Analysis of patterns, Andean species, reserves, Chimborazo, Sangay, k-means method, clustering
Main Article Content
Abstract
Over the years, researchers have recognized the importance of studying the moors and their conservation, both for their impact on the provision of water for cities, as well as their tourism potential and biodiversity. The objective of the present investigation is to conduct an analysis of patterns present in the characteristics of the different species of the Andean region of the Chimborazo and Sangay National Park reserves. For the analysis, 67 samples of different species were collected in both reserves, of which measurements of leaves, plants and flowers were made, subsequently, non-supervised machine learning algorithms called k-means clustering were applied using Python as the programming language . At the end of the species grouping process, it resulted in obtaining three categories according to the relationship between the characteristics of each species, two components being the most important for categorization, these were the height of the plant as well as The height of the leaf.
Downloads
Article Details
References
Bustamante, M., Albán, M., & Argüello, M. (2011). Los Paramos De Chimborazo Un Estudio Socioambiental Para La Toma De Decisiones. 151. www.flacsoandes.edu.ec
Cantillo H, E. E., Rodríguez R, K. J., & Avella M, E. A. (2004). Diversidad y Caracterización Florística Estructural de la Vegetación Arbórea en la Reserva Forestal Carpatos (Guasca Cundinamarca). Colombia Forestal, 8(17), 5. https://doi.org/10.14483/udistrital.jour.colomb.for.2004.1.a01
Carbonell, J. G., & Mitchell, T. M. (n.d.). AN OVERVIEW OF MACHINE LEARNING. In MACHINE LEARNING: An Artificial Intelligence Approach. Morgan Kaufmann. https://doi.org/10.1016/B978-0-08-051054-5.50005-4
Villa, A. (2006). Caracterizacion diametrica de las especies maderables en bosques primarios del Cerro Murrucucú. Gestión y Ambiente, 9(2), 73–90. https://doi.org/10.15446/ga.v9n2.52064
Garibay-Orijel, R., Morales-Marañon, E., Domínguez-Gutiérrez, M., & Flores-García, A. (2013). Caracterización morfológica y genética de las ectomicorrizas formadas entre Pinus montezumae y los hongos presentes en los bancos de esporas en la Faja Volcánica Transmexicana. Revista Mexicana de Biodiversidad, 84(1), 153–169. https://doi.org/10.7550/rmb.29839
Google Map. (2019). https://www.google.com/maps/
Muller, A. C., & Guido, S. (2017). Introduction to machine learning with scikit-learn. In Kaggle’s blog. https://github.com/justmarkham/scikit-learn-videos
Pascual, D., Pla, F., & Sánchez, S. (n.d.). Algoritmos de a grupamiento.
Scikit-learn. (n.d.). Retrieved January 30, 2020, from scikit-learn.org
The scikit-yb developers. (2019). Elbow Method. https://www.scikit-yb.org/en/latest/api/cluster/elbow.html
Vásconez, P., Medina, G., & Hofstede, R. (2001). Los Páramos del Ecuador. Botánica Económica de Los Andes Centrales, 2006, 91–109.
Verga, A., Navall, M., Joseau, J., Royo, O., & Degano, W. (2009). en las regiones fitogeográficas Chaqueña y Espinal norte de. Quebracho, 17, 31–40.