Study of dynamic envelopes to improve acoustic comfort. UCACUE campus case study

Main Article Content

Pedro Andrés Armijos Torres
Marco Benigno Avila Calle

Abstract

Introduction. One of the causes that has gained strength today because it generates on people's quality of life, is noise pollution; The same that is present in all daily activities, such as: study, work, home, theaters, restaurants, streets, parks, among others. The sense of hearing, like that of sight, represents a fundamental connection to be informed of events in the environment, since it is on permanent alert even when we sleep. Acoustic comfort is a subjective sensation of well-being, typical of each person and depends on several factors, such as: the activity that is conducted at a certain time, as well as the existing sound environment in the place. On the other hand, the sensation of acoustic discomfort occurs when a sound environment is not suitable for the activity of the occupants, this, in addition to generating organic discomfort, can produce intellectual discomfort and, consequently, emotional alteration. Objective. This study focuses on the impact of the application of dynamic envelopes in the building of the Academic Unit of Engineering, Industry and Construction of the Catholic University of Cuenca. Methodology. With the methodology used, it is intended to innovate architectural design, through the analysis, simulation, and use of environmentally friendly materials, through the development of three-dimensional dynamic envelopes that merge with the façade and together improve comfort conditions. acoustics inside buildings. Results. Obtain a digital prototype of a dynamic envelope on facades to reduce the environmental noise generated by vehicular traffic on Avenida de las Américas. Conclusion. The prototypes of dynamic envelopes constitute a contribution to educational buildings, reducing traffic noise by 28% with panels of recycled material that we can find in our city.

Downloads

Download data is not yet available.

Article Details

How to Cite
Armijos Torres, P. A., & Avila Calle, M. B. (2023). Study of dynamic envelopes to improve acoustic comfort. UCACUE campus case study. ConcienciaDigital, 6(2), 65-88. https://doi.org/10.33262/concienciadigital.v6i2.2534
Section
Artículos

