Analysis of mechanical reasoning competencies and spatial relationships in undergraduate students of the industrial design career
Main Article Content
Abstract
Introduction. The field of Industrial Design requires a wide range of skills, among which mechanical reasoning and spatial relationships stand out. Mechanical reasoning involves understanding the elements and their interaction in mechanical systems, while spatial relationships involve the ability to visualize and manipulate objects in space. These competencies are essential for conceiving and communicating effective design ideas. The research employs the TAD-5 Differential Aptitude Test to identify areas of improvement in these skills and propose pedagogical strategies to strengthen them in the Industrial Design curriculum. Improving these competencies will not only benefit students in addressing design challenges, but will also contribute to the growth and excellence of the field. Objective. To evaluate and the level of development of the competencies of Mechanical Reasoning and Spatial Relationships in Industrial Design students, using the Differential Aptitude Test TAD-5. Methodology. The study adopts a quantitative approach, focused on the quantification of collected data, but recognizes the need to fully understand the investigated phenomenon. Numerical data collection and analysis techniques are employed, such as descriptive and inferential statistics, together with instruments such as questionnaires or tests with numerical responses or measurement scales. Although quantitative analysis is privileged, in order to provide a more complete context and to understand the experiences and perceptions of the participants. The study population comprises 49 students, divided into 32 first semester students and 17 eighth semester students, representing both the beginning and the end of their academic training in the context of Industrial Design. Results. The purpose of the evaluation conducted in the first and last semester of the Industrial Design Career is to determine whether students have acquired a greater set of skills and abilities during their academic career. Although the results show a superior performance in eighth semester students compared to first semester students, the difference is not significant, indicating limited progress in the development of skills during training. Improvement actions are proposed, including repeating the test with a new questionnaire, involving more teachers for better control and execution of the test, and improving the environment and quality of the images used. It is planned to elaborate a plan to foster the development of skills in future Industrial Design Engineers, with short, medium and long term actions that include the identification of external courses, the revision of minimum contents of subjects and modifications in the curriculum to adapt it to the current professional demands. Conclusion. The study highlights the critical importance of the competencies of Mechanical Reasoning and Spatial Relationships in Industrial Design, essential for the conceptualization, creation and effective communication of design ideas. The use of the TAD-5 Differential Aptitude Test proved valuable in assessing these competencies in students, revealing that there is no significant difference between the competency levels of first and eighth semester students. Although the proficiency levels are similar, deficiencies are identified in Mechanical Reasoning, indicating the need for adjustments in the curricular content and pedagogical strategies of the Industrial Design program to strengthen these skills through specific and practical teaching approaches. General area of study: Industrial Design. Specific Area of Study: Technical Drawing
Downloads
Article Details
References
Condori Mamani, F. (2023). Relevancia de la orientación profesional. Revista de Investigación Psicológica, 95–108. https://doi.org/10.53287/jhdt6474qo36t
Cortez Chávez, C. V. (2022, 2 de Abril). Módulo de atención visual para desarrollar el potencial cognitivo del aprendizaje en universitarios. Conrado, 218–229. de http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1990-86442022000200218&lng=es&tlng=es.
Freré Arauz, J. S., Véliz Gavilanes, J. P., Sarco Alemán, E. M., & Campoverde Jimenez, K. J. (2023, March 31). La percepción, la cognición y la interactividad. Revista Científica Mundo de La Investigación y El Conocimiento, 151–159. https://doi.org/10.26820/recimundo/6.(2).abr.2022.151-159
Ghio, F. B., Baradacco, M., Batista, W., Garrido, S. J., Azpilicueta, A. E., Moran, V. E., & Cupani, M. (Eds.). (2022). Aplicación del modelo de Rasch al test de Razonamiento Abstracto del Test de Aptitudes Diferenciales (DAT-T). Revista Argentina de Ciencias del Comportamiento. https://ri.conicet.gov.ar/bitstream/handle/11336/156382/CONICET_Digital_Nro.ff79a052-bb9c-4ed4-b7f3-1fe6763f2480_B.pdf?sequence=5&isAllowed=y
Gómez Tone, H., Martin Gutierrez, J., & Valencia Anci, B. (2022, Junio). Entrenamiento Basado en Realidad Aumentada para Mejorar Habilidades Espaciales y Rendimiento Académico en Estudiantes de Ingeniería. Digital Education Review, 306–322. https://revistes.ub.edu/index.php/der/article/view/37528/37902
Herrera Mollo, D. M. (2021). Propuesta de intervención para estimular el desarrollo de habilidades cognitivas de pensamiento: razonamiento verbal, numérico, abstracto, mecánico y espacial en estudiantes de 4to de secundaria del CDI BO–523 Filadelfia. http://ddigital.umss.edu.bo:8080/jspui/handle/123456789/21569
Huanca Guanca, J. C., & Portal Gallardo, J. A. (2023, 1 de Enero). Análisis de contenido cuantitativo sobre gestión del conocimiento en instituciones de educación superior latinoamericanas. Actualidades Investigativas En Educación, 312–343. https://dx.doi.org/10.15517/aie.v23i1.51513
Injoque-Ricle, I., Formoso, J., Calero, A., Caruso, G., Álvarez Drexler, A., & Barreyro, J. P. (2019, 24 de Junio). Razonamiento mecánico, memoria de trabajo y velocidad de procesamiento. LIBERABIT Revista Peruana de Psicología, 71–84. https://dx.doi.org/10.24265/liberabit.2019.v25n1.06
León Paredes, J. J., & Zilvetty Torrico, M. A. (2019). Relación entre niveles de razonamiento abstracto y promedios académicos de estudiantes de la Carrera de Electrónica y Telecomunicaciones de la UMSA [Universidad Mayor San Andrés]. https://repositorio.umsa.bo/bitstream/handle/123456789/22593/TM337.pdf?sequence=1&isAllowed=y
Moreno Galindo, E. (2021, 21 de Marzo). Metodología de investigación, pautas para hacer Tesis. Blogger.com. https://tesis-investigacion-cientifica.blogspot.com/2013/08/que-es-la-poblacion.html
Nolasco de Almeida Mello, G., & Cabero Almenara, J. (2020, 1 de Enero). Realidad aumentada en la enseñanza de hormigón reforzado: percepción de los alumnos. Alteridad Revista de Educación, 12–24. https://doi.org/10.17163/alt.v15n1.2020.01
Ortega Barba, C. F., Meza Mejía, M. del C., & Cobela Vargas, J. F. (2023, 2 de Mayo). Educar en tiempos extraordinarios. Revista Andina de Educación. https://doi.org/10.32719/26312816.2022.6.2.3
Piza Burgos, N. D., Amaiquema Márquez, F. A., & Beltrán Baquerizo, G. E. (2019, 2 de Diciembre). Métodos y técnicas en la investigación cualitativa. Algunas precisiones necesarias. Conrado, 455–459.http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1990-86442019000500455&lng=es&tlng=pt
Sánchez Soto, I., Pulgar Neira, J., & Ramírez Díaz, M. H. (2015, Diciembre). Estrategias cognitivas de aprendizaje significativo en estudiantes de tres titulaciones de Ingeniería Civil de la Universidad del Bío-Bío. Paradigma, 122–145. http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1011-22512015000200007&lng=es&tlng=es.
Irene, S. G. R. (20 de octubre de 2023). Aprendizaje de razonamiento lógico-espacial mediante el uso de puzles impreso en 3D. 25, 4. https://doi.org/10.26754/CINAIC.2023.0045