Temporary assessment of PM2.5 and PM10 particulate matter in the Metropolitan District of Quito – Ecuador
Main Article Content
Abstract
Introduction. Particulate matter is one of the most transcendental criteria when evaluating air pollution, due to the great diversity of sources that can produce it and the effects it has on health. Objective. The objective of this study was to evaluate PM2.5 and PM10 particulate matter in the hourly, monthly, seasonal, and annual time periods and the correlation with meteorological variables in the area of the Metropolitan District of Quito-Ecuador, in the period 2013-2020. Methodology. The database and meteorological variables were obtained from two monitoring stations, Belisario and Carapungo, which are distributed in the study area. An exploratory analysis and simple correlation were performed for 65718 PM2.5 data at Belisario, 66191 data for PM2.5 at Carapungo and 61152 PM10 data at Carapungo. Results. The results show that the Carapungo station has a higher concentration of particulate matter than the Belisario station. The PM2.5/PM10 ratio of the Carapungo station is 0.41 of anisotropic fine material, which compared to some cities such as Peru, Colombia, Mexico and Chile is similar. Regarding correlations, PM2.5 and PM10 present a significant correlation with temperature, relative humidity, wind direction and precipitation, but they differ in the two stations. Conclusions. It is concluded that PM2.5 and PM10 particulate matter in the area analyzed does not depend on climatic factors, but rather, it may be due to the specific topography of the area, which is characterized by being surrounded by forests, volcanoes, and mountains.
Downloads
Article Details
References
Alvarez-Mendoza, C. I., Teodoro, A., Freitas, A., & Fonseca, J. (2020). Spatial estimation of chronic respiratory diseases based on machine learning procedures—an approach using remote sensing data and environmental variables in Quito, Ecuador. Appl. Geogr. 123, 102273. https://doi.org/10.1016/j.apgeog.2020.102273
Barry, M. & Annesi-Maesano, I. (2017). Ten principles for climate, environment, and respiratory health. Eur. Respir. J. 50, e1701912. https://doi.org/10.1183/13993003.01912-2017
Cornejo-Vásconez, D., Rodríguez-Espinosa, F., Guasumba, A., & Toulkeridis, T. (2022). Efectos contrastivos de la evaluación de la contaminación ambiental en dos zonas del Distrito Metropolitano de Quito, Ecuador. La Granja 36, 98–112. https://doi.org/http://doi.org/10.17163/lgr.n36.2022.08
De Jesus, A. L., Rahman, M. M., Mazaheri, M., Thompson, H., Knibbs, L. D., Jeong, C., Evans, G., Nei, W., Ding, A., Qiao, L., Li, L., Portin, H., Niemi, J. V., Timonen, H., Luoma, K., Petäjä, T., Kulmala, M., Kowalski, M., Peters, A., Cyrys, J., Ferrero, L., Manigrasso, M., Avino, P., Buonano, G., Reche, C., Querol, X., Beddows, D., Harrison, R.M., Sowlat, M.H., Sioutas, C., & Morawska, L. (2019). Ultrafine particles and PM2.5 in the air of cities around the world: Are they representative of each other? Environ. Int. 129, 118–135. https://doi.org/10.1016/j.envint.2019.05.021
Galvis, B., & Rojas, N. Y. (2006). Relación entre PM2,5 y el PM10 en la ciudad de Bogotá. Acta nov. 3, 336–353. Available from: https://www.cervantesvirtual.com/portales/literatura/obra/relacion-entre-pm25-y-pm10-en-la-ciudad-de-bogota-850628/
He, Y., Wang, X., & Zhang, Z. (2022). Polycyclic aromatic hydrocarbons (PAHs) in a sediment core from Lake Taihu and their associations with sedimentary organic matter. Journal of Environmental Sciences. 21, e013. https://doi.org/10.1016/j.jes.2022.09.013
Reporte Anual de la Calidad del Aire en el DMQ - 2019 (IACAQ), 2019. Informe de la Calidad del Aire del Distrito Metropolitano Quito. Secretaria de Ambiente. Quito. Available from: http://www.quitoambiente.gob.ec/images/Secretaria_Ambiente/red_monitoreo/informacion/Informe_Calidad_Aire_2019.pdf