References

Arkiplus. (s. f.). Aislantes acústicos. https://www.arkiplus.com/aislantes-acusticos/
Buratti, C., & Merli, F. (2022). Sustainable Materials for the Thermal and Noise Insulation of Buildings: An Editorial. Sustainability 2022, Vol. 14, Page 4961, 14(9), 4961. https://doi.org/10.3390/SU14094961
Carmenado Vaquero, L. (2016). Estímulos y reacciones: fachadas dinámicas ante el sol, el viento y la temperatura - Archivo Digital UPM [E.T.S. Arquitectura (UPM)]. https://oa.upm.es/39236/
Carolina, A., Ugalde, L., Fajardo Dolci, G. E., Magaña, R. C., González, A. M., & Robles, M. I. (2000). Hipoacusia por ruido: Un problema de salud y de conciencia pública. Revista de la Facultad de Medicina UNAM, 43(2), 41–42. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=2762
Chang, T. W., Huang, H. Y., & Datta, S. (2019). Design and Fabrication of a Responsive Carrier Component Envelope. Buildings 2019, Vol. 9, Page 84, 9(4), 84. https://doi.org/10.3390/BUILDINGS9040084
Çolakkadıoğlu, D., Yücel, M., Kahveci, B., & Aydınol, Ö. (2018). Determination of noise pollution on university campuses: a case study at Çukurova University campus in Turkey. Environmental Monitoring and Assessment 2018 190:4, 190(4), 1–14. https://doi.org/10.1007/S10661-018-6568-8
Goines, L., & Hagler, L. (2007). Noise pollution: A modern plague. Southern Medical Journal, 100(3), 287–294. https://doi.org/10.1097/SMJ.0B013E3180318BE5
Hosseini, S. M., Mohammadi, M., & Guerra-Santin, O. (2019). Interactive kinetic façade: Improving visual comfort based on dynamic daylight and occupant’s positions by 2D and 3D shape changes. Building and Environment, 165, 106396. https://doi.org/10.1016/J.BUILDENV.2019.106396
Ishizuka, T., & Fujiwara, K. (2012). Traffic noise reduction at balconies on a high-rise building façade. The Journal of the Acoustical Society of America, 131(3), 2110. https://doi.org/10.1121/1.3682052
Johnsen, K., & Winther, F. v. (2015). Dynamic Facades, the Smart Way of Meeting the Energy Requirements. Energy Procedia, 78, 1568–1573. https://doi.org/10.1016/J.EGYPRO.2015.11.210
Kent C. Bloomer, C. W. M. R. J. Y. B. Y. (1977). Body, Memory, and Architecture: Album. Yale University Press. https://yalebooks.yale.edu/9780300021424/body-memory-and-architecture
Koh, H. W., Le, D. K., Ng, G. N., Zhang, X., Phan-Thien, N., Kureemun, U., & Duong, H. M. (2018). Advanced Recycled Polyethylene Terephthalate Aerogels from Plastic Waste for Acoustic and Thermal Insulation Applications. Gels 2018, Vol. 4, Page 43, 4(2), 43. https://doi.org/10.3390/GELS4020043
Martínez Gavilanes, J., Sellers Walden, C., Salgado Castillo, F., Carranco Zumba, S., & Espinoza Saquicela, D. (2018, noviembre 26). Ruido en Cuenca 2012-2018 | Universidad del Azuay Casa Editora. 1–48. https://publicaciones.uazuay.edu.ec/index.php/ceuazuay/catalog/book/95
Méndez Martínez, Carlos Fernando. (2023). Polución acústica en las instalaciones de la Universidad Católica de Cuenca-centro histórico.
Monroy, Manuel Martín. (2006). Manual del Ruido: Vol. volumen IV (Ayuntamiento de Las Palmas de Gran Canaria, Ed.; Ayuntamiento de Las…). Ayuntamiento de Las Palmas de Gran Canaria. https://issuu.com/casilisto/docs/manual-4--ruido
Ministerio de Educación. (2012). Estándares de Calidad Educativa. https://educacion.gob.ec/wp-content/uploads/downloads/2013/03/estandares_2012.pdf
Ministerio del Ambiente. (2003). Limites permisibles de niveles de ruido ambiente para fuentes fijas y fuentes móviles, y para vibraciones. Decreto No 3.516 416 www.ambiente.gob.ec
Omar, D., Julia, M., Gobierno, E., & Descentralizado, A. (2015). Elaboración del mapa de ruido del área urbana de la Ciudad de Cuenca – Ecuador, empleando la técnica de interpolación geoestadística Kriging ordinario. Ciencias Espaciales, 8(1), 411–440. https://doi.org/10.5377/CE.V8I1.2059
Organización Mundial de la Salud [OMS]. (s. f.). Problemas de salud derivados de la contaminación acústica. https://www.who.int/publications/es/
Petraglia, L. (2018). Innovaciones en la biomimética. Envolventes dinámicas. Arquitecno, 0(11), 97–102. https://doi.org/10.30972/ARQ.0114201
Platzer M, U., Iñiguez C, R., Cevo E, J., & Ayala R, F. (2007). Medición de los niveles de ruido ambiental en la ciudad de Santiago de Chile. Revista de otorrinolaringología y cirugía de cabeza y cuello, 67(2), 122–128. https://doi.org/10.4067/S0718-48162007000200005
Real Academia Española [RAE]. (2022). Definición de contaminación acústica - Diccionario panhispánico del español jurídico - RAE. https://dpej.rae.es/lema/contaminaci%C3%B3n-ac%C3%BAstica
Rasmussen, B. (2010). Sound insulation between dwellings – Requirements in building regulations in Europe. Applied Acoustics, 71(4), 373–385. https://doi.org/10.1016/J.APACOUST.2009.08.011
Sánchez Mendieta, C. (2020, enero 4). 919 vehículos más se matricularon en Cuenca - Diario El Mercurio. 1–1. https://elmercurio.com.ec/2020/01/04/919-vehiculos-mas-se-matricularon-en-cuenca/
Taghipour, A., Sievers, T., & Eggenschwiler, K. (2019). Acoustic Comfort in Virtual Inner Yards with Various Building Facades. International Journal of Environmental Research and Public Health 2019, Vol. 16, Page 249, 16(2), 249. https://doi.org/10.3390/IJERPH16020249
Universidad Católica de Cuenca. (2001). Campus General Torres. https://www.ucacue.edu.ec/la-universidad/campus-universitario/sede-matriz/campus-general-torres/
Vardaxis, N. G., Bard, D., & Persson Waye, K. (2018). Review of acoustic comfort evaluation in dwellings—part I: Associations of acoustic field data to subjective responses from building surveys: 25(2), 151–170. https://doi.org/10.1177/1351010X18762687

Most read articles by the same author(s)