Preventive maintenance optimization methodologies focused on power transformers: A state of the art review

Main Article Content

Sergio Raúl Villacrés-Parra
Mayra Alexandra Viscaíno-Cuzco
César Marcelo Gallegos-Londoño

Abstract

Introduction. Of all the equipment that makes up the electrical system, the power transformer is one of the most important equipment due to its criticality, high maintenance costs, long repair times and the impact caused by a failure, both in the reduction of the reliability of the system, as in the losses generated to users; lead to avoiding the occurrence of failures is a matter of vital importance, for this maintenance plays a fundamental role. Aim. Identify the maintenance optimization algorithms that are applicable to power transformers, through a study of the state of the art. Methodology. It consisted of a systematic review of literature published in databases such as Scopus, carried out in three general stages: search, selection and analysis. Results. As a result of the search stage, 40 articles were obtained, finally 11 articles went to the analysis process; where it was identified that the most used optimization algorithms were: the one based on the Monte Carlo Simulation (27%) and Linear Programming (18%). 64% of the investigations start the optimization process, on the implementation of a maintenance strategy, be it preventive and / or corrective. Conclusion. Optimization processes seek to minimize maintenance costs, maximize reliability, minimize asset deterioration, or a combination of them.

Downloads

Download data is not yet available.

Article Details

How to Cite
Villacrés-Parra, S. R., Viscaíno-Cuzco, M. A., & Gallegos-Londoño, C. M. (2021). Preventive maintenance optimization methodologies focused on power transformers: A state of the art review. ConcienciaDigital, 4(3.1), 238-252. https://doi.org/10.33262/concienciadigital.v4i3.1.1827
Section
Artículos

