MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01DC322D.ECA9A450" Este documento es una página web de un solo archivo, también conocido como "archivo de almacenamiento web". Si está viendo este mensaje, su explorador o editor no admite archivos de almacenamiento web. Descargue un explorador que admita este tipo de archivos. ------=_NextPart_01DC322D.ECA9A450 Content-Location: file:///C:/0D2A2649/03-3Metodologiapararesolverproblemasmatematicos(1).htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"

Metodología para reso= lver problemas matemáticos de medidas de posición central en los estudiantes de séptimo año de educación general básica

 

Methodology for solving mathematical problems involving central position measurements in seventh-year students of basic general education

1

Diana Elizabeth Calderón Narváez

https://orcid.org/0009-0002-8678-7723

 

 <= /span>

Universidad Bolivariana del Ecuador (UBE), Durán, Ecuador.

Maestría en Educac= ión Básica

= decalderonn@ube.edu.ec<= /span>  

2

Gladys Lucía Pillacela Malla

https://orcid.org/0009-0007-1224-7755

 

 <= /span>

Universidad Bolivariana del Ecuador (UBE), Durán, Ecuador.

Maestría en Educac= ión Básica

= glpillacelam@ube.edu.ec=

3

Roger Martínez Isaac                                               https://orcid.org/0000-0002-5283-5726

Universidad Bolivariana del Ecuador (UBE), Durán, Ecuador.

= rmartinez@ube.edu.ec

4

Ricardo Sánchez Casanova                                      h= ttps://orcid.org/0000-0001-5354-6873

Universidad de La Habana, La Habana, Cuba. =

= ricardo.sanchez.uh@gmail.com

 

 

 

 

Artículo de Investigación Cientí= fica y Tecnológica

Enviado: 17= /04/2025

Revisado: 1= 2/05/2025

Aceptado: 1= 1/06/2025

Publicado:1= 5/09/2025

DOI: = https://doi= .org/10.33262/exploradordigital.v9i3.3511     

 =

 =

Cítese: =

 

 <= /p>

Calderón Narváez, D. E., Pillacela Malla, G. L., Martí= nez Isaac, R., & Sánchez Casanova, R. (2025). Metodología para resolver problemas matemáticos de medidas de posición central en los estudiantes de séptimo año de educación general básica. Explorador Digital, 9<= /i>(3), 43-67. h= ttps://doi.org/10.33262/exploradordigital.v9i3.3511

&nb= sp;

 

<= o:p>

 

<= o:p> 

E= XPLORADOR DIGITAL, es= una Revista electrónica, Trimestral, que se publicará en soporte electrónico tiene como misión contribuir a la   formació= n de profesionales competentes con visión humanística y crítica que sean capac= es de exponer sus resultados investigativos y científicos en la misma medida= que se promueva mediante su intervención cambios positivos en la sociedad.&nb= sp;https://exploradordigital.org

La revista es editada por la Editorial Ciencia Digital (Editorial de prestig= io registrada en la Cámara Ecuatoriana de Libro con No de Afiliación 663) www.celibro.org.ec<= o:p>

<= o:p> 

<= o:p> 

 

<= o:p>

 

Esta revista está protegida bajo= una licencia Creative Commons en la 4.0 Internati= onal. Copia de la licencia: http://creativecommons.org/= licenses/by-nc-sa/4.0/

 

Palabras claves:

estadística; medidas de posición central; resolución de problemas; metodología.

<= o:p> 

Resumen <= /o:p>

Introducción: = la enseñanza de la estadística ha cobrado una importancia creciente en los currículos escolares del siglo XXI, en respuesta a una sociedad cada vez = más orientada al análisis e interpretación de datos. En este contexto el prob= lema científico de la investigación es ¿Cómo contribuir a resolver problemas matemáticos de medidas de posición central en los estudiantes de séptimo = año de Educación General Básica de la Unidad Educativa Julio Cesar Labaké? Objetivos: el objetivo es proponer u= na metodología para resolver problemas matemáticos de medidas de posición central en los estudiantes de séptimo año de Educación General Básica. Metodología: para abordar este problema, se utilizó una metodología cuantitativa y descriptiva basada en la aplicación de encuestas a estudiantes. Además se utilizó una ficha de observación cuantitativa como instrumento de diagnós= tico para identificar comportamientos y dificultades iniciales de los estudian= tes. Los datos fueron analizados para identificar tendencias en la percepción = de los estudiantes sobre su aprendizaje y el impacto de la metodología aplic= ada. Resultados: los resultados mostraron que la mayoría de los estudia= ntes consideran que este enfoque mejora su comprensión y aplicación de los conceptos estadísticos, además de fomentar su participación en clase. Tam= bién se observó una valoración positiva del uso de herramientas tecnológicas. = Conclusiones: en conclusión la metodología basada en la resolución de problemas es efectiva para mejorar la enseñanza de la estadística, ya que favorece la comprensión, el aprendizaje práctico. Se recomendó reforzar la integració= n de tecnología y la conexión con situaciones de la vida cotidiana para optimi= zar aún más su efectividad. Área de estudio general: Educación. Áre= a de estudio específica: Didáctica de la matemática. Tipo de artículo: original.

 

 

Keywords: statistics; measures of central position; problem-solving; methodology.

 

Abstract

Introduction: = The teaching of statistics has become increasingly important in the school curricula of the twenty-f= irst century, in response to a society increasingly oriented to the analysis a= nd interpretation of data. In this context, the scientific problem of the re= search is: How to contribute to solving mathematical problems of central position measures in seventh-year students of Basic General Education of the Julio Cesar Labaké Educational Unit? Objectives: The objective is to pro= pose a methodology to solve mathematical problems of central position measures= in students of the seventh year of Basic General Education. Methodology: = to address this problem, a quantitative and descriptive methodology based on= the application of student surveys was used. In addition, a quantitative observation sheet was used as a diagnostic instrument to identify initial behaviors and difficulties of the students. The data were analyzed to identify trends in students' perception of their learning and the impact = of the methodology applied. Results: The results showed that most students consider that this approach improves their understanding and application of statistical concepts, in addition to encouraging their participation in class. A positive assessment of the use of technological tools was also observed. Conclusions: In conclusion, the methodolo= gy based on problem solving is effective in improving the teaching of statistics, since it favors comprehension and practical learning. It was recommended to strengthen the integration of technology and the connection with everyday situations to further optimize its effectiveness. General area of study: Education. Specific area of study: Didactics of mathematics. Type of item: original.

 <= /p>

 

 

= 1.      Introducción

La enseñanza de la estadística en la educación básica es cada vez más relevant= e en los planes curriculares de la educación de hoy por la importancia del análi= sis e interpretación de datos. En una sociedad donde existe un exceso de información, los conocimientos en estadística ya se consideran esenciales p= ara la educación de un profesional integral. La comprensión de conceptos como media, mediana y moda son básicos no solo el ámbito académico, sino en la v= ida diaria, con el fin de que los estudiantes adquieran conocimientos relevante= s y logren interpretar y analizar datos, de esta manera emitir una opinión sustentada en contextos sociales, económicos y políticos (Zambrano et al., 2024). El conocimiento estadístico en la educación general básica al ser su primer acercamiento a esta rama del conocimiento enfrenta desafíos importantes por= la continuidad histórica de un aprendizaje basado en la memorización de fórmulas y aplicac= ión mecánica de procedimientos, ya que no son suficientes para un aprendizaje integral. Consecuentemente esto ha generado bajos niveles de comprensión de= la representación gráfica, interpretación de datos y razonamiento cuantitativo según muestran varios estudios (Castro & Olivarria, 2024).   =

En este contexto se plantea como problema científico ¿Cómo contribuir a resolv= er problemas matemáticos de medidas de posición central en los estudiantes de séptimo año de educación general básica de la Unidad Educativa Julio Ces= ar Labaké? Esta investigación promueve la aplicación= de estrategias activas del aprendizaje como: el trabajo en equipo, la utilizac= ión de recursos tecnológicos y resolución de problemas contextualizados, proceso centrado en el estudiante como eje fundamental de proceso. También, la resolución de problemas aparece como una sugerencia constructivista para transformar la enseñanza de la estadística, colocando al estudiante a la ca= beza de su aprendizaje.

El objetivo es proponer una metodología para resolver problemas matemáticos de medidas de posición central en los estudiantes de séptimo año de educación general básica. Por lo que tiene su origen en el deseo de cambiar la forma = en que los alumnos aprenden estadística, en concreto las medidas de tendencia central, media, mediana y moda. Aprender matemáticas es más que recordar fórmulas, es aplicar esos conocimientos en la vida cotidiana, entonces, por= esa razón la investigación pretende averiguar cómo incidir positivamente en la comprensión y aplicación de estos conceptos y en la resolución de problemas contextualizados, los mismos que están relacionados con situaciones reales = del propio estudiante. Para ello ha sido elaborada una propuesta pedagógica con actividades minuciosamente seleccionadas de tal manera que sean, relevantes= y desafiantes, más activas y significativas con la intención de que el estudi= ante este inmerso en su aprendizaje. Esta idea ha sido desarrollada y comprobada frente a metodologías tradicionales para evaluar la diferencia entre ambas = como se piensa. La intención es, es colaborar de manera que la clase se vuelva m= ás activa, despierte el interés por la matemática y fortalezca el pensamiento crítico, que es lo que más se necesita en la formación integral del ciudada= no.

La justificación de esta investigación se sostiene en base de 3 aspectos fundamentales. En lo teórico, contribuye a mejorar la enseñanza de estadíst= ica en educación básica, espacio que ofrece mediante el análisis de estrategias didácticas para una mejor comprensión alrededor del manejo de datos y medid= as de tendencia central. Hay que señalar la urgencia de pasar de la instrucción puramente mecánica al aprendizaje por la exploración y el descubrimiento (<= /span>Mera, 2024). También se propone usar herramientas adecuadas para el profesorado para transformar la estadística en una materia más accesible para el aula y prom= over a sus estudiantes a participar más en el aprendizaje (Terán, 2024).  La metodología planteada aborda una ver= tiente constructivista del aprendizaje, que asocia al alumnado en el proceso de aprendizaje (protagonista) a la experiencia como núcleo generador de conocimiento. Desde el punto de vista metodológico, la implementación de un diseño cuasiexperimental teórico permite a través de éste evaluar por una p= arte el impacto que la metodología es capaz de influir en el aprendizaje de los estudiantes, el obtener evidencia empírica que acredite su efectividad como estrategia didáctica (Pineda et al., 2024).

= 2.      Metodología

El estudio se basa en un diseño cuantitativo puesto que se intenta medir el fenómeno de manera objetiva mediante métodos matemáticos-estadísticos para entender la relación entre las variables y aplicar los resultados de manera general (Hernández et al., 2010). De esta manera, se puede analizar los resultados de los efectos de la intervención metodológica en un ambiente de aprendizaje real, alineado con investigaciones previas sobre enseñanza de la estadísticas y aplicación de acciones metodológicas activas en la educación matemática (Jadallah, 2024). =

Como muestra la Tabla 1 se describen las variables principales del estudio, además, se detallan los indicadores y los instrume= ntos utilizados para medir la metodología basada en problemas y el rendimiento académico en estadística.

Tabla 1

Operacionalización de Variables

Variable

Definición Operacional

Indicadores

Instrumento

Escala

Metodología basada en problemas (VI)

Aplicación de clases con resolución de problemas en estadística.

  Participación activa=

  Dificultad para entender conceptos

  Uso de estrategias adecuadas

  Uso limitado de recursos tecnológicos<= o:p>

  Necesidad de apoyo adicional

Ficha de observación=

Categórica (sí / no)=

 

Rendimiento académico en estadística (= VD)

 

Resultados en pruebas antes y después = de la intervención.

 

  Puntaje en pretest y post test

 

Prueba escrita

 

Cuantitativa (0–10)<= /p>

Nota: La metodología basada en problemas se evalúa con una ficha de observación s= obre la participación de los estudiantes, mientras que el rendimiento académico = se mide con los puntajes de un pretest y post test (escala de 0 a 10).

Este estudio se desarrolló con dos grupo= s de estudiantes de séptimo grado de educación básica general de la Unidad Educa= tiva “Julio César Labaké”. Los participantes sumaron= un total de 86 estudiantes: 42 del paralelo A que fueron colocados en el grupo experimental y 44 del paralelo B que formaron el grupo de control. Asimismo= , la muestra se obtuvo a través de una estrategia de muestreo intencionado no probabilístico que incluyó a todos los estudiantes de ambas clases en funci= ón de sus características aptas para la intervención pedagógica. Los estudiant= es del grupo experimental se sometieron a una metodología para resolver problemas matemáticos de medidas de posición central, mientras que el grupo de control conti= nuó con la educación con una metodología tradicional con la finalidad de brinda= r la oportunidad de observar y comparar resultados con la intervención. Para abo= rdar el problema científico: ¿Cómo contribuir a resolver problemas matemáticos de medidas de posición central en los estudiantes de séptimo año de Educación General Básica?, el instrumento utilizado fue una ficha= de observación cuantitativa, diseñada para capturar acciones importantes, como= la participación activa y comprensión de los conceptos del curso, el enfoque m= etodológico, el nivel de uso de recursos incluyendo tecnología, y el grado de apoyo adicional requerido, de manera sistemática y objetiva. A su vez, los datos = que fueron recolectados para luego ser procesados con el programa Microsoft Exc= el, donde se calcularon frecuencias y porcentajes para un análisis descriptivo = de cada aspecto observado. Para esto se elaboraron tablas y gráficos de Excel = que muestran la distribución porcentual de cada aspecto junto con las principal= es fortalezas y dificultades de los estudiantes con la intención de proporcion= ar una visión completa del fenómeno suscitado y dar a conocer las barreras de aprendizaje definidas en función del problema científico planteado, así, su= stentar la planificación de la intervención pedagógica.

Para comenzar la Tabla 2 compara dos aulas donde se observan diferentes comportamientos en estudiantes y se cuantifica el porcentaje total; además, destaca la participación y las dificultades en el aprendizaje; por lo tanto, se nota que más de la mitad tiene problemas para entender y usa poco la tecnología, lo que afecta el avance general.

Tabla 2

Análisis comparativo de aspectos observados en aulas A y B

Aspecto observado

Aula A (42 estudiantes)<= o:p>

Aula B (44 estudiantes)<= o:p>

Total (86 estudiantes)

Porcentaje (%)

Par= ticipación activa

17

18

35

40,7

Dificultad para entender conceptos

24

26

50

58,1

Uso de estrategias adecuadas

14

14

28

32,6

Uso limitado de recursos tecnológicos

22

23

45

52,3

Necesidad de apoyo adicional

20

20

40

46,5

Nota: Se recopilaron datos del registro de observación aplicado a 86 estudiantes de séptimo grado en dos aulas de la Unidad Educat= iva “Julio César Labaké”. Las cifras representan cuántos estudiantes mostraron cada característica evaluada junto con el porcentaje correspondiente del total.

El gráfico compara cinco aspectos relacionados c= on el aprendizaje significativo. Se tomo en cuenta a los participantes ya mencionados, los estudiantes de las dos aulas A y B, que suman el total de estudiantes. En participación activa la Aula B (barra naranja) estuvieron ligeramente por encima de su contraparte (barra azul), aunque ambas estaban= por debajo del 50%. El promedio general (barra gris) fue del 40.7%, esto reflej= a el desafío de involucrar a menos de la mitad de los estudiantes en la participación activa. En cuanto al reto de comprender conceptos estadístico= s, ambas clases presentaron valores bastante altos, aunque similares siendo el Aula B ligeramente superior, su porcentaje general fue del 58.1%, lo que in= dica que la mayoría de los estudiantes tiene problemas para entender la media, la mediana y la moda. Las estrategias apropiadas para resolver problemas son b= ajas para ambos grupos, con una ligera mejora en el Aula A, el promedio general = fue del 32.6%, indicando que solo uno de cada tres estudiantes de la población aplicó estrategias efectivas de resolución de problemas a tareas matemática= s. Además, el porcentaje de estudiantes del ítem cuatro (uso limitado de los recursos tecnológicos) es parecido y alto en ambos casos lo que refleja que más de la mitad de los alumnos no hacen buen uso de la herramienta en el proceso de aprendizaje. Por último, la falta de apoyo impacta a casi la mitad de los estudiantes de ambas aulas con un total del 46.5%, evidenciando así, la necesidad de acudir a una intervención que ofrezca asistencia individualiza= da debido a su impacto en el rendimiento académico. En este sentido, el anális= is de las aulas A y B muestra distintos pero equivalentes y los totales hacen parte del panorama general donde la participación, comprensión, el uso de estrategias y tecnología, así como el apoyo, son factores álgidos para el diseño del plan de intervención.

Se propone una metodología para resolver problemas matemáticos de medidas de posición central en los estudiantes de séptimo año en el Aula A, con el fin de mejorar éstos cinco ítems analizados, lo = que traza un camino efectivo hacia comprender conceptos estadísticos. Se implementará posteriormente a la clase con apoyo de recursos tecnológicos, brindando ayuda especializada a los alumnos con mayores problemas, al igual= que se instruirán estrategias de solución en términos prácticos que fortalezcan= el aprendizaje y la autonomía.

= 3.      Resultados

Como propuesta de intervención ante esta problemática se ha diseña= do una metodología para resolver problemas matemáticos de medidas de posición central.

3.1.      Objetivo de la propuesta de intervención=

Diseñ= ar una m= etodología para resolver problemas matemáticos de medidas de posición central en alumnos de séptimo año de la Unidad Educativa Julio Cesar Labaké.

3.2.      Funda= mentación

La enseñanza tradicional de la estadísti= ca abstracta en educación básica se enfoca en definiciones, fórmulas y procedimientos repetitivos, limitando la comprensión y su aplicación. Este proyecto topa esta situación con una metodología activa que crea aprendizaje por medio de la exploración de datos reales y la solución a problemas aplicados. En esta propuesta se aplican los principios de la pedagogía constructivista, el enfoque de resolución de problemas (Oliveros et al., 20= 21) y los lineamientos del currículo nacional ecuatoriano, que respalda la contextualización y la pertinencia del conocimiento.

= 3.3. Aparato conceptual que sustenta la metodología

Para desarroll= ar esta propuesta se ha tomado en cuenta cuatro teorías fundamentales para ofr= ecer al estudiante una forma más accesible de llegar al conocimiento de las medi= das de tendencia central. Oliveros et al. (2021) mencionan que una metodología = efectiva para solucionar problemas en matemáticas es el método = Polya, puesto que, el cumplimiento de sus fases es eficaz al momento de resolver problemas matemáticos, además, las etapas: “Identificar el Problema, Elabor= ar el Plan, Implementar la Estrategia parar resolver el problema y hacer una Visión Retrospectiva del mismo; coayuda a estim= ular comprensión lectora, motivan al estudiante a resolver problemas contextualizados” (p. 1), además de llevar al docente a ser más creativo en= la enseñanza de las matemáticas, de esta manera se consigue lo tan ansiado por Ausubel en su teoría del aprendizaje significativo que es integrar procesos metacognitivos, esenciales para motivar al estudiante y facilitar su aplica= ción en problemas matemáticos. Vygotsky (1978) sostiene que el sujeto aprende mejor si existe una interacción con otros individuos, promoviendo el constructivismo social, porque se impulsa la cooperación, el pensamiento crítico y la construcción colectiva del conocimiento (Charris, 2019). Finalmente, Wickramasinghe & Valles = (2015) señalan que en la didáctica de la estadística se fomenta una enseñanza acti= va, reflexiva y crítica, donde los estudiantes no solo aprenden a realizar cálculos, sino también a comprender el contexto y la lógica detrás de las herramientas estadísticas que utilizan.

La Figura 1 presenta los conceptos clave e= n la resolución de problemas matemáticos, destacando el aprendizaje significativ= o, el constructivismo social y la didáctica de la estadística, tal como se presenta en el artículo de Oliveros et al. (2021), Charris (2019) y Wickramasinghe & Valles (2015).

Figura 1

Teorías en las que se fundamenta la metodología propuesta

 

 

 

 

 

 

Las etapas que conforman la metodología se han organizado de forma secuencial, desde la et= apa de diagnóstico (pretest) hasta organizan como un proceso secuencial y articulado que guía desde el diagnóstico inicial hasta la validación de los aprendizajes, promoviendo un aprendizaje significativo basado en la resoluc= ión de problemas.

Tabla 3=

Etapas de la metodología

Etapa

Objetivo

Acciones clave

Consideraciones metodológicas

1. Diagnóstico inicial<= /p>

Identificar el nivel de comprensión de= los estudiantes

  Aplicar pretest estructurado.

  Observar participación y dificultades iniciales

Evaluación diagnóstica.

Uso de fichas de observación

2. Contextualización

Comprender el problema desde una situa= ción real

  Presentar situaciones contextualizadas= .

  Explorar verbalmente=

Apoyo con imágenes, videos cortos, simulaciones, juegos digitales como Kahoot o = Quiziz.

3. Exploración guiada <= /p>

Planificar y proponer formas de resolv= er el problema

  Discusión grupal sobre estrategias posibles.

  Guías con pistas de resolución

Promover el pensamiento crítico. Uso de simuladores o recursos como Excel o Jamboard.=

4. Resolución cooperativa

Ejecutar estrategias y resolver el problema

  Recolección y análisis de datos. =

  Representación en tablas y gráficos

Trabajo colaborativo. Uso de hojas de cálculo, generadores de gráficos.

5. Sistematización

Verificar resultados y formalizar aprendizajes

  Reflexión colectiva.=

  Extracción de conceptos clave.

  Esquemas o mapas mentales

  Post test

Cuaderno de conceptos. Uso de Canva, Padlet o exposic= iones digitales breves

Evaluación sumativa.=

 <= /o:p>

La tabla 3 muestra las etapas del proceso = de resolución de problemas según Oliveros et al. (2021) detallando los objetiv= os, acciones clave y consideraciones metodológicas para cada fase del aprendiza= je, integrando herramientas digitales

= 3.4. Procedimiento que corresponden a = cada etapa

En este apartado se presenta el desarrollo de cada etapa para el aprendizaje d= e las medidas de tendencia central (media, mediana y moda), cada etapa se present= a en tablas detallando el objetivo, actividades, recursos a utilizar, metodología considerada, y la evaluación. Cabe mencionar que cada etapa tiene una evaluación, especialmente de la etapa 2 a la 5 las evaluaciones son formati= vas para no cansar a los estudiantes ya que se les aplicó una pre y posprueba.<= o:p>

Tabla 4=

Etapa 1: Diagnóstico inicial (observación docente)

Ele= mento

Con= tenido

Obj= etivo

&= nbsp; Analizar la metodología empleada por el docente en la enseñanza de estadística.

Act= ividades

  Apl= icación de una ficha de observación durante las clases de estadística<= /span>

  Reg= istro de indicadores como: participación estudiantil, estrategias utilizadas, claridad conceptual, uso de recursos y dificultades observadas.

Est= rategias / Recursos

  Fic= ha de observación estructurada con indicadores cuantificables.

  Lis= ta de cotejo para anotar evidencias concretas durante la sesión.

Con= sideraciones metodológicas

  Rea= lizar la observación sin interferir en el desarrollo de la clase.

  Obs= ervar al menos dos sesiones consecutivas para obtener mayor validez<= /span>

  Gar= antizar la confidencialidad del docente observado.

Eva= luación

  Aná= lisis de los datos observados para identificar necesidades metodológicas.<= /o:p>

  Ret= roalimentación interna para rediseñar la propuesta de intervención.

  No = se evalúa al docente, se utiliza como insumo de mejora.

 

La tabla 4 presenta la Etapa 1 (Diagnóstico inicial), que describe las actividades para identificar los conocimientos previos y dificultades en conceptos estadísticos de los estudiantes mediante una fich= a de observación y análisis de resultados. Elaboración propia.=

Tabla 5=

Etapa 2: Contextualización: presentación del problema (fase inicial con estudiantes)

Elemento

Contenido

Objetivo

  Despertar el interés de los estudiantes a través de escenarios reales para descubrir la utilidad de la media, mediana y moda en su entorno cercano.

Actividades

  Presentar una situación llamativ= a, como comparar cuántos caramelos compraron los estudiantes durante la sema= na o las edades

  Hacer preguntas abiertas: ¿Qué número se repite más? ¿Cuál está en el medio? ¿Qué promedio sale?

  Dialogar en grupo sobre qué podr= ían significar esos números.

Estrategias / Recursos

  Uso de material visual sencillo (tablas, dibujos, encuestas breves).

  Juegos interactivos con preguntas introductorias (kahoot, = wordwall).

  Tarjetero m= ini-historias con datos numéricos cercanos a su realidad.

Consideraciones metodológicas

  Partir de ejemplos que represent= en su día a día (merienda, tiempo de uso de pantallas, número de mascotas, etc.).

  No dar la fórmula al inicio, dej= ar que el concepto surja de la experiencia.

  Promover la participación libre = sin temor al error.

 

Tabla 5

Etapa 2: Contextualización: presentación del problema (fase inicial con estudiantes) (continuación)

Elemento

Contenido

Evaluación

  Escuchar activamente los aportes= y analizar cómo los estudiantes interpretan los datos.

  Registrar de manera informal qui= énes logran identificar patrones como el número del medio o el más repetido.

  Hacer preguntas de sondeo, sin interrumpir el flujo del diálogo.

 

La tabla 5 presenta la etapa 2 que busca enganchar a los estudiantes desde el inicio, conectando la estadística con experiencias rea= les y fomentando una actitud positiva hacia el aprendizaje.

Tabla 6=

Etapa 3: Exploración y comprensión del problema

Elemento

Contenido

Objetivo

  Guiar a los estudiantes en el cálculo colaborativo de la media, mediana y moda utiliz= ando datos reales o simulados.

Actividades

  Formar pequeños grupos para organizar y representar los datos recolectados.=

  Proponer el cálculo de la media, mediana y moda con ayuda del docente.<= /span>

  Discutir entre compañeros los resultados y verificar su sentido con el contexto del problema.

Estrategias / Recursos

  Datos reales tomados de la vida escolar (puntajes de juegos, edad de familiares, etc.).

  Hojas de trabajo con plantillas para ordenar y calcular.

  Calculadoras simples, regletas o material manipulativo para facilitar el conteo y los promedios.

Consideraciones metodológicas

  Acompañar el trabajo de los grupos sin dar la solución directamente.

  Usar preguntas guía que promuevan el razonamiento: ¿cómo supieron cuál número = está en el medio?, ¿cómo sumaron todos?, ¿por qué ese número se repite más?

  Motivar la expresión verbal del procedimiento seguido.

Evaluación

  Observar cómo se organizan en grupo y cómo llegan a los resultados.

  Escuchar las explicaciones que dan sobre el procedimiento.

  Registrar con una lista de cotejo aspectos como: participación, exactitud y compren= sión del proceso.

  Aplicación del post test.

 

En la tabla 6 se presenta la etapa 3 que busca que los estudiantes pasen de entender el problema a comenzar a estructurar cómo resolverlo, fomentando su pensamiento crítico y análisis.=

 

Tabla 7=

Etapa 4: Resol= ución cooperativa

Elemento

Contenido

Objetivo

&= nbsp; Reflexionar sobre el significado de la media, mediana y moda en situaciones reales y comunicar los hallazgos de forma sencilla.

Actividade= s

  Escribir o representar gráficamente = lo que significan los resultados obtenidos.

  Comparar distintas medidas: ¿cuál representa mejor el grupo?, ¿qué aprendimos de estos números?<= /span>

  Compartir oralmente las conclusiones= en plenaria o en grupos pequeños.

Estrategia= s / Recursos

  Plantillas para escribir breves conclusiones o crear gráficos simples.

  Guías con preguntas para orientar la reflexión.

  Espacios de exposición donde cada gr= upo pueda mostrar su trabajo.

Considerac= iones metodológicas

  Evitar tecnicismos en la interpretac= ión, enfocándose en lo que los datos muestran de la realidad.

  Validar todas las formas de expresión (dibujos, frases cortas, esquemas).

  Crear un ambiente de confianza para compartir ideas libremente.

Evaluación=

  Escuchar las interpretaciones y comprobar si comprenden el uso de cada medida.

  Registrar cómo argumentan su elecció= n de medida representativa.

  Utilizar rúbricas simples que valoren claridad, pertinencia y conexión con el problema trabajado.

 

En la tabla 7 presenta la fase 4 que es clave para que los estudiantes aprendan a construir soluciones por sí mismos, aplicando el razonamiento lógico y las herramientas aprendidas.

Tabla 8=

Etapa 5: Sistematización (verificar resultados y formalizar aprendizajes)

Elemento

Contenido

Objetivo

  Ayudar a los estudiantes a comprobar y validar los resultados obtenidos para asegurar que la solución sea correc= ta y tenga sentido.

Actividades

  Revisar paso a paso los cálculos y procedimientos realizados.  

  Comparar resultados con datos reales o= con ejemplos previos.  

  Discutir posibles errores y cómo corregirlos.   =

  Presentar las soluciones al grupo para recibir retroalimentación.

Estrategias / Recursos

  Listas de verificación para validar ca= da paso.  

  Ejemplos de soluciones modelo.  

  Espacios para preguntas y aclaraciones grupales.  

  Software o calculadoras para validar cálculos.

Consideraciones metodológicas

  Fomentar una actitud crítica y reflexiva.  

  Promover el diálogo y la colaboración = en la revisión.   =

  Evitar que los estudiantes se sientan frustrados ante errores, alentando la corrección constructiva.=

 

Tabla 8

Etapa 5: Sistematización (verificar resultados y formalizar aprendizajes) (continuació= n)

Elemento

Contenido

Evaluación sumativa<= /p>

  Observar la habilidad para identificar errores y corregirlos.  

  Registrar la participación en las discusiones de validación.  

  Realizar pequeñas actividades que confirmen la comprensión del proceso de verificación.

 

En la tabla 8 se presenta la etapa 5, los estudiantes fortal= ecen su capacidad para autoevaluar su trabajo y valoran la importancia de la precisión en la estadística.

= 3.5. Representación gráfica de la metodología

En el diagrama= de flujo se presenta la metodología como una alternativa a la enseñanza tradicional, destacando el uso de metodologías activas que promueven una participación más dinámica del estudiante. En la metodología de resolución = de problemas se avanza por cada fase, iniciando con la prueba diagnóstica que = permite identificar conocimientos previos y posibles dificultades. A continuación se presenta el problema adaptado a la cotidianeidad de los estudiantes, lo cual constituye la fase de contextualización, clave para despertar la motivación estudiantil y generar un aprendizaje significativo.

Luego, mediante actividades activas que estimulan el pensamiento crítico, se lleva a cabo la fase de exploración del problema guiada por el docente, quien actúa como mediador del conocimiento. Después se desarrolla la etapa de sistematizació= n, que consiste en la socialización de los errores y aciertos de los resultados obtenidos por los estudiantes, permitiendo una retroalimentación formativa y colectiva. Finalmente se realiza una evaluación mediante el post test, con = el objetivo de valorar los avances logrados en la comprensión y aplicación de = los contenidos trabajados.

En lo que sigu= e el diagrama de la Figura 2 traza el recorrido de una enseñanza activa, que parte del diagnóstico, pasa por la contextualización y exploración guiada, y concluye con la valoración de aprendizajes reales y significativos.

 

 

 

 

 

Figura 2<= /o:p>

Diagrama de fl= ujo de la metodología de resolución de problemas                         

Fin

Pretest

Datos reales

Trabajo activo

Reflexión final

Post test

Inicio<= b>

Metodología Resolución de Problemas

Metodología Tradicional

<= span style=3D'font-size:10.0pt;font-family:"Times New Roman",serif;mso-an= si-language: ES-MX'>Si

<= span style=3D'font-size:10.0pt;font-family:"Times New Roman",serif;mso-an= si-language: ES-MX'>No

<= span style=3D'font-size:10.0pt;font-family:"Times New Roman",serif;mso-an= si-language: ES-MX'>Fin

Diagnóstico

Contextualización

Exploración guiada

Sistematización

Resolución cooperativa

<= span style=3D'mso-bidi-font-size:12.0pt;line-height:115%;font-family:"Times New = Roman",serif; mso-ansi-language:ES-MX'>

= 3.6.  Evaluación de la intervención

Se evaluará la efectividad de la metodología comparando los resultados de pruebas pre y po= st intervención, así como el desempeño relativo al grupo control, mediante análisis estadísticos que permitan determinar la significancia de los cambi= os.

En la tabla 9 se plantea valorar el efecto real de la propue= sta didáctica mediante una mirada comparativa entre el antes y después del proc= eso, lo que implica considerar no solo las notas, sino también la participación activa, el uso de los conceptos y la percepción del estudiantado; a partir = de estas evidencias recogidas con instrumentos diversos (como encuestas y observaciones), se busca no solo cerrar el ciclo evaluativo, sino también a= brir nuevas posibilidades para adaptar, mejorar o replicar la experiencia en otr= os contextos afines.

Tabla 9=

Impacto de la intervención

Elemento

Contenido

Objetivo de evaluación

  Verificar si la propuesta metodológica ayudó a los estudiantes a mejorar en estadística a través del trabajo con problemas prácticos, cercanos a su realidad cotidiana.<= /p>

Tabla 9

Impacto de la intervención (continuación)

Elemento

Contenido

Criterios de evaluación

  Comparación entre resultados del prete= st y del postest.

  Participación activa de los estudiantes durante las sesiones.

  Aplicación efectiva de conceptos estadísticos.

Instrumentos

  Pruebas escritas (pretest y postest).

  Encuesta (estudiantes) de percepción d= e la metodología aplicada.

Técnicas

  Análisis comparativo de resultados.

  Observación directa en el aula.

  Registros de participación, colaboraci= ón y autonomía de los estudiantes.

Momento de aplicación

  Antes de comenzar la intervención (pretest).

  Al finalizar el proceso (postest, encuesta).

Responsables

  Docente-investigador.

  Colaboración de otros docentes involucrados.

Uso de los resultados

  Ajustar detalles de la propuesta según= lo observado.

  Tomar decisiones para futuras aplicaciones.

  Validar si este enfoque es útil en contextos similares.

 

El objetivo de= esta tabla es medir el impacto real que causa en los estudiantes el diseño metodológico, tanto en su rendimiento escolar, en términos de participación, comprensión y en la práctica de resolución de problemas estadísticos.<= /o:p>

= 3.7.  Recomendaciones para su implementación

         Capacitar a los docentes en la metodología e implementación de herramientas tecnológi= cas.

         Hay que asegurar que los estudiantes tengan acceso a recursos digitales.

         Conectar el contenido con la vida cotidiana para una mejor comprensión.

         Realizar un seguimiento continuo y ajustar el enfoque basado en las necesidades identificadas.

= 4.      Discusión

Para = validar la propuesta de intervención se utilizó un esquema cuasiexperimental de tipo longitudinal, debido a que el estudio se llevó a cabo con la participación de dos grupos: uno= que trabajó con la metodología tradicional (paralelo B) y otro que fue parte de= una propuesta basada en la resolución de problemas (paralelo A), en estos diseñ= os “cuasiexperimentales se provoca intencionalmente al menos una = causa y se analizan sus efectos o consecuencias” (Hernández et al., 2010). Por ot= ro lado se justifica el diseño longitudinal porque los datos se recopilaron an= tes y después de la implementación de la metodología basada en la resolución de problemas. Además, se aplicó una encuesta a escala de Likert a los estud= iantes al final de la implementación de la propuesta para medir su percepción con respecto a la metodología de resolución de problemas.  

4.= 1.      Pretest

Con la finalidad de diagnosticar el estado de los estudiantes respecto a los conocimientos sobre el tema de medidas de tendencia central (media, mediana= y moda) antes de la intervención pedagógica, se aplicó un pretest como punto = de partida. La escala de calificación fue de acuerdo con los parámetros maneja= dos en el Ecuador que van de 0-10 puntos.  Este instrumento se realizó con la inten= ción no solamente de evaluar los conocimientos en relación con la media mediana y moda, sino, verificar si los niños entre once y doce años pueden relacionar= lo con su vida cotidiana o lo que les resulta familiar. Por ello, el diseño del instrumento incluyó situaciones familiares como la cantidad de caramelos que consumen sus compañeros o las edades de los miembros de su familia, buscando que la media, la mediana y la moda no se vieran como palabras extrañas, sino como herramientas que les permiten organizar y entender su entorno.<= /p>

La construcción de este instrumento se fundamentó en principios básicos del enfoque por resolución de problemas, considerando tanto los procesos matemáticos como el razonamiento lógico y el uso del lenguaje. No se trató = de medir únicamente el resultado, sino de identificar cómo los estudiantes tie= nen un acercamiento al problema contextualizado, qué estrategias utilizaban de forma espontánea y qué nivel de familiaridad tenían con los conceptos. Adem= ás, el pretest permitió detectar ciertas dificultades comunes en el desarrollo = de este tema, como la confusión entre media y moda, o la tendencia a calcular sin comprender el porqué. Estos hallazgos fueron indispensables para diseñar la propuesta de tal manera que conecte más con sus formas de aprender, sus intereses y su manera de pensar.

Figura 3

Comparación de promedios del grupo experimental y grupo de control

Nota: La comparación de los pro= medios por el grupo experimental (Paralelo A) y el grupo de control (Paralelo B) obtenidos de la aplicación del pretest, permite identificar el nivel de conocimientos previos en medidas de tendencia central antes de la implement= ación de la propuesta metodológica. Este análisis inicial es clave para establecer una línea base y valorar, posteriormente, el impacto real de la intervenció= n pedagógica.

La figura 3 evidencia los resultados obtenidos después de= la aplicación del pretest al grupo experimental (paralelo A) y al grupo de con= trol (paralelo B) con 42 y 44 estudiantes respectivamente, todos los participant= es de ambos paralelos de la Unidad Educativa Logroño demostraron una actitud positiva en la aplicación del instrumento.  Se calculo los promedios de calificaciones de cada grupo: del grupo experimental el resultado fue de 4,61 y del grupo de control de 5,08. La diferencia entre ambos grupos es leve, de 0,47 puntos, lo que sugiere que a= mbos tienen un rendimiento similar, con una ligera ventaja del grupo de control. Este análisis comparativo de ambos grupos nos señala el punto de partida pa= ra realizar la intervención pedagógica

4.= 2.      Post test

La po= sprueba se aplica al grupo experimental (paralelo A) que consta de 42 estudiantes y= fue realizado bajo los mismos parámetros del pretest. Como ya se mencionó se priorizó la aplicación de los conocimientos de mediadas de tendencia centra= l en problemas en situaciones reales de los estudiantes, además, comprobar la di= ferenciación entre la media, mediana y moda que habitualmente los estudiantes se confund= en entre esos conceptos. Asimismo, la calificación se la realizó sobre diez pu= ntos esperando alcanzar un nivel aceptable de logro de 7 puntos, según el Min= isterio de Educación del Ecuador (2024) siete sobre diez (7/10) representa a la calificación mínima requerida para la promoción, en cualqui= er establecimiento educativo del país.

Figura 4

Análisis de resultados – post test (grupo experimental)

Nota: El grupo experimental obtuvo un promedio de 7,21/10 en el post test, superando la calificación mínima reque= rida para la promoción.

En la= Figura 4 se observan los resultados obtenidos de la aplicación de la posprueba= en el grupo experimental donde participaron 42 estudiantes del séptimo año de = la Unidad Educativa Logroño evidencian un promedio de 7,21 puntos. Que, según = la normativa vigente del Ecuador, en promedio se supera el puntaje mínimo requerido para la aprobación, demostrando que la metodología de resolución = de problemas es efectiva a la hora de mejorar el rendimiento en las medidas de tendencia central.

Figura 5

Análisis comparativo- pretest y post test

En la figura 5 se observa un análisis comparativo de los resultados del pretest y postest en el grupo experimental, demostrando una mejora significativa y un incremento de 2,6 puntos que es igual al 56,4%, esto refleja un impacto positivo de la intervención pedagógica aplicada no solo en el rendimiento académico sino e= n la comprensión y aplicabilidad de los conceptos estadísticos.

Tabla 10

Comparación de medidas estadísticas antes y después de la intervención

Concepto

Pretest

Post test

Diferencia

Promedio (Media)

4,61

7,21

2,6

Mediana

4,5

7

Desviación estándar=

0,97

1,17

Número de estudiantes

42

42

0

Prueba T (valor p)<= /o:p>

4,83E-21

Significativa=

¿Diferencia significativ= a?

Sí (p < 0,05)

✔️

 =

La tabla 10 compara los resultados del grupo experimental antes y después de la intervención didáctica. Se observa una mejora significativa en el rendimien= to, respaldada por la prueba T (p < 0,05), lo que indica que los cambios no = se deben al azar, sino a la efectividad de la metodología aplicada.=

Asimismo, para tener una visión completa del impacto de la metodología de resolución de problemas implementada en la tabla 11 se muestr= an los cálculos de la mediana que pasó de 4,5 a 7 lo cual indica que la mayorí= a de los estudiante mejoraron su rendimiento, la desviación estándar que paso de 0,97 a 0,17 refleja una ligera dispersión en las calificaciones posiblemente esto se deba a los destinos ritmos de aprendizaje, y finalmente la prueba T arrojó un valor de p =3D 4,83E-21 confirmando que la mejora observada es estadísticamente significativa (p < 0,05) y no producto del azar. Esto respalda la efectividad de la metodología de solución de problemas aplicada= .

4.3.Análisis de las encuestas aplicadas

La Tabla 11 presenta la operacionalización de las variabl= es del estudio, detallando las dimensiones y preguntas para medirlas. La varia= ble independiente, "Metodología basada en resolución de problemas", se analiza en áreas como su aplicación en el aula, la participación del estudiante, y el uso de recursos tecnológicos. La variable dependiente, "Rendimiento académico en estadística", se evalúa mediante la identificación de conceptos, la aplicación en problemas, y la percepción de utilidad del aprendizaje. Las preguntas se diseñaron con una escala de Like= rt de 1 a 5 para evaluar el impacto de la metodología.

Tabla 11

Preguntas de la encuesta de acuerdo con las variables y dimensiones del estudio

Variable

Dimensión

Pregunta (Escala Likert 1 5)

Metodología basada en resolución de problemas (VI)

Aplicación en el aula

1.= ¿Aplicas la resolución de problemas en tus cl= ases de estadística?

Participación del estudiante

2.= ¿Te sientes más involucrado en la clase con e= ste enfoque?

Impacto en la comprensión

3.= ¿Consideras que la metodología te ha ayudado a entender mejor la media, mediana y moda?

Uso de recursos tecnológicos

4.= ¿El uso de herramientas tecnológicas facilita= tu aprendizaje de las medidas de tendencia central?

 

Rendimiento académico en estadística (VD)

Identificación de conceptos

5.= ¿Te considera un experto en explicar la diferencia entre la media, mediana y moda?

Aplicación en problemas

6.= ¿Puedes resolver ejercicios prácticos aplican= do medidas de tendencia central?

Representación gráfica

7.= ¿Puedes representar los datos mediante gráfic= os adecuados después de aplicar los cálculos?

Percepción de utilidad

8.= ¿Crees que aprender medidas de tendencia cent= ral con esta metodología es más útil para la vida cotidiana?

Nota: Preguntas tomadas de  Diaz-Levicoy et al. (2016), Dávila-Cevallos & Alcívar (2024), Alencar & Diaz-Levicoy (2024), Millán (2024)=

La figura 6 muestra cómo se comportaron las respuestas recogidas en la encuesta el gráfico no solo permite notar ciertos patrones llamativos en la opinión de los encuestados, sino que además proporciona una lectura más comprensible de los datos.

Figura 6

Distribución de las respuestas en la encuesta

= •      =    El 79.5% de los estudiantes afirma utilizar la resolución de problemas en sus clases, lo que demuestra una aceptación favorable del método.

= •      =    Con este enfoque, el 81.9% se siente más comprometido en clase, lo que indica un efecto positivo= en la motivación de los estudiantes.

= •      =    Más del 70% cree que = la metodología ha mejorado su comprensión de la media, la mediana y la moda.

= •      =    El 63.7% tiene una percepción positiva del uso de herramientas tecnológicas, aunque una propor= ción menor que expresa escepticismo sugiere la necesidad de mejorar la utilizaci= ón de estos recursos.

= •      =    El 66% se siente capa= z de explicar las diferencias entre las medidas centrales de posición y el 72.7% afirma que puede realizar ejercicios prácticos, lo que sirve para resaltar = la efectividad de la estrategia instructiva en la preparación de los estudiant= es para la aplicación práctica del conocimiento.

Estos datos demuestran claramente que, aunque la mayoría de los estudiantes están progresando de manera significativa en su aprendizaje, aún hay ciertas áreas más reducidas de desafío persistente, lo que ayuda a enfocar futuros esfuer= zos pedagógicos para superar los obstáculos identificados.

Según Amador et al. (2023) una revisión sistemática de 23 estudios mostró que las metodologías basadas en la resolución de problemas facilitan la adquisición= de habilidades de pensamiento crítico, resolución de problemas y comprensión conceptual en los aprendices de diversos niveles educativos. Además la investigación realizada por Macías & Ordóñez (2025) enfatiza que si bie= n es importante enseñar una competencia docente para abordar un problema complej= o, también es igualmente importante que los estudiantes tengan una capacidad específica de resolución de problemas, lo que resalta la necesidad de metodologías activas.

= 5.      Conclusiones

·&nb= sp;        La resolución del problema mostró ser un enfoque efectivo para enseñar las medidas de tendenc= ia central, a favorecer verdaderamente la comprensión, aplicación y representa= ción de estos conceptos en estudiantes de séptimo grado. De manera más práctica,= se menciona la urgencia de pasar del docente al facilitador del aprendizaje, integrar este enfoque en las materias currículo de matemáticas, así como disponer herramientas tecnológicas accesibles para potencializar la alfabetización estadística.

·&nb= sp;        Las limitaciones de la investigación son una muestra intencional de carácter limitado de una sola institución educativa para la generalización de los hallazgos. Tampoco la intervención breve permite conocer la persistencia de los efectos, ni se consideraron variables externas a la propia intervención como son el entorno familiar o el acceso fuera del aula a las tecnologías.

·&nb= sp;        En cuanto a futuras investigaciones se remite a constituir en pie investigaciones longitudinales con el visto bueno de verificar la permanencia de los aprendizajes. También sería interesante trabajar en la preparación del profesorado en la enseñanz= a de la estadística empleando métodos activos y también poner en práctica este enfoque en otros niveles educativos y áreas del conocimiento aprovechando c= omo herramientas digitales emergentes en el aula.

= 6.      Conflicto de intereses

Los autores declaran que no existe conflicto de intereses en relación con el artículo presentado.

= 7.      Declaración de contribución de los autores

Todos autores contribuyeron significativamente en la elaboración del artículo.

= 8.      Costos de financiamiento

La presente investigación fue financiada en su totalidad con fondos propios de= los autores.

= 9.      Referencias Bibliográficas

Alencar, E., & Diaz-Levicoy, D. (2024). Conocimiento= para enseñanza estadística en el libro de primer año de educación primaria en Pe= rú. REAMEC-Rede Amazônica de Educação em Ciências e Matemática, 12, e24023.   https://peri= odicoscientificos.ufmt.br/ojs/index.php/reamec/article/view/16664

Amador Alarcón, M. del P., Torres Gastelú, C. A., & Lagunes Domínguez, A. (2023). Aprendizaje basado en problemas para el desarrollo de competencias en estudiantes. Revisión sistemática de literatu= ra. Revista del Centro de Investigación de la Universidad La Salle, 15(59), 131–166= . https://doi.= org/10.26457/recein.v15i59.3491

Diaz-Levicoy, D, Ferrada, C., Parraguez, R., & Ramos-Rodríguez, E. (2016). Errores en la construcción de gráficos estadíst= icos por profesores chilenos de educación primaria. https://fune= s.uniandes.edu.co/funes-documentos/errores-en-la-construccion-de-graficos-e= stadisticos-por-profesores-chilenos-de-educacion-primaria/

Castro, E. S., & Olivarria Cañ= ez, O. A. (2024). Educación estadística y la Nueva Escuela Mexicana: Una mirada= al currículum estadístico del bachillerato mexicano. Educación y Ciencia: México, 13(61), 156-171. https://dial= net.unirioja.es/servlet/articulo?codigo=3D9698877

Charris Huerta, L. M. (2019). El método Polya en la resolución de problemas aditivos en los estudiantes del 3° grado de primari= a de la Institución Educativa Parroquial Padre Abad de Tingo María-2018 [Tes= is de pregrado, Universidad de Huánuco, Huánuco, Perú] https://repo= sitorio.udh.edu.pe/bitstream/handle/123456789/2127/CHARRIS%20HUERTA%2c%20Lu= z%20Margarita.pdf?sequence=3D1&isAllowed=3Dy

Millán Contreras, C. = A. (2024). Constructos teóricos de la enseñanza de la estadística en la edu= cación primaria rural [Tesis de doctorado, Universidad Pedagógica Experimental Libertador, Venezuela]. https://www.espacio.digital.upel.edu.ve/index.php/TD/arti= cle/view/1128

Dávila-Cevallos, A. V., & Alcívar-Cruzatty, M. E. (2024). Di= seño de una estrategia didáctica basada en problemas de la vida cotidiana para la enseñanza de la Estadística. MQRInvestigar, 8(4), 2581-2603. = https://www.= investigarmqr.com/ojs/index.php/mqr/article/view/1921

Hernández Sampiere, R., Fernández Collado, C., & Bapt= ista Luis, P. (2010). Metodología de la investigación. McGraw-Hill. https://apiperiodico.jalisco.gob.mx/api/sites/periodicooficial.ja= lisco.gob.mx/files/metodologia_de_la_investigacion_-_roberto_hernandez_samp= ieri.pdf

Jadallah, K. F. A.-H. (2= 024). La encuesta: Una secuenciación en la enseñanza del cálculo matemático-estadíst= ico para futuros maestros/as en educación primaria. actual desde la Enseñanza Superior, 21. https://rua.= ua.es/dspace/bitstream/10045/149599/1/Aportaciones-al-conocimiento-actual-d= esde-la-Ensenanza-Superior.pdf#page=3D22

Macías Ureta, K. T., & Ordóñez Valencia, E. V. (2025). Metodologías activas pa= ra el desarrollo de habilidades matemáticas: Un análisis bibliográfico. LAT= AM. Revista Latinoamericana de Ciencias Sociales y Humanidades, 6(2), 3431. https://doi.org/10.56712/latam.v6i2.3917

Mera Galarza, R. S. (2024). Los juegos de invasión en las habilidades motrices básicas de escolares de educación general básica media [Tesis de pregra= do, Universidad Tecnica de Ambato, Ambato, Ecuador]= . https://repo= sitorio.uta.edu.ec/items/06434b29-973e-43c5-a03a-b4c8d62ae582

Ministerio de Educación del Ecuador. (2024). Instructivo de evaluación estudiantil = 2024. https://educ= acion.gob.ec/wp-content/uploads/downloads/2024/08/instructivo-evaluacion-es= tudiantil-costa-galapagos-2024.pdf

Oliveros Cuello, D., Martínez Valera, L., & Barrios Bolaño, A. (2021). Método de= Polya: una alternativa en la resolución de problemas matemáticos. Revista Ciencia e Ingeniería: Interdisciplinar de Estudios en Ciencias Básicas e Ingenierías, 8(2), e5716273. https://doi.= org/10.5281/zenodo.5716273

Pineda Procel, J. H., Alban Alcívar, J. A., Cañar Cuenca, J. Y., Jiménez Ordóñez, = H. D., & Quezada Yaguachi, D. A. (2024). Estrategia Pedagógica del Aprendi= zaje Basado en Proyectos en la Enseñanza de Estadística y Probabilidad. SAGA: Revista Científica Multidisciplinar, 1(4), 202-212. https://revi= stasaga.org/index.php/saga/article/view/25

Pantoja Terán, J. L. (2024). Experiencias de enseñanza sobre la estadística en universidades en el contexto internacional. Experiencias Educativas Universitarias en el Ámbito de las Ciencias Económicas y Empresariales,= 2(2), 77-83. https://revi= stas.usfx.bo/index.php/eeu/article/view/1365

Vygotsky, L. S. (1978). El desarrollo de los procesos psicológicos superiores = (Primera edición). Grupo editorial Grijalbo. https://www.academia.edu/42955149/EL_DESARROLLO_DE= _LOS_PROCESOS_PSICOL%C3%93GICOS_SUPERIORES?utm_source

Wickramasinghe, I., & Valles, J. (2015). Can we use Polya’s method to improve students’ performance in the statistics class= es? Numeracy, 8(12). 1-13. https://doi.org/10.5038/1936-4660= .8.1.12=

Zambrano Zambrano, L. B., Cabrera Nazareno, B. G., Gueva= ra Nieto, Á. P., Ortiz Molina, S. C., & Rocero Benavides, M. M. (2024). Razonamiento lógico matemático y su influencia en el bajo rendimiento acadé= mico en estudiantes de educación general básica, subnivel medio. LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades, 5(4), 2666-2679. http://latam= .redilat.org/index.php/lt/article/view/2446

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

El artículo que se publica es de exclusiva responsabilid= ad de los autores y no necesariamente reflejan el pensamiento de la Revista Explorador Digital.

 

 

 

 

El artículo queda en propiedad de la revista y, por tanto, su publicación parc= ial y/o total en otro medio tiene que ser autorizado por el director de la Revista Explorador Digital.<= /o:p>

 

 

 

 

 

 

 

 

