Methodological proposal for the solution of geometric applications of ordinary differential equations
Main Article Content
Abstract
Solving problems of geometric application of Ordinary Differential Equations presents certain difficulties when deciding how to treat them to find the differential equation that is present in a given problem. These problems are solved at higher levels of study, where the solution of these is not very clear, for this reason it is tried in this work, to determine a general path, as far as possible, that facilitates the resolution of the problem in progress. For which use is made of a retail analysis, identifying the parts present that affect the problem or data that may be explicit or implicit and a subsequent synthesis, which allows to relate the parts of the problem found in the analysis, fundamentally specifying in the differential equation that is describing the problem in all its parts. The results obtained from this methodology must be verified at the end, to be sure that the resolution process has been developed successfully.
Downloads
Article Details
References
Chi, M. y Glaser, R. (1986). Capacidad de resolución de problemas. En Sternerg, R.J., Las capacidades humanas. Un enfoque desde el procesamiento de la información (pp. 303-324). Barcelona: Labor.
Garret, R.M. (1989). Resolución de problemas, creatividad y originalidad. Revista Chilena de Educación Química, 14 (1-2), 21-28.
Gil, D., Dumas, A., Caillot, M., Martínez, J. y Ramírez, L. (1988). La resolución de problemas de lápiz y papel como actividad de investigación. Investigación en la Escuela, 6, 3-19.
López O., Maldonado, L.F., Ibáñez, J., Sanabria, L.B. y Quintero, V. (2005). La Complejidad en la Solución de Problemas. Niveles de complejidad en problemas de geometría dinámica. VIII Congreso Colombiano de Informática Educativa. Universidad Icesi, Cali, Colombia.
Perales, F.J. (1993). La resolución de problemas: Una revisión estructurada. Enseñanza de las Ciencias, 11 (2), 170-178.
Sepúlveda, A. y M. Santos (2004), "Developing Understanding in Mathematical Problem-Solving. A Study with High School Students", en D. E. McDougall y J. A. Ross (eds.), Proceedings of the twenty-sixth annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Toronto, OISE/UT, pp. 499-506.
Vergnaud, G.; Booker George; Confrey Jere; Lerman Sthepen y Lonchhead Anna, Sfard Anna, Sierpinska Jack and Wheeler David. (1990). Epistemology and psychology of mathematics education. Págs. 14-30.
Woods, D.R., Crowe, C.M., Hoffman, T.W. y Wrig, J.D. (1985). Challenges to teaching problem-solving skills. Chem. 13 News, 155, 1-12.