Parameter estimation for digital images, using K-NN and Tesseract classifiers
Main Article Content
Abstract
Introduction: For this study, there is an estimation of parameters from a comparison between two algorithms for the recognition of numerical characters in images: K-NN and Tesseract, in order to determine the one with the highest degree of similarity. Methodology: The inductive and experimental method was used to acquire information and data such as: precision, recognition time, percentage of consumption of RAM and CPU memory. This research is of a quasi-experimental type due to the techniques chosen for the recognition of the digits applied to images and later to evaluate in K-NN and Tesseract electric energy meters captured in photography to obtain an automatic consumption reading. The research is of an applicative type since it was based on existing knowledge from previous research aimed at technological development to improve new processes. It can also be taken as experimental by the acquisition of data through laboratory tests where important elements can be appreciated and a simple view a capture of the phenomena of the case. Conclusion: Through tests to determine character recognition using the K-NN and Tesseract algorithms, the precision estimation results of 439.3% were obtained with the K-NN algorithm and 29.34% with Tesseract using a time average of 1.2 and 0.06 seconds in each algorithm.
Downloads
Article Details
References
Laganière, R. (2014). OpenCV Computer Vision Application. Packt Publishing.
López Beltrán, R., & Sotter Solano, E. (2001). Aplicación del sistema Robot Visión PRO para operaciones automáticas de control de calidad. Revista Científica Ingeniería y Desarrollo (9).
López García, J. C. (2009). Educación Básica Algoritmos y programación guía para docentes. Eduteka.
Moeslund, T., & Granum, E. (2001). A Survey of Computer Vision-Based Human Motion Capture. Computer Vision and Image Understanding.
Nayak, M., & Ajit Kumar, N. (2013). Odia Characters Recognition by Training Tesseract OCR. International Journal of Computer Applications.
Pajares, G. (2001). VISION POR COMPUTADOR: IMAGENES DIGITALES Y APLICACIONES. México: RA-MA.
Sánchez Fernández, C., & Sandonís Consuegra, V. (2014). Reconocimiento Óptico de Caracteres (OCR). Universidad Carlos III.
Sanz, J. (2008). Reconocimiento de objetos por descriptores de forma. Universidad de Barcelona.
Sobrado, A. (2003). Sistema de Visión Artificial para el reconocimiento y manipulación de objetos utilizando un brazo Robot. Pontificia Universidad Católica del Perú.
Suruchi, D., & Anjali, C. (2012). Survey of Methods for Character Recognition. International Journal of Engineering and Innovative Technology (IJEIT), 1.