Informe de la Calidad del Aire Quito año 2018 (IAMQ/18), 2018. Informe de la Calidad del Aire del Distrito Metropolitano Quito 2018. Secretaria de Ambiente. Quito. Available from: http://www.quitoambiente.gob.ec/images/Secretaria_Ambiente/red_monitoreo/informacion/Informe_Calidad_Aire_2018.pdf
Jiaxin, C., Hui, H., Feifei, W., Mi, Z., Ting, Z., Shicheng, Y., Ruoqiao, B., Nan, C., Ke, X., & Hao, H. (2021). Air quality characteristics in Wuhan (China) during the 2020 COVID-19 pandemic. Environ. Res. 195. https://doi.org/10.1016/j.envres.2021.110879
Khomsi, K., Najmi, H., Amghar, H., Chelhaoui, Y. & Souhaili, Z. (2021). COVID-19 national lockdown in morocco: Impacts on air quality and public health. One Heal. 11, 100200. https://doi.org/10.1016/j.onehlt.2020.100200
Legarreta, A., Corral, A., Delgado, M., Torres, J., & Flores, J. (2015). Material particulado y metales pesados en aire en ciudades mexicanas. Culcyt/ /Medio Ambiente, No 56, Especial No 1, 234- 245. https://erevistas.uacj.mx/ojs/index.php/culcyt/article/view/818
Pacsi, S. (2016). Análisis temporal y espacial de la calidad del aire determinado por material particulado PM10 y PM2,5 en Lima Metropolitana. Científicos 77, 273–283. https://doi.org/http://dx.doi.org/10.21704/ac.v77i2.699
Páez, C. (2012). Gestión de la contaminación atmosférica urbana: El caso de Quito. FLACSO Andes 1–17. Available from: https://flacsoandes.edu.ec/web/imagesFTP/10088.ContaminacionQuito.pdf
Pandey, P., Khan, A. H., Verma, A. K., Singh, K. A., Mathur, N., Kisku, G. C., & Barman, S. C. (2012). Seasonal Trends of PM2.5 and PM10 in Ambient Air and Their Correlation in Ambient Air of Lucknow City, India. Bull. Environ. Contam. Toxicol. 88, 265–270. https://doi.org/https://doi.org/10.1007/s00128-011-0466-x
Rodríguez-Guerra, A., & Cuvi, N. (2019). Contaminación del aire y justicia ambiental en Quito, Ecuador. Front. J. Soc. Technol. Environ. Sci. 8, 13–46. https://doi.org/10.21664/2238-8869.2019v8i3.p13-46
Rojas, N., & Galvis, B. (2005). Relationship between PM2.5 and PM10 in Bogotá. Rev. Ing. 54–60. Available from:
Rönkkö, T. J., Hirvonen, M. R., Happo, M. S., Leskinen, A., Koponen, H., Mikkonen, S., Bauer, S., Ihantola, T., Hakkarainen, H., Miettinen, M., Orasche, J., Gu, C., Wang, Q., Jokiniemi, J., Sippula, O., Komppula, M., & Jalava, P.I. (2020). Air quality intervention during the Nanjing youth olympic games altered PM sources, chemical composition, and toxicological responses. Environ. Res. 185, 109360. https://doi.org/10.1016/j.envres.2020.109360
Ryu, H. J., Seo, M. R., Choi, H. J., Cho, J., & Baek, H. J. (2021). Particulate matter (PM10) as a newly identified environmental risk factor for acute gout flares: A time-series study. Jt. Bone Spine 88, 105108. https://doi.org/10.1016/j.jbspin.2020.105108
Valencia, V. H., Hertel, O., Ketzel, M., & Levin, G. (2020). Modeling urban background air pollution in Quito, Ecuador. Atmos. Pollut. Res. 11, 646–666. https://doi.org/10.1016/j.apr.2019.12.014
Veld, M. in’t, Pandolfi, M., Amato, F., Pérez, N., Reche, C., Uzu, G., Dominutti, P., Jaffrezo, J., Alastuey, A., & Querol, X. (2022). Discovering oxidative potential (OP) drivers of atmospheric PM10, PM2.5, and PM1 simultaneously in North-Eastern Spain. Build. Environ. 22, e109181. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.159386
Wu, T. Y., Horender, S., Tancev, G., & Vasilatou, K. (2022). Evaluation of aerosol-spectrometer based PM2.5 and PM10 mass concentration measurement using ambient-like model aerosols in the laboratory. Meas. J. Int. Meas. Confed. 201, 111761. https://doi.org/10.1016/j.measurement.2022.111761
Yang, Q., Yuan, Q., Li, T., Shen, H., & Zhang, L. (2017). The relationships between PM2.5 and meteorological factors in China: Seasonal and regional variations. Int. J. Environ. Res. Public Health 14. https://doi.org/10.3390/ijerph14121510
Yang, Z., Yang, J., Li, M., Chen, J., & Ou, C. Q. (2021). Nonlinear and lagged meteorological effects on daily levels of ambient PM2.5 and O3: Evidence from 284 Chinese cities. J. Clean. Prod. 278, e123931. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.123931