89. doi:10.13140/RG.2.1.4334.5125
Mero, M., Pernía, B., Ramírez, N., Bravo, K., Ramírez, L., Larreta, E., & Egas, F. (2019). Concentración de Cadmio En Agua, Sedimentos, Eichhornia crassipes Y Pomacea canaliculata en el Río Guayas (Ecuador) y sus Afluentes. Revista Internacional de Contaminación Ambiental, 35(3), 623-640. doi:10.20937/RICA.2019.35.03.09
Montelongo, R., Gordillo, A., Otazo, E., Villagómez, J., Acevedo, O., & Prieto, F. (2008). Modelacion de la calidad del agua del río Tula, Estado De Hidalgo, México. Dyna, 75(154), 5-18.
Osina, M. (2011). Evaluación de la Calidad de las Aguas del Río KATARI, La Paz, Bolivia, mediante un modelo matemático. [Tesis de grado, Universidad Mayor de San Andrés] https://books.google.com.ec/books?id=1P5sBgAAQBAJ&printsec=frontcover&redir_esc=y#v=onepage&q&f=false
Owa, F. (2013). Water Pollution: Sources, Effects, Control and Management. Mediterranean Journal of Social Sciences, 4(8), 65-68. doi:10.5901 / mjss.2013.v4n8p65
Ziemińska, A., & Skrzypski, J. (2012). Review of mathematical model of water quality. Ecology Chemistry Engineer, 19(2), 197-211. doi:10.2478/v10216-011-0015-x