------=_NextPart_01DC322D.ECA9A450 Content-Location: file:///C:/0D2A2649/03-3Metodologiapararesolverproblemasmatematicos(1)_archivos/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml Her17Book{52312C25-ECC2-4569-BAC9-7346FF7923A5}Metodología = de La Investigación2010McGraw-Hill= CompaniesH= ernándezRFernánd= ezCBaptistaPen-UShttps://apiperiodico.jalisco.gob.mx/api/sites/periodi= cooficial.jalisco.gob.mx/files/metodologia_de_la_investigacion_-_roberto_he= rnandez_sampieri.pdf1= Oli21ElectronicSource{8= 76BACED-890F-4CBB-8D3F-C2B786AEA3B8}Método de Polya: Una= alternativa en la resolución de problemas matemáticos2= 021Ciencia e Ingeniería: Revista Interdisciplinar de= Estudios en Ciencias Básicas e IngenieríasOliverosDarwing MartínezLuzmidian BarriosAndrés <= b:Last>Universidad de La GuajiraFacultadesde Ciencias Básicas y Aplicadas e Ingenieríahttps://dialnet.unirioja.es/s= ervlet/articulo?codigo=3D8742480https://www.doi.org/10.5281/= zenodo.5716273en-US2Cha19ElectronicSource{58BA8860-F48B-4323-9D33-480C0A789A13}“EL= MÉTODO POLYA EN LA RESOLUCIÓN DE PROBLEMAS ADITIVOS EN LOS ESTUDIANTES D= EL 3° GRADO DE PRIMARIA DE LA INSTITUCIÓN EDUCATIVA PARROQUIAL PADRE ABAD= DE TINGO MARÃA-2018â€2019= CharrisLuzhttps://repositorio.udh.edu.p= e/bitstream/handle/123456789/2127/CHARRIS%20HUERTA%2c%20Luz%20Margarita.pdf= ?sequence=3D1&isAllowed=3Dy3Wic15ElectronicSource{EFEA68F4-7EA1-464F-BDB3-04E74DB4F465}Can We Use= Polya’s Method to Improve Students’ Performance in the Statistics Clas= ses?2015WickramasingheIndika VallesJameshttp://dx.doi.org/10.5038/1936-4660.8.1.125Min16InternetSite{1EC92230-6418-4E26-9104-CE0F= EF0C2ED0}Educar Plus2016https://educarplus.com/2019/06/curriculos-del-ministerio-de-educacion-por-= areas%E3%80%902020-2021%E3%80%91.htmlMinisterio de Educación4 ------=_NextPart_01DC322D.ECA9A450 Content-Location: file:///C:/0D2A2649/03-3Metodologiapararesolverproblemasmatematicos(1)_archivos/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC322D.ECA9A450 Content-Location: file:///C:/0D2A2649/03-3Metodologiapararesolverproblemasmatematicos(1)_archivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQB3 042flgcAANEgAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZX4sbyRF/D+Q7DPMu69+M/iyW D2kkec/etY0lO9xjr9SaaW/PtOhu7VochuB7yksgcHfkJZC3PBzHHdxBjrzkwxhsksuHSHXPaNQt tezdxQQTdgXLTOtX1b+uqq4qdd/97GVKvQvMBWFZz6/fqfkezmZsTrK45z+bjisd3xMSZXNEWYZ7 /hoL/7N7v/3NXXQkE5xiD+QzcYR6fiLl8qhaFTMYRuIOW+IMvlswniIJrzyuzjm6BL0prTZqtVY1 RSTzvQyloHYKMt4ce48XCzLD/r2N+hGFOTIp1MCM8olSjgsZAzs/ryuEWIuIcu8C0Z4PM83Z5RS/ lL5HkZDwRc+v6T+/eu9uFR0VQlQekDXkxvqvkCsE5ucNPSePz8pJgyAMWv1SvwZQuY8btUetUavU pwFoNoOV5lxsne1GFBRYA5Q/OnQP28Nm3cIb+pt7nPuh+lh4Dcr1B3v48TgCK1p4Dcrx4R4+HHQH Q1u/BuX41h6+XesPg7alX4MSSrLzPXQtbDWjzWpLyILRYye8GwbjdqNQvkVBNJTRpaZYsEweirUU vWB8DAAFpEiSzJPrJV6gGcRxhCg548Q7IXECgbdEGRMwXGvUxrUm/FefQD9pj6IjjAxpxQuYiL0h xccTM06Wsuc/AK2+AXn7yy9vXv/85vXf33z11ZvXPxRza1WW3DHKYlPu17/96T9/+b3375/++uvX 3+RT7+KFiX/3/R/e/eOf71MPK96a4u23P777+ce3f/7jv7772qG9z9GZCZ+SFAvvEb70nrIUFujg j8/49SSmCSKmRD+LBcqQmsWhfyQTC/1ojShy4AbYtuNzDqnGBby/emERniR8JYlD48MktYCnjNEB 404rPFRzGWaerrLYPTlfmbinCF245o5QZnl5tFpCjiUulVGCLZpPKMokinGGpae+Y+cYO1b3BSGW XU/JjDPBFtL7gngDRJwmmZIzK5q2QsckBb+sXQTB35ZtTp97A0Zdqx7iCxsJewNRB/kpppYZ76OV RKlL5RSl1DT4CZKJi+RkzWcmbiQkeDrGlHmjORbCJfOYw3oNpz+ENON2+yldpzaSS3Lu0nmCGDOR Q3YeJShdurATkiUm9nNxDiGKvCdMuuCnzN4h6h38gLKD7n5OsOXuD2eDZ5BhTUrbAFHfrLjDl/cx s+J3sqYLhF2pps9TK8X2OXFGx2AVW6F9gjFFl2iOsffscweDAVtaNt+SfpBAVjnGrsB6gOxYVe8Z FtjTzc1+njwhwgrZCY7ZAT6n653Es0ZZivghzY/A66bNR1DqUlcAPKazcxP4iEAXCPHiNMpjATqM 4D6o9UmCrAKm3oU7Xtfc8t9V9hjsyxcWjSvsS5DB15aBxG7KvNc2U0StCbYBM0XQZbjSLYhY7t+K qOKqxVZOuYW9abdugO7IanpSkn2wA9rpfcL/Te/j2HIfp+txK7ZS1jX7nUMp5XinyzmE2+1tIsbn 5NNvbYZolT3BUE3289ZtZ3Pb2fj/953Nof18288c6jpu+xkf+ozbfqY4Yvk4/cy2hYHuRh175Mc9 +vAnPXj2syCUTuSa4hOhj38E/KqZj2FQyemTT1yeBS4TeFRlDiawcDFHWsbjTP6OyGSSoCWcEdV9 pSQWhepYeEsm4OhIDzt1Kzxdpadsnh951uvqeDOvrALJ7XgtLMfhuErm6FZ7e4xXqtdsY33cuiGg ZK9DwpjMJtF0kGhvBpWR9OEuGM1BQq/so7DoOlh0lPqNq/ZYALXSK/Cz24Mf6z0/DEAEhOBUDlr0 ufJT7uqNd7UzP6anDxnTigBoszcRsPV0V3E9uDy1ujzUruBpi4QRbjYJbRnd4IkEfgwX0alGr0Lj ur7ubl1q0VOm0PNBaG1ptDvvY3FTX4Pcbm6gmZkpaOZd9vxWM4SQmaFlz1/A0TE8pkuIHaF+eSEa ww3MTPJ8w98ksyy5kEMkktzgOunk2SAlEnOPkrTnq+WXbqCZziGaW70BCeGTJdeFtPKpkQOn207G iwWeSdPtxoiydP4KGT7PFc5vtfjNwUqSrcDdk2R+6Z3RFX+KIMTCdl0ZcE4E3CDUc2vOCVyJlYls G387halIu+adlI6hfBzRZYKKimIm8xyuU3lJR7+VNjDeijWDQQ2TFIXwLFYF1jSqVU3LqpFzOFh1 PyykLGckzW3NtLKKqpruLGbNsCkDO7a8WZE3WG1MDDnNrPB56t5Nud1NrtvpE8oqAQYv7eeoulco CAa17WQWNcV4Pw2rnF2M2rVjs8APULtKkTCyfmujdsduZY1wTgeDN6r8ILcbtTC02PSV2tL69ty8 3mZnLyB5DKHLXVEptCvh8pojaIgmuifJ0wZskZey2Brw5K046flf1sJ+EDXCqFLrhKNK0AxqlU7Y b1b6Ydisj8J6bThovILCIpO0HuY392O4xqDr4v5ej+/d4aebm5o7M5ZWmb6br2ri+g6/3rDu8PP7 eG+qruh9j0DS+bLVGHeb3UGr0m32x5VgOOhUulFrUBm2ovZwPIzCTnf8yvcuNDjoN6OgNepUWvUo qgStmqLf6VbaQaPRD9r9zijovyraGFh5nj4KW4B5Na97/wUAAP//AwBQSwMEFAAGAAgAAAAhAA3R kJ+2AAAAGwEAACcAAAB0aGVtZS90aGVtZS9fcmVscy90aGVtZU1hbmFnZXIueG1sLnJlbHOEj00K wjAUhPeCdwhvb9O6EJEm3YjQrdQDhOQ1DTY/JFHs7Q2uLAguh2G+mWm7l53JE2My3jFoqhoIOumV cZrBbbjsjkBSFk6J2TtksGCCjm837RVnkUsoTSYkUiguMZhyDidKk5zQilT5gK44o49W5CKjpkHI u9BI93V9oPGbAXzFJL1iEHvVABmWUJr/s/04GolnLx8WXf5RQXPZhQUoosbM4CObqkwEylu6usTf AAAA//8DAFBLAQItABQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAAAAAAAAAAAAAAAAAAABbQ29u dGVudF9UeXBlc10ueG1sUEsBAi0AFAAGAAgAAAAhAKXWp+fAAAAANgEAAAsAAAAAAAAAAAAAAAAA MAEAAF9yZWxzLy5yZWxzUEsBAi0AFAAGAAgAAAAhAGt5lhaDAAAAigAAABwAAAAAAAAAAAAAAAAA GQIAAHRoZW1lL3RoZW1lL3RoZW1lTWFuYWdlci54bWxQSwECLQAUAAYACAAAACEAd9ONn5YHAADR IAAAFgAAAAAAAAAAAAAAAADWAgAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbFBLAQItABQABgAIAAAA IQAN0ZCftgAAABsBAAAnAAAAAAAAAAAAAAAAAKAKAAB0aGVtZS90aGVtZS9fcmVscy90aGVtZU1h bmFnZXIueG1sLnJlbHNQSwUGAAAAAAUABQBdAQAAmwsAAAAA ------=_NextPart_01DC322D.ECA9A450 Content-Location: file:///C:/0D2A2649/03-3Metodologiapararesolverproblemasmatematicos(1)_archivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01DC322D.ECA9A450 Content-Location: file:///C:/0D2A2649/03-3Metodologiapararesolverproblemasmatematicos(1)_archivos/image001.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAABoAAAAaCAMAAACelLz8AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAJqUExURQAAAAAAAP//AICAAIC/QL//QJmzM7PMM6LROrHeN6fOO6TIN57KNarVPKbS OaHIN67UPKXPOqfQOaXIN6zVPKjNO6LIN6PNNqfPOKXLOKrPO6XNOavVO6XPO6XPOqvVOqbPOaXK OKnUOqPNOKTKOKLLN6fOOanTOazTO6bOOKrTOaXLOKfNOKnSO6zUO6bOOqbOOqXMOarRO6fOOqbQ OabPOqXNOanSOqrTOqTNOabOOqfQOqfQOaXNOavUO6bNOabOOqXLOKvUO6bNOazWO6XOOazWO6vV PKbOOaXNOavUO6zWO6XNOabPOazWPKnTO6rSOqXOOa3WO6nSOq3XO6vVO63XPKfPOazWO5fGGJfG GZvIIZ7KKJ/KKZ/KKp/KK6DKK6DLLKHLLKHLLaHLL6LLMKLMMKLMMaPMMqPMM6TNNKTNNaTNNqTN N6XNNqXNN6XNOKXNOaXON6XOOKbNOabOOKbOOabOOqfPOafQOajPPajPPqnQP6nQQKnROqnSOqrS OqrTOqvUO6zRR6zVO6zWO63SSa3WO63XO67XPK7YPK/ZPK/aPLDaPLDbPLDbPbHcPbLcPbLdPbPe PbPePrPfPrTfPrTgPrXgPrXhPrbiP73bbMDccsPeesTffMTffcbfgMfgg8fghNbppNjpqNjpqdnq q9nrrdvrr9zrsd3ttd7ttt/tuODuu+HvveLvv+Tww+XwxeXxxujzzev00uv11ez01Oz01ez11u31 1u312O712O712e/22+/23PD23fL44/P55fT55vT55/X56Pb67Pf77vf77/n88vn88/3++/3+/P7+ /f////JD2N8AAABZdFJOUwABAQIEBAoKFhcaHB0eKC4vMDEzNzg8PUBERUdJSk9PUFJTVldYYmJo bW9xcXFxcnN0dXeHiYuSlpibqKmtra6xsrm9v8TIydHS1Njc4Ofr8PX19vb39/n6KiHTUAAAAAlw SFlzAAAXEQAAFxEByibzPwAAAepJREFUKFNjgANeeSNTE10ZTigXAZScgidMA4K+ADspqBAE8LtM nlBXBgYNk3vteKDCQKAcNLkoHyJTVlZSMcNPHCrBoNrTmpuTnweVKisr7A4Rg8gIRbTkZm/aXZ0D lQHJ+XOBZFg8JhTm5207UptdDAIQuRmOICm1mUB2fk5+TllaampqSnxCXnlZWUW/BAMDk2c3UCpt 8arMqrVb9u3dtW5+flp5WclkBwYGwaYKoFTSjuNpNaePrlm34fDZnW1AufpADgbNaSDDkzcfTK85 vTQqLi59zpm9eUDX9skyWE6BS51aEQu0NXru2UVxZWXTDBhsJ6JKlWUXn9iUAJQyZbBHlypO3b83 vbRsmhmD1WQ0qZyyk2BdxgyGCGeApYqj551dCLRrggKDaAfI8WCp00siY2MSZ5/Zk5NXVhfOzcDq 0wmUStp6DKjr0LKVq/ed3d4M9NdEZ2BA6c8qLCtLXb4+s3rjvsOHDmxakAOUKZsiB5Ri9+0GymVl gXBWVkZiPDAMCye7goKXQbK3vrCsoADoWyAAUsCAbw3lA0sxaM9oAOpDgMKWbkWIDAODTjfITDiY GKYClQACae+ZXSA/AEFlz3Q3YagwGLDpebVPmzJp0tRpje7qjFBBGGAW0bKwsTbXEIDyGRgAuQH6 Gl8RLYcAAAAASUVORK5CYIJ= ------=_NextPart_01DC322D.ECA9A450 Content-Location: file:///C:/0D2A2649/03-3Metodologiapararesolverproblemasmatematicos(1)_archivos/image002.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCABPAJUDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD91PAn xR+G3xM0j/hIfhz470fXrFm2/bNH1SK6iz6b4mZc/jWB+0xrWsaH+zv481nRtQms7qz8HapPaXlr M0ckMyWsrK6suCrBgCCDkEV/O14c8UeKPBOsw+I/BfiW/wBJ1C3cPb6hpt5JbzRMDwVeMhgfoa/d i18U6/42/wCCXMHivxbqU99qeqfA1brUr64bMlxcS6NvkkY92ZmJPua+vzvheWQ4mknLmUnbazVr b9z4nLOJP7YwtW8eWUY30d07/ij8wPgn/wAFjf24fhLeW41zx9a+MtNhVUbT/FFiskhUHki4i2TF yONzu4zyQa/Vz9gz9sfS/wBuL4It8YNM8E3Hh+a21ebTr/T57xbhVmjSNy0cgC70KypyVU53DHAJ /n+r9iP+Df5d37GmtKG/5qBff+ktnX0XGGSYHBZTSxFOCjO6V1pdNdUtDwuFc0xeIzWVCcm4Wbs9 dVa2rPvCvj//AIK6f8FDtV/YU+D2m6Z8Nbe1m8deMJZodDa8j8yKwt4gvn3bJ0dlMiKiNhSz7juW Nkb7Ar8Uf+DiTWby+/be0HSJJm8mx+HNkIY+cBnvLxmb6ngf8BHpX5jTSlI/UzyPwP8AGz/grn+1 Le6h4x+FXxO+OHiSNLgpfXPhLVNRisoJcA+XttSkETYYHy1AODkDFfQH7B3hP/grpYfteeAbv453 Xx2bwjHrqnXh4k1rVJLEweW/+uWWQoUzj7wxnFfob/wTG+H3hn4b/sFfCvRPC1isMd94Os9VumC8 yXN5GLmZye5Lytj0UKOgFe+kA9RRKfSwHwL8Ifi9/wAFUdT/AOCnF14C+IHh3xFH8E18X63Db3c3 gu2itDp8cV0bM/axAJCpdYMNvyxIyTk5++S6jqa/Hj9m/wCKfxNvv+C9+oeCr74i69Noq/ErxXEu kSaxM1qI0ttQKJ5RbZtUqpAxgYGOlZv7dn7bP7ZX7Zf7cl/+xx+yx4z1jR9J03xJPoOl6b4d1J7J tRmt963V1dTxsGeIGOV8E+WsUattLbmL5eYD9mqakqOMq1fk34H/AOCN/wDwVI8PeNNH13W/2ufD txZ2eqW895Cvj7W2MkSSKzKA1mASQCMEgHvXkP8AwUY1z4/+Pv8AgrH4m+A3ww+L+taTL4g8UaNp Oj2//CQXVvZwTXNnZopYRE7E3vliqk8k4JqfZ+YH7hl1HVqXIxnNfg1+1H8Hv+Clv/BMvXvC/j7x p+0bqbf2rcP/AGXqnh3xne3dv50JVzBPHcKm8EEEoyNG65BzyK+u/wBuf/grD8WPBX/BP74S+O/h bNBo/jn4taO019qcNuGXTY7dES8e3VidjvPIojLbtqb/AOIKwPZ7WA/SoEHkV8w/8FSfHv7Z3w++ Bei6t+wzpmrXfiqXxZDDqkej6DDqUi6ebW5LExyxyBV81YfmABzgZ5IP5y/s+f8ABPj/AIKyftc/ Diz+Olr8e9T0vT9cUT6XceNPH+pR3WoQH7twqxrKwjbqpfaWXDKCrKx9K/bw+F37Uf7Ff/BLTwf4 F+JvxnurjxY3xiaW41rQfEl5KZLWSwvGSIzSLHIQCmSpG0ECjkXMtQP0G/YF8TftD+Mf2TPCfiL9 q+zvrX4gXX27+3odS0uOymXbf3CwboY0RU/cCEjCjIIJySSfaMj1Ffmz8GvgR+01+2r/AMEYvhb4 W+D/AMX/AOy/FzeJr6/vPEGueIL2BpraLUtUiMZngSWVj88eFIxhOowBXjviX/gjZ/wVi8PeHr7x Dp/7Umk6pNY2klxFpum/ELWPtF0yKWEUXm2yR72xtXe6rkjLAZNHL5gfsPvU9DRX4qfsE/8ABbz4 n/s7+BtU8A/tBzat8QLVZ4ZPDt9qWpNLeWikP50TzyBnlTPllAxJT5gDt2hSn7OQHxnX7s+Dcf8A DpXSSB/zQOH/ANMwr8Jq/dnwV/yiV0r/ALIFD/6ZRX7B4jf71h/X/I/GOCv4Fb/CfhNX7Gf8EAP+ TMtX/wCx+vP/AEls6/HOv2M/4N/v+TMdX/7H28/9JbStOPP+RBR/7d/I04Q/5Hs/Rn3ZX5Bf8HHn wY8Q6b8ZfAv7QcNnI+k6t4dbQLiZIzthu7eaWdAx6AyR3D7R1It39K/X2uJ+N3wJ+Ff7RPw51D4R fGTwfb63oOpL/pFrcEqUYfdkjdSGjkU8h1IYevJr8ajLldz9iWx+ff8AwTQ/4LPfszfDv9l/w/8A BH9pzxRfeHda8H2a6dZ6gujz3dvqFmhIt9v2ZHZHSPbGwZQDsDBiWIX6n+FP/BWP9gr44fELSfhP 8M/jXNqGv65dC20uxbwvqUImkwTt3y26ovAPLECvnTxB/wAG337Od3qb3Phj4++NLG1Zvlt7u3tL hl56bwkeR+FdZ+zb/wAEJfhN+zb8dfDHx00P47+IdSvPDOpC8gsbvTYEjmYKy7SVOQPm7VUvZjPk v9mIE/8ABwxqTD/oqHi//wBJdRr5v+KXwc8ON+3/AOLvgr8Z/iUfBenyfETU7O+8U3WltcpaK1xK Ybh4/MjJifMZL7gFR9/IGD+vHw4/4JK/D34eft0zfty2Hxc1q61a48R6pq7aHNYxLbh76OdHQOPm wouGIPU7Rmtb9tz/AIJK/sx/tveKo/iR4rbVPDfitbdYbjXvDskStfIg2xi5jkRllKD5Q42vtCqW KqoWozigPiL4B/8ABMP9kz4ZfHHwX8TbL/grN8L9Ym8O+LNN1SHSYJLJJL1oLmOUQKf7SbDOU2g7 WwW6HpXKftMtu/4OCNLP/VWvCX/oGnV9KeFP+DdX4L+FPFOm+J7b9ozxPNJpuoQ3UcT6XbgO0bhw pIPQ4r1z4hf8Eivh18Q/24bf9uG9+MGuW+rW/ijS9aXQ4bGFrcyWQgCx7z82G8gZPUbjilzeYHif /Byb/wAkd+GP/Y0Xv/pOtfIf7enhLWB+wX+yn46W2lbT28I6tp8k2w7IphdJIqk9AXUsQO4jb0r9 YP8AgoF/wT98H/t/eEvDvhXxj8QdS8Px+HdQmu4ZtNtY5WmaSMIVYP0Axnirlp/wT1+BerfsZ6P+ xR8TbabxN4e0Wz8qz1C6UQ3cMweRkuomT/VSr5jAEcFSysGVmUpSjFIDzP8AYE/4KPfsX3P7HPw7 8O+Jv2g/DPhrVvDvhHT9F1bR/EmrQ2VxFcWltHA7BZGG+Nim9XXIKsAcMGUeQf8ABer4qfDL4x/s JeD/ABt8KvH2k+JNJb4qQQrqWi6hHcwGRdOv9yb0JGRkZGeM1LqX/Btx+z9JeyS6P+0P4yt7dmzH DcWdpM6j0LhEB/75Fem65/wRk+Gmufsb6P8AsbSfGnXo9L0fxtJ4kj1pdPhNxJK8EsPlFPuhQJSc 9cij93zXuB8KfG/4+/E/4Zf8EXf2ffhX4F1e90yx8aal4nOvXljO8Tyw2urXG21ZlI+SQ3BZlz83 kgcjIrB+Bv8AwTO/Zr+K3wi0H4keMf8AgqJ8M/Cup6xpyXV54bvntWn052GfJl8y+ibzF6MCg5zj IwT+nF3/AMEpPgJ4i/Yf8P8A7D/jzXtX1TS/C97cXui+JITHb39rcS3U85kX5Wjxi4kjKsrKynOA wVl+ff8AiG1+B4Jx+0j4q+98u7SrY4pqUQPyDUsoxmiv18/4hsvgiOB+0l4q/wDBTbf40VftIgfl fX7s+Cv+US2lf9kBh/8ATKtfhNX7s+Cv+US2lf8AZAYf/TKK/WvEb/e6Hr/kfi/BX+71v8J+E1fs Z/wb/f8AJmmr/wDY+3n/AKS2lfjnX7F/8G//APyZlrH/AGP15/6S2dXx3/yIKHy/I04R/wCR9L0f 6H3bXm/7VvxZ8QfAn9mzxx8aPDGnWt1qHhfw1d6lZ2t8rGGWSKMsqvtZW2kjnBBr0ivFP+CkH/Jh Pxe/7EDUv/RDV+NL4kfsa2PzT/4iP/2tP+iKfDr/AMBr/wD+Sq0/Bn/ByJ8fLPXo5viD+zx4R1HT ek1vot9dWc546rJI0yjB7FOemRnIw/8AggF8FfhB8afin8RNM+L3wq8M+LLex8P2cllb+JdBt75I HadwWRZ0YKSBgkYJFfQ//BaP/gn1+zR4f/Y81b47/CP4Q+H/AAf4g8G3VnLu8L6PFZR3trNcx28k UscKqjYMyyCQqWHlbQQGIrb3Oa1hn1X4E/bm+EXxb/Y71f8AbH+FRm1bR9H8O6jqV5o80iQ3cE1n A8stnMAWEUvyj+8Crq67lZSeJ/4Jx/8ABSrQf+ChsnjA6D8J7zwv/wAIiunmb7VqyXX2n7V9pxjb Gm3b9nPrncOmK+A/+CLPx0uvAnwK/aU8DT6XZ6xDZ/De48T6foutW/2jTpntrW5jnjnhyPMSYPbI 65G5I8E9K+jP+CKf7YGj/F7Q/i/4v8UfA74T/DfTfCdjpN3qF98P/Ca6Ok8BXUHeS7bzG8xYlhJU nGwPJ13VLjy3A/RSivyJ+L3/AAcP/HnxF8SrjQ/2WPgZ4fbRVmaPT28SWN3e6hehScS+XbzRLFle fL/eEf3z25PxD/wcC/8ABQXwzdrp3iX4PfD3TbhoxJHDf+F9ShZlyRuAe9BxkEZ9jR7OQH2p+3t/ wV38LfsH/G+x+Dmt/BPUPEcl94dt9WXULXWktlRZZ54vLKNExJBgJzn+LHauy/4Kl/tn/ET9hH9n rSfi78NfDWi6tqGoeMLfSJLXXI5WhWKS1upiw8qRG3A26jrjBPHTHyb/AMFj/wBs+4+Av7U+g+EP +GWfgv40N54Bsb5tW+IHgManfRF7q7XyUmMqlYhs3KmOGdznmuJ/4L4ftE/tHa747vv2bfEHwuht fhnoviDTNR0PxQuh3aNdXzaa5aH7Uz+RIB9ouPkVA37vr8rZFG9gP0K/4J0/tQeNv2xP2VND+PXj vQNL03UtUvb6Gaz0dZBAiw3LxKV8x3bJCgnJ6+le9V+Mv/BKn9t/9uvwDZfDX9nH4ffs/W+pfDW+ 8bW9nqHilvB+ozPDbXWoAXcn2qOUQL5Ykk+YqQm35s4Ne9ftnf8ABSP/AIKYfBT9prxV8Lvgf+yz Z6/4V0m6hj0fWJPAOrXbXKNbxSMfOgnWN8O7rlQAMY6g0Om+awH6QV8W/wDBW7/go38Wf+Cfx+H/ APwq7wT4d1j/AIS7+1ft39vRzt5P2X7Hs8vypU6/aHznP3VxjnPyjYf8F9v23fhP8Q9P0r9pr9mn w/Y6XIyyX2lroOoaVqL25yPMgNzO68HkboyG27crncNT/g4d8c+HPiZ4I/Z7+I3g+++1aTr+k65q Om3HllfNt5o9KkjbB6ZVhweRRGFpK4H6Wfs0fEnXvjV+zt4F+MOvW0VrqHirwlp+rX1vpq4hiluL dJWRPMJbaCxAyScdSetFYn7Av/Jjnwf/AOyZaH/6QQ0VmB/PFX7q+CGC/wDBJnS9v/RAYR/5RBX4 UscCv3d+GGk6p4i/4JXaBoei6fNeXt98B7WC1tbeMySTzPoqqqKo5ZmYgADkk1+x+I0l9ZoN9/8A I/F+DOaVKql/KfhHX7Ef8EAnZf2NdYwf+Z+veP8At1s6/K3xh+zP+0l4A0uTWvHP7PvjfRbGBd01 9qnhO8t4UHqZHjCj86+tv+CTf/BTz4PfsmeCbr4EfG3QdSs9O1DxFNqUfiixU3EduZIYYyk0CjzA o8kHcm8nfjYMZK4qrU8yyGnHDtSaadk03ZLWxfD0Z4DPHOsnFNNXaaV3a2+x+xIwQFA5HSvFf+Cj pH/DBXxdzj/kQdS/9ENXoHw0+LPw9+L/AIUtfG3wu8Zafrmk3in7PqGl3SzRNjgrlTwwPBU4Kngg HiuS/bP+HnjH4t/snfET4XeA9K+3a14g8I3tjpVm0yRedPJEVRd0hCrknqxAHc1+OOMoVLSVmnqn o0fsNOpCpFSi7p9UfnD/AMG2bIPjF8Tjux/xTdj+P+kPX1F/wXQ+OvgT4d/sJeIPhfqPiC3XxB42 urKy0XTVmVppEju4bieUpnd5axxMpfGA8kYPLCvzlt/+CJf/AAU3tWLW/wABo4y3DGPxnpS5/K6r U8If8EKP+CjPjDxHDp3inwHovh23k4m1bWvFVrNFEMd1tXmkJ9AExnqQOa35Yc17mhtf8Ei/h/c3 3wE/aq+KjTMsOmfBPUNKVPLP71rm1u5iQenyi0GR1/eCqn/BNa58R2f/AAT/AP2w5/CiO10fBeip J5Y5Fsw1Nbg/TyDKT7Zr9Jvhj/wT50n9lz/gnj46/Za+EZbXPEfiTwfrKXmpTMsDavq1zYvCh+dt sKf6uNVLbVVcsSSzHxT/AII7/wDBPP47fs9eDfjJ8Pv2s/hXDpuk+PtL03T47X+2rW6W9t1j1CO5 Qm2lcp8tygycZ3cdDiXK92B5f/wbX6P4Im1/4ra9dWtm3iK3tdJhs5pY18+OydrkyiMn5gjSJFvx xlI89q88/wCDjdQP21PCjcf8kvs//TlqNWfiN/wRM/4KCfs2/Fm48T/sZeOrjVLGSSVNJ1rQ/Fi6 Pq1tbMQfKuCzwjJGATE7K23JCZ2j5Y/bb+GP7Ynwn+Kmn+Hf22dc1y/8VTeH4rnT5PEHiwaxMunt POqKJhNLtXzUnwm4YJY4+bJqOsr3A+j/APg4P/5PZ8Lf9ks0z/0tv6+uP+DjLaP2IfDRP/RUrH/0 3ajXmn/BXv8A4J0fthftaftNaB8S/gV8LI9Y0Wz8B2OnXF1JrtlalLiO5u5GTZPMjHCyoc4xzjOQ a+vf+Cmv7H2p/twfsr33wj8LX9ra+ILPVLfVvDs+oSOkH2qHehVyoJAeGWZAcEBnUnpU8y90Dif+ CFpX/h294SC9tV1bP/gdNXyP8d/+Cs3/AAUJ+OX7X+tfAL9hmwhs7bS9avdO0ew0/Q7W8utRjtWd XupZLtGRFby2cABAqlVJZhuNX9if9gr/AILCfs4/GLwTpixa9ofw9tfHGnXvijS9P+IVn9iksxdR G6Y26XR3holYMoQs44wTgVJ+0t/wSA/bz+Fn7V2ufG79iXVmurPWdYvNR0m/0PxNFpWoaUtyzNJb P5sseVHmPGGR2DoAWCk7afu8zuB88f8ABR/X/wDgpX4hh8HTf8FBtIuLdIZL5fCklxpumwZZhbm5 ANkozwsH3+nbqa9J/wCCpRJ/YR/Y3YnP/FvdQHP/AF76TUfxd/4Jof8ABaT4+pp8fxq0LWvFUelt I2nLrvxE065FsZNu8pvuzt3bEzjrtFe6ft5f8E4P2xfjb+yd+zb8Mfht8KY9Q1z4e+D7yw8XWja9 Yw/Yp3i09VUPJMqy5MEvMZYfL15GXzRVgPvH9gX/AJMc+D//AGTLQ/8A0ghorR/ZH8DeKPhh+yz8 Ofhp45sDZax4e8D6Xp2qWvmJJ5VxDaxxyJuQlWwykZUkHsTRWIHwND/wbmmQE3X7Wrt/u+Bwv/t6 a9z+GH/BP39uf4K+E7PwJ8NP+Cm99b6PpsMdvp9jqHwts75beGNQiRI1xcuyoqgKFBAAGAK+y1Hb OcUFCPuHivTxWe5njbKvNTt0aT/Q8PD5Dl+E1pQcX3Ts/wAD580z4Wf8FEfDdmbdf2lfhz4qb/np 4g+G9xZsfxtL4KP++TVXxx8HfiJ8R7VR+0F+xz8J/G3kwkSXlnrhkunJ4JhivNPAiOP+nnj+9X0c EwMgUEdjXKsXVvdWT8tPyOmWW4eSs7v11/M+FfDH7Dfgv4UeJ18b/swj4rfAHxJMyotjNajxDot8 ozk3cUE13GUwWAMk8WwsGUAgV9IfDH4y/Eiygs9F/aC8MabazXEafYfGnhe6a50HU933SGb95ZO3 GEmzGSyqk0rHA9XaFTyFFNkgSVfIcK46MhXg1FWvKr8erXV6v79zWhhFh5Xi7Lstn8ieNgw4bNOr O022s7G2WzsrVYYYD5cca/dRf7oHYDOABwBwOBWjWJ3BTZFyvAp1FAH5I3P/AATD/wCC2097NNB+ 2XeLG0rNGv8AwtzWBhSeB9z0rS+A/wDwQu/af8Y/tB6X8Wf25/jTpuv6Xpt1DcX0Meu3mqahqwhI KWzy3Ea7ITgBjuZtuVUKSGX9XKKv2kgImK968h+OP7Ssvwm+Lnw8+CGg+DY9W1z4hXl8tq19qX2O 1s7WzgE1xK7iKVmfDIqRhfnY8soGT67JgjBr4E8d6J4Y8Y/tx+NvCf7Tuo2t9rX2+xufh3od94Zt 9YjutJMASCGwN1vt9Pme8/4+GmRTJhNrooLjbC0qdWUpT1UU3Zbt7L7nuebjq1amoxp6OTSvpouv 3nvvxX/bU8OeEfgZqniTRrBo/Hw08Q6L4L1K1m+0S6pPcSWdjE8ZEcnlz3CFo8+W8sKu6gBW28p8 Nf29/Evjvxvoei6r4G0TStNuvDLanqWoTeJI5kMlxem10qKJ4PMUS3PkXcn2dfNdVVfm3KQbfxX/ AGB/FHxT8ReIPGcPxzbRZdc1yTXIzZ+H1kms7w6D/ZUTCYzKzi3YfaIMBDGzydXKSx0dO/4JneG9 M12xvP8AhZTSWcN8/naW2ijyX09tDXR1tV/fZDQwl/IkcuIlmkBR3Z5W6af1SNJqWsnd9dPI4qjx 8qycVaKsumtnu/U9M8TfteeBtD07XNKtbFpPFmitEkPhnULtbJtQaW6htIJIZZgFMEtxNHEkxABJ 6A8VB8Xf20Pg14J+G/iTxH4Q8aabr2uaTpN5Ppei2cjSNqF1FOlmkMe0HzN17NDbZTP7xyo+ZWA5 H4i/8E7vD/jr4qJ8QofiTeabaR6hZzw2NrY7poY7a0u40C3DylhKt3eSXyTbS3nszSCU+W0WJ4K/ 4Jppo+ueE9Y134zC+XwvZ6LYx21r4d+ypJaabDdLHGhFwzxE3E8N5u3N/pEG8hh5aw4yhhHFPmem rVvTQ39pmPM4uCtsnfbzPpbwdeeMD4S0ufxpZ2y61JpsB1hNMH+jpdbB5qxb5C2wPu25JOMZNFal tAun2sdpaWyJHGuxIweFUcAD8KK5W1c9OEanKj//2T== ------=_NextPart_01DC322D.ECA9A450 Content-Location: file:///C:/0D2A2649/03-3Metodologiapararesolverproblemasmatematicos(1)_archivos/image003.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAPIAAAA5CAYAAAAMR3bTAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAIdUAACHVAQSctJ0AAB27SURBVHhe7V15dFRVnnbmzDmzL+fMmT96ARMS SMLeougZu3vUXrSdlgSykBAgqIgkqTUIjSjNHhaRJYGE7Pu+EbaEACYxgEBAkF1WF8RGu9V27XY0 v/l9t+6rVNV7lVRVqirptr5zvvMq793tvdzv/n53effd5Qts23X8k18uqaDHl9cK/u+KOj+zln6x qpmiVlbRyesf/bsslkBe2ylK2rLPytk4ZrRR/Eu7KXZtk4XrdqoYw+cf/22lRl72TExvJFPWAco/ eOnbI+9+my+zDSCAvzxEJOdSkK6KRhmqLTTyb0cq12zpSjgXwoSb+Giupp+atpMskhUTDQUUZqgV DDfWUQQz3FDllGEKOR9QK98wQ404juTjsLRaCkqrotAFFTSKj+HGcnrAlE3Ly9qvyyIEEMDQx64z t2qH6ypZSPUUYrRwBIvFkco1W7oSzqUw5kYKM9VQx+2P7YS8ru61jFBTHQVLjuAyCpqanDLYgSMQ zyHfUGODPNazoOsER+pqWdh8NNXTcBb4SHMDRejK6KfGHbS5/eZ/yCIFEMDQxAPmXLZWXHG5oo80 cWUeBIaweMYk71BZ48n6PArRlWjG8QdD+bmEsOjH6ErpqY01qvJ5gqamJpo/P4Xmzp1nx6tXr66Q QTzCs88m0zNzk71SRleRnJxMz85L9WueAWjgwOXfm0NSSymILWK4oUKzMvuDd5sa6eVd3XYVounM B9NHc5lgibXi+INhxgoWM1tyUzMLupbu5Ybl5he0XBbRbURHx1B0dCzFxk6n+OkzBRPiZwleuHDh ZzKYR4iLi6fYmAS/imr69ARxD/LPAAYLj/0WLiS7m+zWDqZgxhuLVJXhV0vK2C1G2bTj+IOhJvS3 K7mR4+fEffRhxmYanZxHXe/+OUMW02Ukz9dTTHQ8ofLfvHkzSJ624syZM7MLCws7QHnqrv3798/J zs7uyMvL6ygrq+zIzc3j34UdWVnZHa2trdZwgJaQ2cpvqqqq6mhpabELCxQVFXUcPHhwCdLOysoa e/r06TbkjTxycws76ut3quIA9XU7O0pLKzuKiso6YmPiVUJ+89K1hXm5RR3tB7vs4p84caIIeeF3 RkZGR3t7+8/FhQAGhst/6HkwnF3HUWYIuFq4t1qV2ReEQEfCnefGI5St8bzNtXaV4ewnNCJMBxEh LMJpp+NrKg0JBsdGskXGEQNj4boKt60QRAYhNzbubJWnVJg/P5lmzJhJi3+z9Db+huhjYmKIBfcD nc4gLDmIc3FxceL3wYPt1QgLIcOy4zeQED+Tw8SLcFFRUTR1ajSZTGni+rVr1z6Pi2URxidQQkI8 nzc92Ny8+6uYmDiKi50hiPJGRcZweRu7EefMmXOZU6fGct5cBr5m4QyrkM+ePTtp2tQ4cY9g4owk vh5PGzdu+gbXKyoqzsVyngkJicwZVF1dnYjzAQwQs7nPBxFbhKxdkX1FCET0y80NND6tmi5//G26 LJaAMa+Fw+wSlnAwhezIUGMjl5s9BV0D3W9Qj7D3BVRqIRAWH9xriBS0iC2euru7RR9ZXJ82nWbN fFJcZwG8ifMQMuLhN8AWvA3iVMSLNBAPvy0iSqC8vPxL+BuIj58h4ufnFz3DQu5EWTZs2FgqL2sC goyPj7emjzS5nCfERQb+VoQMgeP3gQOHboiLDHGd8z169HhScXHxuelxiXTx4ptd8nIAA0V7O/3d WFO5ZmX1J0PZyv3yuRxr5VQw3lxGwcYmywCcsNza8f3NEew9jNFX8LGBy7eTUrftUpXdGVCpIQy2 UFRcXEqFhcWCRUUlgizMx2TQuxSr+Nxzi6zpQ8gQk/xTANYN4fBbWG9OH7/jYhOF6PBbQXr6+gSE SUtbKM7j+saNL9sJ2WxaKAbM5j49n+Y9kyIaBlh/XEOj4Zgm8p6RMJsYfzNjBvf1E3o9AqCwoFQ0 RqWl5VRZWXkO4QNC9iK27jtN4X50pR05Sriq8ATqqOvtz6wtOFDy6tWPYbHDjZXsdrPHMISEHGIu 57I3sHtdzeWqplBzPTUevz5KFr1PxE+3iG7p0mV2ld0Rly9fzYaAIJo5c56yhtUSMv5WxAvBKNYR Lq9inRVAyLD2Sv6WRqVXyImJs2hqVCwtWriEVq9aR8uXrSZYUMUiC4vukCbyV4SMtOHOy0sCOTsK RJkbGpq4sSoKCNnbwOgrRKJVWRVitBbEooqR7N6irwiBwSqFMHF0h+iD383ucjD/HqMvF3O89+rU U05jU1A2LoMTAeMaBudCuPxID31XnPOIHHck5pPNsLK4t52aefYSDRDi4shMa6LJuizVPWihqrL+ BioyxLI2/eVPT3a/cQs8dfKsoAwmLCX6mk/OeUYIf/26zR/ivKOQ83KLvoGInnpynjgH0SkW8+mn nqWZiXMoL7fkA/wNzJ71lBBmXV3jtGvXrn+OtGxdawg7IX623b2gYUCXAL+RD/7O2Np7v0LoimvN 8fG7bf+hj8RFBv7G+YsXryVVVtSeQ3/94sWLASF7AzUn3r4SwpXQJUvHQraEs4xqQ8yagnCVIt8q /l3DDUQtrWk8ZVdxOq/+8UBoaqm6HDa0jGJj1VY5haB8BstAnWfEYBtE2UhhWPXFaWrl6YxhzAhT NXW/9+fP5C30iZKS0ndgOWG9ICRbdnefWjF79hzhihYWFonBLiVcU1PTJMw9K31rDErhGo4iYYaS rvyT+6yWMIiPa1FR02jt2vV/wLVr1966OH26vUUuyC96Ew0B4ilpIT/bPCIjp1rzh4VGmnDvce3V V18br1xDPOSLY1VVzR9xvbi47FxsbGxAyN7C/fodFMSWBxVXq3LaUVplCHlc8jZa2XCSNjYdpw1N p2j9TnfYTekcZ0PjMVq75xyFm2tpgq6AzvT0/LMslsAji0sofEGDuhySYmCOXdq4za00P7uV5m5r o5Rtuz1iMjPppXqabMqjcfoqCk9jr8HNgb8wLkuQuZl+uqjArkHyBSBkiOTq1atR8pRLOHDgQOXp 02cr5Z8+x40bN57Zu7e18uzZS37L8zuHrpuflo4x10jL6IpFrqUgQz2FpdVR1sELXqmspz+kqDFs +eLW1Nmld/53X0yBMET/Wasskogro3gNZz759p3xqTkUzu6+Vp7OiGcIqx5hLPOLkGEF5Z8BfJfx 0PMVNIatawi7kv0ttBB9aBYW1ij/yMV+oCtoOnI5Cn3sxu47v5SnBGa93MzuezOLQ12WUdyYCDea y7O05oRPKvO1L76eNC4Vq9vwUgW7/1iHrVEWW6K7gDGECEM5LS4/6lORbdq0iZYvXx4Q8ncd3e9/ YxjNliNEvP2DN4kqNStnL2FtIKAayj5w4f9kMgPGvvO/Y3c2365CEtHf/kifS5jWCdPwFNAfHpa2 m8amFvq0Ijed/+hPEWk1NIIbjv5ELMhh4EVgMO9ec0lAZAH4Hs9mH+QKZxGJEIsLrnWwvobu06nn eQeC9MaTVNp5+Zr8UyDz0E2K4Pxg4cTIsE0ZLKwUg21Tlvnehb3PkMONFzco3OBZxgccy9JLjHrD egeZd1K4oZLOf9ITKpMJIADfYEJyLlvYGlHxUElhbeGqOiPc6uDUcsrtuObV93JnLFevq56QUkBB xiYxgoz1zY6CCeayjtEX0aFbX5fLKD5DetNJChXvP2N0vR8hM8PZrYYngZdOqt647XREtrOzU8d8 0VN2d3e/KJPyGIcOHVKli3Py8qDhwoULL3Z1danKdubMmUdkEBUcwyK+N56RN3H79u3/ciwn2N7e 7nk52y598mjnpXcePeIiOy+992jLuTuPyuhew/K8ejsht1/7rCOsnzevQhfspMk695ZEeorXP/k6 JVzfQCFpZdyYuTGKzR6OMfeg0zKmpBjEPC/mhj2hmBqKtizzjJ4WK1Z9HT78WolM3iVgeghzv3bp xtovMhkMpKevE4tN7MuVQNu3Z2uWrba2tt42LIj7mjUradDvxRaFhYXjHMspGDf4z3zAeOedd/5R /hR40JwjXWrnDGWhlx25eUVG8TnGpZRTcBo3Lu4Imfk/ac67IakDFDIIISMNZZ5XmSM+deq0WWbT JzDqrRKyXPAxmFi9Ot3aSPUygbKztZ9nQ0ODSshgUtKTf71CPvbW53SPIZ8mGotorKmCWekiK2ic sYwmGoppkiGXj4V8rtzK8XxtnKmMJj/zkscP7/KnFB7B+fQn5Ikp6hVgvsTDz1XR3QswRaddHi3C Db9HY6WaAm8I2Rkh0K1bM/t9RqhA6jIMDYvsWK6+LLIzIWNBjQwyJOBVId+XkkHBxga2aljFpF0J tYlBpyrR/wtmon9t24cO03MfUl9Odadue/zw4layiDkd7fy5n6qvFANK5twDfv0Hzdqwh+8bFlm7 XFrEsx1vcD5y7UzIjhbSI8aBCfTyy5v6fE5xcXBf8fqhhZb4gy/kNWvShXCVcgkKIWtPe37nhHzm w29XjzFj9BWLF/joUPkGQux5NZot5Umif5LZuY2JqfnCkjmmjYUWOB+qq6AIcy2136F/kVH8gsXl R7gRgafgnmuNkWuZhAp9WWThMrOg+qJ4D5iP01mwyiuRjsTa66aGvRtklipY3mGO5fh4KcOSHs7J y4OGdevYItuWi4lVbNu3a4+LfOeE/KslxWJ0GlbVpZVcbnC4oYlWVr3q8YNb1fDa58HGRjFIpEof 5yDmtCZ67EX3X+IfKLbuv8RCLnVbyKPYu5BJqOBMyDi3YvkaOnr0aGh/bGlpmz9v3nyKjp6uacmR luMbSo64efPmP8ifQwbOynTr1q3/lD/t8J0S8qUPe/7Vsi0sLDIsnHbl85TjjQMT2CRzMTcwjVw+ 9TTPCO4KwLpBzHkHLj0ko/gNC4oPF0QYy90WMqbsrn7WM10mY4e+hLxq5Vq3nmVlWU2VenDIkha4 devWIVWhvY3vlJDTCjvY/a0Q+zRjEzlw1ECob6LRbHFG6IoozFRNCcs8X2VV/Nqt2vBkuNUQMQRg IwYm8gkyNdH9Kf0P4PgCEPIY+T60bbn6IxrNq5/4XshAbm7+n+B+aqepXVGys3MjQRa64LZt2/jv 7Eh52WW8/vrrkeXl5SK+kpYrzN6Wy3HU+e3Z0xK5bWu2XViEKygoGy2D3LVVXM8WaWRlZh9xvGd4 InOS5tI2kQfu0RJ+69ZtkVlZWXbTqO3t7Y+5U/bc3NzIqqqqyMOHD7v1rLwi5Pvm57HFq6dgcy/F O7fct/WEQWYs2ayiUQv2UURqHb165Y+rZFZu4yfmLArVV4rln5qegqFW9OszWi7sklH8ioyWc9yY uN9HHmlw7qV4W8jAtGkxqvRAWOvNmzMWymBWKDuKoCKBmMJCYyAv94n9+/dPnT17tohjO/WlpOUK ca+IK5O0Yt26DZZ5ZNuw3H/PzNxmDWt7b1rdCjHOwOnjCCrnETY52X7L3uLi8ju4b9v8+iLKrNwr jpglSEt7ji5fvv5jmaQmBizkgsOXaXga3iFuoJFmbMyOFyVYNAbPGQJxGRro7tQmejDN88UZTac/ jEL/ExsMoP+uJeThzHsMufT2Fz3fl9H8iudLuyhcV8aNiXtCjuCujExCBV8IGVsGOS6kUIh9rmUw K0SlVJWh/0ql1xt7K7ZdXPcohKbRcGhOP/HftqPWttfcIdJJTdXb5VlYUHxHK6w7RGOBjRPy84vP ymRVGLCQDS9V0fR1dTR3Qx09+XIjzVpfKzhzQ40Gcd6R6nBJ62pp9vpqmpWxi6o6zrbIrNxG4ppq FjH248LmAtxIsAAcxRyysJ4MuW2u3awPMHN9vZj6cm9lF3cJ/Czkrq6u4Y7pgcJqseWQwazwRMjY yC9ySrRDHM+IvIeGkMu8ImQ0olhlt3fv3h6ZtB284loPRZz4smcY5p4xCGcrAriwGFXHwBcYkeZ8 GscfeGhhIXsL2DHT9ZF+3MM9qe4vCME5T4UMCJfPIU1BrixXrlz5NxlMwF0hY3sg+7BqIj0lTdvf zkbVXRayw4IQ5byt22zPRLGjqNJdUM4jXUfXGkLGdkpKefujkg7i9OZnoaVLoG40gQEJubDtJOUc PE+5hy5THvhKLwsOXeJzb9IO/p3fdrr/xLyMNTVdFKSxAESMrPPRsv1OPT32vP1rjv7GxNQ84fo7 lrMvovw//43znUJ8JWRrv9eRXFnKy8sflsEE3BFyUVHxW0/8eqpDWA1ymkr/Uek7ow+J/bkdwyJv T4WclbXjJXDHjtyXNm3a8qZtWBGe489MTCJc37HDElYJn59faPeSQk1N7R3s8W00ml0iGgI8Z9yn bSMBosGKjo6jxYuXqO7LYyEff/+bpnBDCfeLLXtbYcBIcV0VoWBhyA/09TRlmf/fn53AFgsDbmKf LC6PwnDxymA93a2vE3tgnXnvs6syit+x5/KnKaMw0MXlsS1jv2TrvajwkNNn6ishi035HNIU5MrS 1nboVRlMQIhNVQbtSoUKq2VVUZlBDFDJoJrIyclVxUXengrZFprTT3xvGIyTQXyC9vb2H+PeYYXt PQPLxvsymBUeC/kh/UYKYvGOSGsi7KgBIYuvEUpiSgfzs8NYyKd//02njOYX1J64eceyeZ/FhbYV gRCyaGSq6Ee6XJ/+M/rDM5sbRR8en2h1Z6015pCzum5sl8mo4CshL1nyoipNQa4s9fX2b5q5KuQ1 a9ZkCutqF87C2Ng4yszMfEMGdQq2iuq4f+FCBtra2j4XYxB2jZxlIFAGscIjIR9794sfhhn63oES 786GGSvpv43+fQkBmJySwR5BM402WL7pZFc2tmbwFDAyXnX8Xb+XTcG+Kz1/j/eeseUQnhW8GLty OtJg8S5G8XPHVyhkMprwlZDXrF6vSlOQK0t1dbVduq4KeebM2Q5heonPz8hgfSInJ08V16dCZvpr QQhErHqO3hJy/IpS+qGx732Zg8wNLKJaqj330ecyml9w7N2vHhmtL+f8MZiF+WP7/mc4W2JYwbDk Anqnp8fuNUd/Yt4WfHWRPQZ9tdhmF16MbTkdCYuNVXNB7P1MXmj//SpH+ErIK1ekq9IUHICQxXa2 dmF6uX//fpfK+tcuZMe8tebH3RbylS97ZsKShCxo1qxwCrFCK/xZ722k5yqmrGSrxaIQO4BgSsfR ZdVXUjCffy7fv2852eL56iMUrMPbVjVsjTEt1v/bYugq4MNuIwwNtLT6iPhGkzP4SshGwwJVmoJc WTo77dfCuyLkK1euPIBw9mF6KYP1i78EIZeVVWUjjjJIh6Mr1Bq91hKn20J+rqCNhWB5a0irwinE aqrQBY30sDmb7llQTg+YB877JR9IK6KfGTcT1njLYlkxiq1wmLmaBYLXIeFWO278x6JJKaHjt76y +0bw5c960h5dXEAPv1DhMR9ZUkaPr6ijX69uFIxc1UBRqxppysp6ilzJ55eW0SRDPoXoisVLGtiy B3t2QaT9PU+xdRJb75Dk0n4rkK+EjHlexzQFubJwP9XtUevu7u4kVFb7MJZywhLJYP1iqAsZX+NA HExZKa6yq1TmkO3y94aQJ+gLhZvnzvuzoPI1xoFQSQsW7Inl9q4csLzkFfHBM9t8HRnMVu3Hi9Sj 6IbtuyiYhaIVZ0iQhY7Vc79YlNdvBfKVkLG6yDFNkS6LUQaxwhUhHz9+PElMJ9mF+esSMj5S53w+ 2kMOVMjFh86za2dxA2FNNCucHxisq8YmAzNlsayYkJJLQXrnX48AMZpe/tpbv5FRrBifnMVWsr/v MQ0eQwyNNFZXQtc++7ZJFtkpfCHkrq6Tw7XShOAgRhnMCleEfP369Z87s8g4ymD9YqgKedeuXfeI ctgIGXnhRRNs0CCO/LeFjnlYzqufIXOgQp6sz6eRZst7vRjI0qpw/uD9BvX+SrXdb9OIBbvFh8G1 4iictEDtmhZ2XqURsPoa4YcKw03VFL1a7YVowRdCzszc7tSy4L1lGcwKV4QMaFlkhTJIv8A6cMe4 QkCDLOSUFB2Htc8LC1jwbDAXvGVLxtLm5t2a3Lu3RdA2rpUDEfKy/PZ78TI7RIx5TEv/U7vSeZvK ssofpmIxRzXVdF5+TRbLikn6XBpu2kURenshY/oJc8aYcsLfOYcuqR7CuNRseV/2+Q4mLX1mbjD5 mYewiMOTi+n4B39y6bOqvhAyrIfWCCpGncvKynJkMCtcFbKo2HZhegnRyWB9giu8Kq6vhYzVZDKI U0RPUw9U4YN2ynegXYFjfMGBCPmB1CxVZfMXsYADQgtZsJMi5qtHwleXtXwvJAW7bNSLUWC7+Bwv zIR3jutpgkH9XvPhdz/9cpQZ87OYqvJf49QfsUgE33oakdZAoVy+gs63XP7ne1vIqSnGHse0FGqJ BXBVyDt2qFdlKcTgkAzWJ1pb21RxfS1krdVVjtB0mfm5lJS4/vEDVXyZhrxshUtCPn2HJgbp+vvs i++ovLmE5aCL8vd8LYtlxZQXCinUAIurHvnFXLJYacb93/mb7D/mBjy4sIL7n3L6R1hB+/iDxTBu WLCrCTZriFvf9wIQRzgTMoiPistg/aKzs/N7Tz9tGXF1pDL6mpmZbf1GsS1cFTKA/b+iIrXed7Z4 ALW1tRNlUE20thx0iOc9IZ88eVJTyLi/EydOjJXBNKHVx8UINDYlkEH6heYAo6dCfvz5chqmK9Os cP4glnriCxCj9NpTL2NhTdOaxXJMxw/GKRsehOnUX50492nP0yONmAbCsk2L+24bd/BZT48udv+l DmdCRh8XFANUNm6y8jcEhSMsodIfdtYvxsfN8SF1maUK7gh5+dLV72uPiKOMlgYDrmxeXgEtW7Yi ZdmyZVauWJGesmXzdod43hMyYBvWStxfbCzt27fP6TvCeJ7quJYPtmPT/xMnTqZcuXKlT6KBUz1H T4U8MqWY3c7Bm5oZpyul7y/YS9EvqtdGG3P2izCWBRVqIY7SV9Iw0276pTlDFTdyDT5Xw+EGQcAY Yxhhsny6Bg2IZf03W2I9GpUaGm5uoikvqhsfV9CXRR4oY2MsIsGc8r59+5+QWargjpCBqKipotJZ Gg6LgO3jukfk7S0hKy8vqMuFdHo5PW4GvshxS0a7a+PGjacxhtD3PdmnYU/HsJKeCPnZTQ00jF1P uKhaFdIfjDBi55Faanjjdw+IQtlgrK5QM44jT7z/lermMZ2jFdYfxCqtcCP2N8N+XfA6sLMKNkFo ptGpBZS5+5jTitUffCtkS6Xes2dfn+VzV8g3bty4+4knIm3CDh0hr1ix6t3eOM7LBW/GVsgAptd6 vY2B3ZOVngh5NLukQWbsQDl488Yh5ma6P2WLqvDZB8/TcH0/A1TmBrpPp/4nvVDRzqIZvHljdAHQ Bw4yNPL9cV94gWXDwcgXKujSxz3RspgewdtCRlogBIzKeuzY8fdkVk7hrpCBc+fORaDix0RrLEt0 k8jbW0IGkpLmcDxbUaqpJWQgOpr7/5rPw0O6K+TsAywUHaac5A6Ug8RgtlSVh28clmW2YnJaCQWl lGvGURjClm5b6znVjY+fX0BhLB6tOP6g2DZYV0kT2Cv4iSmHMltOfiuLNmB4W8hwDbHmd/Uq16aD AE+ErGDVqjXqZYlu0ttCBjZu3NRnuZwJGcC73DHRA7snK90VckHLKcraf55yXrlKua+8ybzIvKBB nHfkwMPlHLogWNj6uuZDTi9rNS2t7jItrT0quKRa4THBpcz0yoOm6x99OVxGETj31h8eTC9rM62o 7LKJ4xsutf7mvGq7TMv4WHb0PdOpD3riZXG8jg0bNpiWLFliam5uJk+4a9cuqqqqOrt582ZTa2ur SSbrFpB/XV3dVce05WWXsG/fPlN5ebnYOxvcsmWLips2bSGDPk1dgZlaK86ampoyudK/4liunTt3 rpdB+gWnYWpoaPjYMY3Vq1cvPX78+FwZTBMlJSUD/t/gKJOz4sCBA/+pFRaUQQIIYGhjy+ZtKhHD BdayyAEEEMAQhdZ+X+gOJCa6tqAkgAACGES0tbWNxA4jWu/sTo2KobVr1weEHEAA/gQWl2Bgpk9K kcLaYmAJv50N6rmznjmAAALwElwdZUc4ZeQYv53FW7x48Z9l0gEEEIC/YLGw/VEtWEdC5E89OS9g jQMIYDBg6zq7QltrLH7HIn48rVmz9rZMMoAAAvA3EhMTxdcbXOZMC5OSnqa0tEWUkZFRIJMKwA53 3fX/tLBHrErlemoAAAAASUVORK5CYIJ= ------=_NextPart_01DC322D.ECA9A450 Content-Location: file:///C:/0D2A2649/03-3Metodologiapararesolverproblemasmatematicos(1)_archivos/image004.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAALAAAAA/CAIAAADPM9UEAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAIdUAACHVAQSctJ0AADfUSURBVHhe7Z13eFVV1vBvkpubQkmhdxBUFFCZ sQEjoCC9KtJEBKUOAoKgCFYEKUMNTZKQnttrCugrMurj2HF0FMs46quOZWZURMZC9futvW4OlwSQ 4Mz3fH98y/1s9tln79X32mufe060HTt27Pjx49QWHD16VBv0nxlk8HEpx34+bhXtqVbo/zWg/ADR awPRrpNB+ik1OYnerwUoFSB6fTJE79WEY8d/rlGEp/8CqJjVypnB4pzGkWOHDx/+CXMfOXL0+HGZ yXRxCIA7R+g+evTQkcOHj3L/RDn289HTFbkbAxalU4LerQbVEJ6uxPIjRE90UsdY3ZRjVeqPEj49 4CXV5ppygtwpqccWJVQNIH+KUsNyppyQ8cwlivpcwcKjbGvj8NFDR48ePnTokHEIHYZDHD18/PjR YCgwavSNo8ePHj1h7NiJ48dVlbG3jDtzuXnC+Amm3HzzuFMWvXu6AdWwnbmcmavYu+MmSBkbU8ZP qE6aIrdq4KHEoqpZrLvjEL8GTuiOuaV6qYbhHEo1KpTxyr+R1CqISf8pRsagUrnGTRw3dvyYYSOG Ll68+KeffiJCEA5+/vln25HDP/7rX1+mpCZ379l902Obir0l2UW5ucVnKjlFOZToZVFebuEOU/J2 FO7IK8rLkwadWnbsKJJLU3ZIKdLBpk3DYLPq2pacQsNAUV4OqEwthUZxXlW9gzrb3IW3KNFoMXfh p9jUJ0p1KqcrOYU5VdKBtkrkorxsKFaV7UU7pGGogDyWkCFdHWdssfQsdYGQyCvKr5JCdGv4N5JK EUlpCHIGFJlS1bBwZhdmg21HyY58Z/5jOY/dfMv45JSU3bufIq7iEAQJ25EjP7z+xquJjoQVf1ju DXu9Ea+n3OcrO1NhDCV6WR70RPyeSMBbFqDhNZe0vWUn+mnLXSZW+H0VjKH4PGVeChj85f4oqnMp AV9Eir8sSO0N+ynuiN9dHnCXRWtXmd9THqRTWaV2h2FMirc6trMt8ByoCHjCXn9FCGxI5w6LKmhQ u8JIF0AVog0RnCIyqt5OqO7sCrSY4q8IK6Eq9Qp+T0XQXRZwIa8RFklpW7rFjujcjZJR+8k4PWEP xRvyeQKe9MyM++9/EIcwceK4jV3k9ddfS0lN2rhloyfoRa2e8AnWT1dA5w65KSUBN/Kj7tKgR9uq Dm3QT+0MeakLvaXOkMdfGTbDvMV+F7WFpxr+sy2winURLOSD81KfS+qAxxn2ohqhG/HBmMWDVWBG XKQsGCgPuYMe8SRUGS1nEh9tlvhKSv2l8BysDBX5nL6KECQQGYloCLmgl4Ia3UEvnuoMSI9gRjMh 0bD6saF1EnKrqMHEZlXeA7eQgG2YhwQN1Bh6vJwan4AN+mnTwFEQVlkq8JQEd5UxNxa5FvGzkM8f CTRt3uyO2XOIDuSR5FU2Eoi9e19JSnZs3CwOEaoIG45PcqiaRZc1eJEZbbr87hJPqdPvRv5gRdgV 8IAEbFyqtSgMkwGW2XwuLsFgYTuHAk4lQSNUGRHOIwGob35s84PLHpo8/fbho0b0GdB34LBBs++a u3TlMjYUiSUwbDikTUO8IezXuab8AjN4AwWedz61q8TrRAObtm95cPnDd8ybfW3/Pj2uvWbIyKEz 58665/57t+Y+howMUH+loBwuIapsV8NcsxCHIBSsDIIHAVFaqdeJFEJu/pwRo2/o3vt3/Qb3nzZr xvy752dt2wRmoWikK8ImVUvFQhjrENIf9rdo1XLWrDs4B+INEiFwiNdee9WRnLRpy2ZvSPSrRjpF CXsp3GVx4On4F34QDPl9uFo44PV5snMem3vnnMFDBnXr3r1T585NmjZJz8ho07btpZddel2fPqNG 3bBg4fxSZ7HLXeoPeEORYLgyBDZX0FXFn9gVLlmj1UlXFQmD5RIGmeIlugQ86BcVBIyZ8el+A/vV S6ufkJCQ6EiMi4+z2WzUcfHx8QlxCYkJtnhb0xZNx4wfk1+U7w9JaIHiCa3FKE6LpQrZTNmMyrwl QSeX8Iy7Z+dmDxk6tFHjxlCJT4iHSlxcnI3/aCbEp6SmQLZxk8Z9r79+46as8M4ybMks8KBkZ9jN BipSmKJUtPgRP6aHy1BZIBwJ5RfsuGn0qHbntU2wx9kToaFE4xwOB3QRGdJp6Wk9evZYuXp5OOIP hn2UQMjrx1goFinMDuJV7UECoUK+Zi2a3XHHHbhCNKnkOBp1iK1bcAhCaDX+Ygu3TKgk0gaxQbA8 VFpanJ+/A2M3adIoAf7EBDYUAYvUdrtdbGGAW/HxNv5t2rTxrbfeUlRcGAhhSZcGRlRsSMhiPYND nCh4T8gj+jV+Wegs6v67bnZHgt1hRy8KaEo5EYjHNWzxdmk4khOTU5JHj72JnAtyrCqNc6q1aiWq uwj7rtdXGRBXCHtKPMVDhg1OShH8UWI2W1JSUpSWMY8RWYAxScnJva+/NqcglwAMw6gOnJJU1fAG KUZ8GcCuEXQjptfvmjRpYmpqKjoEK7SMMuMSExNpQ4haJaVOTk1yOOxdunTatm2LG72yVqsyAbxB l5MSEsw4RPOmp3CIxCRH1pbNvrBEUVZDlLOTi1t2Mq+3QmIRfoMxduTn/va3v4WJlJQUFd7ij7ay SwO3MByjJh0iwCbVt1+fUm8JBQ8r9hZDwhVyo/RT53oRP9uNrmMsJ+2gz+lxV+ysnD13Trxd1oea BHKNGjXq06cPcmZlZfn9/jVr1tx+++1XXHFFWlqa2gnl0qiXVm/TY5uJwyAUnzAJtTvisYiqtVgD vnI/a5p2fmn+slWP1Muob3ckggFagqdevauvvvrWW29dsWKF0+mE6O9///tevXpBTpXAUk5MsmOq e+5dVLlrp9snW6cndIJQbCE/JXOEHySN7CzLzctp1aalahhaADgvvvjiCRMmPPzwwz6fr6CgYNas WX379s3IyMAWuLtDeItPTEyYPPlWf9DnDXhlneP6JG0mSCAmSlaHaNqsSU2HeA2HIEL4QuoQp1oo WCsCrgAJCwGW6DdqzCgkhEv4g0sR2ywXZRpggSKGqkz9V4GmGSaN1LrJ0++YVuwuwgtxC5cJpB6z bqovnbDPH2bPC/gjQZffE4gECDA+v3/M2DEQgooSwg/27Nmjz9moEVIbwKFDh7755huPx3PZZZfB AJzYE+2JyUkL7l2I9imsSInkMUThgb2MQtLgDDi5nHPXnOTUZFmJrMXkZNZDIBD44Ycf2ID//e9/ U0MO5dL49ttvf/zxx//5n/+59tprjYqIlDILQ3p8Hh/kMLkhUU1ScyoJlJD7VpY9uPThjAaZcWYi AsL59u3bkUKFUkJKFFrUL7zwwvjx41E741keKKTfgP6lLqfT5yIQBndGWNLqEOITp3EIcgjLIYI1 HUI5xkgeDjbmtPbYju1dL++akGhPsMtqg6ouTZYdHC9YsKC4uPjJJ598+eWX//KXvzz//POPP/54 UVHR9OnTO3bsaOKe6BOnIFpgSlb2JV27bMneShLOQmSHU6JWrSUQDgbDITikeAL+UCTM5Q033KCm ReMXXHABRDk7oRcspBJyiaa0k1rdAlMVFhYSRWT3jY9LSsUpZwQ4yEW8TnaEauYx2T7JHXFi2syp 8XbZAaHYsEEDl9P13XffHTx4EFqgBbnaBrpKnTadMFNRUdG5c6eU5GTlFrZ9ZFHlYTBDQjWs5HA+ OSKFvMGK0H0PPkAiIlHInli/fv3169d//fXXoEUiJQd+9Qk9MWond1966aXrrruOaUIuPu7q7t2c XqfsrQGPnLdNKmZFiJpbxrHTOYTFqNacZEiS12ata922TdTbTX6AMQhWK1eu/OCDDxAevLBFLa4b 88SaHu6+//77jGQ88x2kRgYDTGc2zCBJJj2URE8PRScbxs/WGyFzDBAn8PfyXRXTZkwVXRmxWYX/ +Mc/IIeO0IhSZyVNnjy5W7du69atU/XpANRH45133sGHMA/rKbVuyuIHFrFh+1k6xkhaaCsnBLB7 7ltEWkpUwI3atWn75ZdfIiiEEA3kqBLpwPzhhx9+/vnnSot+BVhi/LW9ryURxLoguX3qFPIePURA RUiYpIEwWRIodQVcWVuyxF/NDti0afNnnnlGdQuAkBqcSgXgkpoeangQp9//7bix49jLRL0J8f0G XF9eWcY+hXHluGukq4VDxBpDGZVcsiLMaaduRj0MgCG1ZptcvHjxv/71L5iDY2VOGaVhPEEomX/l 5xNuAZ9++ums38+qX6cOcSLeJjGGyJFSJ3Xj1iyYJjhbarLY0BwCASjhysjSR5cSulEWPPTr149l CkXFbyll0qRJKBQ+gdzcXIslGugOtX75xZddOnVmDKPSM+vnFuZ45QAluYIW2JAEosy3OXtz/fT6 ujle0rnLV//66uDBAwiqOCFKDdEXX3wRXCNGjIC68kODu8rY1199M2TQUEKqaC8+jgWAgOBXMbWN 1LI9eUvOa98WnUCxQYMGb7/9rnL+/fffKyoAkZUoJGhoWxeDuM6Ro8eOHCWVgZYkWDbbzFkzyLr0 mKNr/iwdIuwNByWHjzEGXGKkjVs2NW7aBHHAzoaIpi/p3Pm9995Th9VaAbynBL0LRThm/FtvvXVx x4uSEh2EYXA6khyZDRts2LxJqaslNIuUEuYcJTUikaV36HghmRrbTefOnVmRilaBNsj3799PABBW DZDxoUQdhvAK7B/73nyrebMm4t5xth7XXM0JzUryWb5yJCb1C3uv7nEVisXYbDT79u0DD2YAg1IU VAbYwqE4bNgwbAMwDICuDqDByrn88svxY4zduGmjEl+JHq+8EY8fhYc9oXI/gXDkjSPgmWH166fv 2fM0zgAV8YKqxOhPf/rTnXfeSQZDpkwIHDVqFKnMP//5T7hSQjoS/xg6dKjo1uEgLJFMhMpDnOyi LmhWl8khfm/84QwOYR614ge6TEMVwYLS/As6Xog3kDrgtol2+6ABA7/56muo6iKgASqQIryavybo XWplGpWBYdiQoTiELFKMkhDftHkzuIx15GiJ+PEGcYvyEGkgIyl169b96KOPFJtYxgBtFAFXqAmd oguUm5eXxy36uQsntKNW/OnQzspyY2sbp9aszesDVU8qVQOob13WWnui5MhYcc6cObANElJIFQfg kryEbH/cuHFI0a5du0cfffSpp57C77kFWMqBK7YqIjn00OLdSxaq/5niDZb7OdAWlRRmZKar/+Xm 5n3/PYteIo3S/eqrr0aPHg0nEJJIYzyekQB0t27dqhTVHaHLTtq6dWtjMfvNt9zs9rvxb11s6hAm QvySQ6gxdAIovH5P199eJsGnaqcgGuOPKqQqBTBGPy1YY5gFx0zU6bA+ceJE0JKZ1qlTB9av6fU7 OZXpg05zFKREDwLmqUNmkwYsaNIzdiswqAoAEEKCHt284JDAAMJly5aR/RFvURB3LWYAcYmffhoy ZBAMsCF0/U2XQNVDTzQgDxYDni6XduYugNJRa/PmzVevXs1cSDAXU+3evbtx48bcZQwDAB183nnn Pf3005BQWioyMG/ePB3TvJV4vytozGO8kP1i8NBBSMd0cJqtMOq+eDMiaIBRWyiQA7H66VQFTpky hfFK1FA7tmPHDpwGPaRlpBWWFhLziPe1cwg5+YQkOPtCfk538+bN5WgLSXU0MjjyNUgyV7HQMCJX 94nYHqutDWpMSK2rloM1sikJ1DH3rvkcL8UhWKYVPk8lPhHwhP2lPte23McYwAEHw3z22WeQhhNF BYhYR4+yibzxxht79+7985//zEmHxptvvomYsM1dHclEZRuj7t37St26dbBQampyqZucjrgY8JUF IUfql2AXxrAQGodJlKuwcOFCUkh2AXjmrvKPbcRKBmjv3LlTKSo5vIf673//O2k1Uzj3PpazHS8n WXFJMiFPThs1aaw0nvnj04d+lPwX6ZgIEs0J1O0Y0KZNm0suuaRnz55sZLgFPeCEmaysLKYAzGUW cxnJLI5Iix9YUuwuJnWV2G8icfMWp3cIfzgUdQjy+UiIRrHLWVBYKKfKKt8n/mAGlIghLeXGgjH6 CYj2xniDBUyHOjXY8H2yJz2+snmilJy8XNkjJDx4PRXyM5XbPK4ZOfoGXUBEKZW5GhtEb30ApVpD gwRY1SO6ix0cywC5iDFq3NLlj3hCgQKP0yWP6cLz714IErTcpUuXrl27Wk9WAMZjchRCG+S07733 XtIIDpls8MgSiUTAjL+q7NDiEvMAbO3gxPC3T5+CH8gDUHmiHMh6bDP5JnxkpKfjDT/9EFUyNYc4 VMQsyCEOhzXwgFxh7Nix8AN71JmZmdiIKQBE0dLMmTOF4fi4Xn16kQBoJqAO0exsHEIDpjccIMHp P7Cf0ZTsVcjMuRGpYFFVqWAZRkHvAqL1qjbErDbjaVu1AvkpckIFQOkTJ92CQ/jlmbHHV+4t8jmJ EDhE81bN4+1xyakp5ZUVsbQA2gC7g2LASHAO0KAH5CwU/Fg5UaANEiRiuaNrZvW9vo9ECPkVW37m 6Hxp5/g4Gzd0myDeDBkyRMMA4wGQU4P/wgsvJMJjGxWHyEEbrsDPpcUhtOjJyckRruyJXbpeQvTW 8wV0b7p5jD7gmTljprzRdeTokUOSGzK3qKgIWdQde/fuDS0cQtGq28EAdxnDgPvuuw+iEOIut/73 f/9XdOJIzGiU6fLLfiHHaXWIM28ZgXK2T9xC0gj4c3pdySnJKXXkiQouP2PGDMPACUury8MxVC3Q W9SxThALOkzZBRhDhKChSRnASm3UpFFxaZHTV6pvaTjZ+fxuBKifXi8uwVY/Pe3Djz7SuVoDkKN9 4MABjQcGT7ShwKau7FnAePUJsnTjOvGXX3E5hPyV4WK/C4do2boFvUmORJa+jtez3+TJk3ELfVSg NfgJ3ViaEMUACGESOQFWxSFqdKVIsBC8xSfYMxs3MDmEnO1R+HUD+mI27uzIyT1uHOIoaA4feeKJ JwYMGEC/5siDBg3ijGZhAzlJ7qZNm7ilkhILMQp3uaWAr7Bl1Klfp9hdpL/Wst7IkH4xhzDhwbzc gU9MnzU9jkiDUybaGzZsiBgICRmlpM6ubCE/DbGzOe3Qr8OUXcAaAAbADJQFBDCMAWAj/NSvX5/l SNTkGHH33Qt8Afl1xx1yuSIe4qrT5+J0Cj+onoMlc9XnqC3AHpZeLMBgQNu2bSFq+IoC46mh/uyz zzKLMe07tCdvdZtXKMghMhtmMJ1N529/+xtsw6TyD3zxxRcrVqzAyZhFkKDW5Zuenr5o0aJPPvmE MXrAhk9IGFklOlKjCiGXEO9IScIP3GVeZ1geynX57aVsGeyJHFLYMvAGpjOYw1THjh3xBpjBEUmW wawBCf41id6zZw88GHFt7du31yfc9DMAsnK0J8wnJeSXFEBRT/InRwi2tmOncAj8gKSSCbhPq7at wAKLHPrnzp1raZNZADjglWR+165dbGlLlizhdMcRmaANK6oCatpMZFcLh8No8OGHH2YY6R6d3NKR 4NS4N2LECLxBDqI2W69e10TKAn42PFZPRLY9hEGJ6KtFixaKXy1qPCEKOEq1wACgKYD9HoaNBAIM jraOH8femJORTZo2xiFKgx5fRajAWVS3fl06yQHJBKEIh/CpEZFZWOLrr7/2eDzdunUjgqpLydI3 GeWwYcPQBoNVA0oIUJEZwKaemOIochWLu0fkR9fmbVuKQ9hsZME4BPsFg5Xiu+++26FDB0hMnTqV eIAgxgjR9YbUDFAGqMk2Pv30U+4yzJA+arTALmXLzs8hBGLl2jgEBxITTzh/CyKzB//xj39kEuMh QEMZzc7ORsvIb7HCyefSSy8lxDEMMQB4uv/++63Dt2JDfVdddRUy6DDUpGjLy8vrptZhJMPSM9Pc AXluI79Amp+eC0oLUSIqa9q0KeNhRo1qPEGA9pdffgl+w3UUwKbGbtWqldJSYLo2oPv222/rKm/R sjkOgTcQIwtdxexQTMzISCc66rMHnUUNcEkbTpCRGDN8+HBiCUiQjlkQBTp16uT1epmLunQiDWpN dZNSk6FChKCg8zbntxOz2WwsGLYMCoPBD6Dwffv2PfDAA9CiU0mryPTgmviQ6g0g0KpD6MSDBw9g H8Ecf8IhauQQp3EI9QbcZ0PWerDANAQwgKqS8QA0qDEzdzWlYoz6BICoKIKgxxh23PHjx6vHUGs6 xmBmMYb61VdfZRjsAKAl3ohAos14uF+btcYdJqJ6vBXyFLnEU5qUksz+xQr46quvmIhGtFaAQ1TD dEs1ChDCSC1btkR3jKkJTz/9tEpx0cUXydKJ+IO7yorcJZkNMhErKcmB78IewGClBV3a1CidBpgB Is2UKVNYFUoXNhCTBjsLp0F2GR2PsKKp+LgEhx1tS3gwDnHZlb/RUwYLg/AgaUSVUSFBQ7cJVReg bGhdWVkpOA1wJkc/Ootb2FtibrzNnpzIosIhJDGofsqo4RCcMgLlITYYhqKUybdPwojycDLBfuMN NyKtQR09Fzz33HN69sXAyDxy5Mi1a9fOmzePIx89aP+CCy5gWZAbcwkwEjVxVlyzZg0ZGU7DjsjE gQMHahRRnUKCszUiGXXa7l6yEIfg5Cm7bMApT6UaZJJDEG/IqhiMLpiooG2Izp49+7bbbhMMBsAG aba8VatWWTpisI6nDRQXFyvR7j26I7vLvIOJNlq0ai6uabPt3r0bnSkVBZ2ogJF0KYteDx8uKCgA GyIjoPoZGqCHnW7+/Pl//etfWetcotzGzZtgFU+5jxyCLeP6wf3ZEzllbN26VSMEDOPi1CUlJRyF 7jFAugAh6MIPQBvVETygJWjj43v16qULWG8dOXJI9BBvq5NWB3IlXueJCHEGhzCnjBBs4T7B8tDv evaQCGEIPPTQQ+IFZvNDYGh0794dGgBMkBnQCQfchVeWL6yTB9FDHqcaYY0Gg0HVGv3r169v1qwZ ZzkWjeKkBj+3OMsY9Ul8mzZrqrfc562QInm4392mXVscArExIVNUI4BlJGWS8yFjlEOARA/M3I2d ohS1MX36dDhk5NhxYwNlQY4YbBnood+A64mAYNKnogxWJEoIiqhi+/btY8aMYUVqP7Js2LCB1QI2 ZCcZhBPrPIJoxHM6ucuy6d6zh6RrZd5SEueA59apk2UJ2hPIPw5XRQhFe/fddzNXQx3HMdUYNbfw GKTLzCSYCTDgwQcf1FnUwL59b3Ik4nzAob26Q/ziloFDUKOUCzqej0+pWlnojFQmaBDYWaMqJBwQ x+hXS6AyjuCMQVPoiAHGunHkvQwAlEvuko7RVnvQ0H4G4F5GlbLnjZkwOlgZcEfcLKASX4k/Epg2 Yzr9yNy/f3/4UZwAeDAPNQAqHAIkFmADVGYN05FcgoEGQYWQzjAkWr9hvajM7+aUgdYeWb6UfvY3 Ah6DmWjxCSBFbm4utmci9uBkeOedd44dO1YfEBEFCQko55VXXtEfmRTUV6jRzJz5c3EICQ+cPEO+ 7IJc+XHSKO3gge/kOYThGdLPP/88nYqBJReJROBENQAb11xzjTo0gPeTAutdWKUeOXK4TI23Db9x OH4QrAhj4l9OKr0h8yZuWfR9WnI6OFAmXnrpJUsR8EfyrPIAdevWhSG9qwPgQNX93nvvoRcADFdf fTU9DGAkwBRlV6WltiAUCjFe6Mbb+g7soy+dctBAXzgrBw36WUbpaRnvvP0O6la00ckGwH9Kh6Cf u+oQhotoMsQpCW3i2XXr1vF45fgXqoxw1IJcUWkR/YkOBy5I2qjjQfIT6/fIYcIbIRD8ujWoSXAO Q1Ma7OtMYTw1O8Utt9yClzBSlCKxN25HwQ5OTyVBp7wqZkzVrn1b3AF02Vu34RBGUZKEwv/1118P G2BWDCTvEydOZM8lM6MHHmCA/nXr1qloAJph4TXITMcI7P3LVi0n9uMTLC0UW/Uc4nQ/f4fND81l vkCZv9RbUre+ZEZiGJvtgw8+wGwMpoYzThxIyy2YIN+kHwCjAjJQ00NeKYKbxymDBg1iv4BFpa15 Mpc6l05AG+hdiWL47r26eYJud8iln2DIYvK7W7dvQ5AAM2tR172SUwwKpNyCoQpwCOIq/YZONJYo dfR1xRVXoEpkub5/P7ffQ3SM7CqXSG5edOs/cIDIkBB/4YUXgsTy4yPHonGO5JrwoMYAiQIRET9j vGqDWZCj/e2331522WWiFntC+44d/OZNLXZDfVhEMJ8yYyoJlz2BE559/9fymxEKQ12w+v777zdu 3BhlKrdKDm+wvIRbhCgGGzeKLsslS5ZIjI63NWjS0Olzyfuw+pZ5WKQ7vUNs2ewJShoFcziEN+Rp 2LgB9FAF8OSTT4IaYBrwxhtv6HkBJggVhFzrLnyosTHVJ598op5LzUkdLrkFbcYwhUumwACXAA1m cdfv96sVk1OTBgztj0MQIfwmbkm0CHtXr1+FtkRndjt5CXOFp6ogQQNU1SIEqa4+DNUBWv/4w4+H fzpENgMeDi+UYmepv+rJvaQsQRfOkbMjR+xtHhGuXrmK0KA2NtSiToywWItkAp1cd911BAMVh1rV okaiJmak1q1jdyRymli9frX8plD1gow8PSzzFTmLW7dpjWlJ1yffOgm2mY66QAUGVIr7wglCQQuf 0JXJJU6/efNmBhtTyEMBnPWdd95hB2G8Izlxzl1zcQXNCkTGX3hBJua7DPROufCiC5QSkJ2dzUjl ifqbb74hh6AfhqgPHDgARjjgFngDgQCssDhINdhQDAJ5rMtcNbw6EFsDA5jISC7ppw0sX75cRSUM jL1lDN4pbzGFZBeDK6evNFwZuvp3V8XbhTTHBw6uOhEMAAxQ47LKmwLK0kfOOoaGKO7w4VAgiDcw kvU68qZRniAxUp7EWC/pSGgN+8eOHwMzgMOe+PjOXbgRHmBoRvc7cCLdiy++yNodPny4urtyQs0Y FfDjTz7Rl4wg16ZDW3nEoq8myGM3jyfsLtsVIYzfcecdGgLBpq84MFc9QyMisadv377EZnIUFEvY KCwsFImq3iCkoQuAu3hDvbS6KfVTS71ON4mk+a5OPgaUd3/8NV+yjc0hxH3gTxfiwEEDUIH6BCku EwCVkHrw4MHcUsv17NmT3RSHQBEul4vgwU7JFNyiS5cuSKUjiWb79++HY4ZxRsW1cZeNGzdaOSlo 4YyjqaLF5HcunAvfaCoIS2IefMJb5CrMK85r3qqZWMjhIB9kgzDcyapVl622ZRAh1IRKAlrA7id3 Z6bLz9As1o6dLiooLZbf9iLiDSiBQpBQnyh2lXS5TA7DhOfGjRvteeopMiX1LiVKTZvkkaPTlClT UIVhR0AGcRD46ceXXnm5RauW8qQ1Pq5+ehradgZd4DcRIlqKffLbNMeNXtf2xihEYLTHIRZuQUUN ZgQBlAQ9uszU5+iHFurlFnnl5ZdfDs94vN1h35K9lfDgDHrd5iNH+WniF1+h0w910ILxHe/UaVNA B0Mo/dprr7WoKk+kmRLWTOyCYqtWrTj7XnXVVexnomKbjaSBYU888QSLmB5GMoydFde+5JJL1EXo nzx5si4mMAPwg4F11ZJDPPDI/S4/ZyThx7ippxSlmZx39ZpVmJmR4GGtsKmBBAAD9aeffjpnzpy5 c+fihfPmzVu0aJGqibtwBSFOrbDKbuZISmzaoumGLRvldRicz7yRrKsWC2EtL2HJ796as61lG8wp +WydOinFxYWHDon2AfgHIWqhod6mPVYndbgs0rBxI7wBVddLT1u9bi3r1Xwx7HEFzMuC+F+ZPHFx hl0e2d19553fgTiB3jDBPffcw4oHFSZACmrLCwElpNZR0s899xwZDwKiHPb0RYvvIfAQD9xVH9wS J37ZIZigDsG2HaoIZuduhxW1LqpnX1DaKiEo8vPzIakBwDK5usiVV175j3/8Q5lbvXo1/YQNayQD aOBPOAcxgzGqR0Rij9QBAnG2LdmbxfysIfn9XtzCiOHxcHSviCxeshhyoFLS06ZNYw9iA8LkiAd1 JDQaExeBZ22/++670GWWPdGOzzVq0vCRlUuD5UGP/Iom32UYh8APxCHo4UDorwzR+YcNq9Mz6tkd CUkp8hbP6NE3sUODEOahRQMRDAUB2ACg+/HHH8+cOVO+7LPLr1lJqSlLHnzA7ZdXv0xswMvlTWh5 K6zc6y73+Coxm7fIU1pYWtL2vHaIBqAT1iSHO1Skng1RBWipdOormOmhhx4i9Ko3qFpcHmcgLM+W 2A31u+EzOMSRV197JTEpcdPWTXDGHNINCZUBV6mzCGXDSnJqij0xifRNtyUAyZlPg11TowLWBXBG dms2C3Jp7lpnwp07d+KwOAT8gZC6Xbt2K1asYIxGOcVGu7S0FPnVHzIapHvFr01GadIaDRLyvWLQ 4yPzC4fwNrZJBiM8NdFo0b2L/vjM04RU1osgJeM79BMR+9vvDuzevXvChPFQJ6xgV/Ks1u1b4XNu E7pDO0PyoU7MX0Mw4UFsJt8OlXlLfCU7inLatW8d/TAwPg4zT5h4y5NP7T5w8DuTJhylYJfvv//x wIGDL7zw0m23T02pW8+RlIwrOJKT2DKWPbrcF5AXhlmyVftFlJx83Ffud5V5nRFPcUCOA0XO0ksu uxSNsWKhSCo6cPAggs3X+7/57t8Hv//xB6Q7elx+JGcRvLL31QV3LySrQA9GRjmFLliwoKKiwut3 UfSHIYsi3lCVQ+hziCqH2Lv3hEPAhDoEqvf63FdeKZsQBFj/o0aN0kVmrQNcUh3zo48+evnll8l0 yO31ETqgg9XetKHH2ZXAvmfPntdff11fwtORAGMYwGDSEcSQNZEQP2r0jX7cOWi0FuMQwpt4t5e0 NBwOZ2VlsQepTwAwjIM2b96cHZRIMGzYMGpSGXntUexoYxMHfaLD3qtPz/ySPLU6RZ8O1fyUT4r5 lI9TgCfoyinI7tm7hz0Rt46uXaBJkyaQ6NevH6lV//79u17WtUkj/QhYnvUSG9Bw19/+Jjs3B3OG ImG8mSOfRdqiKJ/aVRAn5FF9sd9JSuf0eoaPHIFEKiBmhhwBoFOnTtdcc42S+81vfsMCU2aQMCHR jvO1atN67fp1wXDIH/QHCQlBeQcHzwaz0sIhqiJEDYcg8GdtzSKe4BDeSAAnlYUS9t93/xLJiOMT KDBByCI2ApjQilfaAGLbGqtpUCtY/dqwgFvqGXjD888/L9uK+YEbh1i64pFSzs0VclKP0Zo0TA/+ wVrzhSIcl713L1rY9jx5PiFzDaDBWDA+Jk+DOLJ2uaQzKUipt1R0JD+eiZqkSNyWd3qtQqdVuyKe 0M6gPDCI+FauebRT54vE3OZhrmlI2xASgJD8EGRM2K5920X33+v0uXzhIDyjWCnW+8NV39ZFLyu8 rnKPS/IJ+XMA4jdB76ZNm3r37g02I4p4hppfFwCgnfSSPzZq0mjmrBlsE8Qh9BOAVvSbMOPxVQ4B Dyc/qaxyiNdiHMJXEZJjiUQtmVBSWtyoYUP5xMp8TsPyVdNW8wnt1BqItbrVqWDGCmhbO3EI2tQ9 evQQmeNsREhOZaRyFLd8UxqrMsszzHNVo1z5dtHvJk1bsWZlnwH9MAWLUkIBiqIhbVk66Zlpo8aO +sOGNXoQD+4Ky2sWFfKdf7TUcAiKdde05VsuQn2xtxiieNUNN91Qp16qPDzlTJBst9nxCFucHX3Z 0jLTho4c+tDyh82XdF44xABwa3xCpIilUlUg5PKUu+VN0nKv3+xfQtFL2uRft3HDuAk3t2zdinNK giNRBDRv08QhoHkroFef3kseuq/QWQQVDQCqH5jXH1QtQQSteeWlukPQki0jMXHj5o0yvyJE0lEq nwnLX97wBn1Tpk7B+xMTJFIBbrebmRiPBa2hXgFcZw84gdZAdP6xY2x1+BycxOH68XF3zJvNMYl8 mOIrD7hZTyaimpdRTcCQ82HUIVC0PpGlUeJ1lvhc2YW5m7ZveXTtqqUrl61Ytypr+5btBTnFXmeB t7Q0JNLtcBaCtjTkYo9AWVXIT1eUOtqUd9hZuBwOWT95pYVkf6SENDZnb12zaf3yP6xYsW719vyc 3OI8BqDDIncJ5wh3QJ6IiytIkZSIcjKJaMEhoOIxjyUo6hAsDKhQu4LyKXduUd6O4vzVG9YsXbX8 kVXLt+Y+tn7rRqTziCrcZbvKguVmjwhyZjbvpVYhh+iJWHvKV+hovfrqy0nJjvVZ62EXpiURleep 0vYFfV6/p0XLFsQkQh8GI3PUt4CYjxWxqGAySa+xdS2A6UzULIQTPEFP9gvCnj2+wwXtcXMTHuSM ZP4kT1SJ5sQhDURVbwiYn+Jo4BAqgroRc7WIc5uDlv4hJk/0z0D5/BJjjHvJQcbCf8oiA8ww7BFw B91mI5Nv4UElZ3rzZ6wgQaENFWg5wz5/ZRjmcQIYE28w4cEUWK1GIlrIoKXoAOMNFBXHoqJyaTin wV19tCAvelXpBG2wSDQmCWb5fN4Ug1YdgiB3Cod4+dWXHMmODZs3EHJZXuoT4hb6yXrYv2rNSvJq s0PJ6a5ly5Z///vfsSIo1KjUauOzBA0MYCDGsPt89tlnJGUSG6Kbom3t+jXIw1JAwtKAbBzq76a4 fIgthc01mhnBp1WUcykhU8xffJJCm0WGZhnPCTbo9smfHJF3Ng0295lKwG3ONUwxf8GDidTyeBts UBGckIjWxh3lI25xZflNTjk0rLJwJZ6ZUoOKKfL3PaoKG41HRDA/7AlyDiZRKtpTxYAIyKXIHpC/ o1JFLqoZ0PoRQaWgmA2Lu/gNDjF79qzqESIlNYkcAocixMlvo5FAxROVYJc/piEfb3mmz5zGCtZc F+AM+cUXX2BXPUTQAECnbWP06L5gQeylDoOD/fv3c0xv1kyeOSpyHG7MuNGhsiBiiC0DnmJPaagy Eq4MlVVUL+GKcFhunVQiFWVlFeU1SuSkUh4pL6dRHWEtCxiqUaFAPYaQKZGK6kxqqYFQy0lzw9FG NSpaTgyzSjUSWmLxR8qDWnwBn8fnbd269ezZd7BCjx45+vNxk1S+8spLycmOm8aMum3abRNvmzhp yuSp06fcNmXy9rxs3I1UqGxXOfWgoUNI1khh6tSrm+hwNGjQ4JlnnrHihNpYQa1uNRSsS0YSGADm cgStX1++qmYnIjzgDVdeeWXQvN0lnh7y3XP/vbfPnHr7jCnTZkw92zJ92vRTwNSaZRql2txaFUFS E6B+EhXKryU0AySnhJOoaKk2sVqZagZoPW0GE6ZlZmbqg6lj6hC02L8ltwfMmU2KOcPUS6ufW5Dv CQWcflaqr9jt7NL1MlJZSeBlmPzOtm3btu+//548QIO/Wlqwm61EncBqa4MBuMLnn3++Zs0a86SK bYgDmvxycXHni4pKCnG+UEWY4LR+y0ZHqiPO/IGt04LFs1X+34RqTGr5b0A1ElpOBaxAbZz0pJLW q6++GnUIAzqOmlSfqBCuLDef7sjflyx0FV91TTcIJKdKeE81f2ita9euoVAIPDgElrYA7NAAuAXQ 0Ee5QEFBQfv27S2iuALlqu5Xkq/IthfySSoT9Hbu2iUhKYHz2+lE+v/wH4HqDvHyyy9bzsI/WhQ4 7D68fFmJ1+0KS/5MKst2PnD4YHwlMZHDvviN2hW32LBhw7vvvkvA0CCBT6gHcElswF3eeuutlStX XnTRRbpHCP5E+WtcHOIHDR9M1kLSS95A7kIeM27iePrNO3yGlVOBsg0DFhtaa7/WJMKxbW0Ql6jP AXQ6YHmzgnVpDfjPAgwr5tg6FlQJ0YtawpkcohokJNrTMjM2bttSGpRjm78ipH+CbtLtk5KSHObZ XJQPaoDE8Pzzzx81atS0adMefvjhzZs3P/TQQ7fddtuIESP07/eo4qij4EhIqZd6593z8QOOEmwT fkknffcvfTC5TrJ+FQL600mqRDEzmNTGsgNVPcIDtE2nXmqmoj2AIqkVgITp1GAGFDP9NPSURKf2 0G7YsKG++KqXMr+WoOTAAPL09PTmzZuTclmd0UFVetB+bURvnB2oQxwhlv+iQwDxifY257fP50Aq b47Ix5/eoD8QCqz6w6pOneQbfgDmlGnqWFTKHCBsGjMwgH5qOhl/Rfcr123eIG/lmIMu53XcYsPm TfXS0+QB9i+BoqXx+OOP79u375133tm7d+/rr7++e/duhAR/79696eeyadOmeopp1KgRY/7yl790 7hz9qw+1AshhFbIuqOhHfKDFVK+99lo4HE41X+kg3YQJExjwwQcffPLJJ88++6z+8UaVvVag2CBB vvXee+9xsvvoo4+sDZe7OiwSibzxxhuFhYUp5vVd+q1bZwBG6KCoQxz7JYcQrPFx8rJXQnzjpk22 5+cUOIs88tdGPZHKMo/PEwj677nnHn3LVMZWrZVYbMq33lKlyGVC/Hkd2q9cvQpXkGcD+neyOdEE PEtXLktKjv6kzpRYVDWBuzrg/fffJ+JhA/YsVEab8/DYsWMJCRiPy6VLl2It0Obl5bGRPfHEE+dg HgDpWrZs+d133yk5LoGMjAz2RHmLwASJ1atXs0syACP97W9/o3Hw4MFevXpFUdQGVHslJSUHDhxA tKysLMRhL37uuecQhwFQb9KkybfffstOjbvAm6W6s4ezjRCibPOonJNFSp3Uhs0asZqxGekeBwFf 0Lfz8coSZ3EwHFiz7g/X9+9br35d/V1Kp0jRNv+aHxfki6tGDQcNGZxfWOD0uN0B+S2NkEBeIs+g vM77lz6QlJocZz6MOSVLpwP0jiCoRnWxePFitLZp0yaQsFWhLEzSpk0bfZUec7KmdWKtQFlC6frY HlSTJ0+GYqtWrbD6m2++iXk6duz45ZdfQoKtk1v0LFiwgPEcsJPNnyWsFShFEHKOq1OnjjoB9tq/ fz+EwI9bz507F9k5GZCl0WZAbQnVIocQwJykkI7EOEd8nbS6C+5diDdQoo/AzINSfeZF55bsrUtX PDLtjhkjx9zYs0+vK7td2a1n9559e0+8/dYVa1dlF+TK1mCeMfjNO83eYMDl8/pDQX8wMH7Czfr2 KfEkSvqsgeCM0jEVIYFNITc3Fw0OHz6cW2iNbBf7Pfnkk2S1WHH+/PmaTOjc2kLr1q3xMPB88803 mKpx48bkCkQItiEitn6ztHbtWlxBx2PIoUOHDho0SPesWgHMAx9//DFRze129+nTB2xpaWl4Bvi5 BU42SlyhXbt2jCEmESFqG/xq7RDqEza2Akc8NRt/kasYu0q0MH/JUX5BDrnlUzvzp6DZAkg/qV1h Hw1qT8TPpkBaWux3+cx7O6QLTA+GQ4FAgM1PX5+BGkIq2VoBEQJ1EFdZmjSAnTt3slBQjbrIhx9+ iMB4CSP1baJzdgjiAfixwbhx40Do8XjUIfA2aFVUVNAmrWYkJFQcatrnRpFZPXv2RC48HkDGP/3p T9dddx39oOXIBg9//etfkYgkQwOhkovOPwuopUMYEBrmD7+JcyTak1JT5syfV+gqDVSGvBX+4ONh d5mXhn9n0BURP/BVhPyVYT2pau01/x8HCp6BQ+gj97KysgEDBui2pwsInSrFWoEufQJ4jx49xo8f /+c//xnFgVzXCp6B8bATcUK/QGR5ncN6VSBCYBgcAgwvvvgiNuAMRY9GCBwRQsOGDUMiUZpJpXFB VnZ0fm3Asgu0+vbtS+qAmFgOcldffTV3STBxiBtuuIHTB/kcXG3fvp1+a+LZwLk4xAkaVclBnD3B kZoy9ffTcovydPtgxZMkyk955v9dI25hfleUkGB+TDfPGAKUQmfx5u1bho0cBk5SCws5GhQStQcC AIZp0KABeHAv1IeaPvvsM3IF9bAWLVoQ54nw2IwxELJCem2BJPrf5jMCMHTo0IFogXlwAsI1tBYu XMgtwgZsGLHkLz5ZkSmK4uxAmWRLIiWaNGkSyMFGv8vlwvAPPvggl59//jmksaXWAPk1C6BWmjwX h7BARDSAT3AMj5eXE+0Xdb54xqyZW7ZvzS8q8Abkd1XMLxuKcRRcJFjB1uIrKC7asClryvRpHS44 H5sgbRSXRZ1/z5aRkwB1o5GLL76YvBLbs2Gjsrfffpt1owMIpFiFXV8dQjvPAZgLflBhdXU1/Qya hUtYooezKI7I5cSJE5s1awY/+i5qfn5+bekyHq8iYwD/V199xe6AS2HsdevW0XPXXXcNHDgQK77w wgs4x7Jly6jJJ+gZPHhwrdz9FA5xbmcwkZAlnhh9FuRIcmRkZnQ4v0OP3/UYOGjg2JvH3XrbpDHj xgwYOODyKy4n60kznxDJe2Van2s8qAksCxwCrf3zn//UP2zLSezOO+9UG1A3bdqUZU3nr3cI65TB JSKQ3xGfMDlbBpEJE06YMEHfMf76669pMBg7sdBrKy/j8TDq9evXg40QuG/fPtIFfB2KzZs356AL G2xYcMUwnGDWrFkM0z8UEcVyFsAsdQhqcYjnn3/+3HTELABWtIahmo5Fv9UZO15B+88ZLCTLly/n sB4KhViIRNSlS5eynuiHtIZu7JGTk4NmrUgOGBy1BlLUrVu35uXlgYpLnKBbt24cASBqicb5dtu2 bazdZ599lnMHmsERayrnDAASsGmbiWRapEQvvfSSz+cjQmQYQCIyBmuDoMbv2a1g7+xTFgipQ+Bb uJ2NfzjCRm/WEsAV21AZrE6AS0Db9Mfe+o8ACFGWRSLW87SObQC0GaONswcdbxCc5M2A9mNv+q0o rfzoAAWLQ6txNgCripk2SLQToEdx6gq0LoWSAZ0CRK/PKC93Z8+eTXhgm5MIQYuAFr1ZS7CIaa0Q 2/5vg0VdQduo4wxWP13/6UDwnkwF4NIyg4IZGwUdoHetwebOuUAsNu2JBb1rAZcW6KX2x4LeBaxL 9lZ1CIkQtPbu3XvOHMeiPns4hyn/KfiV3Iq0BqLXMXDKToXTTfk1cEqE50CFKffeey+uQKYsDkGG QmvPnj1/rA08XQXPVEH02kB00KmGxQL90XG/AixUsaCdQPQ6BmI7oyjOAqITTp4eC7FjgGrDzo0o wMRqqCzQWwrRrtN0AlF0BqJdZrD2kIkTFxRsBApAL9hC/m8C/hhtnStYGM4G1a8ndzbwH6Ry9tKd csDZzCKDVLtr+/jx4/8HweFGLF+cV58AAAAASUVORK5CYIJ= ------=_NextPart_01DC322D.ECA9A450 Content-Location: file:///C:/0D2A2649/03-3Metodologiapararesolverproblemasmatematicos(1)_archivos/image005.