Acute metabolic response in the pediatric critical patient
Main Article Content
Abstract
Introduction. The acute metabolic response in critically ill pediatric patients is a complex phenomenon characterized by hypermetabolism, insulin resistance, systemic inflammation, and accelerated protein catabolism. Children have limited energy reserves and are more vulnerable to early malnutrition, worsening prognosis if nutritional and therapeutic support are not promptly provided. Objective. To provide a comprehensive analysis of pathophysiology, clinical-metabolic evaluation, nutritional implications, and therapeutic strategies associated with the acute metabolic response in critically ill pediatric patients. Methodology. A narrative review was conducted in PubMed, SciELO, and ScienceDirect, including English and Spanish articles from the last five years and older seminal studies when relevant. MeSH and DeCS descriptors related to critical illness, pediatric ICU, metabolic response, energy expenditure, nutritional support, hypermetabolism, and protein catabolism were used. After screening for pediatric focus and relevance, 34 articles were included. Results. The acute metabolic response involves proinflammatory cytokine activation, increased cortisol and catecholamines, insulin resistance, hyperglycemia, accelerated lipolysis, and marked protein catabolism with rapid muscle loss. Indirect calorimetry provides precise energy requirement estimation. Early enteral nutrition (24–48 h) reduces infections and cumulative energy deficit. Protein needs should be 1.5–2.5 g/kg/day. Emerging strategies include immunonutrition, metabolic β-blockade, microbiota modulation, and precision nutrition based on metabolic phenotype. Conclusion. Management of the acute metabolic response in critically ill pediatric patients requires early, individualized, and metabolically directed intervention. Early, monitored nutritional support is crucial to preserve lean mass and modulate inflammation. Pediatric evidence gaps remain, emphasizing the need for studies validating safe and effective strategies. General Area of Study: Health and Wellness. Specific area of study: Critical Care Medicine. Type of study: Bibliographic review.
Downloads
Article Details
References
2. Oami T, Yamamoto A, Ishida S, Kondo K, Hata N, Oshima T. Critical Care Nutrition from a Metabolic Point of View: A Narrative Review. Nutrients 2025, Vol 17, Page 1352 [Internet]. 2025 Apr 15 [cited 2025 Jul 29];17(8):1352. Available from: https://www.mdpi.com/2072-6643/17/8/1352/htm
3. Matos Adames AA, Sánchez Nava VM, Vergara Centeno J, Quintero Villarreal A. Terapia Médica Nutricional en el Paciente Crítico. Distribuna Editorial Médica [Internet] 2023. [citado 2025 Jul 29]. Disponible en: https://books.google.com.ec/books/about/Terapia_M%C3%A9dica_Nutricional_en_el_Pacien.html?id=WB31EAAAQBAJ&redir_esc=y
4. Hurtado RR, Sanchez-Pinto LN. Metabolomic and cytokine profiles of high-risk sepsis phenotypes in children. Scientific Reports [Internet]. 2025 [cited 2025 Jul 29];15(1): 25639. Available from: https://www.nature.com/articles/s41598-025-10665-z
5. Mehdi SF, Qureshi MH, Pervaiz S, Kumari K, Saji E, Shah M, et al. Endocrine and metabolic alterations in response to systemic inflammation and sepsis: a review article. Molecular Medicine [Internet]. 2025 [cited 2025 Jul 29];31(1):16. Available from: https://molmed.biomedcentral.com/articles/10.1186/s10020-025-01074-z
6. Briassoulis G, Venkataraman S, Thompson A. Cytokines and Metabolic Patterns in Pediatric Patients with Critical Illness. Clinical & developmental immunology [Internet]. 2010 [cited 2025 Jul 29]; 354047. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC2871553/
7. Briassoulis G, Ilia S, Briassouli E. Personalized Nutrition in the Pediatric ICU: Steering the Shift from Acute Stress to Metabolic Recovery and Rehabilitation. Nutrients [Internet]. 2024 [cited 2025 Jul 29];16(20):3523. Available from: https://www.mdpi.com/2072-6643/16/20/3523/htm
8. Demirkol, Demet; Cortina, Gerard1; Deep, Akash2. Micronutrient need in critically Ill children undergoing continuous renal replacement therapy and protein requirements in acute kidney injury patients. Journal of Pediatric Critical Care [Internet]. 2024 cited 2025 Jul 29];11(6):268-272. Available from: https://journals.lww.com/jpcr/fulltext/2024/11060/micronutrient_needs_in_critically_ill_children.5.aspx