References

AENOR EN 13306:2018. Terminología del mantenimiento. , AeUNE. (2018). Terminología del mantenimiento. Aenor, 31. https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=N0026303nor § (2018).
AENOR EN 61649:2012. Análisis de Weibull. , (2012).
Alaswad, S., & Xiang, Y. (2017). A review on condition-based maintenance optimization models for stochastically deteriorating system. Reliability Engineering and System Safety, 157, 54–63. https://doi.org/10.1016/j.ress.2016.08.009
Anchundia Santana, P. E., Balderramo Vélez, N. R., & Pico Mera, G. E. (2018). Causas y Efectos que Impulsaron la Innovación del Sector Eléctrico Ecuatoriano. Revista de Investigaciones en Energía, Medio Ambiente y Tecnología: RIEMAT ISSN: 2588-0721, 3(2), 18. https://doi.org/10.33936/riemat.v3i2.1626
Bressi, S., Santos, J., & Losa, M. (2021). Optimization of maintenance strategies for railway track-bed considering probabilistic degradation models and different reliability levels. Reliability Engineering and System Safety, 207(October 2020). https://doi.org/10.1016/j.ress.2020.107359
Carlos, S., Sánchez, A., Martorell, S., & Marton, I. (2013). Onshore wind farms maintenance optimization using a stochastic model. Mathematical and Computer Modelling, 57(7–8), 1884–1890. https://doi.org/10.1016/j.mcm.2011.12.025
Ecuador, C. Del. (2019). Normas Constitucionales - Sectores Estratégicos. Ministero De Telecuminicaciones Y De Las Sociedad De Informacion, 53(9), 1689–1699.
Franke, G., Schneider, M., Weitzel, T., & Rinderknecht, S. (2020). Stochastic Optimization Model for Energy Management of a Hybrid Microgrid using Mixed Integer Linear Programming. IFAC-PapersOnLine, 53(2), 12948–12955. https://doi.org/10.1016/j.ifacol.2020.12.2132
Gao, J., Chen, J. J., Qi, B. X., Zhao, Y. L., Peng, K., & Zhang, X. H. (2021). A cost-effective two-stage optimization model for microgrid planning and scheduling with compressed air energy storage and preventive maintenance. International Journal of Electrical Power and Energy Systems, 125(October 2020). https://doi.org/10.1016/j.ijepes.2020.106547
Irawan, C. A., Eskandarpour, M., Ouelhadj, D., & Jones, D. (2021). Simulation-based optimisation for stochastic maintenance routing in an offshore wind farm. European Journal of Operational Research, 289(3), 912–926. https://doi.org/10.1016/j.ejor.2019.08.032
Karki, B. R., & Porras, J. (2021). Digitalization for sustainable maintenance services: A systematic literature review. Digital Business, 1(2), 100011. https://doi.org/10.1016/j.digbus.2021.100011
Khatab, A., & Aghezzaf, E. H. (2016). Selective maintenance optimization for series-parallel systems with continuously monitored stochastic degrading components subject to imperfect maintenance. IFAC-PapersOnLine, 49(28), 256–261. https://doi.org/10.1016/j.ifacol.2016.11.044
Lee, H., & Cha, J. H. (2016). New stochastic models for preventive maintenance and maintenance optimization. European Journal of Operational Research, 255(1), 80–90. https://doi.org/10.1016/j.ejor.2016.04.020
Liang, Z., & Parlikad, A. (2018). A Markovian model for power transformer maintenance. International Journal of Electrical Power and Energy Systems, 99(September 2017), 175–182. https://doi.org/10.1016/j.ijepes.2017.12.024
Madavan, R., & Balaraman, S. (2016). Failure analysis of transformer liquid - solid insulation system under selective environmental conditions using Weibull statistics method. Engineering Failure Analysis, 65, 26–38. https://doi.org/10.1016/j.engfailanal.2016.03.017
MERNNR. (2016). Plan Maestro de Electricidad Expansión y mejora de la distribución 2016-2025. 239–273. Recuperado de https://www.recursosyenergia.gob.ec/plan-maestro-de-electricidad/
Ministerio de Energía y Recursos Renovables. (2017). Plan Maestro de la Electricidad 2016-2025. Expansión de la generación. Recuperado de https://www.recursosyenergia.gob.ec/wp-content/uploads/2020/01/4.-EXPANSION-DE-LA-GENERACION.pdf
Murugan, R., & Ramasamy, R. (2015). Failure analysis of power transformer for effective maintenance planning in electric utilities. Engineering Failure Analysis, 55, 182–192. https://doi.org/10.1016/j.engfailanal.2015.06.002
Murugan, R., & Ramasamy, R. (2019). Understanding the power transformer component failures for health index-based maintenance planning in electric utilities. Engineering Failure Analysis, 96(July 2018), 274–288. https://doi.org/10.1016/j.engfailanal.2018.10.011
Nariswari, R., & Pudjihastuti, H. (2021). Reliability Analysis of Distribution Transformer with Bayesian Mixture and Cox Regression Approach. Procedia Computer Science, 179(2020), 305–312. https://doi.org/10.1016/j.procs.2021.01.010
Ramos A., Alonso-Ayuso A., P. G. (2011). Optimización bajo incertidumbre (Universi d).
Sánchez, P., Ramos, A., Ferrer, J., Barquín, J., & Linares, P. (2010). Modelos matemáticos de optimización. Universidad Pontificia Comillas, 55.
Sidibe, I. B., Khatab, A., Diallo, C., & Kassambara, A. (2017). Preventive maintenance optimization for a stochastically degrading system with a random initial age. Reliability Engineering and System Safety, 159(November 2016), 255–263. https://doi.org/10.1016/j.ress.2016.11.018
Vera, O. (2017). Artículos de Revisión. Cómo escribir artículos de revisión. Revista Chilena de Ortopedia y Traumatología, 58(02), 033–033. https://doi.org/10.1055/s-0037-1606585
Wang, W. (2012). A stochastic model for joint spare parts inventory and planned maintenance optimisation. European Journal of Operational Research, 216(1), 127–139. https://doi.org/10.1016/j.ejor.2011.07.031
Yang, Z., Baraldi, P., & Zio, E. (2020). A novel method for maintenance record clustering and its application to a case study of maintenance optimization. Reliability Engineering and System Safety, 203, 107103. https://doi.org/10.1016/j.ress.2020.107103
Zhou, D., Wang, Z., Jarman, P., & Li, C. (2014). Data requisites for transformer statistical lifetime modelling - Part II: Combination of random and aging-related failures. IEEE Transactions on Power Delivery, 29(1), 154–160. https://doi.org/10.1109/TPWRD.2013.2270116
Zhou, Y., Lin, T. R., Sun, Y., & Ma, L. (2016). Maintenance optimisation of a parallel-series system with stochastic and economic dependence under limited maintenance capacity. Reliability Engineering & System Safety, 155, 137–146. https://doi.org/10.1016/J.RESS.2016.06.012