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAA4QAAAD+CAYAAABiH8sBAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAFxEAABcRAcom8z8AAJN0SURBVHhe7b0PzF1VmS7e3ERNIUIIY22Ui0Dk 3paRoQE0XKu35bbSq0y1KVAFLH86vwJz+VMF5wIhtQxeTOemc2cgMAURi4AwKqRO0kQCw5/8MIzE zg1OG9FxpFqlSEGo9B9QyvnlOf6eb97v6bvWXvucs88533feJ3mS71t7rXe9611rr72es9fee8qU QCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQGMN/+k//adWiRYvWLVmyZMv//J//c8uKFStawWAply9f 3lq2bNnjn/70p9f9yZ/8ySodX4FAIBAIBAKBwKjioIMO+rspU6YcoulDAQjB//E//seWBx98sPWz n/2s9eKLL7Z27drV2rNnTzBYzJ07d7ZeeOGF9hjCWLrwwgu3zJgxI4RhIBAIBAKBQGDkcdBBB/3+ Ax/4wNNDJwo/8pGPPH7PPfe0F/L79u1rBQK9wP79+1vPP/98695772399//+39fpuAsEAoFAIBAI BEYJEIT/+Mgj24dKFP6X//JfHv/Od77T2rt3r67nA4GeAGPru9/9bmv+/PkhCgOBQCAQCAQCIwsI wm3PP79taEThcccddz7u3oQYDDSNPXv2tu7/+2+3YvtoIBAIBAKBQGBUQUE4NKLwz//8z7ds27ZN 1+6BQCN4Y99brRtuXP24jsNAIBAIBAKBQGAUYAXhwEXhrFmzzsdLP+KZwUA/8S+bfxJ3CQOBQCAQ CAQCIwkVhAMVhf/tv/23x//1X/9V1+uBQONYuGjx4+9973v/Ztq0aU8Eg8FgMBgMBoOjwne/+927 VBAOTBTiO4P4tEQg0G/8n5tvfRy/jjz4wAMvB4PBYDAYDAaDo0IIPxWDAxOFf/EXf7EF3xmcTNi6 dWvr8ssvb02fPr319NNP6+Ge4tprr229853vbLyeEjz66KOtuXPntlatWqWHhhI333xzy7tdHgwG g8FgMBgMjjL7KgqvuOKK9ofEc8DzhQsXLmxNmTIlyTlz5rTWr1+vRfsOvCn1yCOPbPvUD6FWJQif e+651mGHHdY68cQTW7t379bDPcOdd9451hcTRRB+7WtfC0EYDAaDwUnLNWvWvApq+kTk0z/84YtL zz131x8dfvj+f/je917S48He8Ndbt2674YYbdhxyyCH7b7rppuzYmch9cvFFF+18xzve8fYg/M7F bZB+eeybKCwRhATEFu5AHXzwwa3t27ePpePOFEQPxMiyZcvGlRkEKGBzQq1fuPLKK9sxaVIMEk8+ +eSkFYSrv/rVHfojhHLWrFlvfOmqq177p6eeelHLl/C73/nOy7Q1yMmAF4NTTjnl9X/7+c9f8I5N nz79rR8/88xvtSzzYELDxYRtKV2Q/OIXv3gBtufNm7dXj8HuqaeeulfjDk6dOvXtlD/B5omxi/6e OXPmmzpm0Kf/6ytf2aFlLJ/6wQ9eRPk6Y6XfxAV89uzZr+vYO/nkk9+4/bbbXtH8qfM5F6tRZ8lY qcNUH/SCOh6OPfbYfd44IL95112/K5kT69oFc/My582JPt54bWiiL4P/Tr3O5gThRO+TQQmvqrgN yq8c+yIK6whCCi0VhADvhA2DCAMgxAbtC2KyZs0aTW4Mk1kQkriIc6KkCMEEqhf7Tk5kOxF3aqNb 0gcsQuze8scee2y7XaSkBBgmug9/+MNv0H/bJk/kKS+88MJdqbx2caf08gf7R/abN25x7PLLLtup ZTSPV3ZYiAs0x9oll1yykwvr+771rba4Q7ouuFPncy5Wo86SsVKHqT7olvwBQ+ch0FtAs88pAnG9 wP/a1rp2S+dl+jDR50n2Zy/7MuiTP4J7484y+qQzTsS4NS4KeyUIuVVz0CKMGAZB2G+MgiC0okQv vvYuoh4rYVOLl1KyfvUdixTcBYHQq2ofFz52cWxjlru42Ph5Cxfa9pizG2yeqbte7FNd+FpifHnb ZoaFdlx67bDj27Y/dT6nYjXqLBkrdZnqg24ImwtOO20v79rpHRWdGzk+bH/zDoH1qa7dOvOytdfL +A6Cw/7j0WRhqSAEo08640SMW6OisFeCkGLEOwagLF70wonz+OOPb23evNk9jmMbN25srVix4gAb a9euHdueCsGX2o6pghD/s24KJn028v777x9nAy+nWbBgwdjxpUuXjqsr9/KaEl+Z56STTmrXzZfC IL/m9YD6mR8xw/ckbfuIqtgPCr0WhPbX3U5O8iYWL3VIwZW6ANhtDtp2Pe4tfjTdUn8ZV0EIG8cc c8w+rTM4vORdEHCiLkJLzmlduLOtgz6fJxKbGitN9AG2dP79/fe/bNNyW8C8H8msX5zr6tr18njz siWuX1V5hp0TcRE9ERmCsHlO1Lg1Jgq7FYTbtm0bEz6pO3K4ewhhxZfOQMjgbqK1A8FmhRr+X7Ro 0ZgN1m1fzvLQQw+1L2DeC1tUEAJ88YoVTKwL6VYQcgvs3XffPe5/1oX/Uy+vKfXVilSITcaHfqpA teAd2euuu65tz4pD276S2A8KVhBi4cdfWnW7pGWnghALAD6kzeNnnHHG7twWs7/92799VbcPcVGR 8oMPKttyn164cI8nwizpu7bJsmrhYdufWvx45WAX255se1UQ2vYefdRR+07/1Kf2VD1XU0UsQo+b OfNN2kW/68Rc0m82Lmz7HV/72iscTyiDiypsoW+Yz1v4ltTnkVt1WT+2kp1/3nkHfF9ItzannmNS 5mLlPaeVeubW9munbVW/Uu3RHxmw1ZPxR95rrrmm8scge1c69WNGKp+ez4iLxgqv/bZikuTYyN01 L20762Z+xJj5SvugdHylmPO1ZKx4LJnrvD5QO71gao5L/Rhm8+fGVcquZdW8bMlx4c09Hjk+cO6j DPtR22LnNb1+2uM4tmHDhpd07JSOQ9Auom18SAqYXOxT/pa0V32hHe+HIOuPtY00bDfnOZVqK6ll cf4wVrZsif+lseZ5ibpWrlz5e68+Gwfv/CqNNdqkazCMY+Thdn1vzlb7yIN53uZJ0XupS7c+aflU P5Fe3Dy/7DG7Rdyb7zqNR102Igo7EYRsLIk7ThAcKsoIK/YIK84obqwAQpq9Q4j8KryYTjsWniBM balUAcZ2WkEK4I2iVkgxn9ZTx1etG6D4VD8t0D4Vwp79qtgPEhSEOoGDqQtASoiBdmGj5XnhwCIH 6fxF3NqwfnCSsM8o6cTBu2acYHmxZx2YPLwLokfvV2xl1cLDLkKr2mXLYXLl5MvyKhy0f0hPxJWQ fcVYsf3qX0m/gSo+cDHWX/c5edtxor++ltZnyfgwD/od/+uCmhcxppf+AlwVq1T/2nPFW4B20lbL kvZ456T6r3ZJFfoaT0tbTy4uXhr7KxUr2GaMmFan7agHP5488vDD2zFGbXxL+qB0fKVY4mvVWFGW znVevNVWL2jHivW/0x/Jquym8uRs2Xpz87ylFTyYv3CtQf+xHv6Yxx/n2A86xqxYwv/e/G594jj0 /NRFtI2lzmWIv305WpW/Ve21tkmOZ9s/bKf1SW3TB+98UGpZtt3OzV4+9b9OrGkb8YMdlIUwtPVZ //T8qhPrc845Zzfz0R9c25cvX95+Xpt+e/0Oe1wD0b9cLEGMC3ttps1ufdL4p/qJ1Lil/OIxzCX8 MY3/s9+6iUen7Lko7EQQUhRRYIGpu1kpEUlCdFlh5X26wrvjRuidO6IbQUibqTZZaD11fdW6bT4V pERKMGr7SmI/SFAQ6mIeTF0AUoJQfwG3JzLLeJMZ0jlJpBYvdrFpJxT4bX+d0oVu6aLD88Vj1cIj 5X8qHUTbeMciJQi9/rFUm1W09jhR8rku/grINLWfipW38Eu12/anXUTUqc+S/aIXFnsnyLOtFxS1 a/PkYpVqZ26R7/lT0tZcea89XqxtWu5C2akgpF0vLl6a9R3pKhyWXXjhLnuu1W078rHtdjHu2fH6 oGR8pejV4fmaGyseS+e6VLx7TbZJ58XUnFbqV8quZdW8rETsSvKR7Btv/MOW9pcVSPTNnmdIs3cI kd+LgSe0WKfmZ5w0L3y3dVf5yzKp9npk/pRd70cam5byXemV5Tjy5l3P/zqxLq0P9PqkJNZeHRwz el3SvPTFm0e0Xo+ptmg9dXxKpaXq8uLm5WWa9il+bMuJ/Trx6JQ9FYXdCEKAgia1BZF3/1S8KLil EpwxY8bYVk2ANjyRxWNavwo1QAUToaKM+ToRhHV91bqBKkGYaoeml8Z+UOj2DqGSn53Qcrp4QZq3 gEktElIXfPxSZC/q31u//qWShboytWhRpvywtPGZM2dO+5dZ64eNK+q1v96W+AFbuGtqt0Wo3Sp6 /eHRy+f1G9K9BX0q/qnFb536LG2/oKxuq7G2PZ9zcfB8UtZtZ8puSVu1fFV7eHG2PnhpHvspCEG2 ieWRhjapj5203RO+pX1QMr5SLPU1N1Y8ls51qfRe01vYgak5rdSvlF3Lknm5rk3L1KLStsEj2ss8 qM/b4s/j3vzt/XAAev6n7Fx26aU7GY8Sf5Ev1d4UU/k9YeClsZ25+SVV1ktP+ZOKEejFWu2m6gO1 T0pj7dlK+cl2qT8sY3+U17anqH6D3frklU+le/V76ewftZlip/HolD0Thd0KQnsXyhMwFCXeMQVf 0sJByzI5keX5BKhQA1QwESrKUvk8aD11fdW6gV4LwpSdQaPXzxB69BZYms4T30ujHV3E6q+sSogm bNfghKD2LO2iJTdxlC487LMRIISy9Z224J/1KbV4ShFbUFhPzh/LXIxT+ar6DendCsK69SlVkNgL V9XFGfQuNKV1p/J57dT8nbS1Tnv0vEmledR6cmPS2sydz14abdh4sS786GPzqE8evbZr/9btg9z4 SrGOr6mxUsLcXJdqTy+Jcx/P+2iMecyb01Lx17Ipu5al8zKpi80qpgQG69V0JbfbgXj+2z4/mrrz Yo9pm1L+Y4zadL1Glvqbam+KqfyeAPDSuhWEWr/+T9aNdWl9oPZJaay9OnhuqJ+e+AIpfLBjgZ8F q6qXVL/Bbn3yytu8ubil0r16UuwmHt2wJ6KwW0EIUMCg4XpXzbsrZo/pm0QB+4IU2Es9qwekRI8K NUAFE6GijO3xfFZoPXV91bqBUkGox7V9ncS+n+j1W0Y9pi783kLFS6Mde9HHpLT21ltf8SYHiiTU 9dD3v/9Syp5lqSBMtaWKjJk3weWY85n07jbkmItxKl9Vv1k/2D/9FoSg/UWwxI8qlpZL5fPaqfk7 aWtpPtATf15airzDZeOpeVL5PD+9NNrQO3Hf/va3X9YffXLllWynl6+TPkiNL63Xq0NtKVNjJceS ua6OD52QP2x5czGP23nb+5HGi2OVXctUX6aoi80qegtZkG2rEjIgX5TBPmaZnEhhu7RNKf/VH/ht 46fHU0y1N8VUfk8YeGm9EoRMT/lTN9al9YHaJ6Wx9uqgL+qnV69+wD3V9hTVb7Bbn7zyqbxe/V56 abu6jUe37FoU9kIQAnbrqH7SgG/T1M8doAwF39VXXz3ujpo+x5d6EYrmI1So2bwqpNS23vW0fkF0 2bq8etQe4fnaiSBMCT1PKFbFfpDohyAEuVhMLVRop2rxYhedXt3wjQs2TDpV9ki7aMlN4J7Pmkdp bdtJycYxxZzPloiLTtQ52jjmJsrSfkN6t4Kwbn0p2rumIC8+ts16ocqxJFZ122ntdtrW0vZ44s9L S9H2a2o8Wr+tP15cvLSUv7iz7rWtbtu9eqydOn2QGl8plvqaGyseS+e6VHqviC2JahMxwgspOB8x BilB6M25JXbJqj5Twp+SfGRqUendVbLH9McM0I4f229e36REhS6W9Rj9sdtFrb0qf1PtTTGV3xMG Xlq3ghDp3ryr/tSNdWl9oPZJaay9OuinXtNVUHlxS7U9RfUb7ManVHmma11e/V462+rFk+xFPHrB rkRhHUEIIYI7dyqACIoPHMczgBRSFDA4ZklBQwFmv70HwZLamsrnC5mmwsnWZ0WPFVIQRyiPT2bY bw1yq6d9YQ6JdtmtoKl66vjKmFnxyLq9bacEhSTz6HZbplfFfpDolyBkGW/CRDpP4KrFS+5Onrco sHV49ryyuYuSV4fmsbRvSFV/Paa2V6EdWESgDfqZBPpkF+F8q6FO3qTtQ82D8v/01FMv2nxV/aa+ dyoI69RniTzz588fewulLcO42DrVDp7HSo2NkljVbac9VretWt7La9vjiT8vLceq/ClfvLh4adaW N45K6wO9tnv1WDtVfVAyvlIs9TU3VpTePJSa67x42zmCb/4tmTeUdlwovfPaE4Re35TaJb14aB7N W9pGkP57dVPs6mMWaAMFH9/KyGMc4xw7bK/a13y2Ti9uIH39wooVr3nPulb5a22oPyl6C3HaVDue WEiVV3plQbTJ9mfOf88n0Iu1V19q/Hh9UhLrOnWwXbl+8tJy9PzuxqdUedal5b36vXR7jmOcqA+o y2u7l9YPdiwKSwShFTiWKio88UGhBMFy5plnjqXbj7zD/i233NLatGnTuA+t651G5MOnH2gDAm31 6tXunUXrg4otHmcdEFd4kY1ni/7QZ/pUVU+Vr15MUZ5Cj8yJQohN+gDf8GIerQfIxX6Q6EQQck82 iIuvnsgpcnLkt2hyr3dHujdJ0I53zJYFMUHgW2FV9tQ/nbAs7WIVVHEG/t9//uff2mcIcTHwXibg MSUItV77PR/4YC/8mjc1EbK9rIuLQn2jY0m/ab1VgjAnMErrs+RimGX4em9vAar1wm9v4eT5lIpV qp3an/jfjoVO2kqWtseLtZdWRVvGjnv7o4d+Z8qLi5dm67HHU75103ZlSR+UjK8US32tGis5m7m5 zou3rctLy8WLtM/FedTFIMUmxw7Laz117YLquzcvk+xL1sv4IA6peSAlIqw99ZPjh/btuQF7qese fWeaiqSqHyN43Du3tLznL/1LtdcjbcIGP8+Ab9HZ78XxXOH5Zm17Pxh4pF+sB2kcL54g8fyvE2va hl/2sxM6P6f6pCTWdv5hOYxnxtP2oX6+huOe9jAvMebIgzkh9S4I9c/63Y1PYGk/pepPpdsfzUiM c46bbuPRa3YkCksEYSDQBOoIQru4UqYuPpa8SNgLt35UVE947wKBPF46j8E+/OHbTvk2PtjTBaul TiZqV9tsqb/Y4cUBaBue69F6ctRFoT2GCdV+GB1t5HeWbD5dLKodm6/k47yaD9R+8y58qNcKKRCx xbOfNg3UXyKr6lOifmzBwYSfezESbPMCBqLNucWjLZeLlY4POz5h346/nN2Stmr5XHt0oQwuWbJk t/0f9BaWHvkclI7Dk08++Q1vrHtx0QW/dy6jnHceWnbSdq+dJX1QOr5SrPKVzI0VZelc5/XBz376 0xf4PJu9Q1gyb7Bua1OZ6jvbPi8Gde1W5ff6W8cW+pbtVvsaEy8PiPNiwWmnjeWz4wc2rl+1age+ gZkbO94Y0Td2e2PaEz24VnvnVZW/pe31yPFo2wc/cC1EOzDm1DZ813VFzm/mhT3vB9dS/0tiTeoL 4vQaWdUndWKNc07HNNdWei3l+clzCvnwg4b9QUDPL0vPb3zAvRc+VfVTqn7ELZVuy9n+0DVQp/Fo irVFYQjCwKBQRxAOCzE5eRf6XtD79XKikhecpmIVDAYnHyfzvMG2peZ3feYuOFyk0JiMY3MyMfpp PGuJwhCEgUFhIghC/vKIX6/w/4033rijqYs2Fwzer4oTifwFVH/NDAaDwRQn+7yRu3OGOw+pLaPB 4WAIjYnB6KcDWSwKQxAGBoWJIAjts33YdtP0RZui0NvWMxEI/7FFJbUFJhgMBpWTed6g0D3llFNe 17bhGH5kTD2vGRwOop8m0w6eycropzSLRGEIwsCgMBEEod0z3q9frjGp4bkibwERDAaDwYlDPDvU 9A+JweboPaMeYmP4GP1UzUpRGIIwMChMBEEYDAaDwWAwGAxOdD74wAMvT5s27QnVgm2EIAwMCiEI g8FgMBgMBoPBZom37c464YSfT5ky5Y9VC7YxrIKQH43Hd/bsR9898KPs06dPbz399NN6ODCkCEEY DAaDwWAwGAw2x0oxCAyjINSPtucE4d69e1tHHnlkOx8+yh6CcOIgBGHz5HeMermXnt+D+6PDD99f 9f3HfrJffuEFEfwWkh4D8a07/d5ZVZngaHOYxod9sdVEfttxjv2aK4aRwzLWRrkPyH7FoIl1QHDi sEgMAsMoCIk777yzUhACFJAhCCcWQhA2S/vR3V5dCOyD28OwqCD76VduQWVfLc+P3CLvrFmz3kiV CQZzY6rfnOyCsJ9zxTByGMbaqPcB2K8YNLEOCE4cFotBYDIIQuDKK68MQTjBEIKweeI7ir2+EHDB 2ORFrBMO2i9e4G2sEf+mf/0N/oFNfcutKbvBMjYR/0HPFcHoAzAXg16O+ybWAcHhZy0xCIQgDAwK IQibZ1MXAnzrx7uIDZqD9KupWAfLiL5vIvZN2Q2Wsan4D3KuCP6B0QfpGPRy3Me1afRYWwwCpYKQ L3k56aST2gLt7rvvbr/wBYNs2bJlrd27dx+Qb9WqVa2HHnqone/EE088IA/LQ8hZGwQFIeq6+eab 3fqIlCBEXXjhDG+ZH3/88a3NmzePHbNteu6551pz584dy7d9+/Z2nmuvvXbMzzVr1mTtI891112X zAO7GzdubK1YsWLc8VHc8hqCsHk2dSFIXcQGzUH61VSsg9Xktqhex74pu8EyNhn/Qc4VwT8w+sCP Qa/HfVybRosdiUGgVBBCcFH0LF26dEy4ULQtWrTIzQfxhTwHH3zwmMCC+LECEaIR+W2atT1//vy2 HZSFMLT1EZ4gxAtnFixY0Fq/fn37f7yNFC+goS/W10svvXQsH/2BeLv66qvbPnmijWmwR5FJ/+xd TdQDccwy+N/679keBXQiCPEQ9uzZs19nv3164cI9+vF2ftjdvthDPyrPPMfNnPnmTTfd9Kr9AD2f nUEePG9BG3b7hpbHi0NYn63L5sNkzBeO8Dkz5sGD5WwT6scHRLU86uHD4VqPjY9tx9pbb30Ff+uF oLTOlM/eRcyWzcW+DrX9qTiTnl/aVhy/5JJLxuKhdeRi7L0EgM8K0j45derUtzGOvDLWXm481/E9 1VdKxIj2OC64dYnpiIPar4pNla85alk7HvU4jm3YsOGl8887bxfSF5x22pjf5Lx58/ZWxUbrtP7m 7Ho+eT6Ddl7ROYRMjQ+1XyeeOapd9TvlT0lZlk+N6dKxVxV/9UNjU9X39KXuXKHUj2HbscU25c7F Ul/VL8ZdY8f4qW+0lepba9+eX95xLy4lbfDo9YG1V3UdqfJbWeKntlXHeK7O0vFtfbIxQN5uxj1Z Zx3QRJyDg2PHYhAoFYSAt4XTEzNPPvlkO5+KNgA2POFD2xRONq2qPsAThFaIEVqPVwffXJoSqMzr iVu2nfZpS+3bO4SjirqCkAtviAL7v07mmHxtGiZ99IkuBjipnnPOObtvv+22V2xeTHrLly/faS/u 9sJly2PBw3T+sscJXPPhwoI8FAu4aGPxxPoxkeMizuNanvlYj724cAGACwQv/rwo2AtB3TrVZ7ZL L+Slsa9D9SUVZ5vf+kWf4Dsv6itXrvy9jZ3WkYoxxlvuJQDer7C5MlXjuRPfvb7y6P0CjfpoL2U/ FZsSX1OsGo/0wy6w8L/tey/26ruNzcYf/ejFEn89u6U+sz9ZFmLa/nAA/1Pjo5t45ljld+5FF1Vl kVY1ppFWOvZAL/4lscn1fWoOK7Hr0YsDiHgdc8wxBwhmZZWvVXGn356fiP8pp5zyOmKfGmv0IXV+ lcSlqg3aZluv+lLnOpLz22OVn1WxLqmzzvimPY1Bp+MeLF0HNBnn4GDYlRgEuhWEXrqKIsITUAS2 a+rWUrVLeOkqCFkXT34lxapnK+Un26X+ACjD7bG27VbA8g5k4A+oIwg5eekkhDt4drLGZKyTK9N1 QtRFLcjJVCdEL6+XRj+tD5zc1XfQTrRql+lePbrYpK2U35qvqs6cz7Shca4T+zr02u/FGVS/vIue d7H16vBinKo3ZTdVpmQ8l/pe1VcePTugFwcvTWNT6qvHqvHIc1LPU/sLdaquVGxK/fXSwCqfmUcX xF5abnxU+VeXJX57/pSULRnT+D/VDm+ceXlLY5Pqe7LTucKj5zvSqsqROV+r4o7/9Xy0dqvmzarz qzQuuTakqH0All5HqvxOMednVaxL6vRiY+3YsqxT2+vZKO2H0nVA03EO9pddi0GgF4JQBaD+T6Tu vNlj3M4JlNYHqCCkPfVB4dVRVxBSCOLZRjzvqL5xCyo4Y8aMdp5APUHIC55OppbehKnl7TFvgk7Z 4MSrF3xN89K9SdvWxbGh5AVL7YFsD/PkFgS27tI6tZxSL2KpuFnfvGMl9NqfSle/LOGj/UagXhzV lsa4qo5czLRMyXi2zPmeqzfFVBkvDl5aKjZgzldlyXi0i1j+cq9MtSeVrj6k/PXK1/FZxZ8XS1DH R6l/dVjiN/OqPyVlS8e0F1PQi00qL5mLTVVZbWOpXY9cNDOGKI+tf55tjylfS+Ju8+kce9mll+7U O3Ta7pLzy/qTikuqDTmmfNF2gHodqeO3ZcrPkliX1Jmy741vUGOQs0Gm+qHuOqDJOAf7x56IQaCX grDqDmFOENrn8UoFYe4OIevytq1aeHXUEYR44Yy3XVbbjucX7ctnqvwaBdQRhJzQdDK1TN3ds8f0 bqLaTE2UXv1eeZuXk6/+rz5putKrRxfkqTo0vbROLafUi1jd2Neh137Q81H9InnxxPMR2M6m5bw6 NMZVdXj+pMp44ynFKt9z9aaYKuPFwUtLxabKV2XpeORWJvDoo47axy2JZKo9qXRrN+evV77UZ+1z ELHUtFResMq/Oiz1G1R/SsqWjmkvpqA3zlJ5warY5MqC2sZSuylaezg/uFVT83lM+VoSd1LHVuou jtfuqvOLeXJxSbUhR/Wl7nWkxG9lys/SWFfVmbLvjW9QY5CzwfpT/ZAqp+n9iHOwP+yZGAR6IQiR XiKKUs//AZ6AK60PSAlCKzAJ+wyfV0epIOQ2V+tzqu0EhCHfZKrtGjV0Igh1orPMTXIUev0UhExP +U5/dVGt9OrRBXmqDk0vrVPLKfUiVjf2dei1H9Q4g+oXqB9i9trm1aExztWRspsqk8trWeK7l1bF VBkvDl6aF5sSX5Wl4xHkCzFgE7RlUnWl0sESf720Up+RD8/uzJkzpy0M+DySd47o+ABL/KvDUr9B 9aekbKl/qXzeOEvlLYmNl2apbSy1m6K9O4O2lJQhU/WUxD2VFzZ1zgS9doO586skLl5aFdWXTq4j Ob89pvzU+OWYqzNl3xvfoMYgZ6OqH/T/lL1+xDnYPHsqBoFeCEKIsdyLVSxoQ49RXFnbXn0psaaC kGkobz81AcAubdapQwWh105Ngy2+qZTw2jqKqCMIebHVScrSbm3Qi5032XsTdC8Eof5Sq5Ox+uS1 Ccf4665Xjy7IWYdO0lp3aZ1aTqkXsbqxr0Ov/UzX+tQvjRPotc2rwyvr1ZGzmypTMp69+r06vLQq psp4cfDS1Df9P1eHZel4tLQvSaBPqbpS6aX+eml1fMYv6bNmzWr7CupbZMnU+Kjyrw7r+K3+lJQt GdNgqh3eOPPylsbGS7PUNpbaTZFzIF5Itnjx4t06P+SYqqck7jYNbWJeb7so83jzF6nnV2lcvLQq qi/dXEfUbz1OpvysG+tUnSn73vgGNQYpGyX9wP81RpqvH3EONsuei0GgE0FoP7PA5+M8IaeiD7Av e+GzdEzTbZT2cxT2sxN61493A9UPm25py1M04vk/AoKNdxetwOT3COknhR3t4e4fPnPBPM8++2zr mWeeabfNfjsR8bE+5O6cTmbUEYScwDjZqVjjxMRJVydjTqZVC91eCEJM8La8TsaaF8f01dawrW3K LchTFzPvAlFSZ85n2tCLSZ3Y16HXflDjzLQqMe6leXVojFN15OymypSMZ89eaVoVU23z+rAkNp4P XprHqvGIWPGNv1p/1Xitk16aBlb5zLIa3xR1fHj1eml1WeI38+kYrypbMqbxt44da0fb57W5mzRL baOX30vLkfl1Xqpirp6quHt2vrBixWveJ05oT+ei3Pnl+VaaVkX1BfTGAajnfJXfWheZ87Mq1iV1 1hnfrFNj4PlYklZnHZDyR9tT0uZgf9mIGAQ6EYSrV68e9wF3vj3Te7Onijfmo7gCIYRgU58rBB59 9NGxukD9KD1Fma3TClGItDPPPHPsGL6NiPKerxBxvMNnfYNIs98sZF4Aohb1Ix8+Wk8Riv9xDPXc csstrU2bNo2Lmb1jGYLwwAHvkZOaJSZSe/G1ixLuc2eaTtCc/LEXn2mY6Dih2gma3yP0JlTk5cWD e+3tRJmaeEFO4NouO6HTT+9CYNvOepimWzyYXlJnqc+2naWxt79OphYtlqVx9vzihYttQ0z4jTT4 9Nhjj22HzdIYe3WAaBNt6GI4VaZqPJf6nuurFO3CATbgP75HZb8fRz9KYlPqq/phfdFY0BbHi/0+ Ftpsx6tdhCH/jTfeuAN5U7Ep9Tdlt8pn1MG4ebRzjjc+Svx76Pvff6nOeaR1pfym77pILSlbNaat nZKx58X/kYcf3l4Vm6rzotOYp8YwybHq1Zljqa+puGte7Ts9bttddX6VxiXXBo+eL9YfpJdcR1J+ a31kzs+qWJfUWWd8p2LQi3FftQ7oZZxzMQ32lo2JQaATQTjqWx0DvUFdQQhiouR2BZDfErJ5MIFR wIG4OH7pqqte42RmJ0ISE6AuZnhR1YUdJ0tOgrBtPwLLN3F59XgXK0zY9mO03FbmlceEy3pJu9jC xI6LBu1AOGn769ZpfeaFSn0qjT2IiyDr8OKhrIpzlV+MCRfOdtH0V6tX79D2pmLMC7Lm9eoGMU68 YzZeVeO5ru8l8SQx3ukbfxFHu/HSAMQaFx61n4oN+jfna9VLCFLjEccwpq5ftaq9ILL9r+c9xx2O USzlYlPqr7Vr68z5DHp9b4kFoJenZNziWN3zqNRv0BOEpWWrxjRYNfasTS/+udhUnRfdxNy2IUX4 q3FLsWq+JUviTiKO9ppAptpdcn7l4lIVb48pX3i85DpS4rdlL2JdWmfJ+K6KQd1xb8dn6TqgV3EO QdgfNioGgRCEgUGhE0E4TOQkGNsmOmfqORfLiHNwIhKLwtSdO4zpXi6eSs6jOoQg9BbLwTyxQJ8/ f/64HQLBYDDYLRsXg8BFF13U2rlzp67VDwC2NXLbpPdsYCBQF3+15q9DEI4w8QtpasFsGXEOTjRi bOc+O7Bhw4aX9K5Cpyw9j+oQgtC7yxTMs9dCPxgMBvsiBoELLrjg8d/+9re6Vh8H7+UsIQoD3eLP L71sy0QVhNhG4T1bFawmYodnIko+chtxDk5E8kcMPHfzT0899SLTMZ7v+9a3Xi4Z+1Wscx5VkVtE uRUV29DiB5gy2i3UcVc1GAz2kn0Tg8CnP/3pdf/6r/+qa/VAoHFc+P9cdBcE4YMPPPDyROL99933 u8MPP3zc3v/Fixfv0XzB7hhxDk5krly58vfHH3/8m3b8zpgx483/89d//armHTQvvfTSnQcffPDb 8PGII45466s33rhD8wR93vCXf7kDsUPchrFvg8Hg8BLPrKoIHIgYBObMmXPBgw8+qGv1QKBR/NuW La3zz/+zuYceeui3p02b9kQwGAwGg8FgMDgqfM973uPu8Oi7GCSWLFnSeuGFF3TNHgg0gn37326d +/nPtw499NCjdCwGAoFAIBAIBAKTHd5jUwMTgwDuEt5zzz3tZwUDgSaBlxPdd//ft04//fS5Og4D gUAgEAgEAoFRgArCgYpBYu7cueu+/e1vt15//XVdwwcCPcEbb7zR+u53v9v6r//1v971rne9K+4O BgKBQCAQCARGElYQDoUYJObNm7fu3nvvbT3//POt/fv363o+EOgYeJMt7kJ/9KMfDTEYCAQCgUAg EBhpUBAOlRgkZs6cef2f/dmfbcGLZn72s5+1F/K7du1qf7w+GCwlvm354osvtvAGW4wlPKf6n//z f75ex1sgEAgEAoFAIDBqgCAcSjFoAWG4aNGidWedddaWv/iLv9hyxRVXtILBUl500UWtZcuWPYEx dMIJJ1wQL5AJBAKBQCAQCAT+AAjCoRaDgUAgEAgEAoFAIBBoBlOnTv2XEIOBQCAQCAQCgUAgEAgE AoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQGghkzZpx/2mmnrVu4cCHeMLrl4osv bgWDpVy6dGnr7LPPfnzJkiWrPvjBD67S8RUIBAKBQCAQCASGEO973/tWnXfeeVvwgfpNmza1fvOb 37Ree+219rcIg8FSvvrqq63nn3++PYYwlvD5kiOPPDKEYSAQCAQCgUBg5HHQQQf93ZQpUw7R9IHj 5JNPXve1r32ttXXr1tabb77ZCgR6gf3797d+9atfte64447W7Nmz1+m4CwQCgUAgEAgERgn4DuEH PvCBp4dKFH7kIx9Zt27dutbu3bt1PR8I9AS4c3jXXXe1MNZ0/AUCgUAgEAgEAqMCCMJ/fOSR7UMj Cj/0oQ/Nuf3220MMBhrHzp07W1//+tdbRxxxRGwfDQQCgUAgEAiMJCAItz3//LahEYWf//znt2Cb aCDQD7y2e0/rC1+88nEdh4FAIBAIBAKBwCiAgnAoROExxxxz/j333BPPDAb6ih9t3NiKl8wEAoFA IBAIBEYRVhAOXBR+7GMfe/zZZ5/V9Xog0Cj2t1qtxWd+9i4dj4FAIBAIBAKBwGSHCsKBisKlS5c+ vm3bNl2vBwKN48ur//fj733ve/9m2rRpTwSDwWAwGAwGg6PCd7/73btUEA5MFH7xi1/cgu8MBgL9 xje+cdcW/Dry4AMPvBwMBoPBYDAYDI4KIfxUDA5MFF5xxRWtPXv26Fp95PDoo4+25s6d21q1atW4 9Guvvbb1zne+s/X000+PS+8F9u3b11q4cGHr+OOPb23fvl0PT3rgm5fe7fJgMBgMBoPBYHCU2VdR 2K0gvPLKK1snnnjihP5kxZ133tmaMmVKmyEI+4cQhMFgMBj85l13/e6QQw7Zj2vwO97xjrfXrFnz 6sUXXbQTf//D9773kuYPpvn0D3/44tJzz931R4cfvj9iF6zLps67puyOAvsmCrsRhHv37sWbIhsT TP3Ek08+6QrCQHNoShA+9YMfvIjFxU033fSqHhs0V3/1qzv44wPYCx+/+53vvEx7nUy4v966ddsN N9yw45RTTnn9337+8xf0eLB7oo8wJmfOnPmmxvgXv/jFC//rK1/ZoWUsOaa5WNbjw0CMo/u+9a2X Z8+e/bodjyeffPIbt9922yvIc9mll+788TPP/JbtYb7LL7tsp9obFHN91QSxgLcxO/bYY/cxXh49 8aR5LHl+T58+/S3EXo8zDxZsKbs4vuC00/Z+6aqrXut1TDAnMtZ2nM+aNeuNTuazUSbmEvRzp9eC YLAp4daU3VFhX0RhN4Iwd2dtoiEEYf/RlCCk6Jo3b95ePTYMvPDCC3fxvOmFIMRi7dRTT93bySKA ZbEIze1lD3ZH9rnXPzhWJYiQxys7LMRC/sMf/vAbnqCB4OGxqVOnvk1RYn8cqWp/P5nrq15ThbGl NzfQN4o1iMNU/B577LHtVmja2FtCRKB/2F47n9g5lP3YS6FMAWP9hyCPu1udk/3Xj/EbDA4TMZ9e c801PV9TDgsbF4WdCkJud/zGN77Rvks40beNhiDsP5oQhBPhF9JhEYQsl1ooBnvH1F0niiJvQU/i IjfMC2QralJjCWMN434iCMJUX/WavOtG8WzPYy+W3Alg/eJ8p+c9+gR3ZinEPXsk5yNr1+46sHMU 6+tVbFjPMPX/ZOCw/4AUDDbBkh9XJzobFYWdCkIIKIpAPEeY2jYK4bh27drWSSed1Lr//vtbd999 d+uwww5rX2iWLVs2JiJtPoiyhx56qJ3PCk3kufzyy8d+QcWzd5s3bz6gPOrhS2K0HmLr1q1jx2Hn wQcfPEAQIg/qmz59+ljbKITpg3LRokVj+ayviM911103Zjtln9Dytq2TBU0IQruQAYdxchgWQUg/ euFDsD55d2dYx2kJ7Q8wVWMJeY855ph9wy4I+0Xccfv7++9/2ablftDyhFvqbp5nzxOE9rgnNDUd 7OUOjBCEzTAEYXDUWPLj6mRhY6KwU0EIEUjxxLtrFEOajxf9pUuXjgkfbjdlGc0H8YM8Bx98cPuF K3heccGCBa3169e380NM4c4kj2t55mM9EIkEn32EQINQtOKQbXruuefaeZBmxS6E2tVXXz1OYFIk Urzyf/hGEXfzzTeP84M+qH0ey7V1ssAKQt1y1sn2Rf7ivnjx4t0cC94iCPSEo5fG/NxWhXQskLAd 6/zzzmt/P8Yr56XRlhWE2PqFFwDgb1zAU88D5Z4b6kQQ8q5OKj6s87iZM9+kr+gXtc3nk6xvZ5xx xm67gFTRgPjd8bWvvcJ4ogyEBGwxFhqzOvV5zPWfZS7OOeZi5T3jqc+SknaR3Wlb1a9Ue3S74iWX XLLTjsWSrTe2HbmxRPIZQi2LuvGMSa5uvizD+vzphQv32HjYNjHWjAFiV3Xc6yvYLR0/3dKeyzae KYFm86tw03Je/9h4pOxqudRdSW2HPZeRF33s1WvJurwXo/B8wHmGuYH9Br9/9tOfvsBjmEv0egKb KJ8bY1U+50h/WRZjCf6xDjvnc17TO8L6Y4r6U+e6mBKEpXOKrRv1btiw4aXUeLf9gjbgOWLG3tru ZQy0nC2bO1d63XZLfRZY56ZSH0rjqflzNkt9rDrvOj23PLvWf6+Pvbq9WCAP1n0sT3ZyLe2k70vK 5NrYKRsRhZ0IQgiW4447bkycQDzhbl5KsHiijKLJiqEqYanbOWmX6V499M2W9d6MqrYAz0cPKKui 0QpEwNuSmrJf0tbJAApCb3L3FjdVxESFF6Ns3rTptyV3Lbw7FF4a/bOLFfxvJxyvnJcG2gsjJyV7 t0j95UTL+miX+Wz8vEWAR+9ug6W9C4DjzK/2mc58bIcuInUBiHjo3RBenGzcNBal9VmW9B9YFecU q2KV6h8rPjzx20lbLUvaY2PNsaD+q11Sz1uNZxVVTOICl6qb44exQB96iz5rFzawHfORhx/ejrKM W+74xh/9qD02rA+l46cXtOeEHROdCDe15x1PbfdNjVk95sXAxouLnpUrV/4e+fVc8u4QwifvLqmd NzFXwDb6EvWcfvrpe3jsnHPO2c1tuDxnsABbvnz5Ti4g4Z+1XcdnJWNsF6iMj20Xx51NQ162y9YD m1i4sx0c714fevQEIf2y44fx0XMI5e31D/97fc28tl/oc26+6UUMbJy1j7gW0POk12239eE84g9u /N87V6t8qBPPUpslPpacd52cWym7YFUf14mFN5fUjVEnfV9VpqqNaq8Oey4KOxGEECdWtNltlFaM EZ5Q89I90QSUbtNUewAFIfN4AhFI1Z3bDgukyhHwndtfvXxqv7StkwEUhCoWwE5OFpyInCDsRKIn PWkXpDkR5/0iDp+xAKhrS32jv6lfNTnJad12IrcXRp1wPdr83mRn+4P+8bkq/iKY8i1l21vQpvxO xa1OfZYl/efZ1jirXZsnF6tUO3OC0POnpK258l57vFjbNF1oWdoxW+KTsk7dPGfYHhsLnSus4KNd e5HOHff6qmT89IrsI22THWc2zp6/1l6VIEyVT6WT7A/v3PAWYKnFWiqdNrRu5vfGmrdIZPvVT81b x2clYqH2vbJemucLbabyabpHlNfYobymeXYZM42j3vXwbNgyHLNNxsCrg/VYW022nWNHxyR+kLPn XKkPNq0qnqU2S31MnXeeP6XnVs5uSR979rxY5MaW1uvV00nfl5QpaWM37KkorCsIOxEsnlADVEzp /wS3V2q6wqtHBWGqjlS6CjYL+uW1GaAQxDOMeHayxH5pWycDenmHECehfT7JLra9yQDkSQnq5GPT 7KIKtnQ7RKqclwZ6gjC1wGVem8bJkO2qWrwpU4tL9a/Klpcv1Y46gjAllOrUZ1nSfyVx1jIpn5R1 25myW9JWLV/VHm+MemkemxaEtu7vrV//UonIVhv2Ql1y3LNbMn56RW8hD6bOWc9fW65KEIJ2HM6Z M6d9V8Xa9eZib3x5hB27bVnHU2oRxzq0Tbn83sKR7dA20I72P8vkfLb0FqbWvk330kD127seWpac Zxq7VBxA/aGIeVE+9/kTS22DtWv97XUMUu2yW9NTeayP3bSdNryxRNbxAWkaD5uvqu2ezRIfSR07 KX9S9afOLbVb2sde3RoLW68dWykfrY1u+r6qTGkbu2XPRGFdQWhfJmOR2zbqCTWAIqzqDmGV8CK8 epoUhDjmtRfQD9qX2i9t62RAL58hxKThTQQ88fQCxDJ63EvTdFAnGK+clwZWCUJOmtoGjyjvldW2 WtrFpcal1JbN5/3CqOVtnToBa15PKNWtT5nrv9I4q83SulP5vHZq/k7aWqc93hj10jyqINRzoope PV6akt865HjSWFgbXr/ljqdinBs/vSLOETxjoz7xGNubEoSeOCsRhKB9NgfENwBz/cB4aOwt7bOZ 2Kbm2fIWcaQuIKvyewtHxkf7K7VoLfHZMuWPl+6lgeo3+0zz1aHGLnU3xx6z48M+wnD0UUftq3qW WtsAli7avfJ1YoCy2lZ7h6bptqfGkldPqQ8aD1DjWcdmiY+kjp2UP3XPLbVb2sde3RoLW6+1VydG SKvb91VlStvYC/ZEFNYVhBAwKuyA3LZRT6gxvUQ0USR54gvHVqxY0f7bqyclCFVwpepWwUZ4dRFa J1Bqv7StkwG9estoyQLYWwx5i08vjbS/GoN2kvHKeWlgJ4JQJ2jL0nzkKApCMNV/dWxYlpZL5fPa qfk7aWtpPtAbo15ainYse+dYjl49XhqJZy8gWlDPQ9///kupNtKGppccz8UuNX7UfifEwgEiVxdR 9jiFXerHDM+f1FiqIsemxoDMxRDUj1B7i7VcOqgLyKr83sKR7dfYeIvWUp8tU3m8dC8NVL/Z193c PdDY5RbGjJGOD31RTs4fbQNYumj3yteJgeZFHdaPptueapNlXR80HqDGs47NEh9JHTspf+qcW55d 7bcUvbo1FrZe28Y6MWJ6nb6vKlPaxl6xa1FYRxBC6PzH//gfDxAqREpspcSTvtwlJZqYF8f08wuw TbtePSrOUoIr5bsKNiD1HCLhtcNLAzz7JW2dDOiVIMRE4J1wVoTohAJ6i08vzZKLUrXplfPSwCpB aCcvL68yt4j1aBeXXtxsnV4MNJ+tM7UA7VYQ1q0vxVT/lcTZY0ms6rbT2u20raXt8caol5Zi1TmW o1ePlwYiVqwHdaRiam1oesnxnF0wNX66Jba4eXXhJQ46F6QEoXcu1xkzpJ0fUv3vjU+ydLGWS2cd aj+X31s4li5a6/hsmcrjpXtpoPrt3bkgcSz3TBOpsWMcNJ62Pm/8gHbMp8a7tgGsE1MtXzcGaC/z 2u2iYNNtZzs9X8m6Pmg8bD3MV8dmiY+kjp2UP6XnVspuaR97dWssbL12bNWJkbKk75VaprSNvWRX orBUEPIO4J/+6Z8esF2UoFBCMPDMHEGhZj/DgOfrkGYFDvOpaALsZxosrbCjkPKEmBWerIdp/B4g bTLd1kk/vTeIEmj/mjVrDtg+C/v4jATsQHA+++yzY3HwBGFJWycDeiEIecKnTli7MNaJy1t8emk4 cefPn99+uyH/54KJ9XrlvDT1SS+AmteKBp248FwVJrmqRayyahFp69SYoew/PfXUizafN8mr7V4I wjr1WZb0X0mc1a6WS8Wqbjvtsbpt1fJeXtseb4x6aTna/BoDS9xh6+RFTJ6osbHQMU8bml5y3Our qvGDMnyja679Kdo2K73x7wlCry32uI2d5rHE1lGep7m+98Qp6S3MvLRcOuvQduXyewvH0kWrZ9dL U3IspOzbst4iFqTfNi/jq49PIG/qWmfpxc6rB6RftIuY8a2RqTxKL/Zee700W77TGDDeX1ix4jXv GV/PPqjt6qTtej3VcaBrhCofbN6qeJbaLPURzI2dTs6tnN2SPvbq9mLhnXO2vKZ7Meqk76vKlLSx 1+xYFJYIQhUoKmAACi9Lffvn6tWrx30Mnt/Z815U44kfCKszzzxzLA++N2i/+2fLQxSyXtKKOAhW ilfYgUBFu+Aj8lhxm7OppBilfdiESGQM8b8Vy54gBFJtnUzoVhByIaaTjKVdGIP4rhRPXitSMFnw dcDMywmEF32+Vpz57ERYagu0gpCTc+o1yHYit3ZQHy983iJW46DMLehSPqKeZRdeuMsuKplPP5+h i08bnypByAlc41anPsuS/iuJc4pVsUq108YE5fC/fTC9k7aSpe3xYu2lVdGW0Qvf//3nf/4tzlP7 Gngtk6tb24KLKL4D6MU0ZSPlqx73+qpq/Nh+9GzmaJ8/8agLBgpPPqfC8qk61TfvmRj0j32GEP3n vSCB1MWlHmedHKeIF799hvzoO4wP2OEY10Wqim6mpxZ3oD1frC+wA1/sGNFPspT6rHVan+x3zbzn D9km1MH249to9rtwHFO2/ZYl534qdrbfOA6YZvuRabY9aGOubsbettf7AaOpGDCvzgXapibaDuo6 A4QvqWtMzgewNJ51bJb4mBo73ZxbObslfVwaC57DqBcxuPHGG3fwWlwSo076vqRMSRubYEeisEQQ dgtvK2fgD8i9mGayoxtBaE9yMjVRKm0+TBBcMOGk5renSExeOKFxax+LgtyLb0psIR8mzC9dddVr 1h6oH4m1beUkC2IStws7nehTIs9SF0B6nBdqtgd12kkvlc9rhzchYiK2QgqEL2tvvfUVmwbqoqaq PmVp/1XFOUX1SWOV6x8dMzm7JW3V8rn2qFgAlyxZstv+D6ooSRHCgh8RtuVPPvnkN1Rg1K0bMUR+ tAHnDmLAN48iH+Pt2fV+WU4d9/oK3zXNjR+da3QhlqLWpUydm3bMaJ+W2rZxxf94GQLGFp7NVFvK qsU3SB+RBz9A2DI45vUDyB9G9Bh+yNP5nPHR+NOOxoD+6rzD/qryWdtoyfOM4zMl1DmOcYxjCAtI xJ/jmnkhSu0Ht0vOfS921gdvTtB6kef6Vat24Puc3ni39GKP+uyPLqCd85qKAWzkrn29brsSsdfr uZar8qGTeFbZLPXRGzveeVf33PLs2jGZ6uNOYsE4aJ+VxKiTvi8tk2qj2us1a4vCEISDhT5HOUro RhAGu6f3y1swGOyMXMCUCuiJSi4GS4XvKJIxirk1GAwOkrVEYdOCENs5vWf7RhXcIopto9xGOqpC OQThYMkFbOpORDAYLCN/gfbuok8m8q5Z7k5MMARhMBgcHhaLwiYFoT57GKJw/LOLeI5Snx0cJYQg HDwpCr1tDsFgsJo4h7AdSLcgTTbyDXohBquJLaa4xs+ZM2fcc7PBYDA4CBaJwiYFYSCQQwjC4SAW tHj2S1/6EQwGg+CoiN5eMPeMUzAYDA6KlaIwBGFgUAhBGAwGg8FgMBgMNs8HH3jg5WnTpj2hWrCN EISBQSEEYTAYDAaDwWAw2Cx/9tOfvjDrhBN+PmXKlD9WLdhGrwXhtdde635Xr9eoqgffFeSzenyJ S1WZpjCoeocdIQiDwWAwGAwGg8HmWCkGgckoCPGZC37KgR+YR96PfvSjyTJNIufrKKNfgpAfXe7H G9/wpsHc97lGmfYFNvFWU5/9HKvDQLyoZOm55+76o8MP39/UORPnZNByWMbDsPgxDJyMsehXm6rq wTcx9bulVWWa4qDqHXUWiUGg14Jw0OCbTe3bTJ988snW9OnTGxdkEJ9r1qzR5EAC/RCE9gH/fiyy Y8JLMwRhnv0eq4MmP2HAhUpT50yck0HLYRkPw+LHMHAyxqJfbcrVg2sKX2rED8Qj76xZs95IlWmS OV+DzbBYDAKTTRBC/A3q8xb4xuAg6p2o6IcgBOObUMGJwlEbq/yRIBYJwWAw2DvyBzd7LcH1pcnd GCTE5zXXXNP42i6YZy0xCIQg7A2wTXUQ9U5khCAMBsdzFMfqhRdeuCsEYTAYDPaOg7yWYE4fRL3B f2dtMQjUEYT79u1rXX755WMfVd+4cWNrxYoVY8e3bt3aPu5tz8R2yrlz54695EW3VsL22rVrWyed dFLr/vvvbz366KNj+ZctW9Z+HpDw6uGzgtxyRR588MGt7du3u2WsvQULFoyVWbp06bj6bLvp/3XX XTd27Mwzzzyg3kWLFo3ZtvUi/8KFC8flRXsBbndFGp+BZB2IjX1JjsZkIiIEYTA4nqM4VkMQBoPB YG85qGsJH33od73Bf2dHYhCoIwjtlkiIFPxP4QNBRjGjL1ChWGNZiD0r3mADtvg/BNn69evbeXnn jaIpVw/g3SHMlaFveAup/Z+CjAIOwnLz5s3tPDfffPM4n4A69VpRaG2wzPz588eJQeS1AhFvUEVZ mzYRUVcQYnsZXkDBcYJF5CWXXHLApIMXVeDFHMiD59XW3nrrK/hbJyi+0IL2zjjjjN14AJtbHbBQ 5TGW5RY3pt90002vqj1vS4b6Dr/wkVAew4fhj5s5803Uw4fA7QeNS8vDH76YhG2q+iiylsd2Dxs/ PO+HPNj/z7h720FyPoJV8YEP9uF39b0kTh5R7+zZs1+nX59euHAP89ftY22jjkGNZVVflI7Vkvjk aP1GPRs2bHjp/PPO25XK4/WfsqQ/Smx6glDLaZzJXN/yeK/GXFV/Vvlcx1aOVW22dfWqbSlqm9m/ 9vlQEmPEe25U/cBLL+i350eqTm2TNyarxkOJ3ZJYVfVRyg/1QceQ5kmdyylqO1Kxroqj+mHjhXQ7 f4KcQ23/V/WJ2u9FLHRc0gfrc9X1pKTeVJtAe331rqXaR7mx5tXDZwVt/MGpU6e+jWu5V8bay43b XJ/g2ILTThvX7+C8efP2er7WHSe5uj3/vH4ZBXYsBoFSQci7V1bAIM3eIaR4UdEFscc7dbk0FX+A ikkgVQ/gCTPAK8M0iloCbwWlb54g8+rw0gCvXsBrFwA7tv2IiZZlulffREIdQcjJA5MaL9IrV678 vZ1EQE4kmCh4seFkahfZzMcJ1k5ONp/3axfyUkiwbkzCutCxdWGSvf22217B//AJeTlBW1GCCRjt Q708Xrc889F3Gx+Ptvw555yzm+WxCEAaJtbly5e348k41W2jtxBkWdq0F2LWbdO0nRonbRfIiyMW PvZ/a7e0j0vGoPqY64vSsVoanxztFh62jRdq+pLrP7VHm7n+KLWpgrAkzmBV3+bOydKYahtT/Vni c6mtHKvabH3pVdtSrOpfew7ZenHnwsZJ/WA/0Y8641Rt2TH5vfXrX0qNh7p2c7Gq6qPUuCwZQ4xX 7lzOUduRirXmq3tu2+upjiO0/5RTTnl9ULFQX5mONh1zzDEH/GDlMVdvqk08hrHAshB7VrzBhsY+ NdZy9YDeHcJcmapxW9ondeotHSeldef6ZRTYlRgESgWhFTa8e+cBQs8TXSXiz0ujcFLRpvUQKWEG aBna1rt0KaAt9vuGJYIQ0HoBT2gCX/7yl8filMoD6J3MiYhOBKEuLHTiwQSgi2Rvwe/l8+x5adam nYzoo060dpLS8kxnPd7kVVLe80cvPjl65SlYNE5e3hIfU/FBPk3zyoO5OClZn+bFnU67GCjt49Ix qOVAry+8Mei1uU58PLIftW/tL6cl/ecx1x+lNpHPWyTk4lzat70YcyX9WeJzqa0US9vc67alWNK/ uuDD/7iLkPKtaj4tqTM3Jj2bpXY9HzVWpX3k+VEyhkrO5Sp67fD8ycWxJF4aGxJ2q+puOhZeDJCm vnosqddrE4i4qRD10jz/vHim6gE1XrkyJeO2pE9Saal6Qa9dtFPn2lvSL5OZXYtBoFQQAtyqCM6Y MWNsm6WFJ368NO/OV78FIfOWCEIKQTy7h3ZrHXXqJTQGeseVd2U90cdjKrQnEuoIQktMDvbbOiUX oE7ypdJAb8IGU4tbnjdKTsCpekrLe/6wnTrJe/TKe5MwSF91slbf1EcwFR+tA9RfKG3dGiePLK99 pEzZ9GJCpsZgqpz2RekYrBsfj/ZCzF+bvePab17/KdXfTmzqmFA7XpxL+9azXzemJf1pmfK5E1uW JW1uum1aj/ar179cqGFhuXjx4t2e/54fml5aZ2pMkqnxoPbUruejxqqkj1J+WKbGUNW5XEKvHV56 Ko6l8UqNxcsuvXSn7jrodyw4Jq2v3g8VHkvr1TaxXIn489J0rKXqIVP955WpM27BVJ/UrZe2SsdJ ru7SfpmM7IkYBOoIQoAvSeHJXyLUIF7wgpg//dM/bQsb2PCEzqAEoZfXQj8s75Xz0gitl6CoY9t0 u2hOEKbuvE4kdCIIORFgqye2NtgJITURabr+n8qXSgO9CRvUCY8XHi2vTNVTWt7zJ3UB8eiVT03U KghLfQRT8dE67LGSu3ke1c8UUza9mIC5MZgqp32RqlPT68YnRW4ZBI8+6qh93BZk7agvJVR/O7Gp Y4LMxbm0bz37dWNa0p9kzue6tpQlbW6ybZ6tkv4F6bvnF+j5YcuhntI6U2OSTI2HVH7S81FjVdJH pPpBVo2h3LlcQq8doMZN/ydL48W6NNbeHZtBxMLWiX7k9kTN57GkXq9NXprGiGnaRzrWcjbBVP95 ZeqM26o+qVMvqTFIjZOqukv6ZbKxZ2IQqCsICYg6vgXUipiU+MFdtY9+9KNjQlLf5An0WxDSdk5U efV7dXhphNarx1i/3S4KpJ4/BFRMTkTUFYT6UVOdePR/UtP1/1S+VBroTdigTni8eOokrkzVU1re 8yd1AfHola8rCEvqScVH67D1dysIq/Km8nkxqRqDqXLaF145L71ufHLkQ/2wD9KXOv2nVH/JOjZ1 TIBVcdb/c1T7dWNa0p9glc91bHn07CmbapuyTv+C8B0fw0757/nBckwvrbMqTqnxUGXX81FjVVW3 pfoBlowhMHUul9Brh62L6am6S+Pl5YVNrRccRCzYd7CHmKjdKlbV67UJ8cBz4nPmzGmLTz7PqOer 10c61nL1gKl4eWVyeS1L+sRLS9VLloyTkrrBqn6ZTOypGARKBSHEydVXXz1OxHnP4HniB2KpRLj0 WxDat33Cvm0b79Z59krTCK3XguW+8pWvHPApDiD18hgv9hMNdQShNxnqhMD/dQJI5dOJxEv30kBv wgZ1wuNE5y3acYy/gqXqKS3v+ePFLEWvfF1BWOUjqPGx2zyqLhK2bo2TR7bf88syZVNj4sXTK6vl vLKlY7VufEpoX15jF9penLT/lOqvLVdqU8eExsqrp7RvPft1Y1rSn/o/qD6X2kqxpM1NtM1jnf6F Pdx9weIl5ZvnB9OZv7ROL+6WOh5K7Xo+aqxK+ijlh9oCq9qi57Ie9+i1g+klC+7SeJFoJ/OmtgEO IhY8V/DSNGxl1jFZylS92iYSd6344wiob/IEvT7yYpKrJxcvLVMybr36vTq8tFS9eiw1Tkrrtkz1 y2Rhz8UgUEcQQjzZ799BrNi7a/Y7eioSOfiVsKf5PKFlt02m6oGPtKECL1WG9i0h3lif3kW03yxE Hc8++2z7cxRWuMKPO+64o10+VS/B4ynBaEUrn9lMvR11oqGOIPROfk1LXah08c18KaFj6/AmIpAT tk5G3oSHNOTVV+7DBicqr+465etcQDx65UsFIVjiI/NpfFKxpP+2fC5OSvrPvtc20G4qTuqXV7eX 5sVS6ygdq54farPqYoc48C2xqbKl/af02k+W2tQx4dnUtNK+9ezTB60D1LjYvLn+VP9SaSW2Uixt c6/blmJJ/2Kc424Ix3hq4en5wTrs/FNSpxd3tanjocSu56PGqrSPPD88vzWt5FyuotcOUGOtdWve qniRtPOFFSte008sWHuDiAVt6jUux9J6tU2sr+q8Ar0+0rGWq4d1aQxTZUrGrWevNC1Vr2VunHg2 Na20XyYDGxGDQB1BeMstt7Q2bdo0tlUUH6fnt/koiJBOUth5xywhdCh6bFneHSMh0lC/2kLeVB0Q Td4xKzpxnG0CsZ2V7QLgH8pDtOEunhVx9sU6eNYQ5RmXqnoJtNN7TpBA7GkbRL2rV69O5p8oqCMI dSGBX3/4vRxMYI899th2vhobaZzgdfsA05nPftfH25NuF+6wj0kH3wiy3+qhTeZFmp2AbLqlXRSl FnGl5XmB9ibMkosdyyMeTEPM2XY7gfN7hPbCVOIj69ELgr0Ycc8/0/Til4uTR8bAEvXbmJT28SMP P7y9ZAyW9kXpWK0TH4/Ma8c66rZ9U9p/ylx/lNj0zpnSc71O31r7YJ2YlvRnqc8ltmzdypI297pt 6gNZ1b+sU8eGHfcUE0zjOYg0Pg/U1Fxa125prEr6yPOjZAw99P3vv1R1LlexNNalcUzFS/PqvK/H BxGL1BjNse58qiJRY0baa2/pWEvVAx9pQwVeqkzVuC3pE4wnK1zhx4033rgD5VP1ql/eOCmpu2Q8 5Mb0RGFjYhAoFYTdAHfhvO2QAMSQJ5ICkx91BCGIxQ0mBUwY+AXJTiD24WHmw4mP7Ri42CHPl666 6jU7MdoPreMYL4o6WWCipD3+IoqJBQ8t0yYnLDuZWjuYwOxHW7lNxC7eSO+CVqc86uXER6YWd155 TLB6ceAkrRc0u8BM+Wjr8wQh/WB/sD7bX56fXpw8om+4dYR+2V+1wZI+Rr7cGPyr1at3qI9VfVE6 VqvikyPKXr9q1Q4IWsZBf9kHS/rP2tS2ev2Rs5k7Z3Jxtud6rm9z9tmGXEy9Nub6M+dzJ2MjxVyb m2qb+kDm+tfOFYy72udcwHT4aMeo97bAVJ1em+yYrBoPdexWxSrXRzk/cmMIx0rP5RyrYu21t+65 rUSd3lgadCxAnCd6Pcqxqt5cm7xjlmiXxj411vgDpeZN1YFrtXfMngO5cQtW9Qnzce5hXKrqJVPj pKTuqn6h/VTdE4GNikGgaUGIu2Tz589P3s3auHHjuLtxgdFBXUHYNHULQrD3xCLRW1wEg8HRJRdq 3p2DYG8Zsf53QlTMnz9/3B20Jok1hm6HJNEvsfYIpti4GAQuuOCC1muvvaZr9Z6B2z7xrOCWLVvG 0rEN8tFHH81+5D4wufHl6/8yBOGIEYIw9QtgMBgcTYZI6R8j1v/Ofoow3CXLfdpiw4YNL9W9uxkc DfZFDAJnn3324y+88IKu1XsKCD++iIWcM2dO3BkccSz7s+VbhkkQYtvB/z82k5N2sB65RRSx5RaP WIgEg0ESW728Z6aCvWfEevy25X7uVmG9eMbtn5566kWmo0/u+9a3Xva2RweDfRODwCc/+cl1P/nJ T3StHgg0iv2tVmvJOefdBUH44AMPvDxoXnzxxWPP24BHfeAD++771rd+p/mC9XjppZfuPPjgg99G TI844oi3vnrjjTs0TzAYHE3ef999vzv88MPHPVu0ePHiPZov2D0j1n/gDX/5lztwTcL16P/89V+/ qseb5MqVK39//PHHv2n7YMaMGW/224/g8BDP4qoIHIgYBE444YQL7rnnntbbb7+ta/ZAoDH86Meb W5/5zGfmHnrood+eNm3aE8FgMBgMBoPB4KjwPe95j3tnuO9ikDjrrLO24Pt6gUA/8Pqbb7XOPffc Le9617uO0rEYCAQCgUAgEAhMdniPTQ1MDAK4S7h27drWrl27dO0eCPQUeKMt3i46b968uToOA4FA IBAIBAKBUYAKwoGKQWLOnDnXr1u3rtFPUARGGxhb3/zmN1sf//jHr9fxFwgEAoFAIBAIjAqsIBwK MUh84hOfuP72229v/fKXv2y99dZbup4PBDoCnk/99a9/3b4zGGIwEAgEAoFAIDDqoCAcKjFIvP/9 77/+c5/73JZ77723/VmI559/vrVjx472dtJgsJT4tuVvfvOb9hi67777WkuWLNly7LHHXqDjLRAI BAKBQCAQGDVAEA6lGLQ4+uijr//sZz8LcfjEZZddtuXiiy9uBYOlPP/881sYO/Pnz1933HHHXRAv kAkEAoFAIBAIBP4ACMKhFoOBQCAQCAQCgUAgEGgGU6dO/ZcQg4FAIBAIBAKBQCAQCAQCgUAgEAgE AoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAaCGTNmnH/aaaetW7hw4ZYrrrgi3jIarMWlS5e2 zj777MeXLFmy6oMf/OAqHV+BQCAQCAQCgcCo4qCDDvq7KVOmHKLpQ4H3ve99q84777z2dwg3bdrU /pYcvimn35kLBnN89dVX29+wxBjCWDrrrLO2HHnkkSEMA4FAIBAIBAIjD3x24gMf+MDTQycKTz75 5HVf+9rXWlu3bm29+eabrUCgF9i/f3/rV7/6VeuOO+5ozZ49e52Ou0AgEAgEAoFAYJQAQfiPjzyy fahE4Uc+8pF169ata+3evVvX84FAT4A7h3fddVcLY03HXyAQCAQCgUAgMCqAINz2/PPbhkYUfuhD H5pz++23hxgMNI6dO3e2vv71r7eOOOKI2D4aCAQCgUAgEBhJUBAOjSj8/Oc/vwXbRAOBfuC13Xta X/jilY/rOAwEAoFAIBAIBEYBVhAOXBQec8wx599zzz3xzGCgr/jRxo2teMlMIBAIBAKBQGAUoYJw oKLwYx/72OPPPvusrtcDgUaxv9VqLT7zs3e9973v/Ztp06Y9EQwGg8FgMBgMjgrf/e5371JBODBR uHTp0se3bdum6/VAoHF8efX/fhy/jjz4wAMvB4PBYDAYDAaDo0IIPxWDAxOFX/ziF7fgO4OBQL/x jW/ctcW7XR4MBoPBYDAYDI4y+yoKr7jiitaePXt0rR5oGNdee23rne98Z+vpp5/WQ0XotvwwAN+8 DEEYDAaDwWAwGAweyL6Jwk4FId5Kevnll7cOO+yw1pQpU9qcM2dO65lnnmk999xzrRUrVmiRgEG3 gq7b8sOAEITBUeDTP/zhi0vPPXfXHx1++P5/+N73XtLjk433fetbL3/4wx9+4/LLLttp0y++6KKd 73jHO95uIga/3rp126mnnrr32GOP3ffjZ575rR4PDi8HMV6aYhPn+kSMQ68ZMRg9puaFUWVfRGFd Qbhv3762GIEAXLZsWWvLli1jx/Bymrlz57aPLVq0aFy5QQDCdM2aNZrcVwyDD8OKbgQhF4D8McJy 5syZb/7bz3/+AvNeeOGFu3LHB81f/OIXL/yvr3xlh6an+NQPfvDiIYccsp/t6eeEibjfcMMNO045 5ZTXNYY8Nn369LdSi3LkwcWd/uMiv2bNmlc1n7bR47x58/YyPxdi9vjJJ5/8xu233fYK611w2ml7 v3TVVa+p36XUcZSiXbigbxEPTZ+sXP3Vr+5gHHRcNrmoC0E4MTmo8dIEmzrXJ1ocmmBVDHi9GLZr e7Az5uaFUWbjorCuILzyyivbnbRq1So91AYE48KFC4dCEMLXlJ/9wjD4MKzoRhCSduLABeOmm246 QFyAEAy4WA/jBQNCo+6kN4gJ0y667YPQjz322PbZs2e/Tn+mTp36trcox4IJv/jxwm5FvRV3oG2f R7s4sOKRsWB/I41jAmmov5sxQJ9TixPUgeN2HFaVmWz87ne+83I/x2VwYnOQ4wVzxzXXXNPVNchy GM/1XrdxGIlr6BlnnLG703l9snMijoF+zAsTMS6NisI6gvDJJ59sL8ZOPPHE1u7du/XwGHBXbP78 +dk8TePOO+/MCtd+YBh8GGb0QhDqnUIVFiRO/Nydq0GRwqfupNdvQcg4q9hDXHEnDkKL/mgeknfY rCDjpG+Fm82bIm3Y/td6GSNbH3/F70YUwrfcgg9t0h8mqspMJvbjQh6cPBzkeOnkx7gqDtu53kQb h4kTcVHfb07EMdCPeWEixgVsTBSWCkLe+UMH3X///Xp4HJD36quvHicIkbZ27dqxZw7x/Bu2nHp5 TjrppHYdjz766NgWVC8vnmHEseOPP761cePG9nOLSD/zzDMPWEDijqW1D5H20EMPtf2BwL344ovH 8lLA2TZ77cZzlAsWLBg7vnTp0raPOR9YDr5Pnz69/Qyg1mPr2rt3Lz7g3k6jENfyRComPGZjC9HO 2CLv9u3bx20HRv94W11L+rEUvRCEoBUVKgpIiANdpA+a37zrrt/R77qTUr8FIQVaKoZ2u5TXB/a4 J9BsOrd3YiupijbeDWSbc9u0PEFo01M/HlSxkwVfJ2UmKvtxIQ9OHg5qvHT6Y1wVh+lcb6qNwYnD iToGmp4XJmpcyEZEYakgpDDp5EUmFDz2ziLEGDrDpnE7KghxtX79+nY677RZQWa3YsI+/rfbVHk3 096dU/ubN29u2z744IPbgsi7o0fbWj8EFUTR3XffPe5/2x7PB+SjwLOxtKJQhae945oqD+RiYtt+ 6aWXjsWW/QBRSBFPX9R+aT+WwgpCLPR5l0m3JFbRigJQT3AcnzNnzusUKd7zaRQNKXHJB5xtGUtb J5+ls8/J6XaW1JZIihRur6Rv2JZ5/nnnjX3A1BOE1nfw6KOO2le3nR4Zr1y+KkFoY24FmneHD3lT z1Si3XaxpXeIYYNjhyLWGw/wVRdtpdu9cgu+G2+8cYeK2KoyJOq3z0Ei/yWXXHLAuDpu5sw3Icwh mBlTO75sPrQdPzzo8zValz3ntB479nUcg9yKSztrb731FY2797IN7TslzwX1VeOSsm/jlmprCUvO ZxJ+2O3Tn164cA/z2bvejI3GgD+45PrwZz/96QupYyX961H7XOdjnJfIg2e5GAPvrkxJvZ2OF8++ jgVthzd2kQc/ONEGaX8g0nq8dqTonetqT/1O0YtDP9qYG3+0X9Ke3PlQmseLgW1D1blZEi/122OV n/32p6qu3Bio6t8S+9YPjgWMoQ0bNrxk1yqlLJkXtD7m9cZtKrb9iks/2HNRWCoIKXhUJJQAQssr 5wkwT/yxbuajOLV5kGbfbOqJMZvuPeOYKqM+URipDdxdo7gEUvZSgkvbScCObatXviQm2g7mQTkV dF7eOv1YAgpCnGC6MNS7OlW0AknLQvzopIKJwp7Q9kIDwXDMMceMTTK8k4d8mGSsv5744cIPEwz8 YHnNa0WZCkq7PZPPpdmLuScIQW6NxcUZdddpZ4psj8bVso4gtMdtLNU/JevQO3uII23TzuLFi3dr bEhbpy6QuhGEaKP3sp1cGdL2Oftj5cqVv4ePFAlWUGAxQlt6x1PzwR7yMO6IIxY2fOEOn7fkcS3P fKzH3iVmn3C82Ys6Y88xqX2MNi9fvrxdTuNgF55VccndJa5qK/OlqP4gjeezng8c43xJEv+3+bxf pVGH3oHXPrB9ePrpp+9JHSvpX22j1nfOOefsZlm2FYsu9lXqPCmpt9vxUjUWNG65sZu6A1HSjhz1 XC/x22MqDv1oo9Zhx9jGH/2ofT2qak/J+VCVJxUDsPTc1Lbk4pVilZ/99qe0LtAbA+qDziF17MMW bXMu02t0FUvmBearM25zsW06Lv1iT0VhXUFoBU8JvLtKhHdXzRMizEcBZgUR73QpUmIslZ47pj7R H72Tp0jZA3DHTsVVKlZf/vKXD4i5li+JibYDSNVJ31UEaz7A68cSUBBasUCWXnxJtcETHycwfg3y FuJWVNkJDLb467ddbHoLO9BOKJxkvAWB1pMShKzT2oBP+BXK810FoYqSknammPJdWSUIrZ1UbPSC r2S8vAumisIqe5z4O5nE7UVDmbKni0Sld6HxLljehc1boLOs12f2Aq52me7Vw3NML6DaZrUFej56 RFlvfFTFJWW/pK05qj8pG6xf4407avZ88Hy39rwFi9qsOtZpmz0feF6n+tjmLam3m/FSOhY837yx 65Wlj5rm+Ziinuulfnv04gD2o42pMVbSnpLzoSSPteXFQNOYrm0ujZfHUj/75U/durRvNF3bVcc+ 5wedM+reISydF0rGbWlsm4xLv9kzUVhXEKqIqULqDpQ9ZkWmJ1pUEALcqgjOmDFjbOsmkRJjqfTc MfVJxVIKKXuACjpC78LpXT7CK18VE20HkBJ62sa6/ViCXt4hBO1CnSezCinLlIjBr4D82wpN7wII 6oSFNG9BoPWkbOgdD0+0cQKyZVGPJ35L2pmibb83QVbVYWnbiy28iKWNTVWfI7Yp2//3n//5t3Yb CelN3rSV8zVHXfCRnhivKuMRMeFWFR0b3sXOS09d7LxzzZJ9rPZAjgV7bulFNld3VQxS5chcXDz7 pW1N0Vv4kmw7j/F/7Rdlqo1evFN5c8e6abPnQyoGrJ95S+rt5XjJjQWvHTp2U/WWtEN9UXbqd4qe vX600SurTLWn5HwoyUNqDFLj0tq1x0rj5bHEz376U7euVD+m0uvYZ170De/G1WXpvFA6bktjq/ar 0uvExR7rF3siCksFYe4ZtxxyQoI2OxGEAF+uwgFR9QxhLj13TH1K5VPk8nmCDmC82BbY8OKdKp+L ibYD6IUg9PqxBL16hpDkiQzy4oFf8XITuQor/XWr5A6htyjyfuG0fqm/OvlY+1q3HkfZqouW5td2 pki7no+WJYIQ1GcxZ82aNfZ3iX3vYok42snYLlC82IGMhy60SqiLExL9rFsgq8oo6Tt+xIBg17h4 FztQL2L6P8k4arrSq0cvqqk6Uum5GOT6F6yKi2e/tK0ppu6O2WMc62yz9osyFRsv3qm8uWPdtNnz IbUI0vaW1JvyOZWu/UlWjQWvHTp2U/WWtKOKnfqdomevH230ylrm2qPjw2NJHlJjUOfcRFppvDyW +NlPf+rWlerHVHpd+9wyCeK9Bd53hXNM+aHppeO2NLZqvyq9blwGwa5FYakgBCgoVJh5uOOOO8be XKnPuxEqfgBPtKQEIQERxDdmVom2VHrumPpUun02ZQ9ICToeo21vuyjzpMoDXky0HUCpIKzbjyXo 1VtGSf0F6fRPfWrP/Pnz28/xaV6SJzLy40THg8w68at4sPXYCaaXghDMCRsr8DAJe3nqttNjqSBM tb2KjIEueJTI5+Wx7bL+2dh65bRPtb4cdXFSwpIy+vFl78LkXexsXqZ7ZUHGq2rR4dWjF9VUHan0 XAxwLDVuSuLi2S9ta4q5BQDHuwpC9UmZyufFO5U3d6ybNns+1BWEuXpTPqfStT/BkrHgtUPHbqps STuq2KnfKXr2+tFGryxZ1R7932NJHlJjUOfcRFppvDyW+NlPf+rWlfI/lV7XPsgX/8AeWNUGy5Qf ml46bktjq/ar0juJyyDYlSisIwjtXUJP5BDYqmhFR+qlI96zeJ5oUUEIP/SzFmorJcZS6YDWQ6j/ Ng7Iq0KqygcgJ+hY7itf+Yr76QdAy5fExIttqSAENA6E1lOKXgtC0Aol76T2iIsN86dOaPtyFjD1 Sxht2YtXSixx4sn5aR+uBjnJ2XbiQWzbhtSEWdJOpRVcKbtgqo05psScMrUoBa1g9Ray2hek10+l 1MWJx++tX//SnV//+u9Ky5ResLyLHdNzCzSSMff6CMd419irR31kHTouUnWnYuDVlaqzjv3StqbI MeT5rIsT+unVZZny3YtBKm/uWDdt9nxInXusXwVhrt5ux0vpWPDaUVq2pB02zWOnfqeo9sB+tNEr W1pPyflQkofUGNQ5N8HSeHks8bOf/tStS/umKr2ufUu7XvHmc4+l80LpuC2NrdqvSu8mLv1mx6Kw jiAEcDeId5746QZi27Zt7TdtqmCwAorPtTFNxRc/j2BtUJxQtLCs/f4dxIq9Y2fFHfLjjiXypkQN YJ+FQ7tQDt/cs98apA/0yRICzQqrlA+sB2U8EcXjKcHolS+JCWOLPAR8ZJttXfweoe2fOv1YgiYE IU9M+OhNHB6tqNBJAMQkZz9bkSMnE29hinRvQtJ6kd/e2bTlPUGIspisrODzJuOqdnq0wio32dUV hFZgV/lCv718qTZZf3QxCzJW3rEq6uJEibpxd9rGoKqMdxHy0ryLHe3btnhlbV4c063ZsK3jK3dR TV2gUxd4Lwa5vrW2quKSsl/S1hwZB62LftOGnicqnphPY5irJ9XOqmOdttnr81JBWFJvt+PFa7OX 5rXDi7tXlvXm2mHzeuzU7xTVHtiPNqbKeumaVnI+lOSx/qZioP7puWnzVsXLY6mf/fKnbl3aN1Xp dewjNvqYhOapYp15oWTclsY21f5UurWtx+q2uR/sSBTWFYQEPhpvhRI4Z86ccQLRAsKBIgOE2Fm9 evWYeLFig4Roo4AjIbh+//vft2655ZbWpk2bxn1cXetmfTj2zDPPHGDf2/IJoQcRZ23CB7ykxfoL QEyxflAFMmB9wDGKRG2nAnXqXTsgVR7xS8XEiy0EnIpaClD7zULmJar6sQ6aEIQgJ42SidWW0QsO aC8GHr07hayf36bhHnud8KyYga/4Hw9mc4Jkeb5aObVl1LsIoy3qV66dObI9uii0tG0Bvbrx4hf7 DCEm9ZIH0dFWjZ0eZ3zZLsbca6te4DXdK1Oax/tEiCfolYwf2wk7/OYVbOE7lHwFNtvKCyLb6i04 9MKl/ljaGLPPvUWfNw6ZpluHmO7FICU2GA+8TKk0LvRZ+6WkrTnascIxzTSdXxgfS/hj22cXP/Ab tvBNK/t9M+bP9WHuWKdttvMW0xB/+mvjyu8RpsZ5qt5uxkvpWCgdu3aRiH7gN0RL2pFiN36rrZQ9 sB9tTI2x0vaUnA8leVIxqHNulsYrxRI/++lPnbpSYyDVv3XsM81+h89er3kcsfJejkd2Mi9YdnLt ajIuw8LaorBTQRgIdIumBCFOdO8jtjliwvAmYjsB5KgXKvvhUtD7iC2ISYX5uBDDpIftD7iwei/a UfHF+r2LlgqQVDtz1AWA2tM6vfqZDwIasXjo+98v6pvSyRaiCB+TZb24APE7QpqXFxUVD/bi5Y0d XmhKqItBe8y70IAcC7x4Wj958eHF6ktXXfWaJ6y98er1Gy649uO8HJ9eefhrf4AA7RiyYxh20Bfw GT4iTyoGalPJOJXEhf3j9V2qrRr/FBETCiDQtk3zoq12i7c3BnEuMB48rxELnBuwiw/Pax/oAss7 Zuuo02bPJs43PbcZWz0P7LlZUm+n48WW9cbCX61evUPb4Y0zO3bZr3rHoaQdyk799n48S9nD4wFN t9EbDzrGSttTcj7k8ngxsPNn1bnptaUqXinm/ByEP1V1WdoxgGuv+qD9W2ofea5ftWrHIw8/7K5V MC5Yl1eHZdW8wHx1xm1VbJuKyzCxligMQRgYFJoShJ0Qix8VTyTv+tiJQpla5A8bc+3M0fvVbaKS C90qkTmM5MWtkz6c7MQY9S7gwWAwGBwsL7v00p0xNw+GxaIwBGFgUBikIOSv9PjFFf9ju4A3WeEX LvzylfrFjm8CHVahVNrOKvLXt4m+4OYv2an+HHaGIEwTgnCi9mswGAxOVuLuam7LaLB5FonCEISB QWGQgtA+F4ftDqnJigICQki3OeKZOGwdGOZFaGk7S0hRqFuPJgpxpzcn7oediP9kulPbLblFFFuN eJ6GUA4Gg8HhIK5Z+BG65F0BweZZKQpDEAYGhUEKQvs8gH0g2iMfcLbPqIH4qPow7x0H67SzhJjg 8XzkKaec8nq3tvpJ+I3nDoa9v1L0HqYfdVFonznBjxT67GAwGAwGg8F/54MPPPDytGnTnlAt2EYI wsCgMEhBGAwGg8FgMBgMjgLxwrJZJ5zw8ylTpvyxasE2QhAGBoUQhMFgMBgMBoPBYHOsFIPAsAtC fPMu9YH2HLZu3dq6/PLLW9OnT69dNtAfhCAMBoPBYDAYDAabYZEYBCajINy7d2/ryCOPbD9nU7ds oH/ohSDkh8579TwVnxes+x3Dyc5ex9ljP+oYJFNjK5U+WYkXMfGbdnosGAwGg8Fgb1gsBoFhF4Sd Yt++fa2FCxeGIBxidCsI7QdHeyEi7Is7YsH67+x1nD32o45BMjW2UunDRn4guhdvaA1BGAwGg8Fg s6wlBoHJKgiBK6+8MgThEKNbQQjyI+O9EhH8tEIsWMez13H22I86BsnU2EqlDxPxiYdevKU2GAwG g8Fgs6wtBoEQhIFBYRgFIcjvmw3r4nwQbCLOyn7UMWimxlYqfRgYHxUOBoPBYHBisCMxCNQRhNiG iRe1YNF2/PHHtzZu3NhasWLFAXnWrl3bOuyww8ae4Vu2bFlr9+7d4/IBePHLggULxr6rtXTp0nH5 Ui+GsX6wjuuuu27sOBGCcLgRgnDisIk4K/tRx6CZGlup9GAwGAwGg8ESdiwGgTqCEAJr1apV7b8h yvD/okWLxo7zub0TTzxxTNg99NBDbdFm04DnnnuuLRrvvvvucf8zH/73XgzDOg4++ODW5s2b22k3 33xzO9/9998/Zh8IQTjc6EQQ4gUc/NA6Pka99tZbX/FEBLbh4UUd/NEAef/xkUe2qz2P3uJc7eH4 JZdckhUu3ArIMsp58+bttXnxwXd+aBv2dYse8xw3c+abN91006t8CQvye3nr+mvZjzj3qg57HMc2 bNjw0vnnnbfLO+7FwsYVdX/zrrt+x+flMLmmjjHeJX1HemMrl17HtpbhOLEfcLdlc+3WPKn67TOQ JGylno30XqCj/uKOpB0XP37mmd8iD549pD3vjmWVr8FgMBgMTlZ2JQaBUkHIN3da0YU0e4fwzjvv dAUY0nGBtmISos6KSQBvFIXQ2759+7h8niC0AvPJJ58cZ58IQTjcqCsIucjEYh6LPCsorIhAvtmz Z79++223vYL/kQ/lpk6d+jYWl2pXqYtzLDQh7FCeQmTlypW/R71YwGp5EuWWL1/e9tWmwZYuujUN i3PYt2nwi4vuTy9cuIft4wtZ6Eun/pL9iHMv60BcWAZtx/8U2yWx0LgiH2KKMqeffvqe1DEKlZK+ I3Vs5dLr2ra2rM+0yXHC2Gi+TtvGmGs67vjauEPoeSLR+nHOOefsZl+zLohCnkf0qVexCgaDwWBw orNrMQiUCkIrztavX6+HXaFGeHf/8L/e0fOQE3WoE3cguT01BOHEQl1BiIWjLu64yLUiwgqEXL4U dXHuLTY73d4IP3Qx66UxXetQ8QfyDZBWFHXjbz/i3Ks6KCxtPJDGO4SlsWCavWtbcqxO34E6tnLp dW17eWxcPDHVq7bRNuvE/wtOO22vlvV8sDa1H9G3qXFi89bxNRgMBoPBycKeiEGgVBAC3P4Jzpgx Y2y7J8A7iJ4g5DHe/eMdvW4EIYUgnk+EH7AXgnBioY4gVNFD6uLeLkw9egtfpbc4J2GfW+vqLjTV V9pTwUJ6r/r3FsPM57Wtrr/9iHMv67ACg3eWUszFQuvO+WXt1ek7MDW2NL0T25beOPHSe9k2Cjjc FVy8ePFurZvUtnp+5Xygz3pHXPOBKV+DwWAwGJzo7JkYBOoIQoAveuGijNs+c4LQPvdnBaEKOA+e qNOP1afseWUDw4M6gjC1cNV0Lko1Xx16C1aQYgLPJeG5LM+fFOmXCqXUXRB7zG6P9BbOKUHYib8a z1R6N3FWW6n00jq4NRA8+qij9qGtXp5cLLRuy9Sxun0HpsaWpndi29IbJ6C2Rf/XOurWT3teOVLb Cnr+poSeCsJOfQ0Gg8FgcKKyp2IQqCsICQjDuXPnthdhuNPnPe9HUCxSPHLLqH1eMAUVdSxrnz8M QTgx0aQgVHFUh96CVT+mrfVWETa9RWluMcsFcSeCsFN/U/k0vZs4q61Uep06+LISlAfrxsJLqzpW t+9Ab2x56Z3YtvTGCahiqpdto71Zs2Yd8CyopbYV9PzthSDM+RoMBoPB4ERkz8UgUCoIIfiuvvpq 902h3PqpL49J5aN4RF4IO2sT4s5uJVVR54k/Lw3QsoHhQieCUMWBLmhzdwRwzL59MkVdsHqCS+vN 0VvsknbLo4oETxB5ttQ//R8s9bcfcW6yDvtyGsSoNBZeWtWxun0H6thKpXdi29IbJ0yvEsed1o9Y n3LKKa/jQpUqC2pb6Zf6WyoIO/E1GAwGg8GJyEbEIFBHEELE2W8KQgB6bwXFxZrPF6beKEoRZwnx Zrec8s4ijlEk6t1F+y1D1PHss8+2P0fhlQ0MF+oIwpQ48MQFFpxI088TYNGpC2SPumD1Fs1emsfU 83KWXAxrHpa1PnsLZxU9nm9emsd+xLmXdUAM6Jtcbdy8dpemlRyr03egjq1cel3blt44YT1WYPWq bejTOXPmvM7+ZB7tY/qQamsngtCWL/E1GAwGg8GJyMbEIFBHEN5yyy2tTZs2jW0Vxcfp+S1Amw/P +OE4CJG3evXqA54rBCDuaAvEh+lpj8KPx0DeAYTYxDHYXrNmzZj4w/84lisbGB7UEYQgF31cIOo2 QaZTcNj+B73FqdKW5SJSF7eoF59CQB6Il8cee2y79+291IKWNvktNeaDPT7/xjS9s0GB5IkZ1tOp v2Q/4tyrOhgn+7052Obx0likBIX11TtWp++8sZVLr2NbSZ/RbvY1n7UsEVJ16mea2rB9TB9SbeW4 Rj8yDX3HHw6seOT3CD0fqny1fqm/wWAwGAwOKxsVg0CpIAwEeo26ghC0H9nGt9OwyMXdhi9dddVr VnRh4Y/X3iMf86ooU1I8sIxdNLJe1AUhx4Ut/vdeYgJy4ZmiXZBi8cqFLqhtsgteW17roJDqxF/L JuPcyzoQl+tXrdrxyMMPb7cfM7eCNxeLv1q9eofGVcWmd8y2o6rvwNTYSqXXse2R4wJ5bVz4JtZe to1izvqu4xLl/vZv/3asv0l8h1L9gIDjjxy2PEShrYt56/hqfQtBGAwGg8GJwMbFIBCCMDAodCII g8FgNSl6YqtkMBgMBoMTl30Rg8AFF1zQeu2113StHgg0ji9f/5chCIPBBhiCMBgMBoPBic2+iUHg 7LPPfvyFF17QtXog0DiW/dnyLRCEDz7wwMvBYLA3/M63v/3ypz71qfY2zMWLF+/R48FgMBgMBgdP PBKjInAgYhD45Cc/ue4nP/mJrtUDgUaxv9VqLTnnvLsOPfTQb0+bNu2JYDDYPd/znvf8v//hP/yH 9ktzyKlTp/5S8wWDwWAwGBws3/Oe97Sf61f2XQwCJ5xwwgX33HNP6+2339Y1eyDQGH70482tz3zm M3N1PAYCgUAgEAgEApMd3mNTAxGDxFlnnbUF3/MLBPqB1998q3Xuueduede73nWUjsVAIBAIBAKB QGCyQwXhQMUggLuEa9eube3atUvX7oFAT4E32uLtovPmzYu7g4FAIBAIBAKBkYQVhAMXg8ScOXOu X7duXXyCItAYMLa++c1vtj7+8Y9fr+MvEAgEAoFAIBAYFVAQDo0YJD7xiU9cf/vtt7d++ctftt56 6y1dzwcCHQHPp/76179u3xkMMRgIBAKBQCAQGHVAEA6dGCTe//73X/+5z31uy7333tvavHlz6/nn n2/t2LGjvZ00GCwlvm35m9/8pj2G7rvvvtaSJUu2HHvssRfoeAsEAoFAIBAIBEYNEIRDKQYtjj76 6Os/+9nPQhw+cdlll225+OKLW8FgKc8///wWxs78+fPXHXfccRfEC2QCgUAgEAgEAoE/YOrUqf8y 1GIwEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoHA5MWMGTPO P+2009YtXLhwyxVXXBEvlQnW4tKlS1tnn33240uWLFn1wQ9+cJWOr0AgEAgEAoFAIDCEeN/73rfq vPPOa392YtOmTe1PB+ATAvpZgWAwx1dffbX9yRKMIYyls846a8uRRx4ZwjAQCAQCgUAgMPI46KCD /m7KlCmHaPrAcfLJJ6/Dx8O3bt3aevPNN/X74oFAR9i/f3/rV7/6VeuOO+5ozZ49e52Ou0AgEAgE AoFAYJSA7xB+4AMfeHqoROFHPvKRdevWrWvt3r1b1/OBQE+AO4d33XVXC2NNx18gEAgEAoFAIDAq gCD8x0ce2T40ovBDH/rQnNtvvz3EYKBx7Ny5s/X1r3+9dcQRR8T20UAgEAgEAoHASAKCcNvzz28b GlH4+c9/fgu2iQYC/cBru/e0vvDFKx/XcRgIBAKBQCAQCIwCKAiHQhQec8wx599zzz3xzGCgr/jR xo2teMlMIBAIBAKBQGAUYQXhwEXhxz72scefffZZXa8HAo1if6vVWnzmZ+/S8RgIBAKBQCAQCEx2 qCAcqChcunTp49u2bdP1eiDQOL68+n8//t73vvdvpk2b9kQwGAwGg8FgMDgqfPe7371LBeHAROEX v/jFLfjOYCDQb3zjG3dtwa8jDz7wwMvBYDAYDAaDweCoEMJPxeDAROEVV1zR2rNnj67VG8G1117b euc739l6+umn9dA4PProo625c+e2Vq1apYcaRal/TaPX7ccLgy6//PLW9OnTB942C3zz0rtdHgwG g8FgMBgMjjL7KgpLBOG+fftaCxcubE2ZMiXJGTNmtM4+++zW+vXrtfgYSgTXnXfeOWYzJYiee+65 1mGHHdY68cQTe/qpjBL/mkZJ++tg7969eHlL296g26YIQRjM8ekf/vDFpeeeu+uPDj98/z9873sv 6fGJwvu+9a2XP/zhD79x+WWX7dRjwdHhRBzPF1900c53vOMdbw/S31zchsG/YfDBsh/zTT/qmGxs Yhx3Wm5YONH97xf7JgpLBCEBcYE7VwcffHBr8+bNY+kQjA899FDrpJNOaguP448/vrV9+/ZxZevg ySefzAoiiKZuxCAE5Zo1azR5aFDV/rqgoJ8MghCTKi5EFM2fXrhwD06Wyy69dOePn3nmt5o/ODH5 i1/84oXp06e/hT6eyBeM1V/96g6O1Vg8jS4n6nge9IKtKm6D9g+s8uGpH/zgxUMOOWT/zJkz3/y3 n//8BT3eS/ZjvulHHROZXn83NY47LdcUvbbnOGz+DzP7IgrrCEIKCwhCT/DZO4ndCLacIEIdV199 dce2gSuvvNK1PSzItb9ToM0TXRByspk3b95eTjbfvOuu3yFt6tSpb4cgnFz89dat20499dS9E/2C 8d3vfOflybJ4wjl4zTXXFJ+znbAfdQyCk2U895sTPW4XXnjhrjPOOGN3yQK5F+zHfNNNHZP1/CYh mD1BNNHHcQkx1u36jJzsfd4vNi4KeykIAbtFsVNB04QgIrglswnbvUIT7Z8MghCTjSf8cHHy0oMT n+jziX4B7WbxNGxEfzTdjn7UMShOhvE8CE7UuA1iIdyP+aabOibz+Q3Rt3z58p0qiMiJOo5LiLug 5593nvvGzMnc5/1mo6Kw14IQoOiy+XIvNsExbEVFGWw3ffDBBw8QRKgb5ZEOQtxcd9114+wAsLVg wYKxfEuXLm3fTUT5M888cyydXLRo0Vi5nH+eTaLUtxRK2g9oPchrt+7m4AlCtVfX725RRxDmfl3D sdM/9ak9IQgnHyfDBbSbxdMwkVvFmmxHP+oYJCfDeB4EI27l7Md802kdk/38ruIojuNR7/Mm2Jgo bEIQ8qUvFCD4P/ViE95RhBCByLLiiILI1ksBdPPNN7fz3H///QfUe/fdd4/7325f9e6+5fyrslnq Wwol7Wc+iFK+tAf5UK6qLwgVhN363QtYQYhfUvls4LHHHrvPexUvJlMc97ZjeM8QQijiIW6UydnV MjfccMOO42bOfPOmm256dc2aNa9iSyrK220/Nh8mOm5dtb4xD8vjQqBbh7Q+jQPahDzYa08b9hdn xgTkhEvxzHTY1TZ6cdFytqx9BkLb6NnSuHosKVtyAa0bA1sv6tywYcNL+stmSd+laJ9zhf21t976 ivXN8yPV/hRRx+zZs19nWTxLq76VtEHHH18WgfzMizwLTjtt3LgAsTWoqi123JCIgz5Tg9dvl9RR 1R71JdW/mr/kXPba59VJ3y655JIDFkCp8azlc/ZL2uRRzwkwd36nXoKR86Wbc7Fu3Dz/tC4lx1Np vVXnmecDWTJe7dhLnX/qk7Jf801VHWrfxhTHBnV+p5jzl8dL+6bKFlk6jtWm185Oy+WYG+82Ht48 qf5U9bnmL/WDLB0vpF6L6DfscM7w1pbDykZEYROC0G4bpbhIvdgEQkWfN9RtnSybE3bMwzt+BN4c av3VcoTnX4nNEt9yKGk/86k9L18KKUHYqd+9AAWhPSH1ZLUnAJ8h5MkPsaYnCYmTHxPK7bfd9gr+ xwSDyaBqa6ld0GAS4kTFX7k4mWk+nJzIQ/tsk20HJlBtm7Vzzjnn7Ka/zIsJnVtQaFMvKN4vcMhL 23YBVhUX2xcqJBH/U0455XX6XmXLllWWlvUuoB7rxABpdrGK/3VhUtJ3HnnRwWKAF0kuIqxvpe33 yPOA4997kL+0DTqO6Q/jaeOWuitQ1RbbD7ZubvW2i9JUHaXtYZty/avUGOi5XNI++GbbsnLlyt9r /FiXjucq+520KcXS8xt/p16CUeVL6bnYTdxS/sGmbtnTsVNab9V5lvLBqxNp3njVsZc7/zz2Y74p qaM0poM4vz2W+FvaNyW2yNJxzLypdnZaLseq8a7xsPPk99avfynlj9fnOf+r/EBanfFimRr3GOPH HHNM8Q8kw8Kei8J+CUJARQnvtqkAyQkT+IA3mqKczUNbVXe3crZT/lXZJFK+pVDafsadJ6NSBasH bZtFXb97BQpCnvC2TXrCkpo39SunnRRJb6HiUSd8kBOQnbw40XmTLWzoRGdtWx+8+ngR1snNy+tN uKm8JXFhjDUf6qlrK8XSsnoBTbE0Boyrxtr+glqn75TwN9Vn2i614+VTchzqmMMdZHvO1GmDxgj0 xkAqxiVtod+sB//j12P1L1VHaXtK+tdj7lyuap+3OEm1wxvPVfY7bVOKXt+Cen57c16JL6m26zjr Nm6efx517JTUW3qepXzQOm26tk/jAqb6SNn0fFNaR0lMU2m0VxKvkvFXwlJ/S/qm1BZYOo5L2tlp OY+l4z03T3r+2DIaCy9/qR+l48Wj16dIy5UZZvZUFDYhCHXLKKGiRIUPkUqnaFm2bFl7C6fNwzJV 4i1lG0j5V2UTyPmWQsoXTafA1nx1oG0jOvG7V6h7h5BEfm6hJO3J7Nmz1MlG6U0YXnrVROe1wfu1 S+3mbLBOmzflh9otjUuqbrstt9SWxzplvQuox7oxgE3+4muZajvo9Z13XH1Q3+q0X8k6dGxa1m2D xsjms75oO2xd2gavLVys4MK+ePHi3V4bcnWUtKeqf1P06rV1a7u89jE/t1J59nQ8l9jvtE0ppuLp bbtP+ZvzJRVLb5yRdeNWlU6mfKmqt+Q8I9WHVHyt3U7OP2U/55uqOixTMU2VqxOvkvFXlzl/6/ZN zhaoYyWVXtrOTsspS8e713+W6k9VGc1f4ked8aJlQV6H7HrH+3FyIrFnorAJQcitjLoVUkWJCh/C S9ePxmse/T+FXL5S/xRVvqWQyqfpFIQldwJT0LYBnfrdK9R9hlBpt66AnER4wnsTUAm9iwCoE5v+ T7J+b1Kyi2L7a5fWl5r0uhGEdeKiv8Dpr4x1bCnrlNULRoqlMQC5tQQ8+qij9tmtx3X7rsQHTa/T fqXX/8q6bfBi5C16tB3WXmlbaMPzraoOr4zXnlz/pujVa+1rukcuBPEcC+r07Ol4LrXfSZtyrDq/ SfUXrPIlFUtvnNFe3bhVpYOMrbdwr6q35Dwj1Ye649WLi3f+KVNx1vTSMeZRbVWl52KaKlc3XlXj rw6r/K3TN1W2QB0rufSSdnZaTlk63r3+s/T8yZXR/CV+1B0vHm296E/7KMxEZU9EYa8FYe6zEypK KEBU6Kgw4R1Hmy+VJ+cboOUs1L8SmyW+pVDafsbU8wPHVqxYMS7NQ6ptnfjdK9R5yyjo/YIN8m4h J4iqhUAVvYsAqJNVaqLLTVgUelULgiYFYUlcNC/qsHXq8TqsU1YvGCmWxoDkA+04BtKXun1X4oOm 12m/Um15rNsGL0beoseru25bYGPWrFkHPONUUkdpe8BU/6bo1WvrriqvH1hO2dPxXGofrNumHLVe Pb9J9ZfM+ZJquzfOOo1bVTqP6bgorVf/z1F9qDtevbh4558y5aOma1/XodrKpVfFNJVWN15gbvyV ssTf0r4psQXqWKlKr2pnp+WUKX+VVfk8f3JlNH8uL9nJeFHaO9/o41x9E4ldi8JeCkL7rJveHQRU lKSEjgolT6homq0b5WzdyMttn1rOQv0rsenZ89I8lLYfgG9I009N4G5syZZWbZvno5fWJOoKQky6 OvGBOkHwf29SwDHvl3BL7yLA9JLJy27bUH+9i7NXX5OCsDQudkGlYryuLT1eWlYvGCmWxkBp7zIj T92+83zQ4+pbnfYreSHzypJ12+DFyFv0aDusPc8fbQt/if3ZT3/6Qso/r4667bHU/tXjuXqt/Vz7 SmMF6ngusW/TwNI2VTF3fts8XtxJz5dU23WcdRO3qnSty7Kk3pLzjFQf6o5Xz1fPR2U/5pvSOjx/ NU8qrW68LL3xV8JSf0v6Rv9P2QJ1rFSlk6l2dlpOWTreU+0iPX9yZTR/iR/djBe1gd1oeHxB7Uxk diUK6whCCBh8EsF+qgCAcHr00UfHPpeg3+ljWe9FM7q9lN8DRBrTN23aNO5Onf0uIETTs88+2/aH gsYSIsiKU3tnDH7fcccd7WMp/6ps6l3ElG8plLRf/bNUMenBa1u3fvcCdQUhJg/vRPcmAeRFW3T7 KSb43MTIPCir+WDTCrTcREcbeowTnrXt1VdHEHoXpJQPdeLCur6wYsVr3seV69hSlpbVC0aKpTFA XPUthNonWiaVT5laeHmLqtL2KzkuaE/HRidt8MafF8/UeC9pC2IzZ86c1xmX1IU/VUdpe0r612Oq XrCqfV5ZL422dDxX2e+0TVWsOr9B9bfEF2/sgNqHXoy8NM+PXDrrVxu5OjSt9DxL+aBtJTVWNm/V +afsx3xTWofGr04a/fDSNV4l46+Enh9eWknfeOW8NNAbK156aTs7LacsHe+pdpHqT1UZzV/qR+l4 yZF+6RprMrBjUVgiCKvecgnOmDGjLQQ9EUHxYfPbu1B4mQmPwwZedALRtXr16jEhxzxIX7NmzZjI wf/8RiDrojClPfUJz87hGO+2VflXZbPUtxRK2g9AtJ155pnj/FDhrci1rVu/u0UnghD+45XH//TU Uy8iDROITiogL2S23aBe2DxyskFeXjy5L9+7kOukRL84sXEPP9P0Is924dkDpmFi44XYtovbY60N e9GGv6gH3+ex3/HRu6clcWFeja0eL7GlLClr81RN8KUx4N0p+70i9KOtt07fKTkmGG/dutNJPyh5 IbNEH9kLW502cPx5Cxpr0y6EYOvGG2/cUdIW1qvniY0Vz7NUHaXtYVqufz3mzuWq9tFn/o8+57iD b4899th2tC81nqvsV7WJxzEGUsLOY53z2y7Ic77YclXn4iMPP7y9V3FT/7xFHvoJ8Sntr5LzzPPB +oH03HgFS88/j/2Yb0rqKO3Lps/v0nOhdAyU9E2prdRY8dKr2tlNuRRLxnvpPJkS0LbPU/lL/Cgd Lzkyv9eWycCORGGJIAwEmkBdQchtTfYDseDJJ5/8hv3Vk8TEbD+M6n3c1CMnvS9dddVr9kU3fGuX nYxIb8JFPvs2VExqsOlNaiQmM50QuWDjxcnmZV0og0mXviIeaAceKrd1gnXiAhu5RUkdW8pcWV5E bHurJu6SGCDm169atQMLmNxLjKr6LkdcoOgH2oQfE7zyufZXEfGx5wC/C2XzVLXBG3+IMcc/afuf 9jRmubbYccs+1DqsKEnVUdUe5inpX5tfY+Cdy7n2gexzLkSt2MKxqvGcs1/VJtTFNni+55g6v1P+ VvlClpyLyNdp3FLpOq6UjHlVvTYOqfMs5QPLVo1Xb+x5bfD6x7If801JHaUxbfL8rnMu5Pz9q9Wr d9Tpm5ytTsZxVTs7LVfF1Hj3xqqNb8of2tU+r8qf8sP6WjJeqph6DGmyEDGrJQpDEAYGhbqCsF/k pF91VyoYDAaHialnAYPBUWOcC8EcIdrnz58/blvqZGQtURiCMDAohCAMBoPB3hC/que2yQWDo8I4 F4JVxDqvatfRZGGxKAxBGBgUhlEQYhuC99xAMBgMDiMxZ+G5nDofog4GJyPjXAjmaLf8Vm0pnmws EoUhCAODwrAJQu/B+xCFwWAwGAwGgxObfLa5znOVk4mVojAEYWBQGDZBGAwGg8FgMBgMTkY++MAD L0+bNu0J1YJthCAMDAohCIPBYDAYDAaDwWaJz27NOuGEn0+ZMuWPVQu2MdEF4aOPPtr+RqD9bmAT wLcL8X2+p59+Wg8FOkQIwmAwGAwGg8FgsDlWikFgIgvCO++8c+xZLxWE/CD7iSeeWPnx9hKEIOw9 Rl0Q8nuKTT6n2HQd+I4Pvv9T91s+nZYbVuK7XPyukn53q0k23b8TkRGTYDAYDAb/wCIxCAxCEEKs rVmzRpM7wpNPPukKwiuvvLK1aNGi2mKwl74F8hhlQWjfdtXUwrUfdXQq7DotN4y0H/fmB3f70bZ+ 9O9EY8QkGAwGg8E/sFgMAoMQhBBrKuA6hScI9+7d21qxYsW4fKXopW+BPDoRhJPp+0J441XTC9d+ 1DHK5JtpbXwR8z86/PD9TQtCcLL0by/P68kSk2AwGAwGO2UtMQj0WxBym2evRJcnCDtFr30L5NGJ IMQ3AifLQq8fC9d+1DHKHHR8B11/r9jL83qyxCQYDAaDwU5YWwwCdQXhvn37WpdffvnYs3vHH398 a/Pmze5xHNu4cWP7bh3SzzzzzLFyJLZ1ajkQz+tdd911puY/YOvWre2XyND+gw8+eICIQx7Ymj59 +rhn/jr1LWWPxxYsWDBWZunSpeO2qZa0C3kWLlw4cs8o1hWE3A42WRZ6/Vi49qOOUeag4zvo+nvB Xp/XkyEmwWAwGAx2wo7EIFBHEGIrJsTP+vXr2/9DDB155JGtgw8+uLV9+/Z2mt1yCaHDZ/kI744e BRHsUFzefPPN7Xz333//WD7Uj/ogqCC6rDikPTwDiDwUX1ZgdeJbzh5fXHP33XeP+58vsiltVwjC Awe05a+3bt224LTT9lJUk/Pmzdtr89xwww077Is9zjjjjN14rkvzHDdz5ps33XTTq9imhpdPID8+ VPrjZ575LfLg+Tba0G1sOL703HN30QfkueSSS4oWnk//8Ifj6lt7662v4G9duGoddT6i2ss6YGv2 7NmvM8+nFy7cY+OJ47Ch2yOtbdjdsGHDS+efd96uqnIsW7cf+RIR5Ne86o/X1ip/PfJZQdokp06d +vbpp5++h/8z7qjj1FNPHRvD8LuTtpT0r7ZXx6jW2cl54NVj46p1eO1Cntx5rfa1Hb2MieYpHQfB YDAYDA4LOxaDQB1B6D1fZ7dZUrCpiLPP83mii4LIvhHUy4f69a2h3jZPT2B16hvg2WOaFZQA3kZK gVzarlFFqSAkU7/8c7HNF3sgDW99RF6bhm1pXBCec845u2+/7bZXbF4sApcvX76Ti1XYtC8HYRoW /Vz4rly58vcoywV+inzWDItQ2LeLWNse5IMIo2/Ih3KoEwt1tdtUHRQ8fFsm/7cvT0EZLq6tsLPb /xAz/M9Ffq5cJ/0Ikcp28E6T7YuStub8rWJqTHp3vWjb+li3LVX9WzJGuz0P6EsurnXa5cWwpB29 jAnj0uk4CAaDwWBwkOxKDAKlgpDihhd5JYSRFU68i6ioEkSw8dBDD7XvtNl8vPum5VL2IB49Adep b2qP/liBmUOqXaOMXglCLDJ1wcp0ze8tSLmotKLDy+sJlpRPSiwuU/ZtWe9ZKi+fx17VwXbqYhh3 jKyQ8sQCY6nxtXdavHL0QdPUN02z9VC01mlrib85pvo/le757aWl2lLVv6Vj1Kuz9DygL6m2Md0r 57XL86+0Hb2KSbfjIBgMBoPBQbFrMQiUCkLeYasSMhA9uNCCM2bMGNtOSeREFwXTsmXL2uVsvlS5 VLoKOKAb39Qe85YIwly7Rhm9EITeYo/Uu1pI8xapKRusz+a1Zey353Rx7PmhebQ99INjVKkCrak6 aMtrtxILcu8uKtJ4V8hjqpz2AVjaj8xntxxWtbXU3xQ1vlXpnt9emraltH8tc2PUqzPVB3oelMQ1 VYe2q6oNrM9rRy9j0u04CAaDwWBwEOyJGATqCkLdIumBL2HhAqHqOT1AP/yu+fR/IpWuAo7oxDdA 7eXyWlS1a5TRC0GYuqthj9m7Wt4itXQhTHJBiWehsKVSfVJ6fnvp9FfzlVBtpdJL6ki126MKO5Bb D8Gjjzpqn/eRdi3Xi35UsVHSVrDE3xQ1vlXpnt9emrYlZS+VXjVGvTpLz4PSuHp1aLusfc9erh2p cqn0nC0eRxpYdxwEg8FgMNhv9kwMAnUFoX2BjD3mfffPvvSFd9I8QcTtlzlxxv9VkGo+QgWcotQ3 Qu3RZy8eREm7RhlNC0IucKuEROlCGNQPqns+KVN5NJ1tyd0JTFFtpdJL6tAyOaqwI/niGNgBtT4t 14t+VLFR0layyt8UU7FKpXt+e2nalpQ9L71kjHp1lp4HpXH16tB2Wfvatqp26P85e1W2yE7HQTAY DAaD/WRPxSBQKggBiCJcJPVTE3ixC0QVnpO7+uqrx730RZ+18wRRSVpKkKaEogq4Tn0jPHt8phJ1 W7uwA5uePS9tVNELQWi3eqko8Rau3iK1dCFcZzFryTy6uNSy3p0wEsdyzzP1sg6208ujVGGntC/5 sDHXcr3oR+2fkrbaNDDlb4oa36p0z28vTdtS2r9azsuTqrP0PCiNq1dHqX8l+XodE8u64yAYDAaD wX6x52IQqCMIKcpwkbTUt2riWTkKJIhFK+LsXTPkv+OOO1qbNm0ad7fNftsP+Z599tm2AOUbRfnW Tt3+yXTrJ8Vep76l7AEUd5YQjfRD7yKm2uW9xXQU0AtBCHLhqelcCFYtvksXwl79XpoytYD2FrQQ SkjTTyPA79zCtJd12GfEUE5jUiXs+IZK5vH6Qcuxfi+WXnmvH72Ff0lbS/xNMdX/ni+sV/OXtKW0 fz1/vDSvztLzAKyKa6oObVfKv5K0Xsak23EQDAaDwWA/2IgYBOoIQgCixn7E3X6IHcLmlltuaQs8 +/F4ezcRwHN1egwvW4F4gihas2bNmAjD//blL8zHuvHCFuRZvXr1OBFG/0DcjevUt5Q9Asdpjz5Z myXtCkF44ID3aBeTWMDdeOONO7CAswKGz/0wTRfkXMjiOSJrlwtLK1D4HTbaYP1cgOIuAr/ThzyP PfbYdv2WH8nFMRfbujWN6Vzk2vEG6qLXYy/r4ILZEgLOigVrh4tmxt1+Qw9+WdteOVsW6aX96C3y Uz56bS3xN0WUpR8qnK1YwZhAXnyXz37XkX6WtqWkfx95+OHtJWO0m/PAti8VV+QpbZd3Xpe2o1cx eej733+pahx4Yj4YDAaDwX6xMTEI1BWEgUCvUFcQglyc6p0JLCR5DIR4+dJVV73GxZ0VGyQWgyp8 eNeKi1mbF3YgVLC4RD58rJsLY/xf9RIKloU9fJsNL7FQP0EsWO0Hu/WD8Dn2sg4s1LltjnkYcy7i bYywUEacr1+1qr2gtx8LryrHOjvpR5TnYp20giPX1ip/U/TaAeqdL+ahTfiJF5agTZjY67alpH9z Y/SvVq/eoXV2ch7k4tpJH3nnda4d9lzrNiY4VjIOQhAGg8FgcFBsVAwCIQgDg0IngjAYDAaDwWAw GBwVNi4GgQsuuKD12muv6Vo9EGgcX77+L0MQBoPBYDAYDAaDDvsiBoGzzz778RdeeEHX6oFA41j2 Z8u3hCAMBoPBYDAYDAbHs29iEPjkJz+57ic/+Ymu1QOBRrG/1WotOee8uyAIH3zggZeDwWAwGAwG g8FRIZ7FVxE4EDEInHDCCRfcc889rbffflvX7IFAY/jRjze3PvOZz8w99NBDvz1t2rQngsFgMBgM BoPBUeF73vOeV1QIDkQMEmedddYWfE4iEOgHXn/zrda555675V3vetdROhYDgUAgEAgEAoHJDu+x qYGJQQB3CdeuXdvatWuXrt0DgZ4Cb7TF20XnzZs3V8dhIBAIBAKBQCAwClBBOFAxSMyZM+f6devW xScoAo0BY+ub3/xm6+Mf//j1Ov4CgUAgEAgEAoFRgRWEQyEGiU984hPX33777a1f/vKXrbfeekvX 84FAR8Dzqb/+9a/bdwZDDAYCgUAgEAgERh0UhEMlBon3v//913/uc5/bcu+997Y2b97cev7551s7 duxobycNBkuJb1v+5je/aY+h++67r7VkyZItxx577AU63gKBQCAQCAQCgVEDBOFQikGLo48++vrP fvazEIdPXHbZZVsuvvjiVjBYyvPPP7+FsTN//vx1xx133AXxAplAIBAIBAKBQOAPgCAcajEYCAQC gUAgEAgEAoFmMHXq1H8JMRgIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBPqH/w94rNVKXLZBcgAAAABJ RU5ErkJggk== ------=_NextPart_01DC322D.ECA9A450 Content-Location: file:///C:/0D2A2649/03-3Metodologiapararesolverproblemasmatematicos(1)_archivos/image006.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAABoAAAAhCAMAAADwKUuSAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAABOUExURQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMSiplkAAAAadFJOUwCnvxjf/yDHOECv UJ9gt4BojzAI589IcCj32YYSMQAAAAlwSFlzAAAXEQAAFxEByibzPwAAAIRJREFUOE/tkDsSwyAM BRU7cgL+YAeI7ftf1AODyPCgSJMuW+42eiL6ilvXoxLuPKASHvxEJXSsUAmaR1TCxDOqyKDUwtoY M61l2PjDq0zW5aLLQrTmVJ/iU/EYiN4p7RjiqoCz6InoOEPaUEfCgLP9+941Lk/s1dyM9Y3LE2M9 98+vuABLnQQa5DKhgwAAAABJRU5ErkJggk== ------=_NextPart_01DC322D.ECA9A450 Content-Location: file:///C:/0D2A2649/03-3Metodologiapararesolverproblemasmatematicos(1)_archivos/image007.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAA2gAAADpCAMAAABmzOTvAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAFEUExURdnZ2dra2tra2tnZ2QAAAAYGBgsLCxERERgYGB4eHigoKC0tLTIyMjMzMz8/ P0BAQERERERyxEdHR01NTVBQUFRUVF1dXWJiYm1tbXJycnNzc3l5eX5+fn9/f4KCgoSEhIeHh4iI iIuLi42NjY6OjpKSkpOTk5SUlJWVlZeXl5iYmJmZmZycnJ2dnZ6enp+fn6GhoaKioqWlpaenp6mp qaurq62tra+vr7CwsLKysrS0tLW1tba2tri4uLq6uru7u729vb6+vsDAwMHBwcPDw8XFxcjIyMnJ ycrKyszMzM3NzdDQ0NLS0tTU1NXV1dbW1tfX19jY2NnZ2dvb293d3d7e3uDg4OHh4eLi4uPj4+Xl 5efn5+jo6Onp6erq6u7u7u/v7/Dw8PHx8fLy8vT09PX19ff39/n5+fr6+vv7+/z8/P///8R/Ev4A AAAEdFJOU4efx9+nhZkZAAAACXBIWXMAABcRAAAXEQHKJvM/AAAQHUlEQVR4Xu2d/3vaxh3Hs43O zdKta7OmzdITWswSyppQi8xlSyllcxIH6LKWmoS2tkJMjKz7/3/fc3cSXw6kHOX06ei9Xz/kQadD bxl/Xr4vok+vXPkWAFAwv4JnABBw5dtvOQCgUCAaAARANAAIgGgAEADRACAAogFAAEQDgACIBgAB EA0AAiAaAARANAAIgGgAEADRACAAogFAAEQDgACIBgABEA0AAiAaAARANAAIgGgAEADRACAAogFA wO6KRnvbSLOFo2kQzQyk2cLRNIhmBtJs4WgaRDMDabZwNA2imYE0WziaBtHMQJotHE2DaGYgzRaO pkE0M5BmC0fTIJoZSLOFo2kQzQyk2cLRNIhmBtJs4WgaRDMDabZwNA2imYE0WziaBtHMQJotHE3b ZdECAIzR66cIclSCaMAN9PopghyVIBpwA71+iiBHJYgG3ECvnyLIUQmiATfQ66cIclSCaMAN9Pop ghyVIBpwA71+iiBHJYgG3ECvnyLIUalw0eJBraO3bUx8vD/R2yAa2AS9foogRyVz0eLjGmPe0cUT /UQ+XcZWRJOXutOLvtBPSDorTvEhK680QjSwCXr9FEGOSsaijevVZ0IRvzbVT+UT+rpooS8v9Zg1 tBOScHXw4rwF0cB26PVTBDkqmYoWVZJSH24tWpi6uvZScbDqFEQDW6PXTxHkqGQqWov1k1edCT9v 77+sV+usPIkqrMHj49vP24w1hTbjA8bun6bvGtdZdSRE6/msmrbOLhV/OZ31P2/vv3rIqpM4YIyV fxABQsP0NEQDW6LXTxHkqGQo2mxAE8QB83qD8isx9oSVBm8x7/CUd8VMMKr0+DjwRqqjGMzGddbh 3eZ0nF5h6VJpf3HJo2noN6RTScBkfjmIBrZEr58iyFHJULR0ujdkTGxuqLoX/8ZBg/OuNEsctsSy S/oikEdD1onuTsSuiBrIZjPHWY/UL3Uxee1ErNlpiAa2RK+fIshRyVC0IUvtaHv91ANNtC7rRxW5 Hku0CH2hVuh3pJ7p7uP8UmJAm/VfJ9r89FrR9JYiQZotHE0zFC300+mglGqtaEPWTzY+ukqLoRzD hGiLmoT+/Gih/zrR5qchWoEgzRY5aYaixUH6NCxHNG8UVeSkcSaaeI8c0dKdFHWp2dFC/3WizU9D tAJBmi1y0gxFmw9pK6LVpukarTZNTygpo4qYJIZ+J/S9Z5yHj9SlZnPH+F+JQKL/OtHml4NoBYI0 W+SkmYrGQ581Q87PxB5g8qyr643Edzxq0y6rnfKBWLyFvniVWtFlzWn80GfBY7FESyeffOBXn03F pUbz/vKS0sxWefL0InmYlp5e93DN7LZtgTRbOJpmLBqPjz9ljN1phmLyJ62J6uzw4kEz5F2v77Oq 9GhcZ+xw9hyt57Paj7ePpvI5WuoZ5+OHPmN3juRzN9VfXLL8ssJYbRr63vMkYHa6y1a/RWJ425ZA mi0cTTMXLQc1dSRm+9veBKTZwtE0iGYG0mzhaJoV0dqspzcVz/a3vQlIs4WjaRZEk19P1L+hXzzb 3vZmIM0WjqZZEO1ngva2kWYLR9MgmhlIs4WjaRDNDKTZwtE0iGYG0mzhaBpEMwNptnA0DaKZgTRb OJoG0cxAmi0cTYNoZiDNFo6mQTQzkGYLR9MgmhlIs4WjaRDNDKTZwtE0iGYG0mzhaBpEMwNptnA0 DaKZgTRbOJoG0cxAmi0cTYNoZiDNFo6mQTQzkGYLR9MgmhlIs4WjaRDNDKTZwtE0iGYG0mzhaBpE MwNptnA0DaKZgTRbOJoG0cxAmi0cTYNoZiDNFo6mQTQzkGYLR9MgmhlIs4WjaRDNDKTZwtE0iGYG 0mzhaBpEMwNptnA0DaKZgTRbOJoG0cxAmi0cTYNoZiDNFo6mQTQzkGYLR9MgmhlIs4WjaRDNDKTZ wtE0iGYG0mzhaBpEMwNptnA0DaKZgTRbOJoG0cxAmi0cTYNoZiDNFo6mQTQzkGYLR9MgmhlIs4Wj aT+HaO3yRG96A/Hx/spbaG8babZwNG2taPFxjTHv6OKJfiKLqMISOvqpNRiK1pn3GrLVt6zedpEg zRaOpq0TbVyvPhO2+bWpdiaboS8V6zX0Ez+ZcHEQa0G04kCaLXLS1ogWVZKqHm4gWqhEi77QT/xU 4mDRLYhWIEizRU7aGtFarJ+86kz4eXv/Zb1aZ+VJVGENHh/fft5mrCkMHB8wdv806apEC7+Rs8jy q4Cx/mLfns+qp+pitYuBGKvO2/uvHrLqJKyzw6UespXHAWOsPBnXmTiCaEWCNFvkpK2KNhvQBHHA vN6g/EoML2GlwVvMOzzlXdYQ/Xp8HHgj1VGJ1u3Lt3R4eHu02LfbnI4rQj9xsf+IBZe48NE09P/+ jA+E2PMeolVMQIVbUaWhjiBagSDNFjlpq6KFydJsqPY2VImLf+NAKCPNEoctYYNyQr6QeyFiLIwq 3vMHotesb3R3wnmX9RcutnBJ4ehSD9maiNbhcVCbQrQiQZotctJWRRuydGnW9vorVih5uqwvHFhY PM1HNPFavHGhr3R22VpNtKUec9E452cH4n7WivYecBS9FrLJKf0CyElbFS300+mgFGWtaEPWT3Y/ ukuihd+oN6pd/lnfYapJtmiLPRZEG9er32eOaPrHD1xBr4Vsckq/AHLSVkWTayxJjmjeKKrISeOy aIrws8dyDjnrO0y3V7JFW+yxOHVs5kwd9Y8fuIJeC9nklH4B5KStijYf0lZEq03Tddes9luJX6lo 4SMeBRO1Nz/rG/reM3kqU7SlHnPRht4IooEV9FrIRi/uYslJWyOa2NhohpyfiS3F5HFW1xuJr4vU pl1WO+UDsQYLffEqFSB5YP3d/iR+kJ6c9+2KBZg3Uhdb+DeqVCd8KDZUFntEFbFKbJUnTweswwd+ 7eyHpYdqCojmLnotZLNS3IWSk7ZONB4ff8oYu9MM5eMsMS5FdXZ48aAZ8q7X91lVjnjiGdeheo42 /wqWeAIgn7kxb7TQVzwlGyUX64pe4nX5ZYWx2o++OJ73UK1TNbC2WfW05T2Sb9GAaO6i10I2q8Vd JDlpa0XLQU0Hzdik7+ZANHfRayGbjYp7a3LSIBrYPfRayGaj4t6anLRNRWuznt6UySZ9NweiuYte C9lsVNxbk5O2mWjyG4gm/yXMhn1/ChDNXfRayGaD4rZATtpmov0/AdHcRa+FbGiLOycNooHdQ6+F bGiLOycNooHdQ6+FbGiLOycNooHdQ6+FbGiLOycNooHdQ6+FbGiLOydtl0XTW4oEabZwNA2imYE0 WziaBtHMQJotHE2DaGYgzRaOpkE0M5BmC0fTIJoZSLOFo2kQzQyk2cLRNIhmBtJs4WgaRDMDabZw NA2imYE0WziaBtHMQJotHE2DaGYgzRaOpkE0M5BmC0fTIJoZSLOFo2m7KxoAOwREA4AAiAYAARAN AAIgGgAEQDQACIBoABAA0QAgAKIBQABEA4AAiAYAARANAAIgGgAEQDQACIBoABAA0QAgYFdFe/Fu 6drXemNhXH7ye6a3FcblR6XStSd6a2Ec7JWunemNRXLzT3pLcdwslUp0vzn+4qO932Z8ljsq2sXV A97K+pmsc/nBHt2v6/LPX/MX775FZdrjA/7i6juv9ebiOCrRiXayVyqVGnprYdwr3ejpbSk7KtrN d17zy+uUvzEy0U6EYmR5l38TBUL2J4vzi/f36H5tN4k+RcW9t3Kc3k3RLq6KT5CwPsgKP0H9gFRQ 1uOtf18lE+1kr3SDbn1xlDt27qZoJ3viZzoim1+Ri3byNtmPxi9vfUg3czxiF3Si3SuVSnmjjFUu r1+7vVe6kfVR7qZo6o9H/p8Qq1CLRjjGnOwRbr1c3nhNKBq//O/7Jappz8neO1/zVuYCFKIZQSza yR+z/jAWwVeZW2XWudfglKJxzltU21iqGm9mzbJ2UzQ1dbyX9UPZh1a0yw/IfjAJ2V+skw/F8pNU NLLJgfoQ72V9lLsp2i98M+RWxi+rKC6uEgWKRZNYN1H+HaESTZVI5r7Bbor2S97eV55dfpzxCysC yq0X8hHtY6K/xqoc72U9ktxR0U72DigHNFLRbsm/+lm/MMucvP2X15fX6X44StEuP/6cX35CNFiL uSNL1jTr2FHR+AnpV7DEN3motP6rml4R1f7F9VLp2ud6a5EQivZRqfQHuiLhrb3S7zI/yl0VDYCd AqIBQABEA4AAiAYAARANAAIgGgAEQDQACIBoABAA0QAgAKIBQABEA4AAiAYAARANAAIgGgAEQDQA CIBoABAA0QAgAKIBQABEA4AAiAYAARANAAIgGgAEQDQACIBoABAA0QAgAKIBQABEA4AAiAYAARBt S1qM1abixZClrxI6k4UDzuOAST7tLTVLtK5LjVFFve/O0eLFsyn8hhRD1l84Am8Com3L+UOm/lc9 8cOl0gv39WKNKo2F7gusdl1qHPodzs/by9ZkU/wNCVqr7wI5QLTNCWbIw9BnTfmiPVroFAdlvVjj QNRmHOhjwZquS42hEI3zlrd4/UXemyEPC78hkfHZPzJvB6wBom2OLtphwKQJqq7HB4zdP5XzsvJk XGesmtanqmveZZ3z9v7Lem3Kez6rpl3VgRhn6uzw7J9JowxIRNN9mKGLVvQNifd0hioDmAHRNkcX rZmMCbKuo0qPjwNvxFvliZibTUM/nWMldd1ivYB5vUF50m1Ox5XyRHbl6QFvPeJxq6EaVYAUbZA9 ddRFK/qGOI/uTqJK5v2AVSDa5qyIJjYs+kldt0TtilpWdd3hcZAWpKzrWK61ZNFGd0U5s77qmh5E lT7n0RdLoslNi2ZmXa+IVvANcd5t5E1lwSoQbXNWReOh741kXYtKFtVdniR1eXYwG4ni4E6NMU8I I0+KbUHGWEcezQ7igB2KCZs2osXHfjWrsFdFK/aGePxgJHpjO8QciLY5a0TjQ1aeiLpO1lPdpK7H 9er3ywOIQtV1WrmyrmdlHD9kYm2kiZZX2GtEK/SGUgnnDeBNQLTNWSca77Ly53IAUfsLqq6jSlOf qSmSASTZ3VADyHyr47zNZgPQXLRILpjWsU60Im8oDuQpMa8EhkC0zVkrGu8yuWZR5dhKpl/eKKeu Q997xnn4SB7NDuIvp5wPb49WRBtm7oasFa3IG/pMXmC+qwLeCETbHE204aGqW7U5EPq1Uz5QO3dP B6zDB37tTCxxxOAyr3BZtF0x/1L7gU+n6UEcNKfiArJRBUjRvvMzBxBNtKJvKA7Uxn4csDVfKgFr gWhbIh86SQPkDoFYBTG5eaC2I1j1tOU9mnVUyyzxUkognlTJdZQ4Sg7iJz/WxZJINc6/guXdV3a8 CZIbEoLKG8saZIEGRAOAAIgGAAEQDQACIBoABEA0AAiAaAAQANEAIACiAUAARAOAAIgGAAEQDQAC IBoABEA0AAiAaAAQANEAIACiAUAARAOAAIgGAAEQDQACIBoABEA0AAiAaAAQIEUDABTNlV/rLQAA 2/zmf8NlIeEdIzXMAAAAAElFTkSuQmCC ------=_NextPart_01DC322D.ECA9A450 Content-Location: file:///C:/0D2A2649/03-3Metodologiapararesolverproblemasmatematicos(1)_archivos/image008.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAA3QAAAGJCAMAAAD13YFnAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAEIUExURdnZ2dra2tra2tnZ2QAAAAYGBgsLCxERERgYGB0dHR4eHiUlJSoqKjIyMkRy xEdHR01NTVBQUFFRUVlZWVxcXGBgYGJiYmRkZGhoaGtra2xsbG9vb3FxcXJycnR0dHd3d3l5eX5+ fn9/f4WFhYuLi4yMjI2NjY+Pj5KSkpSUlJiYmJmZmZubm5ycnJ2dnaGhoaKioqOjo6ampqenp6ur q66urrOzs7S0tLm5ubq6ury8vL29vb+/v8HBwcLCwsPDw8XFxcnJyczMzM3Nzc/Pz9XV1dbW1tfX 19nZ2dvb293d3d7e3uLi4unp6erq6vHx8fWfSfX19ff39/j4+Pn5+fv7+/z8/P///2hsUsUAAAAE dFJOU4efx9+nhZkZAAAACXBIWXMAABcRAAAXEQHKJvM/AAAxk0lEQVR4Xu3dAZ8kx3kXYAOyHQQ2 NpdgEDZRjFCAgINsA8ERlgwOZyFkOaeT5vt/E349M7dd1f109Vu703Pd6/f/S2zp8VtVXd377u5N 98x961u/y2Qyd8w/yJ7LZO6cb/3ud6dMJnO3ZNNlMndONl0mc+dk02Uyd042XSZz52TTZTJ3TjZd JnPnZNNlMndONl0mc+dk02Uyd042XSZz52TTZTJ3TjZdJnPnZNNlMndONl0mc+dk02Uyd042XSZz 52TTZTJ3TjZdJnPnZNNlMndONl0mc+dk02Uyd85y04FBMpAMJAPJYiQDyUAykAwkA8liJAPJQDKQ DCSLkQwkA8lAMhBt0Gy6OclAMpAMJAPJYiQDyUAykAwki5EMJAPJQDIQbdBsujnJQDKQDCQDyWIk A8lAMpAMJIuRDCQDyUAyEG3QbLo5yUAykAwkA8liJAPJQDKQDCSLkQwkA8lAMhBt0Gy6OclAMpAM JAPJYiQDyUAykAwki5EMJAPJQDIQbdBsujnJQDKQDCQDyWIkA8lAMpAMJIuRDCQDyUAyEG3QbLo5 yUAykAwkA8liJAPJQDKQDCSLkQwkA8lAMhBt0Gy6OclAMpAMJAPJYiQDyUAykAwki5EMJAPJQDIQ bdBsujnJQDKQDCQDyWIkA8lAMpAMJIuRDCQDyUAyEG3QbLo5yUAykAwkA8liJAPJQDKQDCSLkQwk A8lAMhBt0Gy6OclAMpAMJAPJYiQDyUAykAwki5EMJAPJQDIQbdBsujnJQDKQDCQDyWIkA8lAMtAb e/XuO0O+9/ftsiCtzAaS4dAaZWsGog2aTTcnGUgGkoFkIFmMZCAZSAa62uf/+Pfnf/v8T37TKgvS 2mwgGQ5tuWzVQLRBs+nmJAPJQDKQDCSLkQwkA8lAF/v6z88/Rq7/tFgWpNXZQDIc2mLZuoFog2bT zUkGkoFkIBlIFiMZSAaSgS726q8e/v0Xv18uC9LqbCAZDm2xbN1AtEGz6eYkA8lAMpAMJIuRDCQD yUAX+/rF5Ve40+nVP+fPJtkirc4GkuHQFsvWDUQbNJtuTjKQDCQDyUCyGMlAMpAMdLVX7/7w/G8/ +45/msiWaW02kAyHtly2aiDaoM+p6V69+4vT6esfvPPOtxf+TCwDyUAykAwkA8liJAPJQDLQg31y fonwpyWVgbWoPRtIhkNrla0YiDbo82q6n55evfvt31x+Z0CVDCQDyUAykAwki5EMJAPJQDKQLEYy kAwkA8lAtEGfW9P95PxT7vN/wSoZSAaSgWQgGUgWIxlIBpKBZCBZjGQgGUgGkoFogz6zphv67vrH Y1TJQDKQDCQDyUCyGMlAMpAMJAPJYiQDyUAykAxEG/Q5Nd3p9LN33vnF8N+v/mk23SwwkAwkA8lA shjJQDKQDCQD0QZ9Xk13Ov2X4bfL089+yCoZSAaSgWQgGUgWIxlIBpKBZuY7a7IIeTaQbEp5n65B shjJQDKQDCQDyUCyGMlAMpAMdLHhFeVrvsM2kS3S6mwgGQ5tsWzdQLRBs+nmJAPJQDKQDCSLkQwk A8lAV/vkci9s8WeTbJnWZgPJcGjLZasGog2aTTcnGUgGkoFkIFmMZCAZSAa62qt/PaM6sGVamw0k w6Etl60aiDbos2y6r3/g3ztkIBlIBpKBZCBZjGQgGUgGkoFkMZKBZCAZSAaiDfosm26JZCAZSAaS gWQgWYxkIBlIBpKBZDGSgWQgGUgGog2aTTcnGUgGkoFkIFmMZCAZSAaSgWQxkoFkIBlIBqIN+rya 7vwu4POTq6ySgWQgGUgGkoFkMZKBZCAZSAaSxUgGkoFkIBmINuizarrzu4D/3/+6PJWCKhlIBpKB ZCAZSBYjGUgGkoFkIFmMZCAZSAaSgWiDPqemu7wL+Ov/cfrJ0HWokoFkIBlIBpKBZDGSgWQgGUgG ksVIBpKBZCAZiDboc2q6y7uAv/4Pp9P7/vAMGUgGkoFkIBlIFiMZSAaSgWQgWYxkIBlIBpKBaIM+ p6Yb2u1y42X4f1TJQDKQDCQDyUCyGMlAMpAMJAPJYiQDyUAykAxEG/Q5Nd3pk+/9/eWdrKf/xPfx y0AykAwkA8lAshjJQDKQDCQDyWIkA8lAMpAMRBv0WTXd6fPvXt8C7OeDZCAZSAaSgWQgWYxkIBlI BpKBZDGSgWQgGUgGog36vJpuhWQgGUgGkoFkIFmMZCAZSAaSgWQxkoFkIBlIBqIN+tybbvVzU7rK Vg0kA8lAshjJQDKQDCQDXey5XQTaoAdpuvKud6NsTqufm9JVtmogGUgGksVIBpKBZCDZleaX9A4X 4a0/PXHWYzRdddd7uQy0+rkpXWWrBpKBZCBZjGQgGUgGGu373/9+Rbik8Yvw/elsVUBa9MmzrRFt 0EM0XX3Xe7FMtPq5KV1lqwaSgWQgWYxkIBlIBhpt8oWtSxq/CI9sk4WnJx452yrRBj1E09V3vRfL TCufm9JZtmIgGUgGksVIBpKBZKDRJl/YvqTRi/DINll4euKRs60SbdBDNF1913uxbIman5vSXdY0 kAwkA8liJAPJQDLQaNOfdAuXNHYRHtkmC09PPHK2VaINeoimq+96L5etkQwkA8lAMpAMJIuRDCQD yUCjTb+wn3RJH9smfnrisbOtEW3QYzRddde7UbZCMpAMJAPJQDKQLEYykAwkA402+8J+yiV9dJvw 6YlHz7ZCtEEP0nRrFiMZSAaSgWQgGUgWIxlIBpKBRmt+YctadNs2ue1sKzboH03TLX1uyuPKlgwk A8lAshjJQDKQDDRa8wt7YqsX4bZtctvZVmzQP5qmWzKQDCQDyUAykCxGMpAMJAON1vzClrXotm1y 29lWbNBsujnJQDKQDCQDyWIkA8lAMtBozS9sWYtu2ya3nW3FBn1uTTeewCu9ene49fPJO+98r/ki WbBszUAykAwki5EMJAPJQKM1v7CvFr4It22T2862YoM++6Z7/zenv/j9J+/88PT5v2uNDJatGUgG koFkMZKBZCAZaLTmF/bVwhfhtm1y29lWbNDn3nTnO6H/7LvDt06/sbWrbNVAMpAMJIuRDCQDyUCj Nb+wLxa/CLdtk9vOtmKDPvum+6vri2FLb2ztKls1kAwkA8liJAPJQDLQaM0v7IvFL8Jt2+S2s63Y oM+96YYnfz65vJmj9d0zWLZqIBlIBpLFSAaSgWSg0Zpf2BeLX4TbtsltZ1uxQZ97053e/82rd384 PED7yU9bI4NlawaSgWQgWYxkIBlIBhqt+YV9tfBFuG2b3Ha2axaeszlXPvum+/oHw2thr959Z/gr kZZHBsvWDCQDyUCyGMlAMpAMNFrzC/tq4Ytw2za53Wzrf9vduXJ/Tbf6pn0ZTiCqZCAZSAaSgWQg WYwuFjy7wbJVGq35hS1rUaRNVrewONvqSNmFVv+2u3PlHptu5U37MpxAVMlAMpAMJAPJQLIYXSx4 doNlqzRas01kLZq2SZ0LrW5hcbbVkbLromt/291Z2023drdSBpKBxi3jTfvTM1MHZaiSgWQgGUgG koFkMboYz+78MrOsCgw0Gi5f8JKCZiPnO1jawnQkZlsYWQQGog3abrq1u5UykAz0sGW9aX96Zuqg DFUykAwkA8lAMpAsRhfj2Z1fZpZVgYFGw+ULXlLQbOR8B0tbmI7EbAsji8BAtEGbTbd6t1IGkoHe GN+0Pz0zdVCGKhlIBpKBZCAZSBajNzY/u7zM87I6MNBouHzBSwqajuQOvAWsOZ1tYWQRGIg2aLvp 1u5WykAy0Gh40/78zJRBGapkIBlIBpKBZCBZjEabnt2FyzwtqwMDjYbLF7ykoOnIhR1oC1hzOtsQ jCwCq+nz7w5Ni7KzNptu9W6lDCQDyZpnZgzKUCUDyUAykAwkA8liJLvQ6mUGyUCj4fIFLyloOnJ1 B7c9DtmFHl7z/Nnjbxms3a2UgWQgWe+ZyaZbItmV1i4zSAYaDZcveElBs5FrO7jtccgu9JPv/P70 9Q++9/enTx7fdGt3K2UgGUjWe2ay6ZZIdqW1ywySgUbD5QteUtBs5NoObnscsjNdPvRo+Ezb88fa ouxc2W66NZKBZKCJ1W/aD56ZbLolmtjSRyI8rmyJRsPlC15SUNfI2dfR9Z/WZ+ve/LXpTq/+yc8P 2nQ1LZ6ZmrLplkgGkoFkoNFw+YKXFNQ98rbHIbvQT65PpFxe1UHZuTKbbk4ykAwkA8lAshjJQDKQ DDQaLl/wkoK6R972OGRXOr+Acr3Dp7Jz5R9B03WPbJa1DSQDyUCyGMlAMpAMNBrOLs44qEhrZBFQ 73EUAclAtEH313Sv3n34C5QecWay6ZboYgtnt0hP2SqNhrOLMw4q0hpZ5EILW8DI6WwLI4vAQLRB 99h0P3317uVmR+vM1EEZKDiyWdY2kAwkA8lidLGFs1ukp2yVRsPZxRkHFWmNLHKhhS1g5HS2hZFF YCDaoLtsuutdxsf8fUbZdEt0sYWz+8iyVRoNZxdnHFSkNbLIhRa2gJHT2RZGFoHVdLQXUq7Pml7/ ULp4ZuqgDBQc2SxrG0gGkoFkMbrYwtkt0lO2SqPh7OKMg4q0Rha50MIWMHI628LIIjAQbdA9N90D DZmemTooAwVHNsvaBpKBZCBZjC62cHanFixbpdFwdnHGQUVaI4tcaGELGDmdbWFk20C0QffYdA/v vm2dmTooAwVHNsvaBpKBZCBZjC62cHanFixbpdFwdnHGQUVaI4tcaGELGDmdbWFk20C0QffXdOMd xoLmZ6YOykDBkc2ytoFkIBlIFqM3xrNbpK9shUbD2cUZBxVpjSzyhrgFjJzPxpFFYGeqX/dU2Vk3 arr6YyZkGClrnJkyKAM1j2NaVgfUnO2RZasUnA0kA8mwZncZzi7OOKhIa2QRUO9xFAHJrpsvX/dU 2Vk3a7ryYyZkGCnrPTOhpuNxTMvqgJqzPbJslYKzgWQgGdbsLsPZxRkHFWmNLALqPY4iINnD5sfX PVV21tWmax7Qm6VmNxOH1cePmZAtzrZA0zODResyUPM4pmV1QM3ZHlkG0q8sq7OBZD2b9yWdXQSV DcECWHRKWEBlV5tSkVaZZhuD42iUla97quxceZumm91MrD9mQrY42wJNzwwWrctAzeOYltUBNWd7 ZBlIv7KszgaS9Wx+8ZKuX/khWACLTgkLqOxqUyrSKtNsY3AcrbKZzXKzppvfTCw/ZkK2ONsCTc8M Fw013cJxzMvKgJqzFekrm1G90eBsIFnf5ueXlBdhXjYEC2DRKXGBednVplSkVabZxuA4GmXl654q O+vtmm5IdTNx/JgJ2eJsCzQ9MwuLhpqOx6GyMaDmbEV6yyZUbzQ4G0jWu/npJV24CNOyIVgAi05p YYFp2dWmVKRVptnG4DgWy+rXPVV21ts23QNNAgPJFs/MwqLBphvTW9Y2kAwkw0YXy1ZJ9tTNL1wE GRbAolNaWGBadrUpFWmVabYxOI7FsoANepumW2tvGEi2eGYWFn2OTbf2K0uMZE/d/MJFkGEBLDql hQWmZVebUpFWmWYbg+NYLAvYoLdousffTFy3xpnhos+v6dZ/ZYmR7Omb50UoUq4AmtqcuMC8jAsU aZVptjE4jkbZqg16m6ZbJj1u3f3RE0NCZ6av6WYfnuGyJWrOVuRRZUsUnA0ke9TmdUnPaZZhASwK KtIaqQWKtMo02xiQDEQbdOumWzSQrPfM9DRdTcGytoFkIBlIFiPZHTePBbAoqEhrpBYo0irTbGNA MhBt0Gy6zrK2gWQgGUgWI9kdN48FsCioSGukFijSKtNsY0AyEG3QjZpu+Jzr89+icv4gQhlGNhcN nplA0y0cx7SsDqg52yPLVik4G6jaKUhWki5pnWaZF5gaqEhrZHCBJ5QVgYFog27UdMPnXJ8+Ge7g f/Lwoe61YWRzUZ2ZMSgDNY9jWlYH1JztkWWrFJwNVO0UJCtJl7ROs8wLTA1UpDUyuMATyorAQLRB N2q601/8/vz3F10+XF6Gkc1FdWbGoAzUPI5ZWRVQc7YiXWVrFJwNVO0UJKtIl7RKs2w6mxcFFWmN DC7whLIiMBBt0K2abnjadTjp5d8DWxlGNhfVmRmDMlDzOGZlVUDN2Yp0la1RcDZQtVOQrCJd0irN sulsXhRUpDUyuMATyorAQLRBt2q64SGg/zmc+q//fPx+VxpGNhfVmRmDMlDzOOZlZUDN2Yr0la1Q cDZQtVOQrCZd0jLNstlsXBRUpDUyuMATyorAQLRBN2u608++/fP/djp9/ifDbxowjGwuqjMzBmWg 5nGgrAioOVuRzrI2BWcDVTsFySakS1qkWTafTYuCirRGBhd4QlkR2AP94Q9/+MPUqmzZdOdnss9/ BzQNI5uL6syMQRmoeRwqGwNqzlakt6xJwdlA1U5Bsinpko5plmE2LAoq0hoZXOAJZUVgD/R2m65t Z3rae/uLoAwUHNksaxtIBpKBZDGqdgqSTakIDNScDYuCirRGBhd4QlkR2AMdoOme8t7+IigDBUc2 y9oGkoFkIFmMqp2CZFMqAgM1Z8OioCKtkcEFnlBWBPZAWzTdwn3ZaVkd2JmGpnv8e/vbZaDF4xgS LGvbZVcL94cfVzYkcGwL12VaNgSTaQFQkRuUYVFQ9JKaZCAZqLKFM75F0y3cl52W1YFdjvtJ7+1v l4EWj2NIsKxtZ1q6P/y4siGBY1u4LtOyIZhMC4CK3KAMi4Kil9QkA8lAlS2c8S2abuG+7KysCuxK T3lvf7sM1DiOcFnbLrRwf/iRZcFj83UpEjttzbIiNyjDoqDoJTXJQDJQbT7jmzSd78vOyqrAHujx 7+1vl4GaxxEsa9uFFu4PP7IseGy+LkVip61ZVuQGZVgUFL2kJhlIBqrNZ3yTpvN92XlZGRioOdts y2tlIC3aW9a2K/n+8GPLgsfG61IkdtqaZUVuUIZFQdFLapKBZKCJ8Yxv03S8L4uyIjBQc7b5llfK QFq0t6xtb4j3h8d0lgWPTdelSOy0NcuK3KAMi4Kil9QkA8lAU9MZ36jpdF9WZWNgoOZs2HK7DKRF e8va9kC6Pzymtyx4bLguRWKnrVlW5AZlWBQUvaQmGUgGmhnO+FZNN6a3bIke9d7+dhmoeRzBsraB ZCDZ448NFDxtzbIiNyjDoqDoJTXJQDLQzMY80HGabmKYTVs2Ra7QmN6ytoFkINnjjw0UPG3NsiI3 KMOioOglNclAMtDMxjxQNl1NWrS3rG0gGUj2+GMDBU9bs6zIDcqwKCh6SU0ykAw0szEP9HabTgcJ KtIqC8522ys0BtScrUhvGQjHBioCah6HZjPJQDLQ1ECFgXoXuHHZmAfafdM98YFn0w2v0BhQc7Yi vWUgHBuoCKh5HJrNJAPJQFMDFQbqXeDGZWMe6ABN96QHnk03vEJjQM3ZivSWgXBsoCKg5nFoNpMM JANNDVQYqHeBG5eNeaBDNN1beeDZNLMxoOZsRXrLQDg2UBFQ8zg0m0kGkoGmBioM1LvAjcvGPNAR mu7tPPBsmtkYUHO2Ir1lIBwbqAioeRyazSQDyUBTAxUG6l3gxmVjHmj3TffWHng2zWwMqDlbkd4y EI4NVATUPA7NZpKBZKCpgQoD9S5w47IxD3SApntLDzybZjYG1JytSG8ZCMcGKgJqHodmM8lAMtDU QIWBehe4cdmYBzpE0xVplQVnu+0VGgNqzlaktwyEYwMVATWPQ7OZZCAZaGqgwkC9C9y4bMwDZdPV FBypYwM1ZyvSWwbCsYGKgJrHodlMMpAMNDVQYaDeBW5cNuaBsulqCo7UsYGasxXpLQPh2EBFQM3j 0GwmGUgGmhqoMFDvAjcuG/NAGzWdVjfJplSkVRac7XZXqL5xD+qaLViGRVVmmi2wPFtVFpztHmWg wkC9C2xflk1XU3Dkxeob96Cu2YJlWFRlptkCy7NVZcHZ7lEGKgzUu8D2Zdl0NQVHXqy+cQ/qmi1Y hkVVZpotsDxbVRac7R5loMJAvQtsX5ZNV1Nw5MXqG/egrtmCZVhUZabZAsuzVWXB2e5RBioM1LvA 9mXZdDUFR76x8sY9qHO2YBkWVZkICyzNNikLzrZ9GagwUO8C25dl09UUHDnaeOMe1D2baWZYFGUg LbAw27QsONvmZaDCQL0LbF+WTVdTcKSODdQ9m2lmY1plIC1QpFUWnG3zMlBhoN4Fti/LpqspOFLH BuqezTSzMa0ykBYo0ioLzrZ5GagwUO8C25dl09UUHKljA3XPZprZmFYZSAsUaZUFZ9u8DFQYqHeB 7cuy6WoKjtSxgbpnM81sTKsMpAWKtMqCs21eBioM1LvA9mWHaLqtykDBkTpZoO7ZTDMb0yoDaYEi rbLgbJuXgQoD9S6wfVk2XU3BkTpZoO7ZTDMb0yoDaYEirbLgbJuXgQoD9S6wfVk2XU3BkTpZoO7Z TDMb0yoDaYEirbLgbJuXgQoD9S6wfVk2XU3BkTpZoO7ZTDMb0yoDaYEirbLgbJuXgQoD9S6wfVk2 XU3BkTpZoO7ZTDMb0yoDaYEirbLgbJuXgQoD9S6wfVk2XU3BkTpZoO7ZTDMb0yoDaYEirbLgbJuX gQoD9S6wfVk2XU3BkTpZoO7ZTDMb0yoDaYEirbLgbJuXgQoD9S6wfVk2XU3BkTpZoO7ZTDMb0yoD aYEirbLgbJuXgQoD9S6wfVk2XU3BkTpZoO7ZTDMb0yoDaYEirbLgbJuXgQoD9S6wfVk2XU3BkYco AwVH7rkMVBiod4Hty7LpagqOPEQZKDhyz2WgwkC9C2xflk1XU3DkIcpAwZF7LgMVBupdYPuybLqa giMPUQYKjtxzGagwUO8C25dl09UUHHmIMlBw5J7LQIWBehfYviybrqbgyEOUgYIj91wGKgzUu8D2 Zdl0NQVHHqIMFBy55zJQYaDeBbYvy6arKTjyEGWg4Mg9l4EKA/UusH1ZNl1NwZGHKAMFR+65DFQY qHeB7cuy6WoKjjxEGSg4cs9loMJAvQtsX5ZNV1Nw5CHKQMGRey4DFQbqXWD7smy6moIjD1EGCo7c cxmoMFDvAtuXZdPVFBx5iDJQcOSey0CFgXoX2L4sm66m4MhDlIGCI/dcBioM1LvA9mXZdDUFRx6i DBQcuecyUGGg3gW2L8umqyk48hBloODIPZeBCgP1LrB9WTZdTcGRhygDBUfuuQxUGKh3ge3Lsulq Co48RBkoOHLPZaDCQL0LbF+WTVdTcOQhykDBkXsuAxUG6l1g+7JsupqCIw9RBgqO3HMZqDBQ7wLb l2XT1RQceYgyUHDknstAhYF6F9i+LJuupuDIQ5SBgiP3XAYqDNS7wPZl2XQ1BUceogwUHLnnMlBh oN4Fti/LpqspOPIQZaDgyD2XgQoD9S6wfVk2XU3BkYcoAwVH7rkMVBiod4Hty7LpagqOPEQZKDhy z2WgwkC9C2xflk1XU3DkIcpAwZF7LgMVBupdYPuybLqagiMPUQYKjtxzGagwUO8C25dl09UUHHmI MlBw5J7LQIWBehfYviybrqbgyEOUgYIj91wGKgzUu8D2Zdl0NQVHHqIMFBy55zJQYaDeBbYvy6ar KTjyEGWg4Mg9l4EKA/UusH1ZNl1NwZGHKAMFR+65DFQYqHeB7cuy6WoKjjxEGSg4cs9loMJAvQts X5ZNV1Nw5CHKQMGRey4DFQbqXWD7smy6moIjD1EGCo7ccxmoMFDvAtuXZdPVFBx5iDJQcOSey0CF gXoX2L4sm66m4MhDlIGCI/dcBioM1LvA9mXZdDUFRx6iDBQcuecyUGGg3gW2L8umqyk48hBloODI PZeBCgP1LrB9WTZdTcGRhygDBUfuuQxUGKh3ge3LsulqCo48RBkoOHLPZaDCQL0LbF+WTVdTcOQh ykDBkXsuAxUG6l1g+7JsupqCIw9RBgqO3HMZqDBQ7wLbl2XT1RQceYgyUHDknstAhYF6F9i+LJuu puDIQ5SBgiP3XAYqDNS7wPZl2XQ1BUceogwUHLnnMlBhoN4Fti/LpqspOPIQZaDgyD2XgQoD9S6w fVk2XU3BkYcoAwVH7rkMVBiod4Hty7LpagqOPEQZKDhyz2WgwkC9C2xflk1XU3DkIcpAwZF7LgMV BupdYPuybLqagiMPUQYKjtxzGagwUO8C25dl09UUHHmIMlBw5J7LQIWBehfYviybrqbgyEOUgYIj 91wGKgzUu8D2Zdl0NQVHHqIMFBy55zJQYaDeBbYvy6arKTjyEGWg4Mg9l4EKA/UusH1ZNl1NwZGH KAMFR+65DFQYqHeB7cuy6WoKjjxEGSg4cs9loMJAvQtsX5ZNV1Nw5CHKQMGRey4DFQbqXWD7smy6 moIjD1EGCo7ccxmoMFDvAtuXZdPVFBx5iDJQcOSey0CFgXoX2L4sm66m4MhDlIGCI/dcBioM1LvA 9mXZdDUFRx6iDBQcuecyUGGg3gW2L8umqyk48hBloODIPZeBCgP1LrB9WTZdTcGRhygDBUfuuQxU GKh3ge3LsulqCo48RBkoOHLPZaDCQL0LbF+WTVdTcOQhykDBkXsuAxUG6l1g+7JsupqCIw9RBgqO 3HMZqDBQ7wLbl2XT1RQceYgyUHDknstAhYF6F9i+LJuupuDIQ5SBgiP3XAYqDNS7wPZl2XQ1BUce ogwUHLnnMlBhoN4Fti/LpqspOPIQZaDgyD2XgQoD9S6wfVk2XU3BkYcoAwVH7rkMVBiod4Hty7Lp agqOPEQZKDhyz2WgwkC9C2xflk1XU3DkIcpAwZF7LgMVBupdYPuybLqagiMPUQYKjtxzGagwUO8C 25dl09UUHHmIMlBw5J7LQIWBehfYviybrqbgyEOUgYIj91wGKgzUu8D2Zdl0NQVHHqIMFBy55zJQ YaDeBbYvy6arKTjyEGWg4Mg9l4EKA/UusH1ZNl1NwZGHKAMFR+65DFQYqHeB7cuy6WoKjjxEGSg4 cs9loMJAvQtsX5ZNV1Nw5CHKQMGRey4DFQbqXWD7smy6moIjD1EGCo7ccxmoMFDvAtuXZdPVFBx5 iDJQcOSey0CFgXoX2L4sm66m4MhDlIGCI/dcBioM1LvA9mXZdDUFRx6iDBQcuecyUGGg3gW2L8um qyk48hBloODIPZeBCgP1LrB9WTZdTcGRhygDBUfuuQxUGKh3ge3LsulqCo48RBkoOHLPZaDCQL0L bF+WTVdTcOQhykDBkXsuAxUG6l1g+7JsupqCIw9RBgqO3HMZqDBQ7wLbl2XT1RQceYgyUHDknstA hYF6F9i+LJuupuDIQ5SBgiP3XAYqDNS7wPZl2XQ1BUceogwUHLnnMlBhoN4Fti/LpqspOPIQZaDg yD2XgQoD9S6wfVk2XU3BkYcoAwVH7rkMVBiod4Hty57UdJlM5omZttWQ5abLrstknpppU53TaLpM JrNFsukymTsnmy6TuXOy6TKZOyebLpO5c7LpMpk7J5suk7lzsukymTsnmy6TuXOy6TKZO+cxTffN By9evP/V6fV7v5z+L8hHn47//PrffHk6ffGjF3/6WWG/Gv7jvfOMb+i9Fx+OBQ/26bDwn31Z4MsX L168qA/iTC9eFIsqj96BtoAd7HkL2IG2oB1wC9hBbAuP3oG2gB1wC9qBthDaweIWPnrxojq/kzym 6T56/6vTFz/69PRyPPKXL158OBxBsZfhDFzygK9//Nnpix+9/9U3fzke0Dc//+r0zQefnk5f/PeH kT/+bJjvoWSo+vdfnn7xuw/+7MvXfz3ix0PJbz8uz9+ZptdoHuwAW8AOtAXs4O1sYb4DbQE70Baw A24BOwhuATvAFrADbQE70Ba0A20htgNuYWjFYdQ3f1NQnXDTfVpteVjwl1/8qzc2LPPy3PPDN5yq rvom++PPTh8N26m2/On1RD2scBn4svzmM8z7zQfDN4/iOM6T/N8vv/i347fnh+X/dvyG95DJAtUO uIX5DriF+Q622sJ0gfteBG0BOwhuATvgFuY74BbmO9AWsANtobmD9hbG0eMK06w03fBdR99nhnz8 Xx+WOv+8/8XA/6c4yHPHT673F/9yqBq+4TxU/eVnr/9u+IdfTvZyOo3ffIZ9vDyfvOJknff268/K b88PF+FhMm0BO/AWZjvgFuY7uO0WsANtgTuYb0E7wBawA20BOwhuATvwFmY74BbmO9AWsANtATuI bmHI+WA/Ln7RnWSl6cYDKfr2o+t3jo/Gy3E+UZMLOVR8WJ+tN79MV2Wv3/vwt8WsA8x/qP/yy9fv fTh8N/uPow0jXg5bG78dvbz8Jj38yH8ItoAdLGxhugNuYbaDG28BO9AWvIPZFrSD+Ra0A20BOwhu ATtY2MJ0B9zCbAfcAnagLWAH0S2c//3F9DfzKmtNx5x/tNffBq6/XZe/ZQx5+f5/rjf++sOh4LzF Mec/tY51OlmXPxR/VP555XT6+Ppdp/havHw/Wv4mc818B0tbmO2AW5js4O1sYWEH8y1oB9MtaAfc AnYQ3MJ8B0tbmO2AW9jFRYjkUU3Xkep7RTSXP4nuJI/awTPYwvF3sK8tFNm66TKZzCTZdJnMnZNN l8lskkffMsjcPXjKASQDyUAykAz0bKJb47DpXdDrzYXJK5pFsun2FjzlAJKBZCAZSAbCcyVBkoFk IBkIxsdg5gY65/Iz7o/vJ512DAPJQDKQDDQannIAyUAykAwkA+m5khjJQDKQDES7bKv+qQYDRfK8 mu76g7361gMDyUAykAwkw1MOIBlIBpKBZCA9VxIjGUgGkoFoeAyGBgok0HRf/OjD2S13GEgGksVo ZnhqQAaSgWQgGUiGpxxAMpAMJAPJQHquJEYykAwkA9HwGIwNdEnxc3Oa9ab75udf/XZ67x8GkoFk MaIdPnjKASQDyUAykAyE50piJAPJQDIQjY/B0Goaf3eZ/DmvzHrTvf7VafjCrqaAgWQgWYxomcxt osdgYDUNv7Kcv/+Mj0/Pst50p48+/e3wNOmagWQgWYxomcxbzeUXy8lj52UCTcdnpmEgGUgWI1om 81Zz/o17uJeykEjTZTKZngzvd1juuWy6TObeyabLZO6cbLpM5s5Zb7rLazEvq+dZYSAZSBYjWiaz 80Sbrn4BFAaSgWQxok0fUlkwkAwkA8lAshjJQDKQDCQDyWIkA8lAMpAMJAOtZq3pvvjR9f568bo8 DCQDyWJE40MqMJAMJAPJQLIYyUAykAwkA8liJAPJQDKQDCQDrTfiWtP5zjoMJAPJYiTTQyowkAwk A8lAshjJQDKQDCQDyWIkA8lAMpAMJAO5EcusN93RoodUYCAZSAaSgWQxkoFkIBlIBpLFSAaSgWQg GUgGUiNWeX5Nx4dUYCAZSAaSgWQxkoFkIBlIBpLFSAaSgWQgGUgmmjdilWfYdJnMWw4asUy46Zpv d26SDCSLES2T2WsCTffx+RXC+jdUGEgGksWIlsnsO+tNd31DfvXTBAaSgWQxomUyO8960+l9QTCQ DCSLkUwPqcBAMpAMJAPJYiQDyUAykAwki5EMJAPJQDKQDLSe9aa73gyrf5rAQDKQLEawy1lYfXAF JAPJQDKQLEYykAwkA8lAshjJQDKQDCQDyUBvsvz713rTXT/1ob79NzeQDCSL0dz0kAoMJAPJQDKQ LEYykAwkA8lAshjJQDKQDCQDyUBD1l5pWG+6a8fWfQsDyUCyGMHwkIoMJAPJQDKQLEYykAwkA8lA shjJQDKQDCQDyUCXz/SbfqWWCTRdJpPpyPD3nzeTTZfJ3Dhf/O/hP/MnXSZzt9zgz3Tn6EVRGEgG ksWIpm8zMJAMJAPJQLIYyUAykAwkA8liJAPJQDKQDCSr6BZ/plPfwkAykCxGMpAMJAPJQDKQLEYy kAwkA8lAshjJQDKQDCQDyUC8gVBmvelef/jVZ5+dPrt88vSygWQgWYxkekgFBpKBZCAZSBYjGUgG koFkIFmMZCAZSAaSgWSg0+n1382tTKDpfjX8X/2KDAwkA8liJNO3GRhIBpKBZCBZjGQgGUgGkoFk MZKBZCAZSAaSgeZ3j6dZb7pv/uZ0+vVnxV8/ZgPJQLIY0S53TupvMzCQDCQDyUCyGMlAMpAMJAPJ YiQDyUAykAwkA13/rbYy6013evnil9988KJ+sQIGkoFkMYLp2wwMJAPJQDKQLEYykAwkA8lAshjJ QDKQDCQDyUDrCTTdwaJvMzCQDCQDyUCyGMlAMpAMJAPJYiQDyUAykAwkA63m+TVdJrPzZNNlMndO Nl0mc+sMn5Hyp+d7CUy46fRbKwwkA8liBNNDKjCQDCQDyUCyGMlAMpAMJAPJYiQDyUAykAwkq+mb D4a/mnV4ZX0h7aYbbv1NX5+BgWQgWYxoQ/CIgAwkA8lAMpAsRjKQDCQDyUCyGMlAMpAMJAPJQJc3 tuJHwZu0m+4cvT4DA8lAshjB8JCKDCQDyUAykCxGMpAMJAPJQLIYyUAykAwkA8lAw+deDt34R/QJ z3hIRQaSgWQgGUgWIxlIBpKBZCBZjGQgGUgGkoFkoBt+7uVRoodUYCAZSAaSgWQxkoFkIBlIBpLF SAaSgWQgGUgGWs+zazo8pEIDyUAykAwki5EMJAPJQDKQLEYykAwkA8lAMtBqok13/cPhmoFkIFmM aJnMbtNuuuurg9XrMzCQDCSLES2TOUDaTXd+XfCXw5f05WHqJQPJQLIY0TKZt55v/rJ+MXOWlaZ7 +OWtft8QDCQDyWJEy2Tebq4f17Cc9aY7fTS8+PlRfdcBBpKBZDGinVPfzls0kAwkA8lAshjJQDKQ DCQDyWIkA8lAMpAMJKvp5XCfTmXXBJru9PLFixfTr2sYSAaSxag2PaQCA8lAMpAMJIuRDCQDyUAy kCxGMpAMJAPJQDLQObIqkaY7Vi7fYOpvMzCQDCQDyUCyGMlAMpAMJAPJYiQDyUAykAwkA9HKPL+m y2R2nmy6TObOyabLZO6caNPpqQ8YSAaSxUgGkoFkIBlIBpLFSAaSgWQgGUgWIxlIBpKBZCAZqJX1 pnv93vm1mOplQxhIBpLFaGrXl42GPLx0BAPJQDKQDCSLkQwkA8lAMpAsRjKQDCQDyUAy0FXPtwyW E2i6cxfXL8XAQDKQLEYzG/5p+pAKDCQDyUAykCxGMpAMJAPJQLIYyUAykAwkA8lA5zfTrT2Sst50 l7z+cHKDzAaSgWQxqu3Sh6sProBkIBlIBpLFSAaSgWQgGUgWIxlIBpKBZCDZjF7/9aQJkWjT6R1D MJAMJIvRxPSQCgwkA8lAMpAsRjKQDCQDyUCyGMlAMpAMJAPJpnTuwksrLma96a5/bqreMQQDyUCy GNHWH1xZJBlIBpKBZDGSgWQgGUgGksVIBpKBZCAZSDahsemGXz6dQNOha2EgGUgWI1om8xZz/TlQ v7gyyXrTZTKZcMafA0/5SZfJZG6abLpM5s5Zb7rLz8v6M2xhIBlIFiNa8T+sGkgGkoFkIFmMZCAZ SAaSgWQxkoFkIBlIBpKBWok2Xf8NCxtIFiNZ4MGVBZKBZCAZSBYjGUgGkoFkIFmMZCAZSAaSgWSg 9aw13Rc/Ok9afXYmDCQDyWJEu/Zh/YdYGEgGkoFkIFmMZCAZSAaSgWQxkoFkIBlIBpKB1rPWdL67 DgPJQLIY0c5ZfXBlkWQgGUgGksVIBpKBZCAZSBYjGUgGkoFkIBmolfWmO2TWH1xZIhlIBpKBZDGS gWQgGUgGksVIBpKBZCAZSAZq5dk13fWX7LUHV0AykAwkA8liJAPJQDKQDCSLkQwkA8lAMpAMtJ7n 13TnX7JXDSQDyUAykCxGMpAMJAPJQLIYyUAykAwkA8lA63l2TZfJ7D3rTff6vRefvpz/nJ0aSAaS xYiWyew86013+tuvXr/34eRVURhIBpLFiJbJ7DvrTff6V6eP/+zL83vzWgaSgWQxkl1+yV59cAUk A8lAMpAsRjKQDCQDyUCyGMlAMpAMJAPJQOtZb7rhb1X+9OXkjQowkAwkixHschbWH1yZkwwkA8lA shjJQDKQDCQDyWIkA8lAMpAMJAOtJ9B0R4oeUoGBZCAZSAaSxUgGkoFkIBlIFiMZSAaSgWQgGSiS Z9Z0fkgFBpKBZCAZSBYjGUgGkoFkIFmMZCAZSAaSgWSg9Ty7pstk9p5sukzmzgk23cd47wIMJAPJ YkTLZPablaZ7/d6fXj4386PxFUIYSAaSxYiWyew/a0338J6F8yfZLhlIBpLFiOaHVGAgGUgGkoFk MZKBZCAZSAaSxUgGkoFkIBlIBlrPWtP9aph2mHN86gMGkoFkMaItPKQCA8lAMpAMJIuRDCQDyUAy kCxGMpAMJAPJQDLQatab7nT69fBb3DgtDCQDyWJEO+v0IRUZSAaSgWQgWYxkIBlIBpKBZDGSgWQg GUgGkoHWE2m689f05Iu9NpAMJIsRjQ+p0EAykAwkA8liJAPJQDKQDCSLkQwkA8lAMpAMtJq1pru8 R6/6vFoYSAaSxYiWyew/a003/DQ5Z/ITpjaQDCSLES2T2X9Wmi6Tydw62XSZzJ3zPJtOD6nAQDKQ DCQDyWIkA8lAMpAMJIuRDCQDyUAykAzUzPNqOj2kAgPJQDKQDCSLkQwkA8lAMpAsRjKQDCQDyUAy UCjPrOnwkAoMJAPJQDKQLEYykAwkA8lAshjJQDKQDCQDyUChPLOmw0MqMJAMJAPJQLIYyUAykAwk A8liJAPJQDKQDCQDhfLsmm72kAoMJAPJQDKQLEYykAwkA8lAshjJQDKQDCQDyUChPMOmO5+Aycmq DSQDyUAykCxGMpAMJAPJQLIYyUAykAwkA8lAoTyzpsNDKjCQDCQDyUCyGMlAMpAMJAPJYiQDyUAy kAwkA4XyzJpu+NZzzuQ7VG0gGUgGkoFkMZKBZCAZSAaSxUgGkoFkIBlIBgrleTVdJnOAZNNlMndO Nl0mc+dk02Uyd042XSZz52TTZTJ3TjZdJnPnZNNlMndONl0mc+dk02Uyd042XSZz52TTZTJ3zrnp MpnMPfOtfziVTCazZf7R/wdR7CwWgPCglAAAAABJRU5ErkJggk== ------=_NextPart_01DC322D.ECA9A450 Content-Location: file:///C:/0D2A2649/03-3Metodologiapararesolverproblemasmatematicos(1)_archivos/image009.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAA3QAAAD2CAMAAACp3jXHAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAADqUExURdnZ2dra2tra2tnZ2URyxFlZWVxcXGBgYGRkZGhoaGtra2xsbHNzc3R0dHZ2 dnl5eXp6en5+foKCgoWFhYeHh4uLi42NjY+Pj5WVlZiYmJubm5ycnJ6enp+fn6GhoaOjo6ampqen p6mpqaurq7GxsbOzs7S0tLi4uLm5ubu7u7y8vL29vb+/v8LCwsXFxcrKytDQ0NTU1NbW1tfX19nZ 2dvb297e3t/f3+Dg4OHh4eLi4uPj4+Tk5OXl5enp6erq6uvr6+zs7O3t7e7u7u/v7/Dw8PHx8fb2 9vf39/j4+Pn5+fr6+vz8/P///8/d+kYAAAAEdFJOU4efx9+nhZkZAAAACXBIWXMAABcRAAAXEQHK JvM/AAAVtUlEQVR4Xu2dYXvbOHaFp+3S1oxn41l37MbtZLWu23S3Y3vSmm7TSapdNVm3UoX//3f6 AJeSReoegRckkEpzzgeIwJsrUQKPRB4r0Fdf1RRFFdRf0HMUVVhf1bWjKKqYaDqKKiyajqIKi6aj qMKi6SiqsGg6iiosmo6iCoumo6jCoukoqrBoOooqLJqOogqLpqOowqLpKKqwaDqKKiyajqIKi6aj qMKi6SiqsGg6iiosmo6iCoumo6jCoukoqrBGN1133SOK+mWq64wX0XQUlUdda2w0uumC6tp9fr9Y OOea9mNo3/t2DFDXAMAKI/CviQpghQ3UNQCwwgjCpG6DP6OKNFDXAMAKI6hrAFoVH3qAZxXUNQCw wgj22Cqb6daPKu1CHqNpB4O6BgBWWIF0FAArTKCuAYAVXxos28APqgBWGEHzSbELYEU/8L/rIX+r AVhhBLKpKqPpNrvjfd/aqcHAD6oAVhhBa8p7VdhA6GkAVhhBLZ8UuwBWGIF0FAArpP2fnuDlfbVv RVnw3zHQjGqi6VRA08WAdBQAK6SFRzFNN1B1Xc/l1rfvWzs1CpAnqwBYYQMvU963wgba89Snwgj8 NZcKYIUNNO9KbfAnVLEF/qMn8IMqgBU2UNcAOFf/sQf4OQakpyqX6dy8tVPvm1HnRgHNM9oFsMII /KAKYIUN1DUAsMIIQk8DsCIC/r0NXt6VtsB/oYoUEG40ACt6gX9rQF0D4Jz7NB5QRdOpwA+qAFbY AE0XBeFGA7CiFzhq060fVVoYiqUBppfFAdNLI5BNVRlNt9kdeFGdDPygCmCFETBIiQHpKABWSAuT CQYpA9XeDTgBycAPqgBWGAFNFwPSUQCskBYexTTdQDG9jID2PPWpMAKmlxFwjOnlfO6nRtrP8/nn TWcUIJ5WAKwwAp8EqQBW2EBdAwArjMB/EU8F/gtTIwA/wyqAFUbgj0oVwAobaB+ifSr6g0++s8dW uUzXNxRLA0wvYyD0NAArIoDpZRJQlc1060eVFoZiaYDpZXHA9NIIZFMVTacD6SgAVpgATRcDNJ1V zV02LUyykoEfVAGsMAKmlzEgHQXACmlhHMj0cqCYXkZAe576VBgB08sIOMb0cv+UDQbhRgOwwgZo ugig6WJAeqpyma5vKJYGmF7GQOhpAFZEANPLJKAqm+nWjyotvD5PAwxSigMGKUYgm6poOh1IRwGw wgRouhig6axq7rJpYZKVDPygCmCFETC9jAHpKABWSAvjQKaXA1XX7/13ZBbv/SXC4mNoF007BvC7 rAJYYQR1DQCssIHwmmsAVhhBXQMAK2xArkkX/7kDmorBwJ8LqABV+O9eGUBdAwArjGCPrXKZbn/2 NRiEGw3AChtgehkBTC9jQHqqcpmubyiWBphexkDoaQBWRADTyySgKpvposuhDgFcbDYGwqTiRVoH Ay42GwN7bJXNdOtHlRaGYmmA6WVxwPTSCGRTVUbTbXbH+761U4OBH1QBrDACppcxIB0FwAppYRzI 9HKg2rsBJyAZ+EEVwAojoOliQDoKgBXSwqOYphsoppcR0J6nPhVGwPQyAo4xvfwVRR2exAswi7QD VTQdRW0UsZAdqKLpKGqjjW/CjbT7Q0oI9tiKpqOojV7M0rQHFaR0nw1FHYB2LETTUVReydHL9JKi iklbOtb/vwZ1TVkIzIvNri6roN/cb4+udfvcHVEHaTrqICVegFmkHajaMZ1zy7Mr5z69qa7aw16z b3b8pQ7SdNRBCmaRdtC11ZYU060uvd1Wl9VDe9yPne74Sx2k6aiDFLSQHXRttSVoOndX3br591V1 8cF/+l1Urz/+4M88T5/d/aR6tTPYEk1HHaRezNK0pdLLxnTT6mF5du/mlydPzk3futX0yk29u+6u F/Mzv7E92BZNRx2k5Oj9AullMN3qpjpfTL37ZpMrtzx7cG752+Cv5a+98aqH1mBHNB11kJKj94uY 7tvvqurkerE8u/X96enz6rJ67U8ovb8eJd289Vd9m8GOaDrqICVegFmkHahSTdfklrNJMN3d6bNb van8dVww3cZjW4Md0XTUQQrGInbQtdWW9pku/O1ATOfcp5vq9Fk+6V5Szc1gRzQddZCCFrKDrq22 tM90zWfY9Natfrdw7vHrJz8wm5z85NzsbWuwI5qOOki9mKVpS6WXy7Pz8J/t/fnl+Qf3zp9dXl4v /Mb09PnHxZ2/pDt5ag+274Kmow5SfmkmdelYO+jaaks7ppOvgTWfdfOLKoQlq9//fOEv32YT//cD /3e6p+5gSzQddZCSo/cLpJcjiKajDlLiBZhF2oEqmo6iNoJLx9rBHlvRdBS1Ecwi7WCPrWg6itro xSxNWyq9HEE0HXWQ2rEQTUdReSVHL9NLiiom8QLMIu1AVS7T9f3ZszTQvI3sAlhhBH5QBbDCBvj7 dFEQbjQAK3qBtSGO8vfp1o8qLfwFpjTAn8oqDvhTWUYgm6oymm6zO/AXXJKBH1QBrDAC/mpPDEhH AbBCWphM8Fd7Bqq9G3ACkoEfVAGsMAKaLgakowBYIS08imm6geJPZUVAe576VBgBfyorAo7xp7K2 l9/8jNblTAbiaQXACiPwSZAKYIUN1DUAsMII/K++qyCyTmpf4GdYBbDCCPxRqQJYYQPtQ7RPRX9g Xmx2FDG9jACml1EQbjQAK3oBppepgOllccD00ghkUxVNpwPpKABWmABNFwM0nVXNXTYtTLKSgR9U AawwAqaXMSAdBcAKaWEcyPRyoJheRkB7nvpUGAHTywg4xvRy/5QNBuFGA7DCBmi6CKDpYkB6qnKZ rm8olgaYXsZA6GkAVkQA08skoCqb6daPKi28Pk8DDFKKAwYpRiCbqmg6HUhHAbDCBGi6GKDprGru smlhkpUM/KAKYIURML2MAekoAFZIC+NAppcDVdfv/XdkmuU3P4Z2vS7nGMDvsgpghRHUNQCwwgbC a64BWGEEdQ0ArLABuSbtLLm6VTEY+HMBFaAKZb3XfaCuAYAVRrDHVrlMtz/7GgzCjQZghQ0wvYwA ppcxID1VuUzXNxRLA0wvYyD0NAArIoDpZRJQlc10n1vLb34MbViXcwxQ1wDACiPwr4kKYIUN1DUA sMIIwqRugz+jijTgP0lVACuMQK5JFdCq2FrvFQJlIdj37/0T0AGsMII9tspmuvWjSgtDsTTA9LI4 YHppBLKpKqPpNrvjfd/aqcHAD6oAVhgB08sYkI4CYIW0MA5kejlQ7d2AE5AM/KAKYIUR0HQxIB0F wApp4VFM0w0U08sIaM9TnwojYHoZAUwvrYDpZQyEngZgRQQwvUwCqmg6FfhBFcAKG6DpoiDcaABW 9AJHbbr1o0oLQ7E0wPSyOGB6aQSyqSqj6Ta7Ay+qk4EfVAGsMAIGKTEgHQXACmlhMsEgZaDauwEn IBn4QRXACiOg6WJAOgqAFdLCo5imGyimlxHQnqc+FUbA9DICjiq99B9DFEVhW9F0FJVHXWtsNLrp gsJdyv1KC0OxNMD0sjhgemkEsqmKptOBdBQAK0yAposBms6q5i6bFiZZycAPqgBWGAHTyxiQjgJg hbQwDmR6OVBMLyOgPU99KoyA6WUEHFV6GUTTRUDzmu8CWGEENF0EHKPp+n6lLw00z2gXwAoj8IMq gBU2wO9eRkG40QCs6AX43ctUwCClOGCQYgSyqYqm04F0FAArTICmiwGazqrmLpsWJlnJwA+qAFYY AdPLGJCOAmCFtDAOZHo5UFxsNgLCa64BWGEEXGw2ArjYrBmEGw3AChtgehkBTC9jQHqqcpmubyiW BphexkDoaQBWRADTyySgKpvposuhDgFcbDYGwqTiRVoHAy42GwN7bJXNdOtHlRaGYmmA6WVxwPTS CGRTVUbTbXbH+761U4OBH1QBrDACppcxIB0FwAppYRzI9HKg2rsBJyAZ+EEVwAojoOliQDoKgBXS wqOYphsoppcR0J6nPhVGwPQyApheWgHTyxgIPQ3AighgepkEVNF0KvCDKoAVNkDTRUG40QCs6AWO 2nTrR5UWhmJpgOllccD00ghkU1VG0212B15UJwM/qAJYYQQMUmJAOgqAFdLCZIJBykC1dwNOQDLw gyqAFUZA08WAdBQAK6SFRzFNN1BMLyOgPU99KoyA6WUEHGN6OZ/7qZH283zuvxu+PTQQiKcVACuM wCdBKoAVNlDXAMAKI/BfxFOB/8LUCMDPsApghRH4o1IFsMIG2odon4r+wP+fg/AEgHKZrm8olgaY XsZA6GkAVkQA08skoCqb6daPKi0MxdIA08vigOmlEcimKppOB9JRAKwwAZouBmg6q5q7bFqYZCUD P6gCWGEETC9jQDoKgBXSwjiQ6eVAMb2MgPY89akwAqaXEXCM6eX+KRsMwo0GYIUN0HQRQNPFgPRU 5TLdr6iDVXP0ML0cAaii6aiuXo6ecCMtgxQjkE1VNB3VlXog0XRGIJuqaDqqK5lBmUhplSxSOgqA FdLCOJDp5UDRdIcs/60ULjY7FOyxFU1HddW8ZTO93AeYXlJjqjl6mF6OAFQppltdVkG/uW+Pe90+ d0fUQZrukKWu3srFZo2ga6stKaZzbnl25dynN9VVF8y+2fGXOkjTHbJe3rLDjbRML41ANlWppltd erutLquH7vjpjr/UQZrukCUzKBMprX/nbh1W644CYIW0MA78paeXYjp3V13ffPOni/OFc/eT6tWH cN55+iwd/25yUb3++EMz2BJNd8iSGZSJlFaxkHQUACukhUcxTRdMN62q6uT+3emzu7tezM9On93U u2vdcdO3bjW9ksG2aLpDVnP0ML3cB0ZPL4PpVjfV+UIMtfy191r1EPy16SzPHpxb/pamOzY1Rw/T yxGAKmC6b7+rqpPrRWOoR4kzb0N301ldVq/9WSZNd2Si6cYDqoDp1rllY7q1rYLpNh5bvan8xR1N d2R6OXrCjbRML41ANlX1M906xpRPupdM89NNdfpM0x2ZZAZlIqVVYhHpKABWSAuTCQYpbdPNJic/ OTd7G7qbzup3C+cev36i6Y5MMoMykdIqFpKOAmCFtPAo/qWbbnnm/0yw9Te4O38Vd/LkTffjYt1Z XV4v3LvwSfej/PONaLpDVnP0ML3cB0ZOL+VrYM2fx727nPyd7il85D1tOqvf/3zhr+lksCWa7pCl LqDaWVmVi83uAV9qsdnuRFKHo+Ytm+nlCEAVTUd19XL0hBtpmV4agWyqoumortQDiaYzAtlURdNR XckMykRKq2SR0lEArJAWxoG/9PRysGi6Q1Zz9PhUoDl0mF7ugJHTyxFE0x2ymqOGptsHaDpqTDVH D9PLEYCqXKbbPKq08Mdg0sDLlPetsALpKABWmAB/tScGGKRYtfOM4FymAZquOKDpjEA2VWU03WZ3 YJKVDPygCmCFEbSmvFeFDYSeBmCFEfCnsjKD/4/p5f6lSocCv8sqgBVGUNcAwAobCK+5BmCFEdQ1 ALDCBrjYbAzssVUu0+3PvgaDcKMBWGEDL++zfStsoHnNdwGsMAL+VFYEHGN62ff349NA84x2Aaww Aj+oAlhhA7V8UuwCWGEEoacBWBEBTC+TgKpspvvcWn5za7XQMUBdAwArjMC/JiqAFTZQ1wDACiMI k4oXaR0MuNhsDOyxVTbTrR9VWhiKpQGml8UB00sjkE1VGU232R3v+9ZODQZ+UAWwwgiYXsaAdBQA K6SFcSDTy4Fq7wacgGTgB1UAK4yAposB6SgAVkgLj2KabqCYXkZAe576VBgB08sIYHppBUwvYyD0 NAArIoDpZRJQRdOpwA+qAFbYAE0XBeFGA7CiFzhq060fVVoYiqUBppfFAdNLI5BNVRlNt9kdeFGd DPygCmCFETBIiQHpKABWSAuTCQYpA9XeDTgBycAPqgBWGAFNFwPSUQCskBYexTTdQDG9jID2PPWp MAKmlxFwjOnl9vKbn9G6nMlAPK0AWGEEPglSAaywgboGAFYYgf8ingoi66T2BVxsdg/4UovN9g3F 0gDTyxgIPQ3AighgepkEVGUz3fpRpYWhWBpgelkcML00AtlURdPpQDoKgBUmQNPFAE1nVXOXTQuT rGTgB1UAK4yA6WUMSEcBsEJaGAcyvRwoppcR0J6nPhVGwPQyAo4xvdw/ZYNBuNEArLABmi4CaLoY kJ6qXKbrG4qlAaaXMRB6GoAVEcD0Mgmoyma69aNKC6/P0wCDlOKAQYoRyKYqmk4H0lEArDABmi4G aDqrmrtsWphkJQM/qAJYYQRML2NAOgqAFdLCOJDp5UBxsdkICK+5BmCFEXCx2QjgYrNmEG40ACts gOllBDC9jAHpqRrddP7cj6IobCuajqKyqOuMF41uOoqi9oumo6jCoukoqrBoOooqLJqOogqLpqOo wqLpKKqwaDqKKiyajqIKi6ajqMKi6SiqsGg6iiosmo6iCoumo6jCoukoqrBymG5+Ub360B0cUas/ fHfbHRtTqzdV9eqpOzqm7ifVq+fu4LiaXnVHRtW0qqqskzB/MznN9xI9VkEP3fHRdD+pTv4+LBSj KIPplmf37l3GF2z1N5Os872afnDzi5OMrnu6d/OzczQlo+ixymq62STrIevcXfXarzWSS/49o6ry HaR3px/c/AwdpRlMNz1fuNVlzjmfTdDTGUMzb7ecD7H65zAt2Wbcv/F9P8k5AW6a79UJujvJ6Wi3 /MG/4z3me4nCeQY82RjfdMtg8KzHVE5HNJJnkVF5D9ubfz1DMz6GZpPqdc4LiMesn6LOfQpnGTf5 Tmbuqnu3/B7d//imm038C/aY8/SsgOlmX2fcf+dWN9c5zy4fb5dZTXdXVVXGz6LV5at/nFSvc75C /n31Kt8DrC6ri7+Fb0vjm07epbK+VxUwXd4Potkka1Kzer3Iazq3+vh9xiui2eT8g3uX96rUubuc U7z6uz1hIk2navbX+d4Fg/4lZzZ39+Aym8459y5fmiUHzzTnyZLP43Le/c39OzzD45tOTi/vcr5i 2U2Xd0KCMr4rza79NWlu02U8GZDX5i7fK+SV9X317nzhZjDLGt90xxCk3GSd7qDlWbbH8Fdc/qIr 8xtHPtPJ/GaNBfKeXUp4Dz0wvukO/k8G4rnVbdYpz53UFPikuwWH1HA1x2zWv2RmPZlZXfp9fyxo utnkHpt8FGU23U34oMg35bOv/2Gxusz6FPKabnX7k1v9IdsntT+/vG0uU7Ip69mlu6tuHZ7iDKZz s8xfA/NfJ8ho6n+SszP0ig3X8rKqXv3UHR1XeU33pqoucs6wezepvs37CuU8u2y+Bva2O7hWDtNR FLVHNB1FFRZNR1GFRdNRVGHRdBRVWDQdRRUWTUdRhUXTUVRh0XQUVVg0HUUVFk1HUYVF01FUYdF0 FFVYNB1FFRZNR1GFRdNRVGEF01EUVVJf/WV3hKKonPqr/wOJWLyPtQ771AAAAABJRU5ErkJggk== ------=_NextPart_01DC322D.ECA9A450 Content-Location: file:///C:/0D2A2649/03-3Metodologiapararesolverproblemasmatematicos(1)_archivos/image010.