Obtaining the mechanical properties of a head, connecting rod and piston of a 100cc two-stroke mono-cylinder engine, applying reverse engineering

Main Article Content

Víctor David Bravo Morocho
Edison Patricio Abarca Pérez
Escobar Guachambala Miguel Angel

Abstract

Obtaining the mechanical properties from reverse engineering or technological disaggregation of automotive parts and pieces allows us to know first-hand the chemical composition, structure, hardness, geometry, among others, that facilitate the design and manufacturing process in this particular case of a prototype connecting rod, piston and stub head, which are part of a 100cc two-stroke engine. For this purpose, both national and international standards have been considered to standardize the processes and that the results are comparable with related research, these standards being: ASTM E10-01 (Standard Test Method for Brinell Hardness of Metallic Materials), ASTM E18-03 ( Standard Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials), ASTM E3 - 01 (Standard Practice for Preparation of Metallographic Specimens), ASTM E407 - 07 (2015) e1 (Standard Practice for Microetching Metals and Alloys), ASTM E1251 - 17a (Standard Test Methods for Analysis of Aluminum and Aluminum Alloys by Spark Atomic Emission Spectrometry), ASTM E350 - 18 (Standard Test Methods for Chemical Analysis of Carbon Steel, Low-Alloy Steel, Silicon Electrical Steel, Ingot Iron, and Wrought Iron) . For the particular case of the motor head, the following results are obtained: composition: 19.53% Silicon, 1, 798% Copper and 76.12% Aluminum (hypoeutectic composition), and quickly tempered in water, which corresponds to an Aluminum 392 series, with a hardness of 108 HB. The following results were obtained for the engine connecting rod: Microstructure composed mainly of martenite and austenite, the average connecting rod hardness is 61HRC, with the following chemical composition: 0.252% carbon, 1.103% Manganese, 1.179% Chromium, 0.296% Silicon, responding to Cr-MN steel, with a tempering and tempering heat treatment. The following results are obtained for the piston: piston hardness 30.3 HB, chemical composition: 29.49% Silicon, 5.657% Copper, 1.898% iron, responding to a hypoeutectic aluminum Si-Cu, and responding to a 300 series, with heat treatment of tempering and artificial aging.

Downloads

Download data is not yet available.

Article Details

How to Cite
Bravo Morocho, V. D., Abarca Pérez, E. P., & Miguel Angel , E. G. (2020). Obtaining the mechanical properties of a head, connecting rod and piston of a 100cc two-stroke mono-cylinder engine, applying reverse engineering. ConcienciaDigital, 3(3), 510-527. https://doi.org/10.33262/concienciadigital.v3i3.1352
Section
Artículos

References

Anchundia, J. y Lindao, H. (2017). Rediseño y prototipado de un pistón de moto mediante el proceso de fundición. Guayaquil: ESPOL.
ANETO-, E. 2. (2002). MANUAL DEL AUTOMOVIL REPARACION Y MANTENIMIENTO El motor de gasolina. MADRID: CULTURAL, S.A.
Askeland, D. (1998). Ciencia e Ingenieria de los Materiales . Mexico : Thomson.
ASTM. (2018). ASTM INTERNATIONAL. Obtenido de https://www.astm.org/SNEWS/SPANISH/SPSO14/enroute_spso14.html
Automociononline. (2019). Automociononline. Obtenido de https://automociononline.com/formacion-online/motores/biela/
Automociononline. (2019). Automociononline [Imagen]. Obtenido de https://automociononline.com/formacion-online/motores/piston/
Carbone Stainless Steel. (s.f.). Carbone. Recuperado el 15 de Mayo de 2018, de https://www.empresascarbone.com/: https://www.empresascarbone.com/pdf/ficha-tecnica-del-acero-inoxidable.pdf
Carnovo. (2019). Carnovo. Obtenido de https://carnovo.com/es/guias/culata-motor/
Morillo, V. Imbaquingo, B. Benavides, I. (2017). Determinación de la carga mecánica máxima que soportan las bielas del motor de una camioneta mazda bt-50 diésel mediante ensayos estáticos de esfuerzo experimental y por elementos finitos. Obtenido de http://repositorio.utn.edu.ec/: http://repositorio.utn.edu.ec/bitstream/123456789/7110/2/ARTICULO.pdf
Payri F. y Desantes J. (2011). Motores de Combustión Interna Alternativos. Barcelona: REVERTE.
Puente, J. (2019). Identificacion de microconstituyentes en aleaciones de aluminio mediante metalografia optica en color. MADRID: POLITECNICA DE MADRID.