Modeling and analysis of micro meteorological parameters on the Riobamba city

Main Article Content

Nelly Patricia Perugachi Cahueñas
Jorge Milton Lara Sinaluisa
Arquímides Xavier Haro Velasteguí Arquímides Xavier Haro Velasteguí

Abstract

In the atmospheric boundary layer, the air-soil interaction produces dynamic effects that affect the atmosphere, particularly the surface layer, where the most important activities of man and his environment take place; the present investigation calculates the micro meteorological parameters and analyzes their variation over time; under typical conditions of the Riobamba city, considering the effects due to its height and geographical position (2750 m and 1 ° 58`58 `` S of latitude and 78 ° 39`33 '' W of longitude), from which it follows a high regularity in behavior throughout the year, with strong convective flows, due to the high latent heat flow, which results in significant variations in the length of Obukhov, during daylight hours, and conversely, at night, it decreases becoming a stable system, which are determined using the Van Ulden and Hostlang model as a basis.

Downloads

Download data is not yet available.

Article Details

How to Cite
Perugachi Cahueñas, N. P., Lara Sinaluisa, J. M., & Arquímides Xavier Haro Velasteguí, A. X. H. V. (2020). Modeling and analysis of micro meteorological parameters on the Riobamba city. ConcienciaDigital, 3(3), 435-445. https://doi.org/10.33262/concienciadigital.v3i3.1336
Section
Artículos

References

Bloss W. (2012) Urban Atmospheric Composition Processes. In: Meyers R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY
Cian J Desmond, Simon Watson (2014) A study of stability effects in forested terrain, Journal of Physics: Conference Series 555, pp.1-17.
Cohen Aand et al (2015) A Review of Planetary Boundary Layer Parameterization Schemes and Their Sensitivity in Simulating Southeastern U.S. Cold Season Severe Weather Environments, Rev. weather and forecasting, volume 30, pp.591-612.
Davidson PA (2015) Turbulence—an introduction for scientists and engineers, 2nd edn. Oxford University Press, Oxford
Geral Kiely (1999) Ingeniería Ambiental, Tomo II y III, McGRAW-HILL, España.
Haro Velasteguí, A., Limáico Nieto, C., Perugachi Cahueñas, N. & Fernandez Parra, M. (2018). Evaluación de la Estabilidad Atmosférica Bajo Condiciones Físicas y Meteorólogicas del Altiplano Ecuatoriano. Revista Brasileira de Meteorologia, 33(2), 336-343. https://dx.doi.org/10.1590/0102-7786332015
Mankin M. (2011). Atmospheric Dynamics, Cambridge University Press, Vol. 1, Londres, Inglaterra.
Mikkelsen T, Larsen SE, Jørgensen HE, Astrup P, Larsén XG (2017) Scaling of turbulence spectra measured in strong shear flow near the Earth’s surface. Phys Scr 92(12):1–15.
Kundu, S., 2019. Modeling stratified suspension concentration distribution in turbulent flow using fractional advection–diffusion equation. Environ Fluid, 1557–1574. https://doi.org/10.1007/s10652-019-09679-9
Richards PJ, Norris SE (2019) Appropriate boundary conditions: still an issue after 25 years. J Wind Eng Ind Aerodyn 190:245–255.
Rodríguez D.and et al (2015) Variación de la estabilidad y altura de la capa de mezcla en la ciudad de pinar del río: su relación con condiciones sinópticas, Revista Brasileira de Meteorología, v. 30, no 1, pp. 1 - 15.
Van Ulden, Hostlag (1985) Estimation of Atmospheric Boundary Layer Parameters for Diffusion Applications; Journal of climate and Applied Metereology, 24, pg 1196 - 1207.
Zúñiga López I. (2012), Meteorología y Climatología, UNED - Universidad Nacional de Educación a Distancia.