Application of Microsoft Power BI software as an artificial intelligence & machine learning system in decision making and data tabulation tool applied to the CIYA Faculty of the Technical University of Cotopaxi in the period 2015 - 2019

Main Article Content

Víctor Hugo Medina Matute
Lando Stephen Ocaña Pañora
Mario Agustín Banda Casa
Mirella Nataly Arias Guadalupe

Abstract

Introduction. The data generated by the Technical University of Cotopaxi in the different academic and administrative areas have several cases that lead to establish the situation of the students' qualifications. Target. The implementation of data mining is suggested to obtain an analysis of student performance applied in engineering careers at the Faculty of Engineering and Applied Sciences, FCIYA that allows efficient information management for decision-making by authorities. Methodology. An intelligence method is established for the management, processing and analysis of the data that will help to generate reports of qualifications of the students of the faculty with a high level of veracity and timely to support in the making of managerial decisions. The tool chosen to use is Microsoft Power BI, considered one of the most successful, it will evaluate the averages of the academic cycles from September 2015 to February 2019 to verify the career with the greatest learning deficit. Results. After the analysis, it was possible to determine that the Electromechanical Engineering career presents the greatest learning deficit, obtaining low averages in all the comparison criteria used in the software for the evaluation of said item compared to the other careers of the FCIYA.

Downloads

Download data is not yet available.

Article Details

How to Cite
Medina Matute, V. H., Ocaña Pañora, L. S., Banda Casa, M. A., & Arias Guadalupe, M. N. (2021). Application of Microsoft Power BI software as an artificial intelligence & machine learning system in decision making and data tabulation tool applied to the CIYA Faculty of the Technical University of Cotopaxi in the period 2015 - 2019. ConcienciaDigital, 4(3.1), 313-332. https://doi.org/10.33262/concienciadigital.v4i3.1.1834
Section
Artículos

References

Chen, H.-c., Chiang, R., & Storey, V. (2012). Business Intelligence and Analytics: From Big Data to Big Impact. ResearchGate.
Espino, M. (2013). Test de Liderazgo Natural.
Fabara, G., & Zapata, L. (2015). DISEÑO DE BITS DE INTELIGENCIA PARA EL DESARROLLO Y ESTIMULACIÓN DEL ÁREA DE MATEMÁTICA GENERANDO NUEVOS ESPACIOS EN ELPROCESO ENSEÑANZA APRENDIZAJE EN EL PRIMER AÑO DE EDUCACIÓN BÁSICA DE LA ESCUELA “ISIDRO AYORA” DEL ANTÓN LATACUNGA PROVINCIA DE COTOPAX. lATACUNGA, Tungurahua, Ecuador.
Medina, V. (2020). Repositorio Institucional Universidad Técnica de Cotopaxi. Obtenido de http://repositorio.utc.edu.ec/handle/27000/7553
Microsoft. (2020). Microsoft BI. Obtenido de https://powerbi.microsoft.com/es-es/features/
Molinari, V. (2016). MEDICIÓN DE INTELIGENCIA. ENTRE DEBATES HISTÓRICOS Y ACTUALES. Anuario de Investigaciones.
Muryjas, P., & Waver, M. (2014). Business Intelligence as a support in Human Resources strategies realization in contemporary organization. ResearchGate, 65.
Pérez, J., & Merino, M. (2012). definicion.de. Obtenido de DEFINICIÓN DE LATERALIDAD: https://definicion.de/lateralidad/
Rodríguez, Y., & Díaz, A. (2009). Herramienta e Minería de Datos. Revista Cubana de Ciencias Informáticas, 73-80.
Romero, J. (2007). INTELIGENCIA ARTIFICIAL Y COMPUTACIÓN AVANZADA. Santiago de Compostela: Fundación Alfredo Brañas.
Softeng. (2015). Softeng. Obtenido de https://www.softeng.es/es-es/blog/power-bi-la-nueva-herramienta-de-office-365-para-trabajar-con-datos-masivos.html.
Trujillo, M., & Rivas, L. (2005). Orígenes, evolución y modelos de inteligencia emocional. Innovar.
Vlcárce, V. (2004). Data Mining y el descubrimiento del conocimiento. Industrial Data.
Zaki, M., & Meira, W. (2014). Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press.

Most read articles by the same author(s)