Impact of the Didactic Use of a Virtual Laboratory on the Comprehension of the Topic Electricity in Secondary School Students
Main Article Content
Abstract
Introduction: Teaching electricity and electrical circuits is crucial in technical training, but students face difficulties due to the lack of hands-on experimentation in laboratories. The use of virtual laboratories can be an effective alternative to improve learning in this area.
Objective: To determine the impact of the didactic use of the PhET virtual laboratory on the understanding of electricity in second year technical high school students.
Methodology: The study adopted the quasi-experimental design of pretest, posttest and control group. The sample for the study consisted of 26 high school sophomore students belonging to two predetermined groups that composed the experimental and control groups, respectively. The experimental groups were exposed to instructional strategies using a virtual laboratory, while the control group was taught using the conventional laboratory strategy. The instruments used for the pre- and post-test were two 20-question multiple-choice questionnaires that were designed by the authors and validated by experts. The general questions posed for the study were answered using descriptive statistics. The independent paired t-test was used to compare the pre- and post-test scores of the groups and to analyze if there are significant differences.
Results: The results obtained showed that the use of the PhET virtual laboratory for teaching electricity had a positive impact on the conceptual understanding of technical high school students. Statistical analyses revealed significant differences between the performance of the experimental group that used PhET and the control group that received traditional instruction. While all students in the experimental group achieved mastery of learning about DC electrical circuits, only two students in the control group achieved this level of mastery. These differences are attributed to the animated visual representations that PhET provides of abstract concepts such as electron motion, allowing students to understand phenomena that are not observable in physical reality.
Conclusion: The implementation of the PhET virtual laboratory proved to be more effective than traditional instruction for teaching electricity in technical high school. While virtual laboratories should not replace physical laboratories, their complementary use allows students to better grasp abstract concepts and acquire a comprehensive understanding of scientific phenomena. This research provides evidence on the usefulness of innovative technological resources such as PhET in science education.
Downloads
Article Details
References
Celaya, R. (s. f.). Laboratorio Virtual | Recurso educativo 111959 - Tiching. https://cr.tiching.com/laboratorio-virtual/recurso-educativo/111959
ChemCollective. (s. f.). https://chemcollective.org/
De Jong, T., Linn, M. C., y Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340(6130), 305-308. https://doi.org/10.1126/science.1230579
EducaPlus. (2014, 5 diciembre). Recursos Educativos Digitales. https://www3.gobiernodecanarias.org/medusa/ecoescuela/recursosdigitales/2014/11/15/educaplus/#:~:text=Educaplus%20es%20un%20sitio%20creado,Tierra%2C%20Educaci%C3%B3n%20Art%C3%ADstica%20y%20Tecnolog%C3%ADa.
Falode, O.C., y Onasanya, S.A. (2015). Teaching and learning efficacy of virtual laboratory package on selected nigerian secondary school physics concepts. Chemistry: Bulgarian Journal of Science Education, 24(4), 572-583.
Famani, S.T.M., Ayub, M.R.S.S.N., y Sudjito, D.N. (2019). Physics Learning Design of Faraday's Induction Law Material Using PhET Simulation. Jurnal Pendidikan Fisika Indonesia, 15 (2), 87-96. DOI: 10.15294/jpfi.v15i2.12656
Faour, M.A., y Ayoubi, Z. (2018). The effect of using virtual laboratory on grade 10 students’ conceptual understanding and their attitudes towards physics. Journal of Education in Science, Environment and Health (JESEH), 4(1), 54-68. DOI:10.21891/jeseh.387482 https://files.eric.ed.gov/fulltext/EJ1170931.pdf
Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, N. S., y LeMaster, R. (2005). When Learning about the Real World Is Better Done Virtually: A Study of Substituting Computer Simulations for Laboratory Equipment. Physical Review Special Topics: Physics Education Research, 1, 1-8. http://dx.doi.org/10.1103/PhysRevSTPER.1.010103
Go-Lab Initiative | Go-Lab. (s. f.). https://premium.golabz.eu/about/go-lab-initiative
Husnaini, S. J., y Chen, S. (2019). Effects of guided inquiry virtual and physical laboratories on conceptual understanding, inquiry performance, scientific inquiry self-efficacy, and enjoyment. Physical Review Physics Education Research, 15 (1). https://doi.org/10.1103/PhysRevPhysEducRes.15.010119
