Structural evaluation of the piers of the Puerto Real Bridge in Portoviejo 1under seismic action

Main Article Content

Fredy Randolfo Barahona Escoto
Pablo Julio Lindao Tomalá
Armando Douglas Reyes Pilay

Abstract

Introduction: Bridge infrastructure is a fundamental part of the road system; bridges are currently used for the interconnection of geographical points that cannot be reached by solid road. Ecuador, being a territory with a high seismic hazard, requires an analysis under lateral loads coming from seismic action. This case study will address the structural capacity and performance level of the Puerto Real bridge infrastructure, including the flexural and shear analysis of the header beams, the flexural-compression and shear analysis of the piers and piles, as well as the evaluation of the performance of the portal piers. Objective: Evaluate the structural behavior and seismic performance level of the piers of the Puerto Real bridge located in the city of Portoviejo, under the action of vertical loads and lateral loads from seismic action, through the development of a mathematical model in the CSI Bridge program and applying the current AASHTO LRFD standards, for the formulation of possible structural improvement strategies in the bridge piers. Methodology: Review of the drawings and specifications of the existing bridge, evaluation of the loads acting on the infrastructure. Elaboration of the mathematical model of the Puerto Real bridge structure in the CSI Bridge program. Development of a non-linear static analysis of the bridge gantry consisting of piers and header beam, to obtain the seismic performance of the existing structural system of the bridge. Results: Header beams 1 and 2 demonstrate appropriate behavior, i.e. within the elastic range for negative moment with a critical demand/capacity ratio of 0.72 and 0.72 respectively. The shear design is satisfactory, head beam 1 has a demand/capacity ratio of 0.41 and head beam 2 of 0.30. The piles comply with the required flexural compression capacity, the critical demand/capacity of 0.484 for pile 1 and 0.465 for pile 2, while the shear demand/capacity ratio is 0.52 for pile 1 and 0.47 for pile 2, proving that these elements have a good confinement for the AASHTO earthquake with Tr=1000 yr. The piles have an adequate flexural-compression behavior with a critical demand/capacity ratio of 0.756 for piles in pile 1 and 0.945 for piles in pile 2, while the shear demand/capacity ratio is 1.23 for piles in pile 1 and 0.91 for piles in pile 2. Regarding the seismic performance level, for Pile 1 Y-Y portal is at Severe Damage (Sd3) with a performance point of Sa=0.66g, Δ=14.60 cm, for Pile 1 X-X portal is at Severe Damage (Sd3) with a performance point of Sa=0.384g, Δ=21.60 cm. On the other hand, at the seismic performance level, for the Y-Y Gantry of Stack 2 is in Moderate Damage (Sd2) with a performance point of Sa=0.63g, Δ=4.70 cm, for the X-X Gantry of Stack 2 is in Severe Damage (Sd3) with a performance point of Sa=0.63g, Δ=4.70 cm, for the X-X Gantry of Stack 1 is in Severe Damage (Sd3) with a performance point of Sa=0.384g, Δ=21.60 cm.  Conclusion: The load analysis allowed obtaining the most critical and unfavorable condition for the bridge infrastructure, thus determining the maximum demands of the Puerto Real bridge through the three-dimensional numerical model in CSI Bridge. The head girders are designed to flex correctly in an elastic manner for an R=1 for negative moment and positive moment. The columns have the necessary flexural and compressive strength, as well as an adequate confinement that will guarantee the incursion into the inelastic range. The pile proposal for the Puerto Real Bridge complies with the demand/capacity ratio at flexo-compression and shear. Type of article: original.

Downloads

Download data is not yet available.

Article Details

How to Cite
Barahona Escoto, F. R., Lindao Tomalá, P. J., & Reyes Pilay, A. D. (2024). Structural evaluation of the piers of the Puerto Real Bridge in Portoviejo 1under seismic action. ConcienciaDigital, 7(3.1), 128-150. https://doi.org/10.33262/concienciadigital.v7i3.1.3147
Section
Artículos

