Profitability of the implementation of photovoltaic panels in relation to the average consumption per home in the 4 natural regions of Ecuador
Main Article Content
Abstract
Introduction. Technological development is an important part of the global framework of our development, in addition to negatively affecting all ecosystems, we also consume a large part of the resources. Therefore, fundamental measures must be taken to counteract this reality. One of these actions is the application of more self-sustainable constructions in current homes, such as photovoltaic panels. Objective. Evaluate the profitability of the application of the photovoltaic panel system with a view to the sustainability of the building in an economic way. Methodology. In the present study, it was based on the elaboration of an Excel book in which the different calculation methods of the sustainability system are applied based on subsequent comparisons of the behavior of the photovoltaic panels, as previously mentioned it was established in 4 different areas of the country that is Costa; Sierra Oriente and Insular, based on the solar radiation of each area. Results. Among the results in the areas where the implementation of photovoltaic energy occurs based on the average consumption per dwelling, it is not economically feasible, given that to recover the initial investment, the useful life of the equipment is exceeded, which is 20 years. which accumulated savings reaches a value of 8,046.36 USD and recovering the investment at 31 years. Conclution. As for the generation of energy in our country, it is at its peak, so it is not necessary to install photovoltaic panels in places where electricity is generated in a sustainable way, except for affordable electricity. However, the effectiveness of implementing these systems lies in areas where they cannot be accessed.
Downloads
Article Details
References
Bermejo Gomez De Segura. (2014). Del desarrollo sostenible según Brundtland a la sostenibilidad como biomimesis. In Del desarrollo Sostenible según Brundtlant a la sostenibilidad como biomimesis.
Cárdenas, V., Álvarez, R., & González, M. (2019). Inversores inteligentes en sistemas de energía solar fotovoltaica. Journal of Chemical Information and Modeling, 53(9), 24–29.
Delia, M. A., & López, C. (2010). Caso : la vivienda de interés social en la ciudad de Mexicali , Baja California . México . ”.
F, L. U., & Espinoza, J. L. (2016). Energia solar en el Ecuador (Issue January).
Fernández, L., & Gutiérrez, M. (2013). Bienestar social, económico y ambiental para las presentes y futuras generaciones. Informacion Tecnologica, 24(2), 121–130. https://doi.org/10.4067/S0718-07642013000200013
Lady, A., & David, A. (2019). “Análisis De Escenarios De Eficiencia Energética En El Sector Residencial Del Cantón Cuenca Utilizando El Modelo Leap.” 144.
Moncayo Picerno, S. A. (2016). Universidad Politécnica Salesiana Sede Quito. Tesis, 1–100.
Organización de las Naciones Unidas. (2011). Cambio climático.
Pilco, D., & Jaramillo, J. (2008). Sistemas fotovoltaicos para iluminación: paneles fotovoltaicos. Universidad Técnica Particular Loja, 0(Profesional en formación, Universidad Técnica Particular de Loja #2Docente, Universidad Técnica Particular de Loja), 1–4.
Rivera, P. Á. (2018). SUBSIDIOS A LOS COMBUSTIBLES FÓSILES EN ECUADOR : 28(1), 87–106.
Velasco, G. F. (n.d.). Generación solar fotovoltaica dentro del esquema de generación distribuida para la provincia de Imbabura.
Velepucha, D. (2014). Propuesta Sustentable, Aplicada a Una Vivienda Saludable.