Implications of mathematics and the English language in the entropy of cultural codes

Main Article Content

Deysi Margoth Guanga Chunata
Oswaldo Martínez Guashima
Nanci Margarita Inca Chunata
Omar Vinicio Galarza Barrionuevo

Abstract

Mathematics and numbers are actually a linguistically based invention that characterizes the human species. Quantities exist in nature, from prehistoric times; stone tools, wheels, machines, and advanced computer systems have transformed the environments in which we live and evolve. Entropy is a function that establishes a relationship between macro and microstates. The history of the transformation and development of the human condition characterized by a change in cultural eras. Each period of the development of the history of art, science and language has its own tendencies and directions, and stand out by the struggle of tendencies of progress and decline. In all life spheres entropy establishes a function of the state of the system, which does not depend on the transition from one state to another, but depends only on the initial and final position of the system. In modern society, the globalization process has intensified and with it the entropy to its most probable configuration.

Downloads

Download data is not yet available.

Article Details

How to Cite
Guanga Chunata, D. M., Martínez Guashima, O., Inca Chunata, N. M., & Galarza Barrionuevo, O. V. (2020). Implications of mathematics and the English language in the entropy of cultural codes . ConcienciaDigital, 3(2), 69-83. https://doi.org/10.33262/concienciadigital.v3i2.1209
Section
Artículos

References

A., C. G. (2020). De la entropía social a la entropía educativa. Una reflexión en el contexto colombiano. . Educación [online]. , vol. 44, n. 1.
Arnheim, R. (1980). Hacia una psicología del arte: Arte y entropía. Alianza.
Batanero, C. H. (2005). The nature of chance and probability. In Exploring probability in school (págs. 15-37). Boston: Springer.
Ben-Naim, A. (2011). La entropía desvelada. El mito de la segunda ley de la termodinámica.
Bosch, M. (2000). Un punto de vista antropológico: la evolución de los" elementos de representación" en la actividad matemática.
Calder, B. (2005). The entropy, virtual machine for desktop grids. In Proceedings of the 1st ACM/USENIX international conference on Virtual execution environments , (págs. 186-196).
Campbell, J. (2011). Grammatical man: Information, entropy, language, and life. New York: Simon and Schuster. p. 265.
E., C. (2017). Los números nos hicieron como somos. Barcelona: Drakontos.
Eringen, A. &. (2017). On nonlocal elasticity. . International Journal of Engineering Science, , 10(3), 233-248.
Gómez, L. J. (1999). La entropía y sus relaciones con la economía y la ecología. . Ensayos de Economía, , 9(15), 9-27.
Higuera, I. (2009). Etnomatemática, educación matemática e invidencia. Revista latinoamericana de etnomatemática, 2(2), 18-51.
J., G. (2002). Fundamentos de termodinámica. Mexico: Limusa.
Morón, D. R. (2982). Representaciones sociales en el aprendizaje de la matemática. Educere, 15(51), 439-449.
Redies, C. B. (2017). High entropy of edge orientations characterizes visual artworks from diverse cultural backgrounds. Vision Research, 133, 130-144.
Tang, J. L. (2006). daptation for parallel memetic algorithm based on population entropy. In Proceedings of the 8th annual conference on Genetic and evolutionary computation, (págs. (pp. 575-582).).

Most read articles by the same author(s)