References

American Association of State Highway and Transportation Officials [AASHTO]. (2020). LRFD Bridge Design Specifications (Novena ed.). https://aportesingecivil.com/aashto-lrfd-bridge-design-specifications-9th-edition-2020/
Aguiar Falconi, R. (2003). Análisis sísmico por desempeño (1ra edición). Publisher: Centro de Investigaciones Científicas. Escuela Politécnica del Ejército. Editor: EDIESPE. https://www.researchgate.net/publication/280627456_Analisis_Sismico_por_Desempeno
Blas Francia, J. M., & Sosa Altamiza E. P. (2019). Evaluación del desempeño sísmico bajo el método de análisis estático no lineal pushover, caso Puente Riecito ubicado en el distrito de Bellavista – Piura [Tesis de pregrado, Universidad Ricardo Palma, Lima, Peru]. https://hdl.handle.net/20.500.14138/2634
Bravo Caba, F. A. (2021). Desempeño sísmico del Puente Águila Norte ante diferentes niveles de demanda sísmica [Tesis de pregrado, Universidad de Chile, Santiago de Chile, Chile]. https://repositorio.uchile.cl/handle/2250/180039
Chuquipoma Azañero, G. (2020). Diseño estructural de un puente peatonal en la avenida José Gabriel Condorcanqui sector Wichanzao, La Esperanza, 2019 [Tesis de pregrado, Universidad Cesar Vallejo, Trujillo, Peru] https://repositorio.ucv.edu.pe/handle/20.500.12692/51285
Department of Homeland Security Federal Emergency Management Agency. (2005). Improvement of Nonlinear Static Seismic Analysis Procedures FEMA440. https://mitigation.eeri.org/wp-content/uploads/fema-440.pdf
Huerta Guzman, C. R. (2022). Comparación del desempeño sísmico del puente Quilca sin sistemas de protección sísmica y aplicando sistemas de aislamiento y disipación de energía [Tesis de maestría, Pontificia Universidad Católica del Perú, Lima, Perú]. http://hdl.handle.net/20.500.12404/23160
Jiménez Ruiz, R. C., & Carreño Loor, J. A. (2023). Análisis y diseño sismorresistente de una pila tipo pórtico transversal con pilotes hincados mediante CSI Bridge para el puente bypass 3, provincia del Guayas [Tesis de pregrado, Universidad de Guayaquil, Guayaquil, Ecuador]. https://repositorioslatinoamericanos.uchile.cl/handle/2250/6329600
Lombeida Cuenca, H. A. (2023). Diseño estructural de un puente para paso peatonal y ganado vacuno, en la parroquia Pucayacu, cantón La Maná, provincia de Cotopaxi [Tesis de pregrado, Universidad Politécnica Salesiana Sede Quito, Quito, Ecuador]. http://dspace.ups.edu.ec/handle/123456789/25260
Mañueco Navarro, I. A. (2018). Evaluación de 4 puentes vehiculares tipo viga sobre el rio Rìmac utilizando el manual de inspecciòn del MTC y software csibridge [Tesis de pregrado, Universidad César Vallejo, Lima, Perú]. https://repositorio.ucv.edu.pe/handle/20.500.12692/35482
Milutinovic, Z., & Trendafiloski, G. (2003). Vulnerability of current buildings. RISK-UE: An advanced approach to earthquake risk scenarios with applications to different European towns. Contract No. EVK4-CT-2000-00014. http://www.civil.ist.utl.pt/~mlopes/conteudos/DamageStates/Risk%20UE%20WP04_Vulnerability.pdf
Moran Macay, A. A. (2023). Análisis comparativo del comportamiento estructural y del desempeño sísmico de las pilas de puentes continuos entre sistemas conformados por pilas tradicionales tipo pórtico transversal y pilas conformadas por sistemas pilotes columnas [Tesis de maestria, Universidad de Guayaquil, Guayaquil, Ecuador]. https://www.studocu.com/ec/document/universidad-de-guayaquil/analisis-estructural/pilotes/97609543
Norma Ecuatoriana de la Construccion [NEC]. (2014). Peligro sísmico diseño sismo resistente - Codigo NEC-SE-DS. https://online.portoviejo.gob.ec/docs/nec4.pdf
Peña Jordán, F. A., & Yunapanta Velasteguí, J. L. (2022). Propuesta de reforzamiento de vigas de alma llena de puentes metálicos con fibra de carbono y resina epóxica [Tesis de maestría, Universidad Técnica de Ambato, Ambato, Ecuador]. https://repositorio.uta.edu.ec/jspui/handle/123456789/34195
Pierre, A. J., & Hidayat, I. (2020). Seismic performance of reinforced concrete structures with pushover analysis. IOP Conference Series Earth And Environmental Science, 426(1), 012045. https://doi.org/10.1088/1755-1315/426/1/012045
Quispe, J. (2023). Evaluación del método de análisis Pushover y tiempo - historia en el desempeño sísmico de los pilares del puente Independencia, Puno -. Obtenido de https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/133379/Quispe_QJN-SD.pdf?sequence=1&isAllowed=y
Rodríguez Serquén, A. (2022). Puentes con AASHTO LRFD 2020 (Novena ed.). https://aportesingecivil.com/puentes-con-aashto-lrfd-2020-9th-edition-arturo-rodriguez-serquen/
Salcedo Chahud, C. A. (2021). Evaluación del comportamiento sísmico del Puente Villena construido en 1967 usando un método basado en el desempeño [Tesis de maestria, Pontificia Universidad Catolica del Perú, Perú]. http://hdl.handle.net/20.500.12404/22733
Vargas Bejarano, C. I. (2017). Evaluación del desempeño sísmico de puentes continuos [Tesis de maestria, Pontificia Universidad Católica del Perú, Perú]. http://hdl.handle.net/20.500.12404/9369
Zambrano de la Cruz, O. (2023). Vulnerabilidad Sísmica del Puente Malcas-Condebamba-Cajabamba-Cajamarca [Tesis de pregrado, Univerdidad Nacional de Cajamarca, Perú]. https://repositorio.unc.edu.pe/handle/20.500.14074/5570