Development of a prototype for the prediction of new cases of covid-19 in ecuador through the use of artificial intelligence.

Main Article Content

Juan Andrés Paguay Hurtado

Abstract

Introduction. Cases of coronavirus (Covid-19) around the world are increasing. The uncertainty of a figure close to reality generates anguish in the population. Objective. Propose the use of Artificial Intelligence (AI) to determine the increase in Covis-19 cases in Ecuador, applying this model will provide approximate information on coronavirus cases. Helping to keep the entire population informed about the spread of this virus. Methodology. The design of this research was quantitative, the population that was taken was 17,268,000 and the sample was the data of the infections of Covid-19 from the month of April to the month of December of the year 2020. For this, it was taken as data source the information published daily on the official website of the National Risk and Emergency Management Service. Using predictive models as support, these data were stored in a data set, to later be consolidated and later entered into an algorithm, which using time series will make predictions based on historical data using the weka software. The following article presents a model capable of predicting the close-to-reality number of coronavirus cases, achieving 80% effectiveness. So it can be stated that this model is very useful for making predictions within a given period. Results. After applying the prediction model, the most frequent results are the increases in Covid-19 infections with an increase of (1%) for each day that has elapsed. Conclution. It was concluded that the cases will continue to increase over time since the majority of the population does not take the respective precautions and disrespects social distancing.

Downloads

Download data is not yet available.

Article Details

How to Cite
Paguay Hurtado, J. A. (2021). Development of a prototype for the prediction of new cases of covid-19 in ecuador through the use of artificial intelligence. ConcienciaDigital, 4(3.1), 41-52. https://doi.org/10.33262/concienciadigital.v4i3.1.1810
Section
Artículos

References

(2014). En B. Raúl, E. Gerard, K. Samir, & M. RodóDavid, Inteligencia Artificial Avanzada (pág. 298). Barcelona, España: Universitat Oberta de Catalunya.
Antonio, E. M. (Noviembre de 2018). WEKA, ÁREAS DE APLICACIÓN Y SUS ALGORITMOS: UNA REVISIÓN SISTEMÁTICA. ECOCIENCIA. Obtenido de media.proquest.com/media/hms/PFT/1/xoCQ9?_s=UII2KLRQanh4Il7%2Fe49wkkQ%2B7c4%3D
DANIEL, T. L., & CHANTAL, D. L. (s.f.). En DISCOVERING KNOWLEDGE IN DATA An Introduction to Data Mining (Segunda ed.). New Jersey, Esatados Unidos de Norte América. Obtenido de doc.lagout.org/Others/Data%20Mining/Discovering%20Knowledge%20in%20Data_%20An%20Introduction%20to%20Data%20Mining%20%282nd%20ed.%29%20%5BLarose%20%26%20Larose%202014-06-30%5D.pdf
Ethem, A. (2010). Introduction to Machine Learning (Segunda ed.). Londres, Inglaterra. Obtenido de kkpatel7.files.wordpress.com/2015/04/alppaydin_machinelearning_2010.pdf
Han, J., Micheline, K., & Pei, J. (s.f.). Data Mining Concepts and Techniques (Tercera ed.). Obtenido de myweb.sabanciuniv.edu/rdehkharghani/files/2016/02/The-Morgan-Kaufmann-Series-in-Data-Management-Systems-Jiawei-Han-Micheline-Kamber-Jian-Pei-Data-Mining.-Concepts-and-Techniques-3rd-Edition-Morgan-Kaufmann-2011.pdf
HoltWinters. (2020). Recuperado el 25 de Febrero de 2021, de timeseriesForecasting 1.1.27 API: https://weka.sourceforge.io/doc.packages/timeseriesForecasting/weka/classifiers/timeseries/HoltWinters.html. [Accessed: 22-Dec-2020].
Jasper Fuk-Woo Chan*, S. Y.-H.-W. (January de 2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmition: a study of a family cluster. The Lancet, 395(10223), 514-523.
Md, S., & Alam, K. (2012). Cointegration and causal relationships between energy consumption and output: Assessing the evidence from Australia. Energy Economics, 34, 2182-2188. doi:10.1016 / j.eneco.2012.03.006
Nancy, V. R. (2020). Recuperado el Febrero de 2021, de “RPubs - Holt-Winters.”: https://rpubs.com/nanrosvil/283121
Organización Mundial de la Salud. (Noviembre de 2020). PAndemia de Enfermedad por coronavirus(Covid-19). OMS. Obtenido de www.who.int/emergencies/diseases/novel-coronavirus-2019
Tak-chung, F. (Septiembre de 2011). A review on time series data mining. ELSEIVER(24), 164-181.
Time Series Analysis and Forecasting with Weka - Pentaho Data Mining - Pentaho Wiki. (s.f.). Recuperado el 20 de Noviembre de 2020, de Wiki.pentaho.com: wiki.pentaho.com/display/DATAMINING/Time+Series+Analysis+and+Forecasting+with+Weka
Wei-Jie, G., Zheng-Yi, N., Wen-Hua, L., Chun-quan, O., Shan, H., & Chun-liang, L. (Abril de 2020). Clinical Charasteristics of Coronavirus Disease 2019 in China. The New England Journal of Medicine, 382, 1708-1720. doi:10.1056/NEJMoa2002032