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAA48AAAGcCAMAAABOamUhAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAADbUExURf///9nZ2URyxO19MaWlpf/AAFub1fz8/H9/f5ycnNDQ0L6+vvT09IeHh4KC gry8vPn5+fr6+o6Ojqenp/Ly8rW1te7u7o2Njc3NzYSEhOnp6fDw8NLS0ri4uLCwsLu7u+/v75+f n5iYmJWVla2trfHx8aKiouPj49vb28PDw56enrKyspSUlJOTk+Dg4Orq6uXl5dbW1sXFxcrKyszM zPf396mpqejo6N7e3snJybS0tKGhoefn58TExN/f38vLy93d3YuLi8jIyKurq6+vr7a2trq6utXV 1QAAAGUhgk4AAABJdFJOU/////////////////////////////////////////////////////// /////////////////////////////////////////wAMCJ9VAAAACXBIWXMAABcRAAAXEQHKJvM/ AAAqoElEQVR4Xu2dwY7juM6Fhbm4Ay1+bbW6gNF6gwYErfX+T/WDpGQntFKdOI5OVZtfT9ekUikf xiZ1JDttOmcYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEYhmEY hmEYhmEYhmEYhmH8XGrVz8wFrH9tebT+teWHoGMC619bHq1/bfkhNetn5gLWv7Y8Wv/a8kPQYwRY /9ryaP1ryw9BjxEZu0+uLY/Wv7b8EPQYAda/tjxa/9ryQ9BjBNifry2P1r+2/BD0GAHWv7Y8Wv/a 8kPQ/gjWv7Y8Wv/a8kPQYwRY/9ryaP1ryw9BjxFg/WvLo/WvLT+k5n9O4j/fm1S++PPfK/IvHuwJ le95PkfX1VF0AXwzSipl97eU8ov+06l6CXRxAMAa1KH5avJMerGWl6ifycH7RT95JX/clyN54y/6 o1P1EujiAHCkIM7joD+G4lxcfNHPf0UM+pnso4thV5DX8cdBNbI90h+dqpdAFweAYwVxFgfXj4kr MflXgi9B++NCW+Evd1zGH6n8+L9Wiu0xT1fNH0EcK4izODRfda5wEWVflhBTkpknl1sObJrJ++iC T+SiIRYf2iQ3xuTpGyFTPaddBPkq/iglSHBJtsetInWqXgJdHABesZjzecsfF+99yNVHlwuVX3TZ V1e8T654mqAWKkOakIbk3EIFG4qL9I1QfCraNC81X11rcS1F+c78EcaxgjiLd/xx8cktnr8ny6Na pDqNIdPP4vqqVr/8gIqzrPVIBbmvxwv5Y6vF7TLHapBWjyB+pD+WQNNPLjKqpyonXBcuNT5Ds1bh VpnyUhfTVoNLruSqiuusH3f+eGOQOlUvgS4OAMcK4iwOnl+V+SoXJn2t/VRNDZl98qE/xpRkwUnk 0Ca191xmvrpZ4p092vUOJOB6PCYv53O6+7m6nmhdkufHvFgc+CNV3zpf5a3QRY97ruOPWzHe2aPV I5BjBnUW7/qjrB9jCJVOpbrcLyayb3Lh8WUOej09YCPt/hj553V/WfIq/rhNT+/s0T6fg+SYQZ3F wfVj6kVUxN0yrx/53Kr3IcjJnRxopcj1SE8t3uXqF1dDiKKa6cM55bqfB9gucNzPWs0fgRwzqLM4 NF/lS4lscvSIt5A9X39cT+y45IsrJdIrQgx0KTIGX93iQ1zWj+SMPy93HX+8X0B2kl3vAHKkIM7j oD8+QjYXd6doXuI668exPZo/IvmB/viQKoXYpqNHOTem1zl5jHoV8Nv/H1YerQ/e++fmHn8AzsU3 h5iD55hOA6yPTsj/6WfmAt77f5d8peXiu5s8d4x4HfAQCZYHDwdofXDygQ/+EHRMJ49RrwI2KLA8 Wh+cfODcGwIeotD6YIMAy6P1wQcfLD8EPUagh0iwQWDl0frg5APn3hB0TOAxCvz2wf6E1gfvfXDu DQEPUWh9tDzWn9D66L2PlR+CHiPAQyTYIMDyaH1w8oFzbwg6JvAYBU5IsD+h9cHJB869IeAhCq0P TkjwcIDWBx98sPwQ9BgBHiLBCQkeDtD64OQD594QdEzgMQqckODhAK0PTj5w7g0BD1FofXRCYocD tD744IPlh6DHCPAQCU5I8HCA1gcnHzj3hqBjAo9R4IQEDwdofXDygXNvCHiIQuuDExI8HKD1wQcf LD8EPUaAh0hwQoKHA7Q+OPnAuTcEHRN4jAInJHg4QOuDkw+ce0PAQxRaH52Q2OEArQ8++GD5Iegx AjxEghMSPByg9cHJB869IeiYwGMUOCHBwwFaH5x84Nwb8sb9V/UdFWeQ+C6N6xd9C0PjFeSei/8g v+h0nArYnoe8cf9VXSszoFun/tq+6AwzXoEKAoxOx6kcsme+P7n36UVvXXaNc2Q7ejNv9AvQtTID voXx+sXq8S10cQBQ2TiXg/5ILY5jkZ4BzxJ7U7oV7vZBnc3v+cn+eNE+OKehiwOAysa5HFw/Sn+r srO2r1h78KzwRto9zW/4aetH7oDTDNL88T10cQDQ6TiVQ/PV3v8x+7IE6rAq/XRoU9n7Qi3lyPWo iY6LS4iFeu3wJDdG7q8jG5H/LbsIfth8tfnipfvgnIYuDgA6Hafylj8uvPqr3rlcqAdk5DZzC/W+ oj503PqY+7Pyo96P9b4j8qD3zo/zR3JH7olDjRt1hhmvoIsDgE7HqRxcP7ZO5En6IDtHU9EcMtdp pIYB/Hx7VevHyk9Rq7lChtpZO7hu/MD1I1ejNG7UGWa8gi4OADodp3JwvpoCTT+56TF9u7Z9pI7H kWqO+ya3fuWtfqWVsovp7jRQ2Qfww+ar0i6undGxenwPXRwAdDpO5R1/JNj9XO3nSGvI0uRqdUV5 RHXKD2JqC85GHJyi/Xn+2E7mXLdv42nwFXksOh2n8tb6sbufq9Ikmb7n9eKNK25OyQ9kvrptaDBd /Xnrx3axg/+zenwLXRwAdDpO5eB8VfljDFSEMW/lJa5Ik1l51M7ncOHe+uNguvrT5qu9q7Fd7zgB XRwAdDpO5Zg/Rvo8AJPkfE7m9WN1KfAHd+iJSl6Z2ivo9SW4XP3iakixF+RouvrT/FGajps/noIu DgA6HadyaP3IlxK5kkq77Ohy8KnS+rGd2HHJF1eKXHaMwftAJlrdEkJcaNIqjKarP239uNojLx/t fM5b6OIAoNNxKgfnq4+Q8h5cU3yFnzZf7dc7rB7fRxcHAJ2OUznkjw9pn32L72302Bz6PMD6/wP/ A0CsvPv9Wz8zFfDBP1eeL3XQeZ23OHeMeB2w/slTllcB/3No9xur/3cd/EofT32zHM+O6WXA+hf3 R7A++OCf64/nAB6i0PrgjDB/RAKWH4IeI8D6V/dH7N5Hy3/HegTHBNYHy1/cH8F73/xxD1j/4v5o 51e/G+gxAqwPHqEv7o/XPvhD0DGB9S/uj2B98ME3f9wD1gdnBNofwfrggw+WH4IeI8D65o9IwAcf PBgPQccE1gfLg/0JrQ/e++aPe8D65o9IwAcfLD8EPUaA9cEjNNif0PrXPvhD0DGB9c0fkYAPvvnj HrA+OCPA/oTWBx98sPwQ9BgB1jd/RAI++ODBeAg6JrA+WB7sT2h98N43f9wD1jd/RAI++GD5Iegx AqwPHqHB/oTWv/bBH4KOCaxv/ogEfPDNH/eA9cEZAfYntD744IPlh6DHCLC++SMS8MEHD8ZD3rj/ qkLfKvUcUirp1/ZX30LUOA19a9QZYAvikD/y/cm9Ty8OJctN28dOLNRJ+Z437k+u0JV0DtJcbv2r k8g4DV0rM/iRtyegfhyx3DVy/COx9ym/IXN3c/3kd/fHfityuyH5h9G1MoMjBnUeB+er0t+q8O2P n6W13rlF7p+s+e7z1V6O1kDn0+hamcEoI+dxzB+jtHDMviwhJm5W7j2XW/bseIlmoYH8My4hFvoZ t76KkW6Y3OuyDsvxZ/hj+WUN5j7Ov4D2rMcM6iwOrR+7Py60isw1RJcLta+K0maOGpmTGcZQuDIX eST9WJN8I1sJOVDTc8W3Xz+2blZcjVaPH0TXygyGFjGNg/PV1ok8uYXM0TmxyMzPR+5XTiYo/ZHp Z9IfmRpBZurHKhuJPlGH1t0i9LvPV6US15ZWOomM09C1MoNjBXEWR/0x0DnWXmSuygnXhVuRR2rv KPVIpbb1R5Z5akxUhoRMVxdpIHnDt/dHWTf2DnM6iYzT0LUyA7A/HpNnfyQKF1nt1yxqyHKShien zUVpPdnnqzGl2P1R6nF/TucHrB95pspzVvPHD6JrZQbaHeZycL4q60euNvq6nZhZkvS3Wl1xm7nK fLWQbUr1spG66nUI332+us5UzR8/jK6VGfzI64+rP8p8NQaadMZl6z8u/khGWPr6kR6wkXZ/lK3k 3frxu/tjO7dq1x8/jq6VGWh3mMvB9SN9HoBpFxUzLR9DdUU+uENPVJeTD3SRkkowcOnm6hdXQ2oN lCOfet2NCN99/ZhuupObP34SXSsz2KXjVA7NV/nzclyRdFFRCjLwZcX1xI5LvkSapdJrY6CXx8AX Q0Jc1tltDVTEmm8/X10N0vzxs+hamcE+H2dy0B8fIZuL+2uKr/Dd/bGfyDF//DS6VmYA9sdT5asU YpuOHuW7rx/bxUdbP34cXSszeC933+XQfPUhcu0ivlnj58b0OueOUS8D/vePYHm0Pvjgnyxf6eOp 727y5Dn0y4D1wcMRWB6tf+32k0NOHiNeBpwRYIMAy6P1K/j6Izb3hqBjAo9R4LcPlkfrgw8+WH4I 3B+x+mCDAMuj9dH+iM29IegxAjxCX1serQ9OPvC7H4KOCTxGgQ0CLI/WBycfOPeGgIcotD46I7Dy aH3wwQfLD0GPEeCMABsEWB6tD04+cO4NQccEHqPAbx8sj9YHy4Nzbwh4iELrgw0CLI/WBx98sPwQ 9BgBHiKvLY/WBycf+N0PQccEHqPABgGWR+uDkw+ce0PAQxRaH50RWHm0Pvjgg+WHoMcIcEaADQIs j9YHJx8494agYwKPUeC3D5ZH64Plwbk3BDxEofXBBgGWR+uDDz5Yfgh6jAAPkdeWR+uDkw/87oeg YwKPUWCDAMuj9cHJB869IeAhCq2PzgisPFoffPDB8kPQYwQ4I8AGAZZH64OTD5x7Q9Axgcco8NsH y6P1wfLg3Bvyxv1X9a0Zvxn6foaGpt10kfqwov7qdJwK2J6HvHH/VV0A3wydfYZG3QwVgU7HqRyy Z+4X4H16sZaX3qd8g/p99BY8K2/0C9AF8M3Q2WdodHEA0Ok4lYP+SP10Ytm3Nv6KKK137p+ihuf6 WfPH66KLA4BOx6kcXD9K/8eyr6UvaK2wbll23kjY+vG66OIAoNNxKofmqy5yJ3KXfVlCpF5y1HCO yy17X6i/HLW9CuSfcQmx0M+oFZaPkW5g3usyyos1Nl+9Lro4AOh0nMpb/rjQKjLXEF0uNPeM3PZx 8b6wGUZqhpxogciPuEVroL5zvf0Vd43cW6z543XRxQFAp+NUDq4fubPx4pNbyBydE4vM/HykElu7 lMsr6HnpV55v+iM7R3a5c0hbP14XXRwAdDpO5dh81ZVA51h7kW1tWGkeG8PS65EKj19BlclPcQmm mxKkjskKm69el3YNEIlOx6m8449E4SKr3eRqyNJ0jienzUVpPdnnqzGleOOPw3M65o/XRRcHAJ2O U3lr/cjVRl/rugpckvSbW11xm7nKfLWQbd5OUff1aOvH66KLA4BOx6kcnK+u/ijz1RhCpVOpLvfi En8kIyx9/UgP2EiVP+7WjzZfvS66OADodJzKQX+kzwMw7aIinykNlT9v4+kyB51ozckHukhJJRi4 dDOtFmtIraH5kp3L+wmz+eN10cUBQKfjVA6tH/nzclyRdFFRCjLwZcX1xI5LvkSapdJr6WM4dJ2D L4aEuLTZbVz83amdjq0fr4suDgA6HadycL76CLHb2Gezx7D56nXRxQFAp+NUDvnjQ6oUYpuOHuXg HPo0wPrgf5ALlne/sQ1RwQf/XHm+1OHimzV+7hjxOmD9k6csrwKWv3iD4pP3fqWPp777jk6O6WXA +mCDAsu7/2H3Pvjgn+uP5wAeotD64IwAy6Pnq+iDj5Ufgh4jwPpggwLLu9/YvQ8++OjRcAQ6JrD+ teVdxY4H4Ldv/rgHrA82KLA8ev0IPvhg+SHoMQKsjx6hsfJwf7z0wR+CjgmsDzYosDzaH8EH3/xx D1gfnBFg+av7I1Z+CHqMAOuDDQosj/ZH8MFHj4Yj0DGB9a8tD/dH7Ns3f9wD1gcbFFj+4v4Ilh+C HiPA+ugRGisP98dLH/wh6JjA+mCDAsuj/RF88M0f94D1wRkBlr+6P2Llh6DHCLA+2KDA8mh/BB98 9Gg4Ah0TWP/a8nB/xL5988c9YH2wQYHlL+6PYPkh6DECrI8eobHycH+89MEfgo4JrA82KLA82h/B B9/8cQ9YH5wRYPmr+yNWfsgb91/9EPq+jc+T0q+Hf/S9Dg2NvhXjDLDDEXo0HPHG/Vc/hK6y5ylf oLPP0OhamQHWoA75I9+f3Pv04u/uO3XcdubZ+Kv8sfx69OeXzj5Do2tlBliDOrh+pP4dsUjPgGeJ a5/yG+pgG2/07/gQusqepxRdhtsfnX2GRtfKDF40mZM5OF+V/lZl0Gz8MdRTZ0dam5dv/E3zVfFH +U//X2efoUH0Zj1WEGdx0B9llpl9WQJ1WOUGV9Ryjv5fqJ8VtdkJ5H1xCbFQrx2e5EZqUH7jk0sd 1ePf5I87VzR/fB5dKzP4kbd/FX9cqMRy9c7lQj0gI7eZo65V3GUuUq0l77M86v1Y+RuhLtygVfF3 rR/X+ts90NlnaHStzABcj2/44+KTdD92jqaiOWSu00gNA9auyDf9yumpsNz2Ry7SMFnxN81Xe/Ht irFYPf4ZXSszANfjQX8MNP1sTY9v2j4WmqFSzUl/ZKnHVr/S2tzFtJ7CoV6sg3r86/xxVIy2fnwC XSszwNbjW+vHtV85tyEnasjS5Gp1RXlEdcoPYmoLzt4mcu20vPGXrh93D3T2GRpdKzPA1uPB+aqs H7v7uer7ZhZeL9644uaU/EDmq/JabnLuqWvyPX/TfLWtH3e1aPX4DLpWZoCtx3P8MQYqwphdXm6f 58msPGrnc7hwuz8yg/nqX+WPj4rR1o9PoGtlBth6PLZ+jOssM8n5HLG66lLgD+7QE5W8MrVX0OtL cLn6xdWQ4laQg3r8u9aPu2JcH+vsMzS6VmYArscj/siXErkiS7vs6HLwqdL6sZ3YcckXV4pcdozB +0AmWt0SQlxo0toZ1OPfNF/9Yrpq53P+iK6VGYDr8ZA/PkSmv3yi5jh/lz/eleD2x+rxCXStzABb jwfXjw+oUojxvY2ePEa8DFgf/A+CwfJo/Yqtx0Pz1YfwpQ46r/MW58b0OueOUS8DfvtgebQ++OCf LF/p46lvliPan9AZATYIsDxaH+2P4NwfcfIY8TJgffBwAJZH61/74A9BxwQeo8AGAZZH65s/7gAP Uejx4NryaH3w7e3QuT8CPUaA9cEGAZZH64MPPng0GoKOCTxGgd8+WB6t/xsrD869IeAhCp0RYIMA y6P1bf24Az1GgPXBwwFYHq1/7YM/BB0TeIwCGwRYHq1v/rgDPEShx4Nry6P1wckHlh+CHiPA+mCD AMuj9dH++B3rERwTeIwCv32wPFrfrj/uAPsTPCOwBgGWR+uDkw8sPwQ9RoD1wcMBWB6tD77+CH73 Q9AxgccosEGA5dH66PUjNveGgP0JPR5cWx6tD04+sPwQ9BgB1gcbBFgerY/2x+9Yj+CYwGMU+O2D 5dH64IMPlh8C9id0RoANAiyP1kf7Izj3R6DHCLA+eDgAy6P1wdcfwe9+CDom8BgFNgiwPFoffPDB 8kPm3H9V3yn1JPQtRI3ToGbJn/77L9gMDs3N+P7k3qcXa3m5adshUFfl3ZOT+nfoQjoJnUTGaeg7 F38EsEEdHA6oH0csayPHp4i70qvUOXm/jTn9AnQhnYROIuM0dOl8BPDncw75Y+9vVfj2x8/SWu/c QL+de+vIDfNHY4QunY9Qf+LyNUoLx+zLEmLiZuVt5pm9L9SJ1fvoAvlnXEIs9DNufRUj3TD5tgKX m946DVs/GiN06XwEsD8enK+KPy60isw1RJcLta+K0maOGpmTGUbqXZWo2xU/kn6sSb7pLIPWOzZf NUbo0vkIxwzqNA7Kt07kyS1kjs6JRWZ+PnK/cjJB6Y9MP5P+yNQIMlM/1r6Z6LlLncL80RihS+cj gP3x6Pox0DnWXmSuygnXhVuRR2rvKPVIhbf1R5Z5akz+pj9yDbtVpa0fjSG6dD4C+vM5x+qR/ZEo XE61n5SpIUuTK56cNhel9WSfr8aU4uaP/Ks7h7b5qjFCl85HOGhQZ3FQXtaPXG30dSuqJUl/q9UV t5mrzFcL2eatJe7bYZk/GiN06XwEtD/uquEpVn+U+WoM1LU8Li73s6Xij2SEpa8f6QEb6Z0/7q9K 2vrRGKJL5yP8zM+vrlfx20XFTMvHUF2RD+7QE9Xl5ANdpKQSDFy6ufrF1ZCkgXIMS3Rlf73D5qvG CF06H+GgQZ3FIXn+vBxXJF1UlIIMfFlxPbHjki+RZqn02hjo5THwxZAQlza7jWX8mTvzR2OELp2P 8DPPrz5CNhcHFxVfwNaPxghdOh8BvX48tR6rFKJMRw9j81VjhC6dj3CyQb3KufJ8qcPFwRz0FQ7N oU8ErA/+B4BgebQ+2h/Pzb1KH099d5PnjhGvA9Y/d8ryMmB5tP7PPL/6UdAxgfXBBgGWR+ufbFCv ApYfAvYntD54OADLo/X/rvOrp4AeI8D6YIMAy6P10evH71iP4JjA+teWR+uDDQosPwTsT2h9sEGA 5dH6aH/E5t4Q9BgB1gcbBFgerW/nV3egYwLrgw0CLI/WBxsUWH4I2J/Q+uDhACyP1rfzqzvQYwRY H2wQYHm0Pnr9+B3rERwTWP/a8mh9sEGB5YeA/QmtDzYIsDxaH+2P2Nwbgh4jwPpggwDLo/WvffCH oGMC64MNAiyP1jd/3AEeotD64OEALI/WB19/BOfeEPQYAdYHGwRYHq0PPvjg0WgIOiaw/rXl0fp2 /XEHeIhC64MNAiyP1rf14w70GAHWBxsEWB6tf+2DPwQdE1gfbBBgebS++eMO8BCF1gcPB2B5tL6d X90x5/6rCn1zQQOC3HTxH+Dff3U6TgU8Gg2Zc/9VhU4MA4K6GyoCnY5TOeSP3C9gfK//r1h2nXMK N/3QmD9eF10cAHQ6TuXg+pH66cQiPTyeZd/JqkQX074g5/TvUOjEMCDo4gCg03EqB+er0v+x7Hup fkFrhbXBbQW4m/I9Nl+9Lro4AOh0nMoxf4zcidxlX5YQqZccNZzjcsveF+ovR22vAvlnXEIs9DNq heVjpBuY39Xlvh7NH6+LLg4AOh2ncmj92P1xoVVkriG6XKidXOS2j4v3hc0wUjPkRN3n+BG3aA3U d+62/VXcz1dt/XhddHEA0Ok4lYPzVe6PvPjkFjJH58QiMz8faRa7dimXV9Dz0q88q/7Iy84ebb56 YXRxANDpOJWj/hjoHGsvsq0NK81jeUUo9UiFx6+gyuSnnIvJp23CGgenhMwfr4suDgA6HadybP0o /kgULrIqTZKdqyFL0zmenDYXpfVkn6/GlOKtP9JiU2Prx+uiiwOATsepHJyvyvqRq42+1vVE65Kk 39zqitvMVearhWxzLcJlNBzYfPW66OIAoNNxKu/6o8xXY6CzMnFxua8GxR/JCEtfP9IDNtLNH7kc Fz0kmD9eF10cAFQ2zuXg+pE+D8C0i4qZlo+h0gdu6IM79ER1OflAFympBAOXbq5+cTWk1tCcz8/S a+6x9eN16R8iBaLTcSqH5qv8eTmuSLqoKAUZ+LLiemLHJV8izVLptTHQy2PgiyEhLm12K+VIL77H 5qvXRRcHAJ2OUznoj4+QzcXbC4yvY/54XXRxANDpOJWD68cHVCnENh09ysljxMuA/0XsteXR/yAY nHyH5qsP4UsdLr5Z4+fG9Dpg/WvLu9/YejzXoF7mZPlKH099d5PgIQrtENeWR9/gDTwcoXN/xMlj xMuAD8m15a/uj+C9PwIdE9ghri2P9kewQYHlh4CHKPR4cG15uD9i3z4690egxwiwQ1xb/uL+CB4O hqBjAutfWx7uj1iDAssPAQ9RaIe4tjzaH8HDETr3R6DHCPAhuba8q9jxAJx86L0/Ah0T2CGuLX/x G4SD5YeAhyj0eHBtebg/Yt8+OvdHoMcIsENcW/7i/ggeDoagYwLrX1se7o9YgwLLDwEPUWiHuLY8 2h/BwxE690egxwjwIbm2/NX9Ebz3R6BjAjvEteXR/gg2KLD8EPAQhR4Pri0P90fs20fn/gj0GAF2 iGvLX9wfwcPBEHRMYP1ry8P9EWtQYPkh4CEK7RDXlkf7I3g4Quf+CPQYAT4k15a/uj+C9/6I8+6/ +p/nSelX+rWh70NofDv0fRpPAlsQ39MfdV0dRRfdFxTi1/qfPvjGt0MX0kmA/fGIPN+f3Pv04u8u +15WS9rdnZzGCF1XR9FF9wWp/Lr9ow++8e3QhXQSWIM6OF+l/h2xSM+AZ4n3fcqJEvbdAkDz1c0c rR5/BrqQTuJFkzmZQ/7Y+1uVtc3cM1BPHU0c1SPIH1dztHr8EXyo8c4xgzqLg+tH6f+YfVkCdVjl BlfUco7+Ty1WE7XZCeSfcQmxUK8dnuTGSDdMvmmPTL2UNZj14+101erxB6AL6STAt+85Vo/ij9yg KlfvXC7UAzJym7mFmllRl7lIzVeT91ke9X6s/E1jXI8wf7T14w9CF9JJYOvxHX9cfJLux87RVDSH zHUaqWHA2hX5pl85PUX1x4YqjOsR4o9309WiD77x7dCFdBLYejy6fgw0/WxNj2/aPhaaoVKNSX9k qcdWv9La3MV0cxroO60f11q0evwR6EI6CXA9vuGPhPQr5zbkRA1ZmlytriiPqE75QUwhlj/5I6Ie 72arNl/9AehCOglwPR70x60e6Wv1vawXXi/euOLmlPxA5qvrdob1CPHHm9mq1eOPQBfSSWDr8Z31 IyH+GAMVYcwu9/ISV6TJrDxq53O4cP/oj5D144052vnVn4AupJPA1uOx+WqkzwMwSc7nZF4/VpcC f3CHnqjklam9gl5fgsvVL676FHtBDtePkPmqnV/9aehCOglsPR7yR76UyBVZ2mVHl4NPldaP7cSO S764UuSyYwzeBzLR6pYQ4rIWYeFrknfbhvuj1eMPQRfSSWDr8eD68RFS3nG7wHgE6PrR/PGnoAvp JMD1eMQfH1KlEON7Gz03ptcB64P/QTBYHq1fwfV4qj/ypQ46r/MWh+bQJ4L+F7HYtw+WR+uDk+9k +UofT32zHE8eI14HfMcIsEGA5dH6aH/E5t4QdExg/WvLo/VPNqhXAcsPQfsjeL4KNgiwPFof7Y/g 3B+BHiPA81WwQYDl0frXPvhD0DGZPyIB64MNCiw/xPwRCVgerf8bK4/O/RHoMcL8EQlYH71+/I71 CI7J/BEJWB9sUGD5IeaPSMDyaH20P4JzfwR6jDB/RALWBycf+N0bhmEYhmEYhmEYhmEYhmEYhmEY hmEYhmEYhmEYhmEYhmEYhmEYhmEYhmH8BGJqPbOms3brwoWwcNswlH4s3G4MI089CxfuJjpfPrc+ pJv01CC6/JqAc+W/JIbsqnSVnEtcIu2GCgyBemMCd0H2RbrrIuSzj9Ked748DUNcEJv0zCC6/JaA U+X/ADtE2VqaT4O7cnFGwEJwKXCLd4y+dENCybPqQn20AfKtTzdLp/mHQOS3BJws/xUST4aNDSQP C6FUrkeMfm3lCJLn0YB6+iLkW0Fs0nODaMMBww/nyn8FOTXlBmjyHAPNmkAh1MVRPYL0S8iBJqwg eVd8oukyRL7XI4mS9OQgbuqRY5gs/xUSBCyUZQGGUBzXI0a/hhRd9QUkLwUZt3c/9caHUhAiSgH0 R5OCuKlHSkDcIdgzeU8oIk3ZUSHk3OsRoS96i68YeeeWXIOnIQEgf1+PefagsNUjJyBmH4wRq86g oaGQLCiEyEvHdb46W1+OfvYVI+9yoHde+rufu3a6na/m0Oer04LY6pETEJQBY5BL2UUGJEwIdP2N qBj9bhEgeTmtSaoiT9dB59EKoklvjyYFsdZjS0DQIRgip3rp4EyH98ZSb057T2e73jFdXwoiweR5 qRAiRL4VhL7eMSuIXo89ASH74AHk1dMGpjsWtqfUQ9A/ngLXI0Y/+kUmShj5TNfES/s8wGxraAWx Sc/Nwj4c9AQEHYIxMfF5tunI3pBPSoBCaPUI0q9h+7ggQD6H/imZ6fKFDjw92KRnBsHysS9YQPvA MAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzDMAzD MAzDMAzDMAzDMAzDMIwfRKxrt7yDPNhCVf2EIrXPnsU4Jh3S0Zh462XXH2b/zAAdw8EQjjDeKZ+O 6IHqszz49Q8HfZDk/dq6qNw8foHcWo4cZ7yFmiK1MWkhUXfUmP7QoLZ1bAzSRfMthjHtQ/pzTNwW SL+Gt77c7u2FHt89057T7GP4Ywin7ZfhTjkS0UtpN1Z9mvGvHwj6Q/zT4e9q6MkS10cvctNt/SCj LdQgLfe4D2HrG+24T+0d/+nwd5V3ffVe+9jrDGIahjSIKXXkW0+/ptBbp0aLmtFz4xj2Ifx3hb89 a7/osIknI/rn33/lP/7upbQbqb7A6NefDHoG9/UYS2iNtJanZksDRu/3NUZb2Dof0qDeRva6C/G+ HvuG0mhIfI1BTMOQBjGVTv9W/Xyw9TKovdFz4xj2Iah6PGu/6LCJJyP6t8PfvZR2I9UXGP36k0HP QNejNKonu6bYkvcxBp9ojhPI0XuMmacVsYRYbuYXbPl8kOXn9ESphX9RXkWPUl03e7elRD3q+xa2 X+EX0UsptEo9EHPfo0nvWlWPLd9i4LAfxCQhbW91e+GXMT0IaR9Tkmrs/XTp/7f7rW+d/U9iS9Jx kJ5ZX9meO7ZbdD0O94s8db9XnjhQT+2VXUS6Hp9Mu1V1GPPzQR/bjTPQ9RhlpMo5c/fP5OmwFXpH 9PP+HnLhg1l8oK69bSYmPXx50G0/d8tCQ54LJcqraBCiR32zN1vyuYa4bYFeWHi4Iorsseooqm3t veiumGN/dIWOto4pSeQ9pC2m/sKvY3oQ0j6mkvgPv7793s1+61uvnB8ttoXaj/Iz7ZWlryaP7RZd j8P9wvQj9fyBemqv7CLS9fhc2q2qw5hfCPrYbpyBrke30NuMpfWD5iygKRYPYH3oiLSXss+SOOsM jB/w4qT/nHducXT86U1H6nhNv8Qi/My6Jd7nS98Cb2qt9CpzeZnh0/S+mcuuZ/WDely+iIlHQYpH 3mraXijv7kFMj0LaxyT+mPpeYp/c9pvss7DIUy023j3ylZ+m39l+5fXd8qge7/bL+pObvfLnA/Xc XtlFpOvxqbTbEmwY88ezawa7euQw89Lm0muSyrjeRpTaezev75x/md8X7Z715zT9kp9xh2d5xf3+ Xrd0twXJmH6Gsc1mHG+kVLck2Vn9+ZUH9VhoPngTk2yVY4rSBPwmpvWFLUfGMT0KaR8T1SLVZPdH qcfYZq7r1uUpia0NBPRV9jDXY3RHd8ujerzbL437vfLHA/XcXtlFtKvHZ9JuVR3G/PnsmsGuHt0S qqNZm+yYPjyTn/dziNtSd/uxvKK9320pvHjeUylFOne17jGehtDvrWcNOd1kD8SwtIzJnJd9y+2F mWYokgu7PabqsR8xmpfdxURrCokprpvo7+X2hevR2sX0KKR9TOyP9KV/e/f+130mNSin+8Uf+QzO Wrn0K0d3i67H8X7hH6m98qcDpUJ6OqJdPT6Xdm1n3Z9rnpZdM1D1SGvdUCqvmGWkbkMNhUmrG2aN 9ObH9Cz9XOpxfSdx8Z7n8jJ/aC9df2/bEu26bQvywj5juNkez116Huz22NgfY/B3r+WYOMdpDdlC WmPaXtiO4jCmRyHtY5JqTN0f23x1ff9961KDFFuIbXol9dh+R/zx2G7R9fhgv/BBvt8rfzxQz+2V XUSqHp9Nu6Y6jPmFoA/uxhns/dEtdLqxn/ulNyKXZbJv4wm9J5rPxD7J6hndFtX0dvrP6e2GvG5E zgDULFnG+3Dd0t0WFl7H9yPRE4jGQn5ZG8Fk8X/DuB4T7VgdE0fOp3EkpPZeKBdpnKUU+SqmRyHt Y5LZ6v31jm3837ZOT0ls7SwGP8MHQOar/anXd8uDeuz7pb1d0b7fK388UH1p9vVe2UW098cn0m5T DfQqHfPzQR/MrvnwySUZZxZ2f4opJ7mG3de/spP49HuifdGvHblMq58leFqVt5/zpCHz6fxUY5/Q 816Xzcora/twWKZL1EsIKYZU3TaVWkteQugz/GWLaIR8NKq2hcaDmCSkELe32l/o0iimPgXq9eVk NUoh8fH7Q0yyt/jd0hl42XoJvrCYTGFpaMh0bpVeyXs4cN7zOdn3d8twv0jqkYXc7JUnDhSFJJdm mHWvvBTR82nHqj4NY56cXZ+HzgvTkFkqTWU8X8FJvrjSUu5muJDrOin4QK/sgefgU3MJub6T5UNI PAdj96eLQ5SQdOJCjl3bUtu9mbdIA3by/bwLPd0UeuUv8qGzL68Q8Vvgz4Wtw8Uwph5Se6s9CKqX r2LKnCzO0aBOtJC+jkkSJNO77fut7bPMn5ah2PjMhI/00iIfJQt0MS1yTO/vlsF+CexMzG6vfH2g SGi8V16I6P9om0+mXT8U7RAxkOz6BiA/YtuX6ncMP0I2jWFIk2MaxjA3BMX5EU1Iu/ODnsD2ERQA w52Dnd8PQ5oc0zCGuSEoTo9oRtqdHvTHoXnWIOZ53J6UFlCfwF/ZhzQ/pn0M00NQnBrRrLQ7NegZ 1DAaQmYS9b83ul1XYGgn+G7QMX6e77dbdnvljYimpd33242GYRiGYRiGYRiGYRiGYRiGYRiGYRiG YRiGYRiGYRiGYRiGYRiGYRiGYRiGYRiGYXyS/wfQln9V3eCXNAAAAABJRU5ErkJggk== ------=_NextPart_01DC322D.ECA9A450 Content-Location: file:///C:/0D2A2649/03-3Metodologiapararesolverproblemasmatematicos(1)_archivos/image011.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCADEAXMDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKb 5hNG/wBBQA6g9OlNycZAp1G4Hjf7e3xq8Z/s6/sqeLPjN8Pxa/2todvBLZreQ+ZGS1xGhDDIyCrH vXwp8Lf+DhzX7YR23xp+ANvcLnEl54b1Axtj1Ec24Z/4GK+v/wDgrcuf+CfPxF/68Lb/ANK4a/BX Z6Gv1ngPhvJ88yeq8XTvJTsndppWXY/L+Nc+zTJ80prCzsnG7WjT1fc/eD4Cf8FZv2Jvj0kFtpvx PXw/qU2B/ZXiiP7LIG9N+TE34Oa+kLDU7DUrWO/069iuIZlDxTQyBldfUEdRX8x5jB7169+zv+3b +1F+y5dxf8Kr+KV8mnxyBpNC1CQ3FlJzyPKc4XPqu0+9dWbeFseVzy+r/wBuy/Rr9UcuW+I9RWjj qf8A29H/ACf+Z/QwrfNUleCf8E7/ANrzVP20f2foPi1rfhOLR76HUptPvLe3m3xySRhCZEzyAd/3 TnGOpr3uvyTFYWtgcTPD1VaUXZ+qP1LC4mjjMPGtSd4yV0FFFFc50BQTgZNFcL+0h8ePCf7NXwU8 RfGrxtMFsdB09p/L3YaeT7scS/7TuVUfWgDmf2vP23v2fv2LvBH/AAlvxm8U+XcTKx0vQ7FRJe6g w/hjjyMD1diFHc1+bfxh/wCDjX43a1ezWvwP+C+h6HZ7sQ3WuSSXlyR6kKURfphvrXwz+0n+0Z8T P2qvjBqnxj+KmsNc6hqUxMNupPk2UGSY7eIH7qIDgDqepySSeFAxXRGnHqB9qf8AD/X/AIKEkk/8 JB4TUdl/4RlOPb71H/D/AG/4KE/9B/wn/wCEwn/xVfFW45wRS1XLHsB9qf8AD/T/AIKFE/8AIweE /wDwmU/+Lr9AP+CNn7bXx3/bb+HXjPxN8c77TJ7rQ9at7axOmacLdRG8RY7gCdxyK/Cuv13/AODb Nz/wpr4lHH/MzWf/AKTtUTjHl0QH0J+03/wV7/ZT/ZJ+L998E/inY+KX1nT7eGW4bTNJjmh2yoHX DGVecHnisD4T/wDBcL9jP4z/ABN0L4UeELHxguqeItUhsLBrvRY0jEsjBV3ETEgZ6nBr83/+C5p3 f8FF/FQP/QK03/0lSvI/+CfBC/tw/Csf9T1p3P8A22Wl7OPLcD+kSiiisQCiiigAooooAKKKKACi iigAooooAKKKKACiiigDm/i58TPD3wX+F/iD4ueMEuG0nw1o9xqWoi0iDymGGMyPtUkZbC8DIya+ O/8AiIQ/YRzxpvjj/wAEEX/x+voT/goYx/4YU+MAI/5pzrH/AKSSV/N+AnXHNaU4xkrsD+j/APY8 /bd+Dn7cnhHVvG/wXg1iOz0bUlsbxdYslgfzTGHG0B2yMEd+teyjgYr84f8Ag28JX9nP4gEf9DpH /wCkkdfo8OlRJcrAKKKKQBRRRQAUUUUAfhV4A/4LJ/t9eBGjE/xWt9cijxmHXtJimDD0LKFf8mz7 19H/AAf/AODhy/XybP48fAeJm4E2oeGL0qp9xDNnH08w1+ZtNfd0C5+tf05jODOG8dfnw6T7x938 j+dMLxXn+Da5K7fk9fzP6Dv2YP2/P2Zv2t4Ps/wm8fxvqqR759B1BTBeRjuQjffA/vIWFe15yARX 4H/8EnHmi/4KD/Dfyn2Z1K6DbW+8PsU/FfvegwM1+HcYZBh+Hc1WHoSbi48yvutdj9j4TzzEZ7lr rVopSTtofOX/AAVt/wCUfPxE/wCvC2/9K4a/Bav3p/4K2/8AKPn4if8AXhbf+lcNfgtX6X4Wf8ie t/18/RHwHiP/AMjal/g/VhTZAMZJp1NfpX6cfnR+zn/BBBf+MKLg/wDU5Xv/AKBDX29XxH/wQS/5 MluP+xxvP/RcNfblfyzxR/yUWK/xs/o/hn/kQ4f/AAoKKKK8E90K/Mv/AIOPvjTc6L8N/AnwF0y/ 2/25qNxquqQq2CYrcKkQPsXkYj3j9q/TSvxE/wCDhHxZPr37dFn4eeUmPRPBdlDGvYeZJNMf/Q/0 FaU9ZAfCwAHIFfSH/BMX9hC5/bs+Pv8Awi2t31zZeE9BhS98TXlqv7xo92Ft0Y8B5CCM87QGODgC vm9unSv2q/4N6fhjp3hr9jXUviKloovvE3iy48242/MYbdEijX6BjKf+BVrN2iB9OfC79hP9kH4P 6FH4e8C/s9eFoIVUK01xpMdxNL/tPJIGZz7k11X/AAzf+z5/0Q/wn/4T9v8A/EV2g4GKK57sDi/+ Gb/2fP8Aoh/hP/wn7f8A+Ira8KfD/wAC+Abaa28D+DtM0eO4cPPHpdhHAsjAYBYIBk49a2qKVwPj D9sD/gol/wAE+/2ffjtqXww+Pvwlk1bxLZ2tvJdXn/CKwXW5HjDIPMc5OFIHtXMfBL/gqN/wTK+J fxg8N/D/AOHHwUey17WNYgtNIuj4Lt4vKuHYBG3rymDj5h0r4P8A+C5//KRjxT/2CdN/9JUryH/g nz/yfF8Kf+x50/8A9HLWyj7twP6RAcjIrN8V+LPDXgrRZvEni7xDZ6Xp9qhe4vtQukhhiX1Z3IAH 40njDxXoHgfwrqXjLxTqUdnpuk2Ml3f3UxwsUMalmY/QCv5//wDgop/wUW+Jf7cvxOuv+JrdWPgX Trth4b8Oq5VCg4E8wHDysOec7c4HvnCLmB+rPxO/4Lef8E/PhrqsmiwfE+88RTRPteTw7pMk8Ofa Vtqt9VJHvXI/8RB37C//AD4+MP8AwSr/APF1+IKsMbR2pdy5xmtvZRA/b3/iIN/YX/58PGH/AIJV /wDjlfT3wU/ag+HXx6/Z/h/aS8Epfr4fmsrm6jW6twk3lwFt/wAuTz8hxzzX80pI6A1+63/BMUhf +CQ2n8f8yvrf/oVxUSpqIGI3/BwX+w1HK0TWPjDKsQf+JKv/AMXR/wARB37DH/QP8Yf+CVf/AIuv xIu/+PqT/ro386jzVeziB+3f/EQd+wx/0D/GH/glX/4uur+E3/Bb/wDYH+KviKLwvP8AEHUPDdxc OEgm8SaY1vblj0BlG5U+rYHvX4M5B4pvDGn7OIH9Tmj6vpeu6XBrOjalBeWtzGJLe6tphJHKp6Mr Dgg+oq1mvx7/AOCDX7d/ivwv8UY/2OfiDrc95oGupJJ4VNxMW/s+7UF2hXPRJFDHaMAMOBya/Vr4 2/F7wf8AAf4U678XvHt20Ok6Bp8l3eMuNzBRwi+rMcKB3JrGUXGVgLvxA+JXgD4V+HpvFvxI8aaZ oWl24zNf6reJBEvtuYgZ9upr5U8e/wDBdX/gn94I1STSdP8AHesa+0TENPouhyvC30d9ufw4r8if 22P24fjF+278ULnxr4/1aaDSIZ3GgeHY7gm306Ak7QBgBpMY3ORlj6DAHi4YDjmtI0u4H7fD/g4N /YX/AOfDxh/4JV/+OUf8RB37C4/5cPGH/glX/wCOV+IYYHiin7OIH9K2sftBfCrW/wBk2f8Aac1z TLi68F3Xgk+ILmzuLNXkl09rbzyjRE4LGM4Kk47V8Xr/AMFfv+CSfUfACT/wg7WvWp9v/DisAj/m 29e3/UIFfg+ODwtTTipAf0UfsHftQfs0ftReB9c8U/sx+CW0TTNN1ZbXUIG0WOy8yfyg4bbHw3yk DJp37Zf/AAUO+BX7C9zoNt8Z7fWXbxCk7WP9l2Im/wBUUDbssMffGK+Xf+DbvH/DOXxAz/0Osf8A 6SR15/8A8HKjg6v8KR/076p/6FBU8v7ywHuZ/wCDg79hcf8ALh4w/wDBKv8A8XSf8RB/7C//AD4e MP8AwSr/APF1+IucdaNw9a19lED9wtM/4OA/2Dr+7S3u5PFlnG3DTy6DuVfrtcn9K+nP2f8A9q39 n/8Aah0A+IPgZ8UtN16JFBuLe3l23Fv7SQuA6fiAPSv5oAwbpXY/Ab48/Ev9mv4paX8XPhR4hm0/ VNMmD/u5CI7iPPzQyrnDxsOCp4/EA1LpLoB/TmpyuaK8w/Zq/ah8DftEfAfwv8atMuYrOPxBpSXE lm8uTBKCUljz32yKy59qKxtID+deg9aKD1r+xD+Uz6G/4JPjP/BQX4bH/qJXX/pHPX74p92vwP8A +CTv/KQT4bf9hK6/9I56/fBPu1+B+KH/ACPqf+Bfmz9q8Of+RRP/ABfoj5x/4K2/8o+fiJ/14W3/ AKVw1+C1fvT/AMFbf+UfPxE/68Lb/wBK4a/BavrvCz/kT1v+vn6I+a8R/wDkbUv8H6sKa/SnU1+l fpx+dH7Pf8EE/wDkyW4/7HG8/wDRcNfblfEf/BBP/kyW4/7HG8/9Fw19uV/LPFH/ACUWK/xy/M/p Dhn/AJEOH/woKKKK8E9wK/CP/gvCsi/8FEdc8zv4f00r9PJP/wBev3cr8Uf+DiDwTcaB+2jovjDy WEOveC7Zll28GSKaaJl+oUL/AN9CtKXxAfBLdK/eL/ghXJC//BOnwyIiMrrGprJ/vfaW/pivwdbn tX7Kf8G7Pxj0nxH+zJ4j+DEl6v8AaXhnxI92sG7k2tyilWA9pI5M+mRWlT4QP0QooB4ornAKKKKA PwZ/4Ln/APKRjxT/ANgnTf8A0lSvIf8Agnz/AMnx/Cn/ALHjT/8A0etevf8ABc//AJSMeKf+wTpv /pKleQ/8E+f+T4/hT/2PGn/+j1ro/wCXYH66f8F1vjPffCr9hTUvDuk3HlXXjLVrfSNynB8k5llx 9Vj2n2Y1+FKKB0NfsB/wcjzTj4FfDu3GfLbxdMzf7wtXx/M1+QNFP4QP0n/4It/sWfsuax4Uk/aZ /ag8QeEb65nvGh8L+G/EGp2/l26ocNcywyNhmLZCBhgBc4yQR+mNt4m/Y9s4lt7XxJ8NY441xHHH eaeqqPQAHgV/NQJHUbVkYfQ0vnS95pKHTcne4H9LD+MP2Re3in4b/wDgdYf41qfEeLw8vwD8SP4V SzGnyeFb6S0OnhPJdGt3IZNnykHOcjrX8yLyy9RM9f0UfAE5/wCCZ/hfd1/4Uzb/APprFZyhy21A /nbu/wDj6k/66N/Ov0U/4N+vgX8FvjX4h+JUHxh+E3hzxSlhZ6e1iviDRYLwW5ZptxTzVbaTgZxj OK/Ou7/4+pP+ujfzr9Pv+Dav/kZvir/146Z/6HNWtTSDA/QLUv2AP2H9T0+bT7n9kr4drHMhV2g8 I2kTgEdQ6RhlPuCCPWvwz/4KW/s7+Dv2XP2zvF3wj+Hcbx6FbyQXWl28khdreOaFJPKyeSFZmAzz gDr1r+iw9K/BT/guL/ykX8Wf9g3Tf/SVKyp35gPL/wDgnHdXFn+3j8KJ7aRlb/hNrJdy+jSbSPyN fpP/AMHFXxk1Twn+zn4T+D2k3jRf8JZ4gebUArf6y2tUDbD7GSSM/wDAK/NX/gnb/wAn1/Cf/seL D/0aK+2P+DlKec+LfhTAD+6Gn6o2P9rfB/StJfxEB+YGCDxX6j/8Ec/+CTvwi+Kfwltf2oP2l/DK a5HrE7nwz4duXYW628bFTPMoI8ws4bCn5dqgnOePy3c4Oc1/SB/wTxs9Osf2GPhLBpqKsbeAdMch f77W6M3/AI8WoqXsBci/YJ/YjhjWKP8AZG+G+1Rj5vBdkT+Zjp3/AAwd+xL2/ZG+G3/hFWP/AMar 1iiue7A8P/bp8NaB4Q/4J7/FPwx4W0e103TdO+F+qW2n6fY26xQ20KWTqkaIoCqqgABQAABgV/OV k4yK/pD/AOChf/Jifxg/7JzrH/pJJX83fb862p7AfsV/wbef8m5fED/sdo//AEkjr9DNZ8K+GvEB R/EHh+xvvKz5f2y0SXZn03A4r88/+Dbz/k3L4gf9jtH/AOkkdY//AAW2/wCCm/xB+D2vD9k74AeJ W0vU5rFZvFeuWcmLm3SQZS2iYf6pinzMw+YAqARk1Mo3qWQH31rlx+zb4XufsniV/A+nS/8APO+a zhb8mwao/wDCYfsiHr4p+HH/AIHWH+NfzW6p4g17XLyTUdd1u8vLiRt0k93cvI7n1JYkk1X86TvK 1V7LzA/Yv/gst8A/2Nfib+zBrHxe+Hmr+CbPxr4X8q4tLjw/fWiTX8JlVJIJFibMvytuXIJBXjjI P44Ab+TTmlcjaXbH+0aBjtWkVyqwHtnwh/bk+LXwf+Hmn/Dnw1rs0Njp3neRGshwPMmeU9/VzRXi eB6UVQHWUHrRQetf1wfymfQ//BJ3/lIJ8Nv+wldf+kc9fvgn3a/A/wD4JO/8pBPht/2Err/0jnr9 8E+7X4H4of8AI+p/4F+bP2rw5/5FNT/F+iPnH/grb/yj5+In/Xhbf+lcNfgtX70/8Fbf+UfPxE/6 8Lb/ANK4a/BavrvCz/kT1v8Ar5+iPmvEf/kbUv8AB+rCmv0p1NfpX6cfnR+z3/BBP/kyW4/7HG8/ 9Fw19uV8R/8ABBP/AJMluP8Ascbz/wBFw19uV/LPFH/JRYr/ABy/M/pDhn/kQ4f/AAoKKKK8E9wK /On/AIOJ/gTqHjX9n/wv8ctGsGmk8G6xJb6k0a8x2l0EG8+wljjHtvr9Fq5/4p/DPwp8Yfh5rXwx 8b6et1pOu6fJaX0LAco64yPQjqD2IFVF2kB/L0G5xivY/wBh39svx5+w98crX4u+DrKO/tZIfsuu 6PNIVS+tSclMj7rgjcrc4YDIIJBsft0fsQfFD9h74w3fgTxfYzXOh3FxI/hnxCsJEOoW275TnoJF UgMmSQfUEE+KAbutdGkkB+9Pw2/4Lff8E/vHOgQ6rrPxOuvDt00YM2na1pcqyRNjldyBlbnuDzXS f8Pg/wDgnZ/0cbp//gFcf/G6/nxC85Ap2AeoqfZRA/oM/wCHwf8AwTs/6ON0/wD8Arj/AON16n+z 1+1d8Bv2qdK1DXPgR4+t9etdKuEgv5reF08qRl3BTvUdhX80HToK/Xj/AINsUx8GviVn/oZbP/0Q 1ZzpqMbgfIv/AAXP/wCUjHin/sE6b/6SpXkP/BPn/k+P4U/9jxp//o9a9e/4Lnf8pF/FR/6hWm/+ kqV5D/wT5/5Pj+FP/Y8af/6PWtvsAfqt/wAHBPwt1Dxv+xXZ+N9Otmkbwn4qt7u62j7sMqPAWPtu kT86/EhW3DgV/Tz8cvhF4Z+PPwi8RfB3xgjNpviLSZrG5ZR80e9cCRf9pWww91FfzlftT/sx/E39 kf4x6p8H/idpUkdxaTMbC+8krFqFsSfLniJ6qw+uDkHpUU5aWA+1f+CPv7MH/BOn9sj4e33gH4z/ AA2af4iaHO80+PEl5b/2hZMw2SpGkyr8hO1sDj5T3zX2sv8AwRB/4Jstx/wo28/8KrUf/j9fg74b 8SeIfCWsW/iTwpr15puoWzb7a+sLloZYjjqrqQR+HrXqUP7fn7bNvEsMP7VPjoKi4UHxHOf5tTlG Td0wP2Qb/gh9/wAE2s/8kOvP/Cq1H/4/Xu3ivwR4a+Gf7M2q/DrwbYNa6Tofgi4sdNt2maQxQRWj Ii7mJZsKBySSe9fz9n/goJ+2+Bx+1V45/wDChm/+Kr9jf2A/HvjX4o/8Errfxx8RfFV9rWsXnhjW vtWpajcGWaXb56jcx5OAAKzlGUdwPwWu/wDj6k/66N/Ov0+/4Nq/+Rm+Kv8A146Z/wChzV+YN3/x 9Sf9dG/nX6ff8G1f/IzfFX/rx0z/ANDmrSp8DA/WI9K/BT/guL/ykX8Wf9g3Tf8A0lSv3rPSvwU/ 4Li/8pF/FvH/ADDdN/8ASVKzpfEB5Z/wTt/5Pr+E/wD2PFh/6NFfoV/wcifDu/1H4XfDr4q2tqzQ aXrV1p15Iq52efEHQn0GYWH1Ir89f+Cduf8Ahuv4Ukj/AJniw/8ARor97v2x/wBmrQP2sv2cvEnw M1qWOFtWs86feSKWFrdId0UnHOAwGcc4JqpPlmmB/NXgMK/bT/gh/wDtt/D34sfs1aP+zlrviG3t fGPguBrWLT7iYK17YqxMcsWT8+1TsYDkbQehr8cfjH8HfiJ8A/iRqnwp+KXhybS9a0i4MV3bzLw3 o6N/GjDkMOCDXPWN7eaZdx6hpt5Nb3ELbopoJCjI3qCOQa0kudAf1OrKhH3hS70/vD86/mJT4+fH ONQsfxo8WAKMAf8ACQ3PH/j9L/w0B8dz/wA1p8Wf+FFc/wDxdZexfcD+hL/goU2f2FPjAP8AqnOs f+kklfzft90H2r959Zv9Q1j/AIIeTavq1/NdXVz+zp5tzc3EpeSWRtIBLMx5JJ6k8mvwYYZAA7Cq orcD9iP+Dbz/AJNy+IH/AGO0f/pJHX5r/wDBQjxRq3i/9uP4ra1rEzSTf8J1qNspbtHDO0Ma/gka j8K/Sj/g28/5Ny+IH/Y7R/8ApJHXxV/wWi/Zv1r4E/tv+IvE40+RdF8cTnW9LuvL+RpJAPtCZ6bh LvP0YGlH+IwPPv8AgnD+zl4B/as/a88M/Bb4najc2+i6gLiW8Wzm8uScRQtIIlb+EsV6jnGcc1+v UH/BDz/gm0kSqfgletgY3N4s1Dn3/wBfX4P6Dr+u+FdZtvEfhjWrrTtQs5RJa31jcNFLC46MrKQQ fpXqcf8AwUA/bcijWJP2qvHW1RgZ8RT/APxVVKMpdQP0r/4KCf8ABJf9hT4G/sc+PPiz8M/hJdWO vaHo4n026k8RX0wik81FzseUq3BPBBFfjmhzk5r07xn+2d+1j8RPDN54L8dftEeLtW0nUIvLvtOv 9alkhnTIO1lY4IyBXmYGKqMXHcAoooqgOsoPWig9a/rg/lM+h/8Agk7/AMpBPht/2Err/wBI56/f BPu1+B//AASd/wCUgnw2/wCwldf+kc9fvgn3a/A/FD/kfU/8C/Nn7V4c/wDIpqf4v0R84/8ABW3/ AJR8/ET/AK8Lb/0rhr8Fq/en/grb/wAo+fiJ/wBeFt/6Vw1+C1fXeFn/ACJ63/Xz9EfNeI//ACNq X+D9WFNfpTqa/Sv04/Oj9nv+CCf/ACZLcf8AY43n/ouGvtyviP8A4IJ/8mS3H/Y43n/ouGvtyv5Z 4o/5KLFf45fmf0hwz/yIcP8A4UFFFFeCe4FFFFAHJfGT4HfCb4/eDJvh98YvAWn+INJuOWtNQgDb Gx99G+8jjsykEetfBHxc/wCDcj4KeItUn1L4O/GjWvDsUjFo9N1K1S9ji/2Q+VbA9yx9zX6SUVSl KOwH5Ln/AINrvHIb5P2oNK29t2gSf/HKB/wbYeOif+Tn9J/8J+T/AOLr9aKKftJdwPyX/wCIa/x5 nj9qLSf/AAn5P/i6+xv+CY//AAT513/gn74K8UeE9Y+Itr4ibxBqkN3HNa2LQCEJGU2kMxznOa+o qKTlKWjA/Pv9vP8A4IreK/2yv2lNW+PWm/HLT9Dh1KztYV0640l5mTyoljzuDAHOM9K439nX/ggJ 4z+Bnx48JfGO7/aH03UI/DOvW2ovZR6JIjTiJw2wMXOCcehr9NqKOeVrABG4YNeZ/tMfsjfAP9rf wh/whnxw8AW+rRRq32G+X93dWTH+OGUfMh9uQe4NemUVPoB+X/xD/wCDbXwhd38lx8LP2jb+yt2b MdtrWkLMyD03xsuf++a5cf8ABtf46/6Of0n/AMEEv/xdfrRRV+0kB+S7f8G13jo/83P6T/4IJf8A 4uvvj9lv9kvU/wBnb9je3/ZbvfF8OpXFvpV9Z/2tDalEY3BkIbYSTxv9e1e4UUnKT3A/JeT/AINs vHU0zy/8NPaUu5s4/sGXj/yJX1V/wTE/4Jk+IP8Agn1qvi3UNY+Kdp4jHiWC1jjW109oPJ8ppDk7 mOc7/wBK+vqKHOTVmAjZ28V+fX7eH/BFPxZ+2P8AtKav8edN+Oen6JDqlraxLp9xpMkrJ5UQTO4O Ac4z0r9BqKUZOOwH5l/s3/8ABAjxl8B/j54R+Mt3+0NpuoReGdet9QksY9FkRp1jcNsDFzgnHpX6 aMoYYNFFOUnLcDxn9rP9g79m/wDbN8PLpPxm8CxzX8Ee3T/EFi3k31n7LIPvL/sOGXvjIBr4Z8bf 8G2Glzag8vw6/aYuILZmzHDrGhiR0HoWjcZ/75FfqZRRGUogfkuf+Da3x12/ah0n/wAEEv8A8co/ 4hr/AB3/ANHQaR/4IJf/AIuv1oop+0l3A8Vk/ZW1N/2B/wDhjP8A4S2H7V/wrMeFf7c+zny94s/s 3n7M5xn5tuc18Ar/AMG2HjvqP2oNJ/8ABDL/APF1+tFFJSlHYD5l/wCCZn7A2tfsBfDbxF4B1j4h W/iJ9c1xdQS5tbFoViAhWPYQzHJ+XOa9K/al/ZJ+C/7Yfw4m+Gnxp8LLeW+7zLC/hOy6sJsf6yKT qp9RyGHBBr1Cipu73A/Kvxf/AMG2G/VJJPAP7TRjs2b93Fq+h7pFHoWjcA/XArLH/Btf46xz+1Bp P/hPyf8AxdfrRRV+0kB+S/8AxDY+Ov8Ao57Sf/Cfk/8Ai6P+IbHx1/0c9pP/AIT8n/xdfrRRR7SX cD8l/wDiGx8df9HPaT/4T8n/AMXRX60UUe0l3A/mHoPWig9a/sE/lM+h/wDgk7/ykE+G3/YSuv8A 0jnr98E+7X4H/wDBJ3/lIJ8Nv+wldf8ApHPX74J92vwPxQ/5H1P/AAL82ftXhz/yKan+L9EfOP8A wVt/5R8/ET/rwtv/AErhr8Fq/en/AIK2/wDKPn4if9eFt/6Vw1+C1fXeFn/Inrf9fP0R814j/wDI 2pf4P1YU1+lOpr9K/Tj86P2e/wCCCf8AyZLcf9jjef8AouGvtyviP/ggn/yZLcf9jjef+i4a+3K/ lnij/kosV/jl+Z/SHDP/ACIcP/hQUUUV4J7gUE8UUEZGKAMXxR8QvA3gcQv428a6To63G4WzapqE dv5pXG7bvYbsZGcdM+9ZP/DQfwH/AOi2+Ef/AAo7b/4uvzn/AODlkY8P/CEf9Pmtf+gWdflH+NaR p8yuB/Tp/wANB/Af/otvhH/wo7b/AOLo/wCGg/gP/wBFt8I/+FHbf/F1/MXj3ox71Xsl3A/p4svj t8FNRuVtNP8AjD4WnmY4WOHxBbMzewAfJrqIbiO4jWeCVXjYZV1YEMPXNfyvqXV9ytjHQ169+zf+ 3l+1X+ynqcN18JPi3qkGnxS+ZJ4fvrprjT5uckNA52jPdl2t70ez7MD+kagnHWvmf/gnD/wUe+Hf 7efgGaS3s10bxho0aDX9AeTOM9J4T1aInjnlTwexP0wCGGaxa5dGAA56UEgdTX4p/tTf8Fjv28fh h+0p46+HXg/4k6fb6Vofiq+stPhfQoHZIY5mVAWK5JwOpr1L/glP/wAFP/2wv2pP2ytH+EPxi8dW WoaHeaTfzz20OjwwsXigZ0O5QDwRVezkB+rQOelFIuQvIpakAooooAKKKKAAkDrRXg//AAUn+NXx C/Z2/Y08YfGD4W6nHZ65pMNu1lcTW6yqpe4jQ/K3B+VjX5Hj/guR/wAFFAP+Sp6Z0/6F23/+Jqow lLYD96KbK4jjLlgoXkk9q+UP+CPH7UHxk/a6/ZY1L4ofG7XbfUdYt/Gl3p8U9vZpAogjtrV1XamB kNK/Pv7V9T64M6Lef9esn/oJpWs7AcuP2hPgTnDfGzwkP97xFbf/ABdanhj4nfDzxvdSWfgrx9ou sTQoHmh0zVIrhkXONxCMSBnua/l9vAftcxz/AMtW/nX6Of8ABt2D/wAL8+IH/Yqw/wDpQKuVO0bg fsJnPSiiiswCiiigAooooAKyfFfjnwd4Gtkv/Gni3TdIt5ZPLhm1O+jt0d8Z2guRk4BOOta1fnP/ AMHIQA/Zl8B4/wCh7/8AbK4qormdgPudv2hfgOoz/wALs8I/+FHbf/F10+jazpev6dDq+i6nb3lr cJvt7q0mWSOVf7yspII9wa/ljIOOtf0Yf8EyBj9gP4Uc/wDMn239aqUOUD3aiiiswP5h6D1ooPWv 7EP5TPof/gk7/wApBPht/wBhK6/9I56/fBPu1+B//BJ3/lIJ8Nv+wldf+kc9fvgn3a/A/FD/AJH1 P/AvzZ+1eHP/ACKan+L9EfOP/BW3/lHz8RP+vC2/9K4a/Bav3p/4K2/8o+fiJ/14W3/pXDX4LV9d 4Wf8iet/18/RHzXiP/yNqX+D9WFNfpTqa/Sv04/Oj9nv+CCf/Jktx/2ON5/6Lhr7cr4j/wCCCf8A yZLcf9jjef8AouGvtyv5Z4o/5KLFf45fmf0hwz/yIcP/AIUFFFFeCe4FFFFAH5cf8HLf/IB+EP8A 1+61/wCgWdflFX6u/wDBy3/yAfhD/wBfutf+gWdflF1rop/w0B9Hfsw/8EsP2tP2uvhinxd+Dmj6 HNo0l9NaK+oa0sEnmRkBvlIPHIr0R/8Aggf/AMFCkGf+Ec8K/wDhTJ/8TX3v/wAEBVX/AIYBteP+ Zs1I/wDjyV9tkA9RUyqS5gP5w/2lv+Ce37Xf7JdqNY+M3wivLXSWcKuuafIl3Z5PADSxEiMk9A+0 ntXi5B6E1/UZ458E+FviN4U1DwL420S31HSdWtHtr+xuow0c0bjBBB/yK/nH/bZ/Z4uv2Wf2pPGH wQkD/ZtI1Mtpkjnl7OUCWBj6/u3X8RVU582gEX7Gn7SviP8AZG/aM8OfG3QLibydPvFj1i1iYj7V YuQJoj65Xp/tBT2r+kXwt4h0nxb4csfFOg3S3FjqVnHdWc6HKyRyKGVh9QRX8tL9M1/Qh/wSM+Jz /FT/AIJ8fDvVbq58y60zTZNJuiWzhraZ4kz7+WIz+NTVXUD8/f2nv+CJ37c/xW/aN8b/ABK8I6D4 bfS9e8UX1/p7XHiBEcwyzM6ll2/KcEcV6d/wS3/4JRftd/smftgaP8Zvi/o2gw6HZ6XfW80lhraz yb5YGRMIF5GTz6V4/wDtTf8ABZH9vD4X/tJeOvh14P8AiNpsGl6H4qvrHT4ZNBgdkhjmZUBYrliA BzXqH/BKn/gqJ+2F+1J+2Ro3wh+MfjixvtDvNKv55re30eGFi8UBdDuUZ6iiXPygfq0DkZoppbbH 1r4q/bx/4LTfBX9kTXrz4XeA9F/4TbxnaLturS3uxFZ2EmPuzSgNlh3jUZHQlTWSTewH2vRX4Y+L f+C+v7fviS/kudG1XwvocLNlLXT9BDBB6bpndj+dY/8Aw/L/AOCimP8AkqOlf+E7bf8AxNX7KQH7 zUV+DI/4Ll/8FFf+ioaX/wCE7bf/ABNdJ8HP+C1X/BQDxd8YPCnhHXfiVpsljqviWxs7yNfD8ALR S3CI4BC8fKx5o9nID9UP+CjHwL8f/tMfsfeLvgt8Lra1l1zWYbdbGO8uRDGdlxG5y5HHyqa/J8f8 EDv+ChXQ+HPCv/hTJ/8AE1+rX/BSP42/EL9nT9jbxh8YfhZqcdnrmkQ27WNzNbrKqF7iNDlW4Pys a/JD/h+X/wAFFQcf8LR0r/wnbf8A+Jp0+e2gH6f/APBIn9lH4v8A7Gv7MGo/Cj412Wnw6tc+MrrU o006+FwnkSW9rGvzADndE/Hpj1r6d1tx/Yt4R/z6yf8AoJr5Y/4I+ftS/GP9rn9lXUvin8b9cg1D WLbxnd6fHcW9kkCiCO2tXVdqDBO6V+ff2r84vir/AMFq/wBv/RPiD4k8Kab8SdMWzs9ZvLSCNtBt yREszoozt6hQKSjKUgPi67/4+pP+ujfzr9Hf+DbsgfHv4gEn/mVIf/SgV+bxdpHaRjyzZNenfsu/ tjfHf9jnxJqXir4FeIrbT7zVrRbW8kubFJw0YbcBhwcc962lG8bAf0rfSgHNfgyv/Bcv/gokXVW+ KGl7SwB/4p23/wDia/Zn9pX4j+Kvhx+yn4u+KXhS8SHWNJ8IXF/ZTyQhlWZYd4O08EZ7GudxlED0 2ivwZ/4fmf8ABRX/AKKhpf8A4Ttt/wDE0f8AD8z/AIKK/wDRUNL/APCdtv8ACq9nID95qK/Bj/h+ b/wUUBBPxP0rr/0Ltt/hXqv7O/8AwcQ/tC+GPEdvZftG+BtF8TaHI224utHtTZ30P+2vzGOTHdSq k9mFHs5AfslX5z/8HIf/ACbN4D/7Hr/2yuK+5vgL8dvht+0h8L9L+L/wo8RR6lourQ74ZFOGicHD RSL1R1PBU8j8q+Gf+DkP/k2bwH/2PX/tlcVMfiA/HM9K/ov/AOCZP/Jgfwo/7E+2/rX86B6V/Rf/ AMEyf+TA/hR/2J9t/Wtq3woD3WiiiucD+Yeg9aKD1r+xD+Uz6H/4JO/8pBPht/2Err/0jnr98E+7 X4H/APBJ3/lIJ8Nv+wldf+kc9fvgn3a/A/FD/kfU/wDAvzZ+1eHP/Ipqf4v0R84/8Fbf+UfPxE/6 8Lb/ANK4a/Bav3p/4K2/8o+fiJ/14W3/AKVw1+C1fXeFn/Inrf8AXz9EfNeI/wDyNqX+D9WFNfpT qa/Sv04/Oj9nv+CCf/Jktx/2ON5/6Lhr7cr4j/4IJ/8AJktx/wBjjef+i4a+3K/lnij/AJKLFf45 fmf0hwz/AMiHD/4UFFFFeCe4FFFFAH5cf8HLf/IB+EP/AF+61/6BZ1+UVfq7/wAHLf8AyAfhD/1+ 61/6BZ1+UVdFP+GgP3K/4IC/8mAWv/Y2aj/6ElfbVfEv/BAX/kwC1/7GzUf/AEJK+2qxl8Q5bhX4 n/8ABw74btdL/bV0fX7eIK2qeB7Vp8D7zRzzpuPvt2j6KK/bCvxW/wCDiTW7a+/bM0DRYn3SWHgW 3Mw/ul7icgfkM/jVU/iEfAg+90r9sf8Ag3o1We9/Yk1LS3fK2fja8CfN03RQtj86/E4HBzX7W/8A BvDps9n+xRq2osPluvG92U99sMIrSp8IH5Tftz/8nmfFD/setU/9KXr3L/gg/wD8pGfDv/YA1X/0 lavDf25/+TzPih/2PWqf+lL17n/wQe/5SMeHc/8AQA1X/wBJWofw/ID9O/8AgrX+1/e/sgfsl6l4 h8K3Bj8TeJLhdI8OyK2DBJIrGSf/AIBGGI/2yn1H8/8Ad3d5e3UmoajcyTzTSF5ppnLO7E5LEnkk nqf/ANdfp1/wcm+OLiXxz8M/hok7eTb6Te6lJH2LSSLGCfoIz+Z9a/MNs4xRTVo3A7b4Gfs5/HH9 pTxK3hD4H/DXU/EV5Goa4FjDmOBT0aSQ4RB/vEfoa93X/gid/wAFIXXePgNH+PiSw/8Aj1frb/wS 4/Zv8Ofs4/sZ+D9D0/S4YtT1rSodX126WMeZcXNwgk+ZupCqVUA9AtfROAEwKmVWXQD+Zb9ob9m3 4xfsr+PF+Gnxw8LLo+tNZx3a2q3kU/7lyQrbomZex4zmq/7ORz+0R4DP/U56X/6VxV9Z/wDBwQoH 7dcJ/wCpNsf/AEOWvkz9nHj9ofwHj/oc9L/9K4q0Um4gfuh/wWZ/5RyfEP8A697T/wBK4q/n97D6 V/QF/wAFmf8AlHJ8Q/8Ar3tP/SuKv5/e34VNH4QP2y/4N4QW/YT1pR3+JGof+kdjXyD8UP8AghF+ 3Pr/AI78ReL7AeEPsd9q95eQ79fIby3ldxkeXwcH86+v/wDg3d/5MX1n/spOof8ApHY19y62oGjX XH/LvJ/6Caz5nGbsB/LOyNG7I3VWxXr37IP7EXxr/bd8U6t4Q+Co0n7Xo1it3ef2tfGBfLZ9g2na 2TmvJbvi6kH/AE0b+dfo5/wbdru+PfxBz/0KkH/pQK2lK0bgefp/wb9/t87ldk8G4DA/8jEf/jVf r5+0Z8MfE3xP/Ze8WfCLwz9n/tbWfCc+nWfnzbY/OeHYNzYOBnvivSO2KjuJ4rZDNMyqirl3ZgAB 65rnlKUgPw/H/Bv1+31j7vgz/wAKI/8Axqj/AIh+v2+v7ng3/wAKI/8AxqvvD9oz/gur+xv8CfEl 54M8OPqnjbUrCZorlvD0aC0SRTgr9odgGweMoGHvXkn/ABEofCYk7P2YPEJHY/2/B/8AG605qnQD 5K+JX/BDX9vr4b+E7zxg/hHRNaisYWmns9D1kTXBQDJKoyqXOB0XJPYGvj+eOW3ke2niZJEYrIjD BUjqD6V+uT/8HJfwmY/N+y/4g5/6j0H/AMar8t/jv488O/FH41eLPiR4T8OvpOm694gu9Qs9LkkD G1jmlaQRZAAON2OAOlVGU+qA+7f+DeP9o/WvC/xy139mfU7xm0nxJpkmpafEzcQ3kG3dtHbfETnH XyxXuv8Awcg8fsy+Ax/1Pf8A7Z3FfD//AARSmlh/4KOeBTG5G6PUFb6fY5a+4P8Ag5CGP2ZfAY/6 nr/2yuKmStUuB+OZ6V/Rf/wTJ/5MD+FH/Yn239a/nQPSv6L/APgmT/yYH8KP+xPtv61Vb4UB7rRR RXOB/MPQetFB61/Yh/KZ9D/8Enf+Ugnw2/7CV1/6Rz1++Cfdr8D/APgk7/ykE+G3/YSuv/SOev3w T7tfgfih/wAj6n/gX5s/avDn/kU1P8X6I+cf+Ctv/KPn4if9eFt/6Vw1+C1fvT/wVt/5R8/ET/rw tv8A0rhr8Fs19d4Wf8iet/18/RHzXiP/AMjal/g/VhTX6U6mueOlfpx+dH7Pf8EE/wDkyW4/7HG8 /wDRcNfblfEP/BBKQH9iS4YD/mcrz/0XDX26HBGa/lnij/kosV/jZ/R/DP8AyIcP/hQtFAORnFFe Ce6FFFFAH5cf8HLf/IB+EP8A1+61/wCgWdflFX6u/wDBy3/yAfhD/wBfutf+gWdflFXRT+BAfuV/ wQEI/wCGALXn/mbNR/8AQkr7aJA6mvwU/Yy/4LBfGr9in4MR/BTwL8NvDeqWMepT3outUafzd0pG V+RgMDHpXrDf8HHf7TrDA+CngvP+9df/ABys3TlzAfsPrWr6foOm3Gt6tfR29paQNNc3E0gVIo1B LMxPAAAzX85//BQj9oyP9qn9r3xl8Y7CfzNNur8Wuit2NnAoiiI/3lTd9W967f8Aa1/4K4ftdftd +F5vAHinXrHw/wCHbni80bw7btCt0v8AdldmZ3X/AGchfavmDOBzWlOPLqwA9M5r+gL/AII3fDNv hp/wTz8BW9zbGO41q3uNXuAVxnz53aM/9+hFX4b/ALM3wG8UftN/HXw38EfCSN9p13Uo4Zp1XP2a DOZZj7IgZvw96/pU8BeD9G+HvgjR/Anh23EVho2mw2VnGP4Y4kCKPyFTWlsgP5xf25/+TzPih/2P Wqf+lL17p/wQe/5SL+Hf+wDqv/pK1eF/tz/8nmfFD/setU/9KXr3T/gg9/ykX8O/9gHVf/SVqp/D 8gPVf+DkTS7mH9of4f6yUPkzeD5YlbtuW6ckfky1+cQbYyvj7rZr9jP+Din4G6p4x/Z+8LfHDRdO eb/hEdae21Ro1yYrW6VQHb/ZEqRrn1kFfjkWyNmKKesUB/TL+yp4q0nxr+zR4B8U6JcpJa3vg/Tn jZOn/HsgI/AgivQO1fi//wAEvv8Agsxpn7Kfw+g/Z/8A2hfDmoal4XspnbQ9a0sCS4sFY7jC8TEb 4wckFTlc4wRjH2gP+C9n/BPLZz4s8TdP+hZl/wAaxlGVwPhH/g4LGP264QP+hNsf/Qpa+S/2cf8A k4fwH/2Oel/+lcVe2/8ABWn9qn4R/tf/ALUcfxV+C+oXlxpC+HbazMl9ZNA/mozlhtPb5hzXiX7O P/Jw/gP/ALHPS/8A0rirePwgfuh/wWZ/5RyfEP8A697T/wBK4q/n97fhX9AX/BZn/lHJ8Q/+ve0/ 9K4q/n97fhSpfCwP2z/4N3f+TF9Z/wCyk6h/6R2Nfc+t4/sa7z/z7Sf+gmvhj/g3d/5MX1n/ALKT qH/pHY191anA91p1xbRj5pIWVfqQRWMvjA/lmu/+PqT/AK6N/Ov0c/4Nuz/xf34gf9ipB/6Uivzl 1CCa21C4t542V45nV1bqGDEEV9Sf8Eiv23vAX7Ev7RV94h+Kltdf8I74i0n+z769s4vMezYSCRJS nVlyCDjkZyAcYreS90D9+q+I/wDgu5+094n/AGf/ANky18HeBtWex1Xx5qjaY11C22SOzRN8+09i 2UTPo57mu+g/4LHf8E6Z0Vl/aJs1LAfK2m3QP0/1dfK//BypbXeoeDPg94gs9zWK32sRySfw75I7 Jk/NY3P4VhFe8rgflB1+duT1zXd+Af2Xf2l/iroS+KPhn+z5428QaazFE1HRfC91cwOwOCBJHGVJ B6gGuFI445r9wv2Uf+Cv37AGj/s8+D/DOv8AxNXwvfaT4etLG80e60qYeRLFEqNtMaFSpIJBB5z2 NdEpSjsB+SY/YS/baH3v2RPiX/4Q99/8arzPxH4a8Q+DtfvPCvi3QbzS9U0+4aC/07ULdoZreRT8 yOjAMrA9QRkV+/w/4LE/8E6f+jjLL/wW3X/xuvxG/ba8feFPil+1z8RfiL4F1Vb7R9a8W3l3pl4q MomheQlXAYAjI9RUxlKW6A9b/wCCK3/KRrwJ/u3/AP6Ry19xf8HIf/Js3gP/ALHr/wBsrivh3/gi t/yka8Cf7t//AOkctfcX/ByH/wAmzeA/+x6/9srilL+IgPxzPSv6L/8AgmT/AMmB/Cj/ALE+2/rX 86B6V/Rf/wAEyf8AkwP4Uf8AYn239adX4UB7rRRRXOB/MPQetFI2euK/sQ/lM+h/+CTpP/DwX4bD /qJXX/pFPX74p92vwO/4JPnP/BQj4bH/AKiV1/6RT1+925duM1+B+KH/ACPqf+Bfmz9q8Of+RTU/ xP8AJHzn/wAFbv8AlHx8Rf8AsH23/pXDX4Lmv6LP2tfgCv7UH7PniL4Gv4kbSRr1vHF/aCw+b5Oy VJM7cjP3Mde9fntrf/Buv42SMnw3+0lpszfwi80WSMf+Ou1ehwBxLk+TZfUo4upyyc7rRvSyXRHD xxkObZpmFOrhafMlGz1Xdvqz83Ac9Ka+AwOK+4vGf/BAv9sTQI2m8K+J/COtqq52R6hLBI30Dx4/ UV4z43/4Jd/t5+AjI+rfs461dRx5zNpLRXikDv8AuXY/oDX6dh+KOH8Tb2eJh83b8z87r8O55h0/ aUJL0Tf5XPpb/gkL/wAFL/gH+zb8NZf2e/jU17pH2rXJr218QiHzLQeYqLskC/MmNv3sEc84r9TP Anj/AMF/Enw/B4q8A+KbHWNNuF3Q3un3Cyxv+Kmv5uvF/wAM/iF8P7trDxz4E1jR7hfvRapp0kLL +DgV0/wD/at/aA/Zm11dc+CfxMv9HbzQ89irCS1uMdpIXBRh26Z9CK+M4g4BwucVZ4zAVUpyd2m7 xb8n0v8AcfW5HxvisppxwuMpXhHRNaSS9Ha9j+jlN235qWvz2/ZC/wCC7fwv+I8tv4P/AGntGj8I 6m6hRr1lvfTpX/2wcvDn33KO5Ffevhrxb4b8Z6Hb+JfCevWmpafeRiS1vrGdZIpVI+8rKSCK/IM0 ybMsnrezxdNx7Po/R7H6nlucZdm1HnwtRS8uq9UalFRhwxzTh9zivLPU3Py6/wCDlv8A5APwh/6/ da/9As6/KKv6bPi9+zh8D/2gksIfjb8LtI8TJpbSHT11a1EotzJt3lc9N21c/wC6K4n/AIdtfsH/ APRq3g3/AMFK1pCooxsB/OTRjNf0bf8ADtr9g/8A6NW8G/8AgpWj/h21+wf/ANGreDf/AAUrV+1i B/OQSR0rsPgx+z78av2h/E0fg/4M/DnVPEF87hWWxtiY4s93kOFQepYgV/QbYf8ABO39hzTLgXFl +yv4LVlOVZtFjb9GBr1Dwf4C8F/D7TF0TwN4R03R7NPu2ul2KQRj/gKACk6vYD5T/wCCV3/BMDQv 2G/Cs/jfx9NZ6t8QdatVS+vIFDR6ZCeTbQsevON78bioxwBn7EA2jAowPSg7u1Yybk7gfzX/ALc/ /J5nxQ/7HrVP/Sl69z/4IP8A/KRfw7/2AdV/9JWr9evEf7AH7GHjLxDeeK/Ff7NXhO+1LUbp7i+v rjS1aSeVzuZ2PcknJNafw0/Yv/ZY+DPi6Hx38KPgR4d0HWIInjh1LTdPWOVEcbWUEdiODWjnpYDs viT8OPCPxY8Bat8NvHWlJfaTrVjJa39tIOHjcYP0I6g9iAa/CL9vn/glN8ev2PfF+oa14c8OX/iX wE0hk03xFY25la3jJOI7lV5jdem7G1uoPUD9+QcJ8w+tNnht7uBraeFZEkUq0brkMPQj0qYy5QP5 XtpP3qXHGK/pO8X/ALD/AOyH491CTVfF/wCzb4NvbqVt0lxJoMIdz6kqASaxj/wTe/YOC/8AJqvg 3p/0CVrT20ewH85QGDkV2X7OP/Jw/gP/ALHPS/8A0rir3T/gsP4V+CHw9/bX1T4ffATwzpOkaXo2 j2kF9Y6NGqwpdlS8gOP4gGUH0PHY14/+yD4bvPGX7WXw08M6fEWlvPHekphRnC/a4izfgoJ/CtdH G4H7ef8ABZj/AJRzfEIf9O9p/wClcNfz+544r+ob4g/DbwR8WPCd14D+JHhe01rR77aLzTb+LfDM FYMNy98EA15f/wAO2/2D+/7K3g3/AMFK1hGfLGwHz5/wbu/8mL6z/wBlJ1D/ANI7Gvu+TO3Irl/h R8Fvhb8CPDcng74PeAtN8O6TLeNdyWGl24jjaZlVWkIH8RCKM+iiuqqJO7uB/P3/AMFW/wBi7x3+ yt+074i1weGp18H+KNWm1Hw7qkUX7j98xke3yOFdGLDacfLgjivl4LlQ/rX9SHjDwV4S8faLJ4b8 b+F9P1jT5hiax1KzSaJ/qrgivKrz/gnV+w3qM7XN5+yx4LLN126LGv6KAK1jU01A/nHgUecg/wBo fzr+gz/gol+xmf21/wBkA/DjRZo4fEGmww6n4Zml4X7VHFjyieyyKWTPYkHtXTn/AIJufsIqMp+y t4Nz/wBgla9rtreO3iWGONVWNQsaj+EAYxUyqc1gP5efiL8NvH3wj8YXnw/+JnhO+0XWLCVo7qwv 7cxuhB64PUehHBHIzWKBjmv6c/id+z/8E/jRGsPxZ+E/h/xEI/8AVtq2lxTMn0Zhkfga4L/h25+w iTk/sreDfw0lar2yA/nJIB4IpAgByBX9G/8Aw7c/YQ/6NX8Hf+ClaP8Ah23+wf8A9GreDf8AwUrR 7RAfjn/wRW/5SNeBP92//wDSOWvuL/g5D/5Nm8B/9j1/7ZXFfYfw+/Yj/ZO+Efi218e/DL4AeGtF 1iz3C11LT9PWOaLcpVsMOmVJH0NdH8XvgL8IPj5o1r4e+M3w50vxJZWN19ptbXVbYSJFNtK7wD0O 0sPxqXP3rgfzGnpX9F//AATJ/wCTA/hR/wBifbf1qY/8E2v2EO37K3g3/wAFK16z4J8GeGfh54Ws fBPgrQrfS9J023EGn6faR7Y4Ix0VR2AolPmA1qKKKzA/mJEUxOFib/vk1INL1VhldNuCPaFv8K/p mtdI0mzXZaabbwr/AHY4Qv8AKrH2W2xlYF/75r9el4r1ebTCr/wL/wC1PyuPhnHriP8AyX/gn82f wm+I3xL+BHxG0v4tfDuWSx1vRZml0+7ksxII2ZGQ/K4IOVZhyO9fV3g//gvH+3B4cVU8Qab4S15V +81/okkTH8YJEAP4Gv2cNpbsPmgX/vmq114e0O+XF/o9tN/12t1b+Yrycdx1lubTUsZl8ZtaX5ne 3a9j0MHwXmeWrlwuNcV2tpf7z8vPC3/BxN4xhCp45/Zs0+b+/JpeuSR5+iyRt/6FXpnhH/g4S/Z0 1Jo4/F3wh8VaWzH55LcwXCL7/fVv0r7c1X4JfBzXwU134UeG7xW5YXWhwSZ/76Q1zOr/ALF37JGt Bl1D9mnwO27q0fhm2Qn8VQV49TNOEKz1wMo+cZv9dD1qeW8VUdsZGX+KH6o8p8Df8Fkf2BfGyp53 xffR5G4EesaXPFz9QrL+teteDf2vf2W/iHtHg/4+eE75pMBY01yFWOe21mBz7YzXH63/AMEyP2Ed eBF3+zV4djZurWtu0R/8dYVxPiL/AIItfsB68jCH4W3mms3/AC00/Wp1YfTczfyrikuFK3wOrD1U ZL80zsi+KKa95U5+jlH/ADPpjV9A8F+ONJ+xa9pGm6tYzDPl3MCTxsPXDAivDPit/wAErP2GPi6k smrfA6w0y5lB/wBM0CRrOQH1xGdufqprzqw/4IyfD7wA7XHwC/ab+J3gl2bcsWma6DCW/wBpNq7v xNadl+yj/wAFLvhq+fh/+3rYeI4V5W18Z+Fw272LozN+tOj7HCyUsFj+V+anD8romt7TER5cZguZ eTjL87M+f/jR/wAG8tuxmvvgB8cmUdYdO8U2YbHoPOhA/wDRdeJeFPCf/BUz/glz4gbVtJ8Kapce G7ebzLy3t86hpNymeSyoSYsj+LCEetfoXY/F7/gpX8NIVT4lfsw+FfHVvH/rL/wL4m+yzEepguwN xPopFbnhn/goP8M5Ln+yPjN8N/Gnw7u84f8A4Svw7KtqT3xcxb4se7Fa+go8TZ/7F0cXGGKpdU2m /vXvJ+qPDqcP5LKsquFlPD1Fta6X46W+ZxP7FX/BXf4AftSCHwh4vmj8F+LpCqf2VqlyPIu3/wCm EpwDz/C2G9M9a+tkl3rwd1fMXxg/4J//ALCH7bGkT+M9J0bShf3mWXxN4Nuo45PMP8beXlHPruBJ 71xfgbQ/27/2AIl07Wbu4+Nnwzt8JG1r8uvaTEOhCOT56hcfKGJ4/hFfPYzCZTjpOeBbpz6059/7 sv0dj3sJi81waUcalUh0qQ/9uj09UfahcdqcDkZrjfgz8c/hn8ePDCeLfhp4ljvrf7txCymO4tJO 8c0TAPE47qwBrsgc9K+eqU505uM1Zrue/TqQqRUou6YUUUVJYUUUUAFFFFABRRRQBleOrie08E6x dW0rRyR6XcPHIpwVYRsQQfUGv5yLv9uL9saO8mjj/ab8bKqzMAP+Ein6Z/3q/pA8R6U2u+Hr7Q1m 8s3lnLB5m3O3ehXOO+M1+V8v/BtbrNxO8x/aytvmcnH/AAiTcf8AkxWlNxW4HwX/AMNy/tkf9HO+ Nv8Awop//iqbP+29+2FcwtBP+0z42ZXGGX/hIp+f/Hq+9f8AiGl1j/o7G2/8JJv/AJJoP/BtNrAG R+1lbf8AhIt/8k1pzUwPy8v7+/1O+m1PUryW5ubiRpLi4mkLPK5OSzMeSSe5r76/4IJfsf8AiL4n ftB/8NQeINLaPw34LEi6dcSr8t3qLoVVU9fLQlmPYslfQnwT/wCDc/4J+Etfh1v42/GbVvFkEMm9 dL0/T10+GT2dt8jkf7pWv0E+HPw18C/CfwbY/D74ceF7PR9F0uHyrHT7GERxxrnPQdSSSSepJJOS amVRWsgN5elFFFYgDHAzimeZtHzClY4Jr5g/4Ks/tg+If2Qv2am1/wAESCPxF4h1BdM0e6ZQwtWK M7zYPUqiHH+0RXXgcFXzHGQw1H4ptJHLjsZRwGFniKvwxV2fTn2uMPsLLn03U9JQ4yPyr4C/4J0/ sP8Ah7xz8FrX9rz9pbx1r2ueMvFdjJe2ms3WvTxyaVaEkqUdXBDcbic4AOAMZz7P/wAE5P2rbz4+ fAzXNY8aa+t03g/xJeaTJ4juCI01C1iO6K5YnADGMjd7jPeu3HZT9WdX2M+dU2oydrau607q6t+h w4PNvrEabqw5PaJuKbu7LXXtoz6Vkk2rkCuT+Hfx0+FPxY1XXND+HXjmw1e88N6i1jr1taSZeyuA SCjggY5VhkcEqeeDXm3x2/bo+Bngb9n7xn8VfBPxO0XWrjw7pbmKHT75JM3LkxwrweQZMDIyODX5 2/sn/Cn9rmH4deHovgz8UdH8I+KPi5rb+IdT1fUtWWHUL21gm8uOOKM581f3txOQeHBxnsezLeH5 YzBVK9afs7NKPNom7NyvpeyWpy5hn0cLjKdGjH2l027au2yt0u2frR49+Knw/wDhZoqeIfiR4w0/ Q7GS6S3jvNSulhjaVz8qBm4yewrchvYbiFZ4ZFZHUGORTwwPQ1+T/wC234a/as+M37S3gn/gnlrf 7R0fji4uLmDUtSvo/C8dkNPbDkyS7JD5gSHc+Mr1UdTX2zpXhPxdob6X8JPix+29Zx3UKQxw6P4d 0210q6njVlEaZeSWQAjauVIJzweazx2SU8HhaNT2qcppysk/hvaL2vrrvYrB51UxWKqw9k1GDUbt rWXVb20+Z9FrJkZYUGT5ScV4Dc/t0eGPDX7X2s/steOPDf8AYlnpHhdNXTxdqmopFb3AIQsoVgOB uxuDHlSMV03xj+N/hTWP2Zdf+I/ws+NHhqxju9Lmt9D8VXl8psYbxgUjLOuekhA7kHseleXLL8VG UFKLSlaztp7221/8z0o5hhZQk4yTcb3XXTc9XSXf0FO3e1eHfsq3njv4D/spaNqn7XXxr03UtUhi kuNS8RXV8nkLG7lok844EgCEfN3zx0Fdlo37Tv7P3iCfSrbRvjBoFxJrl01tpKR6khN3MoUtGgzy wDLx/tD1qamDrQqSjBcyTauk7O3mXRxlGdOLm1FtJ2bV1c2Piv8AGb4a/A/wt/wm3xX8XWmh6SLi OA316xCCRzhV4B6mug0zUrTVrGLUrC5SaCeNZIZY2DK6sMggjsRX54f8Fbtfvf2nf2lPhd+wF4Kv WkN1q0eq+IlhY/uchlXdj+5D5r/8DFfoR4Z0Sx8M6BZ+HdMi2W9jax29uv8AdRFCgfkK68bl8cHl 9CtKT56l3btG9k/nr8jmweYTxeOr0or3KdlfvK12vloX6KKK8o9QMD0ooooAKPwoooAKMZ6iiigA wPSjA9KKKADA9KCAeCKKKAGhAOg/Oo7qytLqMw3VvHIrcMkihgR+NTUEZ6ijbYLJ7nF2XwD+Euke Lv8AhO/Dngey0jWGb/SNQ0dTaSXI/uzeVtEy+zhgO1dcsI8vB/WpdvuaTbjvTlKc9ZO/qTGnCHwq x5v4x/Z08Map4tf4oeA5m8L+LzCI31zSo1X7YoORHdRfduU/3vmH8LKa6rwlq/ieWH+yvGelx2+o RRjzJLUlre4H99CeRz1RuRn+IfMd/bxgmkMeWzn9KqVWpOPLPWxEaMISvHT8hU+6KWgcDFFQahRR RQAUUUUAFFFFABRgelFFABRRRQAUUUUAFBOOtFB6c0ARTywwq0k7hVVdzMewr8uf+CgfxvuP+CoP xP0/9i/9lX4enWpvDOtveXvi64uvLtY2RGikI4I8obsbzyxxtB4J+6v299b8V6B+xx8StX8EGVdT i8I3n2d4c70BTDsMcghCxz2xXwB/wRw+Hni7x1+yl8WrL4C+O7Lw78RdQ1W2tIdZu4yz2dn5YYMu PmUsTKA3YgHqOPtOGaFLB4Krm8rc9OUYxveycvtStq0l0PjeJK1TF4ynlSXu1IuUrWu0vsq+l2e2 fsC/A/8A4Kj/AAe8a6J8NfjV4o8LN8M9Dsms5tJe4guZHtwrBFi8tQ4OccuQNvBBrM/4KdateeI/ ih8Of+Cc/wACba18O2/jzU0vfFUOjW6W6valyPmCAZGI5JG9fLHWvUL79k3wt+y98GdL+IFj411y 6+JFjdWQk8ST6/dSPrN/LNGjwNE7lXik3MBGV4HIwQTXQ/tK/sN+Ifij+0p4L/a4+EXxGtfD3jHw pbNZv/a2mm7tbq1ZZVwVV0IYCeXHODu7YzRDNMLLOPrlXlStK3LHli5pe7JpN9Xe/wCASy3FQyv6 rT5m7xveV2oNq8U9Omlj5S/bx+CHwi8fftLfCv8AYA/Z98Kw2M1jplsvjLULVmH2fS4XeVIpTnBY AzzFiMlpUJPOBnaH448BfF3/AIKCat8fLK5jt/hL+zj4b+zaTJb/ACW7PbxvHBDF675txAGcqg9Q a+mtG/4JmX+i/tKap8covjZd3Fv4o8Pix8YLcWA+3XspYGYxShtsCSgKpCqSq5VSM5GZ8Pv+CUNl 4Q+E3jb4LX/xJgm0LW9R1C98OwWmlmJrWedCkUty28+eYV+VFAVV5bkkbfQp51lcMLGk6rdoct7O 95v94/W2i8vuPPqZLmU8RKoqaV5X6WtBfu16X1fmfMXwK+NWofCf4afFT/gq18U4lm8W+OdQuNJ+ HOnzHJQs20suf+WcYCL/ALsBHVhnuPhp8PfH/wAGv2XfAPxo8R/C6D4ieNvi58QNP1Xxh/aEMl3q P2ASfaY0t0WRXZ40TzMA7Vb7w2jj2s/8Er9P8W/shL+zv8T/AIgw3OsWOiw6foGraXYGO10wRSiU OkLMSzyyLumckF84G0ACvUf2Z/2XvHPw6tdB1r45fEe38Ua34X0UaR4d/s+xNtZ2NqFClxGWJad1 VQ0hxwNqgDOefH55l06M5U2m+e1tdYRjaEVtZJ6vbXU6cHk+YQqQjUVly3vppJu82+76LfQ+cf8A gpp4svPB/wAAfE3xj8f/AA7t7fxV48az8L+BdI1KKG5u9LtNrvK3y7lSZy0jHYTt/dgkla+ffjB4 N8aeHvgv8I/+CUPw6Am8SeIryLXfHUiy5W0lmYyLbt2CxoS757xqe9foT+2f+yBrX7TurfD/AMUe GvGVlpGo+BPEh1KBdU003dtOrBQQ0QZdzqURlycdQetcRc/8E0Y7X9pe2+OXhr4pTWtvdeGZdL8S edal9Qu5ZZA81xFPuAhkkGULBTsViExwVWV53l+FwNOM370eadtWlJLlgvRK703e4sxybHYjGTlB aPljfS/K3eb9W9PJbHzufs/7d/7ePhn9kjS7iS6+E/wZ02MalbNMfK1aW2VIyzgH5laQhB1yiseN 2Bi+Lbf4XfGv/gqBda94H0uz0H4c/BuRtb8X6xDuW3kvIFUSSdSAS0UUSqoGRCSB1r6h0r/gnBrn wt/aV8Q/GT9nj4tw+FdF8aaWll4k0n+yvOnt1G3c9nIWCxu23IZ1bazE4PAGD4L/AOCSWl+FPD/x K+HEvxUk/wCEV8bXUt1Y2NvZn7TFMYysX2iYsTPHEzF1QbdzHLE9K6IZ1ldN3hUaXs1GKs95P95J 6WctXbp5mMsnzOpG0qd3zuUndaqK9xLrbRXPKP8AgnjLqXjX4q+Nv+Cg3ivw59q8RfELxQ2hfDjT 7zJYwlh5soxkhI4YwrOOiwuO/P6TW+duW698V4d+xx+yHdfs2+B9E0Lxl4xt/EGqaDo50zS57Ww+ z29lbGTzHEaEsfMkbDPITlsAYAGK9ziGK+UzzHUsfmEp0/hWkf8ACtEvkvxbPp8jwVTBYFRqK0nq /V6u/wA9vKw6iiivHPZCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigCvfWFlqNrNY39rHNDNGY5YpF3K6kYIIPUEV+TP7dHg4f8Evv jXD8XP2OvEuqeHbjXpmTUNHmmSfT2Q5bYIimdoPQFjt7Yoor7bgf95j50Z6wlF3T1T9Vs/mfG8Zf u8LTqx0kpKzW69Huj7W/YxtdQ/aE8N6L+0H8ZvEN7r2tWsW7S7W58tLLTpGXDSwwxoo8wgkeY+5g CQCAa+lIlVo8kUUV8/nkY08znCKslslsvRdD3snblgYzlq3u+r9WP2L/AHaTy0/u0UV5CPUDy0DD C0BV447UUUuwC7VznFII0HRaKKYA6KB92kCqzciiigGOCKOi0oAHQUUUwCiiigD/2Q== ------=_NextPart_01DC322D.ECA9A450 Content-Location: file:///C:/0D2A2649/03-3Metodologiapararesolverproblemasmatematicos(1)_archivos/image012.