Fracture of materials: a study of the art on ductile fracture of metallic materials.

Main Article Content

Joseph Ariel Llangari Rivera
Stefany Tatiana Morocho Ortuño
Michael Patricio Zavala Pozo
Carmen del Rocío Moyón Moyón

Abstract

This research focuses on an exhaustive analysis of the various investigations developed in terms of the ductile fracture mechanism, because historically, mankind has sought to understand and avoid the fracture of its constructions and artifacts. In this context, Fracture Mechanics has been a fundamental discipline, dedicated to the study of the mechanisms that govern the behavior of materials under extreme loads and stresses. The focus has been on the ductile fracture of metallic materials. By means of a qualitative methodology and a meticulous flow of steps for the selection of accurate bibliographic sources, verified information has been obtained from journals, books and documents from internet repositories. Also, a case study related to the evaluation of fracture toughness in a natural gas supply pipeline is analyzed with its respective analysis methods and results represented in mathematical tables and graphs. This study demonstrates that fracture of materials is essential to ensure the safety and structural integrity of critical systems, including those made of metallic materials.

Downloads

Download data is not yet available.

Article Details

How to Cite
Llangari Rivera, J. A., Morocho Ortuño, S. T., Zavala Pozo, M. P., & Moyón Moyón, C. del R. (2023). Fracture of materials: a study of the art on ductile fracture of metallic materials. ConcienciaDigital, 6(3), 207-232. https://doi.org/10.33262/concienciadigital.v6i3.2655
Section
Artículos

References

Referencias
Anglada, M. (2002). Fractura de Materiales (ISBN: 84-8301-592-7 ed.). Barcelona: Edicions UPC. Obtenido de Fractura de materiales.
Arana, J. (2002). Mecánica de fractura. https://addi.ehu.es/bitstream/handle/10810/9356/Mecanica%20de%20fractura.pdf ISBN: 84-8373-455-9
Araque, N. et al. (2013). State of the art in structural integrity of welded joints and crack models for structures life management. http://dx.doi.org/10.4067/S0718-33052013000200011
Cisneros, A. (2022). Técnicas e Instrumentos para la Recolección de Datos que Apoyan a la Investigación Cientí¬fica en Tiempo de Pandemia. https://doi.org/10.23857/dc.v8i1.2546
Clerc G., Brunner A., Niemz P., Van de Kuilen J. (2020). Application of fracture mechanics to engineering design of complex structures. https://doi.org/10.1016/j.prostr.2020.10.152
Codina L. (2018). Revisiones bibliográficas sistematizadas: procedimientos generales y Framework para ciencias humanas y sociales. https://repositori.upf.edu/handle/10230/34497
Enkai Dai, Zhiqin Lv, Panpan Yuan, Guoqiang Liu, Ning Guo, Zhe Liu, Bingtao Tang, Ductile fracture of anisotropic QP980 steel sheet by using the isotropic/anisotropic modified Mohr-Coulomb models, Engineering Fracture Mechanics, 2023, 109522, ISSN 0013-7944, https://doi.org/10.1016/j.engfracmech.2023.109522.
Gómez, D. (2014). Literature review methodology for scientific and information management, through its structuring and systematization. https://doi.org/10.15446/dyna.v81n184.37066
Gálvez A. (2002). Literature review: use and practice. https://pesquisa.bvsalud.org/portal/resource/pt/ibc-23040
González, J. (2004). Mecanica de Fractura (Segunda Edición. ISBN: 968-18-6130-2 ed.). México: Limusa.
Guadalupe, M. (2007). Modelos de fractura dúctil en condiciones estáticas y dinámicas. https://dialnet.unirioja.es/servlet/tesis?codigo=18934&orden=238004&info=link&info=link
Ipohorsky, M. (2011). Una mirada al microscopio electrónico de barrido. https://www.cnea.gob.ar/nuclea/handle/10665/1162
Li, M. (2019). Deformation-Based Processing of Materials. https://doi.org/10.1016/C2017-0-01559-8
Martínez, D. (2020). Estudio numérico de la función de degradación en la simulación computacional de fractura frágil con el método de phase-field. http://hdl.handle.net/10317/8899
Matusevich, R. (2012). Determinación de la tenacidad a la fractura del material de un gasoducto. http://ve.scielo.org/scielo.php?pid=S0255-69522012000200012&script=sci_arttext
McEvily, D. (2010). Recuperado el 2023, de Materiales Aeronaúticos. Conceptos Básicos de la Mecánica de Fractura: http://www.aero.ing.unlp.edu.ar/catedras/archivos/Mecanica%20de%20Fractura%202010rev01.pdf
Monsalve, A. (2013). Griffith y el inicio de la mecánica de la fractura. https://revistas.usach.cl/ojs/index.php/remetallica/article/download/1706/1586/
Mouritz, A. (2012). Introduction to Aerospace Materials. https://doi.org/10.1533/9780857095152.428
Nunez, S. (2015). A novel method of tracing the inception and progress of fatigue crack-growth in steel. http://dx.doi.org/10.4067/S0718-50732015000200005
Ortega Y. (2005). Prueba de impacto: ensayo Charpy. https://www.scielo.org.mx/scielo.php?pid=S1870-35422006000100008&script=sci_arttext
Padrón, N. (2014). Important aspects of scientific writing http://scielo.sld.cu/scielo.php?pid=S1561-31942014000200020&script=sci_arttext&tlng=en ISSN 1561-3194
Palankeezhe, K. (2018). Metallurgical Failure Analysis. https://doi.org/10.1016/C2017-0-01343-5
Sahel, D. (2016). Modelado de fractura dúctil sobre aceros modificados superficialmente 545-A. https://dialnet.unirioja.es/servlet/tesis?codigo=114668
Sánchez, M. (2021). Data collection techniques and instruments: analysis and processing by the qualitative researcher. https://doi.org/10.35290/rcui.v8n1.2021.400
Torres, K. (2018). Métodos de recolección de datos para una investigación. http://biblioteca.udgvirtual.udg.mx/jspui/handle/123456789/2817
Vargas B., Hallen J., Albiter A., Ángeles C. (2008). Revista de Metalurgia. Degradación de la tenacidad al immpacto durante el envejecimiento acelerado de soldadura en acero microaleado. https://doi.org/10.3989/revmetalm.0747
Wang, J. et al. (2022). Progressive and Compound Forming of Metallic Sheets for Making Micro-/Meso-Scaled Parts and Components. https://www.sciencedirect.com/science/article/abs/pii/B9780128197264000223

Most read articles by the same author(s)