Modelación matemática del comportamiento de varillas sismorresistentes sometidas a tratamientos de temple mediante el método de elementos finitos
Main Article Content
Resumo
En el sector de la construcción las varillas sismorresistentes pierden gradualmente propiedades mecánicas cuando son sometidas a tratamientos térmicos, esta pérdida es diferente, y está en dependencia tanto del porcentaje de los elementos constituyentes como del espesor del material. Por lo tanto, aplicar modelación matemática para simular el grado de afectación en los materiales sismorresistentes frente a la tracción se convierte en una herramienta que permite de forma rápida y precisa establecer el comportamiento de cualquier material bajo este tipo de esfuerzos. El método de investigación aplicado fue inductivo, con un enfoque cuantitativo, mediante diseño experimental y de tipo documental. La población está constituida por las varillas corrugadas, considerando 90 unidades experimentales como muestra. El ensayo destructivo de tracción y la simulación mediante métodos de elementos finitos arrojaron como resultado que el esfuerzo máximo para la ruptura del material sismorresistente está entre los 690 Mpa y los 700 Mpa, resultado que se constituye fundamental en la fase de diseño y de selección de materiales al momento de construir nuevas edificaciones. Mediante el análisis de varianza se concluyó que la dependencia del mecanismo de fractura está en función tanto del diámetro del material como del tipo de fabricante. Además, se pudo establecer que el mecanismo de fractura de los materiales sismorresistentes sometidos a procesos térmicos de temple es de tipo dúctil.
Downloads
Article Details
Referências
Asif, A., Dhanapal, M., Megha, U., Nazar, S., & Rose S. (2023). Analysis of steel–concrete composite beam using Ansys 18.1 Workbench, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.05.285.
Balaji, M., Murthy, B., & Rao, N. (2016). Optimization of Cutting Parameters in Drilling of AISI 304 Stainless Steel Using Taguchi and ANOVA, Procedia Technology, 25, 1106-1113, ISSN 2212-0173, https://doi.org/10.1016/j.protcy.2016.08.217.
Batista, J., Sousa, M., Ésio M., Lima, F., & Oliveira, X. (2019). Beam-tendon finite elements for post-tensioned steel-concrete composite beams with partial interaction, Journal of Constructional Steel Research, Volume 159, 2019, Pages 147-160, ISSN 0143-974X, https://doi.org/10.1016/j.jcsr.2019.04.009.
Carm, M., Sharmila, S., & Kumar, P. (2023). Finite element analysis of Steel – Concrete – Steel double skin tubular columns under axial loading, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.06.070.
Coburn, A., & Spence, R. (2002). Earthquake Protection, Second edition. John Wiley & Sons, Ltd. ISBN: 0-471-49614-6.
Daniyan, I., Mpofu, K., Muvunzi, R., Fameso, F., & Ramatsetse, B. (2021). Model design and finite element analysis of a traction link of a railcar, Procedia CIRP, 100, 37-42, ISSN 2212-8271, https://doi.org/10.1016/j.procir.2021.05.006.
Enami, Keitaro. (2005). The effects of compressive and tensile prestrain on ductile fracture initiation in steels, Engineering Fracture Mechanics, 72(7),1089-1105, ISSN 0013-7944, https://doi.org/10.1016/j.engfracmech.2004.07.012.
Gutiérrez, H., & De La Vara, S. (2008). Análisis y diseño de experimentos. (2ª ed.). McGraw-Hill/Interamericana Editores, S.A. de C.V. http://construccion.uv.cl/docs/textos/TEXTO.13.pdf
He, T., Mitsume, N., Yasui, F., Morita, N., Fukui, T., & Shibanuma, K. (2023). Strategy for accurately and efficiently modelling an internal traction-free boundary based on the s-version finite element method: Problem clarification and solutions verification, Computer Methods in Applied Mechanics and Engineering, Volume 404, ISSN 0045-7825. https://doi.org/10.1016/j.cma.2022.115843.
Hernández-Sampieri, Roberto. (2018) Metodología de la investigación: Las rutas cuantitativa y cualitativa y mixta. México: Mc Graw Hill- Educación.
Huiping, L., Guoqun, Z., Shanting, N., & Chuanzhen, H. (2007). FEM simulation of quenching process and experimental verification of simulation results. Materials Science and Engineering: A, 452-453, 705–714. doi:10.1016/j.msea.2006.11.023. https://www.scopus.com/record/display.uri?eid=2-s2.0-33847258739&origin=inward&txGid=7dfbc6bd7e20bd14c026fd876a44ffc4
Hutton, D. V. (2017). Fundamentals of finite element analysis. (3ª ed.). McGraw-Hill/Interamericana Editores, S.A. de C.V. Ll.
