Evaluation of the impact energy absorption capacity and hardness in 3D printed specimens of PLA and ABS with cubic and tri-hexagonal structure

Main Article Content

Miguel Ángel Escobar Guachambala
Javier José Gavilanes Carrión Gavilanes Carrión
Mesías Heriberto Freire Quintanilla

Abstract

Currently, custom orthotics are being built for physical rehabilitation using 3D rapid prototyping, due to this it is important to know their mechanical resistance, due to it has been proposed to test 3D printed specimens with PLA and ABS filaments. The test specimens were designed using CAD software, based on ASTM D256; Later they were 3D printed with a cubic and tri-hexagonal filling structure in PLA and ABS materials. Several tests were carried out to analyze the resistance of the test pieces: the Izod pendulum impact test, microscopy of the breaking surface and the SHORE D hardness analysis. Based on the results obtained, it was determined that the 3D printed specimen with ABS offers greater absorption of impact energy with respect to the PLA specimen; The filling structure of the test piece that gives the greatest mechanical resistance is the cubic structure compared to the tri-hexagonal structure. Furthermore, it is determined that the hardness of the PLA specimen is greater than that of the ABS specimen, finally it was observed that the fracture of the PLA specimen is linear, while the fracture of the ABS specimen is zigzag shaped.

Downloads

Download data is not yet available.

Article Details

How to Cite
Escobar Guachambala, M. Ángel, Gavilanes Carrión, J. J. G. C., & Freire Quintanilla, M. H. (2020). Evaluation of the impact energy absorption capacity and hardness in 3D printed specimens of PLA and ABS with cubic and tri-hexagonal structure. ConcienciaDigital, 3(2), 17-33. https://doi.org/10.33262/concienciadigital.v3i2.1204
Section
Artículos

References

Arce, G. C. (2005). Ortesis de miembros superiores. Clasificación, Funciones, Prototipos, Caracter{\’\i}sticas, Indicaciones [Internet]. Lima, Perú: Medicina de Rehabilitación.
Cardona, S. L., Grajales, D. H. M., & Castro, W. P. (2016). Instrumentación de un péndulo tipo Izod, para evaluación de la resistencia al impacto de pol{\’\i}meros. Universidad Tecnológica de Pereira. Facultad de Tecnolog{\’\i}as. Tecnolog{\’\i}a Mecánica.
León, M., & Marcos-Fernández, Á. (2019). Impresión 3D con materiales elástoméricos. Revista De Plásticos Modernos, 118(747).
Mix, A. W., & Giacomin, A. J. (2011). Standardized polymer durometry. Journal of Testing and Evaluation, 39(4), 696–705.
Molina Osejos, J. V. (2016). Caracterización de materiales termoplásticos de ABS y PLA semi-r{\’\i}gido impresos en 3D con cinco mallados internos diferentes. Quito, 2016.
Ramos, F. L. S., Mijares, E. M., & Gudiño, P. O. (2015). Introducción a la ciencia de los pol{\’\i}meros. México.
Reyes, L. G. (n.d.). Análisis documental de las ventajas de la impresión 3D Documentary analysis of the advantages of 3D printing Análise documental das vantagens de impressão 3D.
Roberson, D. A., Perez, A. R. T., Shemelya, C. M., Rivera, A., MacDonald, E., & Wicker, R. B. (2015). Comparison of stress concentrator fabrication for 3D printed polymeric izod impact test specimens. Additive Manufacturing, 7, 1–11.
Sin, L. T. (2012). Polylactic acid: PLA biopolymer technology and applications. William Andrew.
Torres, E., León, J., & Torres, E. (2012). Diseño y construcción de una impresora 3D aplicando la técnica de prototipado rápido modelado por deposición fundida. Ponencia Llevada a Cabo En El Tercer Congreso Argentino de Ingenier{\’\i}a Mecánica, Buenos Aires, Argentina.
Tovar, V. A. C., R\’\ios, A. R., Cepeda, L. F., Galindo, A. S., & Saltillo, C. (2018). Análisis de las propiedades fisicoqu{\’\i}micas de materiales poliméricos para re-uso en impresiones 3D. Macromolecules.