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAdgAAABwCAYAAAC94WGuAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAIdUAACHVAQSctJ0AAF32SURBVHhe7b0HeBRXmi48u3f+2d07e/ffG2Y2 zNgoIoloMLZnx2HsuZODSQJENNgYkNRRwmQQQeQkBMqxW6mVIzmIjEAgkUwQYGwcsDFjbJyGsa3v fu+pKqklVatbOdX7PO/TrepTJ3xV+t76Tp3wvZ4C68HLFHXgOu04WEOx/Kkwjv/uvbxO8QevUcyh Gooqv0XR/Jm8/zyVnLxQLZtFFTUPamckHb4UuePANWaNOg/diow8cDNy696ayPyqD8hW8Y7rPH2H suyYXfkupZ14i+L3v0nxB66ptMM1xu+7RJnHrtPWorOR1sM3I/de+SzyyoPvIuVmadCgQYOG9kZh 5Z2Pnp6zhYYEJ9EAg4UGGDP7CDNokDGNfM2Z5B2SS76mLBoeFEUZJ2+QbBpV5FbeuvtSyA4aYrDS ED5f4VBTeh2HGJny52BDWlNyepfJ6QdxWQN1FhrIn+ptcc7BugwapkunJ/VWeobzecGcRr9+I53G rCig2ZH7yBy/e2/p1c/2XnpYu0RuqgYNGjRoaAtmbd9JA/UW8jLYyNuUQ159hN7GbPLBd3MOeYTk ky8L7q/mJdLpj76JkE2jite2FdHA4ETqb8hl5tXRx5hfT7ZlPbOaoX06if1BY1Y9Wfjr/85WbYsr dDPlUz9zAbmZc8nDlE39zVnkzULrzdfelx+s/IKTaVBwHL00L4Vmbi+h+PKrb1d+WDtYbrYGDRo0 aGgJjr71+dEhwTHkYc4nr5Ai6q/PZGdrz6xGf2c4oH2axlRLD6qlVaiWHlRLq1AtPaiWNpPFjAXO xKJmtpEfR5oj9LG0IvNo89Hr2fdXPW1IYNHLYSFkgbajrzGnnsJuHUX19qi3XWEmi6qNHg/JJrcQ G7mzuPbj6NjdnM4PGGnkacqkfnoWYG4HhHeAMZWGG+PpyVlb6JXNJZRR8S7lXL78g/Jy+r5sCg0a NGjQ0ByWpe6hIaY06hdSQh4chXmzI/Y05dXRy+57b6RHSKF4uPBlgXnGnEgH3vt2j2waVayyHOQo L5keMxaxOOU0oEcIR4YKTQXkYeS8BfHdEZU09XQ3gQUOmK/aDlfoLSLtHH4YkOhryuVoGw8KTH02 eehz6TFdFke6HPHOzafHg9B9nk1DOLofxhHui3OTaG3+WTp269N1sjk0aNCgQYMaDr3zVfwLoQk0 UG8lLyNEgR08O3AvdroKvfm4/d+9id74NNjILTiD/Azp9GpECd36onaRbJ4mOHDri23Pv8GiY2B7 BVs4j+a6a9luHcVG7XCV6P5Hmx0SvzdoQ/0xvMP101lpiM5Cz5qTaW1BNe26et9fNo0GDRo0aLDH mqLTNFSfzNFMpnCwXkaIK0c6do61N1OICLfbhyPOgUGxZKl4723ZNKrYvvc6R68pbC8WZGM62yxb Nd/eSLz7lYQ4lwYYsuhJfRK9vDiBSi7e+Ztsni7H6dOnF2/dum1xWloGJcSnUGJiskPu2bPnY/m0 TofNZgtNSuL6JaQyU+jkycqn5Z96DbKysiguNoni45IpPT19unxYg4a+gWO3P/v97xYmUn99Gket iIqyyceIATZ9RzQQDfYzFpC3Lo1+PT+Rrn9ZO1o2TxMcv/nliJeXWGmQKUs6l0XG29SHbMX3B7qZ 3U1F5GYoJG99Ng3SJdOTuh0UFFXylzO3PgmSTdXpqKystK5cuZKmTp1K/v7jady4CTR27DiaMH6y Q4aHh9+VT+90WK3WBwEBk2ic/0TyHzuBjhw5ZpJ/6jV4/fXXRfvApKTUU/JhDRr6BqyHr74zwhhP niH55GYuFA4Ug2F8jBzNqjjY3kghsKYCGma20o49F5sd3LTn8n16KjiOvHSZ9JjORp4GacR1XyFG MnvyA4V4jWAu5c8S6qfHg0YGDTNZaMLKDMo+++Hrsrk6DdXV1ScgrBMnsjNnYQUVkVUcvMLx4ybV cdGiZTVyFp2OtLS0BxMnThb1GDtmPB07drLXCeysWXNo0sSpFDBhiiawGvoWKj+q/c2siCLy06UI gelnLmKxwUjYviaw0ucLIXF0tObhj2TzNMH5u7U/fH1rKQ0OTiFPI6I4DBpqml9vpq/RyvdGmujh 8DJw+zny9+R7xwNRLbrZjVn0p7As2nv5oy9ls3UKpk59hcaPDxCiOmHCRBG5vvba67Rx42ZaHb6+ Ades3lDH3Nzcm3IWnY7ExMQH9Q8AAb1SYGfPDhTtQ29BaqpFE1gNfQe7bnxCw4NiyFufQe7mfKmL 2JxNnqCKc+2t7G+00SBdIi1Ma35qzrn7j+hnBsx7tbGtZHv1oe5hsL8pne3FD2B4/4wpSUxMTcI7 WYyYfsxYTH78cPabhRY6/NZnzdqzvbBq5VryH8viypw0cZoQ1zVr1n12+/btn8lJmsWJEyd+HB0d /WOr1SqYn5//Y/mnBsBvSjp85uTk/DNHof+C79HR0rkKlXR79+5VzQtoicCeP39e5IU8UT/UWf5J FUij1AXnEdHf43tYWNiPN2/e/E9Ic/bs2f9j3260wZ75+Xt/XF5e/a8iQydAfZR8FF6+fNkye3aQ uC7OBJbT/uDE3vo88F3+SRX25SnXKzs7+0cbN24UtheJNGjoKty+Tf84K/qQWBmovxg5CqHIZMHI 4kg2j9xYcNUcbG8k5sH+lzEWgnBWNo8qFqQepuEhWSJ6RcQmRb59S2DdMBWJP8W7ehZWRWRxD3lC ZGEb/uwfbKGfGePp0FsPO1RkDx8+7Ddl8nQa+bI/TZ40ncaMHk9LlixrUZlHjx69hK7lgIAAmjJl CkfAE6ikpOS/5J8FysrKjk2ePFl0QU+bNk1w797960wmc9KkSVP4OH6r56RJ4CTxPjg0NJSKiopu X7p0yU/OTsAVgT127NjSpKQk0uv1om5KHV977TVau3YtscBvq65uKIJXr159yWAwiLoibUREBEVF RYk6jxkzhlhgtyAdt+kO6ojjSDd50isNOHXKDJozWycGYXE5/yEyb4TS0tLnN23aRK/OmEUTA6Su YBDf8bCD69FcBHvhwoXni4t20vx5i+mVaa+JMnE98X1u6HzKy8unnTt39peT1wE2gS1Qf6PRSHwN afbs2fxwNZbmzp3bKQ92GjQ4xNEbny4aYUglH30WeTD7s+PE+zUIrDtHZhAQNQfbU4mIXETlYhSs NK3G01zAn3ksEOmk21FCFR89Giqbpwmq/lI78amg7dRvdjp5GQpEFOvNka8HR/v201h6O/HghTm4 iN4xmlhZXEMaWSwNkPMKsZGbyUZ+oXn0bEgqHXv7szuyGdsdGRkZZ6UBS1No1MhxwqlHR8cKAWkJ Vq5ceWrcuPHsoP3J338cGQzGOifNYvvUa6/NZIeOruexQrgsFstt/BYTE8ei5S+iZnRNo5ta6qoe x5/orp7Av4/lv/1p+fLlVF5ePkJkyhAC6y8J7PhxE/m3I3UCyxHn32VlZrOAQPADCHVDXsgTHDdu nCB+W7hwEZ0+fXq+fOr33nrrrfFz5gSKOuD36dOn0+jRo/m7dJ7JZApGutLSsjtoE/KdGCC9C7an 0iOA+i1btpw4UmwgsgcPHkycNWsW1weDtMYz0RapJ0F6aJDedzsS2OjohJmzZgXS2DEThCgjDb4j Pf7Gd9h05sxZlJOTkyefJpCQkMDlwh4B9Mor08W1wd+4NhBcOZkGDV2DJWnHaIAhk4WVow2Zag61 t1BZZEEIAosAoi3P0BLxOUifSvF7z1pl06hic9m5hwN1VnI3lPBDST4N1KdxvpliucG+JLDNkkUW 3e2eZiv1C8mkx/hBxE+fSwFrc2nf9Y4Z+LR9+3YWknqHDie9bduOyq1bt27cvBncvHHr1kiHTE9P F8J0/PjxEYsXLxVCCcFEPuvWbngPvy1fvko48tGjx4qoacWKFR/hOBAXB0cPAZwgxHDDhk20ZUsE rVu3HkLGv40XES2EAtwWEVXn/DkKqxPYceMC6MiReoFF1Dh6FIuo+I3TMM3mUFq8eLGIiBFNS4IP IQ8gs6k+apMENkicC7HD+2lEwPPmvSHOtdlsBUi3b9+BO4GBwWTQh1BwkJF0waYGRBSL84XYcTmY ciMKYOzcuW+EXm8UdhLl+I9noZvBYr+YVoevI3TbL1oYxgIL4ZZGbNsLLD+05EO8ld+Qx8zX5tCy pSsFp019VZSN38DJk6dSWdlOUW8gLi6Oj0u/w3YhIXPpjTfmcxvnESJqOZkGDZ2PK59/V/RCSDz5 Yk3bPiawmMcpoiz8bcilgRyx/zbMRmff+3y8bJ4muPbld+G/nR/HwppBboYy8hbCgfmvHO1rAltP zJ1G97CJo3xTBrkb88k7OI+G6eIpOKaEbj6kWbJJ2w2YlqNETErkBTGCmEEopShPEjcQYmRPRJVy Vt/Lzc0dAmHCeUpX58IFS9mJo/t4khDQmTNn0qVLl16UT2kgsBAy+bDArVu3ntq1a9f7EAfkiXTo /izKL52G3+0FVhpFLE3T2b//cDzEFeUrAhkTE7PpypWaP+H3mpqaf+C6LkKUinIhfgET+MEiIupr /A6BhXAiX3DNmnXNCk5Nzf1/qXmzZlhNzdt/sqclOe1VCB3qgroHBQXV5YM5xChbiVCXLl1K+/fv Hyn/LFB19kIsuu3H+U8SQqgILNtvqtFoFscgsLDBtojtdOLEadE+YO/eg7/ZsH6TyBtlwP7BwXo6 d+7cf+L32NhYPi6Vr9MZ6eLFiw269DVo6DJs3V1VO0CXLK2j20cEFiIISgsl4L0pi60+i4brE2hD 6aVmHVDMoSsHhwbHkJsukzzMO1mYCwlrAYsuYjlftTL7GvFu2lNscID1kNPJQ5fN91ixsPNQfRJF Fld8Ipu03QCBRbdknbiyQ1ZGEkMAEHHiUyGEwl5wIQxyVgL5+QWVEFIleoLAIEKCiE2bNp1KS0u9 5aQC9gI7Zco01fuouLhUlIU8kGdWVp6Ye6sILOrtz5/KPNiFC5Y8EoO10EXK6TMy6iNHe6SmpoZB vBEhQ2DxHlT+6XtBQbo6e6xbt6HZ+7s5IBKF0CN6RzReWVn5H2fPvv/fkT/aDDtNnjyNDh069Ef5 lDqcr7oUK3UxNxTYlJSUNeIa8TG0EZH5uXNXhXDa4+TJk/9r9qxgUQZsjLauWbNGvI/lBw62p7/4 LTjYQFeu3NAEVkP3wP+dm0juegxoUneUvZ1YDhKffkHJ9MeFyXTo7b8tk02jignhWTTAzILB57mz YGBqihQJQ6hB9XL6GkUvAQusr8FGA/n+woMM1k12MxWRlyGfXjTuoOi9F8T7v/YCO1whIngHKxwx i0po6Buiy3D+/IW0cOFCmjdvQQPiuMLk5ORaOas6bNq05R4G6SjvAyeMnyQi0J07dzdJC4FVhBsC LB9ugLCwsL+HCEKAISrR0XEiHQQW56HOY8eOrxPY2bODRToIGwT+zJmzq3BcDRA6CDciYOQjHxbz TxWBXb9+o0OBffPNq7RyxRoym9hm5nniE13G+D7vjUUi4kZd0Ea8qz1y5Mh/YPQ02gKRhM3Dlq1Q zf/SpTdjp0x+heshdfMq82AxQAnnS/WbRCkpFodzkbESF8rAAwrK27Vrj2I7/psja85DE1gN3QaW 4+/VDHw9niOxPta1qQgiRrtikA4LwHB9Ii1M3O3Q+QBFle9G/VdoKvmwkGLkrLdZ2vhAsZ0kso3K 6qPEAhQYSOarzxaEvfCOGpsWYPOCAfpUmrqpkC7e/+ZXsnnbjLi4uIcQEcWJQxhzcvJaPMipMfD+ EQIriUCAiLKuXn3LR/65Dq4ILKbIICpGGohFA4Hl6FgRcWWQ06szpNWP0B5EpTU1NxwKLN47onyM 1kV95cPfQ1e3M4E9ePDgHUSmqBPSgcgH5yEvEHUQv8sCu3v3biGwoi0seEi7YcNm1fyFwAohbSiw O3bsELbAMZzPeToU2JzsApFGlMXnlJSUibIwyEkTWA3dCje/rB3xyoZiGmrANBOMGO5D4iAEFiN/ MUI6n3zY8f/MmEClFz/OlM2jigUp5SwMaUJQsfiGL97fcl6I1sT6xZrA1tHThHfb2P4vh7AvLqbz YEs83GvYMxc7NQ0Kjifr0euqDrk1KCsry4WjhjjA2YIQPfnnVqGgoOhTRVxFJMvRJd4BsgA2ydfV CBYRGNJBrFJSrCKdIrA4hi7eugh2ljRACREspq1UVZ13KLAYaISykR7vSuXDDbqIHQnsjBmviW7X USOlQV0Qcwx2CpyjF58YdITykUdDgS0XEawiknPnzueHj6v/Q862DnUCy2nsBTY9PV0IpsiXabPZ HApscpJVEnrZfkePHhdtQRcxRlZrAquh2yDvwlv5P9PFkedMrNKUwWyDOIhpGcr3hvlAjBySz1E9 3p6Uy/DEQhCintliWo0Y3CQLrJ8hiwLWF6k6HgV7L941vBSSIEbGIj+8V+yvt4r8lHmw4p0ufzqi Uqf677lSveRjXcK6a4e6Y5qRNNXIvq6tIaZ4eZnShMB6GQrFnFm3ENxnaeSnz6Qfm3ezvbJo9OJ4 Siu/8FPZzG3GrNelaE0RFAwKKi4uy5V/bhHOnDlzVESbcn4QPwgsxASjZM+fvzRXTirgisCmp2cK QUFXLvJctCisySAnvOdVBjmFLZMGboFIn5OTvx/HG2PfvoOBaKsof9xEmv7KTFG+MopYsYeawF65 cnU/xBXChXQYuSv/1AAb1m8ReUgR5HghsFgUAl3waDMeAvDwER0dPUg+pQ71Eaz0DlYR2NjY2DU4 V4mW+QHE4f8h5seiDNgOdVDewXJ5ssBOFIOfNIHV0OUwRJeRb2AyOzzsltN6cYVoYdUe7LgjNhtn pwnCWWN+pDTnVJpLK/ZDFSzkY8qyeh3F+j1S3UzF9Li5VHRPYpNxMa0Gc37NRdQvOJNG8INGypFr ze6as9B69OQgfhDxgGCg7bBZC+2mLKcIIYZNlHqhvhA5e2HrLGIUtCAiTnMmeZq5jeJ6FZOHsaRJ G1ynJNjie13bZJsx3fl+cddn0xBDKq3OO+PQqbYUCfEpF0e+PFY4a+GMOeLBQgVRO2JLjx4+kXDu THUDVp+7WMeqqovhcjbfq6iomob3jxAUCALyQzSHv5V3sqEh8xvUOzx89TGIBURu+vRXm7SpsKDk U5yLekEwERVWVp6XBDbRyhGsJIL4LC+XBDYnu+gWyldGEhsNoVjS8Rn8puDChas+GzdsFfVEvviM 3BYtdjSqG0XMdYIoqQ1yqqg4u1+x18SAabRurXo37+ZN2+rqN47FbPfuI2IubEnxrrqHALQvxPwG 7dlzMFGcJOP48dOxYpCYfH5qUroQ2MrK6jV4GMAxnIsBXsXFu5r8L9oycq2oH9oG22PRi/PnzwuB xe5D4oGFRR+jm69cuaIJrIauw56LH6z+hSlGjH6Fc/cMRmTR2EG6xsYCi+k+isBCROBMfTiaUYRX kMtF2fhscLydCTFFGSLqRD2MmTRIb6EBwRbyNWOVoXz+LZN+GZpA1Q/oCdk8TXDizpdPjVxqIT8W IQi2mh1cIcoaYLDSYH0Kf1rYXqgbVkDK4HqlCdt1Nr3FwhBoEzYqQHQOSqsxSat6dQxxPfD+GtOd XjDG0Pl73+6Tzd1mYF1hdHXCmcPp4xPEKFb71YlADNxRGL6qfgrL0iUr7yrOHFyxfDXt31/+XFCg QfyN/PAZE51Ut87y1q0RdyFkiphh+gmIeamIrBUBxHkQi62bI+vmW0NglXraCywAIUZdX/7zGHE+ um83b9halZ2dfzQ2JvEopg8hPyF8fD4eKC5duvpz+XTRRazUy1EXMcQPeYwZjQh4shDyxYvCaNHC ZYL4rgihUg4GOeHc8vLjI5Ae7UMkijrCnhj1i+5liKHycAIiXWqqJLAAt6HJuUsWr3g3Iz37KMgP D4/QfpyLNEi7b++hunZg8JOIYDWB1dAdsMxSTk+aLOTG0RiWs4Ojdda96ZAiOsmXnbT0HlLKS+pq xNQVDHgRUXJjCufeOUS9ILA+8qpL4oGAHwAGBifS6vxKVaejIPvUOw9+ZogjbEeH6SdNbOAiRVcy l+1rwAbtaeI7uqlRJ1+M5ObvnU5xnWAjPAxhWo20AIevMYOZrtqONhPXgm2J6VG4LwYGxdH6wrNN RuW2FjU1NT+KjY0XUQ26PdFtKXVrStGlI65atVrcB8nJqQ9xrjQdJYDwfrKwsFAsQbhz5+5I5IeR wDgH6dLTM1Lxm9EYkqGMcMVvSIfzpehKGggE4u/t26MQgf0Q5wFJSaliFLFSF/uVnLBqEjYrGDly tDQvV84XdUBe6HrF8T/96WV69dWZFBubPFw+lSPYd15WBBbnYPEL+acGiItNeA8CDhHDA4BSV7Rn 1CgWdv5uXz9QEVhg1669QSgbdUT97O2gtF2xA363X2iioqLiX8LD19T9jk+kwbnIRykPbcRnZqaN 0DUtny5W0MIgJ8xzDgwM1ARWQ9dh/40vpv12MTt3duhu5hIx3aR/MNYgZier5gxdIURHUDkmCSoE BAKL5RaFsLCQSyInCZ0idu1O8Y4VU0P4O0dkPiwUfhw54piYKmIsZFHBJuHp9Jw5ni5/+p1YpUcN x97/6vFp6/M46k3k/HJZYFs/R/inbO/HRbQv1VNaq1fqopc2DUDXbOfSy8Qiasa7UtShiLz1RfyJ 68X24+Nq7Wgzub24F9yC+R7E6wKOYp8PiaNLf/n2nGz2dsHJkyd/FRm54xO8g0SXLYSoMfHeUiGW AMzKypoAocA7VLx/RZpz56puyVkK5OUVPILjxzlIBwHjsv7JYDAl2YsQ3msiDyV/pF2wYBFWITop Z1UHqzX9AdKDKNNeYIHDh0/5RUXFfA6xR9nIVxEipZ47dkR/WVlZ/ZJ8Sh2wXCDWQcaKT5s3q3f/ AiXFuz9BhI5IH/VFnsgb9cbfykAo5Td7gQXOnDm7iB9SPlHSweZKetRTaRv+tljqI1gFO3fuvM82 FOlgR3zCjmgvvs+dO++bI0eORcrJ62CxpMk2mEJms5muXbv2lPyTBg2di4SDV2mILomFJl9ybuxk sedr2wQW0Q+IiIRFCJEpi6wnRykDA6NoVswBmms5Sguth2lp+mFakn6UFqcfY56gxRn82e7k/NPK aQGXMz/9uPgebjtGy3IraeSmfdKiGtxeLHgwJ6Kw2ei14u5XNCw4Tgigt97WYjvZL9rhx0L/Ulgu TdpcRgHr82n8hiJmCX8voCnrczuNk9fnCI5flUG/W2ahp/khY1BgAvkFcWQdzPU0F1A/PUfrIa1/ mGiWssDigQzzYt24vP5zEmhd0Zmrstl7JIKDg5OUSA+CcOPGrVj5p3bFtWs1YSdOVFTs3Lmr4vjx ExXXr9fskH/qFbh58+1nz5ypqti3b3/FgQPlFRcvXqmQf9Kgofvi5J0vn/ZfgeklWNavSIgrBKNN 4spU5pSi21UMKtJL4op3ry/Pj6Lo/Oa3m+pMLM06QQP5AaN/cBo9rYui4uq7zY4wnZd6hLyDrORh lgZISV2b6nZwxueCNlL5zQfdyllc+bR26fF731kWWI5kj+V740ldHPnpreLBwN3Q+u5wZxT3HBPd 5m58L2JE8Z+XWpp92OnuQLe0ffQqH9agQUNfQOnFD2k4R5TeLKxYYAFODWIrRpO2gdiiTBFYrDnr FcJ5m3PIM9hK0QcudxtHU3G/9qczIopokDFNDHTyD8+h8ne/dDhF5M27Xy9/KSROdOU+ZiyiAfp0 GmBs3YAwCNaMtdKcx+6Kq19+F7+u9ByNMMSSj46jWVOhalvag+jpwIMZusfFjjz8+YwpjjKO38iQ q9PjEB6+9iwiWHSHYhqPfFiDBg29Hbvu1/7LxA1FNDgoifzY2XtwdCINdMEgF3Un6ApxLgb+SJFw Fgs3BvOw8+Qo8TdL0qm45ou6Rbu7GhXv3v/pn1ZmCMEcpk+j+P1XmnWCm3Ze/HagLpUFoEiKYHXY XLyZCFY8ZODBRYrQMMLa02AjP1MmDTFZ6NiN+w/krLstKh7Uukfsrip5JjiGfIO4DSGYQsTXVp/J 9410vXHf1L9vbx0xMA42wmhvce+wnYYExZA5vvnVtLoztm/fwdEruognsMA2XOxfgwYNvRin3v/6 8qCgOI7cUqm/Du+/8sU6umIVIowiVXGCrhAOFwOHINTS1m8QXBsN08VSfHnzAtbZyK+o+ekv5iVy mwvphdA0yqu63+wyfSOCd3DkiVWIioVwIlIX+502skEdhcBiFC4EFg8amIuby+JqpRffSOoxDvf2 F/TvEbsv0/DgNHI3S3Nkle5xsTSkXRtV7eCEQqRlgZUGvtnIPdBKQ41W+uXcJDr+QW2z60F3V2ze vDlpxYoVtGzZMtqwofWL6mvQoKGHwbQjnwab0slXbyWvYIywleauwtlhc/W6RQFaSllUxCf/je6+ AeYsenm5lU5/+G2oXHy3wLb8ip8+o08gX27voqyThI2s5Z+awHqkpvopY4JYWAILVGAAl9g/tjmB ZRsiile6Pftx5OttYIGdtZ1Sj7/boxxueTl9f2bkXnJH1I7IVW6XuNaYytNKcVUIoVYEFhGy+FuX RiMMiRSWVdEjBVaDBg19EKfe/9vd5wzbWBwyRFecWDJQj/mXEAxMY8kQTk7NETqnJDqY9oJIFtNy hrKT3Lar6qFcfLdB5Qdf0bDARHrKlERJxy473Mml6mHtj2ZuyqFhJgv5hGJxeszzVQZzObaTJBhW 8uQHjMfNRfRYSAn112fQHxYkUsKBi/8mZ99jcPzuN4effCOTBoZmsw34QUN+rYDIte0CK72DRRcx 8nQ3F7KYZ5GfzkoLkg9o0Z8GDRp6BtYUVtEIU6qIMCGuWHwdXXyKg2urwPbX20Sk139uMWEBhT8u TqHqB7UN5vF1BxRcuEdPzokXU1XkQ6rIqf7w8M/10eSjt5CbDisbcTthH2c2EvaUBPaxEBaMkCLC O9xllvpVZ3oaFuWcoyGGZElgOXoVy2HigaqN72ElgUXXMwQ2R4wklnoKbDQyLJ2q737lcNN7DRo0 aOgWOHe/dszzocnkxZGqsiG4EoFAYBF1tV5cJXpx5IEFGNCVOEIfT1tLK9+Xi+9WiD1UQ/8VuIPi 9l0+Lx9ShTn1FA0KxGCwfBbLQhYAtpNYvB6RuroNJMKOWM8XS1CyAJltNFwfS7vevJcnZ93jcPre d9ufNcaSFx6iMIBL7vXAKHQhsqp2cE4ILJawxLtdiCrmZEsCm0NP6+Oo7M2Pk+UqaNCgQUP3RPy+ y+8NCk6hfhwhCIGFsHK06SsiWElwpRV91B2hK/SEQLMY+eqsNGqphao//OtoufhuhcVpR2nUojg6 e6/2eflQExy8+mD5s3MzaADaFlpC/fSI1GyywMrRrAPW2xIPLpyHPpmmbi2liw9rfyFn3+OA99RT 1mXz/ZJO/UMKRMSJTdTdjUXcztYJLOwkvYO1kZ8hje/DTLYbBpOhKz6bBusSKeHEba2bWIMGDd0b 01ck04CgVOpnLGSHVr8IvrTYvrQyERwenJ3UXdwyIs/+LDwewek0OCiOEo/e6rZTUaaustCWklPN Ou7IwpO3hhjQZZ5HPw3ihweTNIq2P0emzgVW2lAcDzG+BisN00VT2rmeNbhJDTlV79NAfQp5YPN0 tg2WunSXl5tUs4Mz2gsshBv3o7LrEo4N4LJC0o7RO1+Th1wFl3H48OH4w4eP7G/Iww7YOJ091dKD ammP7D9y5Mj+ioqK/Vev1qhuJ9dZUOp54MDBRnVs2I6DBw/ur6ys7NK6diVu3br1+KlTp8R1Axva SmG9raqrq3fJp7oMnKfkr1aGcvzAgQN831zts9eiOdy+fXuOmu0kNrynwU69p/MOno2dsTSGxq/M opdX5NColTaZ2c1QSdOY9mmQl/R9JH//c3gujV2ZSYaIbDr3ce1/ysV3O0xdGknnP/jS4QU4euer gJFLUoSA1AsBRAFdvy52o4cWkztH89gtZyRHyxc//nqWnH2PRfTeM4N+boxmISwUvSCeZmxUgGiz 9V3EdUTvB2j3NwR39JoCOvZu7VC5Ci4DO9dgVxhQ2RoOG5irU0qnTrX0oFpaaRs1fCo79iAtjpmM cz+Pjo67c+LEiTtyFTsMNTU1YWITAn9py7qGdbRvAziJdDpDn+0liImJGTBp0lQVO9lTshVs+vrr s1tkq/z8/LcnTsQWgPY2V88fay3bbDlaj40KLBbLFqwz3dR2oL1tmQGTaPbsQM2OXYGbn353b/72 9O/kP1WRU3mHRuhiRRTVQARcJCI6N0Me9dPbaEhwAm0uqRZ7cvZ0XP5r7YAJa3PJLxgbBLDAhkBg MTWrHQRWhf11mfS0Loasx95tscAajaF126nBeSrbq3UGle3YGhObtCu73mC7uKNHj13B5gByldsN 16/fiICTUbbTU6ujPbE5uXxqnwMENiBA2j5QzTYNOD6AsJuRfKpLgMAGBDi/BrhHsbRmVla2Jgwq SExM3DKBHwbVbNeQbGu+TrNmzdHs2FU4VH3NYRRx5t6jYVM3FpAfR56tHfQFgX3ckCvmAb84N5F2 X3+4Rc6+x2Pjrss0MAibseeQe0iGNMCpgwQWA6qGB8dT2skbLR5JbDRIm6S7IjDtSThqUClX2fMV nyNHjhFOFOKHaAXLKcJhZ2fnUllZ2f+Uq95mXLt2IwL5Y89UlNu4jvbEhunYiF0+tc9h27aYAXDc rtwnyvWST3UJEFjsT6vciwob5CvfL5rAOkZycvIWRKf2dlOnJrDdGomHa+YP18eRp1lafEPN8Tsj BBaDnIboEmlu0r5edaF3XvmYhgVZxbtSIbD8INFRAusdkk+Dg5Oo7OLdFtuwqwTWnii7YWQEUcUm ADjGHC/9jc9ZswIpLS1j0dmzZ/8/uQmtxo0bt+oiWOeR2cQ+HcFCYGF/Zw8igq2MYCdMcB4di14W zh8PW/KpGuwAgZ0wXt12DdmJApt1vMZzU85xCrNV0NLsM/x5kpbbjtPK7FPtwlV231cwl+aeFVyW c5b/rqSVttOc5iT/jjL5M6dCndkVIt0K/lzOxJZyW2376NS1d38vN6VTUE70/bkpR2igwUpuWPZR zem7QJznoUunZ40xVHTunZ1y9r0CiYdujX3OnE5e2GUnJIv6Y96zUd0ObaW7IZ8G6lNpx86zrRJY /MNB5Dq7i7i1RNQZF5fQZscAgUVemsA6h+gidjGChePGHsHyqS5BE9j2QbcU2OSDb9JTQduFk/Iz pIvPQboUMXikY2gR0y2ksqw0mMsaok9kxtEALhsLWahT3nydP3316TSMI7/XNhdR1b2/dqrAXnjw t6zn5yaxaGAjAEko1Ry/K/QJTqWAld1715zW4My734z9/cJsFtgc6hcqLTbRUQLrZihkO6aRYVte i+3YEwVWRJ1jx1FY2PKv5Ga0CprAug5NYHsGup3A7r12133cCgsN0FnE6jhu5lLClBOxpZyKM2s7 2dmaWCTl9Yy9EAFyuZ4hBcw8/s7lslN2SMx9NHH9jDYaYUggW+X7nX6jbSipoqFYrSg4XbRBvZ0u 0JhNA4OTKHLPpVty1r0Gt4n+ddLass4RWHMxefO1mLA0ls4StajrtKdGsCDexYWGhj68devWQrk5 LYImsK5DE9iegW4nsMUXP/kcu+Z4GGzs8LGYRJZ4X+ZhxHxOdYfWNkKQMOoWzCbsztOQ/DtG5aoQ c3A9ZnN0Pb+YHXYa/XGphSrvfWuWm9Jp+HnwNo60LWLBDKc7C8kDoESUy99FBK6zko9ZWlv3mTlb aO/d2h/KWfcqhCQeZhtlkachXWyo35alEpulOV9sjffbRRbaVVP7D3LxLqElAgshwrQafLZVjBVH jalBjX9zhcr5EMiVK8Mfyc1pEa5du8YCi3e940REjDzt2bDMiRQUFNRnnfq2bdsG+Pv7C6eMaU2N bWVPCOXMmZrAdgW6ncBOXp1FQ+dmixWI4PwHsnBhqT837Oyi5sy6mFjs4vGgNBpkSKXwospOv8ly z959b0RwDNdDWnTeWQSrLC2JhRKEwGKfVGMmeXM7fPTptHV399qirz2xLOsUtzNTbGDgAXuZOmiQ E9vSj/P+uTmFtu2q6TCBRZQHQhTBxo61pbQvTzmmfFeOOyPSjh41jnKyC1p8H125ciUCI1dHjRpF EydKA63siQeJOrIAGwx9ex4sHkSkkb4N7dSQ44UtZ8xo2Qb6msC2D7qVwJ648+Wjn+miyVufJdZ2 RYThJ1YlwvZpHRXBtp5w0J5mFn59Gj1jiKJ9tz6LlZvSKbj+Re1Q/+XpNIijV4yIRVTqbA5sncAa MdoYI2n5ONsbojPMmErn7n9XLmff67Ch5AKLXwY/jGSQO7e54wQ2m3w576cMCR0qsCCcKD4VR9da iq5ZFi1M6cDf6O5VjosRw43KdUTUG9N7IPiF+aXz5Wa5BI5gg0ePHs31GCuiWNTBEVG34OC+PE1n 24ApU9jOLJ7YJF/NRgrRK6BFsF2DbiWwwVE7qf/r0ez8sskjpJiw9By6iCEIWOtV1Zl1IbFgvOfc nWKj7ZCEXZ1+g9lO39n3tDFZRK6eWPpP7lJXq6s97aNYDxZaj+AM8g1MollxR1r8zrAnIWr/dWlQ mxECi2UjO0pgmXwPQ2D1u3Z1mMAiDYh5o0ZDKIWHr2k1V61aLbh0aRg741mE1WcgttK7VeeOVqFS J/CNuQupqKjof8hNc4rq6urxq1evLgsJCYmNi4v7JiQkNNYRTaaQ2PDw8E59oO1OSEtL+4+oqKi3 YCs1+9iT8VlmZua38qkuQRPY9kG3EdgjN76Yi1WI0NWJd5+IWKW1XbPFu0FVR9bFRP3cDPn0X8Y4 2n35w8NyUzoNIUkHaGhoDtuqiAUWg61gJ+e2kmyKCC5H9BT48DlPGxNpd81nvfqfJO3k2zTQmE4+ emzJJ0fwjWzTLoTAGvLoiaB4uvKXbyLk4l1CawY5Ie2pk+37emLXrr3mpKQUmjZtOkeU40VUinKU iLk5Kt2TOKeoqERzvD0QmsC2D7qNwG4qvUQD9GmiyxKOX2K9ExRRl+LAuglFHQMtNHZZaqffXAff erD9udBEejzYJhboR9cwbORsZyH0BCAdFr1Hun4szL66NJq4OpNO3Hk0SM6+V8J2hgXWYOWHuDTZ Th0jsF4QWCMLbHA8Xf/02xbdG91FYBXs2bMnYv68hSJKhmi6Uie8I0UXMdJra6v2TGgC2z7oFgJb de+7yN8uypKe/OXoSkRYQjDyhRB0R4FFnZ40pFBc+bUP5aZ0GjYUV9AQc6oY/IXodQC2Y2ORdTM3 v9AE7Il6Y96vEGQWAswxTjp0tdf/g8yzHF+MXXX8OIp1M3SkwHLevURgAYul4H/Pn7dYDF5ytU5K FIsuZpvN1ivWtO5L0AS2fdAtBDb79DvkFxgvvUM0ZAnnj23AvGWRxZQYLOZQPz3GMZU0jWmfxqfR 32rpQfEbO8v++jyul3Sel0z8hoj71/MSO/3Gqrj7bfDI5WwjFsbHOIJFXWEzbEenbDen5vgF0R6x OIa84L0+l16Yl0I7r94fK2ffa7Eg45QQWHQTd6zA4p7NFQJ77UHPF1gFQYH6uvKwFrDyvXFdFKL+ GDg1deormvPtYcjJyXl7vEvCwNd8XIC2m44DdLnAVn1Q+6Pxq/G+1cqRWCYLl7xHa2OKDcMlejdD JU1j2qdBXvZ/q6UHxW/6YhbYEhZTCGwa1zOTRSybj2exA02miJyjnX5j5Z57j4YGJZIf01uXSl5m 1Bdd1ph60/xgMD8duoet1C8ki9yMu2nQHAuFZ+7pE/8cc1OOssBaONrPFIuJdNw7WDz0ZPM1iqNr n/Qegd29e/cuaVQqBHaCKFetPvZUptWUlu6+KGfjELdu3fq3iIhI2rwpgrmNNmzYyNxQx02bNtlx M8XHd8zD7fXr1z0sFovf6dNnqLi4mBITk2j79u2i3PXr6+vTnly/fpNo88YNW/jvTZSRkdHsJgq7 dh0YsHVrJG1Yv4XWrWtop4bcSOvWbqKYmLgmc5Ojo+Jo/brNIg+FWzZHch22EnosnM2JxnVFLwXu gxDzPNq0MaKO9nkqRFngpo1b6dixiw7bt2/fvtytW7eyTdbTxo3Nta1lxLXbuHETRUVFUXJyClmt ViooKKTy8sO0cuU6v4SEBL8TJ078WK5Gu6DLBTbj4Ds5zwYmipWa3E355G4udEgMyGkPIspTO67G x1GuGBCD+uXxsRLyDNnNIl1MT+osVPX+V6VyUzoFR2s++NHUdVk0mKMwjIbtF5wiHgYkgWXBcCKw Pnp0bWdwm7LJ01BIz5nTKO30jcVy9r0aGSdviwU5ILA+IR0rsP35cxgLrH5bx40iVthZAgusXr1W jC5WBBYOVq1OCuGk4YjnzVvgtH43b94cPHr0WHEe8lammSiEsCuEM2rPlZxu3LjxGDvcUdHR0WQw mMTyj9hHte5hgoky7evTnsRUKFxv/7FSOxcsWNCswCrb1Um2Us9TIQabqS32/+qMWZKd7Yi0yvt2 ++uoRuX+RFpcY/vfGuerEL9NnDiFKivPzZGr0QQWS3ou7jHYv+5eayciPyVPXE8Qf8Pm06e/Koh7 PCoqdv61a9dGyVVqNbpUYKvu1w4IjizhJ/0E8jHj/SBEAtNHmhIRAeYXtgf7qxxzRA8TFoi3CFES 3avGUvIzFtKQwGSaHbmHym/TP8rN6RRknayJf1q3QzhwD32mWHsYO8RIAsvO3dkOMdwGpPdgmw7Q pdOcHfs7xTF3ByQeruE2p5GfPoN8QovZXh0osHxdhgezwHbwPFgQaTtLYC9evLy+zmHZOU1HhOOF w54x4zU6fvz4SDkbVVy7dl3spjNqpL90vuwA1Yjy9Xpju7S5tHTnvPDw1Zwn5gA3dMKKwKrVoX0p 2VHsHcp/uyKwE7CrEYQQ5zbJr564RpMnT21iq5mvzW5y/eyF1RWRBZFOuRfs2TidcgwbxZ87d96h wKanZ+TC5mPG+IsHHbU2tZbivpUpVguTry3KwbUG8ZCH4xigV1pa9rlcrVahSwW27Nrdw0+H7CD3 kDR6bB5Hr8Ysdk52NNa/D8U7UN8uoDeElUVWrF2rL2BxLiK/wFT6uX4b7b31caeK07F36H+GJu2j J4wpHNGzvTAPlz8xXUgRWCGyzdCLo3FviAtHcU/qYii/+oMbcva9HhE7L4lNGXz5waK/GDzXUQIr LTTxpD621wkssHDhYuGAXHHAivOF89iyZVuOnIUqsBYx0kGUMaBKOB2HDKCgIF2b25yQkCQ2koez RdmSsKJdUjlYJUnte8eQryWXDds6E1ixXR3SCtFqnrgGiMzkU+swY/pM/r3h9VJEsPF3R3RVhJGX knbSRAis4wg2OTmFI1g8wHWgvVn0IHygcr3tr7u/XdlLloThVcErcvVahC4V2LX556g/R6/9zAXk MXcn9dPnk5sBu5FIbLwusDRtB4RzdET7dPa0T4ORtvZ/q6UHIV6FzGKOFEtY0LiOxiIWXiuNXpdJ h+5/+YzclE7B2Y++PvNzUwJ5skC4s1Biyo1kl3pxdSaw7ma2rTGPhpht5L/Sgp1/vOXsez1WZp8m H45ehcCiK91ZtN9K+nC+/XXZ9GxIxy6VqBBpO1NgDx06LEQADtOZg1XagchgzZp1zdaxMxf7v3at ZptOZ3ikCGsDqpbXSZSjUZe6iF1d7J+pttj/jOmvq6btCKKeyr3gTGBTktNzlXa52r6OIHpe8IoD PSqIZm02W4BcRZfRZQJbduzmk2M4en3GnEzD9Kn0rM5Cw4Piaag+oY7DTcldzic5WnzKkMqfqTTU bKWB+iSO/CIp5fjNTnNoCjYXV9GgoDSx8QG6eNF1jqk2yq4wEFd0/zZ2+PZ0D8kmd0MeDdVZKXJX 5znl7gBz/H7qr8f2hDby4YenjhJY7DXra8ilFxekdehi/wqRtjMFNiurwA8LUAjhdFJHZYEKpctN zkIVnSWwlZXnNrwy7TWaPOkVdp545wsnbk+18jqJmsB2G4FFXZU6o7t6+vTplJ+f/2u5mi6hywT2 +rufDD168979vR/89f6h97+8X/XW/ftnmCffelDHU28/rOc7D++fbCeeeudz1eNqPPP2J/fP3f7L /ZN3/nL/6PsP7x+89cn9E1xvuRmdij/Pjydfjr7dxRZ+0lxhIRbovmahhcB6cITaIIoV05zq+biR BVpnoxfm5lLFvUf75ax7PS5fph9MX4+lN9kmwdieEBGsnZ3akf31LLD6bPr9ihyqqe19AguEha0Q QuiKAxSOigUW77n27Nm3Ss6iCZoKLNrviK0T2GPHji2YMztI1And0FMmT+e8GtdZrbyOplx2qwRW LT+FUr49T2BxHgRO+uwK+o/FMqS4x/GgyMfGjyez2YyxBJ5yVZ2iS7uINbgOa9VfvvILSmIhtZFv KEYKs2CKCJadup1QSN3E0khiLDGpLNohaMhiAc6mAfoUMsfsbNHapD0dp97969g/LLGId/mexjwW QEz/gg3rbddexCh1X46U52ztnA3XkbazBTYrK1uIJgRRrU5NyM4D3LIlogUCq5JPHVsusDlxOf+/ yThXJa/GbOho7Yl6KddGrY6KkCjEMXQ1Nk7nkB0RwXJ+agKLd8+NI3a0STwQ2dXfESE8Y8dIrwmU tOLVgRgk1nBUsUKkdTbIyWrJyMU9oJyj1KU9iGth/7ej69iYUvoAMbJ506YtLt93msD2EGBvUW+s 1sQCiYUi1Bx7UypdyPX0NGTQkOAdVPHhVw/lrPsEMk69O/b5kHgxgtzTVCAeNjpKYN0MBTTImEER JWda/M/SUwR2167dByGGcKZqdWpCWWBTUiwO69mRAnv+/Pkf7tgRI6JWdFur5+mcSt1cuT74HWW5 6sQFO1FgX3llRpPz8Tfq6proILKTtkkU6eVrLCgGDDVOL6WDwJ4+Xel4kFOiJRc2U4jz2osoX7ke II4pZTSurz1F+/Cd24aNMCorq1wa9NQlAnui5oM15977bM2pO5+vqfzgkeC595j4/OAbB3y0plr5 /cPvBHFe9Ydfr6nmvOSseyV2Xvrw3LDAHdQvKENMy8EUHTXHrlBsjsDpRDRrxLJ9MjmyHWhIoXFr sjrVGXcH7Lz8ET0ZHMt2yeUIs0AS1w7qIsZylIP0yVRy4W6L7dxTBDYzM3s0xLClEezatesd1rMj BTYzMytKGiXq+shXNYrIjNuhTPFoTKWdoPIAgk/xm0p+TdiJAotrsWjRElq8eGkTwrbY5EE1P5mK AIJBgQaR16JFi5mLOA/1fJcsWUbLli0nfuAZJlejCSwWay7si2gRU2aU+6ythB2k6Fq6JvhscO1U 2qgQdgbFfGU+l233nVzdZtHpArtlf81XvwyNphffSKQXF1jphflp9MK8dPrFPP7O/MV8x3xR5vPz M+i5hTb6+fx0emleEvkv6/zlCjsT+h3FNISF0Tu0gLyYns1GXtkiOsP7VoiqB4uJQow4HqGPpoLz LXf8PR2bSs/TUBY9dA9j9yGxTKSq/dpOsciELo5O3Gn57kQ9RWBPnjw9um56i0qdmpCdB/jGG/Md 1rMjBRYLLcBh49y2CCyEClv6bd68lSIjd1BUVEwD7tgR3YDR0bE0d+48MUhGLb8m7ESBbQ42W/bb zuqs3KO4Xunpme12/+3Zc+DpiIjtozds2MzcIH+2Dzdvjhhts9m25+cXigUlcA8rQqvWxsbEQwfu UbV5xWrodIH9xfJC8jNYaECoJBJYbN5TjrA8hCA4Yr5IC+HAZz9zCXmGsvCY0mjWjt3tdnG7G3a9 eT/jeXMM+RrSWBggDtKc18ZOvZ5YClERWEzlKSB3Yz65iaUebfTyoiSqvPv1i3L2fQIn7tYO8g/P EQtrSFO++EGlIwVWn0HPGKIp6dhbQ+UquIyeIrA3b94cjX1jXY/MJIHV6QwO69lRApuQkPQ18sUi Dq4IkhLh4OEB3zE4C1FXaenOaUT03+RsXUZMTNw91+3UPQSWBehtseiFWn52hJ2Qf09d7D8hwepl MoVIPRJsS/tXAGrtFV3f3F7cE+Xl5ZflbByiUwU25ej1g37BceRntJKvKZOf9LHptfRuUBmIoyzA LxF/S5QEA+KBOYyZ5MZi7BOSQ0/rttPBax/XyEX0OqzKP0tDOXrFBgPSzkJ4MGk+grUXWIirp4Ft hekpQckUvedij/xHaAtW558fNCw4lvobsFEDtutDN7qa7dqHfqZ0+uNSCx1791GvFVgAAtdSgUUk efny5clyFg3QUQILcYEDhVOErRw7T4kiKue6KtENCyvrKv2dnF2LER8ffy8gwFl7ZHYbgXVhNx3O t15gs3usX8nJyflvOp1OtEkRV9yDTdorKN3H4LZt27qPwJ59n/7PrM2Z5GOwkheLJMTSS0wpkQVW DDqB6PKnCj05nSKw2MvUnR2Ze5CFAlal99gL6wyVH/516W8WprJYZomVmxC5YlchsbOQnUNvSDuB 5WgNPQM+hkwaEJxEz76RTtsO3H5Jzr7PYAc/VAxl0cPDBuwB+/iJ+03Nfm2nry6ZdIkH6DaRr1wF l9GTBNZoNLdYYLGzzsmTJztNYNPT08+jjoIORrY2IdcTYoz3fxkZmYlyVq1GbGwsR7CudqX3RIEd 36MFFqiurn5HWYcZbXP8vyfdx2j3qlWrnLa50wS2sOr90ueNO6h/KEdUIQX0mD6HPEKKWCilJf+w bJ3UFSytUCSxvosYC+8/Zi7hzwKJoSU0ONRGWVUf9ugL2xzCbcetwzl69TTivWuBENr+HPlLO/2o O3dQGsAj7eiChxJ0DT+hS6JZUfvo2qPaIXL2fQLl5fT9Py9NFQPE+pmKxTKG2DsXDx1qtnOZGEQG ir/R/Q7B5gjZkCOmQW3bf71V92VPEtiFCxaLd1JqdWpCdh4gosIjR450msDq9QZJBNgximUI2VbN ixIGMGEt2nHEkecXcjZtQlxc3D2IkHp5jdiTBJZthfWQsX5zTxdYIHzVujqBdXz/4bh0L+t0zu+/ ThNYc8J+8g1KEk5f1WE5oeTMsFC9tDygrzGdfvlGAt364rutchG9ClX3ar0nr+OIVWcjd0OJWLgA +896mhHNNr8CEeykdLnj/TZs/rQ+lrIr7xyQs+8zyK96l4bo4ulxfjjrZy4TPSXK3rnNv8tunj4G 9A7ki4U9+psyOCq28rF0tnc+PWlOp4JLH5bJVWgRepLALlm83DUHD7LzADtTYA8fPvwHDEZBNKqe hxoRvQbQjBkz2s2ecXEJLLDO2iOzRwmsHOlx/r1hw/VcW0ExlkaETZ3df+gRwWpm8qkO0SkCW3b+ rv7nxmjyYafW/PtDx0S36CBDMg00pPJnKj2pi6X1xed6/EV1hOwzd/b+zIBpJdnsxAs5OsKqTRns wKWBS2o2Uii900b0miO6RX1ZACaszqbqu7UD5ez7DCZtyKOBRis9bigkD0MBiyuWSswgN35Ia8ti /z4cqdZNhcLrC84TYwo8+EHot2F5dPK9R+PlKrQIPUlgly1d2a0FNiJiuw3vUEXZqnmoERGsP5WV lbWbPTWB7RkID187EvedKzbtVgK7ueAUDdEn0+OmwlZHDejqxPQUT3ZqeA/7jDGOdt98MF0uotch MHIvPWGwcLSeS/1EtJXGTj2D7YApN4WqNgIhrr4sxhBmzPfEwCi/OQmUfvKtHv8P0FIkH3jzq8F6 9JpggFiBWMJwoB52tHFEWyRePajZ0CUasXWhdF/innYz8IMjdirSZ1Go5USrbd2TBHbxorBuLbBb tkRI716Z6nmoEQsJTKKwsLDvy9m0GZrA9gxs2bJtpGJPZ3bFPYUtGOVTHaLDBXZX9Tu/+cOCBNFd +Z9GbHKt4qxcIN7J/ruxhP5DXyii2eDEcrr8sHaAXEyvwobiU0Oe1qXwg4SNPM25YoF+L3O6sKE3 R2IQWTUbgdKAsUxxHt5bI5L9RWgiXXn4XYScfZ9A8qnblmf5IQzRpTINzEdv4wg2Qzx8YCP9tgis NBoZtsaewXn0b7M5Mg4toGEcLa/Mq94oV6PF6EkCi2UHXXLwIASGiaf+s2fPdorAYpN3ZaqNeh5q DKCVK50PXmkJNIFtf/C98l5Nze1h/NlurwhLinfexztYZYMKtfbWkdvsylzYDhVYDG1PPnyNBgfF sMPPI/fQ0jZEsByFiFHGNhqmiyVz/K7RcjG9DuuLqmiAGOXKEZGZ2y+PtkaXr9j0Hd2TKjYSZKeP 6SgexnyxLd0T+hRak1PxjZx1r0c50ff3vv2JWMTEW5cmxA92gxD6MrFUIrqGMae41fciE9sFotse Xc54F+s9dxd5BlrpFyEJdOouLZCr02L0JIENnKNXrY8q2XkoDuTq1asdLrCXL1/+wZw5QSLSENNu VPOQ2NCZBqB7+Es5m3aBJrBtg9Vq/WFRUQkZDCbpYYnLw2fdtYVt24Ev/3mMsCdE1un/HqfvcoE9 duurx0etzKRBHIHB0YlutEbOylWKqSYYSKKz0Kj1ZXTsw7+Fnrzy/vAjzN1vPxp+4MYD5r1uxZIb XwzfzUTdUM+Tl+/8L9k0DnH2fu3PfrUkk0XVJtYd9mXB9BVdkViQAwtt8HEno4jxMOLOaRG9PmuI pmM3P9sjZ99rceFe7fCdl/4yc13JOXpufjyLayp5haLHBLsNSbsOeYs9hrHHL8S19eMBRJewGcst ZtJAQ7p46PlpUB4NNWWQKW5nmxxNTxHYK1euj571OguYKw4elJ1Yc5ukt6fAvvnmm8ux1i7KdEVg lXZgVGxYWNggOZt2gSawrcPt2+8Ny8rMFdsKYg1pfOLeUMoFXb7/XKDy/hURrFKOQ3Kbu1xgd775 MT0RHEvu7Nzc0Z0Gp8afak7LGdEd56nLoH4sHEPm5dPvl2XR2IWx9LsFifRCWAn9dmku/WFpdtdy iY1+v7iev1uKz3R6eVECBSyIoL1nr5+QTeMQ2ZXvkZ8uhTxDILA28uN2+2HEKgbpsDh4sxPHqFU1 GynEe+r+IYXkNSeZZm0tdHrB9lz+oMAYU0JBMXtpVuz+Bpwde0CVjdPZUy09qJYWnBOznwL505h0 mOZnnKbF2efseJaWZlfSUpsd8bfMJelHmcdp2vpiemluMg0JiiYfLIkYwlGqGV3kGOGbIURWWiax mAUWg+bSxD2lZj9nlAQWESw/9OnTOSrO5byL6ElDMllPvZ0hm7VV6CkCe+DA4dFweGr1USU7D3D+ /IUO69meAltZWbkcSyPWRTiqeUhUHCu+Y/Uim82mCWwXC+zNm7f/sGrl2jqhwyeoCKt9HWCD9qCS r1NxBbnNXS6wAesLaLA+hR0RVtDBUod4f6jutFwhHJtELE6BaSiZ4hO/+QhCxLuODVehYurS+bhN RDl/XppGZz54NEU2jUOMWcERF8SR2yMiLIgAbKYQxwQlmzSl9Pt/6nJpuCmJ9la//bactUMssByj wbpkFgp0S3dH4jo3pTQVKZMjfGnxDaQV83+5/cq9ItlPYf091NoHPUE+F8LtbcoS73ERzfrorTRh lbXNTqanCGxqatpo1A9lq9XJnqItLJxgc1t9tafAHjt2bDkGVEFgnU3TUdqAMqdMnoYl8DSB7UKB ffPNG+PDlq0SbVPmpTYk/i86go3LaYbc5i4V2OPvf/n1cI5e/fSIHvD+EANN0MWp4rDagf3NuV3O pvXKJb+52FklldYWnXdquKM3/nJ7RFAMR/zSwhtN83ONj+swyCmffjkvyWmZuy5+OPkXxigahAcC 0aWqnqdGOwqBxUMj9n7lB0c+NiwkmbaUnXtLNmur0VMENi8v/6grAqu0QxnNu27dxgI5iyZoT4E9 derUcjhAOC1B1TwkKm1QBPbMmTOawHahwC5fvuod3AOYk+pSNNkV5DZ3qcC+sjH7u6FmTCuRR3Cy yGJ6RF8S2J9yFNlvTjo9F5JExVc+c7jRtIJZG23kNyeexbG41QKL8zBv1kefTqmn3nN6sSKKKugp fZzU/a53tpGARoXSfQ1xxdzaNPr1ghTac+1hi5dGbIyeIrDbt0eJcp3traq0A+IKB5KQkNQpG65X V1cvx4hllCnKVs1DoiJSmsDWo6sENiXFsgqC1G2FVSG3ucsE9uon3518aW48eQRhQn+RGFSCLjxl ioSaw2or1QSvs9m4Th4hxTTQnEWB251PWj/+9reFzxpi2EZZ5BVS0iaB7ceO/2lDPJW982mz/6TH 3/lyxMglyeQbmEhu+mxNYFtALwyWMhaJB8Zhunja2k6LnvQEgb169aoPdsVBua44QrQDoz7hkCoq znSKwF6/fn3566/PFuKKPNXzkNhYYLUu4q4TWLM5lPOT7xm+Hi61ryvIbe4ygV2fW0FDg+LJZ24R uZkhsPLSfVj/tYMEtjvSXWejJ/XxVFD9Ya5sGodYkV1BPnOSyC04m3w5AlXLz1V6BafRqpyTdJno B3L2qsir+oDrF8ORGN4lYgBVx23h1tvYn+3lZcinQfzg+CtTdLs4F6AnCGxubu6LGEDkqvMT6dh5 NDeCGGhPgQUwrQPlOotgGzKANm7c2K4Cy1FZD9yurvMFNj4+US9Nv2m+TXivjvsE9yDSY1MG1AHH YGd74nhzxDkKlWk6CtXKriOf2yUCW/XJd1m/mm+hgYY08gktFoNAIKpiwr88+ETNYfVGDjGmk/8K 5xsRV3/8KOI3C63kbc7nKDKPo1hphyG1PJ0Rg6tGhKTSStvBZrdKK7/80T+/urWYBhjTxCAdsb4z Bkj1oQegVpNthNcdmELlM3MHbd95oc3ORUFPEFh2hMIZuOSImGK0MadfuXLNh3IWqmhvgV20aEmd 81TPQ40BtG/fvna1pcWSpgmsC9iwYZMkik4EdtKkKUJkIa4QWXDVqtWUlJR6oKio1GWWlpYdKCvb XcftEVHnYU+XImduc5cI7IaC85XDMAVCl0lugdLqQ+gehtD2Y0fepwQ2MIYidl2+KJvGIbYXnj74 hC6RfmLE7kIsejqrWCxCLU9nxHSUV3fspev3a38iZ6+Ko7c+paeCIsU5YvN6vj5+fJ00gXWBbCNf vZXtlUYj15ZQ/oX7P5XN2mZ0d4ENCwv7e4zOhTNQnJFanRRCLMV7WuGE83LkbFTR3gK7efOWGjhh lK2ehxoxlWh+m/Z/bYz09ExNYJ2gqqrqR8oG/uP8my938uQpNGrUGBbYcWQ0migtLe03cjZtwoa1 W0Zi1DJs6tSu3OYuEdhx4QVCXLEtmJg6g9GpTMw9lDYMV3FYPZjiXSlEiemF1ao4EoRYYcWpP86N oYsf16quWqPgzEe1P5+8Pk90nz9mwrvXIvIN5geUZhblQP6wJ6al4OHFm8UY6zSjDoNN6VR43vkW fiEpB2mQ0UIYCQuiPLE/KvJpVF6fJNtB9CIIe/B3cy556LP4+ki9Mf31ufSMKYWKLn7UJsfSGN1d YEtKdgoHiG3qXKkfnMvEgClio/Vr127+Xs5GFe0tsDZbrljsX4isah7qRJfjhQuXIuVs2oySkrIe KbDYhk41P5koW3l4stly2nT/ZWZmjkA+zqJXEMIPTps2jfi8X8tZtBkQWNzTzu89Jte10wXWVnGr Zrje0tRZ9VLiYQErVCnO2M2YS24hheSGlYP0KRRVcNrpEoVLM4/PGWZMFrveuLO4YhF5saRfM6Ot MS0ExFxMaT4m/80iO8CUSb9caqOzd79qdieXyw++sz5lihcLgGDeqLQ/Klbb0qbp1JGvJ2yC6wqb uOv5M0RaXtGTbears5E5/jCdfu+z/y2btV3QnQX2+tW3EtTnJTqm8r5swYIlTqcwtbfAXr/+1lA4 QZfFTSbsvjp8fbvZc+/e/b16kBMeYLKy2rYf7Pr1W0Yo+/WqlWNPEeUyV69efUU+vV0AgUX+Lv3f dbbA1nxR+6cZm/JokD5d3WH1UnqxwErvSyWB9QjJp4EhWfSEPpZqPvnmb7J5HEIfmU8+YmoO3oMW sFN3LrDYwUVEr2KhgxxyE1G0jYbqEmjDrstOL3p45pFvBukS6XEuB9GYWOmI88SUE01gZQqBxSIX 0jKf7mbs/cqfHMViqco/LsuifTVfLZNN2m7ozgIbGjL/b67WSaEyEKW09MBP5Gwcor0FFli8eKlw XOp5qBNRGZbmKygoOCRn0yb0RIEtLCx0KYLFJ67v6tVr23T/HT9e8R66512NHseM8Uf0eko+vV3Q rQV2y66Lk58yJYuuYVWH1YsJJyy6wNkBexkyaaghgWa6MDUnbvfFX71k3EGDTOkcwWK5PRZbOHam WjkKpbV104U49jMX0mPmYuqvs9Kv34ijQ7e+WCxnr4o3P/vu4P+dl0R+EGeOtutHeKM7tHVTg3oj xbxttouIXk2FLLD8ACSOpdFT89Jp+66q7bJJ2xXdUWDx3nXtmo1iVR1n814bE92tISFza+WsmkVH COyBAwcqxShT1TzUCXGF7ae/MpMOHjy0S86q1RACq1KOKruJwO7bt+9tf39/9fzsiOuEa4Z1n8vL y1s9FuHkyQrRdtjdWZtQJiLYhISkviGw5bfpH+dbjpKfMV0IjZrD6q2EGCoCi/evPmyDZ1k0S6/e vy6bRxXl5fT9FbaT9ETgDhY77PeK7kcpL7Vy7CkNHEvnyCqXHmdxdWORfcJkpbC0g04veFj2uYoB c+LIR8915vNQrojWRLl97+HIEcU7aX5YwrttJbL3M1joaVM8hZe9+blsznZHSwQWjgbEijcnT5xp kQN1BWfPnv3vxcXFS3XBxrq6OBM+e+cIoYTTOH/+QrWcZbPoCIEFMB920sRpom5jx7jSDYm2Su2d OmUGWVMyUo8dO9as4DWHfXsP3nNepsxuIrCVlZUuCawg5w+2pZs4PDx8BNaBFuLppE24P3A/mk1z qbq6+idyFm0GNlxHvq7UAe3tNIE9cOvz0OdDrUIgPPqSkxbCJG1urnQj+uqSKGBlCp24W/tj2Tyq qHz/0Wu/nGelIYY0jnoxaIkFVhY5Z9200ibfKBPbrrHzN9poRPAOKqn+IFPOXhXVHz16wn8NR7tB LM7BmeSDQWdG6b0iynUWOfcpwhawM7qGObL30afRsMBIeiNpb7tuZdYYLRVYIWL8PSe7gFauXD3G Va5bt3FMVFTUmISE5DHJyRZmsvgeG5swZvXqdWNycvII3avSWr719XDmeJTfUTfUf+nS5S473Y4S 2D179mcqUSmE06nztBNYpEXUzjahvLyCJbt27foHOVuXsX/foXvKdXLKbiKw165dixk/zsX37Zy/ IjgHDx78Ws6iRYiNjR1hf5+5QvSorFq19tD581f6y9m0CeHhG0Yq18lpT43cXvlUh2izwGL/zS27 ztPgOVbyNNjY6bdueklPJKJNX45yIHbYHxQiO9SYTBmnbjo1fN6J2zRgThJ5cyTpHVpCHtjnlYXS y5TltBdAWWAeZaJsX10yTVid5bTMzKr3Tw03471iAfno5C3chFgjXwhs37l2rhAjxPHgg+9D9Ek0 O7KAbj6snSebs0PQ0i5iOBnliRvp7dk4rf1vOAeRLxwJ/lY+EenBySgih2P24uDMoSuChO/Iv6Ki MkpumlN0lMACb8xdKPJV2q+ep0L8Xk/UBc4f3ZKIhteuXU/Tp7+2cMmSZQuXLVvukMuXhwtGbI2S 81IrqxG7icACAQHOroFMzl8hzomIiKC9e/cuvHnz5rNyVk5x4MCBn8yYPtOF6477eAqnk7uT+T4I C1tBVmv6wqqq8wuvX7/eamak2azK/5HTenBbO0Vgs0/e+acXzZE0IJgddAjeI2Y2cVS9lRBYLP+I dWnRTetlzqUX5lmo5M0vmp2OAExemkT9gzOEsOIdH7ZSw+AZ1wQ2n/qZsUpWPtchi0YYEyhq//Xb ctaqeOdr+pU+sZx89fwQpMulgVx3n2BstcYCK6JYdE/3PoGFSEpU/10hBpVJ3fNSFC+6/NkuHmyf weZMmh51gI5++O3rsjk7DC0VWDgCrEBjL4IKkYc97X9T0ivH8SkclpxWcTBq+TqjMtI4JTmtRU69 IwU2L684dOoUaT/RxrZoSnuBlY6Jc9gBQmTFtB/5u0P6S3ZDOyYGTKPJk6bX5dUsu5HAzpo1Sz2/ xuT86+0xThBzVUND59KmTZsoKiqaoqNjKTJyO8XGxlFBQfGbchENsGLFKs7PhTmofF3G+dvfw9J7 4OnTX+V2vtaAr73miDPt0uH7TJo29VWRnyv/d2hvpwis7cw79IQhkQWCHb+IhvpONyO6hwcEpZJb SCn9hDlQn0Abssvp9gP6V9k8qth95dPPhgXFcPQIAain5Nyd2w/vBj0MOfRTUyl56bPoz29E0dUP Hw2Ws1dFyqm3DcNDk1ic0aXN+UBMhKA0zb+3EMLqYcJqYtJgLtyb0oMEP1zwg414740HG7YHRm4j oscm994h0n6vnqEFNFgXRwtTD9KZ974YJpuyQ9GaQU5dTUQTihhBUAImoGs4jAoLy5v9P2iMjhRY IvpBRkYmjRkzRsyhROQD+0oPA4qYKlQrr5PYjQQW4ohz0SOBcqSynNkJaRxREsNt26JU65KQkLB8 /Pjx4rUE1iPGPSD9DzSmWrn2VCu7Oarl4YSdJbC/n7uDBugsHL1J8z/7m9WdXW8kor+BHPX1Mxaz yBbRf4UmUvbZ24tk0zjE9I35tUMMbZgvzHZG16WHuYR8WODDM486fS+4KusI+WIjd7X8eisRlYqu dxZVfrAAMbVJjNRWjos0LLSGAk5fIB5cPPgBxs9opSd122lj6QW6+Ck16+zaEz1RYOH0EFEozh6R REXFGZPcJJfRkQILlJeXf3/ZsmUsrtLiE2PHKKOiW+rAO5DdSGBzcnL+HediUREpWmy7nVBfRwLL 5f0gJCRERKMoFw9BTUW9deW2O7l+HS6wuZXvvfukLkosWPA4OymsXoQpJKrOrjeSnbNfSD4/WHC0 E2yhObF7nRq84u43Z4YH7hCrXKnm6RI5MmMhgFA8yZHw1YffNbup+sFr98b97o1Y8tajl4GFRDXP 3kcIKN6R+8oLckhd8BjxjXermHOMKB42KWKWkJe+kAbwvTwgMI5+uzCRyi6+c082YaehJwqs4uQR DU6dOoOOHj2+UW5Oi9DRAgtcu3Zt5ty5b9DIkaOFfRvauBs48G4ksAC6bf1Fd7d0XerzbZ2dmhNY oLCwcNXEiXwvjfEX16Zh+7rB9VHYGQI7dUMuYS9Mj5ASMZrVW89OTN933sHi3asnC5Yff38iKJpS T9Z8IJvGIRZby2mA3kJuptbvmANxhcgiCn51c5HTixx/4LzY1cfDUMxC0radenocMZCLieUgIay4 T93R28KiinnHXuKzmMW2gAYHWeklcxIttJR/d+7j71Jk83UqeoLA2js9fMcIXbEc4quzyWbLb/X8 4M4QWGD//kMh2GlHOPEJsLEUKSEKVy+rE9nNBDY1NdVzzpwgzgfl1L8flV4LqJTlhDi/OYEFtm7d 9nFAAN//uBfGSuIunS/1lDTOs0vY0QK76/K9fcOCo8UCCY+bOQIw4V1WJrPvRLDiHR8LFoRuzNJE uvRZ7VRhHAeouv8366/mp9DjgVZ6TI/t4dTzdUa8O/RlOz8dvIMO3XjQ7EUuufzJ4yOXW2iQIZ2F BIv69x2BxXttD0yzYVF1M+AT72ILyJOPufO18zHnkE9wBg0MstBTQfFkjNlPZRc+ssmm6xJ0V4FV ogmFEEAIIY77sxNcsGAR3bz51ma5Ga1CZwkscPHixdDFi5eIrmIILbojMepZGaDVZexmAguUlx89 iG5/MbiL7YTro4wUbylRX2cCC7Aw/UVZZhP1r+8uVs+309nRAjs/5YB49+qO0axiPiUGzChUd3i9 jdLo1CJ6xpBAkUWnbgnDNIOoA9foCUOKWBFImf7RGiIaG6C30qTwdCr/6KN/lrNXRfHlTzh6TSKs 0uTFDwOIutXy7I2EwLqxnTFC2xvvXHXZ/KCRRYONFhqsi+frFk1/WpJKy9KPUenFj4quPiA32Wxd hu4osIpjU+qDT6W7cOZrcwhzZi9fvtzs3sOuoDMFVkFiYpLY/kw48e7gwLuhwALl5eV7AwODhchC XJ1fH3Wivq4ILJCfn//ttGmviDKlkdnOd2/qNHakwB64+VnkSyGx5BvCQhFazGKBOZTKTiPqzq43 EgLraSigF0Pj6ez7f3tOtqkqLjyo9R+zioXRlEW+oRy9igcS9XydEasLDQxKJMvx204vsC5iN6fN pH66PBGxYVEKtTx7K73QRaxL5weSNBqmT6VnWFj/tDSNFmVVUPH59/+y/8YnI2VTdQt01whWcW6o E76/PjOQsjJz6fjxinazX1cILFBYWBy6bNlymjxpatfbvJsKLFBYWPjk5s1badq0GXUPWC0l6uuq wAJlZWWzcW2wpvXo0f59Q2DXFJ6j53SRNMKcTAODE2kwR0hD9Yk0BNSlMC29lkP19RyuS6KnZqyl tRmHnBp65+krH/1mTjj9LGgrjQiOYmcfQ0M48nVMtqUhuSHZzrD1U4HbaMLCSCqreudXcvaqOH/r bvWvX19OPw+KoKeDY+ip4Ggaro/lvNTK62QaVY61goON8TTIGEeDDXFsnzh6iu/JF+al0y8X2mj0 ygKaszGd1tmOUP6Z21R24f3oyD3XfMtvk+/tv5KvbKZuBZ1OJz2tY2cRrKTD/3Ri0XVV4jdHVEsP 2qeR/qlBlKXMYQSxig/228RviCIC5wTTkiVhVFa2G3MbfU+ebL8l6hRcvHjr31D26NGj6eU/j6qr m8TG7RhPOl37CCxQU1PzL5GRcb5Wq5WFWyem8sAGY8ZgHWN0jXKZ4rrATvast5liN4mo80TR/Ywp J2LTeVXHWk/pwQJ5osvducCiPFFPu+uoZrOxY8fS9OnT281WkZGRvomJiTRnTqAoR6qD/bVRWF+X UaPG1kWimBMrZ+USzp8//0OUmZaWRoGBgWzLyWI/WLRLKrs5qtULtE/T2H4q6XE9BfEdx7DZ+0S6 cePGNrmaqhACOwHp7fNXqOSN/3OJM2fyg1BFzYeRZ9/+lKO2R3Tmg2/o9PsK/8b8kk5/8LkKHzqg WlqFaulBtbQK1dKD9mm+aPS3WnrQPo3EivcfyvyMycfefujy5sxIp5D/aDXr8nAC+/LqzunlbNLe HgbUmf9psQvT3928efMPTOoM3rp1qwHtbQhKtetwoJy/u3bt2u3y8vJ/VKunPdnxdsiGC0qbWXTp 6NGjtH//fpe5b9++Ou7di78PiK3vnEVeSiSKKTFwvmvXrm1WYAG2E12/fn0R1zNVzT4KOQ1dvHjx kXxau8Hu3vg7lKFWtkJcT76vb3Odf9eW+0kpE+R2/wzXSK28jqD9/we3hWB/uVrNwalt7PPF3/J5 GjRo0KDBGeJik++NGtn8wvmKwKI7EYN7oqOjnQqsBg0aNGjQ0KexceOWe65GsFhiEd2oZWVlmsBq 0KBBgwYNzWH2rKA6AXVE/C6lCaApU6ZRW7bH06BBgwYNGno9YmPj72JurbP5tYrAYnBbSMjcdpn2 pEGDBg0aNPRKJCYmf4BpR2NGj3NpYQYILKaiREXFaANdNGjQoEGDhsbYvXv/rwwG02cBAZPESkQQ 15EvY7qPurAqVLZdO3z4qCawGjRo0KCh5yDNmiGEDIvXS3ONW0EWwbruXCbyg4CK6HPUuAaLcbRo UQQxL3I8zZkzh06cOPGUXGUNGjRo0KCh+yMlxSqLovSus1VsJLD2Kz/hu7KMoPJ7AxFthmIFq7Fj KSkp6S25uho0aNCgQUPPQGpqWp34qYlce1CJXltaBlY5MhgMdPz48efl6mrQoEGDBg09AykpFlVx awshpBDtxsLtishiacRJE6eJdK+8MoOKiorWyVXVoEGDBg0aeg5SU62qQtdVhLhi+g7EOSMj84xc TQ0aNGjQoKFnoaHA4t1pa9hQJNtCCCu6lDMybNp7Vw0aNGjQ0HPR3QR2yuTpVFy0U5uSo0GDBg0a ejYsFou0BR/23lQRvPag/btXZVSx8je2t8N0nICAibRw4SI6cuSIu1w1DRo0aNCgoeciKSmJRQ5z VcfXCWF7UxFZRWCVUcUTA6bQa6/NpLCwsPcOHjy4T66SBg0aNGjQ0PNRWFhYFBERQZGR22n79qgO JZY7DA9ffXDx4uXbLZa07VVVHbN3rYbehu997/8B+G3NVO40NwwAAAAASUVORK5CYIJ= ------=_NextPart_01DC322D.ECA9A450 Content-Location: file:///C:/0D2A2649/03-3Metodologiapararesolverproblemasmatematicos(1)_archivos/image013.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAlQAAABxCAIAAACcBKrSAACAAElEQVR4XuydB0AUR//3fZLn+SdP itFYMfbYS6ICV2h2xYYI3HHHHR27sUVjp/duib2LHbGAvTdEaQqhK9J771x95zdztxwIxprkfdyv 67E3OzM7M7c7n/1N23ZyWrRo0aJF6xNTu5YOtGjRokWL1v+6aPjRokWLFq1PTjT8aNGiRYvWJyca frRo0aJF65MTDT9atGjRovXJiYYfLVq0aNH65ETDjxYtWrRofXKi4UcLJJPJWjrRokWL1v+uaPjR AtHwo0WL1iclGn60QDT8aNGi9UmJhh8tEA0/WrRofVKi4UcLRMOPFi1an5Ro+NEC0fCjRYvWJyUa frRANPxo0aL1Sen/C/hJUeXc0o3WBxUNP1q0aH1S+v8CfrQ+umj40aJF65MSDT9aIBp+tGjR+qRE w69JnzIAPuW806JF6xNUm/CTKaXqIpVK/7JaUnki9IlO+nHPS3LaInd/ZWb/dn06OaVFixYteVvw +/urQmUClACU/V1jXv7+ovhL9IlkkxYtWrSIWocf0osXL27fvn3//v0HDx5EREREKlVWVvYXVJRK 1snkkmq5pEouFxPLEwy0ln4/gIqKiq5du3br1i2U0ygslNNHjx5lZGS8n/2HQrYM3Pxr09G/De9Y 75FHWrRo0fr/T23Cz8XFpWvXrn2wvv7663ZKhYaGtvT6vmoChFQul8ikErlMCl/Ka2LPZx5dk3pw Se6N38VladASiY5iMxCTAny9p0il/+zZMxsbGy0trX/9619UTpEWLlzYMsCfCyIEkuGWVIkcsoOd 4KtULhOTc8IH+gobYjr++Dv587eenBYtWrT+arUCP1xry4qLi5Hxl5mZmZ2dPX/+fIoHYWFhLQO8 v5QVL/BBJpHIwOArufN7zFrmPbs+t627RywbEbl7dUFGMvIjkZJ6+lWb6l1EMkv2Gxoa9u3b98UX X1CZXbBgQXPvbyZgGyIzQjhQDcAG3ZYIgihnEkxE9IEgKAaQwyaSyhvBwweg+TuKhh8tWrQ+KbUC v1fl6Oj4ceGnlAx4IUE74rynCR4zn8ztEz23T/yivkm/DLi5ZuZya15ERDjlF7yrhH03kUpfFYHG xsZUZhctWtTM95uJpAzHqIiTxI8dYMP2HwKfSAaGLlCReJO+f37eVTT8aNGi9UnpjeC3ceNGigcX L15sefhd1YSEJidkIYnR34qnoeHLRz6e2zPzt6GF64cm/Tr4rpspb/pYM76p0v+Hgd+r8vHxeU/4 STHGIGMSSU12jqy6So47LRtlpOtSMZAUGnhlYpKFhqLC+pKyv8/wo+FHixatT0t/G/yo2hb68ZS1 PkYhWH41iTfCV4x5ZNsjafWItNVDYlYNv+lta2E0fcjggSUlJcTvR4LfkSNH3gd+OEkyoDj62yi6 umpTiMAu/8Y9eV2dHCMQ51cqpqzC2vqM02eO6c+I27GnKZa/XDT8aNGi9Unpb4MfUm1t7YsXL1SH U5JGQfiozkz73TrWTu3J3N4P7QZEbBh33muZ+tBBw4cPq6gEQ+rjwe/06dPvBz+w7BR/SkrDZvIO dOx9YvDoewuXFoWHEzgqmzcl+XfvXrf65Vi/nw536H6FbyOva2wW118oGn60aNH6pPQ3wI9q6gwJ CTEwMJAq7T4CDTyhHejQkBGeuoX3cOnIe6v0QuyFJpP00NnXrllDRfPB4UdS9Z7wI2NQyaCc0j+S T6jrhfYaENp74PHu/Y8O1byzemNZQgI6VPv85cO1G4KGq5/sNiisz7BzvYccHalVHhsnx7mC/kAy XqZpaCuJG4+g+Qii4UeLFq1PSn8D/CjxeDwGg9HCEU/mk0iwgSSpzry3y2HR5J9+6tv566/a8/nm pbjN86PW1O8DPwAy/IPhnehrVtiNY/1HXuk5+HLfkRf7jrikNvhYt35HtXQifllxfqz+0S79z/Ye cqnfsMt9h4X2++lI14FxAdvlBHBSBD+JVCZGhYGnRpAJEXioqOLJ4QPro0RKixYtWv9U/Q3wI/Vs ZmZm+/btJ0yY0PIwHJdIpSKxrBEBpLGx4eHDh0HHgu7cvt3YCK2CH7uafh/4yTH8yIb2n27ddqzX j1d7D7vQb1hI78HB3fuf7tLvSOc+uzv2ONip9wkEwh79zvQadKnP8Ct9R57uPvC8sZmsthJzn8QD kyRIdgGreJgobiP+8CXwsUuVFi1atP5R+qvhR1WyTk5OKLZp06Y1Py4n8JPJxBI54p+kxQBIiQx6 CJu7fWC9J/yasiiW3Fu29Fj3Xme6Djr8w8BTTL3LfKt7a+yjfbfG79gf47/t/kana5YLQrSnHes1 4kyX/ud/6B809OecsFBZY32LGPGsf4lcIlGMIv0ILZ80/GjRovVJ6ePCT7VKheY6WOMEcJaYmNi9 e3cU2/Tp05t8K7yR5j1FC59EYfTgQ/jvm1fSb16hk7SR/feBnyJ5OCZpScXZiTP39+h/ydg6ee/x 6tQX8oaGFv7ljaL6rOzUM2dv2iw8PGz04e59z45iXjYW3F+x/snmnS9CL5XHxDTkZMprq+SSBolE jPP/MQy/tygrWrRo0fof0IeBnyo82nKnRnWWlpZOmDCBxNbC8sPeAX7K4ZJ45IdcZUWwD6FWU0u5 nDp1isqsjY1Nc1+gV1f7bBahTA5zNeTyvNj4o3yb50ePSqsrsTN+Ib0UZjuI8cgeEZh0Sokac27e u8q3PqzW/3jnvse79T+qNuBI3+GnRjAv6E07b2R+b9sOqahehoN8DPq9WiC0aNGi9T+s94IfqfRV 602xWFxRUVFeXk7651S9kf2kpKTJkydTsRkYGFDe3k2vr7VVj76aWpTOgoKCsrIyykXe3PITCoWq h2RKy7VVtYhfXFYuKiRTElsKd921Fk+jKGXbzqAhY87/MOhS32FhfYaF9hx+Xm3gvu96XlmxBq8S ign6EZZBUy0WWrRo0fqf1/vCj4LB9evXLSwsmEymrq7u+PHjtbW1jY2N9+7dm5eXRzxkZ2fb29t3 7NiRxEOWkGaxWHfu3Lmtolugm/fv3cqIfZD15Mbzx1dSIy6/jLyZFh8ZFxeXkJiYkpKCdmJiYhIT E0UiEYkcOW7ZssXW1pbH4wkEAkdHR+SBSiSp2SmLDaXEy8sLMbhv377fffedmpra9OnTDx48KJGA JaZq+anCj8ID4mVQUNCSJUsQuZHlamlpefjwYYqgEpksJTn54f27Tx49evr0WWzs02dYUZFR4Y8e PQx/WFJUTOIrKyt98OB+ePjD2NiY2KcxEY/Cwx9HJD59lrzv+JGhmhd6DLrYd0Rov59C+w492mfI 86PHcBrwJIpWwfl+ouFHixatT0rvBT9CvsrKysWLF6NDw4YNCwwMfPToUXR09NGjR0eNGoUce/fu vWcPrF2ybNmyb7/9tnv37sjl//7v/wj8/vvf//6A1aVLF8QhhEY1tR7d1Xp88+92yycMPCL46aDJ wL2cAfutNfljfx4xYkS/gQO+69jhiy+++Oyzz3788cfa2lpkva1cufLLL7+kUkj09ddfr1mzpg6v q6Jqk4WEhCDmET/ovBMmTGCz2SQxCGYoLyiDVCQtLD9k1yLE9uzZEx1CGUGgRQicMmXK559/3qdP H5JNpF9//XXgoEFDhw796quv/vOf//wfFkotKpCRI0feuHGDeAsPD9fQ0ERnR7lGCRgyZOjQIYNm zzFsqKp+fijocL8RF3qNuITg12vocXV2aXSkHE8fhJEvdLMnLVq0aL2f3gt+SDU1NWQlaCMjI8Qh 1UPIGNLS0iKhvL29S0pKXr58mZubi8wghArijthDXhyRlpaWkJCQlJSE/GRmZl2/ELLdUusMt9dZ bt+Txl1vrtDMeXIxIyMj7OJFinP9+vW7d++enh5Mfu/Wrdu8efOcnZ3t7Ox69OhBPCChr6oTJJDF RoIjXLm6uhYWFsoxwhGtkdXYDg/A2bVr17///W8SXBV+KKfItCXuyIQtKiqiDiGMDR8+vB1+C0Qd FrIOUU4XLVqkSEe7dhwOBxUICtXQ0EAeGlDC0P6VK1cQ+dB5Ue6KCwpLSopFcqlcKn60welIj0FX eg8/o9b//GyOpAQsSxgHpNJR+AFFw48WLVqflN4XfgEBAcT92rVr6CtpOZQrK1NqnUyEHMQ8cqii oqJ///7EfebMmcqYWkh0zdn0qJHacbOBJ3hqUQ668pKncgzUXr16kbDIUiQQNTc3R8ikQiKCjhs3 jvhBOnnyJHG/c+cOCkIckbFI+adEsokMO2SoEW8oZnIIZQeBjThu2rSpeTjQixcvBgwYQIJQhYC4 jsxcEgpZvVFRUcSdMkPR4wKiJqJ4Tk4OFZUE460xO/eMvsHpHj8e69E3fPUmmO4Ah8Qk5AcnFQ0/ WrRofVJ6L/hVVlaSGh9JQ0MD2S7UIVKZPnny5D//+Q/xQDED2VtUw+Or8/xIHVyen35wwYTjnD4n +P1CBWrJ7pPEeUCO4uKSvv36tVN2GSItX76cnIsiClJ8fPz3339PPBgaGiKXqqoqJpNJXDp16pSY mEiCKE6Kd5Appqurqxo5ZflRo2DU1NSQndoiLNmnXgexYcMGcgjJ39+fOCJNnTpVAi8rVPhH+yYm Jp999lk4rPkJ8cAx5CxT0DP1wKEjvQYf6zXw5clgOXmZvXLV0A8uKju0aNGi9SnoveCHbCzKHQlZ gdQhUpkia++bb74hRwUCATmE4NcPA6zdK/CT4YkOaOfh1fPO0wYF84ee5Pa9Y9Un01NflAOdXkWF xRQ4kYyNjRvw5DnSkEhxBX0lzaFIyMpEVDt37hwVatSoUS1aaElY9BkWFqb6MncCP3QKBoNBXCZM mEB8qtKC7EdHR//3v/9th7sbqeE2tbW1VEqQdu3aJVem1tPTE7mQnkKScrx0mVQsF5M3/Imzc8+N n3FUbVD63r1yPNUd+8DjdpRSJuF99QGjokWLEp7Yo+ymlsF1JkcXuBTebiJTHlUe+ogb+QujpMXo 8VKKN+VRSIkYrx+h9K4IIpHJG+DNm+CHHJJCFMrx1njUmSKKf4AUCYe/Ejw6QF4nk9fj1Mqk8ka0 kTLHyX8rQSDVfOIzSWENRtwLA1UHLuHWByOQkK9urz2oPP5h1Fbl9l7wKykpIXPVic6cOaMSCBQX F0fBb9asWcTxNZYfVaH7Oa1dqd0l2HxoMKd39KKB2T6TGnMeI/fiwqJ+yrAoZhQ/CaUaCREy+Ii3 jh075ufnr1q1inxF+vnnn1tMb5ArI0FQpGzZdspmz6tXr1Iu1tbWLQJSQkj78ccfibf58+fLlXE+ fvy4ffv2xL13796ZmZnI8f79++irhYUFCUuhDLAnEaFbjgxjfbzR+UjXAcd/YqUfPw2nQD4ljXDl UUEU4d5XbxWJyfLN2gJnLYErW+DJFnhpCby0zbx0+V46fG9tvq+Wmb+WGfr0aWtjC3xYQm+W0FVL 4K3FD2ALvJlCL6aZP1PgzxZ6aPO9dfieumZuunxPFK0W3vCJ4FxsgS/bzF+b70MOYRfFhr6CO2x+ WvxAFDM6l7aZt9LRG0fljw5p8/11zDy1BO5soTtT6MEUeoJPvi+O1ltL4ImO6kJe/LTMUFR+Onwf 9FWPTxxR1nzZQjc2Co5Thf17jOW7j+N56vG8dXkoeejUfmyyCVB+IU7YzLxYAj+m2WaGMIAp9CFh cTI8WKgEBD5MIRQF5EvozjJ3Ypq7MIS+yIUldMPBUWwoBh+mAAqNjUrSLIBtFqg8C5QSU+CL4meZ BZBy00LZaSp5XALKlLzDZrxs59uuryQhVTH5ArWaDM/YASDK/kL4kTPAf6iupfBJIACuLeFH/uAl 5MlcXMpNyb1/OPww8OSIfAjeeF8G7xJVwO/tkwsxqgbEO/it47AGCV6AkczKbgqiIhLy1e21B5XH P4zaqtzeC35Iu3fvVlNT+/7775csWVJf33JdLmQAUeNTqMVcXg8/OawLJjWZPmW5dpfTVkNC+L3S Vg3J8R5bn/UQHSoqKqDCdunShXSVtZo36oXsCH7Pnz9XfT/74MGDyVCXVqU6DZHACWWNcuHxeMic RfmKbi7kEhUVNWjQIOINQU6Vr+vWraNiWLlyJbF9kUgyqPTjSQz49YZSMQx7kcszzoUe/fGn8z0G Hhs8JvVQkFzBP7jgKJHlP1spgrdRq2XYlkyWb0VVtpaCRlClIhTp8OET17AEM6/boO5GFTryyffH 1bEHGxEFfRW6apt5IPjpwKcXoIgEUXDCE0fuh0GFIOQN8ajCD2/gR0DqesBnc/gpYKAN8PNkAfk8 WBCWgh+cC6UBbUr/3pjHXjhVXpjrvsqTQgIQwrUBlh6I1jjNhDTUuSCdOrBBYpB/xD+84RTivOOU eCkwiU5HciFwYwncWWb+LIRJIZQ2xEYeAnCckH0oNF98LoAoCgIewJ0koCm/fxf8mlVn5D9eoRbX p1KCxreL8Z0kIydSTU0z+EkJ/F4R8UFs1xaww1X+P0iQMlLAykTi5UFINsHgha9kkax3UFO+FTsy bBM3g9+7xfwXqK3K7a3hFxYWRhyh2sXNd0VFRbm5uc0CKPXgwQOqFZEa2/Kn8HuZmTW4d881Y38I thh80aJP3saROe7aNc/voENFxU1hO3XqRKyoVvNmZGREeUtMTNTX1ydf270WfihHEydOpHxaWVkh Rzab3Q53BKq2iL6qzz//nNr/+uuv09LS5Mq0FRcXjxgxghxCDwrq6upffPEFmfOgmngZftMtxplY gl/qWxGfGDSaHdp7yPkfBh38cUTi7r3ogiOtGiSgAoDvfeW1WoZtyXjZbgAAbH6kcteGmt0D1+Ng TuGd12xQ+WqbuSOLSofnpwOkccMxuCODUgd9muGKHmL2I0BC5EDuhIgoFBhksBE7UkE+ZbUOn2ww K13IuRTGn8KDGzqELC0tbDUim48lxMYrwE8BSKCL0B1sO6HCtlOaaDhysLcgYWRTtbpUMOahLXCF 7GD06vB8dfm+ejwvbMt6YEShM2LW8gF1GC0KRCEXZF/q8sDcRB7AhEUnglx4gmeBm7bABbMWlYkC 9tqKwnHRNXNB59WCjcCSxEzxT+VJ4hWwvcn2DvBrJnKZqlys73/dvqGkqgZoc2ELDzbquyJNipTJ MPwwSJqOEse/BtxvKEiZImkK4RQqEizBWRDhnL6LlKWitHgVJQBDEPC+wtj8Z6qtyu2t4UdZfgR+ VLxo/9GjR4GBgchO4nK5M2bMMDQ01NHRoQK+OfzOXwj98rN/bZzUO1jY/87c/iWOo7IBfrflQJGi V+HXqlThl5ycjOxO8hVpyJAhqhMVVCUSibS1tSmfNjY2FRUV1IjNdnjGgp+fn4eHB/rcodT27dv3 7NkTFBR0AuvYsWMhISEooFyl3IODgz/77DMqHtIuquoB9gFq0JQOTTPYuT4///T4KSE/DLzYb/i5 noMP9huRsGWnvKEBVj5V6fvDYd9LbV0frcpo2V7Spqc0wgB+GA8eGBu45n3tBrxBhIC63g9jT1kd o1ob7DlflpkfMnrY0HyHLRuo/d2xQQY4wcxrXqE3bcic8mILXfCmAK0ycjgpwA9RCs7ixYIWxRZW IzHpAIp4Aw/Q8KjSvortM0wmTEF4CICGXPDDAqCiIJ4YP+4YcjiPfF8dPhh/5PkA85g8NyjyosgO xiGCH3omIJYogh/mqyJr+PkAYRVxlCSAQqaPDg6oQKnCeMWGryL7iuJqelZ4++1d4CdT2VQcWvvS 5PARNmhTIe10hIKvesB/ld+pv/BfirEhVnzFJiRuSBTBnYo9/+1qSq0iPYRSBE6QYNzgK25i/Bur KUrYeR38lL7+cWqrcns7+KHq+84dsMCIqEhPnz49efJkyjBq3749AsaYMWMGDhz4VpYf0Zq10Ei4 aUqfEEGfmKWDKl1+znTTaRV+quNLW6iF5Td16lTytd1r4ScWi1XhN3fuXMTXLl26UC6Iai3DtC1C JmoRHGRHUvGMHDny1TZbGNACvnFvMnYXlZWe058R0mPAxT4jw/qPuNBr6P7eIx75bpZL4H0XFPza +nXfXG8Vw5zlu1i4vRH39nnjxknSCoebAaGiJFhqfcMmF/S0saADLwBzVGFHIuYxzQKZggDou0II hOZBX8wnbIFBEB/sCMaZwogkeENGG6ACuui0qBZRUt0rwOylOKpoMwQXQjI2tFs2hx8kCXHXH4MH pcoXn9cbI5Cc0R3DGEcL5/KBdMIG3uAryRGOHDd14k1hNTYVDhyC7k9vnEdSegSH3jjLHngHQxpn nBQvJBVMWDeGuYemOeAWu0NTMCYi6bbEhjJ+sMD5UmCSRPgq2N5keyf44ctZBRISpdGkPAodf8Qi ecuo30rohI3otmpUMdlkeIfaV9Tgyupd8VdxDDoJ4a9MYeRI5SK8TO8/EX74Qwk/xWHI6weDHzjJ Pjn4ff755/fv31c9hEyl1atXk6MIeJs3b46JiUHVenl5OTql6lJhbwg/iUSig4dH2k/uc8Giz4s1 w6tdfsp01yPwK3p7+HXu3PnZs2dkDgMRgl9bzZ7o7C3gh06BYqBcjh8/3jIMVgsCqVAJRPh39+5d Egl5IBAIBCRIU0AMP/wCI/I2e7motOSM/uyQ7kOu9h6JjL/zPQbv+3FUzJ4DeK02chGCqPO+s94q ktnLt7GAPQoAYPiB1aLF82Fz3bW4bkyuJ8PU69WNSTaeB8scV9xCH4YgACw8REG+N4vnyTT11jT1 ZXDRjhvePBim7gyeOwPt8z0YZl5MgT+iIzKttM3d2NB+qGxEBdPHR9vUU4vrzua4a3E8tE398MAT X2z/uWsLvbV4/jqmgdpcXy2Oq5apgxbPGdugPsBI3GGpg8DAR1j1BnxyvNkmntocTy1TiByM0aah K+5a0KzqCo2QZqSBEcDGMvVicd20OC5sExeUBU2uhybPhcF3QWXFMPfUBIsQZ83Eg8VxZXKQH1eG qaumYnPW5DqjLKPEsFAehT7QH2nmoslxYPKc0CFNVA6oVLmeLI4nm4NKxp4pcNI0d9ew8NI092bw PVlcd5aJO9vElcl1YXKd2FxnHb4bblIm8KOwCo20r4LtTbZ3gR8Z2wmDIyCgBMZgyGvlMPoC16Tw TSavk8gbJTAQBdehcFl/2E0G1JOhE8FyiCrwa9bpiNOjagFCMIIQmQomiQcS/J/T+KlMNbXfAn5y fIfj1t23/AWbx9wEP0X3oeIY/ka8No+eclPd/tyHiqdWgryl2qrc3hF+JLr6+npUg5NDenp66enp LQIiO4kcbffG8EtLS/vm22//D8FvSp+rtv2KHEbVOo3IdB9bk3ZbDv2Lzfr83gR+yG6LiopCZij5 2u618EMsp1alQbK1tS0rKyPrmRG1BT8iBeuUSJNh7BHy1dTUTJgw4csvv6RGfiIEHjhwoEV4PMJM hl/nC5HU5uWe1tE/22NIWL/hp3sMODqCmX4Uhn3CfAdFy2ibP+1b6a0imb18J27Zg1EhYP0gcgh8 tXgeuny3qRYeM6zcptl6T7X1abFNsfHWt/Odaus7wdKdZWoPTYuIeUJ/VCPr8Nx1efb61q4zbD2m 23rOsPOYaeM2y9pjlrXXTGvvGbY++jbeE8w92KauDI4bm+eD7TYPNt9DR4ioCdzSE3jp8JzH851m oIC27tOsPHQ5Ljo8MLMAfububDMvXTN/bWP3aZbeM23QiZwnWbgg/ukIfLQRb3jILvTUwSYmCxlM po4zrFwNbNwNrD0m8p10eC46pJdOgICKTufBgmEypAHTDR9CYX0MFu/gLNluMs+HO993zoLAWfP8 DBcH6s/z0Ra6EEtXx8LbYNFWo4WBJvP9jOf7Gi7wN1joP3uh3+wFvnMWoi1g9sJt44R+LD4Ykcim 1J/rb7jQz3CBL2wL/Q0XBBrO32I0b7Px/ECjhdvGW0J3I8MMTOQptlvnzN9mNC/AeD6ObcmWOUt3 TLEN0OK762C7FkEdAIZMTDNPsHQVBvrbbR8EfnWYeHihIkSiarm8VC4vl8srMRPrlJ8fdquHT1mV XFpHWj5JJmBOLWWDwlfyPElVt1LMaMUrZZTwwwWgqOdlyr7AtyyTjyBFkpX7UjIUpRn84A9+R9xb 0JqEUwaggAoEpc6ovCKIid8ybuKAHyuatlZ8vLo1P/4+aqtyey/4OTs7E/eOHTtS08aJSMAzZ84Q D+3eGH5BQUHI/et/tds0qdeDRYMrXEbXOg3N9BhbnXpLDqvDlFNLo70h/Lp27RoZGfnzzz+Tr0hD hw5tq9mzrq6OLElKZGVlhWxBVZejR4+2DKMiQjtqn3wlpbF06dJ2eDYIMo6p2Lp3795iur0U7icZ GHYYbeXxf5wYybjYa+BJtX5H1XWzwq6CZzlMsCFjPlXDvo/eKpLZy/Yj6wS3s8FISLB7kFnGtXfY cTk2vTAxsyDxZaHqloS2DMVnSmbho/js+RsPaHPcdCEGLyCfyTqvPef/yMj/I7MAtgwUQ1MkCRmF z14WRr/ID7oUyf/Fcyz3Nx2eK5vnqw0tk7jVFJlrXAejJb4XI5PjswvisoueZRU6bb+gbeKEwKxl 4c2A0aRebCPnVV5nIlML/sguTMguvBufx1+1SxP5IV1uAi8WD0jGMnVx3R0a9zL/j4yihKyCmzEv Ob/4a3EdYWKGgEx78GWa+bMQCM18dGGYK8K/hxbfbYnHmXtJhakFFSk5ZUk5pSl5JfHZZSvdj2sZ 2yP8sPjuk608z95PeVFQlpZTmpZTkpxbmphbmpRbkoK2nBLkfvlJ6ux5HkzuBsRLNnfjLy4HE3LL UnKKkYfk3JKkvJJkCFianld67XGW8YJtLCNnHUR3jtNChwNxmaVpuaWp6Ly5JX8UVe27lq4/dwu2 /IDrsAHAwLTFTbXYXH5LBL4L/BR1F6n94L8IPsXyxqrSlMiSqEsVT8+XxYWUxZ0vj71Y/uxS2bPQ srgPu10oe3ax6NnV2vwEBD+4G2EwtRw/P4pkKovEKwwjuBfwBDapWCarl8lgzpFM8ZY1GI8mEuMW WvwfHVW+cvRvlgLnIEiPFM+kpG5rUhfJgPYiqbThzZdIJD+eBJ7JCfNws5RMLJVKIDYp2oNyhA3e NornRDYvDPjt4ZkeEiLGHpGj6mAR+EGgq0fhVbGjEskrUb61qHO10DvCDykvL49aRXPKlCnEUTVL 8uZvSGgVfq++zNbG2qYdhp/DpB+SVg+tcfu5ynFoppuuJPdxRUXlsaBjgwcqphO8IfyQt4SEBOoN gkgDBgzIz89v4Z9AC9myqpgk8/zMzMzaKdsqd+7c2SKgqkiuUcnY2dnFx8dTLoTobm5ucjxlHhUX dYrJkyeTKSL4ssUdfvjXJpdB9pmzJ/uOONmt7ymdyUV3I+RQd6ALR6y8nD6Y3iq2OcsOss02a/P9 yagNtpkPg+c62dbjTgKsffMmOnEpRs/IRYcLozfZJg6cBZ4pOaUtPb0ilMSc4gqXgMNahhtgSIhZ IIsfyOQHaAm9Rhuudt8XhgfkKZSYV21g683mujMFXgyBJ8PUbbLQ41FSs4eegKDbbI4zm++Npw/C cBgm13nGgi2xGU3vokKVn8uOM0yTdbiDEDoUdfl+LDyXTpvno8tD8Mbtinw3bdONv3oF5VQ1vbK4 Wiy3XbmVPcceBWGbuo813XDxnmKRv1Z18V7MeNPV2maOKDbWnE02KzfXKcz7lroenjjBxF6X46GL HgKM7c0Wu1U0UtW4/ElKwezFv7NN3UifH7Ju8SQNMJGxCUgaQhWb9hsbgu8AvyZLoakGQw51suqc axtt71iwo63H3LcY+sh2VIS5eoTlmHCbnx7afcgt3G7kfbtRweaMuLO75LJGxC64wQB+pK8RJ4vc cWAIKsw4GarKcf+gFE+rRXU9AoBYgUDl8FD8BPreNfOHEZQvjBRAMGrArwolU9AVaQPAwLxKtCOR IPjhkeRvLigeiEwE7cQSEUY+ilDeKJHV4yYqMUIqIiHyQIy/FmEVFwCBH7YH8NiGZrBQ+PvnwW/D hg2kpkbwu3fvHnG8cOECVYNTa2DK8ZmI0L6LiwvlZ8aMGcRDQUHTXD3KkQhhYOTIkcj9vwh+U3pl 22tUO/9c6Tw013tCbepdjgl36uQp6qMVDZhvCL8OHTrk5uba29uTr+1wQ+iry5uR/dLSUmr1mXbK fB0+fJhyaXVhzxYKCAj47rvvqOkff/zxx5dffokIKleeEcFYtR/R1dWVHJLg99fL8VUG/mSyiLUb D3X58dw0A/JWB/xQRxrbW/8531ltXR+tymjZXuU4Tx886c2XyXefauMemYrhB4+Wit4U1Q2eDCF7 oOBrMeO4Ttp8d5aZh6axI39ZQHpRlRxyhx4ea1EM4AluBsXzK7qX4ckSp7G0smGx/SGGkRPb1JMt DGQIAphmnmNmrw44ApNwJOgk0joUJqO4hrvAn2nsyhb6sMy9NTnOBna+Sdm1cHvJquUyEYr44LlH bGMHFt+bScaS8N01OQ6mK3c/L6jEN6IY39Byn/0XWJx1bCF4Y4Gx64MHo/po8zx1gXx4vjmyHfku LMOVrttO10FFA/VLUYXYcqkf29gJkZKBMGm67txNWKsBP0HjDJJSl+HlROTy0xef6BhtZJj6sIVb mcaelku3VdTgAiOFACnH+3L5+VtRukbr8YyIrSxjF9MFrvnlilm2VbWNS+13aaJ88dxJkyyb58E0 9WCZuqONWIFsvhf0sPI8FM2hb7a9A/yAMIqhESS/MmhLlFXIylMi15m+sPopy+yHDKuuOdY/5Jr1 yhH0zLJSy7Du/gG3TOtu6TY/3DUflhLyu1xajepp+GUawbAjQ2DwjQYJk8JUdwwzBA5xo1wKEwPw T4MMnUaRTAT9e3jMDLq4YR0KfL/iHP0DhK1V3G3SKJPUETeEJLDO8MUF+ZRgy08Gs92bB36dyF0n FqNoG1CZwKYiFFcDei7Av64UcZHYcCrCFyx5VMf/sO1MHVXc301e/3nwc3R0JNW0Kvz27t1LVd+T Jk1qHgKESDZs2DDKD8U5VcsP2T1UO6Ecv5aPrAjz1b/aec/qXeHCqHUYUe08omTztOUGzC+++HLn 7l0//fQTCfuG8EMcysrKSk5Opla1Rrkgc+woUfC7cuWK6oQEsrxZcXExNduh7ZW4FUKee/bsuXr1 avK1vLwcFcKYMWPIgmrUz7Bnzx7qLF9//TUZQ4vJB5gga1uLMrLOjJ1yQK1f+sEjcvL0BA+cH6WT oa3ro1WhSrCpww/PTEB21fS5XtHJGH6Setxs9DoFXX6kZbqBKXDTMPccbeLKWf57amEtHIBqUoyz 2EIIfY1SKb675PKrkWk6vI1afGemGbLqfNGn+uzVmw9fAo8wXxkwkFNUxbHz0+Z4ILOPKfRC8Jtt 65v0sgrXE5VyGVQQB0Lu6XAdmQh+MC4GMcydyXXkLN+RllsJUeFMoKR477nIMN7AEnoxhL4waJPv psFxYJhsYptsZBlv1DB2gOE8AmSA+mpz7acK1kcmKJ57CqokguX+GiaO6sIAdYEvy3Rj8A28uDk8 BoAVAVUF0LoBmRrI+cTlJywTe+R5tNB/DMdVuHJLeT2+O8AjjLaHmgyX7Lm7UdqmqxGJGfwtDI6b 8SL3vEoF/JJflBhaOrO5LtqK2YEe0B0r8NYTeumYIVvQhcV10jBy0DRxZgMd8fDRj2b5UY8+SvhJ octPViqriI/dYJjM65Fn/l3e3K8zLf9baNmxyKJTgWXHAosPuRVadMiz7Bwh+PH5GX885kWCl5dB KUEMrpOQ3xjqYBX4SRrlolqwkWRwNbbIEZg3uNuyARk7xBL8J0iqaMvET5jVSYlPnyYmN6L6QqLy UnF4fJQol615UxETDTcWI/Khu0aSV5D/4NHjiIeP0l5m1eCmEQwt7OcVUoEDOQg/PkodPG/kZmY/ i4mtrKqSYgNcwT+MRkUMKpG8EuVbq63KrU34qQbw8vIi1fS///1vCn6XL1+mqm9ErKdP4a0Lqlqz Zs23335LcY7CRmVlJTHv2uFlNmtqUAEqWh0Rk8jEiP+2a7eTO7jOa3Sd06BqjzHRqzSnDe56NuRc TW0t9UYICn4EXSTBVLJVLb/U1FTksnLlSuKC5OPjQ7yRgGQlafQ5bdo0yk87lYWt/fz8iAuKDVly 1Imo81IIt7Oz6969O/WWBmTwocIhhqbyMlIE5HK51IkQHZHRCX7g4oWmTbSftOtgUK/Bx9T6R7lA amXYrCE1JjzJtfGLvpveKjbjZTtwpxFMP8BTHXw0uK76dn4xyTjXUmj9QNGVVDa8yK15WdCQUyYq rBIVVYnzq0TF9aLwpHyrDXuZXGcYXWLhM5qD4LfteWE1hMWpQJl/WVDxJKUwIiU3PDX7WQYy9nD9 CZ0KUDKFNXXWa7YyOS5MGBvirSVw15i9etuhy8oYwE9WYZXRPF8WB2aUI+NP09R9hq138kvSuAog QX8OBN/XMrHX4vvqwLJnMCmCwXM1XrEjPR/DD/+k6MS+ey8i85TJh+mJTK6L4Le9hy48Dr4cdSo0 8kRYRGDQlRl2PkyeL9scFYWjnunGQyGwUrkcw0+4crMG15Eh8NPke2mZ2gffjMZHyP1OrHh43CEn O3k1UpPjyACie6tzXXkrNlc0kOuK1G1NvxGy/Njc3xhCT8R+DRM3k4W+hdV4BKVc/jA2e5qlO5sP 689p85wmm7vsPBn+KO7lvegXNx+nXnmYFHI7Lijs8fFLsYFB9yda+7NgWJAvmWoJq9jwycSJluR7 N/i9IileZLJcVpPwxGF2skWPPLsOabb/ejHvi5y5HXIQriw7FVh8yK3Q4vs8y64RZn2fn/FEFqdE 2gg5ANrVIRYqFnZpBj94zpAjKwc/jqD98Ie3d+za6r8l8PDRU0mpionFAFB8z7xncXwYKS4lkhhJ Y32B/frlv6zaWFaD7sTayKiIw6dDM3OhJR9VdSJpA1lA440FpYN3xHJp1bMnd2znL9IeO3G8ri7H zOra41ioifD4A9ymqUgEJZw0XOnhSoscDdq734LHj09MkEE/IZjR5H5QHG5erO9fyG1Vbq3Aj6qg KQUGBpI6GsEvMhLa3+RwFUvJSBDSGaatrf348WPy8jzqVXbBwcHz5s0jYVVtJmQpEkdkjSGbjHKn Bsgg+PnPGVDixSp2UY9d9GMwv1/CNRhpUlZeTtG0c+fOqivLqFqQcpXlzRCunj9/LsevUqJe7IAi iY4m1ZBCKOXLli1rh+2w//znPyRT1NqbIpFo9uzZJCyPx1MNqCqyVvWxY/DWdbnylQ7nzp0jX0nB UsX78uVL1enzS5cupeJBqn/5Inj8jBC1wSHdfrwisJPXQy3YiJ795bjP+UOrreujVYHlp1hazBMW 7uJ7aZq6TbH1j00hyFc8Dp+7Hmlg7Ww4z8dwvo/JAn/jBX5Gi7wMF3tNtvVmct1gagTMEPDU4Lhw lwamF0KzJ3Xx7z52dZLAZaqdyyQ7p/GWjs6Bp+saoDLCdZW8TizZ5H9C09CZbbYZTzd01Zj927ZD YPnJlHdqRlGV4UJvBhemhGsJfMZw3fXneiZnFIMffJMiHQy5r8V1YPF8dM0Q/3xYfM8xHGeTlduf 5zeZ6ei/355QDWNnNiwu48EyclgXcK7pcRr6r+S/+ZzUmOPBMvNiCV00TRzdtl8ipVkEll8gMhMh kTxPbY79KQX8SNQy5X0NdYMc4BfN4Dix+TBKRZ3jylu5tQpbfpiQyodi/P/izacszgZNoRtL4Mkw cTee719YoWjOuhGZMdHCU5OPMu6qbbzeesXW3LKW6w4Sxb0omT7XX5MD8yPJcm66fLR5w6QOmBrx IeBH0qwSCAOmWlad8mSjUZqgd75lx4y5X2XP/y7bolO+eZd8+Oz82q3TW20F5p1yLbo9MeubHuKO LE4EPzyWBeUD/W41eH4FBT+RYrlrKG5U3jV15dl79u5hjZusO1bPeM5MLSbDVGB98uID4Ce0zMMC vC0Nw79L8GQIuYKUVaXPszbhmC8orUVYqfDz9WKMMw1/nIrpI26UisVv8SPKcKOLCBeTrLogZbEV Z9oso/2Hjhw7sn/PocN3/0iG0gDykYeBZr91SymvhG3efhN0dGOeAjhh4Rliirf0rVDzy+dd1Fbl 1ib8iouLkW0XFhZ28+ZNZABRdbSHhweyz4j7gQMHkG1HHfryyy/V1dXHjRtHOrTI+A7qnT4DBgxI SEioqqpChNPU1FR9bVBhYSGy/86fP09NSPjqX+02Tel5227ALWHPe+Zqz9Zp1abckEgleYUF/for +uTQqRFuUYR1dXXkVUENDQ3l5eXIsiwrK6Ne6ffVV189e/YMeUB0jI+PJ2+dbYdfToTSn56enpWV deHCBeJ/8uTJO3bsoF7DhAiKYkPUrK2tzc/Pp5b9XLhwYYshMyhrc+fORYfWr1uPOIos+rNnz7aD NWJsUary8/LIgi/E+EOfKNqC/ILly5eTCIkOHjhQUFRQUVUlbxA9WLkmSK3vpb7Dz/0wJER3St2L dLgMSTX4EdTW9dGq3hB+x8MesQxWsziOmibODCMXtokri2PPRGYQ1wWMDIEfiwe2lIYJgp+iz48E RDkMPBCmMdueaeqsaeo0xnADb5F3TiEACVYnJNbYnjB1A3uYI4+4IvRQN1izlTR7Km+V18JPMY3y wNm7LO4mBp51jr0hEttzl295kU9eHQx+ZBh+miYu2gIfbZ4Hw9h+XeDZOmpML9689t8YY+jOgPl5 3qPmuK10P0mKE8FPuGLzx4FfLIuzXlPozhJ4IfgZLQzA8IND1x4/R/DT4Puw0TbHYe7qXbkVAD8R tJrWk74qcv6olMyptp6aXE9YjxSvR4NXVoN2bDwv8MPBT+Ub7u2sk1WnR2/gPjftWyzokmfTMduy U6HwhyLznvnm3QBaFt8XAAWR6dY536IzAlihRedCAjOLLgiB6BM2c9jyLZSbeZdCc+zebOsElh+/ 14tgF4CfXIwbT2QwklMOlh/cTjJsnkB7AP6mMEPKTu1wHKPBWOe9Kzo6Nisj+faN89Zz52nrWzyI TMGVdtPIJlXhK4NYSy3LCju1dCRqXk6tOShdFc6KVKoegyE56CSN1WmL5nK5VktLEPzkFekvk+48 flZcWY/r9ZYdfqqnUe43RYufCsTQQY4DZT67azCBdeh4MFVdyPBUEtyP2IqUSZS2eEjY7r91yvgp MfHx0NAFD7Qtk4Q/mjkStVIib6C2KrdW4EeEDKNZs2ZNnTp1xowZ6HOyUtOmTUMu+vr6yBFB5erV q8j+a7HoZbdu3bZs2ULiQWhBoci6l127dmUwGEZGRk+fPt20aZPqO9mR4aijo7Nr1y4Oh4NcUHSr x/c9b/Fj+KKhGU4a6Z4T1hvrjB83Vnfc2G/bf/sZFjJD+/fvr6GhoaenR96Uu3fvXmTboXi0tLS6 dOnyX6xvvvlGV1cXpRadYv/+/Xl5eYhS1LsmkAeK34aGhghR4eHhiJdfYvXs2ROFQkQfP348yggi FrIOyZsCUfyofBYvXoxAiOJv3749ygWx+dasWTthwoR+/X/89ptvUdomT5k8Zoy6h4cnFAdUO/BL 7N69e9jwYUOHDUWGKTJ/0cc333zdTa0rg61pa2Z219E7uO+oi31+DOs//ELvEScHqxdevyWHlhZ0 d75y0X8ItXV9tKo/hx/W8cuPWXPWsGFUizfT1IcN4zPdmabwMgc2jMLwYuMWNk2OawvLD92ym4Ou MTkeTJ4PSxjI5HnPtHZJyYKpmY2Kelu++8Rt9Vkb8aIwkIwxBmu3HMbNnsrCeQ38QDiNe0/eGD17 zShjFw1jR00je4ax4+hZvxkv9HqhaCOCqNB//72hGhwnLVic2gv5+S3gbLUYwlN9HFtP3NU0cmYI PJhC91HGjsvcgj42/MIAfsjy88TwczNe6FeghN/9pxlTLTyYXF+W2WYEtql2PqfuxNUQUxcMHDKm