Reliability, maintainability and availability study applied to prime generator sets
Main Article Content
Abstract
The present study is focused on providing a logical series of necessary steps in order to calculate the reliability, maintainability and availability indicators. For this example, records were taken from a database of 51 prime generators, operating times between failures and their respective repair time were collected within a period of 11 months.
The reliability of an equipment depends on its design and construction, in order to measure the reliability, it is necessary to record the operating times between failures and use them to calculate the average time between failures, this times are used to calculate the meantime, known as MTBF (mean time between failure). The analysis of the failures repairing times and its mean MTTR (mean time to repair) is the basis of the maintainability studios. The maintenance strategies must focus in extending the mean time between failures and reduce the repairing mean times, with the purpose of keeping the equipment intrinsic reliability. It should be mentioned that preventive maintenance cannot increase a device reliability given by design, if a good preventive maintenance planning is carried out, the design reliability can be preserved. With these two indicators it is possible to determine the intrinsic availability of the equipment.
Another important aspect is to be able to predict the reliability, availability and maintainability of the equipment, therefore it is necessary to have a statistical treatment with the study of distribution functions. Reliability, availability and maintainability analysis (RAM analysis) is a fundamental tool to predict equipment performance, it provides adequate information to anticipate failure events, this provides enough reaction time in order to take appropriate strategies. Reliability forecasting is a very useful tool when equipment design and build is required.
Downloads
Article Details
References
BS-EN. (2016). ISO 14224 Recolección e intercambio de datos de confiabilidad y mantenimiento de equipos. BSI Standards Limited.
CEN. (Julio de 2018). Terminología de mantenimiento. EN-13306. ARENOR.
Crespo, A., Moreu, P., & Sánchez, A. (2004). Ingeniería de Mantenimiento. Madrid: AENOR.
Deparment Of Defense, U. (3 de Agosto de 2005). Guía para lograr la Fiabilidad, Disponibilidad y Mantenibilidad. USA: Deparment of Defense .
Depatment Of Defense, U. (24 de Mayo de 1966). MILI-HDBK-472. Manintainability Predicction. Washington, USA: DEPATMENT OF DEFENSE, USA.
GARCIA, O. (2017). Gestión Moderna del Mantenimiento Industrial; Principios fundamentales. Ediciones de la U.
Harris, M. (2000). Gestión del Mantenimiento Industrial. Madrid: Fundación REPSOL.
Knezevic, J. (1966). Mantenimiento. (4ta, Ed.) Madrid: Isdefe.
Martinez, E. M. (2018). Seminario de Confiabilidad.
Meruane, V. (2014). Gestión de Activos. Santiago: DEMEC.
Moubray, J. (2002). Mantenimiento Centrado en la confiabilidad. Asheville: Industrias press Inc.
Nachias, J. (1995). Fiabilidad. Madrid: Isdefe.
Parra, C., & Crespo , A. (2016). Métodos de análisis de fiabilidad, mantenibilidad, disponibilidad y riego. Ingecom.
Red Temática Nacional Sobre Seguridad de Funcionam. (2010). Aplicaciones a la Confiabilidad, Aplicaciones Prácticas. Madrid: Ingeman.
Yanez, M., Gomez, H., & Valbuena, G. (2004). Ingeniería de la confiabilidad y análisis probabilístico del riesgo. Reliability and risk managemeny S.A.