9. Silva-Gburek J, Zhu PH, Mansour M, Walding D, Coss-Bu JA. A methodological and clinical approach to measured energy expenditure in the critically ill pediatric patient. Frontiers in pediatrics. [Internet] 2022 [cited 2025 Jul 29];10:1027358. Available from: https://pubmed.ncbi.nlm.nih.gov/36353257/
10. Datta M, Haldar S, Biswas A, Sen S, Samanta M, Mahapatra TKS. Metabolic acidosis as a predictor of outcome in critically ill children – A single‑center prospective observational study. Journal of Pediatric Critical Care [Internet]. 2024 [cited 2025 Aug 4];11(3):99–105. Available from: https://journals.lww.com/jpcr/fulltext/2024/11030/metabolic_acidosis_as_a_predictor_of_outcome_in.2.aspx
11. Jotterand Chaparro C, Moullet C, Taffé P, Laure Depeyre J, Perez MH, Longchamp D, et al. Estimation of Resting Energy Expenditure Using Predictive Equations in Critically Ill Children: Results of a Systematic Review. Journal of Parenteral and Enteral Nutrition [Internet]. 2018 [cited 2025 Aug 4];42(6):976–986. Available from: https://pubmed.ncbi.nlm.nih.gov/29603276/
12. Veldscholte K, Joosten K, Chaparro CJ. Energy expenditure in critically ill children. Pediatric Medicine [Internet]. 2020 [cited 2025 Aug 4];3(0): 18. Available from: https://pm.amegroups.org/article/view/5644/html
13. Raina R, Suchan A, Sethi SK, Soundararajan A, Vitale VS, Keller GL, et al. Nutrition in Critically Ill Children with AKI on Continuous RRT: Consensus Recommendations. Kidney360 [Internet]. 2024 [cited 2025 Aug 3];5(2):285–309. Available from: https://pubmed.ncbi.nlm.nih.gov/38112754/
14. Fernández R, Urbano J, Carrillo Á, Vivanco A, Solana MJ, Rey C, et al. Comparison of the effect of three different protein content enteral diets on serum levels of proteins, nitrogen balance, and energy expenditure in critically ill infants: study protocol for a randomized controlled trial. Trials [Internet]. 2019 [cited 2025 Aug 4];20(1):585. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC6787979/
15. Briassoulis G. Nutrition Monitoring in the PICU. Pediatric Critical Care Medicine [Internet]. 2014 [cited 2025 Aug 4];579-601. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC7121882/
16. Zamberlan P, de Torres PM, Caires De Oliveira Achili Ferreira J, Carvalho WB, Delgado A. Interruptions in nutritional therapy in children with chronic diseases during the acute phase of critical illness and their effect on the administered volume. Frontiers in nutrition [Internet]. 2025 [cited 2025 Aug 4 ];12:1548574. Available from: https://doi.org/10.3389/fnut.2025.1548574
17. Stoppe C, Hill A, Christopher KB, Kristof AS. Toward Precision in Nutrition Therapy. Critical care medicine [Internet]. 2024 [cited 2025 Aug 3];53(2): e429–e440. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC11801434/
18. Vergara C, del Pozo P, Niklitschek J, Le Roy C. Nutritional support in the critical ill patient: Requirements, prescription and adherence. Anales de Pediatría (English Edition) [Internet]. 2023 [cited 2025 Aug 3];99(2):94–101. Available from: https://pubmed.ncbi.nlm.nih.gov/37537114/
19. Knebusch N, Hong-Zhu P, Mansour M, Daughtry JN, Fogarty TP, Stein F, Coss-Bu JA. An in-depth look at nutrition support and adequacy for critically III children with organ dysfunction. Children [Internet]. 2024 [cited 2025 Aug 3]; 11(6):709. https://doi.org/10.3390/children11060709
20. Visser ME, Chipojola R, Gordon S, Brand A, Mbeye N, Kunje G, et al. Early versus delayed enteral nutrition in critically ill children under 12 years of age: A systematic review and meta-analysis of randomised controlled trials. Clinical Nutrition Open Science [Internet]. 2025 [cited 2025 Aug 3];61:108–28. Available from: http://dx.doi.org/10.1016/j.nutos.2025.03.004
21. Buchman TG, Simpson SQ, Sciarretta KL, Finne KP, Sowers N, Collier M, et al. Sepsis Among Medicare Beneficiaries: 1. The Burdens of Sepsis, 2012-2018. Critical Care Medicine [Internet]. 2020 [cited 2025 Aug 3];48(3):276–288. Available from: https://pubmed.ncbi.nlm.nih.gov/32058366/