Cr5EJb2YNtcNhr3gdbHZHwN+KlJkFf7Xy6qfR24yThX2KTTvnGfZMc+iU5GFWr7FD9mWPfMsOxVb f1Ng8U2RFaJdh0KLjmVWXQrMvitB7ladcs2/L7JSyzfvDptll3zLznlWnXOsYSu07FwMXOyab9Ed fcJm3r0I4dOy0xNBzxchrnJZOQzRVCQH1nrGL+ahClWi2hmWkfDIaobe4mW/5deTEHAoMSFaf+yM 9WvdRMhyFNU+uHv5cfjNgsLsq2Fh+3cdvHwrqkoxUb8eT2GUlueXhJ45v3/v3uv3w8sVQ01kcTEx l4LPlhflRUbeO3Rwz/HTZ14Wl8OPJ4O+cjGMo4QzNlQV3Ao9mhYXnfsyI/jUkQOH9j6MTRIp0iLB Y01EL1PiTp04tmvfgVuPYmsVP42osSpl6SLBHNuVedUiuaQoJS7i8t2Y3HLcYYzuLUnZk3uXDu3d derYmfSMIgSlWrHo9pWrV8JCK6QS0kTQUF529/zFG3fu5jc21pKLU1KX9OTmZqeVk8ayl613DjoX VlBempyedfL8jZyCQvQokBwXG3Y6pLywMDbmyeGDh44fD0kvqCCWMS6NqtKslAsngo/uPZLwNDHQ d+ekKcYR8Sk4SdB/+kds1NEjh46dPPYsJQXfdxJpVcmdy9fu34+MSUg4fOr4o+iYBryslaKPEOcV +1TdlH+aq63KrXX4Id9isbhBKZFIhEf7gpBZQxzr6+tJSyMys65cuRIQELBhwwZ7e/sjR45Q41DI WZFVd/PmzUOHDu3cufPixYukkw/p4cOH27Zt27x58/bt2y9dukQ6vSorKoOOHf/dPyAq9GB5xJG6 qNM1kUcroo6Fh504c/r0mZAQhNsb15HxeePatWvIYkMGFjIlyaT11NRUlBI4duMGYhiyCyMiIh49 enTr1i103pMnT8bGxpJTR0VFOTs7GxgYIBt07NixCIfoKJlyUFJSgoJEYKEUotMFBweHhoZSb2lI Tk5GkLa2tkbM+/nnnxEaTUxMEMyQrSyHopclJSZfOn4i8ua91NTnj2MiHz6OCH8c/iI9HTeKk7e5 yHKzsx8/eRzzNCY+IT4ObfHP4v+Ii09KSHwccWrBL/v6jAjrNSys3/CLfUde7jM8qOeQP7btJmfH fX6tPBO9p9q6PlrVn8MPV7UnLj5gGSxlmaxjmKzX4TppGTuwTdZpcTawTV1gVjjMGfdh8j00jJ25 y1rCz+/gRTbHTRuvLsYw9Zhm4Zz4En5ial36vafvMQw2kPW6WGZeow02bD58BZ9d8WzdBvzwHAYo QqjLrtx/+ovbwSXux1Z4BP3qcWS5++FfnPd5/H6yoLhpXVYZgZ+JI0K1rsCLaeK0JuB8LQySJ5HA b7Hr5B2WkT2T78IWuo02cljueogksqhK+rHgdyuWieCHV31jmLgYL/QtqFTALza1YKaVK5vrzuL7 aFkEMPgeegKX9X7BV+7G55fiUUXKs0YlpU+zc2XyAXtsmIYPb5/QRQ8lrZHvPeFHZRUkrZfVPI9w mJNg+UOuZQeqfy7PSi3Hqme2ZfsCq/8rsPymwAqZfZ2KrL4vEHYoFnYotepYIGyfbdGhwAaxrXuh JfpEBuL3iG2IfNlWnZF1iOCHjb+uCIr5lkBB5Jhn1emx4IfnAL8K1S4DXKCk25WkTUp+TTwkRBp6 7MCEMZoXr9xDd2ujSCSTolqrQVxX5LVokWA274/CyvKGqs2Ovxjqs0wEPFMT3rTxM7XHG6/3+L2o GkaFyOWlEXcvCoyEhtNMeByu7mT9TQHbMsqg9WLv1q2mE/WX2FlzTGYYzZmiocWyWuX0R24ljJQU w8iDRjwEoSI/fq3tDP6saWamFsaGM8aN1x43i7Pt4CmYwIC2hrKw0wcMpk8yMJg1a46Jjr7xr45e 2QWoCpWJqtMWz+MZ2K4uaBDLGzL3+bnoc34Jj89DeczPSvVxWDlzEtuMO2fWxBlGhlZBF2+X1tdv 93DjGM4KT06txmXy9P590wkzt+07VCyR4BFiCLWlQT4bjMeN0VD/eTBr4nSLBVFpSWev3Jox2/bh wwh0pxzZudVovP48K1sO18hgxhQmS89ysePT9BJsEtb/EXlxoXD2VN2JRvqzLU0EUyYY6UwweZTw HOVDVFOw09+ZO2uW4cxZ02dPns4xOXnuCoqwNid13cKlk6Zwp8yZoz6OuWXfvtJakQRXDjBQG24K MlaD/GpNzzCvXqBtVW6tw0/edoAWeo03Rd3RmocW/XOU2nInF+Xr1XbYt9DrI3n9UTn5PbCf/PAn YSs3yLKarbuNp7ngrnLFY/grqquP8wg4MWTMObX+53sNOv3DoHNqA8M6D9z3bZ/zC1bgLgZFrdky 4Hur1Z+pLf05/PAk4dzSqodxL8MTMiKSMx4nZEYlZUUkZTxIyFjpc5rBcWHzcA0r9MZ9fgGq8EMl 6Lf3rPr0lZqz1jCM1o+asZIzzz2rELcbK6/yrYevaxqsZ/M9tWHVEu9RBpveAn5QN8E6hzViSUFd Y2GduLS2EW0ltY3FtY0VdY34R8QdKPhkBH4svJSMurHjWgQ/sB/EeKga+Nly4Apr9gYyqU5zjvNq 96OkOD8e/EJvxTA56xlK+Bkt8M2vUjQ9FVTU26zazDTeCC9F4nugpwc233+0gbOeqavlys27j19N yiohjVBRKdnT7Dw1uW7wACH0ZAih+VeX35J5fx38zBHJOhfYdMy1/ibb8vtMQdcCqx65QnSoW7Fl 12KLDkVWHXJsO2ZZfVtk1b7UqkOxRfti8++LhV2KzLsWWnRDdl6hRdciRETL7/KtvstFZqJlN4TA XKsuEcKez0NcXoEfJIXMAiD7ymQieol2bds+VmtWZDQMVUPP/o0wN0aGGHAxwIk/Vf9GXHp1Q4XP avNRIwZ67Dn0NCEpOTHZfdMabc3RR89cFstkhenRQqMpc3/5LTYhOePly/27d7LYzEPBx9FFtSPA T3fITysWL0fPxKmpTw4d3ztcx9hnT6gMqg94NBZDJS8uehm+xFRHh6l75PTVpKSkZzGPbG2MJk2f fC8qEf0IT2+FTmCNWr52U2JiYmpaWtC+7VPGsgN+31MnkkjqXv5ix51htbqwUSRvSN/hbT92zoIn 8VkINNt/36o5dtq+Y6efP09LfPbk14Xzpxhbxr/MfXz93CRdRuChU7jhtP74gcNM5uywW+EItLWk rUBaU5jx7PaxrQZTx3scPPsw5XlVfe3Js6Hjptnee4DgJz64zZ8xWGPe/NV3HkWkJEeeCz6soW3o tvkkquuK85//ZmcxZ6bhpZsPUpJSYu7esOFbM9nTI2DAi+TssX2GE8cd2X8sNSU1/o+HC1csnmZs k5ycKC5NXmo7t9+w8R6bd0U+jc4pLEQ3XQMeCA6FhEx4PLXjw8MPfgaslgeaq1VvlCNxV/2qKtL7 1aYHaI7Ah2FGJDAD86LJ/6unk2JRX4mIn9zcXGQIEtMNWbHPnj1DRmFcXBxlg5J4Wg3eYofyQwWk guPD+OdAV25+wQHdySeZ41IPHRUXq0zfxr8RrjVlikqaqKoy58LV84aCg90GHe837PQoxjmtiRem GF42EdyxXXxzyZonB4/IGmH6WvNgH0yv5ug1egP4QSd5i1CUbsflsExdWKZQn0Kf3yvNnqiQrt1/ ah9wynHzKcctp+y3nAy+8qQBWnwQVOGxGhHBeds5htFGxaBTM99RBvZN8MM/QRvwUzR7QjHiOcCK m6al4AgpEhn0+V0Ayw+WAPVUN3Jeu+VS03Ujl5dUN/7mcZxh6KQNU/28mHOcXLedI3EWVr5psydZ +eLklWhNjqMWfovvGBMX/q/bKuvAXQrLVTWH381oFncDAwb7eDNMnI0W+uZBs6ccj2WXX3qQPNnc gWG8js1z1RLiJcKF3kwzN6axvY6J42wb/y37b2bmlUemlU+fG8jgwusPVeCHXz3xCvn+AvgVW3xf iucnZFt3yrVRyxZCQ2iuuVqGmVqWuVqxFWLhd9k23+XP61hk9XW+4Isiy+8AfuYIfl0KoduvG7L5 ii2+K7b8Kt/6q1zr73KswAR8S/jJ8RJrDd6e/hMn8J8mPJeT2Wyk20pUfnOnM2eC7rXIJFFjuc+v plwuNyoPX7pyeU12pOVsrblLNxVV1V44uMVggvqVhxFkdEllYc4iS9Nla5aWiOr2bd85naH38H4U vunqM3MTdabZrXTYBV/JYFho3hNV5T5ZbKqzZOXGXEW7qzw+/OTUSWNcfz9UWVsbuHa1qeGsp9kF ivxIC52W8SdOm52YXSCvzVw9jzfbak1urUje+OJ3Pwdtw/mxyVml2fHGHK7dpu1Fiqbf+qTo21yB Xdj12yW5Ty0Fs62XOtVJpLVlacuXrzCa65KWBwOwwcyEFg6UrPqCmEumBpOCbsfWQcolp4JDxk9f eP9RNILfkd8Dp7CnXbkVizNVXVUcP3WKYNUaX1RhRoVfm6AxccvWQ1CPgxq3ewdM0jOISoiukZTY CEznC21rKkkHquz63Zt6EzmnTx6RVf9hZ2VpYrcps1hRvIh8DXhIErBOYfbJPjz8/gEiC+ngixM/ D7WefKVUgUTtk8/y8nJNTU10jZIlzerq6q5evbpq1apu3brdvn2b8vZhBJevom/34YpVhzr0ONRn +HlD7rOtO4qfPJaUFMHkWUroB6yuLvsjIXX/oZsCy2ODhx/r1vf4oDEvdh6oeJZQm/SiMTdfUl4h FymCkMHuMgVeP7DeqhD+HH4w24F0cEDNDWPH8dxg3N8uj0zN1RN64iU6IRJ1E+dXRnvCL96grHQU +Yfco9sHOciKa8QL7A9qGjvoCLyQnaQl8P/ZwD7gCJnqoGgVfg38ZAAbeAIBQ53cLiSF8PCCz4Wf KKki8dsN8GPxfRDeWDw3g8Xb1wWec9pyyjkw2Dng1GKHvRMtfBim/ixzfybPQ5vrcPD8IxKwSAE/ e1g+5rXwI/6J5QerjAq8AX5tW34XbkUzuRsZeNEWlomT0SIfAj9Y8hVXE9cfJ9qtDdQTuow2cmby /Nmmfjr45VMsnq8Gx4s9Z6PFss3+h+5Pn7edyfXXgpW7KfjBmqWvku8vgF+p8PtKQaci824vBZ0z BZ0LLHvkCbrmWfbKXDjqhd2wbMvuOcLv8qw7Fth0zjfvmG/5fa7197lWHXOtOuTatM+x+TYXHbLs UGLxTYnFl0VWX+RZt0fwK7BA8bTV7AlJeQV+MrwWqCTQ22/y+DkxCSmk4icjreTi0gu/25tMHHsv Kq2xrtRruZGFhVVUfg3uKkNPRNlrlptzbNYkZ5b4rl0yW2vQ8l+XrHKwX2tv77hhneGU8TYL7bJr qvZs32egNyMu7jlOSjmCn66+xQbXPfgelMgbRHj9bUl5ZsR8DnuFg/uLWlKjSCrzY7gGY5c5+bzI zp9vaLpu9ZoSVIXA5YESWBZyyFtr4qybMS8ldbnLbYyNrdeWNGD4BbroGS9KyshLCD83afwEv6Br eLaHGBIsrSktKautrZI0pP8e6Dplpm1qanba0xsT9afY7woWkd8aPgHGcml56oNgkxnjDl55UAGO ojNnz06ZueB+eAxK+aFtW6eypj2ISsSRF5cXxRsZmG9a5y6VVgQfO6inyw+7CrAXw4NF1U4fP0O9 mX8kPskoiDOaM3PONM7G39w2bHRcs2n13MW/aGpMPbzTX1wRYWEtsFsTmA/9oYq2GtikMhHucVcm 7H8RfooXcEBuZAret56FZiLDPikhF1dXV2NjY9IpSKxDtHP+/PnPP/8cUVDedtG8m8itIqmpTd68 PajvkNDeg4N/+PHYDwNOjNIMnWF0Z96Sx+vso5zcozY431/0a9gcwUn1ccd6jzjTfeClXoNPqfUO MzOTq9qj5I/ix4X7T5GrD623ivUN4AfLubQIRenykxcsU2cMP7D8WsAPrmhcQ0kU3nEbgAy+Kwwg ZBdGvNDlObL55A1/nmy+z6jZGwODyGjPP4cfLkoJzKhUnKI14XOSmtJ/93kNaI0kryJCuHXXMHJW n72eabhO02CdptFGJt9P0+x3ptCfyXWZJHSITi0gccBUhxWB6iZ/Cj94xEN/zt6JY5u5sXjwFlwE P96KtuF3B1l+9ky8tioTwW+xbx7M84OooDrHewU1ouCbsYsc9k0x92TOctE29tY29YPleISw0KiW 0cbxfEddWKknUAcWeAP4sZXvuH+VfH8B/ErMO5UJu2Va9EmePyJ92ajncwckW/Wv224hvbM919/6 uW3/YpuuuYKvisy/K7XoXmjeNc+qM7RtWn2fY9M+2/arHJuvC6y+KQb4fQPGn+V3uZbd8y26Flh2 eSx4C8sP9/nJT+7bNYWldeNBRCO2piWNcDmIGgq2Oa00nTEzLbO8sbrIc4WJhZVtVC5pca6VS146 rLaZJVgal17ou2rhdPW+RjyjWULz2Twex9iIO2umq6dnQV3t71v3zNQzjIlJwakoy8xLnDTTao39 Nrji0EMYetjFK3OWZ0XO4+qssHd7UQ0whFGc+ZHzhFMX2Hs+TcmdZ2CybvW6fAw/CCUvCz7kozF2 xuUn6dLGolVzuUYWvxbWieWil4F+TtpGC+KfZyaFh0wcqxd47KoEWrBQtuqVFzgk41nU7UnjDU4f On79zP4J06edf/IMmrHgxU24QQtgWZ35JIw3a9LRaw/L4TJoPHM2eNIkq/v3I1HKD27dOl175p3H 8fVwqKwwJ26WPs9hnatUWhZ84pDOBCGBnwTgV7s7INBQWz8x/uGL3OiZM/THa03lG1mb8ixNzEwN TfhcE6trF4+Kq2Ms7KzNfw3ILSWrP8obGiUibEeTmwfbRwo7UOW3U7nMlGqrcvunwo/U8jI8FBnK XlkTkoMqolzQZ1xc3A28dAt16Pnz5z4+PsjaI44U/M6cOfPll19ev369rQhVHV/10OJrUxDF6CZ5 cUxsnO+2s5rjz/ccEtZvRFjf4ed6DTnXbXBwlx/3d+q19/sfDnbueVyt/1m1gaHIQ9/hF/v9dLnX T0G9h784DuNFRdAmBwsBSWE9CTiJ4rwkp63/lO+lFhl5vd4AfpDoZ6nZu45f2XP6+uEL945euB90 4WFQ6P1dp29Yr9vN4roq37qH4OdiqjLgRWGWgZ2IqyY8Kg8dgIXPcOyJL4sEy7YxuC4sQJGHLoyd 8RltsH7zEfKa5T+HHy5PyPL9yCT3nafcd53z3XXeZ+cZr91nXbYH7zxxragCqhTF/SSXB+xRwA9W AeV7asMiLwjbbjpCeAE9YhVDEKjB38ow9WAarA3ce7kRz4qSK+EHlt+fNXsS/xcfJOuYe7JMAX7q HFfuss0lMIwFPLaE3+1oNncTC6bn+zCNHU2W+hXWkXZmuF+kUGWRKOVldY0Pn6V67rw83cpPy8Sd beqiI3RhCjy0hJ5afPQA4a1l6qNnBq+eZ8IaN2AdfoxJ7lRWQW3Ar9CiU455t4T5Pxef3ChLOZW9 e+GjlZNqkkJRQUpjQxMXj87kfVlm822pRfsSPsJk1xLh9yWCriUCtXzLLjnWHfKtvi4C5nVE1l6R +fdF5l3yzHvlWfTItur2SNg77U0tP1LQ8me3zxlrD/fbvLmKZBk+JHlFz815pvNsf6mpl4mrC12W c81t5sUUNWD4Ncqrk1dZ6pvNX5leXLp9wy+W08c+fZlfKJEU19WIxQ2wegUuPj+f36frGcTGpuJU lGXkPNObzNvkgps9ZQ2wvgwejVWeHWtnortho09BLan+ZKWZNwxn/LzKe2t2UfEqc94v8xdmichS Zuh4zTbPVdr6RuEpedLqzN/sjDm2a/NqEEpfbg1wZc1ZGJuakRt/3WDaFKftZzGfkESSxtoXWbmF 5fBKjfKilPXzrVdYmq9dsXTuypUvqsGcpd75JAYe16XeP8OdPjbo8oNKiKEmOOTE1Km2D7Hlt3/L tqnaMx9Ex2M8lRTmpRhMt9q43lsqbbh57azuWP2z56/jmgwahHZv2TZTd1pc3L2SylRjA4ONK+3r a0V19aLa+sYGWHsUVfvFNXlRVnOX8H/dmk1mqapcd7h3CV4VgrlA3aYKXyoelY5tXLT/UPjJcOs3 PPOTr9hFeQjf3E0+m77a29tv3bqVOBIVFBSI8GMT5SLDEYWEhCD4UaRsESFxkTbv3mvhjRxtEYTy nh4W9mDN+tuzzc70GHy194iwfsPO9Rp2utuQ04M1bs/hJfy67rYB93ifYRd6DL7SZ9ilvsPD+o0M VhsQqm8iyS1EEcCjGfwh9yH5dVV+1tZ/yvcSlZc30Z/BTxHVsYvhGrOWa3A2MEwdmSbOOqYe2jwn prEDk+OsjWDAxzOphd7qxi2bPTH8yJ4cP9w1wleZvLCi6tztGMulW7WNHOD9eUJ/ZPmhiluH7zNG FX44KIGfZmvwwwJPe0/d+Gna0pGz1o822KBuuG7M7A0jpq80mOeaRqY6KHMSAH1+TjB4krxW3syL YerL5HpocV20uB7I2htj7DbKyGksf5Pb1jNlit4L0NsOeLkV/XK8tS/T1A2Vj4apm9ES/xyy5Okr 8Dt3M5plshHgJ/BhmjjyVwUWN2D4weMwLA1LilD5ahsowaSs8n1nw2fN9YU3Qwn91M3ctYTOLDMv XYGfHt9VW+CC4YcMQT/0iV/+91fDL8+8Y7pll/iljJK7e9E9lHHe98ayqcU3d8gKY6tv7E1e+FOe eYdCy2+yzdrnCnrl8XsUCTqXC7qXmfUoFHZFzMuzap9p0SFZ2DNB2DfNvEcWTHjoXmTRPceiR4Sg 35vDD/dMSeXVWT6rzKdNGn/+2oPaGhglW16Rv/PALnXmhP1HQtD9IqrK8/7NfMKkKecj4nGpiGOv nZozTt1t687KxsaH54/M0FJ333aoDC9lWS8ShUfEPk0C4G0L3DFDb2aMAn6l6Zkxk/SFG5124nuw US5qkOMgZRmxi7ljzc3s/kiHhgSxuDbksPeEcWOCLt5pkEpO7vSZqKN19MJ1Mv88PSWWz5lltWxD bmWtrCFnuaWBie2qwnqxvCF7m7+7lsni6JQsaVXWumXzZ3OsYxPS0Jmk4oazwae1JpmEXH8Cp5aW XTvgO3bEQA3WuID9hxugLVW5BJ/C+BCnPTrHnzX+2NWHFeBQeeHcqRnT5z54iJs9t++eoj3jXkQ0 7kmvKMxPm65vtX7DZlQrvkyPNZ49efmy5SVlMGatoqzE4beNk3SmPktCnivXLF0wa6J+dEwyqYIy 84tuPI4qKcuozY2ysJpntvr3LGz5UVcPtkMlitdW/I/CTybF432RamtryfJjxJ3kpL6+Pjc3lywo Q1wQybp27bpv3z7ikwqC+EcmmMtViKUKPwppVVVVhJTEkXKX4mkeZL+hoSE9PZ36WlNTQyZIUEHI zRV/8HAYhx+/6NfjPQdd+GHISbXBZ8foPJ67ON3NM+G3Dbct5qfYuyfbO4XpTD3aY+C53oMu9R1x uM+wp5ucCp5Ew4+pWKQWWyh/idq6PlqV0fId+LU4PkzoJcJrgnDc9W39YxTwk5Mq5vjlJwyjNWyh lyYYTH4srg+b5wXUBOyhgKiSRVaUO8PInr804AWBH1ajTHYzPC7xeR7+BhU56SmPepo2w2wdw8BB S+CtIfRmmCP4eY7lu2vzPUYZrvUPIvBTVPfpJRWzF7trmBL4+Y7hekyd55GUBfUIhZEDZ+6xuQ4M WJnaF0aO8Nw1uC7cFb+nFpCRpeAHReezJ0zdBBlG8Ip5lP6xAjd9a8/pVi4zrZwMrJ34v3gtdz2w 5eiNW1GJNU39k3CWvBoJ/9dAda4TU+AFL28yUaztqVipQEpSKsWDt8ElMqVg+kJfdVMnVLDqpu7T 7LyiknEhQHmSblToDUIOQRej1I02Mcz8mEIvBnfjIuddleSahKsHD6jClxGu2UX4cVtxxfodus40 dmLwfVgWvmwzdxb08HlrozJUDHIhgP/w8/ya1Uptwc+yQ7pV57gl6sV39sjluS9DdzxYpJu3aark 0IqU9dNe2PyYLeycJuyQPm9g1i9amfNHZ1j0yuZ3KzTrVowsP6uOqYKO6YtHpm2YnbDJKPk3vaR5 /TKE7UvNOxYI1R7zf3we4vaG8FPu17yIv7vExlKXPX7TunXHgvYvXDJPna21xjGgpA68iCuyAtda /fzTMNPFm/YFnTuyZ7f+hEkcU/P4l1kojrqyHJffVmiPnbrGwS04NHSdkxtr0uytB46iG3uzp//Y UVqPIwkyS1++jGWzZ674zQceeQF+Yhl+QUdlRuxqvh5TY/Site5Bp874+Xrpao37ZemGwjKoo7Jf PPtlgdWUqQa+gZuPBx8zNDPXMzC7GZ2C4hRVpc/jT5/KsytA8Ksv8HVxGD3VPDzuJToUdT+Mo69r ZS44ePjo71sCp02dvmi1a04lNOmi/GY8DTMYz9aaaXEtMgniwYtYk18NX9eS5AfnZozVPHz+Vg0k vfrUiQO6uiZ37wI7dwZsZY3Uu/uQjOKpzM9L1dMxWrbCWwKVZ2lwkC+bOcxq4bLTp845rlo7gTmB xRj3OA6VgCzl6X1L7sxJUw127T96+vhxoc2iSSZzHz9+ICmK5ZuazlnkklmimJ+jvGFe3ZqurGaX GeXYxkX7z4Uf+szMzFy/fr2Li8umTZtCQ0Opo9evX0dG3u7du3/99dfDhw/LMfkYDMa///1vDofj 6upKFiBNS0tD3nbu3Ong4ODm5kbGdr4KP6T4+HjkZ+/evc7Ozrt27RLDAkDgDQVB7iwWi81me3p6 ZmdnGxsbd+rU6eLFi2VlZShhO3bs8Pb2RocUkSvrhhivgONjdFI3uO0fMDpEV//ZbxszfQJjFi6/ pDPpRP+hJ9QGnPxxxF2eZbbvzpglvx3/adSRLj2vTDV65uh8080DRwDdWxJUbeHFaCmR1H4MvVXk cwB+ntp8H3gZAkz99mabuE+38Y0mb3VAwk+KJy490eKsZ+IBKdoCP/zaWJiWwMbvj9WGIfgeOgI3 LSMHs6WbnxdWUxcuutM8d4X86rCvrBqGt0hkDcRdJJLsO3aHzXFhmHkwzH0ZwgBtnvc4vqeumeco g7VNA17wkCMMPzdk+enBsmR+6hzvacjyy4R1eXBs8HEg5D6bu4kJK3v5akMHpAfyz12xPRkvb0bi Afjtvaxp7KphFsAUBDKNXX/1OP1HdtGLvEK8FWUXl5aREQ8K/T/23js+iiPbF9+77929n99dr40J BmwwwWEdMBiEciDnqDQ5KCIyAgHKaTRZM8o555yzEAqAhDLKESWUIxJCedKrqhas1wv7vHfX7+c/ tmhGPd091VXV1fWt7zmnzoETNww5h+ZExLsu+3UdlCl8VQJHQ9s6tQADPzQEY28uvMMypmfq6J/S usrbT3SUh4Ey+AeI9kkP4cpUhNYr0PoHmRGBYjF8M/ZrO2Ix3xV0rRne8QsI3SDwQYkQ8r6MBMAI VlfQBqsckFCkrGMLIyCiwO5/i3B/Z/u1wW9Eb22fwScNN+TGIfj196S5lV07MBd0RVbs8TLwarP+ l81GX/QIdOeyObKyEGmR31is1YDDiVHj7d36m5qvfNnJ01l86CPrKZP1VYoqEybirV5Yqg7obxmm b6kgbP/l4AdnT6CaYhhWd6i3y0PgamygR6eTTK5eDgqPfiWCujJ42UyfwBRPwGlbu4UY37xrQKPd uW/ztK59BWYE5yjzM1MBQUEGhpf09AyMrt4MjUudXAQ9WZqTmsWwcHje3SeCgSOmJ8Z77e35cYm5 SxD8oMoAm8bMA/DTVja9ee0e14NicsXA0IDBcO6BogspKqN4fKhPwOeDotH0aTfuWxdWNiMQk4gW RgK8uFyfgEkAfqLXmcnJFkz3rsEpVLmlqpLsu3dv0QwNjS4ZCVxcR15Ccxr0WF/PDNdcN6ZR73GH 0IJ50BwrmAgK9R7wMdhZw3e0Ka9vn4PjxeuKp0VOjq4tLZ1iibQor9De3Km9sxdZki68nBpiO7mG haci+5fF5bmemCgfmrGxnt4lJ2tmqF84n+vW2TuAHsZiT2utra0d3cCARqeYWdoVVTaD7EUvX/h5 eQqC4sZmocXzmwf0M8x7u62mv/ry9uB7Ou1vEfywso6MjBw6dMjDw+PVq1ft7e2nTp3CWF1NTc03 33zz4MEDGQqrtGbNmry8PHBNSUnJ2rVrAfJ1dnZOTU0BcFJRUXF0dJShpQ47duywsbF5mzkGfpjO r7m5WU5OLjExEfC5wcFBdXV17EpAKwHU/fGPfwxGaePGjZ999hmBQPjDH/5AJBLPnj0LYA/QPnAj HA5HIpEAKYT5w/+SRzfvhm79tosn6OS7dLD4T4yMk/aqxm/+NnUrjMmeu21X1rZv4z7bmbRLqeGW JcDFAhy13Y6VdV4rR89Yhoz6IZBCCgTH3/8H6X39450JMT+uGgI/JRgonK+sC8CP/6yjH51HxZfJ IrMq5S/elcc57tNlyOs4KeIYCroO+3TsFfAMNaITImSA+fGUNJ1I17x6xpCZD+rSoM5uEekqp828 wvOk8EVfgC65EKAurEgcvJOVNM0B7KkQ3dUJbgfxQnU8X+68lUc4WuoAhy74d2D0ldZlvpIO5xCe r0EQyOvwzxgIu3pRPD94ASxkaMpjBH5sxHU4ymQAlo742x5dyL0ZslmFf10CslS0naDYE2xaDnbC 5L99Km/eOumqHh4NYOOvRbTbbkrajtD9N451SNsuuwRGeXxXgmUan1rUv+0KqLAqWaBG4ipfvC8M zvnbABljM8vUOx7KuvbKBL4yQahy0TEwthipSDGd81/G979NfvEPVXSsAdX7W2z7v26/NviN0tf2 6m2ovSo3VgLe9K6+FHbRjeMzD3xkc83TBd611/f1C3Gyl89WplumWrIX+itksklZdfDQ9W8r9Ld3 hF4XTz6DViezQyuDbbLZYZl0ZKnYq9VkV5/+lkrKtl9o7SlFTQiZMnglxAtoKSeczojQKlsZdhYp jGUzvS63dOhUaisKvYGZIMLmB5v4jYIapZX5VUk4DBn4lyVA0iXxa6l0fhVZMGtGpM0SIZnTQnft vQuKDnaOg9DVPRZ+Al0mW4a+YkRQKokOSFaWV/sjqItINI/W42NXSjHfpfAiWAsYqQL7ikaWVWHA mxUIshdtZQScLj8idUEKyobiN8HySNH6ZGwKtSrZEMEZGLQzXc1NtJqVDAkoMDEGlkA2IumCTIzc 1kMRx1/1HxF8WaD2Dn0TL79tNXDvN5VaRibfqNySn2z/QD983+D2WwQ/LAHO9/XXX7+VPUZFRX36 6acAEWNiYn73u9/Fx8fLkEhz06ZNWIy91tZWAIShoaHY9Y2NjeAyExMT7CvATg0NDUDpsK8Y+BUW FoJ9KpW6d+/et5JMHx8fLAoS5pwTUyKC5OXlBb4GBgYCggiy2rp1K7g7dqq4uPi//uu//sJNZ2ez tYnRm78sOq/9WJuc9OW+xE1fpm/9LmfH7qwvfsj44oesnbszdu7J2PldxpavYrZ8ma16ssee+4Il jNj2XcrRM8vDw7DO0AEj7H7vfm7/6vS+/vHOpG3qC0OkYuBHQQaQAPwMec86EPOD4wV8VbNK6rRM HHRvCgmmbjQzd5qZK+2uO+W++8VrAjWCgxrFWR5KL4XyulzcdfduLKoD4ijgSXhEZqtesD9CsEsu qpFgI5F0BUXplA29Wrjl4KeqZQWNNchuygQYU37vBUv3SGTt+WYkezH26uIVwIrYGiS2Kpkrh2Of MnLuxHR+b96d0OQyZRhFAeCoqwpcMA6YnxNhFfxA+y9io6FLULq8FgxppAyu0bGxFsYvIicTkjfy UzSCwjcY+Z+DYyXUVwOUmpVSTb0VtVko3Lyzqi6THVhcWN2XXdaSXlKXVlKbWvwsraShrKkP421g +DNnhypo2kCUJQK8dDijxwxJrWjpfzU4PT80Pd8/9aqmbdTONUmV4AgKrATtUzzULjjkFLe9rfv0 65XckrqknPKMksbCmt6K1pFnz8frO0cbuiafNAxdY0Qq6TqoYOGo3mPV+b7t1wa/CeqaEerHDZf3 jxVHgdnLi3Rh3tXjL4uDZYtdgw/8n5ppSJ94Sxf7OnJCC8zONbGpY6msMS96i/5Xz3nklcEy0N4v G3P6Ay26eUaTMU6y2siXEZdb9T/rpq2von7+C609pagLLkoxNyLQcmhFvApOEJdgvC34lKGCY6aP f1OHSCDVDUFjfLSgB8kKpCjcO1rytIT5CwWZQit0KLUG57CJnEQEeTzCO7jeBt4YQhWcN8FYsQDG e+qun1MwM7fsnYMGNRJ4Kbi1BHpAg+izAuNOgExg0F3pG8PAFZFoQSpekkiWEaQgjQGMBfOmc6JF xtj8EIWuWBZBnZ7o9VjXk4fpFreun9amlHUPA7BZWYFONWCzwLzB5aBGS9CKG0X1Rb19GRJcWCBY MNiuqPNj8I+e9wpcIg/j/UH/nVB1hIzYoDXfqhGbDDpchtUBrQTuCacMS2LUXG8eCbgTuM0ifKPe Hv3J6V+W3je4/UbBD7AuBQWFkydPvj3S3d0NjuTn58/MzADkA3QNwFtaWhpge+bm5uCC+vp6AH4A mbDrFxYWAHqVl5cD1vjs2TN5eXlA6TByJnsDfo8fPwaX7dy589y5c29vBOjg//7f/zsiIuLSpUu/ //3v34Zqamlp+c///E8sNgX4BMD8do388+fPwa3v3LmDfV143pOhfCRl69cJ275J+vTPuZ/vyvt8 T+YOgHY/ZO/clb79m/y9SgV7VdI+/y5n225wPPHz7+O++CH1O7m0rd/GfLdv/PEjmAvsT9gj/3+R 3tc/3pm0Tb3VoJkJDO6q+Bfw49Z1IuYHX0swh5POzolGp5dGZsQTs6JXC+Lp1+KX8+KZFXH78Ovr TtHyOo6KNNd9ZOE+HR7uphcyeJFijv7Ae+Qelqekw9qv43TWiF/VCvVeYihLFEnQSNQ1/JJww2Wf tr0iVbifIthP4e6+eM81CgazfZt6JmbPXXGRw3GUKRwFGncPgX3cWNj2AjkceFPZ0OSnyrqOSOfn Cj2OkrnyOCb+tudzjPmhF1QEg9lmymnbKFKdQWX369jfd0mYh9PSNyQPPSjs9YcrB+E4heazMtnI rIx821dBh61AESpQXRTJzoDpHqQ4HSTZaRDtDlDs1ch2ygTbozSH3DLICEGxcsqa1Qk2SlA56qpO EagQmSp4h5OGfJypJ9nM56KJ4BiVpYp3VCDyFchCZaqbvLYT2dS9d3xaCmfZsGLxWRVH8TZqOGsN ksMhKusYnXOC7nSK5nia7nSUxlQlsZXhkgbojAa5CPg5wv2d7VcGv7XT1D9NUT9svqwwUhQHkKw3 yzfn6smXD/xk852D+UFV949JSrwkyy+GqzM6nfUbjXdX4T7pJH1WS/xiNNNPtjAp6Stpsj/diP+k C/dxt96n02bfDF7aMGywdoC+toK0pSv1FzE/GcbAsGkNApklsUiMJjWg74nECxIYIQ/NTl8Nedtd M715u20U2jih66VvI/xB8INwJxbB1wH8fAVacsL8ALah1wMRK2xVEGxUbIoH13HDmLAgh/mhVktj LSc+b2ABjVoIj+HyL5g/6GJLUpAneCsAOkuhxBQ5PUHEXwQKDKf50OIX4AwoP8wY2Q9ipgzQlBzQ scVFtKJQJl6sygw9tu+rA4dPR2WVzGDiJpAVhCbYYDCOPQBQGE0TnoPILYGTUQmMMQmBGzYi7Bmw 8yNfFKg6kkWJZE4kWRBBkIaQLoYwCL4swdcFzpCxRl9BMeGXVxdIIysWmCGsIwxNDz5gPeG5/2F6 3+D2GwW/ycnJHTt26OrqYl8RYRdPT09j1iUAus6fP3/58mUDAwMASNbW1uBgQ0PDW/DDagsAkkgk AmJnZma2efPmo0ePYgYyWA4A/EpLSwGVXLduHYlEwo6DhDm2dnJyOn36NNjBwiGBNDAwsH79+n37 9oGy7d+/H+y8hVJwastnn4F7YV9HC5/Ef7UvB1K9XXnbd+dt25W7HYDf7sydP+Tu2JX6+TcFakfq LhISt3ybuR0c3JO944f07d+lbQdff4jZ/GWDQCBDnUcEP2EnwrL9VdP7+sc7k84tLzUSW43EA+Cn QIGYoaTLAsyvDtP5wR4O3/q/A9wxeTWqOFsFAlMRMD9tHvG6z4tRLJ4f/A347xFRsB/H3EdyltNk GJkF9aGzkPlJYEhbsP+4vv/UJRc5Ikue6qxA5ezRvOOOgR/27oHZ0sTs+Stu+3E8FSpvP5W3h8A9 YeTa2o8p81awVoViT7ytAvTp7AzD/pE5+3UB8/PCwA8NgFDqwgvOUdBhKJCcFUjC/TpsC9c0OD+F WPNmQ1MVOCShgQyTEYEfD8/KiKbe8joMRSpPjsYF8KlA4kIXoESeMl6oSOAB7itPEnx/+r5HFBTw gntOL4uuOwXtvWANDYLAZXBZIVeRAC13QNkUCVxF6LSTp0hxUaK4wvjsWndj8spglSQSqCSWyTg+ 6fJnHcBPFIhceTxPAc9TJnBV8SxVHFOFwAI1lYcxHPiqoPFxTirEdztzeef2K4HfGG0ttk3QPhii f1B/ff9ocSQAv64s34LrZ2cKAmXzXVP5gY1X9g0zTskGCsGkQjZUMVcSOOJ/tfvq3hrczqmn6SD7 8VR+69VvB2kbJ0h/GqP8cYD6xz76miG9DaN6m8uJn3el/lKdH8Q+wMkkMOQ4lL8gFIH1RhgmEUND SEiilme6m6tampunlyCTgdgihogghuQOTpsgcsA/MJIEHL8wciSFqxkWsY4ugX/gUcjZoLAQoM0y gDPIrZbFS1Ot9U87urvmxSjUMTq/KFmBKAwngmLpCswSLvqWwkiEkFehXCHtRMVGeARFKeCVhJCK qCCao8HOCwq5DFAH/EC80t/+LDU6vKqybhkZeS4DNJXMgVkszBKW6s2kDgIhmtfBigG+t7wCBZno GnhvUHIxxHIRpvMG5VuGXBnxWfhOQPAGiL2EVnC90UhjbzUUcyHDLEhvYR1hjRHFRdkt/4wGYI/s zYP7v6T3DW6/UfCbnZ399ttvL168iH1FY8pqBby8vLZu3Yqp65qamj744ANLS0sZAr+PP/74LfMD wLZp0yY+n7+ysgI6HmCNGhoafwt+AFABLmpqamLHQXr06NEf/vAHd3d3AoEAKCAgfNhxgIJ//OMf QSbz8/OqqqqgeG+ZX09f77qNnxgYGmJfWz38Y7Z8nbX9B4BqOTt25+78IQPA287vc7bvyt+2O2PL Nw8Pnmy7bRm/fVf2ju+zIUCine17MnbsS9r0ZY6mtuTlJPauYX1O9rPH/O5H+U+l9/WPdyadW75Y 1FNFtGJahcxV1GWeMhLUPYfhFdGzQooCNNLAFxC+4miCCOeI8EZJ+VWH8ZYqOFsNCldFk0m55jU0 gRYsIQQBf92i8vcRmPtofCUyR/mcpS0/8TVauQaFJEisCvZdIosUdRxVCM7KBL7cBUufVYMXEaaZ 6Jua17ziqqLDVgfYRuXK4VhnDJw7YYh2kM8SGnNkIWnFijgLeTJDicRRIbNUyBx5XSbB1KdnDAaz lSIHaCA7QUi2oqatKrTYdFa8yLBzy1x1rv/3ErxiclFGNXVT0rRRITkqU5yUyWyQiTqFrULgqRFd VaFXboESyXnvOUvfmIdvs6ztGiab+Srp2qvgGapEuJQQiltRvD0V6F8URl+CvA3HVNO2Y3inzL5d 04eahe+brnyegaIUYXabLqpEgQaRr0HiqQMUhN7LuEo4xkEKx9A+8bC+UAXWHVJAuB4Dw7n3iEP/ J+D3puNK32ILSJIlBH5aLfStg3rrBumfvKBseEHf2E9f+1x/bfUdlZHSGIBwHamuBVdPvXoQKJt9 Ppvn32r05w79LS1czefpAlHnE5loRPa6fT6D1XpFYeJJCsh0KtW5+fI33dTNY/QNY9Q/DdLXdut9 1kf9bExvWyVp+y/U+aETMMi7FMZ9RRJO1AegMG51SgMHaThOQyb3k6wwkTcYp6WiZXgWDtuwtRAC IVSDHAeN+QBb0OwJ9UL4SkBEQcCCveywk89jNlBYuaANE7xYtCRdWoaW7FjJ4EFoy7uKPnC6+aa0 2KsE/0HhpHRRKoE1gmV5A35iCHIYj/vJM4WvLaj3a5FkRixZRI8NvcCryI2BEtZsEJogPUT3Qq88 oJjIZdIqqRVBgz2sUbHHDyEP3FKEDIIgJGO4uoj51JGg9xKuYwdwvwynD7DBZahpFiDKYxPMvzyn t2X+6Zd3fX9Pp/2Ngp8MRaMFiIXtY6Xv7u6ura3ds2fPsWPHsOPFxcX/8R//gTG/xsbGDz/8MCQk BDtlZGQEcBGLtPDq1att27YdOnTorc4vNTUVgF9JSQnIWUVFRVFR8a1yMSEh4fe//315ebm3t/fv fvc7AJPY8fz8fPAVE7ECxrlx48aJydVFY8/q6/7XH/7Tw90dflkRl1y9lbB5Z/b2HzJ3/JC1Y1fu DrCzG+zkbfseUMD0Ld9kHz7V5uoZ//WPWdu/h8xvO7jse3jxtr1Zn30X+eX3g3nQdgO+J/B9gHXH +s+vl97XP96ZwCAIaB/YlEgCJQoal4l8dSLrYU3Xzy99TwpMLlXTsVElOioTmEo6zAvGwqo3XlFk CLtsvBLlCCw5KqSVGjjmIV0br6iCVTdPb1JIRoWaDkNVV6hK8Nh/3pHhnv7T89Xd48f02Oo4jhoB BpFQxHOPkJm5Fe1vLwDPm+mfsV/bRpHMVqMIVQiwFko44Ul918q2vwRJnpXKLIRRStqgtExVAltV 29E9qmJKJJkWSSYWJZNL0inwOS+ZWZJMzklmFiUz85JXC5KZBcn0smRsSWLBT1HTdYIGPmSWKlw8 Di1ZVOEaD4BhLBUSWxmAGZ4VnVe3KJbMzotBPi8lspK2KROnpENUDrwpdF4K8U+V4gx9uWE/x7NO GQi5wSU9L8Wzy7KZBSm46atF8axIEppafQSQcgLKmQywzUWZKFAh8FUBcCKvoapE9vmrXr4ZLWk1 M6ev+CjgGEjf+SuBHyJNGH96qxAC1Oh1T6m1Zj1tR7f+lp4r37y0O9x6Xb5Of2cN9dNqB9x0y1PA /BpCLLL1lWYf+srm26fyAxquybcYff2QurPs0p4O8xN9YXZLQ89kUxWtHEJfqqdMNCHtyK+8e6iB vLWPtrnfaEuv/o428o5+gy/76Zsr/pFF7rDAIihxgzJPyRuJG6oFRAaILtAeQyqBEsrVYR1lgcyc IOtBbxNEMjjdg7UGcCiCwPdmPoiixkOTlWVkHIL4lRip0mRII7iMYiRDMxJ4CM0Y0UkxMkORQtEg sgOXQRMaZJcFeSfIEoLTKoSK4Y0xlRyiVGjtPEJfVBX4LJax2kN5JBpoILBIoR5RvCABeInEn1jV MFYJIRt7mhDpIB+GN8LqCuuN4SSGc3AuAM2OMYInhSseYOawANjvVvFPDDWsKGAgvDWGmlDkCu+E 2g5lC110L0OBEtSLQLkNxGMM5dEP33Jo1Darz/FNet/g9tsFv8LCwu3bt2OB+kDq6OgAnG9kZOTg wYOA4QHcAmh38+ZNwMYAIIEWe/r0KUA7W1tbUNWhoaHbt28DrPL19QWMDfA/AH7q6uqAUGJ+ztLS 0gBqgkzAfnR09EcffYTtg0QikQ4fPgz4IuYUFCSQG7gv2Pniiy/6+6FaC9wLiliDg7CfODoxvv3y 66E+eGp5YCTl6NnUz76C5i07APmD4Af2c7b/AMAvZ/uelC3fZJ64MJaambBHOWPrt+CarFXw25UN qOHWH+I2fpFnYCBbge5s0WQNpdVO+N4H+U+mfyhb7VsBqijqtxKZr0zhwCDgBGdFHNPYyjejqKG4 pruouruoprugor2kuru4+nlJdVdRZWdRFfjaXvbseVha2bmr7go4JnSgTAHDtFABxzJwCEkqbSuo 7SuqfeEWkX9Mj7Ef4CK4C8lFHS9Qwzuq6953dE0rfNr/sKq3pPp5ztMufasQZW2GOsFFmeCuRBQe p3N840qKqp8XVXXmlbYZ2oeBW6jheRokvgrZRYnoooJzIt/zTCxsLK7pe1TbG5lWcUafp4jjgt+q 4l00iAI1oosqwUtNl3/FNijrSdPD2q6Hz3rcYh4e1YORFlQg9vAOkPk4U1+6pS/dCm761n50cx89 Cz9DS18DCx9DuPka3/c1AUfMPQ0s/bSv+qoTYfAmAHvKkO25K+G5qlSeEgWwQKY6FaAyS4MmIN31 v2ThaXLfzeS+p5FloJFDtO7dUA0qD04syEj4SeErEjlqVL4SCUadBUh2TN9ZzzLssm2k8d3AK/d9 L5t7Gt/zNrQIJN/1V6cAFstXBIhFESpCv50uKhRXJRgfSgAdCxA5Zy97GNlHEe4GaMDlfRzILH8t 8Fsd72WrozEcObF4fpUOOvW0LzppO157UmUdCdP5rq1MnR6OzuuyOMnyjGyqsVVIfUDfPfvQXbbQ PJrvV3n3+OuYOzNZdj3Wx8oIX9Ra6y60P5FNP2t3pVezKYsDT2Qrva8ehrTanK8w+K7d9shivtOr 0KsvDL7o0dtQTtv2j4Af5CQAigDxmUNerqE0DkMLZAuzDBVsy5AGojUtq/AA6cvKAgQtRAFXWQoA GMm8BJqPIPaITsEzABwWVyDGQvYkAmQRLe5DyCGFQY3gcL/qTRuJUxEYA6BD9Ar8cF46D7WJCFoW UMFgrkgpOI+IFHZ/sUS0JFpCDBDapSCuBcuxBAvwhs7B4kmWVlFJKluCijkYvR2C9Wo+EJuggF8C r4X4CxO0OsWmBlhdYc2hig6iDzgH7Vog21hBwmCkIFw1BYXUFeWFNJ/op+ghiJD1DmxZSGwh6XvD iZdF0sXX4vllJMZdhqOVFLYNFJ++mYpAhSLUgUphHuK3Txk+z/d02t8o+GHFjYyMvH79emZmJmBj FhYWgPaBg48fPwaM8Jtvvjl37lxRURGbzQY7AMAGBgbMzMxUVVU9PDwePXo0ODgIuOPOnTsBWIaH h4NMwI5AIACQWV1dDcjijh07mExmaWkpyNPT0/PMmTOurq4cDodCoQCKiZXh6tWrAEF//PFHcMej R4+2t0PegJUtOTkZEFAOi+3m4a6Dx1U8gXoXkIYfPIz5am/2598CwMsGmLdjF9oA+O2GKxx27En+ 7Jv0E5pzlXXJB05nfPZN3vZd4BTASIiCO38AGJn5+fcRO78dQrajGOxh6c0r+quk9/WPdyZN0wAV krM68oOlDGgTGCsJAkgytC1Uzl5VOmcqd8FaUYchd9FGQdNeUQvsOMhdtFfUcZQ7byV37t5+TRt5 AJwkZwVdByW8k4KuUB7vIqfrJKdjK3fWWvGMlfJ5exUiWwFvr6Jrq6rNUQfYRuYqEWyUz1tpnHdU 1bJVvmC994ydMo6niueo4J0UiTxFmosCga1wwVrprKUSyOGc9X48Zx/RWUmHrazLViIKAMTK67B/ BLe+aKt60VrlrJny6Vuq2gwVIoBerqoOT0WLoYLjqBJclbSdFC/YKJy/r6x1X+mi5Y9n7yoT2Epk dzm8QJnsCiiUvJatgrbN3gsWirp2+7Ws912w3nfRRk7LDq7l0HHcr+0I6gtqrahr8+MFcwVdhhpJ oIDjKOF4KngXBR2OEt5xL85WngpQhw0Lj3NSIDAVcI6K2rYK581VdexAhnLajgoEFiR5ZL4Cni2P A63BhvyMyFIEV4JGw7FhlGCCI7hY/gJot/uKmtaqOmxFLT7Mimi3X9teGc9UglEduKApFEAZyEI5 gPQkvjKBo6xjp3jBQlnHRp3EUkNxkX5d8EM6H8RNllFo00npq2eNjhc6KTt7ydsnuARZd7Zsrn5l rEwyXilb7JNJxsfT+A0me6oMds0XuMhe1U7medU46kq7U2Wz1eLByrmu6oX+Nun8kKw2dvi+SrXB tzOxtrLxFtn8xPJQ8+vuR0uDhbKZ4uUs6xeXdrww2FRG3vrL1/lB9ZhoeVEmGZFKesXiTrGoVSTq EYvGJSimHzbIQ6mjGFI0MI6vGmxCogVBDgIYAiKIbOADmqPAwRhK+5DiDtI3QNyWRCvzAD2QtFIE NV/LyNYTgpm0sK469dmzPokEyQMBDq2sSKAqD94FagAhdmIsaFIq7hSJnovF/RLpK7j4Q1YyPhxV Wza9sghBRLIsFi1Dk1MEMgBsMSiC4C2ClpiIYi2LoGknNMWEA4EEgOySSLoyL1mag8JaREtRjWHV 4B7kXdCAB1ZbtCxeXoQsWQb1iqJ5QBlhIyPERoZggFYiC06wL1oAdBlqLuEiEmjXg+gshrriBal4 VCweh5Y4oIVAJvMyiGgyqOOXwDgbENhWEORBLriqEJRAwF21UEKzEyRu/uuR8n2D228X/LASAwyr rKwEcAV4GHZchny+ACKIBb8FR168eLEaSFYqBbgFUBDLBNBBQPvefh0dHcX2+/r6Wltbwa/AJ4Zz IPX29hYXF4N7vdULOjk56ejoYHevq6vD1kLAvoFMncD+2Ojoo5KSJ2WlM7NQRYQ5d3nG5sVu+ip3 +/eQ+e3cnQv43M4fMr/4IXvnbiTe3J3y6dfpxzSXO3tz8AYpm7/O37Yrewe0eclB+AdQEHxN3PRV zgVd0cQEeo9Wn9wbccWvkt7XP96ZLpgGAR6jDimFM5TmEdnKBKESyeUInWNiF3KFEY+7EwxG1Ys3 fKHgjsA8f93vuLGnOplDs4687BSned1HCcfWwLNpd/0shCk3nFKO0F0U8HanTPiXHWKuWEUcowiV iHyShf91ZoiBeagGxX0vkXf0Go9w10MDxkLinr/mRTQPUQE5X3LRvuGuQmHuR1HUTxnxTeyirtjG n9V3USBxzpn5XXGKuOIYdtKYc8yAfYkRbciK170dcpwm1LcMvsaIpFlGKJNYF0x9TBxjDW0Cj+gz VEiORHPfK05JBpaxR8jM00ZCA7uIg1SOGsXl3M0ANRJLg+hoZBN8X5hhYh99hMw4a+hs4pBgbJ9w 8aqvGp6tDlfc8zRvhh6mux7W5+rZBx03AgcdCXf8j1G5p/SEhlYRV5lhuuY+iiSmBp5JuuF/1TGR bhulTuOcvOypddNfScf24i2vc9d91Ijghyx1vBPBNPgKI9XAOvowkXGU4nSVEXvPJZNmFQ1lsERb 3D2PS6xIkmWgBrQC5asSPI4Yuhg7Rd5gxd5kx+FueRyhOGre8FajsA7Q+RdvBqoTmWcvuZs4xF5x jNe85qlCYEDijpDv1wE/2LdQ5xUjjRkU6MlkE9LZmlrLoz2Uz4epn7fq/9BmrzX30EM2VCKdb5b0 Fg3FOzXe1uigbuugf7kQfkNaEzIdY1l1U62NTxaVh0knW2WLgBr2z5XFD7A0h+mbeogb2kz29nve XqnOk832y+aeizrSesKutpjufmH46Qu9jU/Jn/9ynR9m85FZWUrmsHSYjng+86yTjS6LEfO4bA5T wiOYAGRGtCJCgy0cGQCuLWAWG1gLIYYlQoxvdUCRYrJBSOswLgYJCsIkaKC5vIQxQ3AxGOnYUSF3 wyOalpbhMkCpaEm8gGARXoB4GUARcEbSMvjcKijgIoON53L1XZ2zX7zoksmcayv1g70HFmdRjWBB liD4oCIjO2wozZSi2YgIkqcl8SIiW+jqVcku9Kcwj+zWoCMxFCcLcjhEqaBRqViExI8A4AAng4s2 ICGDyIj9RWiGcApxNQiSSK8ElYHzKP7FIpoMIOtUrDTSyvbWOz4BJb0vkCoVnJ9fhkAI6yuVLEiW Ft/cHhYUTimQaBjOqt4Mi6BhF+Hc6ifPGKX3DW6/dfD72cGfHfk76Z+8GEDgvn37wsLCfnZc9p6y QdEFODXzOuuCbsqmL3K2fZeFwA8Qu6wvAPjtyt2xJ2fHHsDtUjd9mXlKRzYx/eiOVczGL7K3fZe+ /YeM7d9n7PguE1wMieCerG27I7f8+ZnAXYaERAht4RwH3uJdd//n0z+UJ2J+fDXMRILMgpafRLhc j2gWkFo2ZOXxUM82+iidI4iuJd4OkNe0DMyuv8SIOmYoiC/qZAXkhuS2n77kZmITGZvfbsZN8E5q EkaXKWhb3HZOjclv9k+ptPF/rEZx9kyq5EUUXmUlqVPd5XA8YUplQePAuUucH7Uczb1ya4aXCfc8 7vDjPeJr1cgseTJ3P4Fxix8fmt3kFVvlFV0JaJlvbnNQdsU9l5Qzl4S32LFp5T1WAfk0qzjKnaCM 8gFmSPFVVgbgYR5pdd4pNWG5dfaBOYfoTgHZTYLoyhvcTHWi0w1WcvWQTM8m7KyJhzC2VlHLzMoz LTK/w4ybfs8l/xDJyUKQFZHVaeWRT7gTqqLLAhz0GM3FI66ZaBaiecujvG/WI77oBN0hpei5ziWB oWVkeHaHlUdGVHH3LV6yhq69S0SVILzS1DlXneasey88vKCfeMfTK72WZhMpr2WnRmQcpvAC09q5 oU9NeZnH8E7coIfuceV3nVMiC7oNbCMP4C0jHjQ5hRVFPOy8yUtR0AW00vmYsZupICW3esQluopo 6n/BmOcRV3OEwr5wyd0rqUUVZ2PtkRlf3G8Bynw3CEwg4IIHyOB/FfDDhHwwwTFLiuZvAG7mpXOt lTan2kifTBpsHKBu6qJ+3nt19/NbCu23VbrvqbVc+q6V/OmI3pYR8qYxwy9Hbv7YZfJdB31Hh/7X bTf2d94/3G12vOOWeuulH/r1t07R1k3ofdJD3dxJ3/n86t72O8qtd5Wabu1uv7Szm7pu1OCTAf3N Tyk7fjn4Ae4CAMC/uOgsSxD05Gn1QG95b3dFT1//9GtMmrYgEo8vLb1GP0CGi4vgPximx1dEU1Lp a2TOAQbuyeWlYZlsFhG06aXll2IxtOwAYIMEc/NS2ezK8iKCSjgvkED1GCTFIHOx2Cna715ISNOi aFKKpJqiOUwvBjkgdHgPEETUMTVh4ud7Jyy8cmSkfXyIn+B/kusUPjrGbm7V8/cbWV5aWFmZRcJA tCQBwgQAkLGVxRnInBBfEi8tyJZBCcdFkimRdB5NtJely9NLS69WVWsSTPgKKODo0hJgG68gdkIC u6pwg9lCXBxeWB5H94IJNRP4mFpemoJMEIMouM5xGt5LPAMJKGw+2B1go68AJjo4M5Pb2PFiHovT LlsAd1xcmMSothQjngDtpC+XVxZQ0MMFhLjg6MyKaHIZuUNFMw/s4E/T+wa33yj4yd4zymMH3576 6effXvN3jvztqZ9dIxKJAPh9/fXX5ubmFhYWt2/fvn79up+f31uKCT+xFxv+QapkwAWf1ER9vTfr 8z9nb4fgl71jd/52KMwExC5/216Iajt2pW7+IvOsrmx+ocHdN37Hd3lf78n8Vi7723053+zN+XZf 1tcAI6H+L/nz72K+lx/NL5LB7BH6obu+ow7/ivS24r8kaZl6qZBhtHFFsrMyhaNGZqsRuEo4FvWe f1ReO+6692E65zCV7RbXQLoTuP/i3dCc2husyFMmbrE5DcZ3ecE5DReuubpFVjB8Huw+efvcZbe8 +v5zl1zvcLOc/TLuukQ6JzccpnFdIwpMHMIP6gsV8dwzxj6hWU3RGeXXbf32atncZCcmFHewQ3Nt PZO8E+oAy1QgsRVwjmbOse7RhffZEaFJT9W0rINzm5nBGcf0ePvPMe/x0xKKGnB3PVTwbL27AemP 2vWtww6SXFQ0bf3Tahneya5heW4xZQAkAlPrrztFHjN0ltO0vsNNCcpsEcRWkm/7ukWWnaDbhea1 XbKJkDtrJa/DUtRlWLrmekSUal5zUQPtQBLsJwuO0J39ExoodwMIZl6xBY3xBfWXbANT8pvxl4VG dnFMv8Ifjt++bB8RklZ/nOrEjXhsYh910tBdkcAGbNjRtzCnus/GM1kJxs7lKpOgY9LAtKZL9kGH 9Li6V/wTH/WeN2HtPnHTwi2VH/n0OMkmOqfpikNQQGqNlVijQwEAADbHSURBVHuWvC4TlEGJyFbU MQ9KqyObhe27YHv+Ejs8u87YJtLMKSEko00ZZ+3gleGTWHXOxEWDwlEiANrnjIVxWF32/h7k+5+B H5SG/eU1ebutSOc6yx3OtRlsHKb99yTto5fkj1+SNozgPx4hrO3T/dMw7ZMRg81DtA0TtPUT5I9G iB8Mkz8eoW4c1d/WR93YT1gzgf/TGOHDMcqGMfLHo8QPpg02jtPXj1M/HiV9MET60yB5zQCAPfBb yppxEgxsVE7Z+fwXiz2x8dbzcdl5r7DKcWzRy+ppQGWej48H5ObdDwmNqq7tQqudpmaGcmsrk5pa OWnpT0dGq4bG8+uaM6vLGfEh3jVPKl5NF/X0MmNj+OkJ1RPDE0iPOLW4lFVdw4qJDntY1D0zDeCh b/ZVem1TSk2bT3bh44EubmKQTURI5exydH1b1eTUClwtsfKkdTCvtmsBMh1Igoo7Gs86cwPrYWhZ UMLBuZFLAT6ubc+FTW36fv6Z7c1u6eke2UV1oy8xYvdyZSm3sYqVEOX9oKhhHLqLnl6ZT24sj21t csl5lNMx+Lin/0FzfVLVI/vwkNjy2pFFWLsFiahrtC/6YaZDdEh4XVXbwtwMIq5Ing3J3PjcTHrl U4eoSJ+HJU2T07NoIchr0Up+Yx0rPt6v4EnbSxhqsmlsOK25KaSs2jfvaUFj1+NnTeOvoeebVytz 5U1lDX3NzS8nE+ra+5Ff0xfTL0NKimwiQsPLytrn5mdQ44/NzsaUPmIkJEQ/rX4xN/9aJp6RiKsG Bl1SkzgJ0Q87uieWxYtixFL/Or1vcPvtgt//78nb2/v3v//97/46KSkpDQ6uum/GqBjCT2gADNJT R270pi+yt3+fBVcvYEsd3ix42P5j9vYfwJa0+cssHQqYy71IzUz+897CP8s/+FY+7zv5vO8V83fJ Z377I/R/BoMc7UrZ+GXC4VOvkKIRKhaglBvKDX4NAHxf/3hn0oLMT6hKdFEku4JxUw2GVuAr4p2I Zh4PG4f5EWVEM/8jZIZHbB3J1E/uzM2o3JrrjOAT+ryi6oHmvilucK6ylnlQYp0lP1XurNlxGuPB sx78Tc/brOT0gnpe6AO6XexRMis8rSY4s9rIMU5e0+oaI7a4fuTh0ybviIeK2nbmgkRrYbQwPC+x sNEt8slBkoMq2VFZ1/oOJ7S6a7ym6yX9tqcyAID8mtSK9pvcJKXz9mbs+NKOEe/c6gumwWRTv+La AZ+UWqJpgNK5O0GpVXW9kw+rejUNHY9TGNF5TZE5DXf4aQoX7pnzE80FKczAIkH4I0FQ3nkDp6D0 JuI1F0VNKwU8Q17Hxtw1Pf1Jn1PIw5NXXJRwzP0k9hE60y++lmQWQL3n5xFbZuGSEJHXnPmoQ/Oy wMA+gR1Q8ONZU+0rLsGJz07RHN3iygPT6u/wU9VIDnJnLMzYcQ0vXl6zC5I776hCclEkwXUO4Tlt McUNt1wzyKahcUW9J/VZ8uesrjqG8YIen8DbxOc1N/RPJ5d0HiXZQLMgaLbDPUCyDM58RrWI2qdp fcbELulJvW9aZVhmfXhui7yOua1nSnb1oI1P4SkTD0UcSxk5XP0p+P2FAv7T4Aen/G9QBb0sGAou S+eelzueb9L/ZFj/gxHKf0+RP5wmrZmmfzJCWz8MA9WuG9Tf2Kv3ybDh+hH9P43Q/3vS8ONhyrpB ysYROsC5NZP0P45Q1wzRN4/qfTpGXz9KWvOSsn6Sum5cb8Ow3mf9lM3DtE3j5HWz9PWvqOvGqJur KV90Jf9i8IMURepWWnrCLyTvxRCgGoDnAeSQSBdqXrTo8Ll6gf7WSVFnnHlGyWl9S0sdg614Z4f9 LMbl0NCioRFeTv5FB4d7wb7mCUFHhdYqPDtSZMi9xGiKwJHu71E4OTEoFrskphh7uN2MCqMFeBj6 85+vTBWN9BxxYh6145pHxJeOj7CTQi3CfMoXF/Qioi1zc8cli2PLC0bByXaZT2EUdbRQomdy0MiX ZxIbkj0w0PEa+lQHeDYqkQZXlx+2tST7ed1NSbwo5BgEejWLl3tFIv7DB3QB3zY2hhIQjPf2rZ8Y bZ0ZPsVzUOGwrkYmxHX0WqSlHrIzvxYTbBYXdsbenJGW2SsSlw6PXhbyzUO8WLnJpz1dTVPTRpEq DpIvqWRuYdQ5MZTg5myVEq3nKdR28S6YmB6XSUIKM3DuQrPkVBNf/6uebi0L84HPquVtrM47uzNS 8tJaOm84C7JbOl5KpW3T/ab8e3ltZZEtDRc8Q0um5nrGBu55uRM9/e1SEikcW5Ow4NLXc73Ly8zQ 4Es+nqYJ8TrunpYxUS9FSwlt9ec83K+GBdhE+59hsl3Kmqcw3eZfd9L3DW7/Br93JKyxAN/S1NTc sGGDtrb25cuXiUTixo0bAf65uLi8uQZr5VWB5MrwSOLhMymffo1Ud3+15ezYA61adu4C4Jew+asc oiFg8WNl5ZF/3pOxBYo603fuyti+Bwk/v0eqwV3I+HN39KZvMi5SFnuhqnIFsxdGK2f+5el9/eOd SetWAFo95qpIclOCXqrZamRnBbwTzco/LL/xtBH7pD77CInhGVtv7ZarecU5qeS5gbnf2UuuoSnV jq7xAam1Gnh756CHUdnNRynMa6yY1NKuY1TH+4JM7/BCpfOmclo25wxdPcNL6Xe9ThpyVPHWgphH IWmVXqGZZU3jZ4w9LIXpVsIEwk1+Te9cWEazOs5RmeCkgrO5z49zjyjxjKm09MhV1LUOK2q19o46 TnU4qONkJUwOySlTJlvs0XKi34/IetxNuO12yoB1EHc/IKWW5Z0fnvHsql3gCTojKLX6snXAST2W qo6FlUuShUvmWQPn9PLh6Jw6DS3z0Mx214jCo/rsczd8VEn2Vp6ZvJCCk8aOh0E5iSwFCvMwnRGQ 1kS6H0C/6+OX2nDqEis4p7pxePbMFS7dLtoz7skxQ1tBTJkwpOwwkeEcWWxg7nnWkHWI5nDhsjAs q4UfkAfw9fQlHwU8F4DfQbrAL7nh7CWWnJblcaowsqD7Bi8RsGr32Kf2HoXHcbYR6TX3eCkxeR2E G66qBCd1nECVwDlAtgzPb6TZxMhpO569zPdLrT5OddS+LAjIaFXCWzn4ZXnGV5405B7R46tBU1I+ NAH9dcAPwxXsNxiwoG1eOt/21P50K33DCO1P47Q1k3obR6kA+SD4jdPXjel9PExfO0hfN6y3ZpT+ 0Zjeh8O0D4f0AR38dBj8hPrhOP3DYfr6Af2tA3qfATicoG2YBPhHWwcAsp++cdBgyxDtk1HahnHa x+PkNaPUTZWkf0DsiUBE4vm0TIHvejM+xaegwCMnO7HyycT8sEt8AC0guFoqHZPJ4rt7Drt5R9ZW dkw+1/XgsZubeuHyexmj4CElMLB9Cco8PRuKNPg2oQN9QzJZbnvTRT4zqLkloatbi8UK7+ysEq3E Tw2f9bCN7ixLG3hx2CMwoLV3FHA4mdQ+yd8s0veZRGRf+kTX37NlZqRypP+EW0jkwCu4uBiZUopl 0pKexss+bucdHK/7BiZU1XTPzU3KZEFVTwhuvMr5eXDThOcNOq7stInx8J6e4x5unpWVrUvLGUvz J32E4VXFVbMjp7zdnJ93dslkLSsrpmmpJrGRXVLpqEwa8CSLIBRm9g+XDI7EPqupeT39dP61bc2z 0+4+jQtLsIGgqEs6ONJizLOyTE9pEItqZBKbnILU4cmisW4cx8yrq6FkZSF5ZEgv0MuttMizsfFY QHDK8Pg4aCWpyC7Ai5WZ2SASBzdW6LvadYomotqaD7mGZ82Kwh/nXPVxLXo1CxqzcqDXPCIiZ2g4 oLyMKOSkTI4/WVkKeN4BKljQ38F+kHPW1yd/eqoHNPWzeufShsElJHL96076vsHt3+D37gTay8zM DPC8t2stZGgd/aZNm/T09OAF8B8EPynqiuBIT2JqzLYfcj7//mfIhzG/bKgChIad8Zu/fKB/Gdxg oas7UfVQ6mffYKYuOdv35MIF75AdZkOnMN/Dle/bdsVu2plDpC7B10cGlc/Iu+C/PL2vf7wzaZn6 q5D4qkSBIskVrnaAzjOd5fFszZtuEQ9afNLbzT0LVHH2RjZxIXl9nqlNnIhHh8hOx4zcHf0KT1Ft 2OFP8Gah54yEAalNTiHlwpT6y4xoRW1LY4fY+9wUeS1reTzrCE0gCK0KyGjhxFSfv+Vp6Zt5wZin euaOe1Q58X60sXWsiW0soF/8yBJuSIWKLuAuAmU829g26gYjEXcjgBdVc5AmYIQWRhQ2eCY0Ue9E GVmFOAZlqlKZcrpcrRuB4dktPlmt7IgnR6h2dj4P9e6H33CMcQgoOkRjOUc8Dsvp5EVVn7nsom8d ctkp5cezVsywUmF0qdJFKz3z8PC8FqewCnZ0/QkjgaFteGh2m1dqvalrtjKOpURmHqIx7XyLNG/4 4K+7OwSUqpIZNAuviAd1xy/xte4EhmQ1eac/889qu3jZSxnHtA146J/R6JbwjGgRYOgQZ+mWraF9 jxdRZmAbr4BjKJPZGmSevU/JGWOhoq6Tqjbnkm24b2aTXeAjt4RqzSt+h3BOnKCHZ4xdbDzyLdxy FQksNYKLEoGvQWYwAx/r3AmT02aeMvK09Sw9TnG/YOhu5/dIEe94zSkx6kGvd0rzTX6WMgEyP+jg 5tcBP4QoaMOM5SEPFMHFkwstFQ5nOqibJygfj1M3DtC39Bhse6H32Rh1wwR17QSAQ+pHU9QPpygf TVLXjgM6SN8woA+3Ib0NYzRwzYZR2qZ+QPL0ABxuHKeum6R+DKBuBOLluiH9tUN6YFs3oL8efB3U 21hB/qWOrdGZeals0bu8VIHrej0xUZiXycrOiqp42jPVZ+PJE+aVDCH1VfvCinFwtFt+ev1Eq5Gf b1RH9xxUickcC4svJyQNi+CitJS6R1QB6+HYFDhV0dFM4jADm1tZFaWHnFnXM7LsnpTeyk085+ng W/coaWDkXHBm1sgilKPKlm2TPG9EB1SLRDkvJ/BurOzO2sCyYt2AyKcrolfQbgauMcCMRV7LZMVN LfZhoacdLI2ioooW5j0bqy/5eYzBnGSVPY1UPiuyb5DTUCfnzDZJSXUoKLYoyjnp7uBTmls8NXQ+ 0CdpBsZufrG4fC813TEVxmGQylZqu6ppAmFQYyuobHF3m/ujbE5FiWFyxhGOW8XMwgyyiJHKlpfE U0F5ySR3gVV+fmBdfcX07AuZLKS25BTr5o2cqHtPcm7kpJ73FDiU5Lk2tpDjMiqRn1JAG7NKc4x9 PRInp/Sz86wL8qeky2lNDSfdY2OmRPZpcZaxgS+kEkyruiiWTUhl5olRR1yZVwvzzJ4UXk2Jorg7 Z7S3F/UPGPkGmkSHcCuLk3p6OiQS6CPxb3ro+wa3f4Pfu1NLSwu2TPBnx/F4vCHy5IKgD01+MPq3 NP/A+Gr85q8AeqGFfT/Dv91Q84eB36YvS66awt9NTmWc10na/GUOlJECtAMXfAdQMOPT71I2fJW0 cWfiph1JG7cnbdwS/OGmpBM6k88a0T2Rhdi/Or2vf7wzaZl6qpChoYQi2VmRwoXL9WAEVBc1IuMQ yeGkodsBOk8Rz1DGcw7QBAf0nFUoLAUCS5HI16DwlXSslPF2alQwRnNUdRhHwVkD5/0EJ0WCnRLe 5gAFEBEByFZe2+EIlX9Mn39Aj6eqx1GmOKjoOhzQZajqOsrrMhS17BV1mCAHJZytKp6rSvbYTxDu 03ZS0nFQJ8JYS2p4lpKOowrO4Zge56Sh+0GSQIMI+BAbObR0VtZhHSHzDhu7HjRiAiakimcdIAqV tBkaNGclcA3O+iDFSYPGUadxVSlsaAxCclYkMjWobDUiS/6ilYqO1Qljz0N0oTqBoapjewAP7sKG LIrgDC0ncQ7KmqCc3IMENiBhoJDqeOYBElcJz1LUcTxO550wcAWwp6DLVCDy1Gi8o4bCY0YuqnSu Bt1NleCopHN/v7YdcuzCUQGFITCUNa2VtW1hYxKEKlrmh2kOx42dlfFW+y7YKumw1MGDINjv17Q5 CAoPF0U4K5DBgxAc0OXKaTrt12Go4biHCO6qmlyVi9aAHMN4hDiXIwT2MQrjIIWlBn0U8FQoMEjv rwh+UuSgA5r3YVg4L13oqHC40E7dMkleO0mBSDZA3zxE3zRGXT9O3TBOXf+SsmaG8sEU9U8TANJo nwzRPxnUWw8gbRxAI2X9BHX9KO0TAHuj9PXjtI8maB+M630wovcRuGaEDk4BvFwLPgFkDuutHdBf W07Z8jz1Fzm2RicAVC17lz055RtUODYBvowhVBuY7bPxdXYteTqMbD67l0XG4TEeD7IbR9r1Pbyj 27pWABRJpQ4FhTcSkseRBUZmVaEex6F4dBIAUW1rHYXL9W7tsCl/ctzT2SEv372wxCU/K7zmcc3M RFL/yNnAzJwhaFMzL1uyi/e6HBlUubzSI5Pdi/A0z0ighEQ4FZd3w+UWkhUxIDgrbeOjpS+GMH0Y uHXpxMBBgZttWy+7vdUkyH9qHrpMqnteS+HYAPDjNdbvF3LuZqV75BcI8rJCKorrJ/urpofO+vkm vny1CC1WFsySE5mZ6SgIkaitq1ZfIAhuaY/vfUHm87nJ8eldHcynlUd57qVzSxPQBlUqlSxKZPOg ZbJ6ex3jE+g8vmFQXMHMXGD9k7PMG4ziDGeAeQXZAU+LSyZHXKtryZFJta8XkeXpfN/0gCFohNr6 Y4HxiaNTKzJxdl3VCffIiKll24wE2+RI0MgobIT01eJiv1h8JyX6mDvHprCAX1Tk8SAnsba6fnoG FKNBLPUpenjT3/28wNm1tmEERqN7M4d5k943uP0b/N6damtrf4diOPz04OzsrJycXFxcnAw9FSl6 W7CGnax4GrNHMfXzb7K3w7XqcPsZ+MHP7/O3747b9NWTO+bwN8uioiu34j//KuerPZlf/5j19Y/Z X+9K2vZtusaJJ7fvF982L75z/4np/Se3zMGWbXzjkZff8hwKevdzU95/QXpf/3hn0jL1UCEjtylk ZyUKXCUNwE+JKDxE45w25CvrOB7U45wwcVchcg7ShIcMBPIAOQzcDxt4Keiyzlx2O3fFVYnAliNw Txm6nDEU7COz95O5xy/xThhzlMgCBYLrIUPXc9c9FLRsDlF4x4zclMgsdbrwuIGbBpFLuBdOsAgh mwcRLSLV9flHjJ0O6/GUiNxDxm4k2wiyZcgRA4ECzumkPsfIOuq8iZ8yjqNI4CkSwTUCVaKLOt75 KJ170cRDTZerAAgrzeHCTY8DYOgnCI8aeCkR+Wp0Ie6OP8UC5OO8X9deheIsD3CLwlck8cFZZYI9 3syPbB56ACCiriOAPeLtQCO72KN0lrKunTrBWRlnd+Gal6Ftotb1UDUS64ge96QRgDSBEs7luL77 aWOhEo6pqut8hC44dslNnigAWAsQSwkvBPugMVXwjoeoDIpNpNbNAFXo0tPpCI1pYBWqZxN+1NBZ Fcc5f8nlAImhTGACkk23jtS5E6FKAfDJPHfDS0mXeZgqOHbFCxZYl3WS7kyxi6PYRByictV0+fhb QQbWQVq3XaF1Lo6Lu+arZxF0TI+njFl7ImxDMwO486uA30+1fzKRdL73qYN2K20rYH7T5DWvyB/O kD+coq4Zo60bpm0apn06QV33kvqncfqfhvXWAOQD2ygdQNrH05Q14LJR6BF0HYBAcM009Q9T9P81 YvCHfoM1/fobR2gbJ6ifzJDXTZPXTVCg5HNQ/6Ny6qfPf7FjaxlcXCfyeVJyztO7ahgGgFxC2/zK uGtSIME3oBHZVGR3th0RCBObG7pHXxh4+oW1PQcwOSeVsnLzTWMSJhH4pVc9pDs7FI6Pg58/a3lG cha6tz13f956ls8u6O7DmrLpRc/YwmxWT98p76iHo/AFX5IuMeMCboSH1SyuAACIq3ygwOXs5noX jkOZpxgiHUCchZSqsosMQVpLF5ZP5+TAKZ7vnfpe+7YOw0C/lwugFrLy50/JXIvE3v7g7s4j7ryI 5gYpetWbXgxMzoy0Trw47+OfMDMHcHJsefFuauzNmNCX6BEnP0qn8ngpQ6OmmQV6wTETyJ8Kv6z8 MI9fMj87Aa0Q4KgxNNIX/7i4dg5wZVnf6+mDDD6vqy99rJPodDuhvQm6U5PJukb6Ol9OeldU0cLi amcXkAGUeE4mdUyIvCh0owSnNK5AHzS5z8pPeITGz674PH5g5OFc/Ro2RedovzA58dHYuHN5oZYr p3J6VorWyrS86O95PZfe3BnX3IXQWnYnPe1seHz9HAo0/NfpfYPbv8Hv3WllZeXEiROffvppUVER wLzXr1/X1NSAI7q6umgh4FsvlZjoU1Jh54RMXQB1gzq8v5V8YswPA78qWxhlEKQ6nkvyV9/l79qf t0vhwQ8Kud/sjdurOpiLQvP8NIEbicXSxUXpMnTQDgOE/PyKfza9r3+8M2mZ+sGxkuisSHJRgoaC bMAnFAgc/F1/QVSZ3Pm7JoxIQVytqq79TU6GmWv2Xi2rq/ysu24P95yx8EyuSy8fOEh02I9nROe3 ByRW7sM77dV1cI0vTXnaowAokQ7H2CE2v3mGet+XYhrgk9yiSnQysE9nBlcdoXAdA0tz6qcyqkZd k5qOXXK29Eux8MgGMGnh+yCxYsg3vV7b1Pcgne2dVBGV32Xt9UgBx1IkCZRoLvJkvhK07WRbuqSm lQ6cNXADBOvcFeeitjlTbpaypqNjYNUxQ3ftOwE5NVPRD3oCstpJZoEArVUo0O2nEoGviOOZuaRF FrT6prZeuO4LKOwtTkJYXo9PRmtgTvs5E2dFLccrjMiQgm7P1BZ2eDVAVjP3eKegAmU8T+4C0y2+ KqGsW53OlDvvcE+YZeufp0RgqpI56gSBGt5NheKqgOce12N7JJQG5z8XRD5TI3LUKVzn6KdBWe3+ WR3GzER1Et8zsVHrmtcxA2FccVfC4352WI0akXnHPeFR12vtq14UsxBh4lMlnM1ZE6FfZq1rRqN3 VgfeLPi4vmv8o8Ho4uf2oYUKeCtDh8jw/K6AzDY9uKDCHjpdgy5DfyXwk2KbFMMZbE+6Cn7N9K2j tI8nqGughJP2p0nah4DGQWsXvQ3D9I9H9T4cpgPk2zBK3TJG/WwUMsK1U5Q1Y/Q1AOcG9QEWrpui fvSS+t/jen8YMvj/+mEAh01jlE1T5E9ekdbNkDZMkjdPUjeM6K2rJH/2C0MaoRNQohNQUHSOwW7o 65XBaaoEjbBzdT31+p7uV4KDuYkxFE/B7YTk/vm59u5OPbYgurF1Ednis+KT7wdHTMMBXZZUlkew v184MAjwqqKh+pyFuVd1bZto2TYyxMjZRZCezklKsvB1650ZLu7puiDwKRyckqLFBqwgD3PvgI45 qNjrmx/WcHE9Hh7ftrKCHFgvwoUVEtHwzAw3Ns6QL+AkJnpkpBm78I0D4h++nhPWlNPdWOMLUDlY 3lGBt74VX9/UujDHSIulCVjM1BROetYtd/eOF+3PR3rOOHHTx16B4o0tLdmkxGvxHHk5aazkaALb lpWe0SUSxTe26TJYNuEh3IyUUyzmARvrRxMw/BiMRCSWjIwMWnkJDT2cXVPiLUMDdT38MyZfvpCJ PNIiCSwHXlKyW2yco69X9VB/4JNyfa+I9lnouEosBWOoOL2xWuPWNbfCsgnYtks5VU+OOwjyxmYB o70f5Gni48FLTrjm424VFdE0Pd3yetrM18PIw5Ofnm4TFcUJDR+aehn7sJjE5DAS4rhp8RcEztzH 5aPQferqY3yb3je4/Rv83pGwxhodHSUSiVu3bt23b5+ioiLgfJaWlgAF0QXINwGEP/guLbZ3JSod y/j0zwD2sOV9P7V5yUFbJvgE4Lfth7jNXzfyhdiNugIjY7fszACQCf2/fB/66VcVDmy0KudtwkYM tAc7DTJ5+ddj33v7xzvTzw1e4LIHvjzeiWrhF/6g6ewllpN/dkhm0wEdK0tBBsM3T+7C3duCTKZ/ kdyZuwEptXU9c5csfYlmPu3D4vDkCjlNm+OGvMSilqKGIV1Tb8WLdpdtwnKqX/glP71uHRSd036Q 4HCNmekRX38Ab6eha+UWWcgLzj9EdJLTtODHFDJ8C9Q1bR38Cuy8UvHXnCEbux+cVt5jcN/zCMVR mcQAJVQg8/ZTAa3kH9RlekY/SnzYeN0uQu7MPcItt6yng/6JjZrGAmFkzSlDoZ5VSFxu82myhY1r anRe92GaQIXIUCM5qgEepsUMyWr2iSs+S2eq4O00rzsnl3UR73go6li5xD219889SHaKetB8jR21 X9v2pCF/H8HcNiDRI7ZIQZtxytAtIr+hsGNE+577j2cs7b1yncMfqOKt1AlMDRxfnSCEJpc6TMJN 98etoyZ2ASdoDqq6dle5aWF5bYdJjocp7GMGAg2yMDSvU/eW5yljXmx+/R1GyAUjofwFczu/pNLn M4LgUhPzwJDsKiXN2wz/POfIXEWS1RE69xCJrXXLN/phC93S8/QVFzkda6fQouDs5rMGnAMkR3Xo NQY5/Py1wA8mKcQTGIxjGWn8oEflue4Key0AfoP0tcN0qJ8b1F8zovfROO3DMdpHgKsN6n8IN731 Q4AFkrZNkT4fhR6r109QoT6vx+jjXqO1I3rrx2jrIVnUWzNo8NGQ/vpR6sZJysaX5A1TFACTGyfJ WwH+jdI2VkIPL7+Y+cEXW1rTN5hQVjnx6qVMvLQoEkPwk4KBe+lZXw8nOf5GdKB7UWHL6znwm8mJ ycyyitqJSbTWW/S0raOwsWUWLgCUNQ31JZc9eT77GoDVi6mhxMePKoZHQCMMTE8GPsy/k5BgmZqa 0tz4WibunpmIq6ptezUHvbHIJJX11U9rm+ag2k42LVsmhYXZVD8bhjr/5RVkjAp1qDLZ7NJswuMi i9iY6ymJjvn51RPQ3cbTgefpzx5PQ69m0v7p4fSy4qbRMVCY0bmp4KL8u4lJ91LTouqeTYsWZxZf xVVWN85CK5HRhUVGctIVX0+v3Mz78dGCxyUtr18vSQGXXcmvLrOOCbNOSQyoqgwpLeuaQa7UoYcV WIbmsT5BdpJpXIRtakpGx/MhtPx8fGku5HHJ/fh4h5S0lNqGaan02eBI+rPWEeihDPxbFMsWBhZn E8qfNE+Mz8NOsdA+1BdTWtE5MwfybhntZ2clX0mIZhbkN7yaxZR/PSMj7tmZtxNjbdPTi553giHr 9fJCenXl/cTI6wnh3sXFfa/n4dODftn+qpe+b3D7N/i9O731c93T01NSUlJWVjYOzZRggsCHCB+M z4jelgaBO6B9edu+y962J3v7jwD/oK3mNgh4udt25ez4HmBb9rbd4ILcz7+P/OyrNt9VaerYg+L4 r3dlbv0mZ/ue5E+2J57FLQ1B16PIBR7CVkxq9CbBm715U/+16X39453pp+AHnbwQ2OpwqQOTYOZe 3Drun97w4NlwWFaduuY9C36Ko3fW3gt3bjtncPwK5E7fdo96lP2k3SU83849Kfdxh2dYofw5y0s2 IVG5dQEppQ7eGftO3bvhEOPkk+IRWxKUWBqWWnMQb3edmeIWW3WQYKNw/rYg6AHDO0fpov3+i3ac qP/T3pX4RXVk6//gzTiZTIjGOGbMJEYTjAF6hRgnJnEFWnpvdtS4Y5RF9t6gN3YEREUEETGCsioG NwTRcYlKdEwkUYxrosQXE2VtXp1Tt1vi6LxxnmR8Q32/67Vu3VpOFX3ru6du1Tn7ktY0imbHGQv2 V7V0pBTse48oTCpzQl5dxcGzKyxbhAqtUJFC6Jnnb3GT6dThuaW72zbsaE4v3if0jVEvz8ouaTYX NOrz61I2HJwVlhoQWVBac9JrzkLVYnPVoaszF2TzZQYvdTLRwwRSfXBEfln96bWfHp0WZAiJLaho +vIv6ljCwQv1RZlbW2bPTy2pO/6+f6yHTC+Qaif5xSTmV2eWHOR56xfFlxbXnVhbcyQqu9r1w8iE zFrCYyK/OC+F9l2FRaRI4ylNQqVxqiohIauy4sDF2PQKkXx1esVp08a9brOixFK9wE/npUpdX3/e Lzx9+nx9XcuFHXvOLdFuf3PGSl3eNltpU+amozkb9uZXtExRRGUWNy/VFk7yiRHM1QslSd5L0uuP Xyys/3yevtLNVy9dlreuqm199TnJ0jU8aZJIbRZrrENEfvTXimwCdjDBrDHE3rPf/ep4vG+7ZtQt 9W9u+Y+4FjTicuhvvw0ecZP7XDfietBvYcITVnv+7geYw/zD9YDnrwcSVnuO8B9JfzVoBLl10/+F m/6wBJSkJHnJ3duaEUQdvBH4XzBNqnnxe80frgU+h+T3T2l+dm5HNozHXFP7u3rRgwPYocSoLtys 3U3Nizk65B58q+vugpWiADBmQ20+YYHd6BB2AHN14xPdi4X8iEtLu9EUTD+Gwd6ls5PtdpKg4sL5 2Vl5Vdepx0vOKMwAjFG9+LEP5kBv4MqXXpSc7vIG42W9wJNQDIkH17SEywa+hwU1YGMFzHzaYXL2 Jyz2yv2fIraX6aoq+9CuCnz2pASH28vpxC/aW4GlLl32XrCgjSZeoK6BgTtoBPU+ZKQTq9BqEtmJ RdHS6NsPSA++AHupbH2w8Z86bcCOgkbDXr+fHXlhDhom13CnlyMS5aHT6NCHtxyFgxVU8D7o6EDE 4wY3Rn5PDtDFQPGjz8LP7e1lwvcrRr66ewzsUqj50+u7/vha3ejXKl1eLXMZt3XUqzvHjq8Fo2UT ieZXPWZC8cuvt28uoyX9cPbsNjdR9ajXto8eXzx+8vXPmgbg79cLfrocVl2cz+CQ4nG/j0dCEr5G qCbqgoWntvHVKWJVsqfSwpcb/SPXbm740nuexVBQv6H2Cy9pXKStKn1L64RZq6Jz9xvXNrrOWJG9 tcWQU15Uf3Lr7tPG7PLcrUf53onGdY0ljec21J/cWHNMPFe7IHFbfFa1YmV609lr2xrPesoTPjZ+ mrbthEiZ4OYbmbqxWZfXyJcaJkt0yVsOJOTuFfkmxuc2RKSWzQ4FA2MCtc1dEh8Slb29ud0vPFck MYllYMFkkiQmJqO+rvW7tZWttcc6Zs5PUyzLySk9PCdEX1B7tLjxwgfBloCY9VvqP/fyWbbcUFr6 2dfvBtl4Shss5yF8oDF5yRKnyWOK6tsS1u73W2irO3JRuijTdVaMbh2hz4aPAq2Ve88FRq119da+ 55/qLtPq8vbklLSKJHpT7q7t+87mVR9dX/s53zcuNqPWunEfT5IgUBjFKlg06xZg5fmbvVRJYkmE fMma2iM3/JZkRuXsLqw9JpREiuQJU/0Nnhrbxt0XZOHZMxaYCMsuil4/TWN7xzfWsKE2Ia9hfnRx 86kfSxpOuc9ZlVp0yLSu/m3vaC+Z8T2FZe6ygtI9p2VLze8HWcVyC1GOPSURmWVHU8tO8GWJhPwc yt9QkR9HgDh5AYf9J/vdC3+N9zuvHntT9eINjcul4Be+CnP5KmzkN0FjOgJHXw58qSNo1KXgFy+G PN8R/Nz1gN9dC3j+65CR34S8dM3/peual64GvHg50KUjyKUjYExHwDiS6+tgiLka4HIl8IWO4N9/ Hfpce+jzF4NHXQoa2R7y4n7/V87vNA8QKul/6JGCrxeOCI78enB874EvDWAZhcZ021F29LgKHIPj LNcuVMPsYJms6x4Y2KLTu0D18H8f5kcnBeCrCFyig3HMPpoVrEXbwV05WPnE6vrBZAYScm9Pz39n 1GyfkpSo++zQNz2990Bc9MwArhsIgYCpTiQMsLoCjgJBwSaDRg94j0UrLOh4EEYriOsBH7pAQig4 8El/N1j2hLj7l7s6o3aW63dUcM51oZ3wXzfavKb9YodvLvfuD/wMXnDR6wTQOwjcRe2XdaPdUXx3 gFK60IbnPXBhhQ4SQZCePriCroFXIRCvq68f3Ev0YYXwcdh+vw8tYkOl0D9QSx84p6c6HRTUg/ol 1xdo2rMXDGHB/seeweoC4nGDGyO//x3wZ3R0Hw1TzQ8mcAb6juv1JS+MrXv59WpCeCNfLXUZW0bO 490qpksOR8Seiksqf+2d6pfH17wyYdfYiTvHTCgZ53qlto6W1n3zevUH3hUu4zaO/vMJE8yFwt8a DObiU4CXg5/UocPjfh+PBFp4gZWTYBNLkyJUJguVZr4iRR1ZlFne9vaMiMX6rWt2fuGlSFKuLKg8 esNUfqLowI2QmKLJc6Izy08sTCxM2bQ/rbQ5PLnUWnpsWlB6cWOHIjJ/1kJLaWO7bGVRUGx5fO5e vjQmp6J1e8tlviwhzPipeevnIrVusiTGsL4lLncvT2Zw9U3UbW5anfOZh29c3NrG/No248ZDquiS mUvWpm07Zytpyak4+VGoVeRn8oJ5xRSB2mDedHKxrsJLsbqwoS04odRnUVZ62TEP71Xx6+rqv7g7 JSBFGVVQf/y7rK1/3bTn4gLdVjeZlq9OE6hS+YQb/C1x+c2W4pbChi8XJVcK/WJNhU0b6i9qC48U fXZJEZ4rkCQY8hs277sSv6FVX3RySoAtJqshZX3zRyFppbsvBEbmzvg4ufTARb/w/E9sOytarqWU HA/VVvIVJp7K6qYxvy3VSZblpW05bi0hHHn+gyDzhyHmzY1fpZUft245ttRc4alOzq8557skZ/o8 W/m+r7NKTyblt34QbI1ZU2csbObNidlY82XZgXZ3SZxm5brtTR3JxYdTt5zSrCyeNT9n+8Er5qKm qKw9RJiVqTXW4uYNdecjMmo9/BJwwYsF9q44SO4pkh9yHWUNygmUWX60/3ypIT64MVB4JNj9cOCk lpC3muZNPBg68VDopOZQ18OhruR8KOzN5rCJh0PHt4aQY0JT6FuHyK0Q1yPBrq0hbx4Ondgc+mZz yKTmkMkkF0ncEkoSw3EobELTvPGkwENhb5E0B+e9VRrEO1lTiIwGblORdmhDOObDC+5/+tyh7U1O /eN0rUHpBiV3hCEN+izH0APYucZzXAek6bhNb8EVfSfohQvnYAM6zP2jfztbc/Lzb7t7f8K+g3uY BTiAK5RWjsM+bRosRuEEBa6AALYXy3WKjJdQN/h6GOi+29/V9t2Nv928ySWCWmhROAlmp51hB1Nk aOGFtglTUlmgJmpr09GoASQ4WJ4OPwCUFF0VomrqkJt6JnogFdaESyqcYtBkNAlmg6ZAJ2LI8TZD y8eOGFTa4LwPg5HfP4vB/IfkB7hzvHXzhMmlz43eOmbC5rcFVTN8W1bEny/acvvU6Z7bP8Bfob+/ JVJb8sKfamGp58Tq0W9snuD+ffPhAfo37e7dr5lX+BuXaomy77ub/fADw3pQ8fv7v+LQ4XG/j0eC DIKDx0SBQ2OYGpLhE17IlydPX5Djt2K9WKkTK7UBsSXRaxoC47eI5Ekihd4vfN1HYRnvBVrI8eG8 TO9la98NsCijS8SaFL5MK1258cP5WdPCMmYuyuXLddMXZCkiNwmVhmnzMnyWrxMoDSQ8a3HujIW5 QmUKX2GYszR/9uI1IoXOZ+ma5baaFWl1cz/JnxJoWG6pis5s8FmSK5DrvDQWotkIVGaxv9V3RZGn v5UnS/JdnjdjQcbUQLPv8gJS7/vBNmVU8bsa49TAlIXJlSvT6tRRhXxpgpi6kFVBCaRGVfSmqJxd oYklXmq9UAH+YBenVEdm7/FbsU4gI63TkvbO138ambPHP75MpDLO+DjbBxpoVkZvEqsNfHmSdNWG D8LSZ863LUvZviqtXhVZBAas1Rax0ixWGt8PNC837VidXee7LI+0lCdLnLMoKyJz96qMXd6Lsz1V urmfrJsSaPFSJ4fFlkSl1q0wV38UbJ69IMN3ca5Qppu5IFsRQbormeeXpFq1PipzV7ilenqIdYpK F5awJSK9/mPdtqkag2x53uqs3YuTK2CrgxK8DILLJDByBnbO0Mjnoy2c/QvkR4dc/GHjbxsG8PsD /XcHum7f+ur4rbYDnacaOk/v6jxT29lW1XlmZ+eZ6gdHGx5nqvAYFMmFB0Vy8VVYSBVmxDPc2nm7 reZ62/67318GHaavC801c4vGuGHzwYOGz96v99j9Y/xCjCGW6UHxQ1zRvwGPG9wY+T05cNoTnpKe 3n2m1HIfxZEkwzfbKm6fOdN/BywBOgHfE8iL7pWrldOIevfnmlcmVr302qduXnfQOzy+Wg4ciUzI e2X8jX0HIAYmAmj5jnfOx/zZnjoe9/t4JB4mPyU9m4jy5y41kMEUNpzN1XlqTCK10UOa9LZPHDmT QdlTY3b30/HlRnASJDeSZDyZkZDKOxIt9bNK7jpuoQdzRYrbXC0GknlSPZCE2kx0PpKLJPbyt3pI wSWQWGPiSZPcfeOI0iOQJRKS8JDEeEji+DIdKVwEeowVPbta3GV6cN8DxEnE0BOR+HIDKZNUR6oW qYgKa3CTJLj5xAj8EoWwGpO20SpWW4VKqMXNZzUPPAEle6lMYiLVXK27b5JAqhMrjISTPFVGdHiU 5C5NAldBCmgpqQULTyENcffTCuRGoVxLJHTzjeVJtZ4aWGwpVllJ64RyvYcklieJIbKB43jYNahz 843xmBvH90t8V5PCk+qIoiZWmfikFu/VROUFV70ynUAOPm+h20lFYHDOxPNLdPOJJcKA2ReVgQTI pQfsINQLpEkevrGkWE+lQUS0dtJA4DwgP1QBn6Zha6feR1kFPSDYYa4LHO70D8BMXhd+1rmLn3Lo 5VAcoNyAYWfCfD2wVBKeMmoy99klP4ang8cNboz8nhxIfuQR6bnf1dl+se8O+Fpy3MHD3t8Nfo7x wyv2++WqmuJXXSv++EbFqHG1f5nV9S1YB8XZhoEjeYX7DCl4SdcEwKsy+qmCsrj8Q48nquch8qPM BwqEEgdNwoWw05wuoAeFiYzvhAPESIpiWB1qFoEPVSAhDMPGajiDmgUBGiPWWGjYGYNfpzAL1GIR qahdEvDOSgiMjPiwdlFuJOqaGKxiwsQsTuWRcmwkMRpxxnI0IJgYy/FEVhOBY3qY98MspByzWEEK ISVbwO6zyspTmInkJAulPU/wik50NbNQbiJnL41VKCfpTULSTGgyKZz0hhnOCugTeD8gWThDKlCR GLgQ1EqRxsYDA2NWIdwFYgN1E94nSDILSKJKhq+qRGzSTA3MT5K79JKciUggP6e9gaEycgbORo7n +lMFTYZLRwwUSMuES1Kv83jK5AezXPj5h4Je4azWoMje3n57/0ORTxm94HgHaiZnqIpheOHh3yWC kd+/Au5VET38wT+cqMcTvWsHX5XgxApWbgHF9Xa3Rq0udRlXPnJsg0JtvwP+/3BVl73z8tV7nbeg QPoaCif6pRwL+rXeQh/3+3gk/p786AGzizgQAzMprYRvSBjJia6kN0OMykZuCehwDCZFzHwckSkn OclJoEKNjRKVxsxXJIs0Fr4yGeKBAEhdFtDnlEBsfAVhSiuSrhlrNAOLwGxnCs5YYkrU/DgLJsg6 qMwRciLaZKpYbROrUoHqkL/FRHglUcVsEENK1tjA7wHsaCSJLSKFRSDHtkAbbZ7qVAFYmYGWOg/K JUQ2GqAy0AAf5IS8AnKmzOefytNYKQUiT6NnYBUQNuVRYDiue0mAlJmKTImEh+wOl1gUCfCUwIJ8 Eq+xwtc7DJMAxlD/wxzH43sJuKfHMoeE/BgYnlkw8vs/AfW8RwwHSGMYoKuRBgbuX2yvnDKj8Pcv HwgPJ1xIMzo3VDyykF8TTyTA35MfGZeBfh7wnw1tJeNQTsKOoR/HVitVgOg0KaUrZzm45p67BDpx aE40PU3J6ZfcAeRHWESsSUWmwbo4NQg1IY0NqQvIj6R3Kn9iEo/pnSwFVKSmhZCYVLEqjWqWDuYw gaoKbtAthCZFDj4jueiZliD8RWMxhpIciVdQGrYRroWqCWUqbXxYMWviaczkAB/rQHtpAiXcIlmI kLTJji4C9qW8SNpFDvDGoEmFjNwXOxAYuwgslkE8JoN4OHNZSECILxCorFNRuYNqpc5lnw8djPwY /pPAyG9IAPobDhPwAcEOX/NI+NKOHVkj3zhlAqcQOLsJyp7TL/y/F08kwyPJz0lOeDhHT27Uxrvc 0AzpkVFQKUFLkrCRwAJ6icrEx8PpWxwOFSQA/3ZIQqC4aLAKpLHBFTkFcOQFZz0w9Du+ZjmVP6ck OB9ocq7ZoYxLSRrPJr46RaAx4RoQmgZuAW0gHVJ1EJvmbDseatoc/JzGtXcQKwMpEn610VxQOBUJ VE+i8KUhBwOHoTDOluL05iDu594GuEucAuWkAjkf3KXdgrXTGGR0Stvw9jCI/37Zil8ejPwY/pPA yG+oQPkPt7bAul0wbNDbvTta21ZWMUAXAThXPD8DeCLyY2BgYPj/DkZ+QwVKfna6fwd2vALX3bv1 3U/XrtNlnc8U3zxTwjAwMDAMNRj5DRUeaH70uh8tOXC3YKPrM8U3z5QwDAwMDEMNRn5DBUonjplN cOWJpEdtLuDW32cJjPwYGBiGFRj5DS0clGLnbPLQRaD2BzeeETDyY2BgGFZg5McAYOTHwMAwrMDI jwHAyI+BgWFYgZEfA4CRHwMDw7ACIz8GACM/BgaGYQVGfgwARn4MDAzDCoz8GACM/BgYGIYVGPkx ABj5MTAwDCsw8mMAMPJjYGAYVmDkxwBg5MfAwDCswMiPAcDIj4GBYViBkR8DgJEfAwPDsAIjPwYG BgaGYQdGfgwMDAwMww6M/BgYGBgYhh0Y+TEwMDAwDDsw8mNgYGBgGHb4H68W22yXqzYfAAAAAElF TkSuQmCC ------=_NextPart_01DC322D.ECA9A450 Content-Location: file:///C:/0D2A2649/03-3Metodologiapararesolverproblemasmatematicos(1)_archivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"





