Analysis of the influence of the Mazar Hydroelectric reservoir on the bioclimate of the city of Paute.

Main Article Content

Johnny Javier Pacheco Pacheco
Carlos Marcelo Matovelle Bustos

Abstract

The construction of a hydroelectric reservoir generates an apparent microclimate; manifested in the variation of the temperature of the surrounding areas. In this research, it is proposed to demonstrate the alteration of the temperature of the urban area of ​​the Paute canton located 25 km from the Mazar hydroelectric reservoir, through the statistical analysis of the annual climatological data obtained from the National Institute of Meteorology and Hydrology of the Ecuador (INAMHI), collected by the meteorological station M0138 located at the study point. To establish the ranges of variation of the climate and issue recommendations for the bioclimatic architectural design of single-family homes in the microclimate generated, it was necessary to model retrospective, current and prospective scenarios, for the prospective scenario, climate data was generated with the METEONORM software and compared with 20-year exponential trend curves. With the climatic data analyzed, we generated scenarios for bioclimate studies. Once the bioclimate studies were obtained, a comparative diagnosis was carried out to identify the effects of the microclimate on the hours of comfort, cold and heat. It is observed that the influence of the reservoir generates climate change, directly altering the bioclimate of the city of Paute, reducing the hours of comfort. We conclude that the generated microclimate represents a problem in the bioclimate of the city, for which measures must be taken to mitigate and adapt to the effects it will have on current and future buildings.

Downloads

Download data is not yet available.

Article Details

How to Cite
Pacheco Pacheco, J. J., & Matovelle Bustos, C. M. (2021). Analysis of the influence of the Mazar Hydroelectric reservoir on the bioclimate of the city of Paute. ConcienciaDigital, 4(2), 39-54. https://doi.org/10.33262/concienciadigital.v4i2.1626
Section
Artículos

References

Alemu, Z.A., Dioha, M.O. Climate change and trend analysis of temperature: the case of Addis Ababa, Ethiopia. Environ Syst Res 9, 27 (2020). https://doi.org/10.1186/s40068-020-00190-5
Astorga González, A.F. (1994), Posibles cambios climáticos debidos a los embalses construidos en las cabeceras de los ríos de montaña, serie geográfica vol. 4, Pp. 45-54.
Eduardo, G., Porras, A., & Jácome, P. S., (2016), Proyecciones climáticas de precipitación y temperatura para ecuador, bajo distintos escenarios de cambio climático.
García Codrón, J.C. (2014), El impacto climático de los embalses cantábricos, en serie geográfica vol. 4. Pp. 33-42.
Grupo Intergubernamental de Expertos sobre el Cambio Climático, 2013. Cambio Climático 2013 Bases Físicas, s.l.: Naciones Unidas, s.f. Naciones Unidas. [En línea] Available at: http://www.un.org/es/sections/issues-depth/climate-change/index.html
INAMHI (1982-2013), Anuarios meteorológicos de 1982 a 2013, Quito, Ecuador.
Jimenez S., Aviles A., Galán L., Flores A., Matovelle C., Vintimilla C. (2020) Support Vector Regression to Downscaling Climate Big Data: An Application for Precipitation and Temperature Future Projection Assessment. In: Fosenca C E., Rodríguez Morales G., Orellana Cordero M., Botto-Tobar M., Crespo Martínez E., Patiño León A. (eds) Information and Communication Technologies of Ecuador (TIC.EC). TICEC 2019. Advances in Intelligent Systems and Computing, vol 1099. Springer, Cham. https://doi.org/10.1007/978-3-030-35740-5_13
Lucero, F., (2016): Reconfiguración de paisaje y grandes proyectos. el caso del proyecto hidroeléctrico mazar, Azuay-Ecuador.
McCarthy, J., et al.: IPCC Climate Change: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Inter-governmental Panel on Climate Change (2001).
Morillon, D., Gálvez, D., Preciado, O., & (Ed), R. A., (2013): Ingeniería de la energía solar para la sustentabilidad (p. 249).
OLADE, (2019), Panorama energético de América Latina y el Caribe 2019, Quito, Ecuador.
Palau, A. y M. Alonso, (2008), Embalses y cambio climático, Monografías de Endesa, Dirección de Medio Ambiente y Desarrollo Sostenible, Endesa, Lleida, pp. 47.
Preciado y Morillón, (2010): Biosol: Software para el estudio del Bioclima, Control solar e iluminación natural. IV Conferencia Latino Americana de energía Solar (IVISES_CLA) U XVIII Simposio Peruano de Energía Solar (XVII-SPES) 5 noviembre, Cusco, Perú.
Riahi, K., Rao, S., Krey, V. et al. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change 109, 33 (2011). https://doi.org/10.1007/s10584-011-0149-y
Wolfskill, L., Valenzuela, K. (2017): Impacto del cambio climático en el Bioclima de las costas mexicanas: retrospectiva, presente y prospectiva. XLI Semana Nacional de Energía Solar 2017. Pp.13-18, ANES, ISES, AMIE. Del 6 al 8 de octubre de 2017, Guadalajara, Jalisco, México.