Li, J., Zeng, L., Wang, S., Song, X., Chen, N., Zuo, N., y Rong, Y. (2023). Evaluation of finite element simulation of water quenched cracking for medium carbon alloy steels using acoustic emission technique, Journal of Materials Research and Technology, 25, 763-772, ISSN 2238-7854, https://doi.org/10.1016/j.jmrt.2023.05.248.
Mackenzie, A., Hancock, J., & Brown, D., (1977) On the influence of state of stress on ductile failure initiation in high strength steels, Engineering Fracture Mechanics, 9(1), 167-188, ISSN 0013-7944, https://doi.org/10.1016/0013-7944(77)90062-5.
Mackerle, J. (2003). Finite element analysis and simulation of quenching and other heat treatment processes. Computational Materials Science, 27(3), 313–332. https://doi:10.1016/s0927-0256(03)00038-7.
Mangai, K., & Eswari, S. (2023). Finite element modelling and analysis of brass coated steel fibre reinforced concrete beams, Materials Today: Proceedings, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.04.654.
Modirzadeh, M., Tesfamariam, S., & Milani, S., (2012). Performance based earthquake evaluation of reinforced concrete buildings using design of experiments, Expert Systems with Applications, 39(3), 2919-2926, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2011.08.153.
Moreira, L., Batista J., & Parente, E., (2018). Nonlinear finite element simulation of unbonded prestressed concrete beams, Engineering Structures, Volume 170, 2018, Pages 167-177, ISSN 0141-0296, https://doi.org/10.1016/j.engstruct.2018.05.077.
Overby, D., Kowalsky, M., & Seracino, R. (2017). Stress-strain response of A706 grade 80 reinforcing steel, Construction and Building Materials, Volume 145, 292-302, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2017.03.200.
Şimşir, C., & Gür, C. H. (2008). 3D FEM simulation of steel quenching and investigation of the effect of asymmetric geometry on residual stress distribution. Journal of Materials Processing Technology, 207(1-3), 211–221. doi:10.1016/j.jmatprotec.2007.12.074 . https://www.scopus.com/record/display.uri?eid=2-s2.0-50949131521&origin=inward&txGid=3c085c35e31f33e928176ef2a53dfe19
Singh, G., Singh, S., Dhiman, D., Gulati, V., & Kaur, T. (2018). Optimization of EN24 Steel on EDM Machine using Taguchi & ANOVA Technique, Materials Today: Proceedings, 5(14), 27974-27981, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2018.10.037.
Tantideeravit, S., & Kamaya, M. (2020). An application of FEM in the determination of tensile properties for work-hardened carbon steel by means of small punch test, Results in Materials, Volume 8, ISSN 2590-048X, https://doi.org/10.1016/j.rinma.2020.100142.
Toshioka, Y., Fukagawa, M., & Saiga, Y. (1972). Calculation of Internal Stress of Steel Induced during Quenching. Transactions of the Iron and Steel Institute of Japan, 12(1), 6–15. doi:10.2355/isijinternational1966.12.6. https://www.jstage.jst.go.jp/article/isijinternational1966/12/1/12_6/_article
Verma, R., Kumar, P., Jayaganthan, R., & Pathak, H. (2022). Extended finite element simulation on Tensile, fracture toughness and fatigue crack growth behaviour of additively manufactured Ti6Al4V alloy, Theoretical and Applied Fracture Mechanics, Volume 117, 2022, 103163, ISSN 0167-8442, https://doi.org/10.1016/j.tafmec.2021.103163.
Wakjira, T., & Ebead, U. (2018). Hybrid NSE/EB technique for shear strengthening of reinforced concrete beams using FRCM: Experimental study. Construction and Building Materials, 164, 164–177. doi: 10.1016/j.conbuildmat.2017.12.224
Wang, F., Chandrasekar, S., & Yang, H. (1997). Experimental and Computational Study of the Quenching of Carbon Steel. Journal of Manufacturing Science and Engineering, 119(3), 257. doi:10.1115/1.2831102. https://www.scopus.com/record/display.uri?eid=2-s2.0-0031212376&origin=inward&txGid=5be3be9cac80d4a32b3fbdbbc808f8ed
Yao, Z., & Wang, W. (2022). Full-range strain-hardening behavior of structural steels: Experimental identification and numerical simulation, Journal of Constructional Steel Research, Volume 194, 2022, 107329, ISSN 0143-974X, https://doi.org/10.1016/j.jcsr.2022.107329.
Zhang, J., Natarajan, S., Ooi, E. T., & Song, C. (2020). Adaptive analysis using scaled boundary finite element method in 3D. Computer Methods in Applied Mechanics and Engineering, 372, 113374. https://doi:10.1016/j.cma.2020.113374
Zhu, Y., Fell, B., & Kanvinde, A. (2021). Continuum damage mechanics based ductile fatigue-fracture prediction in buckling steel braces. Journal of Constructional Steel Research, 184. doi:10.1016/j.jcsr.2021.106812