Kapici, H.O., Akcay, H., y Cakir, H. (2022) Investigating
the effects of different levels of guidance in inquiry-based hands-on and virtual
science laboratories. International Journal of Science Education, 44(2), 324-345. https://doi.org/10.1080/09500693.2022.2028926
Lkhagva, O., Ulambayar, T., y Enkhtsetseg, P. (2012). Virtual laboratory for physics teaching. In Proceedings of the International Conference on Management and Education Innovation, IPEDR, 37, Singapore (PP. 319-323). Retrieved from: http://www.ipedr.com/vol37/062-ICMEI2012-E10015.pdf
Mendoza, P., (2021) El simulador de física Algodoo como herramienta de simulación, visualización y experimentación. [Trabajo fin de master- Universidad de La Rioja]
Ojo, O. M., y Owolabi, O.T. (2020) Relative Effects of Two Activity-Based Instructional Strategies on Secondary School Students’ Attitude towards Physics Practical. European Journal of Educational Sciences, 7 (3), 123-140. http://dx.doi.org/10.19044/ejes.v7no3a8
Onyesolu, M. O. (2009). Virtual Reality Laboratories: An Ideal Solution to the Problems Facing Laboratory Setup and Management. In Proceedings of the World Congress on Engineering and Computer Science 2009 (WCECS 2009) I, San Francisco, USA. doi:10.1016/j.compedu.2016.02.002
Perkins, K., Adams, W., Dubson, M., Finkelstein, N., Reid, S., Wieman, C., &LeMaster, R. (2006). PhET: Interactive simulations for teaching and learning physics. The Physics Teacher, 44(1), 18-23. doi: 10.1119/1.2150754
Pontes, A. (2020a). Evaluación de conocimientos previos de estudiantes universitarios sobre electrocinética e implicaciones para la enseñanza y el aprendizaje de modelos científicos. IN-RED 2020: VI Congreso de Innovación Educativa en Red (pp. 505-515). UPV. http://dx.doi.org/10.4995/ INRED2020.2020.11948
Pontes Pedrajas, A. (2022). Uso didáctico de un laboratorio virtual para favorecer la progresión de los modelos mentales de los estudiantes sobre circuitos de corriente eléctrica. Bordón, Revista de Pedagogía, 74(4), 145-160. https://doi.org/10.13042/Bordon.2022.93290
Quinn, J. G., King, K., Roberts, D., Carey, L., & Mousley, A. (2009). Computer-based learning packages have a role, but care needs to be given as to when they are delivered. Bioscience Education, 14(1). doi: 10.3108/beej.14.5
Reese, Mary Celeste (2013) "Comparison of Student Achievement among Two Science Laboratory Types: Traditional and Virtual". Tesis de doctorado, Mississippi State University. Theses and Dissertations. 1119. https://scholarsjunction.msstate.edu/td/1119
Rodríguez-Abril, P. L., Rodríguez-Hernández, A. A., y Avella-Forero, F. (2021). Evaluación de simuladores como estrategia para el aprendizaje de la electricidad en la asignatura de física en la educación media. BoletíN Redipe, 10(8), 219-237. https://doi.org/10.36260/rbr.v10i8.1401
Rodríguez-García, N. J., Sánchez, I. C. N., & Alfonso, J. N. M. (2021). Laboratorios virtuales y remotos en electrónica y telecomunicaciones: una revisión técnica en educación. VisióN ElectróNica/Visión Electrónica, 15(2), 181-189. https://doi.org/10.14483/22484728.17345
Sharifov, G.M.O. (2020). The effectiveness of using a virtual laboratory in the teaching of electromagnetism in the lyceum. Physics Education, 55(6) https://iopscience.iop.org/article/10.1088/1361-6552/aba7f5/meta
Shegog, R., Lazarus, M. M., Murray, N. G., Diamond, P. M., Sessions, N., Zsigmond, E. (2012) Virtual transgenics: Using a molecular biology simulation to impact student academic achievement and attitudes. Research in Science Education, 42(5), 875-890. doi:10.1007/s11165-011-9216-7
Simulaciones Interactivas PHET. (s. f.). PhET. https://phet.colorado.edu/es/
Sypsas, A. y Kalles, D. (2018) Virtual laboratories in biology, biotechnology and chemistry education: a literature review. In Proceedings of PCI '18, November 29-December 1, 2018, Athens, Greece, 6 pages. https://doi.org/10.1145/3291533.3291560
Syahfitri, F. D., Manurung, B., & Sudibyo, M. (2019). The Development of Problem Based Virtual Laboratory Media to Improve Science Process Skills of Students in Biology. International Journal Of Research, 6(6), 64 74. https://www.ijrrjournal.com/IJRR_Vol.6_Issue.6_June2019/IJRR0012.pdf
Taramopoulos, A., y Psillos, D. (2017). Complex phenomena understanding in electricity through dynamically linked concrete and abstract representations. Journal of Computer Assisted Learning, 33(2). https://doi.org/10.1111/jcal.12174
Taramopoulos, A., y Psillos, D. (2019). Promoting Representational Fluency Through Dynamically Linked Concrete and Abstract Representations in Electric Circuits. Journal of Science Education and Technology , 28, 638–650. https://doi.org/10.1007/s10956-019-09793-9
Zacharia, Z. C. y Olympiou, G. (2011). Physical versus virtual Manipulative experimentation in Physics learning. Learning and Instruction, 21(3), 317-331. https://doi.org/10.1016/j.learnins truc.2010.03.001