22. Blasco Alonso J, Moreno Álvarez A. Nutrición en el paciente crítico. Sociedad Española de Gastroenterología, Patología y Nutrición Pediátrica [Internet]. 2023 [citado 2025 Aug 3];1:579–94. Disponible en: https://www.aeped.es/sites/default/files/documentos/47_nutr_critico.pdf
23. Reignier J, Gaillard-Le Roux B, Dequin PF, Bertoni Maluf VA, Bohe J, Casaer MP, et al. Expert consensus‑based clinical practice guidelines for nutritional support in the intensive care unit: the French Intensive Care Society (SRLF) and the French-Speaking Group of Pediatric Emergency Physicians and Intensivists (GFRUP). Annals of Intensive Care [Internet]. 2025 [cited 2025 Aug 3];15(1):99. Available from: https://annalsofintensivecare.springeropen.com/articles/10.1186/s13613-025-01509-0
24. Merenstein-Hoffman Y, Villalobos Jímenez M, Castro Durán C, Camacho Morales R, Rodriguez Palma F. Síndrome de Realimentación: Revisión de tema. Revista Ciencia y Salud: integrando conocimientos [Internet] 2020 [citado 2025 Aug 3];4:85–94. Disponible: https://revistacienciaysalud.ac.cr/ojs/index.php/cienciaysalud/article/view/212
25. Furlong-Dillard JM, Facciolo MD, Ozment CP, and the Pediatric ECMO (PediECMO) Subgroup of the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network and Extracorporeal Life Support Organization (ELSO). Nutrition in neonatal and pediatric patients on extracorporeal membrane oxygenation: a survey of current practice in the US and Canada. Journal of Pediatric Critical Care [Internet]. 2024 [cited 2025 Aug 5];11(6):254–61. Available from: http://dx.doi.org/10.4103/jpcc.jpcc_57_24
26. Núñez-Villaveirán T, Sánchez M, Millán P, García-de-Lorenzo A. Systematic review of the effect of propanolol on hypermetabolism in burn injuries. Medicina Intensiva (English Edition) [Internet]. 2015 [cited 2025 Aug 5];39(2):101–113. Available from: https://www.medintensiva.org/en-systematic-review-effect-propanolol-on-articulo-S2173572715000089
27. Jeschke MG, Norbury WB, Finnerty CC, Branski LK, Herndon DN. Propranolol does not increase inflammation, sepsis, or infectious episodes in severely burned children. Journal of Trauma - Injury, Infection and Critical Care [Internet]. 2007 Mar [cited 2025 Aug 5];62(3):676–681. Available from: https://journals.lww.com/jtrauma/fulltext/2007/03000/propranolol_does_not_increase_inflammation,.20.aspx
28. Zanza C, Romenskaya T, Longhitano Y, Piccolella F, Racca F, Tassi MF, et al. Probiotic Bacterial Application in Pediatric Critical Illness as Coadjuvants of Therapy. Medicina (Kaunas, Lithuania) [Internet]. 2021 [cited 2025 Aug 5];57(8):781. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8399162/
29. Angurana SK, Mehta A. Probiotics in critically ill children: An updated review. Journal of Pediatric Critical Care [Internet]. 2021 [cited 2025 Aug 5];8(5):234–242. Available from: https://journals.lww.com/jpcr/fulltext/2021/08050/probiotics_in_critically_ill_children__an_updated.7.aspx
30. Fan L, Lee JH. Enteral feeding and the microbiome in critically ill children: a narrative review. Translational Pediatrics [Internet]. 2021 [cited 2025 Aug 5];10(10):2778791–2772791. Available from: https://tp.amegroups.org/article/view/67040/html
31. Helmeczi E, Pandya H, O’Hearn K, McNally D, Britz-McKibbin P. Treatment response variations to a single large bolus of enteral cholecalciferol in vitamin D deficient critically Ill children: Metabolomic insights for precision nutrition. Journal of Steroid Biochemistry and Molecular Biology [Internet]. 2025 [cited 2025 Aug 5]; 250(106720):106720. Available from: https://pubmed.ncbi.nlm.nih.gov/40064426/
32. Gore DC, Chinkes D, Sanford A, Hart DW, Wolf SE, Herndon DN. Influence of fever on the hypermetabolic response in burn-injured children. Archives of Surgery [Internet]. 2003 [cited 2025 Aug 6];138(2):169–174. Available from: https://pubmed.ncbi.nlm.nih.gov/12578413/
33. Formenti P, Menozzi A, Sabbatini G, Gotti M, Galimberti A, Bruno G, et al. Combined Effects of Early Mobilization and Nutrition on ICU-Acquired Weakness. Nutrients [Internet]. 2025 [cited 2025 Aug 6];17(6):1073. Available from: http://dx.doi.org/10.3390/nu17061073
34. Ekbal NJ, Dyson A, Black C, Singer M. Monitoring tissue perfusion, oxygenation, and metabolism in critically ill patients. Chest [Internet]. 2013 [cited 2025 Aug 6];143(6):1799–1808. Available from: https://pubmed.ncbi.nlm.nih.gov/23732592/