ISSN: 2661= -6831

Vol. 9 No. 3,= pp. 43 – 67, julio - septiembre 2025

Revista en Ar= te, Educación, Humanidades

Artículo orig= inal

 

www= .exploradordigital.org

 

 

 

 

Esta revi= sta está protegida bajo una licencia Creative Commons<= /span> en la 4.0 International. Copia de la licencia: http://creativecommons.org/licenses/by-nc-sa/= 4.0/

&nbs= p;

                 Educación & Derecho             Página 26 | 67

 

------=_NextPart_01DC322D.ECA9A450 Content-Location: file:///C:/0D2A2649/03-3Metodologiapararesolverproblemasmatematicos(1)_archivos/image014.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAlgCWAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEB AQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEB AQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCAbaBNkDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD4n/4S zxV/0M3iD/wc6j/8k0f8JZ4q/wChm8Qf+DnUf/kmufor/Wv2FD/nxQ/8E0f/AJSf5/PE4i7/ANox G7/5iK/f/r+dB/wlnir/AKGbxB/4OdR/+SaQ+LPFJ6+JfEB+us6j/wDJNYFFHsKH/Pij/wCCaP8A 8qHDE4jmX+0Yjr/zEV+3/X83/wDhK/FP/Qy6/wD+DjUf/kmj/hK/FP8A0Muv/wDg41H/AOSawKKf saP/AD5o/wDgml/8qNvrOI/6CMR/4UV//l5v/wDCV+Kf+hl1/wD8HGo//JNRN4s8Vbj/AMVL4g/8 HOo+n/XzWLUL/eP4fyFHsaP/AD5o/wDgml/8qD6xiP8AoIxH/hRX/wDl5vf8JZ4q/wChm8Qf+DnU f/kmj/hLPFX/AEM3iD/wc6j/APJNc/RR7Gj/AM+aP/gml/8AKhfWMR/0EV//AAfX/wDlx0H/AAln ir/oZvEH/g51H/5Jo/4SzxV/0M3iD/wc6j/8k1z9FHsaP/Pmj/4Jpf8AyoaxGIuv9or7r/l/X7/9 fjoP+Es8Vf8AQzeIP/BzqP8A8k0f8JZ4q/6GbxB/4OdR/wDkmufopewof8+KH/gmj/8AKTf6xiP+ giv/AOD6/wD8uN8+LfFWD/xU3iDof+YzqP8A8k1D/wAJd4r/AOhn8Q/+DrUv/kmsVuh+h/lUFaQo ULP9xQ3/AOfFHt/15M54jEXX+0Yjb/n/AF+//X46H/hLvFf/AEM/iH/wdal/8k0f8Jd4r/6GfxD/ AODrUv8A5JrnqK0+r4f/AKB6H/gih/8AKSPrOI/6CMR/4UV//l50P/CXeK/+hn8Q/wDg61L/AOSa P+Eu8V/9DP4h/wDB1qX/AMk1z1FH1fD/APQPQ/8ABFD/AOUh9ZxH/QRiP/Civ/8ALzof+Et8Vnr4 m8Qn/uNal/8AJNJ/wlnir/oZvEH/AIOdR/8AkmuforGdChzfwKGy/wCXNH/5SawxOI5f94xG7/5i K/8A8vNx/FvisYx4m8Qjr/zGtS9v+nmmf8Jd4r/6GfxD/wCDrUv/AJJrCk7fj/So60jh8Pyr9xQ6 /wDLij3/AOvJE8TiOZ/7RiOn/MRX7f8AX86H/hLvFf8A0M/iH/wdal/8k0f8Jd4r/wChn8Q/+DrU v/kmueoqvq+H/wCgeh/4Iof/ACkn6ziP+gjEf+FFf/5edD/wl3iv/oZ/EP8A4OtS/wDkmj/hLvFf /Qz+If8Awdal/wDJNc9RR9Xw/wD0D0P/AARQ/wDlIfWcR/0EYj/wor//AC86H/hLvFf/AEM/iH/w dal/8k1HJ4u8V8f8VP4h7/8AMa1L2/6eawqjk7fj/Sj6vh/+fFD/AMEUf/lJSxGI5Zf7RiN1/wAv 6/8A8uN3/hLvFf8A0M/iH/wdal/8k0f8Jd4r/wChn8Q/+DrUv/kmueoo9hQ/58UP/BNH/wCUk/Wc R/0EYj/wor//AC86H/hLvFf/AEM/iH/wdal/8k0f8Jd4r/6GfxD/AODrUv8A5JrnqKPYUP8AnxQ/ 8E0f/lJcMRiLv/aMRt/z/r91/wBPjof+Eu8V/wDQz+If/B1qX/yTR/wl3iv/AKGfxD/4OtS/+Sa5 6ij2FD/nxQ/8E0f/AJSafWMR/wBBFf8A8H1//lx0P/CXeK/+hn8Q/wDg61L/AOSaiHi3xWX58T+I ep/5jWpe/wD081h1EPv/AIt/Wj2FD/nxQ/8ABNH/AOUkTxGIsv8AaMRv/wA/6/b/AK/HS/8ACWeK v+hm8Qf+DnUf/kmj/hLPFX/QzeIP/BzqP/yTXP0Uewof8+KH/gmj/wDKTP6zif8AoJxP/hRiP/l5 0H/CWeKv+hm8Qf8Ag51H/wCSaY/i3xUBx4m8QDn/AKDWpe//AE81hUx+g+v9DR7Ch/z4of8Agmj/ APKSo4nE8y/2nEb/APQRiPP/AKfm5/wl3iv/AKGfxD/4OtS/+SaP+Eu8V/8AQz+If/B1qX/yTXPU Uewof8+KH/gmj/8AKTb6ziP+gjEf+FFf/wCXm2fF/izJ/wCKo8RdT/zG9S9f+vmk/wCEv8Wf9DR4 i/8AB3qX/wAk1zzdT9T/ADpK3WHw9l+4obL/AJcUey/6cmDxOJu/9pxO7/5iMR3f/T86n/hLvFf/ AEM/iH/wdal/8k0f8Jd4r/6GfxD/AODrUv8A5JrnqKw9hQ/58UP/AATR/wDlIvrOJ/6CcT/4UYj/ AOXnQ/8ACXeK/wDoZ/EP/g61L/5Jo/4S7xX/ANDP4h/8HWpf/JNc9RR7Ch/z4of+CaP/AMpD6zif +gnE/wDhRiP/AJebsni7xXx/xU/iHv8A8xrUvb/p5qP/AIS7xX/0M/iH/wAHWpf/ACTWFJ2/H+lR 01QoXX7ihuv+XNHv/wBeTVYnE8n+8YjZ/wDMRX8/+n50P/CXeK/+hn8Q/wDg61L/AOSaP+Eu8V/9 DP4h/wDB1qX/AMk1z1Fb/V8P/wBA9D/wRQ/+UmX1nE/9BOJ/8KMR/wDLzoP+Et8Vf9DN4g/8HOpf /JNH/CWeKv8AoZvEH/g51H/5Jrn6KPq+H/6B6H/gih/8pD6zif8AoJxP/hRiP/l50H/CWeKv+hm8 Qf8Ag51H/wCSaP8AhLPFX/QzeIP/AAc6j/8AJNc/RR9Xw/8A0D0P/BFD/wCUh9ZxP/QTif8AwoxH /wAvN5vFviraf+Km8Qf+DnUvX/r5qL/hLvFf/Qz+If8Awdal/wDJNYj/AHT+H8xUNH1fD/8AQPQ/ 8EUP/lIfWcT/ANBOJ/8ACjEf/Lzof+Eu8V/9DP4h/wDB1qX/AMk0f8Jd4r/6GfxD/wCDrUv/AJJr nqKPq+H/AOgeh/4Iof8AykPrOJ/6CcT/AOFGI/8Al5uv4v8AFgxjxP4iHX/mNal7f9PNM/4S/wAW f9DR4i/8Hepf/JNYMnb8f6VHR9Xw/wD0D0P/AARQ/wDlJtHE4nlX+0Yjr/zEV+//AF/Oi/4S/wAW f9DR4i/8Hepf/JNH/CX+LP8AoaPEX/g71L/5JrnaKPq+H/6B6H/gih/8pHLE4nlf+0Yjb/oIr+X/ AE/Oi/4S/wAWf9DR4i/8Hepf/JNJ/wAJd4r/AOhn8Q/+DrUv/kmueorOdChp+4odf+XFHy/6ckQx OJ1/2nEdP+Yiv5/9Pzof+Eu8V/8AQz+If/B1qX/yTR/wl3iv/oZ/EP8A4OtS/wDkmueorP2FD/nx Q/8ABNH/AOUmn1nEf9BGI/8ACiv/APLzof8AhLvFf/Qz+If/AAdal/8AJNH/AAl3iv8A6GfxD/4O tS/+Sa56itYYehZ/uKG//Pij2X/Tk1hiMRZ/7RX3/wCf9fsv+nxvP4u8WAceJ/EI5/6DWpe//TzU f/CX+LP+ho8Rf+DvUv8A5JrCfoPr/Q1FV/V8P/0D0P8AwRQ/+UkTxGI5v94xGy/5f1//AJcdF/wl /iz/AKGjxF/4O9S/+SaP+Ev8Wf8AQ0eIv/B3qX/yTXO0UfV8P/0D0P8AwRQ/+Uk/WcR/0EYj/wAK K/8A8vOi/wCEv8Wf9DR4i/8AB3qX/wAk0f8ACX+LP+ho8Rf+DvUv/kmudoo+r4f/AKB6H/gih/8A KQ+s4j/oIxH/AIUV/wD5edF/wl/iz/oaPEX/AIO9S/8Akmj/AIS/xZ/0NHiL/wAHepf/ACTXO1Zs 7SW+uobWEZkmcKCeir1d2/2UUFj3IGBzis6lDDq37igt/wDlzRX/ALhLhicQlJvE10krtvEV7JJN t/x+yO78KT63c6k+vXOq6o81u4+z3L3921w90EVfO85pjITBHhUbdkOV2kGPA9T/AOEr8U/9DLr/ AP4ONR/+Sa5e0tYrK2htYRiOFAo6ZY9WdsYyzsSzHuxNWa4KsaVSSbpUmopRgnSpu0Vslem7LrZW XloeDWxmInVnOFevCMpNpRrVo3V3rLlrRvJ7tu71s3ob/wDwlfin/oZdf/8ABxqP/wAk1CfFnirJ /wCKm8QdT/zGdR9f+vmsaoG6n6n+dZewof8APmj/AOCaP/yoUMVibv8A2nE7f9BOI7/9fzf/AOEs 8Vf9DN4g/wDBzqP/AMk0f8JZ4q/6GbxB/wCDnUf/AJJrn6K2jh8Pyr9xQ2/58UfP/pyafWcT/wBB OJ/8KMR/8vOg/wCEs8Vf9DN4g/8ABzqP/wAk0f8ACWeKv+hm8Qf+DnUf/kmufoqvq+H/AOgeh/4I of8AykPrOJ/6CcT/AOFGI/8Al50H/CWeKv8AoZvEH/g51H/5Jo/4SzxV/wBDN4g/8HOo/wDyTXP0 UfV8P/0D0P8AwRQ/+Uh9ZxP/AEE4n/woxH/y86D/AISzxV/0M3iD/wAHOo//ACTR/wAJZ4q/6Gbx B/4OdR/+Sa5+ij6vh/8AoHof+CKH/wApD6zif+gnE/8AhRiP/l5uv4s8VYH/ABU3iDr/ANBnUfQ/ 9PNRf8JZ4q/6GbxB/wCDnUf/AJJrEfoPr/Q1FR7Ch/z4of8Agmj/APKQ+s4n/oJxP/hRiP8A5edB /wAJZ4q/6GbxB/4OdR/+SaP+Es8Vf9DN4g/8HOo//JNc/RR7Ch/z4of+CaP/AMpD6zif+gnE/wDh RiP/AJedB/wlnir/AKGbxB/4OdR/+SaP+Es8Vf8AQzeIP/BzqP8A8k1z9FJ0KFn+4obP/lzR7f8A Xof1nE/9BOJ/8KMR/wDLzoP+Es8Vf9DN4g/8HOo//JNH/CWeKv8AoZvEH/g51H/5Jrn6Kx9jR/58 0f8AwTS/+VB9axX/AEFYn/wpxH/zQdB/wlnir/oZvEH/AIOdR/8Akmk/4SvxT/0Muv8A/g41H/5J rAorSFChZ/uKO/8Az5o9v+vRlUxWKuv9qxO3/QTiO/8A2EG//wAJX4p/6GXX/wDwcaj/APJNH/CV +Kf+hl1//wAHGo//ACTWBRV+wof8+KH/AIJo/wDyk0WJxNl/tOJ2X/MRiOy/6fm//wAJX4p/6GXX /wDwcaj/APJNH/CV+Kf+hl1//wAHGo//ACTWBRR7Ch/z4of+CaP/AMpD6zif+gnE/wDhRiP/AJeb j+LPFIHHiXXxz/0GdR9/+nmo/wDhLPFX/QzeIP8Awc6j/wDJNYj9B9f6GoqPYUP+fFD/AME0f/lJ tDE4nl/3nE7v/mIxH/y86D/hLPFX/QzeIP8Awc6j/wDJNJ/wlfin/oZdf/8ABzqP/wAk1gUUewof 8+KH/gmj/wDKRVMTibL/AGnE7/8AQRiO3/X83/8AhK/FP/Qy6/8A+DjUf/kmj/hK/FP/AEMuv/8A g41H/wCSawKKPYUP+fFD/wAE0f8A5SKGJxOv+04jp/zEV/P/AKfm/wD8JX4p/wChl1//AMHGo/8A yTTW8W+KFUk+Jdf4/wCoxqPX/wACawqqzPk7R0Xr9f8A639aUqNBK/sKF+n7mjv/AOCTVYjENpfW MR/4UV//AJebJ8WeKSST4k1/JOT/AMTjUev/AIE/h9KP+Er8U/8AQy6//wCDjUf/AJJrAorD2FD/ AJ8UP/BNH/5Ub/WMR/0EYj/wor//AC83X8V+Kdp/4qXX+3/MY1H1H/TzUP8Awlfin/oZdf8A/Bxq P/yTWM/3T+H8xUNJYegv+XFH/wAE0f8A5UH1nEf9BGI/8KK//wAvN/8A4SvxT/0Muv8A/g41H/5J o/4SvxT/ANDLr/8A4ONR/wDkmsCin7Ch/wA+KH/gmj/8pD6ziP8AoIxH/hRX/wDl50I8WeJ1Vmbx Jr+AB/zGNR98Af6R1JwPrWbJ4m8TOzO3iHXGLHJJ1a/J+hzcZwAMD2xWVI4yEz7kdie35DPB9Rjm m15eMhQlNQVCjyw3/c0dZdf+XX2Vp63O/DVcRGPO8RiLy2vXru0VtvWe719LGl/wkviM9df1o/8A cVvv/j9H/CSeIv8AoP61/wCDS+/+P1llQfY/561EVI6/nXH7Ch/z4of+CaP/AMpO1Yqv1r1l5+2r W/8ATpqP4l8Rg8eINb5Gf+Qrf+//AE3pn/CSeIv+g/rX/g0vv/j9ZD9R9P6mmUfV6H/Pijr/ANOa P/ykaxFduX7+tZPT99W/+XG1/wAJJ4i/6D+tf+DS+/8Aj9IfEfiI/wDMf1sfTVb4f+16xqUAk4A+ vsO5/D/61NYei2kqFFt6L9zR/wDlI3iK6Tbr1rLV/vq3/wAuNyLxF4kU7v8AhINbz0X/AImt/wDi f+Pjg9uvTPrU/wDwk/iX/oYdc/8ABtf/APyRWH0orq+q4eMF+4oXVrv2NHVvf/lz93lY5PrWIlO/ 1iuk72Xt6+1tP+X39M3P+En8Sf8AQw65/wCDa/8A/kik/wCEm8R/9DBrf/g1v/8A5IrEoqPYUP8A nxR/8E0f/lRp9YxH/QRX/wDB9f8A+XGp/wAJP4l/6GHXP/Btf/8AyRR/wk/iX/oYdc/8G1//APJF YdFavC0N1QoensaP/wAqMFicRdf7RiN1/wAxFfv/ANfzc/4SfxL/ANDDrn/g2v8A/wCSKP8AhJ/E v/Qw65/4Nr//AOSKw6Ky9hQ/58UP/BNH/wCUm/1jEf8AQRX/APB9b/5cbn/CT+Jf+hh1z/wbX/8A 8kUf8JP4k/6GHXP/AAbX/wD8kVh0Uewof8+KH/gmj/8AKQ+sYj/oIr/+D6//AMuNd/E3iQHjxDrg 4/6C1/6n/p4pn/CT+Jf+hh1z/wAG1/8A/JFYz9R9P6mmUewof8+KH/gmj/8AKTX29fk/j19v+f8A W7/9fjc/4SbxIeviHXD/ANxa/wD/AJIpP+Em8R/9DBrf/g1v/wD5IrEoo9hQ/wCfFD/wTR/+UmX1 jEf9BFf/AMH1/wD5cbLeJvEm0/8AFQa3/wCDW/8AX/r4qL/hJ/Ev/Qw65/4Nr/8A+SKyiMjB71GU I6cj9f8A6/8Anij2FD/nxQ/8E0f/AJSaQxNbZ16979a1b8/bGz/wk/iT/oYdc/8ABtf/APyRVCbx N4ilbLa/rTADC7tVvmwO5H789fUHsPSsyZ8LtB5br1yF7n6np+Z7VVrhxdOhK1JUaKtaUmqNHfov 4XzfyOyjVr6zdev2j++rfN/xfkvmajeIfEA5Gvaz16f2pfe//Teoz4i8QHrrusf+DO9/+P1mP0H1 /oairg+rUbtexo3tf+DS/wDlR1uvXcE3Xrb/APP6r/8ALTVPiDxD217Wfp/al7+n7/8AnUf/AAkX iH/oO6z/AODS+/8Aj9Z1IQD1qXQorehR/wDBNL/5UYurXe2Irry9vXt/6e0NE+IvEB667rJ+up3v /wAfo/4SLxAOmu6yP+4ne/8Ax+sooR05H6//AF/88Uyl7Cj/AM+aP/gmj/8AKh08RiYt3r1+m9as ++z9t+TNn/hI/EP/AEHdZ/8ABpff/H6T/hIvEH/Qd1j/AMGd7/8AH6x6KPYUP+fFD/wTR/8AlJ0L E1n/AMv66fZ1q3/y42Ytd8QzTiMa7rIXqxGqXvCgDP8Ay34J6A46kZrc/t3W/wDoM6r/AODG7/8A j1c/aQ+Wm8/flAPTov8ACPXkfMR6nBGRk269zB4DD06Sc8Nh3OpaTvh6D5Vb3Y60HbR3e2rt0PFx mOxFSq1DE4hQp3irYiuru/vS0rq+qsvJabnUUUUV9SfLvd+r/MKKKKBw+JfP8gooooNgqF/vH8P5 Cpqhf7x/D+QoAbRRRQAUUUUDW69V+YUUUUG4jdD9D/KoKnbofof5VBWtPZ+v6GVTden6hRRRVkBR RRQAUUUVlP4vkjWHw/Nkcnb8f6VHUknb8f6VHVw+FfP8yJ/E/l+QUUUVRIUUUUAFRydvx/pUlRyd vx/pQUvgl6ojooooJCiiiguG79P1QUUUUGoVEPv/AIt/WpaiH3/xb+tBnU2Xr+hLRRRQZhTH6D6/ 0NPpj9B9f6GgcfiXr/mRUUUUG5A3U/U/zpKVup+p/nSV0LZei/JHO936v82WKKKK5wCiiigCOTt+ P9KjqSTt+P8ASo6a3XqvzNV8Hyf6hRRRW5kFFFFABRRRQA1/un8P5ioamf7p/D+YqGgAooooAjk7 fj/So6kk7fj/AEqOg2h8K+f5hRRRQEvhfp/kFFFFZ1Onz/Qmn1+X6hRRRWZoFFFFaw2fr+iNYbP1 /RDH6D6/0NRVK/QfX+hqKrIn8XyQUUUUEhRRRQAV6R4T0v7PbtqEy4mulxAD1S2yDu6cGZgG75jV CCNxFcfoemNql8kRB+zxYluW5x5YPEYIxhpW+Qcghd7jOwivX1UKoVQFVQFVQMAADAAA4AA4AHQV yYmaVoJ6vWXkui+dvu9Tixlblj7GL1nZz8oraP8A289X5LzFoooriPMCoG6n6n+dT1A3U/U/zoLp 7v0/USiiit4/CvT/ADNQooopgFFFFABRRRQAx+g+v9DUVSv0H1/oaioAKKKKACiiik9n6P8AIAoo orAAooorWns/X9DKpuvT9QoooqzRbL0X5IKKKKBjH6D6/wBDUVSv0H1/oaioNYfD82FFFFAqmy9f 0CiiigKfX5fqMdtqk9+319foOpql1qyx3H2HA6/icfX9MUwoD7H/AD2rGbu/JGyjdaNX6ohopSpH X8+1JUjUnHR/cxr/AHT+H8xUNTP90/h/MVDQahTXbapb06fXtTqqzMScD7o7+p7/AJcj8/asq1T2 cG/tPSPq+vyWv3FwjzSS6bv0/wCDt9/YiJJJJ5J5NKGI9x6U2ivMavvqenF3itl0sttNP0JgwPT8 j1p1V6eHI68/z/8Ar/55rNw7fcUQzABhjj5Qf1NRVLMQWBH90fzNRVSinFJ9vmiYt3lrs9Aq1CmB uPVv0H/1+p9ePSoI13sAeg5P09Pxq7V0qdm5PW2i/V/Lb5jqTk48vzdt7dNPX8hpUH2PrURUjrU9 NZQ39K2aumjGLs02Q0U4qR7j1ptZOLW/3myae2pXooorYwCiiik4p+vcpSa9OwUUUVk4tea7mikn 5PsIQD1qNlxyOlS0x+g+v9DVqKcVftv16m/2Pl+pFRRRUuDW2q/H7jIKQkKCxOAAST7ClqleSkL5 a5yeWI7L6H69f61lOShGUn0Wi7vovv8AwuVCLlJRXXd9l1f9dbFKSUvIzjocAD2HA/z+lAYH2PpU NFeU25Nt6ttt+rO+MnFJLZaJeXkSv0H1/oaip4y2QT05H1/yaaRg4PaptrfysbqScUttRKKKKbSe +oBUfyt7H/P5/wA6kppQH2P+e1ZSila3UqLSunsyMqR7j1qa2i82QZHyLhm9Dzwv/AufwB71Hll4 PI/z3/xrWgj8tAMAM3zNj1Pb8BgfXJ710YOh7aqnJXhTtKXZv7Mfm1d+SfcxxM1Th7r96d1Fdl1l 8r2Xm12HFiGPpxx+Apd49D+n+NMf7x/D+Qpte6eI936v8zsKKKK9g8d7v1f5hRRRQOHxL5/kFFFF BsFQv94/h/IVNUL/AHj+H8hQA2iiigAooooGt16r8wooooNxG6H6H+VQVO3Q/Q/yqCtaez9f0Mqm 69P1Ciiv6E/2UP8AghJfftA/s/fDX40+Ofjrqnwu1f4k6IfFNl4Mg+GcHiNrDw3qN1cP4Wv59Uuf GugvLJ4g0Aaf4gjiXT0W3tdUt4TLLIrtXzfFXGXDnBWCw+YcSZisvw2LxX1PDSWHxOKqVsR7KdeU IUMLTq1nGFKDnUqcns6acFOSdSCl7OQ8OZxxLia2FybCrFVsPQ+sVuatSw9OnSdSNKLlVryjDmnU lywhdylaTStCTX89lFf1N/8AEOF4c/6O21v/AMMvYf8AzzqP+IcLw5/0dtrf/hl7D/551fCf8R88 K/8Aoo63/hkzr/5jPqf+IUcc/wDQqof+HPL/AP5afyyUV/U3/wAQ4Xhz/o7bW/8Awy9h/wDPOo/4 hwvDn/R22t/+GXsP/nnVnLx68LG7riOr0/5kudf/ADGaR8KuN0rPKqHX/mZ5f/8ALT+WCTt+P9Kj r+qI/wDBuD4bbGf2t9c4/wCqL2H/AM86oZv+DcXwrbwy3Fx+15rEEEEbzTzzfBrTYoYYYlLySyyP 8TlSOONFZ3d2CooLMQATVx8e/CyyX+sVZvayyTO3dt6JWwV23dJJK7bsk2RLwq44bb/sqhb/ALGe X9v+vx/LHRXV+O9L8MaJ428XaN4J8QXXizwfpPiXW9M8L+Kb3TU0e78S6BYalc2uk6/PpEV5qKaX JrFjFBqB09b+9+x/aBbm6uDGZX/ZvwX/AMEBf2yfGXg/wr4uPjn4BeGD4p8OaJ4i/wCEb8T+I/iR aeJNAGtabbakNG8QWlh8LNSsrXW9MFyLPVLa01C+t7e+hnihu7iNFlf7/POMOGeGcPgcVxDnODyW jmSf1L+0fb0KleUaFHEVIKjHDYmtCpRpV6TrQqU4eynL2U5KrGVNfJ5bw5nec1sXQyjLq+ZVMDJR xLwbpVadO9WrRhL2sq9GnONSdGp7KUJzVSEfaRTptTf4c0V+9f8AxDxftkf9FV/Zm/8ACr+Kf/zn 6P8AiHi/bI/6Kr+zN/4VfxT/APnP183/AMRg8MP+i3yL/wAG43/50nsf8Q942/6JrMv/AAHDf/N5 +ClRydvx/pX73/8AEPF+2R/0VX9mb/wq/in/APOfqjf/APBvP+2lBEZLX4j/ALNF+yKx+zxeMviZ BM5AyFjN18IYrfLYxmS4iUEjJAyQ14v+GDaS43yG701rYxL73lSS+bS8x/8AEPuNVCV+Gsz3Wihh m/uWOPwaor9UviT/AMEX/wDgoP8ADmyutTT4PWPxA02yUvPP8NvGPhvxHesgzza+HLi+0vxXqDHH EWnaDdzcjMY5x+Znifwr4o8E67qPhfxn4c17wl4m0e4a01bw94m0jUNC1zTLpPv2+oaTqlva39nO veK4gjcdStfWZPxLw9xDGc8izzKc3VNKVRZfmGFxVSlFtJSq0adVYilFtpc1TDQjdpc3M+U8DMsj znJ3FZrlePy/mfLCWLwtalTnK1+WFZxnQnK2vLCvKVk3ytJtYFFFFe2edDd+n6oKKKKDUKiH3/xb +tS1EPv/AIt/WgzqbL1/QlooooMwpj9B9f6Gn0x+g+v9DQOPxL1/zIqKKKDcgbqfqf50lK3U/U/z pK6FsvRfkjne79X+bLFFFFc4BRRRQBHJ2/H+lR1JJ2/H+lR01uvVfmar4Pk/1CiiitzIKKKKACii igBr/dP4fzFQ1M/3T+H8xUNABRRRQBHJ2/H+lR1JJ2/H+lR0G0PhXz/MKKKKAl8L9P8AIKKKKzqd Pn+hNPr8v1CiiiszQKKKK1hs/X9Eaw2fr+iGP0H1/oaiqV+g+v8AQ1FVkT+L5IKKKKCQpQCSAASS QAAMkk8AADkknoKSut8K6V9qujfTLmC0YeWCBiS54K8EHIhBEh6fOY8ZG4VM5KEXJ7Jfe+i+bIqT VOEpy2itu76Jer/V9DsNB0waZYojgfaZsS3B7hyPlizzxEvy9cFy7D71bdFFeVKTlJye7d3/AF2W yPEnJzlKUndyd3/kvJbLyQUUUUiQqBup+p/nU9QN1P1P86C6e79P1EooorePwr0/zNQooopgFFFF ABRRRQAx+g+v9DUVSv0H1/oaioAKKKKACiiik9n6P8gCiiisACiiitaez9f0Mqm69P1CiiirNFsv RfkgooooGMfoPr/Q1FUr9B9f6GoqDWHw/NhRRRQKpsvX9ApjnAwOp4+g7n+n1+lPqAnJJ/L6f561 MnZebCn1+X6iUUUViabBTCmenHt2/wDrU+igvmT0kr+fX+v6sVnBAIPt/MVBV1wCpB56fzqsU9Py /wAP/r0GzSVrO6sn+BCxwOOp6f1P4fzxUNOY5Pt2/wA+/wDgO1Nrza9Tnnp8MdF59383+CRrFWXm 9X+i+X5kTqBjHf8A+tTKlcE4x2zUVYnXTm1FX1WvruFFFFBsmnsyJ+o+n9TTKnIB4PX9f8/pTYk3 Nk9F/U9h+HU/gD1quV6eZm21J27k8abF9zyf8Pw/nmpKKK2Ssrdibu9+oUUUUDXvOz37r9V1/BhT CgPTg/p/n6U+igGpR1/FbfP/AIJTKen5H/H/AB/OoyMcGrFIQD1FAaPyf4P/AC/FEFFPKEdOf5// AF/88Uykmnt/wfuE01ugooopiGsueQcEdDTGLYwR369j1/z2+lS0x+g+v9DUKTUrdL/d6Gyk1DR9 P1IqKKKsSmnvo/wGuwRSx6AZ9MnsPqelZTMWYsepOTVm5kywjHReW+p6D8B+p9qq15+ImpT5VtHR +cuv3bfedVL3dWvitr5f8Hf7hpUH2P8AnrURUjr+dT0VyuKfkzoTT2Ik6n6f1FI/3j+H8hUoUA5H /wBaon+8fw/kKyas7Mv7C/xMbRRRSGptb6r8QoopQCSAoySQAB3J4H+e1Fr6WvfS2930NE01dP18 vUsWsRkct/DHg89C38I/D731C9jWgQR1FPijESKg7csfVj1P9BnkAAdqkIzwa9nD0VRpqP2n703/ AHn0v2irRXo+5w1f3knK+2ke1l/nv8/Iov8AeP4fyFNqaRPmOPbj8PX/AD9aiwfQ/ka3OCUWpPTq /PqdfRRRXsHjPd+r/MKKKKBw+JfP8gooooNgqF/vH8P5Cpqhf7x/D+QoAbRRRQAUUUUDW69V+YUU UUG4jdD9D/KoKnbofof5VBWtPZ+v6GVTden6n1X+xL+znf8A7Vn7T3wm+CkEdx/Y3iPxFDf+Nr22 JjfTPAPh9G1rxjeLcfct7l9Esrqw0uSQhZNZvdNthuknRG/0SNN06w0fTrDSdKs7bTtL0uytdO03 T7KGO2s7CwsYI7azs7S3iVYoLa1t4o4IIY1WOKJERFCqAP51P+DfX9mI+Gfh18Rf2q/EenmPVfiR dy/Df4dTTxOkieCPDWoRXPi7VbRyoSW08Q+MLWz0gsCXhuPAtyo2pcHf/RxX8DfSG4v/ANYONXku Gq8+XcKUpZelGV6dTNq7p1s1q6NxcqL+q5epatfVq8U17yP6r8JeH/7I4ajmFaHLjM9nHGy5laUM DTUqeX09VdKdP2uLa6vEU32YUV+I/wDwUH/4LEWX7Fvxwtfgh4S+E2mfFjWdP8JaT4g8aX1543uf CyeGtU19p7vSfDv2a38Ma4bm7bw+NN1+4naaGNbTXNOjjVpBPs+FP+Ijrxd/0af4c/8ADv6n/wDO 8r5XKPBjxHz3LMDnGW5BGrl+ZYeGLwdWrmmV4WdXD1HNU6roYjE061ONRQc4e0hFypuFRLkqQcvd zDxE4PyvG4nLsbm6p4vB1XRxFOGDx1eNOrFRcoe1o4edKUoc8VPknJRlzQb5oyUf6o6K/lc/4iOv F3/Rp/hz/wAO/qf/AM7yj/iI68Xf9Gn+HP8Aw7+p/wDzvK9B+AnimtHw7Q/8PeS//NZyLxR4Heqz mX/huzP/AOZT+qOvym/4LHftOj9nP9jPxjpWi6gLTx98cnl+EnhNYpVW8tdL1uynk8ea5FH/AK5Y rDwil/pUd7A0cmn634g0KdZFkMYbjP8Agm7/AMFT9b/b1+Jnj74fap8F9L+GcXgvwKnjKLVLDxxd +KZNQkbxBpeiHT3tLjwvoS26BdRNwLlbiZt0Ii8nD70/A/8A4Lb/ALTh+PH7YOq/D7Q9QN14E/Z2 s7n4b6ZHFK7Wlx44kuI7z4laosTEiO7i1qGz8H3LIAksfgy3mTcsu9vV8NvC3OJeKWByHiXARw64 dpYbiTN6CrYfF0nh6bhXyqhOth51aEvr2PWGi6fM37PDV4yjuji4x42y+nwRis2yfFus82dbKMtr KnVoT9vU56OMqxp1o06sfquGWImpcqSnOlKL+FngX/BLb9mb/hqP9sr4Y+EtU077f4E8EXR+KfxH SWEzWcnhbwXdWd1b6TeplA9r4n8TXHh/wvdIJFkFnrF1cRhvs7Cv7+a/B7/ggj+zP/wrD9mrxB8f df08Q+Kv2gNbB0OSeNPtFp8NPBVzf6Towj3r9otTr3iSTxJqs6qyQ6jpkHhm82OsUEh/eGuXx84t /wBZePMVgcPV58t4YpvJcMoyvTnjITVbN68bNxbljWsIpLXkwDje2hr4WZB/YvCuGr1YcmMzmSzP EXVpxo1IcmAou6TShhEqzi7Wnim7XCiiivxI/SAooooAK+Nv2x/2GfgV+2v4CvPC3xO8PWtl4utL CeLwR8VNIsbZPG/gi/IkktpLO/xFJq2gNcuX1XwpqU76RqcTyPGLDVY7DV7D7JorvyzNMxybHYbM 8qxuJy/MMHVjWw2LwtWVKtSnFp/FFpThNLkq0qkalGtTlKlWo1ac5QObGYPC5hhq2DxuHo4rC4iD p1qFenGpTqQkmrOMk7NfFCcXGdOajOnOE4xkv82P9pP9nr4hfss/Gbxp8EvibZR2/iTwhfiOLULQ StpPiTQ7tBc6H4o0KeVEe40fXNPeK8ti6pc2kjT6dqENtqVleWsHhdf2Ff8ABfz9l2x8ffATwz+0 5oOmp/wmPwS1Sx8PeLbuCJfP1H4YeMNUSwgF24Pmz/8ACMeNb7S59OiVTHaWnibxLdSFU3MP49a/ 0o8MONY8e8IZfndSNOnmNOVTL84o0lywp5ng1TjWnThduFHF0qlDG0INvkhiKlJOUaMW/wCOeNOG nwrxFi8upucsFUhHGZdUm7ylg8RKfJTnKy5qmGqQq4apLefsqdRpOpIK/YH4Zf8ABFv9pXxh8NfD fxT+JHxC+BX7POgeL7Oz1Dw7pnxk8a6hofiS7stRtY77T57yx0/QdR07SpbyyljuU0u+1ePXrUEx alpNjMjxj8oPCF1pVj4s8L3uvRCfQ7PxFol1rMJTzRNpVvqdtNqMRjAYyCSzSZCgVt4O3Bziv7SP +Clmnfs0eIfEnws8bfGX9hn9oD9sTQ77wMF8H/EP4IeIPH994P8AD1hfanc6j/ZN3pfgLx7odlZ3 mrQXVjrFr4gu9JI8Q6fPZ2lrq19Hof2Ww8LxM4xz7h7NOFcmyRSw/wDb39sVsTj6WX5TmWLisro4 WVLBYHD59nnD2T+2ryxMq1apicy9tHD0rYXDV6jmo+3wRw5lWb4LPMxzNKv/AGXLAUqOEni8dgqD +uSrc+JxNXLMtzbHunBUlTpQo4NwdWTdapTikz+Q79pT4EXn7Nvxc174SX3j3wF8S7nQrHQr1/F/ w01eXXPCGoDXNHs9XSHT9Smt7WSeawW7FnfqYEEN7DPECwQMfAR9/wDFv61+/P7FvjL/AIR//gpp qHwt+Af7JnjDwj+zx8bdJ8P6D46/Zv8AjNpupX2r+EPAlv4S02DxJ8StWufH954ivLZNI1t9f1+0 k1DUriHXtF1+fwXY+Vea1pMVn73/AMFOfBej/shfBz9nj9nP9mH4b2Gkfs2/E34pX/iPx58ZLW80 7xTqnirxlF41F9b/AAv1HxNBFJe2lrplvZQzKb64M2uaV4b0zQLSeRPCfilL66fiNicFnfDvCeMy 14zNs6ynLczpZhWzDKMDTnhpYLMcRm1TMcHga2Y0MvzTD1MvdPA5TgMZmNDNvazqZdjpYfBYypBV eCsPi8vzXPcPjpYTAZfmGMwNTB08Fj8XKnXWKwOHwEMJicVDBVcXgqscbGpicfisPgquBUVDE4VV KtFS/mQr7Q/Zp/Yj+IP7T/wl/aV+L/hDxX4N0DQ/2YvBR8ceL9N8SSa2mra/pw8NeNfE5tPDa6Zp GoWb3v2PwPqNvjU7rT4PtN3ZDzvKM8kP9TH7Svxt+K/gr/go18AP2XPBH7Pvw4+IfwC+Kng7wVdf EuK/+EEetzaVa+I/GPjnQ/FevN4ktYRpthZ+GvD+h6drVxZ6taXVgYILlLqPF9DJD4n4J+FXw3+C t5/wXu+HfwmsbDSPA+lfBXw7qenaDpRj/szw7f8Ain9mv4veKtf0HTo4f3FpYaXr2s6lbWWmQqkW j2qxaQscf2EqPlMV4y5ljMlw1bCZPRyXH5ngOGc+yussxwOf0ZZPmPG+TcMZhQzDDww+DqZbj3Tx mIeHhXjNThJV6E5To8p7OH8NsDhsxqwxGY1czwmDxOcZXjaU8DisomsfheHMdnGErYOs69eGNwqn RpKrOjKKU4ulNcrnb+QOmP0H1/oa/qc+KPxO8c/8E8/2D/2Edf8A2KPhP4J1G8+OPgnRvEfxh+Js 3w6HjbVtY8Uap4O8H+JYtG1nUrMJOz+KdX8R+KLWxtdRnnu9M0zwrHoWiPZLZTAfUmr/AAf+GNt/ wUX/AOCcXxUf4X+Evh58UPjv8Cfjdrnxv+HGnaDZadp9r4h0b4R6Xq1leat4deABdZtta8VeJ9Bu dT1CBtRvx4btIrqea50t3X2a3jJGhTq42pw5L+zK8ONY5PWhneDqZhisRwPTxU8fTzTKoYT22TUM YsFXWDxE6uKcG6EcVThLEUovzqXhr7SdKhHOn9cpS4ceY05ZViYYSjS4jdNYeWBx8sR7LMamH9tT 9vTjCipJVHTm1C7/AIuqK/pJ/aw/bU+FH7QGi/tMfsP+OvhJoMX7Slp+2Pr3wo/Zp8b+Fvh34X0f wh4e8NeG/jR4Z8NeE7zxb4ruPEp8SWHiK6tLHxZo/iS70Tw8+m6jpF7YRyWym5vjD+w/hCK20T4/ eE/2dfj38cPgt8UPF/inw7f3msfBzTv2HtV8N6N4ltJ/CeuauGtvia2teKPBWm2liNJu9Se21qa4 l1O10+TRpLK01HU7Ros818YcfkuX4XFZlwZXw2LxNDHZhTy55u69XFZLg8Dk+PjnOXV8HkuKo1sD Up5vHDVauO/suGGxuGrUqjnSviF0YDw5weZ4nEUsFxLCth6FTD4WWKWWqEaOY1sRj8NPL8XSrZlS nRxMJYH2tOFD6262HrQqLkny0pfwUN1P1P8AOvtLxL+xB8QfDH7E/wAPv25LzxZ4NuPh58RfG174 G0rwlbPrZ8Z2Wo2PiDxv4eku9QSXSY9DWye58CalOhttXuJ/Iu7HdCshnSH9+Pgf8G/h5+zN8Hf+ Cofx7+AfwM8F/FL46fB79qb4p/Dz4YeE9e8KN45Pgb4f+HdY8IPpljoehx79bg0/RdI8W+I9ev5d NurW51zTvDFlY3l5LFpErDR+MfizW/2sv+CZX7DGqftHadpPgy4+LX7cXw18IfEq00Pw+3gLS9I8 LXXxb+K/gi7urbRmYHRSfCdvHezXRZRJcSS6mWAmJqcx8XMZicxyhZNl0cJklHi7KcmznGYvE4LE ZrjKGL4SxXFGJwmDyKNN4qhT+rPDQo5r9ZarYrD1KGHozhXVSJg/DzDUcJj/AO0cZLE5nVyLMMdl 2HoYbFUsBhqtDPKOTUMRXzXn9hVq+19pOeXujeNCsqs5c1Fxl/JXRX9jnxd/aE+NvwS/4KH/AAX/ AGGfhJ+zb8OrP9knxLL8MvD1/wCGbL4QC40rxJ4O8Vx28HjzxkupWsKaZFa+BIpdW+04t3sVfw1e S+IRe/a5ttv4NfD74Yfs0/Gz/gtPc/B/wf4JTTfhP8O/hB8T/Bnhu/0PT9X8N+E/Fk/wP+LfxF1D RLTTiqRWehp4odpDodhJZQWGnNBosH2eOxhESl4z1aWBp4uvwtGM8xyTK+IcjoYfiPA4z6zl+acT ZbwzTpZrUoYC2TY6nic0w2IlQlTxdKdKOIpwq+2w9RLNeGVOeKeHpZ9NxwuZYvKcyq1slxOG9jis Jk+JziVTARrYtLMsLKnhatL2sJ0ZRk6c3FxmfxsUV+qv/BQz9tX4E/tj/DT9m3UfCvwwbwT+0F4L 0O/tPjh4g03wN4a8IeFfEV/qejeHhPa+G7vSfEmta3q+iWHiLT9WutEh8R29tPpVnqMy27B728Rv yqr9byDMcfmmWUcZmmTYnIMdKti6NfLMVXo4mdJ4XF18NCtTxNBRp18Ni6dKGLwlX2dKU8PWpynS pSbgvzvOMFg8vx08NgMzo5vhFSw9WljqFKdGM1XoU60qVSjOU5Uq+HlN0K9PnqKNWEkpys2Rydvx /pUdSSdvx/pUde0t16r8zhXwfJ/qFFFFbmQUUUUAFFFFADX+6fw/mKhqZ/un8P5ioaACiiigCOTt +P8ASo6kk7fj/So6DaHwr5/mFFFFAS+F+n+QUUUVnU6fP9CafX5fqFFFFZmgUUUVrDZ+v6I1hs/X 9EMfoPr/AENRVK/QfX+hqKrIn8XyQUUUUEk9tby3dxFbQrulmcIg7c8lj6Kqgsx7KCe1ezWNnFYW sNpCPkiUAserueXkb3diWI6DOBgACuV8JaX5UTalMuJJgUtgw5WHOHl56GVhtU4z5a5BKyV2tcGJ qc0uRfDF6+cv+Bt63PLxdXnn7OL92D1859f/AAHb1uFFFFcxxhRRRQAVA3U/U/zqeoG6n6n+dBdP d+n6iUUUVvH4V6f5moUUUUwCiiigAooooAY/QfX+hqKpX6D6/wBDUVABRRRQAUUUUns/R/kAUUUV gAUUUVrT2fr+hlU3Xp+oUUUVZotl6L8kFFFFAxj9B9f6GoqlfoPr/Q1FQaw+H5sKKKQnAJ9KAnsv X9Bjnt68n6f5/lUdBOST60VnPp8/0KirK33hRRRWYwooooAa/wB0/h/MVTmbC7R1b+Xft36dRVty AjE9B/iKpH5uWHJ/T2HJx74OM5PesqsuWNusrr0XV/p8zqpQcpprRRin5N9F+vyK9FPKEdOf5/8A 1/8APFMrgcO33dTqdnpJWfdf1/XkFNKg9fz706inFq3K9+zNFFqKe611XqQlSPcetNqxTSoPsf8A PWk4dvu/4P8AmG2xWZWLDHsPzP8A9erKKFUAfj9T1/wGecYpFUg5Pbp/jT6uKaim13S72/4L/Ah1 Pfknra135vp/wQoooplpp7BRRRQNOzTCiiig1Uk/Xs/61K9FFFBit16r80FNKg9fz706ik0n691o /wCvU6Gk99SEqR7j1ptWKaVB9j/nrRdrfVd1+q/y+4zcO33f8H/Mhpj9B9f6GpCpHX8+1JRo7Pfs ykvdttoV6ZI+xSeM9FHqf/rdT7VYKA9OD+n/ANas6Vizkdl4Hue56468D6e9Z1qns4N/aekfV9fl v9xMabckntu30sunq9isy9TnPc568/8A1/pTKmf7p/D+YqGvMPRilKOvTRdLKyCiiiglxcdYu/5/ 8EKhf7x/D+QqaoX+8fw/kKmUb67P8DRT9xJ6e89f62G0UUVk01uhhV6zi3EynopIT/exyfwzgY7k +lVEQyOqL1Y4+g7k+wHJrbRQiqo6KMf4nv1PPWuzB0uaftGvdht5y/8AtVr6tdiJzsnFbytf07fN /gmOooor0zIhf7x/D+QptOf7x/D+QptBg936v8zqKKKK9g+fe79X+YUUUUDh8S+f5BRRRQbBUL/e P4fyFTVC/wB4/h/IUANooooAKKKKBrdeq/MKKKKDcRuh+h/lXbfCz4ceJvjB8SfAnwr8G2v23xT8 QvFmheENCgbIiGo69qNvp0E91IARBY2hnN1f3L4itbOGe5lZYonYcS3Q/Q/yr9Rv+Cc//BOf45/t iweMvih8L/ijD8ErT4Za1p2g6V44kTxJDqWpeJNV0y7uNW0/w5qPhu5sbuzn0XRbiwbWZReRP9m8 SafAiSx3Nx5fj8Q55l/DmSY/NsyzLCZTQo0/ZU8djoV6uFo4zFKeHwLq0MNCpia8Xi50pSoUIOrU p0qsU4R56lP0cnyrFZzmuDwGEwdfH1Kk/a1cLhqlGlWqYWhKFXFKFbEShQoy9hGcY1aslCE6kG+a XLGX9svwX+FHhj4F/Cb4d/B7wbCIvDXw58JaL4U0xzEkM16ulWccF1q16kZKNqWtXoudX1SUFjPq N7dTszPIzHX+JfxC8NfCb4eeN/if4yvPsHhX4f8AhXXfF+v3IMfmppfh/TbjU7uO2SSSNZ724jtj b2NqHV7u8lgtosyyop/nd/4c2ft6f9JFvE//AIVHxl/+aysfX/8AgiX+2r4r0e+8PeKf2+r/AMS6 BqcaQ6loev6r8WNZ0fUIY5Y50ivtM1HxLc2V3Gk8UUyJcQSKssUcgAdFYfwX/qZwHicf9czPxkyP FLEY361mM4ZDxNHFYlVsV9YxrhVq4WUI4iuqmJ5alSMoQq1YzlFxpqB/VT4g4mpYb2GD8Psyoulh /Y4SMs44f9hSdOj7LDRlCniFN0abhRUoQak6dNxi1JqS/nC+N/xa8S/Hj4vfEf4x+MJN/iL4j+L9 a8VX8SyPLBYLqd3JJY6PZtIS407RNPFpo+mRsSYdPsbaLogry2v6Nv8AiHP+MP8A0cl8Nf8AwjvF H/ybR/xDn/GH/o5L4a/+Ed4o/wDk2v67w3jJ4TYTD4fCYbivLqGGwtCjhsPRp4TNYwo0MPSp0KNK C/svSNOlRpwiu0dW25N/z7X8OOPsTXrYmvklerXxFarXrVJYzLnKpVrVJ1as5P67vOpUnJ9FeySS SX85NFep/HD4aw/Br4wfEn4TQ+KNO8aH4b+Mdd8FXfijSLWaz0vV9S8OX0ulatPp8E8s8otItTtr u2glaVxcRwLcJhJVUeWV+m0cRRxdChisPL2lDFYehiaE3GcOehiKNOvRnyVIQqQ56ValNRqQhOKm lKEZXivialGphqtbDVoqNbD1q1CrFShNRq0ak6VSKnTlOEuWpTnHmhKUW4txk1qfrV/wSw/aLsP2 VLP9s/423Ett/a/hn9ms2fguyufKddU8e6/4/wDCuieDbE28jA3duuu31pfarFEskkei2Wp3fltH bSEfn38EPhZ4x/ad+PvgD4V6VdXV/wCLfi749stMvdZuRLez2/8AbF+994m8VakQHmnh0fTBqviP VpsPIbayupiGIOfIBf3sNlc6dDdTxWN9Naz3tokjLBdTWIuBZvPGCFlNt9ruTDvBCNKzAbsEf0gf 8G9f7M39t+Nvif8AtW+IdP36f4JtH+Fvw5nnhJjfxVr9rbal421azlJUx3WieGJtJ0RWAkjmtvGe pRnZJb1+dcX4vA+H+T8d8epwlm2aYTLMLhHOMbvE4PA1MpyXBxvrOH1/F4jMq0VpJUJ3TjFtfZcP 0sRxdmHCnCjjNZfl1XG4jFJSdnRr4v6/mOIfL8LeEo0MDSb95Os2mnJI/qP8C+C/D3w48FeEfh74 RsV0zwt4G8M6H4R8OaepDCy0Pw7pltpOl2xcKvmPFZWkKPKVDSuGkb5mNdVRSEgAkkAAEkk4AA5J JPAAHU1/m3UqVK1SpWqznVq1qlSrVqTk5TqVas51alScndynUqVKk5ybblOcpPWTP7BjGMIxhCMY QhGMIQilGMYQjGEIxiklGMYxjGMUklGMUkkkl+Of/BYD/goD4z/Yt+Hvw28P/BrVNGsvjJ8SvEN5 fQz6rpdhr8Gh+AfDNuF1q/m0m+EsC3Wsa1qOj6ZpM11A0MtvbeIXtz9psA0f8/3/AA/J/wCChf8A 0UPwP/4a7wb/APK+vn7/AIKY/tPt+1f+1/8AE3x/pmoNf+A/Dd4Phx8MCkryWh8EeDri7tLbVLIO FZLfxVrM2teMFRkSSL+3xA4/cgD4Gr/Qbw48IuFst4NySlxHwzlGZ55isMsxzKvmWApYnE0a+Ycu Jhgeaq1KEMDh54bDezsuWssVdc3Nb+UeMfELPcVxHmTybOsdgssw9Z4PCU8HiPZ0asMJzUamKsqc +aWJrxrVFPmd6So2921/11n/AOC4n/BQ6aJ44/iX4MtXdSFng+FngZpYif4kW50i4gLDsJIZF9VN eWp/wV5/4KIx+KLHxVN+0frl3c2d0lydHl8KeALfwveRqyl7O98N6d4UsdJmtZowYX220dyisZLe 5guQk6/m5Ucnb8f6V99R8POAqCmqXBnC8FUhKE/+ETL5uUJJxlG9WjWlFNNp8kqb6qSaTXys+MeL KyUqnEmdN05RlC2YYiCTTTTapOlGWqWk4zW6aabT/wBF79ij9qTw9+2L+zl4C+N+iQW+m6lrNrNo /jjw7byPInhbx7oZjtfEuioZZJZvsRuGi1bRHuJGubjw9qmkXdzsnuJEX6ur+Yr/AINwvHl9No/7 UvwxubmVtM03Uvhl480azLkwQX2tWvi3w/4luVjJ2pLdW+geFImdRmRLRA5xEmf6da/zy8S+GsPw jxzxFkODTWBwuMjXwEZNydPA5hh6OPw1Fyk3KX1eGJnhlKTcpRw9Nybnzyl/WnB2c1c/4ZyjNa9v rOIwzhinFKMZYrC1amFxFSMVpFValBVuVJJOrJRSiopeIftL/DKD4zfs8fG74UzWkd6/j74WeOPD NhFIoYR6zqfh3UIdCvIwQQtzp+tGwv7R8Hy7q2hkwduD/mvdOtf6iFf5k/xO0mPQPiV8QtCiRY4t F8ceLNJjjT7kcena/qFmiJj+FFhCr7AV/Q30V8dUdLjTLHJulCpkuY043do1KsMfgazSvZc0KVC9 kruKveyt+UeN+FjfhzHJLnf9pYKUurgvquLpq/aMnVa85aaHD19yfBn/AIKU/txfs/8AhKw8CfCz 9oTxRovhDSYFtNH8P65o3g3x7p+iWUf+qsNEj+IPhrxS2jadDkiDTtLe0soASIoEBIPyD4LVX8Y+ E0dQyt4m0FWVgGVlbVLUFWByCCCQQQQQcGv9Lr/hXngD/oRvB/8A4TOi/wDyFX6V4yeIGScGwyPA 55whg+LsNm6x2IhQx08D7HC1MBLDUudUsbl+PjKpUjirKpTdGUYxcZOcZcq+Q8POFMx4g/tPFZbx DisgrYGWGoTnhIYh1MRDEwq1eWU6GMwrUIOivcmqicnzLlau/wCAuP8A4KXftsw+OPiL8TLb40JZ fEP4r+FtJ8FeOPGun/DT4Q6f4m1Dwxodlc2GlaVpWsWXgGC98JpaQ3bzC58IzaFezahDY6rcXMup 6bp15a+d+DP2zP2gfDfwks/2b7r4hTal+z83jCy8V3/gHWPCXgfxO1nexeILLxDd3Xh3xB4i8O6h 4s8N3B1K0fU4I/D3iLSIYtSu9RuohDPq+qS3f+hx/wAK88Af9CN4P/8ACZ0X/wCQqP8AhXngD/oR vB//AITOi/8AyFX41H6QHCEKfs6fhTl9KKlgqkPZYzKqcqdXLaNXD5bVpSjkvNSq5dRr1qeAnTlB 4SFScaEYRnUjU/Q34W5+6kasuPcwnOPt0/aYbFzjOGKqUq2Kp1IvNOWdPF1KNKWKhNSVdwi6jk4x cf5Ev24v+C3Hxm8ffEqxf9jD4oePfhb8H5vh9pmma7ofij4efCyHxJN45GteJZNZ1fT9YubDxrrt haz6FceGrW2k0/xLYeTc2NzJb2NrM0l1d/lL4C/bG/aU+GmifHTw/wCEfinqdvp/7S9he6b8cpda 0bwt4v1f4hW+pWHiXTNQfU/EPjDQte8QWF9e2fi/xGlzqmianpepzS6k929213b2c9v/AH6/ET9k 79mT4s6Zd6T8RfgF8I/FdteQvDJcaj4D8OLq1uHGDLp2vWthb65pN0ATsvNL1Gzu48ny51yc/wAv X/BUv/gj1Yfs4eGNW/aI/ZnbWNS+EWmXCy/ED4c6rdT6zrPw3s7y5SC21/w/q9wZNR13wVBPPFZ6 nBq8t54g8OhoNTutT1rSptSutA+p8LfETwoxscFwdHhOjw9XxbwWFw9bNqOVZpTznFYTFLF5fDMc 3pYPC16uPhjVSq4KpmNCMJYujhfZVaWJhh3PweOOEeO6DxXEMeIKubUqH1nEVaGBqY7ATy+hXw6o YuWCwEsViKMcNLDKccTTwtZ1PYTruUKlKVaMfzd+AX/BSf8AbS/Zl8GRfDr4Q/GrUdH8DWklxLpf hjXfDng/xppmhvdTy3Vwugf8JhoGuXWh2s13PcXkunaXcWumTXlxcXktm9zNJK3HP+3f+1ofj9p3 7UVx8Ztb1D45aPpuoaJovjTV9F8Ja1Doui6rp+paZe6No3hPV/D994K0nSZLTV9U8vTtP8OW9nbX V/dahbQw6hM90eC/ZY8DeG/if+03+zt8NvGVlLqPhH4g/HL4UeCfFOnw3d1p8194d8U+O9B0PWrO K/sZYL2ykudNvrmFLu0nhurdnE0EscqI4/svP/BEP/gnMevwd8R/+HY+J/8A81Vff8ecW+Gnh3ms VnnClKtmPE+XY2risXlvD+UYipjcHLExweNoZjXrVMLUqrFVHF16clOOJgr4iVVqz+T4VyPjTi7A N5bxBUpYPJcZhqdHD43NcxpRw9eNCWIw1TC06VOvGHsIXVKXMnRk7UowWq/h/wDFnj7xf438f+Jf ij4l1u4vPH3i/wAYaz4+1/xJaw2mjXV14v1/WrnxFqut21volvp1hpVxPrV3Pfww6TaWNpYyOqWF vawxRRp+hOm/8Fk/+Ck2lWFnptr+0tey29jbQ2sMmpfC/wCCesX7xQII0a81XV/htfapqNyyqDNe aheXN3cPulnnkkZnPwx8cvDGjeCfjZ8YfBnh23ez8P8AhH4pfEHwxoVpLcT3clro2geLdX0rTLeS 6uZJbm5eCytIInuLiWSeZlMksjyMzHy2v0vE5Fw3xDgstnmWQ5RmWGpYTD1MupZlleCxawWHxGEw c6dKhCvRqrDxWH+q05U6MlTSowglJUoSPkaeZ5zlGJx1LCZrj8HWlia0MZPB43E0Fia9DEYmnOpU lTqU3WbqqvONSpHnftZSbTnJH1n8P/28f2uPhT8U/iL8Zfh78a/EHhf4gfFnXbzxJ8R9QsdJ8Ky6 F4v128vLy/k1PV/A95oFz4FluYbrUL97AxeG4k0xL26g01LSC4ljfe+P/wDwUW/bJ/aj8D23w3+O nxjbxv4MtPEOm+K7bR08AfC7ws8Ov6Rb39pp2oLqngzwT4d1jdbQapfItudQNpIZxJLbySRQvH8T t1P1P86Sur/Vbhl43C5m+HcjeZYOOGjhMw/snAfXcNHCUY4fCxoYpYZV6Sw1CMaFDlqN0qMY0oNU 4xhHmee539XrYP8AtjNPqld1nXwv9oYv6vWeIqSq13Uous6c/bVZSqVbxtOpKU5Jybk/008Pf8Ff v+CiXhjwdbeCNO/aL1a402zsBplnqmt+Dvh34i8VwWYi8kB/F2u+EtR8RX12IyQmqalqN7qsbYkj vkkjjdPnDwF+2Z+0z8M9P+O2m+EfitqlvD+0zY3GnfHS61vRvCvjDV/iFb3dl4o0+6bUte8YaFr2 uafeXFp4z8SpPqOhahpWoyvqZuHumuLSxltfmKv2L/4I0/si/An9sD4yfFrwh8evC1/4q0Hwr8Mr XxJolrYeJfEPhmS21eXxTpWlvcPc+HdS024uENndTR+RcSSQhmEgQSKrD5fPsDwPwXkGe59ieFsp hl1GGHx+bUcuyTLPb42WHzDCVcLOVF0sNTr1MPj6mHxdFTqUoUq9NYinCNanCR7GU4vinibNssyq jn2YPFzdehgauMzPGqlh1LCV410qkJVakFVwsKuHnJQqTqU5+ynN05SR+OlFf1z/APBQT/glB+xB 8BP2Ofjp8Xvhj8Mtc0Tx34I8N6VqPhzVbr4jePtYgs7u68V+H9Lmkk0zVvEN5p12Gsr+6iCXVtKi s4kVRIiMP5GK6OBePcm8Qcsxea5JRzCjhsHjnl9WOY0KOHrOusPSxTlCFHE4mMqfs60FzOcZc6ku WyTeHFPCmY8I4zDYLMquDrVcVhniqcsHUq1aapqtKg1N1aFCSnzxbsoyXLZ819COTt+P9Kjr/SG/ Zu8A+BLj9nb4CXFx4K8JTzz/AAW+Fs0883hzR5ZpppfA2hPJLLI9mzySSOzO7uxZ2JZiSSa/jo/4 Le6Zpuj/APBQj4j2Ok6dY6XYx+DPhc0dnp1pb2VrG0vgnS3kZLe2jihVpHYu5VAXYlmJJJr4nw/8 ZqPHXFmO4Xhw9WyyWBw+Z4h42eZ0sXGqstx0cE4KhDB0JQ9s5e0UnVlyJcrUn7x9ZxX4by4WyGln LziONVWtg6H1dYGWHcfrlKdXm9q8VWT9ny8tuRc173jsfkhRRRX7oflgUUUUAFFFf0uf8G5Xh7QN e8S/tZrruh6PrS2uh/Bk2y6tpllqItzNf/EsSmAXkEwhMojjEhj2lxGgbO1cfJ8c8Ux4K4WzXiee ClmMcrhhZPBwxEcLKt9ZxuGwaSrzpVo0+R4lVHelLmUHFWcuZe/wvkT4lz3A5KsSsG8b9Y/2l0XX VP2GFrYn+EqlJz5vY8n8SNubm1tZ/wA0L/dP4fzFQ1/db/wWh8GeD9J/4JwfH3UNK8KeGtMv4L34 R+Re6foWl2V3D5vxp+HsMvlXNtaxzR+ZDJJFJscb43dGyrMD/ClXjeGXiBT8R8hxWeU8qnlEcNmt fK3hqmMhjZTdDDYPE+2VWGHwyipLFqHs3BtOm5czUkl6HGvCj4PzShljxyzD2+ApY32ywzw3L7Sv iKHs/ZutXvb2HNz86vz25Vy3ZRRRX6KfIEcnb8f6VHUknb8f6VHQbQ+FfP8AMKKKKAl8L9P8gooo rOp0+f6E0+vy/UKKKKzNAooorWGz9f0RrDZ+v6IY/QfX+hqKpX6D6/0NRVZE/i+SCtXRtMfVb6K3 AIiUiS4cfwQqRu54wzkhE7hmzggGsqvXvDelf2ZYBpVAurrbLPwMouP3UOcZ/dqSWHIEjPgkYrKt U9nBtfE9I+vV/Ja+tjmxFX2VNtP35aQ9er9IrX1sjZVEjURxqESMBEVRgKqjCqB6AAAUtK3U/U/z pK8w8YKKKKACiiigAqBup+p/nU9QN1P1P86C6e79P1EooorePwr0/wAzUKKKKYBRRRQAUUUUAMfo Pr/Q1FUr9B9f6GoqACiiigAooopPZ+j/ACAKKKKwAKKKK1p7P1/Qyqbr0/UKKKKs0Wy9F+SCiiig Yx+g+v8AQ1FUr9B9f6GoqDWHw/NhUbnt+f8An/P6VJUB6n6molK2i33+QTdrPz/QSiiipbckrLbf 5/8ADDjLm+QUUUVBQUUU1mCqSe386Hpq9lqCV3ZbvRFe4cgbR7Fvz4H8ifaqwcHrx/L/AOt/nmnt 82c9Tz/WoSpH09f89K4ptzblrbZeSX9X+Z6sFGEYx68qb82+35L0JqaVB6/n3qIMR0/I1KGB9j6H /P8A9f2qC2k99SMqR7j1/wAf8496bVimlAfY/wCe1JxT3+/qOLcdFt2epDQBk49aUqR1/PtT0Hf8 v8/570RjLmSvePV9UgnKPK3a0uiWzY1hggeg/qabT36j6f1NMroaTVmjkj8U/VBRRRWbg1tqvx/4 JabWwUUUVKSvZ6GkZ30e/wCAUUUU3FrXdd0WV6KKKkFuvVfmgooooOgKKKKAConUDkcc9KlpknT8 f6Gs7tTt0b/qwOTUX1stL9PR/wBIpzybEwPvN8o9vU9+g/Ugd6zqlmk8xyf4Rwv09fx61FXHWkqs vdlpG6S6Pu16vr2SNIWt2b3T39Pl+dxrAkED/PNQ1YpCAetY7aSXz6/5NHRC9m0+uz2/zRBRTyhH Tn+f/wBf/PFMpNdVqu6/VbotPo9H2f6PZhUL/eP4fyFTU0qD7H1oSv2+YpJW1vv06eZDRTipHuPX /H0p8MRlkC9urH0Uf49B7mmoOUlC13JpJPu/0637GbbgnK94rVvp810f6l2zi2qZW6sML7Lnk/iR +Q96s4ZenI//AF/l/L3qQAAADgAAAew6UtesqcaUIQitk7vu9236tv5WXQ5FOU5Sk29XdeS6L5K3 4jQwPsfQ/wCf/r+1OppQH2P+e1Nyy9eR/nv/AI0Gqn3+9DX+8fw/kKbSsckkd8fypKCHq3bu/wAz qKKKK9g+fe79X+YUUUUDh8S+f5BRRRQbBUL/AHj+H8hU1Qv94/h/IUANooooAKKKKBrdeq/MKKKK DctWVhe6pe2mmaba3F9qOo3VvYWFlaxPPdXl7dypb2trbQxhpJri4nkjhhiRWeSR1RQWIFf6G37C 37Ndj+yb+y78K/gykFsviLSdETW/iBe2/lP/AGn8Q/EhGreLJ2uYiwvYLDUJzoWlXLMzHQ9I0qLh YlVf4j/2IP2X/wBpf9o74oy6l+zDbaXb+Nfg5/YPxDTxRrt/p2m6V4b1Wz1u3PhiZLjVrHUtPn1m TUraXUNLsbizmSaLR9QuSpWzYH9zv+FD/wDBwT/0cD4Z/wDCp+Gn/wAwFfzj46UsNxP/AGZwxHjn g7hynl1V5lmmAzzMsVh8bXxVajyZa5UcLgsVGOHo4WeIr0/azjOVbEKapqMYTl+yeF7rZLHG51Lh niLNp42CweCxWWYLC1sNTw1Ko5YtKpiMdhZOrUxMaVOfJBwVOjy87k5Rj/S1RX8fP7W/xC/4LKfs heA9J8UfHX9p+20rR/G2sT+D9GtPCmv+BLzxPfXculXt7fXOnppHgyw1Swt9Os4P9I1u0vLWTTLy 70xYbmK8u7Mn8zv+Hh37c/8A0dj8d/8Aw4viH/5Mr8lyX6Ouc5/go5jlfGnCGPwM6lSlSxeA/tnG YarOjJQrRjWjg8NFypVGqc0ozSldc904r7zM/FvLMoxTwWP4f4hwmKjThVnQxUMuoVYQqpypScFj cRpUjFyi3KLsvhs03/ob14N+1F8Z7L9nn9nf4yfGq9eBX+HngHX9d0mK5G6C+8TC0ay8JaTIMjI1 jxRd6RpQyQu68BYhcmv4Qf8Ah4d+3P8A9HY/Hf8A8OL4h/8AkyuJ+If7Y37VXxa8J6l4D+Jv7Qfx Z8deDNYksZdV8L+J/GmtatomoyaZfW+p6e15p91dPb3BstRtLW+tvNRhFdW0E6ASRIw+jy36L+eU cxwFXMuI8ixGXUsbhKuPw9DDZtGviMHSxNGpiqFKVWKpxqV6FOpRjKo1CPtpNtWTXjYvxsymeExU MHlOa08XPD14YWpWngPZU8TOjUjQqVFCrKbhTqyp1JKMW2qdknzM+d7+/vNUvr3U9RuZr3UNRu7m /v7y4cyXF3eXkz3F1czyNzJNPPI8srnlndmPJqpRRX9jySi1GKUYxjGMYpJJRikkkkkkkkkkkkkk kkkkv52i3K8pNylKUpSk225Sk3KUm2223Jttttttttttua0sbzU72y03TrWe91DULqCxsbO2jaa5 u7y7mjt7W1t4UBeWe4nkSKKNAWeR1VQSQK/0Tf2Iv2dLL9lX9l34RfBWOG3TW/DnhmC/8b3Vv5Tj UfH/AIhd9c8ZXRuYh/pkEOuX11pulzyNI66LYaZbBzFbxhf5Hv8Agi1+zP8A8L+/bL8N+LdasDde Bf2f7SP4qa48sbNa3Him0ultfhzpLSBHjW6bxMV8TxQTBY7uw8I6pCWBIB/uOr+OPpM8W/WMdk3B eFq3pZfTWdZtGMtHjcXCdHLaFRJ74fBLEYtxl8M8ZSlZOzP6J8GMg9hg8x4jrwtUx0/7OwLktVhM NKM8XVjdbVsW6dG63jhZK7Vwr8yP+Ct/7T4/Zk/Y08e3Ojah9i+IPxaV/hJ4D8mVUvLa58UWV2vi fXoArrcQf2B4Qg1q4tNQhR1s/EFxoCSNG11E1fpvX8TX/Bcb9p8/HD9rWf4V6DqJuvAv7OVjdeCI EhlZ7S7+IepyW178RtRVCF2XFhd22k+DLiNlbZc+ErqWF2jusn8q8GOEP9cOPMroV6XtMsyeSzzN eaPNTlQwFWnLC4ad04tY3MfqlFxfx0qWIVnHmPufEPiD/V7hfH16VTkxuOi8twFnaar4uE41a0LN O+Gwv1itzL4Zui7p8p+LlFFFf6RH8bhUcnb8f6VJUb9vx/pQUvgl6o/pi/4Nv9Eu5fFn7V/iMIws bDw78JNEaQjCvd6tqXj6/REJ++0UOiyNIFz5Ymi3481M/wBVVfkp/wAEZ/2UNY/Zj/ZH07VfGumS aV8SPjjq0fxN8SaddRGHUNC8P3GnW9l4F8OX8bEPFdWuiJJ4gvLSeKG80zU/E+o6VdxrPYso/Wuv 80/GHO8JxB4j8T4/A1YV8HTxVDLqFem1KnWWVYShl9WrTnFuM6c8TRxXs5puM4QUotxlCUv7N4Ay zEZTwfkmDxUJU8R9WqYqtSmnGdKWOxFbGRpTi7OM4Uq1FTi0nGTcZJSjJIr/ADNfjDqEerfFv4pa pFjytS+I3jfUIsHI8u88TancJg9xtkHPev8ASJ+LXjq0+F3wr+JfxLvtn2L4eeAPGPji781gsZt/ Cnh3UddmVyeArR2DKfriv8zSaaW4mluJ5Glmnkkmmlc5eSWVi8kjnuzuxZj3JJr9v+ivhKl+Nce4 v2TWR4GMujqp5jjZx9Y03Tk/KaPzbxvxEeThzCXXO6mZ4pq6uoKnhMNFtb2lOUknteLW50fgn/kc /CP/AGM+gf8Ap1tK/wBOmv8AMW8E/wDI5+Ef+xn0D/062lf6dNZfSp/3jgj/ALB8/wD/AE/lRp4I f7txH/2E5Z/6j4w/mW/4LKf8FAv2u/2Vv2o/Bnw7+AnxdfwF4N1X4F+FfGOoaMvgb4a+JRceI9R8 dfErR73Uvt/jHwb4h1SIzaboGkW32SG9jsY/snmxWyTz3Ms35O2X/BaP/gpPa3kU8v7REV/FHJue zvPhJ8Efs1wqnJimNp8OLS6VGxhmt7mCUDO2RTzX0z/wcMf8nsfDv/s2XwR/6s34x1+Dg+/+Lf1r 9W8LuCuDsx8OuD8ZmHCnDmNxmLyOhVxWLxWS5dXxOIqSxGZRlUrYiph3WqVHGEIucpudoQ95csbf BcccScRYLi7P8PhM9zfDUKGZ1IUKFDMcVSoUoRoYKShToxqezjBSlJ8ihy3lK8XzNP8AuZ/4JU/8 FMZf25/DvinwP8SdH0Xwz8dvhzp1nrGrReHluLfw/wCOPCNzcx6b/wAJZo+nXdxeXOk3ml6nNZad 4m0x7u4s4rnVdIv9LnS31OXStH/WTxD4f0XxZoGueFvEmm2us+HfEuj6loGvaRfR+bZarousWU+n appt5FkeZa31jcz2txHkb4pXXIzmv4bP+CI/ijUPD/8AwUY+DumWc8sNr418PfFXwvq6RsVW50+D 4Z+KPF0EE6gjfENY8K6VcBSGAmt4pMZQEf3V1/Knjbwll3BXHc8NkdJ4LL8fl+BzvB4WlOoo4CtV rYijXpYabnKpTpQxmC9vho+0cqCqKEJ8tKi4fufhtn+L4k4Xp4jMprEYzC4rE5dia0oxTxMaUKVS lUqxUYwlUnh8SoVmoKNSUHKUU6lRP/PAv/gr8S/gp+3/AGvwI+E2tW2lfFTwJ+1DoXgr4QeJ9bit Gs4PEtt8RbC2+F3ifVIdR07V7BrSWaXw9rV3Fe6TqlmYJJEuLC+g3wS/0SH4Pf8ABwvjj9qH4Ig/ 9gb4Sf8A0PZr4C/bB0i20r/gvp8OntY0iTV/2kP2M9XkjQAKLm4tvhBb3MmABh7ie0kuZTyXlmdy csQP7GK/TvFbxBxuEwHhrj3kfCecVs84Iw2aYmtxHw5gc6r0sTUrYOnXjhquJnTeHo1ayrV6tKmu SdeftNGkl8bwNwpha2M4zwqzDPcvp5bxPWwdCllGc4vLKMqCpV6lJ1qeHjKNWpTpzp0oTm+aFKKp q6Tb/wAyn4uW3i+z+K/xOtPiDfW2qePbX4heNLbxvqVktulnqPi+DxJqUXiW+tEtLTT7Vba71lb2 4gW2sLK3WKRBDaW0YWFPRP2f/wBlD9on9qTWrnQ/gN8KPFHxCmsJYYdW1SwgttO8L6HLcK0kEeve LtbudM8L6LNPEkkttb6lq1tc3ccchtYZtjAe56b+z9rX7U3/AAUe8YfAbRLmWwl+IH7TPxUsdV1e GFbiTQvC2m+NPFOueLtejgkKxTzaN4Y0zVtQtraWSOO7ureC0MiGcMP70fg58HPhx8Avhz4Z+FPw o8Maf4S8E+E7CKx03TLCJFknkVFF1quq3QUT6rrmqTK15q+r3rS3uo3sktzcyu7cfqHiX4ww8Psp yDB5fgMLj+Is3yfBY+nh6rnRy3LcHLCYKCxFajh5RqzVSvKpRwOCpVKMPZYeU6laNGlCNT43hDw+ fFWYZvicZisRhsowGZ4zCOpBxqY3G4iGKxbdOFWtGUI8lJU6mKxM4VJyq1uWFPnnUlD+NnS/+CBv 7fOo2kd1d2vwc0KaQBm0/VfiPJNeQk8lJX0Tw9rNgWXoTDfSpn7rMOa0f+If/wDbw/5//gV/4cLW /wD5ia/oo/aG/wCCvf7Ev7Nvj7Vvhh4t8ceIfFnjbw5dy6d4p0n4ceGJ/E8HhnVIDtuNJ1bWZ7vS tDOq2kga31DTdO1LUL3SruOWy1SGyvIZbdLH7MP/AAVj/ZU/a2+LOmfBf4UJ8TV8ZatpOt6zaHxR 4Ps9H0k2egWTahfiS+g8Qai6TfZ0YwJ9mKyONpdMg1+Wz8WPH9ZXPPXwrQo5NHCPHvH1OFKkMJTw KhGp9adSvm1Or9X9nKNSNWVG06co1I88JxlL7ePAXhW8bHLFm86mYut9WWEjxDGWIlibyi6PsqeE mvbc0ZJ01K8ZRlFqLi4r+avxx/wQx/bZ+H3grxh491+8+Cx0LwR4X8QeL9aFj481e5vjpPhrSbvW dRFnbv4PhSe6NnZTC3haaJZZtiNLGGLjy3/glv4W/bh8VfFH4k2v7DHxE8I/DrxzbeAbe48Z6j4w tfDF3aah4TPiHTo4bK0TxR4I8c2q3K6w1nOWtrGyuPKRgbpoy8L/ANsP7U//ACbF+0b/ANkH+L3/ AKr7xDX8wP8Awbm/8nF/Hz/sitj/AOpzoNe1kPinxJxX4X+JWd57heH8fiMgWWU8HhK2S0amWV6e KeGqVYY/AVsTWpYyPPaUIznBQlCDSbgmeZmXAuSZHxrwbl+V1c2wlLNP7Tlia9LNK8MZCWGo1PZv C4uFGnVwzacozcFLnjKUXZSZ2/7aXwz/AOC1Gi/sv/F7VP2lPj/8KPFnwOs9C06T4heHdB0v4bQa vqmlN4j0WOzhsZdF+C/hvVEkTWX02djaa5p7mKKQNK8ReGT8xf2T/wDglp+03+2X8Mbv4tfCC4+G kXhWy8War4MmXxd4r1HRNU/tjR7DR9Ruylna+HdVia0Nvrdl5M5uQzyCZTEgjDP/AFy/8FZ/+Udv 7UP/AGJuhf8AqeeE6/AP/gmB/wAFZvgF+xJ+zlqvwe+JvgP4weJfEV98UPE3jeLUPAmk+C77RV0z WtD8KaZbW0k3iDxx4dvhfxz6DdPOi2DW6xS25juZHaRInwLxhxvmHhnnWa8FcM8PLiChxfg8FDLc g4cwOCwdXATy+nVxmKrYCnj8HRq4mmnRh9ZliVUjS5KapzS0XE/D3C+F4xyzBcS5xm39lVeH8XiP rWbZ3jMTWhi4Y5U6FGlip4XEVadKadWToRpckqic3OL3/rI+DnhTVPAfwh+FfgfW2tX1rwZ8N/A/ hTV2sZXuLJtU8O+GNL0jUGs55IoJJrU3dnKbeV4IXkhKO0UbMUH88H/BTL/gkp+1V+1p+1r4w+Nf wquvhZH4N13w34I0uyTxT4v1PR9ZW68PeGrHSb/z7G28M6lDHGbq2kNu63chkhKuyxsSi/0e+BfF 2n/EDwR4N8eaRb3lppXjbwr4e8XaZa6ikEeoW2n+JNIs9Zsre/jtp7q2jvIba9ijukt7q5gWdXWK eaMLI35g/tZ/8Fif2dv2PPjVrvwL+Inw9+NPiHxToGleHtWu9T8F6N4GvNAlt/Emk2+sWcdtPrnj 7QNRaaG2uUjuhLpsSLOHWJ5owJG/BfDrNOPcu4vzDGcFZVDM+JKmGzWONwUsFRxcadCrj41MwmsP VzDA04exxijTUliZuCfJGNRe+v1Li3B8M4zIqWH4lxn1PJ1XwUqeI+tVcNetClNYWPtqeGxM3z03 J2dFKdrtwas/5AP2v/2KfjJ+xH4w8K+CPjPN4Om1rxh4ak8VaSfBuuXeu2a6XFql3pDC7nu9J0ho bk3dlNiFIpVMWxzIC20fb3gv/ghV+25488HeE/HGh3vwUGieM/DWheK9HF7491i3vBpXiLS7XV9P F3bp4OmWC6FpeQ/aIVllWKXegkcKGPm//BVr9uf4Xft3fFf4Z+PPhZ4Z8feF9K8F/DyfwjqVr8QL Dw7Yahc6hL4k1TWVuLGPw54l8TWz2Ytr6KNnuLm3nE6SKIDGFkb9kfhD/wAF+/2Tvh98Jvhf4C1f 4VftEXeq+CPh34K8Iandad4f+G0mn3OoeGvDWmaNe3FhJc/FC1uXsprmylktXuLW2naBkaWCGQtG v9cZ/wAReNGG4N4Ox2ScN08TxXjvr3+tWAeU4WtHAez9p9T5cNPO6FPDe0tT/h4vF899eS+n4Nle UeGtXiHiLDZjm7pZJhvqX9h4n+0sTT+s+0gni/38ctqTr+znde/Qocmy59z82/8AiH//AG8P+f34 F/8Ahw9a/wDmKrC8Q/8ABBb/AIKAaLp8t7p2ifCjxbcRqzLpPh74lWltqExAJCxSeKtM8M6WGY8L 52pRLkjcyjJr9hf+Iir9j7/okf7Sn/hOfC//AOevX6C/sV/8FHf2df27P+EpsPhJJ4v8P+LfBtra 6lrvgf4haRpmj+JF0W7mW0i1/TTomueI9H1TR1v3SwuZrTVmvNPuZrNdSsbJNR057v8AMc18TfpD cPYKrm2d8JYPB5ZhXTeJxOI4dpLD0oznGnF16mE4gxNWjTlOcKfteSMIynBSqQcot/ZYHgzwkzbE xwOWZ1WxOMrRn7GjRzqu603CLlJ04V8rowqSjFOfIpSk4xk+SSjK38DfxU+EfxN+B/jPUvh58XPA /iP4feNNJ2Pe+H/E2nTafefZ5i32a/tHcG21LS7wI72OrabPd6bfRqZbO7nj+av6Lv8Ag20/5Gb9 rr/sBfBX/wBOHxOr9K/+C1n7MHhP44/sbeN/iW+k2y/Ev9n+xPj/AMJ+IYoI1v8A/hG7e8tE8deG 7y5A82XRb3w+11rS2xJEWt6HpVxGY4/taz/mp/wbaf8AIzftdf8AYC+Cv/pw+J1fR8R+INLxH8BO LM3lhIYDMcHWy7Ls1wdKc6lCnioZtk9enWws6n714bFYepGrTjVvVoyjWozlU9nCrPx8n4Slwf4p ZFgYV5YrBYqhj8Xga9SMY1nR/s/H0alKvGHue2oVY8kpwUYVITp1FGDc4R/Vb/gtj/yjV/aD/wCv 34P/APq7fh1X8F1f3o/8Fsf+Uav7Qf8A1+/B/wD9Xb8Oq/gur1/owf8AJAZp/wBlZj//AFV5Oeb4 1/8AJU4D/sQ4b/1OzEKKKK/o4/HyOTt+P9KjqSTt+P8ASo6DaHwr5/mFFFFAS+F+n+QUUUVnU6fP 9CafX5fqFFFFZmgUUUVrDZ+v6I1hs/X9EMfoPr/Q1FUr9B9f6GiCCW5mighUvLM6xoo7sxwM+gHV ieFAJOADV7avZakT0bb2Su/kmdL4U0n7defaplza2bBsEfLJcdY054IT/WOPZARh69WqhplhHpll DaR4OxcyOAR5szYMkhySfmb7oJO1AqjhRV+vMrVPaTb+ytI+nf57/ceHXq+1qOX2VpBeS6+snr9y 6EDdT9T/ADpKVup+p/nSVkYhRRRQAUUUUAFQN1P1P86nqBup+p/nQXT3fp+olFFFbx+Fen+ZqFFF FMAooooAKKKKAGP0H1/oaiqV+g+v9DUVABRRRQAUUUUns/R/kAUUUVgAUUUVrT2fr+hlU3Xp+oUU UVZotl6L8kFFFFAxj9B9f6GoqlfoPr/Q1Ef8/wCf8+maHobQ+H5sTqfYdPr3/Lp+ee1Qt1P1P86n qBup+p/nWDd3cVTZev6CUUUVdPr8v1FT6/L9QoooqnFPyfdGgVVmfJ2jov6n/wCt/jU7tsUnv0H1 PT/H8Kpda5K7cVyrW+7XRefa/wCXqbUYpy5n02Xn3+X5hRRRWMNn6/ojsnuv8KGFAenH8v8A63+e KjII61PRQ4J7aP8AAam1vqvxIQ5HuP8APepQQeh/DvUbqBjHemVm1Z2ZondXROc4wO/Hrj1J/ClA wMDoOBTVzgE+nH0/z37gCnVrBWV+r/LoZTd3bovz6kT9R9P6mmVOQD1qCqJjF3k1rt6hRRRQAUUU VE0rN9f+CNOzuFFFFZqTW33dDVST8n2ZXooorSUE9VowjNNro7r811CiiisjqCiiigAqnePtjCDq x5/3Rn+fT86tkhQSegGT+FZE7lyWPc8ew5wKyrS5Y26vbyXV/jb5jSun2S/HSxXoooricU/J90IK KKKXLde9q+j8v67m0JO1763CmlQev596dRUuMo6r70bKaekl/l/wCEqR7j1/x/zj3ptWKhb7x/z2 oS5vJ73Wz9V/kNvlSad0/wCtH/mNrQtovLQkjDPyfYfwjoMcckdiTVWCPzHGR8q4Le/XA/EjnrwC D1rSrrw9Nq85dNI/q09/JfM5MRUTahHTrLpfsmttN38gooorrbbtfoY0+vy/UKKKKRoQsMMcf54p tOf7x/D+QptUpNaaP1Rg936v8zqKKKK9Y8d7v1f5hRRRQOHxL5/kFFFFBsFQv94/h/IVNUL/AHj+ H8hQA2iiigAooooGt16r8woor6//AGDv2bbn9q79qn4UfB57eeXwzqGuJ4g+IVzCXQWXw98Lgax4 pLXCK/2SfVLK3Xw9pdyysi61rOmIwIkrhzPMcJlGW4/NcdUVHBZbg8TjsVUdvdoYWjUr1LJtc05K Cp043TnVq0oLWaPRwOCr5jjcJgMLDnxONxNHC0I62dSvUjTi5WTahHmlOcre7Tp1JfZP6zf+CMX7 Mf8Awz7+x34c8Va5p32Px98fbi3+KXiFpovLvLXwzd2vkfDnRZG3bjbw+GXHiVYZY457TUfFuqWs oJiGP1sqC1tbaxtbaysreCzs7OCG1tLS1ijt7a1treNYoLe3giVIoYIIkSKGKNFjjjVURVVQBPX+ XHEme4vibP8AN8/xrf1jNsfiMZKHM5KjTqTaw+Gg3/y7wuFp4bDQsknGi5JLnaP7dyjLaGT5ZgMr wytQwGFo4aDsk5unBe0qyS+3WrSrVp7+9Vau+VH8wX/BYT9mL9u79rv9ovR7b4X/AAI8T+JPgv8A Cfwra6F4L1WDxL4IsrDXtf8AEUdprfjXxLb2GreKbG/tXluBpPhdhc2cBmi8JQ3UStFdK7/kt/w6 S/4KJ/8ARsnib/wrPht/82lf3zUV+u8OfSA4m4WyLLOH8ryHhmOByrCww1GVWlmjrVWpTqVcRXlD HwhPEYmvVq1684wjGVSb5Uoxgo/A5z4VZHnuaY3NsdmWdPFY6s6tRU62CVKmlGFOnRpRlgpyjSo0 6cKdOLlJqKu25Sk3/Az/AMOkv+Cif/Rsnib/AMKz4bf/ADaUf8Okv+Cif/Rsnib/AMKz4bf/ADaV /fNRXt/8TP8AG3/Qj4W/8E5v/wDPE8z/AIgpwx/0Mc9/8H4D/wCYD/O2+OP7Cf7WP7Nng23+IHxv +D2qfD/whd67ZeGrXWdT8Q+DL6O513UbXUL6z0yC10XxJqd/LcTWelajdDy7Vo44LOeSV0VCa+SK /o+/4OHfjsNa+JXwW/Z00q8V7PwN4c1D4m+LYIJmZG8ReMZ30Xw1Z3sWdkd7o2gaLqWoQAjf9j8Y I5O2RRX4z/sU/s73v7VH7T/wi+CkEdwdI8T+J7e78ZXdu3lyad4D8PpJrvjO9Sc4S3uf+Ef0+9tN MeQhZdXutPtV3S3EaN/TnBnF2YZrwDh+NOK6WBy11cDmGcVaeBhiIUKOUYWWJlh6rjiq9arKtXw+ Dq1kvaKM3XwsIRTneX4xxHw9g8DxXU4ayCeKxfJiMHl8ZYqdKpVnmGIVH20OahRpQjSozxFOL9xu KpV5Sb5bL+uH/git+zOfgH+xxoHjHW9O+x+Ov2gryL4oa000JjvLfwlPbfZPhvpLsSDJaf8ACOF/ FdurIkkFz4xv4HLCNSP15qpp+n2Ok2FjpemWltp+m6bZ22n6fYWcMdvaWVjZwpbWlpa28SrFBbW1 vHHDBDGqxxRIqIoVQBbr/OziXPcVxNxBnGf4y6r5tj8RjHBy5lRpTm44bDRf8mFwlPC4aFkk1RlJ Jc9j+uMoy2hk2V4DK8Ml7HAYWjhoytZ1JQgva1pJfarVpVq0tW+ara75Uz5h/bM/aI0z9lX9mj4s /G++e2bUfCfhm4i8I2F0UZNX8da26aL4M0xoGkjkuLebxBfWM2ppBvmg0a31G9CGO1kI/j3/AOCV f7KPw0/by/aN+Kvhf4/6j401C2tPhrrvxMk1Pw5r0Ok63qPiy48deE9Our3Ur+703VBdJdx+I9Tu LlPISSW7eOYzAIyP91f8HCH7T/8Abvjf4b/sneG9QLab4GtoPif8SoYJSY5PFuv2M9n4J0a7j2qy XGh+FbrUddZS0kNxB400yTCzWfHl3/Bu7/ydn8Yf+zdtY/8AVlfDWv6f4JyHHcFeBPF3F2FrV8u4 gz/L1meExlB+yxeDy3DY3A4XK1SqOE3B4iNXHY5+61KOKotp3i1+LcSZrheIvFDh/h6tTpYzKspx E8LicNViquHxGOr4TE18X7SF1GfsFDC4ZXfuyp1VdWaP1d/4cGfsI/8APx8bv/DhaV/8yFH/AA4M /YR/5+Pjd/4cLSv/AJkK/bCivwP/AIip4kf9FvxH/wCHD/70P1L/AFJ4Q/6JrJf/AAhp/wDyZ+J/ /Dgz9hH/AJ+Pjd/4cLSv/mQr3L4K/wDBHv8AYR+CHinTPGuk/C/UfHHibQ7uG/0S/wDid4l1HxbZ aXfW7iSC8h8OY0/wrd3VvKqTWs+qaHfy2dxFFc2bW9xGso/T6iufFeJXiDjsPVwuK4z4jrYevCVO tSeZ1qcalOacZ05yoU8NUcJxlKM4qtFSjJxleLae1DhHhbDVYVsPw9k9KrTlGdOpHAUHKE4tOM48 6qpSi0nGXK3FpNWaTRRRXCfE74m+BPg14C8T/E74meJdN8IeBvB2lzav4g1/VZTHbWlrEVSOKKNF e4vdQvrmSGx0vS7KK41HVdSubXTtOtrm9uYIJPjKNGtiK1LD4elUr169SnRoUaNOdWrWrVZxp0qV KnTjOdSpUqThCEIRlKUpRjFNs+gnOFKE6tWcKdOnCVSpUqSjCFOEIuc5znJxjCEIxlKUpSUYxi22 kmz8of8AguT+0XZ/Bv8AYz1X4bWF8kPjX9obWLbwJpdrHK0d5F4P0m4ste8f6siDCyWRsIdM8J3q M2T/AMJjCyq4Ryn8RFfcP/BQT9s3xH+29+0JrnxPvIbvR/A2jQHwp8KvCdy6eZ4f8FWN1PNbz6hH C8kDeIvEN3NPrniCaOW4EV1dRaTb3U+maTp2z4er/SPwg4Jq8C8F4PLsbCMM3zCrPN84inGXscXi qdKNLBOcW1L6hg6dDDTcW4vEPFcjcUpT/j3xA4mp8T8S18ThZOWXYKksvy+TulVo0ak51sSouzSx WJlOrC6UvYwoOSTlaPT+Cf8Akc/CP/Yz6B/6dbSv9Omv8xbwT/yOfhH/ALGfQP8A062lf6dNfh30 qf8AeOCP+wfP/wD0/lR+neCH+7cR/wDYTln/AKj4w/jN/wCDhj/k9j4d/wDZsvgj/wBWb8Y6/Bwf f/Fv61/br/wUR/4JHXP7eXxu8OfGGH4+wfC1dA+GOh/Do+HpfhhJ40a6bRvE/jLxGdXGqp8QPCoh FwPFgs/sH9nSmI2Bn+2SfaRDb/Cdl/wbast3C+oftiCSzEga4isvgKYbqSPPzRwzT/GKaKF2HAle CdUPJhk+7X2Hh14w+HWQ8B8LZPmvEKw2ZZbk9HDY3CrLM3rSpV4V8wqSpqpQwFSjUfLWpNSp1ZQb mlzXUuX5zjDw94uzbifOswwGVKtg8ZmE62HrvHZfSU6UqOEgpuFXExqwXNTndSpqSUW+V3jf4W/4 IRfDHWPGv7eXh7xvaWrto/wd8A+PvFmsXzIfs8E3iTw9efDnS7LzSNgvb2Txhc3NvBkSS2um6hMg KWspX+3Wvj39jL9iP4L/ALD3w6vPAvwntdSv9S8Q3Vpqfjnx34jktrnxV4y1Wyhlhsnv5bS2tLSy 0jSY7m7i0LQrC3istMju7yd2vNU1DVNTv/ZPj38bPBP7Onwe8f8Axp+IV8ll4X8AeHrzWrqMypFc 6tfKog0bw9pm8FZNX8R6vNY6JpURBV7+/txIUiEjr/N3inxdHxK46+uZJhcVVwro5fkOSUJ0nHGY 1QrVFGo8OpTlTqY3HY6cqVCUnOnS9l7WUZur7L9i4H4ffB3DEcLmFahGup4vM8yrRmnh6EpwjKUV WkoKdPC4XDRjOraMZSVSUFyKnz/yT/tQeLLLxh/wXt8GXenTCaz0b9q79k/wmrg523vhW4+E2ia1 CewMGu2eqQEDoY+fmzX9m1f55n7Mfj7X/ir/AMFG/wBn34neKpluPEvxD/bN+FfjbXpUyI21fxR8 adC1rUBCp/1cCXV7IlvEAFihWONFVEUD/Qzr7T6QWVvI/wDiGWTSalPKuB45dUlF3jKrg8bgqNaU XZXi68a7i7Lmjyysuay+b8KcdHNHxrmUU1DH8USxdNS0kqVfDV50k10ao+yut024u7i2/wCQ/wD4 JR6RYal/wWG/aPvbxY2uPDzftO6vpRcDcl/P8U9O0CRos8iQ6XrmpISOfKaQdCa/qp+MfiTVfBvw i+Kni/Ql3a34U+HHjjxJo6mMTBtV0LwxqmqaepiZXWXN3awjyyrB/ulSDg/xhfsbfHXRP2f/APgs B4j8T+KtQi0rwj4t+PXxx+GHiTUrieO2tLC38eeLfEmk6LfX9zMyQW2m2Xi0eHbvU7q4eOC00+C6 upHVYcj+3y8s7XULS6sL63hvLK+tp7O8tLmNJre6tbmJobi3nhkDJLDPC7xSxupR0ZlYEEiuPx4w 1fCcYcK5liqMq2AxXB/Cc6EZJ+yrQy2jhaePwsZNOPNJySqR3jHFwnJcsrv0PDOvSrZHnWFpVFHE YfiXiGNa1uenLFYzEVcNVa3a5E3BtWbpSineLS/y8b+9vNSvrzUdQuri+v7+7uL2+vbqV57q8vLq Z57m6uZ5WaSa4uJpHlmlkZnkkdndizE1+v3/AAQo/wCUhvgT/sn/AMUf/UVuK92/aU/4IE/tNeHP iX4hn/Zvl8IfEj4U6rql5f8AhWDWPFth4X8YeGtMuZnnt9B8RQeIBZaZqM2lI4sYNZ0nU7n+14YE v7rTtInnexh+k/8Aglf/AMEvf2wv2W/2v/C3xe+Mfgjw5oXgbSvCPjrSbzUNO8eeFNfukvtc0Kaw 06NNO0jUrq8kWW5dVeRYjHEuXkZRX9Ica+JXAWeeHHE1PLOKclniMy4Xx9PB5bPGU8PmLrVsJSVP BywFSFOtTxMZJ0XQUXadNxpynBQnL8d4Z4M4qyzjLJquNyXMFQwedUZ4jHRpe1wjpwqYjmxKxMas ozoz5lUVRrmaqJzjGfPFf0L/ALU//JsX7Rv/AGQf4vf+q+8Q1/MD/wAG5v8AycX8fP8Asitj/wCp zoNf0/ftT/8AJsX7Rv8A2Qf4vf8AqvvENfzA/wDBub/ycX8fP+yK2P8A6nOg1/OPh/8A8mW8Zf8A Fkf/AKThT9e4o/5OH4d/4c7/APTMz94v+Cs//KO39qH/ALE3Qv8A1PPCdf5/df6An/BWf/lHb+1D /wBiboX/AKnnhOv8/uv2X6L/APyRmff9lPP/ANVGAPzbxu/5H+T/APYmn/6sax/pV/s0f8m4fs// APZEvhT/AOoJoNfxk/8ABc7/AJSJfEr/ALEr4V/+oPpVf2W/st3cGofsyfs6X9rIstre/An4RXdt KpDLJBc/D/w9NDIpGQVeN1YEEgggiv55f+CvX/BL/wDav/aA/agu/jx8A/BNj8TfDPi3wf4U0zWN MtfFfhLw3rvhrWvDFgNDkjns/GGuaBDqWnahZW9heWl3pN1ezxzyX1ve2dpFbQXN5+PeCWdZTkPi pnWIzvMcHlOHrYbibB08TmFenhMP9alnMqkaM69ZxpU5zjh63Iqs6alKm4KXPaMv0jxKy7HZpwVh 6OW4TEY+tHEZPiHRwlKVes6McM1KpClTvOcY+1puXIptRkpcrjdr+Ynw34d1zxf4i0Hwn4Z0y61r xJ4o1rS/Dvh/R7GPzb3Vtb1u+g03StNs4sjzLq+v7mC1t48jfLKi5Gc1/Y3+yz/wQT/Zh8B+CtEv /wBpi31j41/E2+sLe68Rabb+KfEPhT4e+HtRmiSSXStAt/CV/oHiDV002VntZNY1rWpINXaIXcWh 6VFJ9jX8Mf2UP2X/AIvfsof8FHP2NPC/7Tvw/k+Hmo+JviR4e1zw5p2oa74V137e739/o/hy8Sfw vrmu2kEg8Yw2Nvbw3M8N0biON44irI7f3c1+ifSC8Ss7wFThzK+Ec8nhMqzXK8Rm9bN8kxkObMVH H1MvpUMPmWFlNrC0Hh60qqwlanKrXmo1KvJSVN/HeFPBmXV6WbY7P8rjWzDB46ngKeAzPDP/AGJf VKWKnVqYPEJL21f29P2cq1KXJRg3Tjebmfmd/wAOdv8Agm5/0bLpH/hw/i//APPBr3H4A/sEfsk/ sueMtR+IHwG+EFn8PvF+reG7zwjqOsWnizx9rTXXh3UNS0nV7vTJLLxN4q1vThHLqWhaTdeelmt1 G9mixTpHJMkn84fxO/Z2/wCC/wDd/EDxfd2/jH48apa3XiDVbiy1DwD+0h4T8NeDryylvZ3tbjw9 4es/iR4dj0TS5ICjWely6FpNxZwFIZ7C3kUoPu7/AIJYfCL/AIKleBP2jfEWs/tpat8a774TzfCT xLp+lQ/ET426V8RdCHjmfxR4In0iSDQrLx94nmg1NdGtfESwamdOjjt7dru3a7ja7WKb854i4dz2 lwxmeOxXjrkfENCOW/WK3D1DirOMdiMzjL6pN4CnhcTmUqeIqOVRP2dXCpN4WUnRhKCjT+yyrNst nnWEwlDw1zTKqjxkqNPN6uQ5fhaGEcfrEVip4ijhVOlTaptKdOs3avBKclNuX6p/t/gH9hz9rrPP /GOXxgP4jwLrZH5EA1+Bv/Btp/yM37XX/YC+Cv8A6cPidX75ft//APJjn7Xf/ZuXxh/9QTW6/A3/ AINtP+Rm/a6/7AXwV/8ATh8Tqngz/kwniz/2POG//eaTxB/ydHgP/sVZ7+WKP1W/4LY/8o1f2g/+ v34P/wDq7fh1X8F1f3o/8Fsf+Uav7Qf/AF+/B/8A9Xb8Oq/gur9z+jB/yQGaf9lZj/8A1V5OfmHj X/yVOA/7EOG/9TsxCiiiv6OPx8jk7fj/AEqOpJO34/0qOg2h8K+f5hRRRQEvhfp/kFFFFZ1Onz/Q mn1+X6hRRRWZoFFFFaw2fr+iNYbP1/RDH6D6/wBDXeeDtJwG1WdeTuitAw6L0lmGfU/u0PHAk6hg a5XTdOk1S9htEyFZt8zj/lnAn+sfuM8hUyCC7KDwa9liijgijhiUJFEixxoOiogCqB9AOvU9TzWG JqcseRby38o/8H8r9zgx9bl/dRfvTScvKPb1k/wT7klFFFcJ5JA3U/U/zpKVup+p/nSUAFFFFABR RRQAVA3U/U/zqeoG6n6n+dBdPd+n6iUUUVvH4V6f5moUUUUwCiiigAooooAY/QfX+hqKpX6D6/0N RUAFFFFABRRRSez9H+QBRRRWABRRRWtPZ+v6GVTden6hRRRVmi2XovyQUUUUDGP0H1/oai/yKkc8 Ae+fwwajoNofD82FQN1P1P8AOp6gbqfqf51Lin5Puiamy9f0EooopRi1e/kFPr8v1Ciio5X2qcdT wP0yfwB4PrVSaim3sv6/E0Su0u5BK+5sdlyB/U/pUVFFcMm5Nt7v+rG6VkkugUUUVKSV7dXc3c7W TvstQoooplb7Ecnb8f6U1VyeenenP2/H+lOUYGPxP1qXFOV/vRpe0F3d/wA2OoooqjMKr1YqvQaU /tfL9QooooKcU/XuFFFGO/p/Wk1dNGbi15ruFFFFYtNbokr0UUVuC3XqvzQUUUVLin5PyOpSa815 hRRTWYKpJ7fzrKScdXt36f8AANFJPb7uv/BKtzIRiMHqMt9Ow/r+VUmG4Y6VJIctk9TyfzP+fpxT K4ZycpN9Ht6dP67m8UuW3ff1ICCOo/HtSVYqMoO3Hsf8/wCNQS4Nba/n/wAEjooII60UFQ2fr/kF FFFBYVC3LEDrx/IVNUkMYZ95HC9/Vuw69gc9PSnTpudRKPXR6aJbt/d+NhTmowd+juvNvZff+Fye KPy0A43HliPX64GcDgVLRRXq8kVFRS0SSXfT+vvbOFtttvdu7Ciiis5R5fO5dPr8v1CiiipNCF/v H8P5Cm05/vH8P5Cm1ooJpO7WiMHu/V/mdRRRRXqHjvd+r/MKKKKBw+JfP8gooooNgqF/vH8P5Cpq hf7x/D+QoAbRRRQAUUUUDW69V+YV/W7/AMG//wCzGfBnwi8eftQ+ItOMWu/Fy/k8E+App4mWWH4e eEtQP9u6hayZXNv4m8a2z2dxE6HH/CDWNxDJsuWB/kir668Gft7ftkfDvwroPgfwN+0T8SvCvhHw vptvpHh/w9ouspZaXpOm2q7YLSztorcLHGuSzMd0ksjPLK7yyO7fnvidwvnvGXC1bh3I8wwGWPH4 rDPMcRjli3Gpl+Hk8Q8LSWDhOd8RioYb2znaDoUOTVzaPt+CM7ynh3O45vmuFxeL+rYetHBU8JGg 3DFVkqTr1Pb1KcUqWHlWVPlvL2lVy0UUz/Q+or/PmP8AwUp/bzwf+Mqfi90P/Mxn/wCMVD/w8q/b 0/6Oq+L/AP4Ujf8Axiv5rj9F7iyV/wDjJeG1b/pznP8A8oP2OXjZw7H/AJlWdO/ll/8A80n+g/RX +fB/w8q/b0/6Oq+L/wD4Ujf/ABij/h5V+3p/0dV8X/8AwpG/+MU/+JXeLP8AopeG/wDwTnP/AMoF /wARt4d/6FOdfdl//wA0n+g/TXdI0aSRlREVnd3YKiIoLMzMxAVVAJZiQAASTgV/nxf8PKv29P8A o6r4v/8AhSN/8Yqhqn/BRf8Abl1vTNR0bVf2ofi3e6Xq9heaZqVnL4kk8q7sL+3ktby2l2RK/lz2 8skT7WVtrnawOCHH6LnFXNHm4m4cUeaPM40M4clG65nFOik5KPM4ptJySTaTbSfjbw9Z2ynOm7Oy f9npN2dk39Ydk3ZN2dk27O1nyP7a/wAc5P2kf2q/jj8ZFupLrSfFfjvVIvCskh+ZPBHh7yvDPgmM oPkjceFdH0lp1j+Q3LTyZdnZ2/oM/wCDe39mj+x/B/xR/as8Q2BS/wDGF0/wp+HM08bK6+GdEubT VfHOrWxZCk1rrHiOLRNFgnikWSC68IazbupSbJ/lPr9Qfg5/wV6/bF+A3ww8GfCD4aal8NdF8D+A 9HTRtBsJfh5pl5ciEzz3l3d3t5Ncebd6jqWo3V5qWo3bhWub+7uJ9qeZtH9BeI/COfZtwJR4L4N+ oYanKnleWYieOxcsHCnkuW0aK9hTlTw1d1KuLq4TCQrLkhF01Xk2/a8p+U8G8Q5VguKa/EnEcsTO fPjsZQjhsM8S5ZjjqtS9SSdWnyQw9GvWdJtyfM6aVnBs/u/rh/ib8Q/DPwk+Hfjj4oeM7wWHhT4f +Fdd8X6/dAx+aul6Bp1xqV1HbJLJEs97cpbm2sLUOJLu9mgtYsyzIp/jBb/gux+3+uMeJvhlznr8 NNI9v+nivE/2gv8AgrB+2N+0v8KvEPwa+Jfirwn/AMIP4rl0p9ftPDXg7T/D9/qMOjapaa1Z2Uuo 20sk62LalYWdxc28ewXIt0hlZoHljk/m7Lvo08bzx2BWZYrIaWWvF4b6/UwuZ1auJhglXpvFvD0n l1NTr/V1WjRi5xj7WcJSklBp/sOL8ZOFoYbEvBwzOrjI0KzwtOtl7p0Z4n2U/YRq1PrUuSk6rp+0 kotqCnZXat8XfHL4ueJvj18YPiR8ZfGMu/xF8R/F2s+Kb6JZHlh0+PUbp30/RrNpCXGnaFpq2eja ZGxJi0+wtosnZX7Tf8G7v/J2fxh/7N21j/1ZXw1r8BKlhnnt2LQTSwMw2loZHjYrkHaSjKSMgHBO MgHtX9f8U8K0eIeDsz4QwtanlWHx2V0sqw1aGH9vTwNChLAexUMMqtH2kKdLAU6UYKrB2ak5NqXP /PeRZ9UyniPB8Q4inPH1sPja2Or03VVKeJq144r2rdVwqKEpVMVKo3ySWnKkly8v+oHRX+YJ/aWo /wDP/e/+BU//AMco/tLUf+f+9/8AAqf/AOOV/Nv/ABKtU/6LiH/iOz/+fB+x/wDEc6f/AETNT/w7 U/8A5gP9PusbXvEfh7wtp8ureJ9e0Xw5pUALT6nr2qWOkafCqjLNLe6hPb20YUckvIAByeK/zHf7 S1H/AJ/73/wKn/8AjlU7meadleeaWZgCA0sjyMBxwGcsQPbOKqH0Vvfj7Xji9O65lS4etUa6qLqZ u4J9nKLS6phLxyjyScOGZcy2582jy69+XAc3yW/dH94P7SP/AAWB/Ym/Z50/ULey+JVj8avG9vHI tl4L+DtzaeLI5rvy3MS6p40tpv8AhCdHto7gRw6gDrd7rNoru9voV9JDJb1/Jp+3L/wUY+O37c/i SI+NLmLwd8LtEv5L3wd8I/Dl3cv4e0mbbJBDq+vXsqwXHi3xStrI8Da3qFvb21os95HoOk6HbX15 bT/AFFfsfAngzwfwJWhmGFpV83zuCahm+bexqVcM5RcZPL8JRgsJgZSTlF1oKvi+SUoLFU4ykp/n fFHiPxDxRSlg6kqWW5bN+/gMA6qVdJppYvE1Je3xMU0n7L9zh3JJyo1Go2KKKK/WT4OG79P1RueG L630zxL4e1K8cx2mn65pN9dSKjSMlvaX9vPO6ogLuVijZgiAsxGFBJAr+4b/AIfgf8E6v+iseKv/ AA1PxF/+Z6v4XaK/OuPPDDh3xEnlc89r5rRllMMXDC/2biqOGUljZ0J1fbe2wmK52nh6fJyuHKnK 6ldW+14W42zbhGGNp5bQwFaOPnQqVvrtKtVcXh4VIQ9n7LEUOVNVZc3MpXaVmrNP+6L/AIfgf8E6 v+iseKv/AA1PxF/+Z6k/4fhf8E6c4/4Wx4qzzx/wqn4jdv8AuXsV/C9UQ+/+Lf1r8+/4ln8Pv+g3 ij/w54P/AOdJ9TLxo4qilbBZH/4S4z/54H9qvxF/4L8fsSeFdNu5fBGn/Fn4o6ysL/2fY6T4Qh8L 6XPcgfu01DVvF2paVeWFqx4kubTQ9WnjHK2MvSv5wP28P+Ck3xv/AG7dbsbPxTHa+A/hN4d1CXUP Cfwn8O3tzd6Zb3zLNBFr3irVpo7Wbxb4nhs5pLK31Gay07TdNt5bpdE0XSn1LVZL/wDO6ivteEPB zgXgrGwzPLMvxGLzSkn7DMc3xTx9fCuUXCUsHTdGhhcNVlGUouvTw8q6jKUadakpS5vmOIfEbifi TDSwWLxNDC4Gpb22Ey6g8NDEJNNRxFWVWtiK1O6T9lKrCk2k5wqWSXvH7LPjrw38L/2mv2d/iV4x u5dP8I/D744/Cnxt4ov4LS5v57Lw74V8daFrmtXcNjZxzXl7Lb6dY3Msdrawy3Fw6CKGN5HVT/ZS f+C4P/BOodfix4q/8NT8Rf8A5nq/hepj9B9f6GtePPCnhrxDxmXY7PcRm9GtlmEr4LDrLcXQw9OV Kvili5urGtg8U5TVWKUZRlBKGji37xHCnHeccI4fF4TLaGX1qeNxFPE1XjKNerONSlQeHiqbpYmg lFwd2pRk3LVNLQ9N+OPijR/G/wAa/jB408O3El14f8XfFL4geKNCupYJrSW50fX/ABZq+raZcS2t wkdxbSTWV3BI8E8aTQsxjlRXVlH7p/sO/wDBeLxR8H/Ceg/Cz9qjwl4g+Knhnw7aWmk6D8TvCd1Y v8R7DR7OIW9pYeJtI1u70/S/Gj2sKwQQa2dc0LWRbW5bVD4hv5mux/O1X9aPwY/4IF/srfEj4PfC f4iax8Vv2grPV/Hvw18C+NNVs9M1v4cx6baal4p8L6Vrl9bafHdfDa7uksoLq+litEubq5nWBI1m uJpA0jeT4rVvDXLeH8myzxCwuLxGX1ZPB5PXweExOIzDC18BgMLCdWji8FUoVsJOWFp0VVdqlDEt OFXDTUYez9XgaHGWNzXM8fwpWwtLExaxGY0cTXpUsHXhjMViakKc6GIhVhWjCtOt7NpwrUFZwrLm mp/Yml/8F0/+CeGoWkdzefEHx5oUzqC+n6r8LfF813Ce6SvollrFgWHQmG9lXI4YjBP0D+zz/wAF PP2PP2pPiXYfCP4M+Pte8Q+OdS0vV9YtNNvvAPjPQbZ7DQ7U3moyvqWs6NZ2ERigG5ElnRpmIjiD SMqn4BP/AAbq/shkk/8AC4P2kOf+o98Mf/nXV9nfsW/8Ep/2bv2HvHet/E34dav8SPGfjnWPD1z4 Wg1n4jax4c1GPQdGvryzvdRi0Gx8OeFPDNvbXepSafZxXmoXv2+6FpE9pZvZ293fx3f8p8QYbwEp 5PmVXhzMuO8Tnn1ap/ZWGxmGVLAvGScFS+tVq2Gi1hqadSdT3vaTjCMINTndfuOVV/E6eYYOGcYH hajlntV9erYXEVamKVBRm5ewpwqtOtOSpxjdckeaUpLlST+uP2qWVP2YP2j3dgqJ8BfjAzMxwqqv w98RFmJPAAAJJPQCv46f+CNn7XvwK/Y9+MfxZ8YfHjxLqXhnQfFfwztfDWiXOm+G9d8Sy3OrxeKd K1R4JLbQbG/nt4xZ2s0nnzxpCWURhy7BT/Rv/wAFh/2p/DH7O/7HHxF8JNq1svxI+PXh/WfhV4H8 PpNEdRuNK8SWv9leO/EL24f7Rb6XofhO+1GH+0kjZItf1LQbIMkl6skf8IFfq/gLwXHiDw64zwOc wxeGyfirMsJhaNbDyVDEVqGWYamsRXw1SrRqw5I4xU8OqnsqkJSp4iMW3CTh8J4pcSyybizhrE5c 8NXzDJMHi8RUpVlKpRpyzCbp0qdeFOpTmpSw6qVlFVISUZUpNcso839cX/BQL/grH+xH8fP2Ovjn 8IPhl8RvEOseO/HHhvStO8O6ZefDvxvo9td3dr4r0DVZo5dS1PRLawtFWysLmQPczxozIsYJd1B/ kdoor+guBuA8l8PstxeVZHVzCthsZjnmFWWY16WIrKu8PSwrUJ0cNhoxp+zowfK4SfO5Pms0l+Sc U8V5jxdjMNjcypYOjVwuGeFpxwdOrSpum60q7c1Vr15OfPJq6lFctly31P6Uv+CbP/Ba74e/Az4L +GP2fv2n9E8YyWHw9tW0bwB8SfCVhB4iB8JpM0mm+G/FmiS39lqNu/huGRtN0XVNEXU0uNEh07Tr nS7OfTH1HVP1RT/guR/wToZFZvit4tjYgExv8KfiGXQnqrGPQJIyR0O12XI4YjBr+FiTt+P9Kjr4 fPvo/eH/ABBm2MzerHOcuxGYYipisVRyzMadHCTxNebqV61PD4jA4lUHWqznVqQpVFS9rUqThCnz ygvqsq8WOKcry/DYFLLcbTwlGFCjVxuFqyxCo0YqnSp1KlDFUVV9nThCnGc4e0cIQUpScVJ/s3/w V8/bW+D/AO1D8fvgj8Uv2avGuuagnw48Bw2La9JoPiDwjqeh+LNP8aal4i0y508a1Zafdme0Etle W97aqyw3CKBIsseB+q37Lf8AwcD/AAT1rwRoeiftVeG/F3gn4kaZZW1lrXjLwboEXiXwN4pmt4lj k10aZp93D4g8N39+y+dd6JbaPq+mQTNJJZanHBJHYWv8h1FfQZj4NcE5twvkfCuPw+PrYXhylWo5 RmMcYqOb4eniK1avXpyxdLDKlXpValZyqUKuFlRcqdKpGNOrF1Knl4TxH4kwWd5nnmGng6dXN5UZ 4/Ayw86mX1Z4ejToUZxozr+2pVIU6dlVp4hTalOEuem4xh/db/w/G/4Jz/8ARWPFf/hqPiL/APM9 R/w/G/4Jz/8ARWPFf/hqPiL/APM9X8KVFfF/8Sx+Hn/QbxT/AOHTBf8AzpPof+I1cVf9AWRf+EmM /wDngf2T/tb/APBYb9g/4sfsuftDfDDwT8S/Euo+MPiD8GviL4O8L2Fx8NfHenQXuveIvCuqaVpV tNf32hwWdnFNeXUMb3N1NFBCrGSV1RSR+TX/AARa/bZ/Z5/Y01v9oW9+PvirVfDFv8QNK+Gdr4Xf TPC3iHxObybw1d+OJdXWZNA0+/azECa3pxja6ESzmVxCXMUgX8PaK+ty3wX4SyrhPiDg3DYnO5ZV xJisFi8wqVcbh542FXAew9isLWjgIU6UH7CHtFOhVcrytKN1bwcZ4kZ7jc+yniGrhsrjjcmw+Lw2 Fp06GIWGnDGKoqrrwli5VJyXtJcjhVppWV1LW/8AVt/wU3/4KofsYftK/sU/F74MfCP4g+INd8f+ Lbn4dS6Hpd98P/GehWtynh74n+DvE2qGTVNX0e00+28nSNHv50E86GaSJYIt00saN/KDUz/dP4fz FQ19TwNwLk3h/lFfJcjq4+thMRmFbMqksxr0sRXWIrUMNh5xjOlh8NFUlDC03GLptqTm3NppLwuJ +KMw4sx9HMcypYSlXo4SGDhHB06tOk6VOrWrRlKNWtXk5uVeabU0uVRSimm2UUUV9mfOEcnb8f6V HUknb8f6VHQbQ+FfP8wooooCXwv0/wAgooorOp0+f6E0+vy/UKKKKzNAooro/Del/wBoXollXNra FZJcj5ZJOTFF7gsN7jkbFKtjeKtSUISk9ld+uisvVuyKc406c5y2jd+uisl5t2S9fI7Hwzpf2Cy8 6VcXV2FkfOd0cWMxRHPQ4JdxwdzbTnYDXSUUV50pOcnJ7t3/AMl8loeBUnKpOU5byd/Tsl5JWS9P MKKKKkggbqfqf50lK3U/U/zpKACiiigAooooAKgbqfqf51PUDdT9T/Ogunu/T9RKKKK3j8K9P8zU KKKKYBRRRQAUUUUAMfoPr/Q1FUr9B9f6GoqACiiigAooopPZ+j/IAooorAAooorWns/X9DKpuvT9 QoooqzRbL0X5IKKKjc9vXk/T/P8AKgYwnJJ/L6UlFFBrD4fmwqBup+p/nU9QN1P1P86BVNl6/oJR RRQFPr8v1DpVKRt7E9hwPp/9fr+manmfA2g8nr7D/Hp/nFVaxq3l7qe2r83/AMD8zoguvyX6/wCQ UUUVzNNbmgUVIwGwHuAOajos2rrUTkr2b1tpcKKKKRSbWwhGSD6Z/Pj/AOvS09hgKPrn68Uyq5Xa 61v95sndJ/1uFFFFSMKaVB9j606igmLalJruiAqR1/OkqxTCgPTj+X/1v88UGyn3+8ipQxHSggjq KSg0H/K3T5T+h/z+H400gjqPx7UlODEe49D/AJ/+tRvuS4J+T/roVaKkKen5VGQR1oMVuvVfmgoo ooOgKqzPk7R0U8+5/LtnHU5Pbip5H2LnjJ4APr9MjIHU4OapVhXlpyfzb27dF8/yRpTWvN229f8A gCEA9ajZccjpnp6VLSEA8GuD4XZ6r8/Tz9DpbvHm2dr/ANd16kFFPKEdOR+v/wBemU+VPWLv5dRK ff7xCAeDUZQjpyP1/wDr1LRUGhXoqYqD1/PvUZUj3HrQAigsQo6k4H+R+taaRqiBcdByehJPU/iS TUFtHgGQ9+F+mcE/mMdOnfmrdd+Gp8sedrWW3lH/AIL19LHNWldWWydvn1+7b7yIoR05H6/5+lMq xTSoPsfX/H/OfeukwIaKcVI+nr/npTaUoqX6DjJx/UKKKKycWvNd/wCtjVST8n2/rchf7x/D+Qpt Of7x/D+QptarZei/Iye79X+Z1FFFFeieO936v8wooooHD4l8/wAgooooNgqF/vH8P5Cpqhf7x/D+ QoAbRRRQAUUUUDW69V+YUUUUG4jdD9D/ACqCp26H6H+VQVrT2fr+hlU3Xp+oUUUVZAUUUUAFFFFZ T+L5I1h8PzZHJ2/H+lR1JJ2/H+lR1cPhXz/MifxP5fkFFFFUSFFFFABUcnb8f6VJUcnb8f6UFL4J eqI6KKKCQooooLhu/T9UFFFFBqFRD7/4t/WpaiH3/wAW/rQZ1Nl6/oS0UUUGYUx+g+v9DT6Y/QfX +hoHH4l6/wCZFX7KeBf+C6H7a/w98E+DvAOgad8E20LwP4V8PeD9Fa/8Ca5c3zaT4Z0mz0XTmvbi PxpBHPdmzsoTczJBCks291ijVgg/GuivCz3hjh7ianhqPEOTZfnNLB1KlXC08fRdaNCpWpxpVZ0k q1HllUpwjCTvK8YpWW57mV55m+SSrTyjMcVl8sRGEK8sLOMHVjTlKdOM+alVuoSlKUbKNm3q9j9u T/wcBft3Akf2Z8B+Cf8Amn2v/wDzc1i67/wXv/b81fT5rLT9Q+EHhe5lUqmr6F8NxcahbEjAeGLx NrniLSmZTyBcaZOmR8ykZB/Flup+p/nSV4kPCnw1g4zjwPw3zRakr5fzq6s1eM8XOElfdShKL2cW tD0JcecZyUovibN7O6dsRTi7O60ccJGS06qSa3TTsz1T4t/GX4p/HjxpqHxE+MPjvxF8QvGWpqkV xrniO+e7mhtYnkeDTtNtlEVho+k2rSymz0fSbWy0uz8yQWtpCHYHzOiivs8Ph6GEoUsNhaFHDYah TjSoYfD0qdChRpQXLCnSo0YUqVKnBaRhTpxilsrtt/LVq1bEValfEVatevWnKpVrVqk6tWrOTvKd SpUlOc5N7ylJt6bJJIooorUzI5O34/0qOpJO34/0qOmt16r8zVfB8n+oUUUVuZBRRRQAUUUUANf7 p/D+YqGpn+6fw/mKhoAKKKKAI5O34/0qOpJO34/0qOg2h8K+f5hRRRQEvhfp/kFFFFZ1Onz/AEJp 9fl+oUUUVmaD443lkSKNS8kjqiIOrOxCqo9ySBzx617HpOnJpllFbLgvjfO4/wCWkzAb29SBgIme QiqDzXJeEdL3O2pzL8qborUEcF/uyyjj+EZjU5+8ZOMqDXf1z1p39xPRO7830XyX4vyPNxlbmaox fuwd5ecrbekV+LfYKKKK5zhCiiigCBup+p/nSUrdT9T/ADpKACiiigAooooAKgbqfqf51PUDdT9T /Ogunu/T9RKKKK3j8K9P8zUKKKKYBRRRQAUUUUAMfoPr/Q1FUr9B9f6GoqACiiigAooopPZ+j/IA ooorAAooorWns/X9DKpuvT9QoooqzRbL0X5IDxULBskn8x0/z25qXv8AT+Z/wH4c+1LQMr0VI6gD I9fw71HQNXWq2/D5hUDdT9T/ADqeoG6n6n+dA5S5ktNUJSEgDJ4AparzP/APqf8AClJ2V/uLpK7a 9Pu6kDMWJJ7/AKD0/CkoorA69tAoooo33AlP3PwX+lRVKfufgv8ASoqmCsn6synuvT9WFHSiijlT d7f8H1/McL/L+th5y/Ycfrn/APV60ypI+/4f1p5APUfj3pX5enu9GuhvGdtHsQUU8oR05H6/5+lM ptRlr+K3+f8AwTRNPZhRRRWbi15ruTH4peqCiiipLAjPBqFlAxjvmpqY4JxgZxn+lBUG7pdH/kRU UUUGwUhAPWlooOciKHtz7Hr/AJ/KmVYqGYgLjueB6gd/88ik2opt7JXNoy5mlbV/d/wCjI+9uD8o 4Hp9eg6/j7HFR08oR05H6/5+lMrhk3Jtvdv+l8jdSto1bz6MKKKaxwM4zzzSaT31Nef3WntbRr+v yHU0qD1/PvQGB6fketOrNwa1i/l/X6kpp7akLKR7j1ptTP8AdP4fzFQ0rSkr9VpbYuMktH94U5VL MAPx9h602rcKFV3Efexjp0+vv3HsOKqlTc5qLVktZei6fPb7+xU58sG1q3ovV9fl+diQDAAHQAD8 qMjJHcUtQt94/h/IV6Zwyk0l1V/8+pNRUQcjryP1/wDr1ICD0NAKSe33dRar1YqvQMKKKKAGMmeR 1/SmbG9P1H+NTUUGTm0311e/qdBRRRXoHmvd+r/MKKKKBw+JfP8AIKKKKDYKhf7x/D+QqaoX+8fw /kKAG0UUUAFFFFA1uvVfmFFFFBuI3Q/Q/wAqgqduh+h/lUFa09n6/oZVN16fqFFFFWQFFFFABRRR WU/i+SNYfD82Rydvx/pUdSSdvx/pUdXD4V8/zIn8T+X5BRRRVEhRRRQAVHJ2/H+lSVHJ2/H+lBS+ CXqiOiiigkKKKKC4bv0/VBRRRQahUQ+/+Lf1qWoh9/8AFv60GdTZev6EtFFFBmFMfoPr/Q0+mP0H 1/oaBx+Jev8AmRUUUUG5A3U/U/zpKVup+p/nSV0LZei/JHO936v82WKKKK5wCiiigCOTt+P9KjqS Tt+P9Kjprdeq/M1XwfJ/qFFFFbmQUUUUAFFFFADX+6fw/mKhqZ/un8P5ioaACiiigCOTt+P9KjqS Tt+P9KjoNofCvn+YUUUUBL4X6f5BRRRWdTp8/wBCafX5fqFXdOspNRvIbWPIMjDe+MiOJeZJD/ur nGcbmKrnLCqVeneFtK+x2n2uZcXN4qsMj5orfqic8gycSP0yPLUjKZOE5ckW+uyXn/wN3/wSa9VU qbl9p6QXm+vpFav0S6nSW8EdtBFbwrtihRY0X0VRgZJ5JPVicliSSSSamooriPFbbd3q3q2+rYUU UUAFFFFAEDdT9T/OkpW6n6n+dJQAUUUUAFFFFABUDdT9T/Op6gbqfqf50F0936fqJRRRW8fhXp/m ahRRRTAKKKKACiiigBj9B9f6GoqlfoPr/Q1FQAUUUUAFFFFJ7P0f5AFFFFYAFFFFa09n6/oZVN16 fqFIf17fX/PJ9qWk6/hwP6n+n59jVmi2XovyQtFFFAxj9B9f6GoqlfoPr/Q1FQaw+H5sKgbqfqan pCAeooJnFKzXUrswUFj0H+QPxNVGUkk9c8+//wBf+dXCPm45A6dOpHJ/DoCPU8Y5qvWU3d26Iune N336eX/BK9FTlQev51EVI9x/nrUHQpJ+TG0UUUFEp+5+C/0qKpT9z8F/pUVBlPWSXl+rCiiig0Ss rEkff8P61JUcff8AD+tSUDCmlQfY+tOoqXHrF2f4Am1toQEYOKSnv1H0/qaZTV7K+/UqE/elfutQ ooopOCe2j/D7jbcKKKKycWt/v6FQ+JfP8hpUH2PrUZUj6ev+elTUUjYr0UUVTi16dznDpVJ23sT2 6Ae3/wBeppnwNo6nr7D/AOvVauStO75F01fr0Xy39TpowsuZrV7enf5/kgppUH2PrTqKwNmk99SE qR9PX/PSm1YqN1A5HHOPbvQNJJaPbo/0fX8yAoDyOD/n8vwpNxXhuR6/56/jzzUlFBLj1Wj/AAfq hjEFTg+n86iqXYM57dx+HakKen5H/H/H86Bq9tV1tdbCwx+Y4H8I5b6en49K08Dpjj0qGCPYgyPm bk+vsPw/nU1dUKdop7Ser/RfL82MiZQOR64xVZ/vH8P5VbfoPr/Q1CQDwa1je2u+pjVgmtNHf5bP 7iCgEjpTymOnPt3/APr0ymczTW+n9dyQP6/n/wDW/wA/So6KnIB60GkG3e/SxBRTyhHTn+f/ANf/ ADxTKCwooooMHu/V/mdBRW5/wjHiX/oXtc/8FN//API9H/CMeJf+he1z/wAFN/8A/I9Y/wCsGQf9 D/Iv/D5kn/z5B5Rm93/wk5tu/wDmVZn3/wCxaYdFbn/CMeJf+he1z/wU3/8A8j0f8Ix4l/6F7XP/ AAU3/wD8j0f6wZB/0P8AIv8Aw+ZJ/wDPkccozfmX/CTmvX/mV5n2/wCxaYdFbn/CMeJf+he1z/wU 3/8A8j0f8Ix4l/6F7XP/AAU3/wD8j0f6wZB/0P8AIv8Aw+ZJ/wDPk2/sjNv+hTmv/hrzP/52mHUL /eP4fyFdF/wjHiX/AKF7XP8AwU3/AP8AI9RN4X8Tbj/xTuu/+CjUPT/r3o/1gyD/AKH+Rf8Ah8yT /wCfIf2Rm3/QpzX/AMNeZ/8AztMCit3/AIRfxN/0Luu/+CjUP/kej/hF/E3/AELuu/8Ago1D/wCR 6P8AWDIP+h/kX/h8yT/58h/ZGbf9CnNf/DXmf/ztMKit3/hF/E3/AELuu/8Ago1D/wCR6P8AhF/E 3/Qu67/4KNQ/+R6P9YMg/wCh/kX/AIfMk/8AnyNZTm11/wAJOa7r/mV5n3/7FxhUVu/8Iv4m/wCh d13/AMFGof8AyPR/wi/ib/oXdd/8FGof/I9H+sGQf9D/ACL/AMPmSf8Az5Nv7Jzb/oVZp/4bMy/+ dxgt0P0P8qgrpD4X8TYP/FO670P/ADCNQ/8Akeof+EV8T/8AQua9/wCCfUP/AJHrSHEHD9n/AML+ Q7/9DzJO3/Y5M55Tm11/wlZrt/0K8z7/APYuMGit7/hFfE//AELmvf8Agn1D/wCR6P8AhFfE/wD0 Lmvf+CfUP/ker/1g4f8A+h/kP/h9yT/58kf2Rm3/AEKc1/8ADXmf/wA7TBore/4RXxP/ANC5r3/g n1D/AOR6P+EV8T/9C5r3/gn1D/5Ho/1g4f8A+h/kP/h9yT/58h/ZGbf9CnNf/DXmf/ztMGit7/hF fE//AELmvf8Agn1D/wCR6P8AhFfE/wD0Lmvf+CfUP/kesp8QZBzf8j/Idl/zPMk/+fJrDKc25f8A kVZru/8AmV5l/wDO452Tt+P9Kjron8K+KDjHhvXz1/5g+o+3/TvTP+EU8U/9C1r/AP4J9R/+RquP EHD/ACr/AIX8h6/8z3JO/wD2OSJZTm3M/wDhJzXp/wAyvM+3/YuMCit//hFPFP8A0LWv/wDgn1H/ AORqP+EU8U/9C1r/AP4J9R/+Rqr/AFg4f/6H+Q/+H3JP/nyT/ZGbf9CnNf8Aw15n/wDO0wKK3/8A hFPFP/Qta/8A+CfUf/kaj/hFPFP/AELWv/8Agn1H/wCRqP8AWDh//of5D/4fck/+fIf2Rm3/AEKc 1/8ADXmf/wA7TAqOTt+P9K6P/hFPFP8A0LWv/wDgn1H/AORqjfwn4pOMeGvEB6/8wbUfb/p2o/1g 4f8A+h/kP/h9yT/58lLKc25Zf8JOa7r/AJleZ/8AzuOcoroP+ET8Vf8AQs+IP/BNqP8A8jUf8In4 q/6FnxB/4JtR/wDkaj/WDh//AKH+Q/8Ah9yT/wCfJP8AZGbf9CnNf/DXmf8A87Tn6K6D/hE/FX/Q s+IP/BNqP/yNR/wifir/AKFnxB/4JtR/+RqP9YOH/wDof5D/AOH3JP8A58lwynNrv/hKzXb/AKFe Z91/1Ljn6K6D/hE/FX/Qs+IP/BNqP/yNR/wifir/AKFnxB/4JtR/+RqP9YOH/wDof5D/AOH3JP8A 58mn9k5t/wBCrNP/AA2Zl/8AO45+oh9/8W/rXS/8In4q/wChZ8Qf+CbUf/kaox4S8V78/wDCM+Ic ZPP9i6l7/wDTtR/rBw//AND/ACH/AMPuSf8Az5InlObWX/CVmu//AEK8z7f9i4w6K6D/AIRPxV/0 LPiD/wAE2o//ACNR/wAIn4q/6FnxB/4JtR/+RqP9YOH/APof5D/4fck/+fJn/ZGbf9CnNf8Aw15n /wDO05+mP0H1/oa6P/hE/FX/AELPiD/wTaj/API1Mfwl4qI48M+IDz/0BdS9/wDp2o/1g4f/AOh/ kP8A4fck/wDnyOOU5tzL/hJzXf8A6FeZ+f8A1LjmqK6H/hEfFf8A0LHiH/wS6l/8jUf8Ij4r/wCh Y8Q/+CXUv/kaj/WDh/8A6H+Q/wDh9yT/AOfJt/ZObf8AQqzT/wANmZf/ADuOXbqfqf50ldGfCHiz J/4pfxF1P/ME1L1/69qT/hEPFn/Qr+Iv/BJqX/yNW64h4esv+MgyDZf8z3I+y/6nRg8oza7/AOEn Nd3/AMyvM+7/AOpaYtFdD/wiPiv/AKFjxD/4JdS/+RqP+ER8V/8AQseIf/BLqX/yNWH+sHD/AP0P 8h/8PuSf/PkP7Izb/oU5r/4a8z/+dpz1FdD/AMIj4r/6FjxD/wCCXUv/AJGo/wCER8V/9Cx4h/8A BLqX/wAjUf6wcP8A/Q/yH/w+5J/8+Q/sjNv+hTmv/hrzP/52nNSdvx/pUddK/hDxYcY8MeIj1/5g upe3/TtTP+EQ8Wf9Cv4i/wDBJqX/AMjU1xDw/df8L+Q7r/me5J3/AOxyarKc25P+RVmuz/5leZ+f /UuOdorov+EQ8Wf9Cv4i/wDBJqX/AMjUf8Ih4s/6FfxF/wCCTUv/AJGrf/WHh7/ooMg/8PuR/wDz 6Mv7Izb/AKFOa/8AhrzP/wCdpztFdF/wiHiz/oV/EX/gk1L/AORqP+EQ8Wf9Cv4i/wDBJqX/AMjU f6w8Pf8ARQZB/wCH3I//AJ9B/ZGbf9CnNf8Aw15n/wDO052iui/4RDxZ/wBCv4i/8Empf/I1H/CI eLP+hX8Rf+CTUv8A5Go/1h4e/wCigyD/AMPuR/8Az6D+yM2/6FOa/wDhrzP/AOdpzb/dP4fzFQ11 DeD/ABbtP/FL+Iv/AASan6/9etRf8Id4u/6FbxH/AOCPU/8A5Fo/1h4e/wCigyD/AMPuR/8Az6D+ yM2/6FOa/wDhrzP/AOdpzlFdH/wh3i7/AKFbxH/4I9T/APkWj/hDvF3/AEK3iP8A8Eep/wDyLR/r Dw9/0UGQf+H3I/8A59B/ZGbf9CnNf/DXmf8A87TmJO34/wBKjrp38HeLjjHhXxIev/MD1P2/6daZ /wAIb4v/AOhV8Sf+CPVP/kWj/WHh7/ooMg/8PuR//Po2jlObcq/4Ss06/wDMrzLv/wBi45uiuk/4 Q3xf/wBCr4k/8Eeqf/ItH/CG+L/+hV8Sf+CPVP8A5Fo/1h4e/wCigyD/AMPuR/8Az6CWU5tyv/hK zTb/AKFeZeX/AFLjm6K918E/suftNfErSp9c+HP7Ovx28f6Ja30mmXOseCfhH8QPFWlW+pQw29zN p8+oaF4fv7SK+it7u1uJLSSZbhIbm3laMRzRs3Y/8MMfts/9GeftTf8AiPvxaH8/CNZVOIeHtP8A jIMg6/8AM+yPy/6nRMMpzbX/AISs16f8yvM/P/qXHzv4e0s6lfL5i5tbfEtwSPlbn93D7+aw+Yf8 81fvjPrXTpX0Do37Dn7YemWMcH/DJv7Sxmb97cMPgR8UvmlYDIB/4RXlYxiNemQucZJrW/4Yt/bF /wCjTf2l/wDwxHxS/wDmVrhqcRZBOWmf5FyrRf8AC5kvzf8AyOev5WPMxGWZxVqNrKM35I+7H/hJ zXVX1l/yLPtP8LHzRRX0v/wxb+2L/wBGm/tL/wDhiPil/wDMrR/wxb+2L/0ab+0v/wCGI+KX/wAy tZ/6wZB/0P8AIv8Aw+ZJ/wDPk5/7Gzj/AKE+b/8AhpzX/wCdh80UV9L/APDFv7Yv/Rpv7S//AIYj 4pf/ADK0f8MW/ti/9Gm/tL/+GI+KX/zK0f6wZB/0P8i/8PmSf/PkP7Gzj/oT5v8A+GnNf/nYfNFF fS//AAxb+2L/ANGm/tL/APhiPil/8ytH/DFv7Yv/AEab+0v/AOGI+KX/AMytH+sGQf8AQ/yL/wAP mSf/AD5D+xs4/wChPm//AIac1/8AnYfMLdT9T/Okr6ZP7Fn7Y2T/AMYmftMdT/zQj4pev/Yq0n/D Fn7Y/wD0aZ+0x/4Yj4pf/MrR/rBkH/Q/yL/w+ZJ/8+Q/sbOP+hPm/wD4ac1/+dh8z0V9Mf8ADFn7 Y/8A0aZ+0x/4Yj4pf/MrR/wxZ+2P/wBGmftMf+GI+KX/AMytH+sGQf8AQ/yL/wAPmSf/AD5D+xs4 /wChPm//AIac1/8AnYfM9FfTH/DFn7Y//Rpn7TH/AIYj4pf/ADK0f8MWftj/APRpn7TH/hiPil/8 ytH+sGQf9D/Iv/D5kn/z5D+xs4/6E+b/APhpzX/52HzPUDdT9T/Ovp//AIYs/bH/AOjTP2mP/DEf FL/5lahP7Ff7ZGT/AMYl/tM9T/zQf4p+v/Yq0f6wZB/0P8i/8PmSf/Pk0hk+cXf/AAkZvt/0Kc07 /wDYsPmWivpn/hiv9sj/AKNL/aZ/8MP8U/8A5laP+GK/2yP+jS/2mf8Aww/xT/8AmVraPEHD/Kv+ F/Idv+h7knn/ANTk0/sfOP8AoUZt/wCGrNP/AJ2HzNRX0z/wxX+2R/0aX+0z/wCGH+Kf/wAytH/D Ff7ZH/Rpf7TP/hh/in/8ytP/AFg4f/6H+Q/+H3JP/nyH9j5x/wBCjNv/AA1Zp/8AOw+ZqK+mf+GK /wBsj/o0v9pn/wAMP8U//mVo/wCGK/2yP+jS/wBpn/ww/wAU/wD5laP9YOH/APof5D/4fck/+fIf 2PnH/Qozb/w1Zp/87D5mor6Z/wCGK/2yP+jS/wBpn/ww/wAU/wD5laP+GK/2yP8Ao0v9pn/ww/xT /wDmVo/1g4f/AOh/kP8A4fck/wDnyH9j5x/0KM2/8NWaf/Ow+Y36D6/0NRV9PP8AsVftkEcfsl/t Mnn/AKIN8U/f/qVaj/4Yp/bJ/wCjSv2mv/DDfFP/AOZSj/WDh/8A6H+Q/wDh9yT/AOfIf2PnH/Qo zb/w1Zp/87D5lor6a/4Yp/bJ/wCjSv2mv/DDfFP/AOZSj/hin9sn/o0r9pr/AMMN8U//AJlKP9YO H/8Aof5D/wCH3JP/AJ8h/Y+cf9CjNv8Aw1Zp/wDOw+ZaK+mv+GKf2yf+jSv2mv8Aww3xT/8AmUo/ 4Yp/bJ/6NK/aa/8ADDfFP/5lKT4g4fs/+F/Idn/zPck7f9jkP7Hzj/oUZt/4as0/+dh8y0V9Nf8A DFP7ZP8A0aV+01/4Yb4p/wDzKUf8MU/tk/8ARpX7TX/hhvin/wDMpWP+sGQf9D/Iv/D5kn/z5D+x 84/6FGbf+GrNP/nYfMtFfTX/AAxT+2T/ANGlftNf+GG+Kf8A8ylH/DFP7ZP/AEaV+01/4Yb4p/8A zKVpDiDh+z/4X8h3/wCh5knb/scmc8nzi6/4SM32/wChTmnf/sWHzIfT1/T3/wA98etLX0z/AMMU /tk9f+GSv2mv/DDfFTp/4Svf8O2elL/wxT+2T/0aV+01/wCGG+Kf/wAylX/rBw//AND/ACH/AMPu Sf8Az5NFk+cWX/CRm2y/5lWadv8AsWHzLRX01/wxT+2T/wBGlftNf+GG+Kf/AMylH/DFP7ZP/RpX 7TX/AIYb4p//ADKUf6wcP/8AQ/yH/wAPuSf/AD5D+x84/wChRm3/AIas0/8AnYfMT9B9f6Goq+n3 /Yp/bKI4/ZJ/aaPP/RBvip7/APUqVH/wxR+2X/0aT+03/wCGF+Kn/wAylH+sHD//AEP8h/8AD7kn /wA+TWGT5vy/8ijNt3/zKs0/+dp8yU1jgcdTwP6n8B+uK+nf+GKP2y/+jSf2m/8AwwvxU/8AmUqq 37F37YpJ/wCMTf2l/Qf8WI+KX/zK1MuIeH0tM/yG7/6nmSf/AD5HLJs3dv8AhJzayd3/AMJWZ/8A ztPmakIB6j8e9fTH/DFv7Yv/AEab+0v/AOGI+KX/AMytH/DFv7Yv/Rpv7S//AIYj4pf/ADK1l/rB kH/Q/wAi/wDD5kn/AM+R/wBkZv8A9CnNv/DVmf8A87T5iKEe4/z2ptfT/wDwxb+2L/0ab+0v/wCG I+KX/wAytNP7Ff7Yh/5tN/aXB9f+FEfFL9f+KV/+v70f6wZB/wBD/Iv/AA+ZJ/8APkP7Izf/AKFO bf8AhqzP/wCdp8wFQfY+tRFSOv519Pn9iz9sYdf2Tf2l/r/woj4pf/MrSf8ADFv7Yv8A0ab+0v8A +GI+KX/zK0f6wZB/0P8AIv8Aw+ZJ/wDPktZVnC/5lObNf9ivNP8A52nzIr9AfoKa2M8fj9a+l/8A hiz9sbJx+yZ+0v3x/wAWI+KWPQf8yr2pP+GLP2x/+jTP2mP/AAxHxS/+ZWl/rBkH/Q/yL/w+ZJ/8 +TT+yM2dn/ZOa/8AhrzPT/zGnzPRX0x/wxZ+2P8A9GmftMf+GI+KX/zK0f8ADFn7Y/8A0aZ+0x/4 Yj4pf/MrR/rBw/8A9D/If/D5kn/z5H/ZGbf9CnNf/DXmf/ztPmgEjp/n61IHB68H9P8A63+ea+kv +GLf2xh1/ZN/aXH/AHQj4pf/ADK0f8MW/ti/9Gm/tL/+GI+KX/zK0f6wZB/0P8h/8PmSf/PkP7Iz b/oU5r/4a8z/APnafOFFfSI/Yv8A2xh/zad+0vj0/wCFEfFL/wCZXipB+xh+2Iev7J37S4+vwJ+K X8/+EVp/6wZB/wBD/Iv/AA+ZJ/8APkP7Izb/AKFOa/8AhrzP/wCdp8yv1H0/qaZX0y/7F/7YhPH7 J/7Sx4/6IT8UfU/9StTP+GL/ANsT/o0/9pb/AMMT8Uf/AJlqP9YMg/6H+Rf+HzJP/nyTHKM25pf8 JOa7r/mV5n/87T5por6W/wCGL/2xP+jT/wBpb/wxPxR/+Zak/wCGMP2wx1/ZP/aVH/dCvij/APMt R/rBkH/Q/wAi/wDD5kn/AM+S1lWbrbKs1/8ADXmdv/VcfNVMckYI9/6V9Mf8MYfth/8ARqH7Sv8A 4Yr4o/8AzLUx/wBi/wDbEOMfsn/tK8Z/5oV8Uf8A5lqmWf5Byv8A4Xsi/wDD5kvf/scmkcrzZ/8A MpzVP/sV5n+f9nHzUHz149+3/wBan19Hf8MX/tif9Gn/ALS3/hifij/8y1A/Yy/bEHT9lD9pX6f8 KK+KOP8A1Fqx/t/IP+h9kX/h8yX/AOfBssszZfFlWa+v9l5lf/1XanzTSEgAk9BX0t/wxh+2H/0a h+0r/wCGK+KP/wAy1U5/2Of2u0Zo3/ZX/aPRlHKN8DvicrAlcjKnwwCPlORkc5B9DWs+IcgjFv8A t7Im9kv7cyV3b9M4ZMcozaTS/srNLXV/+EzMtr/9i4+Z2YsST3/T2/Ckr6N/4Y7/AGuR1/ZZ/aNH /dEPib/8zFJ/wx7+1v8A9GtftGf+GR+Jn/zMVwSzzIZNtZ7kd3q/+FvJn/71ztWVZotFleZ6aW/s zMtP/MefOdFfRn/DHv7W/wD0a1+0Z/4ZH4mf/MxR/wAMe/tb/wDRrX7Rn/hkfiZ/8zFZvPciWjzz I/8Aw95N/wDPcf8AZWa/9CvNP/DZmX/zvPnOmP0H1/oa+jv+GPv2tv8Ao1v9ov8A8Ml8S/8A5maP +GPv2tf+jW/2i/8AwyXxL/8AmZoWe5E2l/buRq//AFOsm/8AnuKWVZryv/hLzTb/AKFmZeX/AFLj 5sor6OP7Hn7Wnb9l39or6f8ACk/iX/P/AIRn/PrTP+GPv2tv+jXP2i//AAyXxL/+Zmh57kS/5nuR /LO8m/8AnuZrLM3X/MqzRr/sWZl/87j50qWJNzZPRefx7D/EV9Dp+x7+1vIyon7Lf7Rju5Cqq/BH 4mMzMTgBQPDBJJPAAGSa1k/Yu/bCRQP+GUP2lc9z/wAKK+KPJ/8ACW/KrpZ5kLld57kaUddc7yZX fRa5wvVlvLc25WllWae9p/yK8y02v/zLvkfNtFfSn/DGX7YP/RqP7Sn/AIYv4of/ADLUf8MZftg/ 9Go/tKf+GL+KH/zLV1/2/kH/AEPsi/8AD5kv/wA+DJZZmy2yvNPT+zMy/wDnefND9B9f6Goq+mz+ xh+2CRg/so/tKf8Ahi/ih/8AMtUR/Yv/AGwx/wA2o/tKH6fAr4ofy/4Raj+38g/6H2Rf+HzJf/nw XLK81cU/7LzTfb+zMx/+d5800hAPUfj3r6W/4Yw/bD/6NQ/aV/8ADFfFH/5lqT/hjL9sH/o1H9pT /wAMX8UP/mWo/t/IP+h9kX/h8yX/AOfBn/ZOavfKs0/8NeZf/O4+ZShHTn+f5f8A66mr6U/4Yy/b B/6NR/aU/wDDF/FD/wCZaj/hjL9sH/o1H9pT/wAMX8UP/mWo/t/IP+h9kX/h8yX/AOfARybNdbZX mi20eWZl57f8Jx8100qD1/PvX0t/wxl+2D/0aj+0p/4Yv4of/MtR/wAMZftg/wDRqP7Sn/hi/ih/ 8y1H9v5B/wBD7Iv/AA+ZL/8APgf9k5t/0Ks0/wDDZmX/AM7j5kIwSPSkr6Wb9jL9sHcf+MUf2lP/ AAxfxQ9P+xWpv/DGX7YP/RqP7Sn/AIYv4of/ADLVf9u5A0ms/wAiWmt88yX/AOfJg8pza7/4Sc13 f/MrzPv/ANi49sooor/Lo/ucKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACu5+Gfw68U/Fzx/4R+GngmwOpeKfGmt2eh6RbZZ YVmun/fXl5KqubfTtNtUn1HU7tlKWen2tzdSDy4WNcNX9H3/AARz/ZQ/4RrwzqP7UXjTTdmueL7a 88PfC22u4cS6d4UScwa94pjjlXdFceJL23OlaZOqxzLoljfTQyTWHiFSVJ2V/uA/W/4AfBXwt+z1 8IvBXwk8IxhtN8KaVHb3motCkN1r+uXJN1rviG+VS3+l6xqktzeNHvdLWKSGxgItbWBE9joorAAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKQkAEk4ABJPoByTQBVvJdkewH5pOOOoUfePXv90fUkdKySoPX8 +9SyyGV2c9/ug9lHQdB9T7k1HQBCUI9x/ntTasU0qD7H1oAhopxUjr+dNoAKYUB6cfy/+t/nin0U AQEEdaSrFRlPT8v/AK/+frQBHRQRjg0Umk99QEIB6ioyhHTn+f8A9epaKnlcfhd12f8AX+QFeipy oPX8+9RFSPcf5601JPR6PswIygPTj/Pp/wDqqIgjqPx7VPRVAV6QgHqKmKZ6ce3b/wCtUZBHWgCE oR05/n/9emVYpCoPX8+9AEFNKA9OP8+n/wCqpCpHuP8APWm0DT6PVdn+nVFG6mW0hkmk6IOB/fY8 Ko92OPoMkjANcBLI80jyyHLyMWY+5OePQDoB0AAA4FdBrdz58ot0P7uAksQfvSngn3CLlR3BL57V zxUj3H+etBrFJK6666/kMIB6iomjB6c/zH+P0/Q1NRRtsNpPyfdb/wDB+ZSZCOnP8/xFMq+VB6/n 3qB4u/6j+o/z061V0/iXzW/zXUV2t9V3X6r/ACKpQHpx/n0//VURBHUfj2qyVI9x6/4+lNocWtVq u6/XsVvsVioPX8+9RFSPcev+P+ce9WymenHt2/8ArU+2tpLm4itox88rhR3Cjqzn/ZRQWPPQHvUg bfhrTw8jahKvyxEx2+QRukIw8g9QinYDyNzMOCldrSQWsVtBHBENqRIFHuR1Zv8AaY5Zj3Yk04qR 1/PtQQ3JO+6/r7hhUH2Pr/j/AJz71GVI+nr/AJ6VNRQL3ZbaP+vvK9FSlAenB/T/AOt/nioyCOtB Li16dxKaUB6cf59P/wBVOooBTa80QEEdR+PakqxTCmenHt2/+tQaqSe33dSKilII4NJQMYUB6cfy /wDrf54pmxvT9R/jU1FAH8K9FFFdBzhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSgEkAAkkgAAZJJ4AAHJJPAA60AfVH7Gv7Ne r/tTfHbwt8N7dbq38LwSDxF8QtZtwR/Y/grSp4G1Ro5sEQ6hq8ktvoOjsVk2anqdtcyxPa21yyf2 paFoekeGdE0jw5oGn2uk6FoGmWGi6NpdlGIbPTdK0y1istPsbWJeI7e0tIIoIUH3Y41HOK/P/wD4 Jq/sor+zR8CbPUvEumi1+K3xTSw8U+NzPEFvdEsPId/DPgxyQHjOh2V1Nd6nCw3J4g1TVoDJNBbW hT9Faxk7vyW3+YBRRRUgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVK8c4ESnk4Z+ccdl6jqeSDwQPerbsE VmPRRn6+g/E8VlMxYlm5LHJ/w+gGAPYCgCtRU5APUfj3qMoR05H6/wD16AGUUUUAFMKA9OP5f/W/ zxT6KAICCOopKsVGU9PyP+P+P50AR0UEY4NFACEA9RUZQjpyP1/+vUtFAFeipyoPX86iKke4/wA9 aAG0UUUmk9wGlQfY+tRlSOv51NRU+9Hb3l+KAr0EA9alKA9OP5f/AFv88VGQR1FUpJ7b9uoERT0/ Ko6sUhAPUfj3pgQVR1C4W2t2cY8xvkiHq5zyR3Cj5j64AzzWiykc9R/L/PrXH6lP9qnJUjy4spH3 Dc/M+f8AaPTrlQvQ5oKirvyW/wDkYzBsknJJOSeuSepJ65J9epqMqD7H1/x/zn3q0RjgimFAenH8 v/rf54oNii0ftj3HT8fz74qEqR1/OtAgjgioygPTj27f5/zigClRUzR+2D+n+fpURBHUUAMKg+x9 agaL2x7jp/8AW/z1qzRTTa2FbqtH+D9V/TKBBHWux8O2PlxG9kX55QUhz/DED8zY9ZGGAf7igg4c 1i2dl9suY4QCEzvlI6CNSCx9ichVPQMy8V3yqqKqIoVEUKqgYCqowAB2AAwKG0+ln1tt9xLk1o19 z6d1/kx1FFFIpNPb7hhTPTj27f8A1qjII4NT0EA9aCXBPbR/h/XoV6KkKen5f4f/AF6joFzSjpJX Xf8A4PX5kZT0/L/6/wDn60wgjrU9IQD1FAcsZaxdn2/4HQgop5Qjpz/P/wCvTKCGmnrp/XcCAetR lPT8qkooKU2t9fPr/wAEr0VOQD1H496bsHqf0/woNE09j+FKiiiugwCiiigAooooAKKKKACiiigA ooooAKKK+4f2O/CvhP4r+G/2lfgpq3hjw/qfjjxZ8GtS8cfCTxBeaNp134o0rxz8KLj/AISs+HvD GtS276rpK+MdE/tKz1iGwuYbfULPTlhvY5YgABu2oHw9RX6xfsV/B34Rat8HLzTvi14a0HUPGH7X fjLxX8Efgdr+v6fp9zd+A7vwX4A1vVW8e+Hbm7tbm6s5r/4ka34O8HSyWDQXElwixyyC0WeC78I+ DHgXQvAP7OH7XHxc+I/g/Q9T1+wGg/s7fDjT/Fmi6dq39kfEfxdqU15401XSo9Tt7qLS/Fngrwpo 0l9pmrWKrqlhLczi0ubUSySsr7+TS9b6fgB8KUV95fG/4f6J8QfgD+x78W/hn4O0PStb8SWGq/s9 fEDS/Cei6boyap8UPBOsRL4Z1fVYdMt7W31DxV488PazDqN9qlwrX98bWE3s0jRow9t/bZ+EPwgs Pg/pzfBzw3oOm6/+yf8AEDS/2dvjVrehadp9pfeO9T1XwJoGpR/ETxHLZWsE1zPH8QtG8ceEvtV/ LcXj3QCEx2xt7e1L7eba9Lafn+YH5QUV+sGvR/B79n/48/sOfCXxd8NfhzrFp4L8DeFLr9ot/EHg 3w3qk+teJ/jwXv8AXLbxnLqOmzXGvD4b6Drej6j4XfVpJpNF2KNKjsQi7+Q+EfwL8I/BL9qH9pDV /i74TsfGXwt/ZE0vx54iv/DPiOystQ0bxvdX98PCnwg8P6jbarBdWczeK7nxFpOtWQvLeaLdY75o 5ghhlOb8rrz1t/l94H5nUV+rHh/9mvwFpn/BRHU9H1LTNMvf2d/DVtq37TzLcafb3Xhm5+B8XhZv idolo+mzx/Yr3w6txe6X4Nu7K7jFncQx3NrcJNCWSX8yfF+uweKPFnifxLbaPpfh628Q+Ida1y30 DQ7K103RdDg1XUbm+h0fSNOsYLaysdM02OdbKxtLS3gtre1hihhhjjRUAnf7k/v6Ac7Wlo39kf2v pX/CQf2l/YH9pWP9t/2MLU6v/ZH2qL+0v7KF6RZHUvsXn/YRdkWv2ryvtB8rfX6ceKr34MfsO+DP hT4ZPwI+HHx3+P8A8Q/hv4a+KnjrxJ8adPvPFPgTwXp/jKGa70HwX4f8Ew3lhZ3l9Y2cbPqmsS3U UzT7Jkuby3vIbDRfnHxf8SPg98ZPiL8FdU8JfArQfhF4oufFuj2HxO0jwnqEk3wu8Ti48R6THps/ h3wVqUF1J4bD2bXdvq+nrqdzplwjQKlq0n2i4mL+Wmut10v/AEgPnT4g/wDCv/8AhM/EH/Cqz4xP w9+3f8UqfiCNEXxmdN8mL/kYB4cLaIL77R5//IOJg8nyv+Wm+uOr9Rdc/Zm8PfG3/gpr8QvgXpOn 23hLwJF8QPE2oalpfhCx0rRV0/wp4Y0T+2r3SPDdikdrpGm3eqtbR6Np0jRR2Nhd6lHfXEbW8Eqt 9oN+z/8AHy0vP+EX0z/gk5+ztJ8I45TZLa6v8QvhxefGK50ZWEXnSfFz/hap1O21ya3Bla7j0648 i5fak0qx+c65lp6J6tL892B/PVRX6n237MHgz4R/8FNPAPwK1PRIvEnw21jxf4c1Oy8M+MY7DWn/ AOEa8W+GpNXTw74gWNrrTtSudAvJ7jSHu4pbiG+OmQ6gkrGcERXn7Sn7M3wv+LGp/CDQv2Qfgr4u +Cmi+M7zwj4j8ZeO9Jvtd+MfiK0tdZk0rXPF2j+Lpb+G18Ki4KXWo6LoOmaTDb2NqLW0jnsGybd3 7JvS/wDXmB+WtFfpRcfsYeErv/gob4t/Zii1rUNG+F3hjXdU8T6vqvnG51fSfhvYeD4PiJNp0F1N HO8+pR6Xd23hy21GaC5dbiRNTube58uWKSpf/tjfs7WWsyeEPDv7DHwHufghHdHTs69Z63c/G/Ud CjfyP7TX4qDV2v8AR9du7YfbPLS21BbO5k+zf2ldLH9scv2V9L9Fv6gfEvgz/hU/9geP/wDhYR+I Y8Uf2BF/wq0eDF8NnQD4p+0N5w8fnW2GoroH2XZ5R8OhtR+0bt48vFeeV9+/AHQPht4p+H37fGu6 V4LthomhfCRNb+G8Hi+LSvFHiPwZb3Hj+wh097XXpNMtjBrcOlyrZXeq6Zb2E1wpkQko7bs/9i/w 7retHxnP4I/Y8g/ai+INvPo8Wg6l4zkvbz4T+BrKSO+bUB4m8PhtH0PVdY1SVbP+zV1zxPaoLWC8 ks7eJ7eeS6L7+Vt2uq/D8QPhKiv2T/a5/Z28Q/8ADL2q/Gr4q/stfD79lz4s+CvH/hfRIIfhLfeH 7fwR8Q/B3iiK6s7gy+EPD3ibxNbaBrGg6tHZyi9nu457y3uHiH2hGYWXnHivUPgz+w74L+FPhYfA X4bfHb4+/EP4beGvip488T/GrTbvxX4H8G2HjKKa70HwV4d8FxXlhaXF7YWUbPqesNdQTvOyTLc3 sF3DYaKc19tXta66ee1gPCv2b/B/hTxB+zr+25r+u+G9E1jXPBvw4+G2oeE9X1LTLO91Hw1faj8Q oLC/vNDvLiKSfTLm8sibS5ns3hkmtyYZGaMla+a9N/4VP/wrXxH/AGufiH/wuH+39K/4REaavhv/ AIVqfC2xf7bPiNrph4oGv+Zv/soaYp04pt+1kNmv1D8E/FP4OfFf9k79t3xB4U+Eeg/BX4oL8Ofh 7B4x8P8AgGe9i+GnifRV+JGlPp/iHw74e1CW8n8Janp97LNpuraTb382m3Ntc6Xe2xa5a/EPyv4E 8MeGrr9gb49+LLrw9odz4p0n45/CfS9L8S3Gk2E3iDTdMv8ASdYkv9O0/WZLdtRs7C9kjje7s7e5 jt7l40aaN2VSFfff4kvwX4AfENFfpV4T0/4N/so/s7/Cj4xeOPhD4X+O3xs/aA/4SjWvBegfEYXV 98Nfh54C8L6qNFj1DVvDVtLDF4o1vxHe7bqCK5mRLexcJFcaZNY3Met+pfAHxx+zX+0/dfFuLxr+ zR8L/hv8VvDHwF+LvibwvN8MtKudK+GfiQ6R4Wnul+1eA9Ru9Ug8P+LvDM8cGtaBr+lXu28t01e2 1BI5ItOErv5O219O9tu1+oH5jab/AMKn/wCFa+I/7XPxD/4XD/b+lf8ACIjTV8N/8K1PhbYv9tnx G10w8UDX/M3/ANlDTFOnFNv2shs1o3Xwe8X2nwY0v47ynSv+EG1j4h6h8MbMLeyNrX/CS6boMPiO 5Mun/ZhEmnf2dOgjuhds73G6IwKo3n6K8CeGPDV1+wN8e/Fl14e0O58U6T8c/hPpel+JbjSbCbxB pumX+k6xJf6dp+syW7ajZ2F7JHG93Z29zHb3Lxo00bsqkfbuo/teCz/YS8G/Ef8A4Ze/Y/uvtf7S niHwX/wgd58FWm+G9t9h+HVjqn/CW2nhf/hJ0MPjW83/ANnX2u/b2FxpaJafZE2+YVd9F9q26/AD 8RKK++/2QtK1vxbqnxD1nwR+xjpX7SXxBuNVsrjQX8QJen4K/Dmyv5NSutQstV8K+bpeiXl1dytZ waFa654qgSDTbW4+xwo9rPLd/TH7XP7O3iH/AIZe1X41fFX9lr4ffsufFnwV4/8AC+iQQ/CW+8P2 /gj4h+DvFEV1Z3Bl8IeHvE3ia20DWNB1aOzlF7Pdxz3lvcPEPtCMwsnfW36r8t/62A+TPHHhvw7b fsA/AvxTbaBotv4n1P4+fFTS9S8RwaVYxa9qGmWWhaPJZ6dfavHAuoXdjaSO8ltaT3ElvA7s0UaM xJ+H6++vH3/KOP8AZ9/7OK+Lv/qP6LXwnpem3es6np2kWEYlv9Vv7TTbKIsEEt3fXEdrbRl2wqh5 pUUsxAXOTwKI9f8AE/zAo0V+rXxh8efAv9iTxdN+z/8AD/8AZx+Dvxu8ceCrDR7X4q/Fb49+H7/x xBr/AIv1DSbLVNUsfB3hf+0tMs/DWj6Ut7HZ2s8U3nvKskVxb3U9q+r6p5h8bfCHwc+M/wCzfF+1 Z8IPh7Z/BrxN4U+Itl8NfjL8MtDv7u98FT3GuaW+peHvG/guO9Ly6LaXciLpl5oMbJbwzO/lRA2L 6lrZfbTR7P8ALTpcD89KK/Wzxx4m+A37OXwG/ZK8faf+zt8LfiZ8ZPiT8IXudRPxI0WXVPh/Zafo /iDUILjxJrPhLTbrSU8W+MPEk95Hp66lq9866Vp/h5fITzL2QyctbXHwa/Zy+DHgX9oHxv8AA34f /Fr42ftOa1488ZeC/A3iaxni+C/wk8BaV4jmso44fBFlPHbaxJqd7Oo0bTJrgQ6boqQWsF1psmm3 Ca4X8vJbavX7ttwPy8or9fPgD44/Zr/afuvi3F41/Zo+F/w3+K3hj4C/F3xN4Xm+GWlXOlfDPxId I8LT3S/avAeo3eqQeH/F3hmeODWtA1/Sr3beW6avbagkckWnCX8g6E730tYAooopgFFFFABRRRQA UUUUAFFFFABRRRQAV+qf/BKj9lD/AIXt8aB8T/Fum/aPhj8Gryx1eaO5i3WfiTx4SLrwzoJWRfLu bXSmjHiPWowZUWO10nT72BrbXA1fmp4J8G+I/iJ4v8NeBPCGmzav4n8Xa3p3h/Q9OgB33Wpapcx2 tsrvgrBbo8nm3V1KVgtLZJrmd0hikdf7av2YvgF4c/Zo+Cvg34S+HhDcSaLYi78S6zHF5cniTxfq KpceIddm3Dzdl1e5g06KZpJLHR7XTdNEjx2UZqZuyt1f5dQPfqKKKxAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiimO21cjqThRz1P0B4AyT7A0AVLmTLeWDwvLY7t6HnsMHBHU+oqrVhk/vDJ9e5Jzzn1Jyef rioihHTkfr/n6UAMooooAaVB9j61GVI9x6/4+lTUUAV6KlKA9OD+n/1qjII6j8e1ACUUUUAIQD1F RlCOnP8AP/6/+eKlooAr0VOVB6/n3qIqR7j1oAbRRRQA0qD7H/PWoipHX86nooAr0VKUB6cH9P8A 61RkEdRQAlFFFS4p+T7oCMp6fkf8f8fzqOrFNcqFLPgKoJJPYDknP4Uryjurrut/6/q4GNqlyYYD GhxJNlQckFU/jbIIIJHyrjoTntXJkEdRWldyNcTvL/CThB3VF4UdByfvHvuYgcYqoR1B/GrNoqy8 92VyAetRlPT8qsFPT8v/AK/+frUdBRXI7EfgajKen5H/AB/x/OrZAPUfj3qMoR05H6/5+lAFQjsR +BqNo85x+R/of8/WrZAPUVGUI6c/z/8Ar/54oAoNHjOPyP8AQ/5+tR1fIB4Iq7p1iLq5G8Zhiw8m e5z8qdOjkc+qhh1xQBraRZ/ZrcSOMTTgO2eqp1RPY4O5hwdzbT90VrU8oR05/n/9f/PFMoMZXvr1 /LyCiiigkKKKKDRT76+fUKQgHrS0UF6Nd0RFCOnI/X/6/wDnimVYppUH2Pr/AI+tBLh1i7Pt/wAE hpCoPX8+9PKke49abQLm6SX9f11RCUI9x/ntTasU0qD7H1oBwT1i/l/X6kNFOKkdfzptBm01vofw n0UUV0AFFFFABRRRQAUUUUAFFFFABRRRQAV7V+zl8VZ/gh8dfhX8VonkW38GeMtJ1HV0hV2lufDc 8x07xTYxqmXLah4bvdVsQAr5NxykgyjeK0UAfe37XXx2+HVx8WvhRY/su61NJ8J/2e9J02b4Y6n/ AGXq+jJJ4v1DxZefEfxJr8Wma3p2i6tbSjxFf2emyfadPszN/wAI/FNb+ZbyRXU3a/t5/tEfBT4o 6F4C8Kfs/Xc58PeIfFXjT4//ABbs30rWNKS2+MnxHi0u1v8AR3Gr6VpQv5vDVpYahANS0xL7SrmP WNtpqNyInEf5qUUrLTy/H1/MD9MP2E/2kPgx8K/B/wAQfCvx4uZW07wl4v8AC37Q3wU01dJ1nVIr /wCNHgXSta0200gtpOm6kmnS+IIbnQok1LUm0vTLZdKf7ZqkCvGRxX7Gnxz+GWmfEb4s6B+1Hrlx H8JPj1pMd/8AEHVX0rWNbY+OPDPjKx+IPhfWrnTtB0zWdSuGm1WDWdNc22mT+W2vNLK8Fsk8g+BK KLLXfX8PT8wPX/2gPijd/Gr41/FD4qXbS48b+M9b1nT4ps+ZZ6G909v4e047vmxpmgwabpybudlq uea+5f2o/wBqr4V/Ev8AZx8Jaf4I1O5ufjl8Yx8MLv8AajLaVrFl/pXwR8HP4V8NW82o3+mWum6t D4i1S7HiaE6PqOr/AGM6ZFDfy2kxSKb8u6KLLTy/r+vMD9Rp/wBqr4VSfsRDQl1S4/4apm+HNl+y 9cRjStZAHwGsPHcvjSC/GtHTP7BMDaIIfBMmm/222qEKLhdMW0VZk+Ude/4Zl/4ZW8D/ANg/8JF/ w1R/wsrWP+E38/8Atv8AsD/hXf2TV/7N+z+b/wAU3t8z/hHvsv2H/iffb/7f/tP/AIl39l18z0UW t33v/wAD08gP0rl+JP7LH7VfgD4Z6d+0P8QfF3wB+Nfwo8E6R8NE+JuleBtQ+JPgr4geCfDnnR+G n1zw5oM8PiG08U6XbyyW1zeRPDb3XmSXM13eJNa2Gi+G+PD+yx4D8a/B6z+CPivx947HhbxTp+s/ Er4r+KtIbwxoOvQx65pN1aweFPAH2S78Q6ZZ6LZWl3LPPqF7Nf301y8CWlyI7eVfkaii3m7a6ev/ AA4H6A+LP2qtF8E/t9+N/wBpb4bGDx54I1Dx3rtz9iu7TUdHtfGfgbxLo7aDr+mS2mtafa6hYPf6 XeXi2bajpYaz1CK0u5bOZIfKk2r34e/8E1NR1V/H1n+0R8ZPD/hSWb+1JfgI/wAI77UPiFAjt9om 8N6d8ShfN4IjijYtZWd5f/bZY7cRtdajdzq93J+clFFuza0t8gPsf4D/ABX+EHg79tXwH8W4NHk+ E3wZ0X4lf27baPNc+IPGU/hLwwlvdQ28VxcQW+reINYuF3pJOLe2vJVmneOBWt4kI+Z/GmqWOreP fFmtafP9o0zU/F+vapY3PlTRefY3us3V3bT+TPHHcR+ZbyJJ5U0UcybtkkaOCo5Cii2t/KwH6V/F j9r7w14Z/wCCifir9qL4S3EHxC8B3OqaJCba6sNW0O28YeFLz4aaF4M8XaRLZeINLsdTsJJUTVbe zm1DSdkOoWtpqAtru1WMT07/AOHn/BNTWtYk8fWP7Rvxd8IeFLi5OrXHwHn+D2qav48toZHNzN4Z 0j4jQ30vguCOMlrDT73UjqLxQCJrzULyZZLt/wA4KKLbWbWlvl9wH2/8Ifiz8HPB/hP9trRbO41b wdpPxX+HH/COfB/w1ro1LxNrNyU8b2erWOianrmi6KNNhvLXRod8+oaoNNsZHjMS3dxOQ83o/wAA /jL8FfEH7L17+zP8TPjR4/8A2adQsfidqPxEt/iB4O8La34w8N+OLHVdFstKfw/400Hwnd2PiK8u NNlsklsQ066WYorGSR2uLRET82aKLLz3T+aVv6uB+lfjD4jfspeDv2VPjj8BfhL478ZeNvGPiDxl 8JfFY8feMPDGreHo/idc6TqmsprNj4Y8Pw2+px+E9C8FaYLS+SXxlrNrrOv6h4i1SO0SeHTrSIk3 xH/ZX/as8AfDKw/aG+Ivi39n/wCNfwo8EaR8NB8SdM8Caj8S/BXxC8FeHPNj8My6z4e0CaDxDZ+K dMtpZLa7u0khtrvzJLmS6vFmtbDRfzUoot5u97367WA/VSD4ifsUfCP9m39pn4NfCjx34v8AHfxB +JHhHwhDF8TPFXg3WfDVh4zv9J8Zaffx+EvB3hyGy1GfwvpOlafDfazqd/4v1DT5dTvp7a2gub8W lpBZ/M/g34oeBdK/Ys+NHwlv9c+z/EHxZ8Yvhr4q8P8Ah/8AszWJf7Q0Hw/puqW+r3/9qw6fJolr 9kmuYU+y3upW17Pv3WtvMquy/IdFFvN7p/NAfof8Pviz+zl8a/gL4E+AP7TniHxb8LPEPwbvPEZ+ Evxq8L+G5fGmnReGfFV+uqat4R8b+FrFl1m/htdS2z6TcaWN628NvALvTBb3ceufT/7Kmg/sk+Ab v4+aD8H/AB94y+PPxAvP2X/jjqGpfE7VvBF18NPA3g7wrp/hf/TLXRfDOt3F94iutc1m9ubC2vdV 1GWGzs9Phe3spFa+uobj4b+EHxg/Zkl+G9l8Jv2jfgZq2qWmi6tqur+H/i/8GdR03w98WbU6zJHJ e6b4hg14t4f8Y2aGGCLS31aWJdHtLeO2tbN3eW4bs/FX7R/7Pnwz+GHj74YfsifDn4jaLe/FrRv+ EV+Inxd+M+taBqHj258DvPHcX/gvw/o3hJT4c0jTtdeNYtavonWa8swbae0nnTTr7S010V9/K26d 7/p3A8+8G/FDwLpX7Fnxo+Et/rn2f4g+LPjF8NfFXh/w/wD2ZrEv9oaD4f03VLfV7/8AtWHT5NEt fsk1zCn2W91K2vZ9+61t5lV2X1D4NeNP2cPiH+yhd/s4/G/4ta58DNd8MfGy8+L3hXxna/DrXfiV o2uWWq+DrTwxd+HrjRvDlxbX9vqEUttNci5ubqxs1R7Ixzzn7XCn550U7b76u/zA/TD4JfF/4Faz +zZrX7MHj345/ED9nh9L+LOteP8AS/if4Q8Ha94l8O/EXRtR0u10eHS/G3hbwvfW3iVrq2FjDd2V rLdtp0Ma2PnTS3VkirF4w+I37KXg79lT44/AX4S+O/GXjbxj4g8ZfCXxWPH3jDwxq3h6P4nXOk6p rKazY+GPD8NvqcfhPQvBWmC0vkl8Zaza6zr+oeItUjtEnh060iP5qUUW83ve3mB9eeL/AIoeBdU/ Yq+D3wksdc8/4heFfjR8RvFmveH/AOzNYi+weH9e0fTLXSdQ/tWbT49Euvtc9vNH9ls9SuL2DZuu baFGRmw/2mrr9m6x8e+B739k6bxNbeF7P4eeD7rxHca82tpfwfE23mvptamtm13/AEtZooU0iS9a w/4kQ1hb46B/xLBb18v0UJW77t/f/WgH6g+PvF/7GX7Ymp2vxZ+Kvxa8Wfsv/G3UdK0iz+KFvD8L 9Z+KPgDxxrejaba6WPE/haDwrdW2qaDc6rZ2luLy01J47aCaJEWC7mS51jVPKPjt8afgroHwT0j9 lv8AZn/4SrW/Aw8ar8RviX8U/GthBo2t/Ejxdbaa2laTa6ToMRabRPCOjWj+ZbWl95V7LeRQPJAJ YbzUdZ+FaKLetlsui/rpcD68/aR+KHgXx98Lf2SfDnhLXP7W1n4Y/Be68J+OLP8AszWLD+xPEEni rU9STT/tGp6fZ2upbrK4hm+1aRPf2Q3+WbkSq0a+p/D74s/s5fGv4C+BPgD+054h8W/CzxD8G7zx GfhL8avC/huXxpp0XhnxVfrqmreEfG/haxZdZv4bXUts+k3GljetvDbwC70wW93Hrn54V9lfCD4w fsyS/Dey+E37RvwM1bVLTRdW1XV/D/xf+DOo6b4e+LNqdZkjkvdN8Qwa8W8P+MbNDDBFpb6tLEuj 2lvHbWtm7vLcMWsuujvpur3+/fbsB9yfsqaD+yT4Bu/j5oPwf8feMvjz8QLz9l/446hqXxO1bwRd fDTwN4O8K6f4X/0y10XwzrdxfeIrrXNZvbmwtr3VdRlhs7PT4Xt7KRWvrqG4/FGvv3xV+0f+z58M /hh4++GH7Inw5+I2i3vxa0b/AIRX4ifF34z61oGoePbnwO88dxf+C/D+jeElPhzSNO1141i1q+id ZryzBtp7SedNOvtL+AqEt99bb77fgAUUUUwCiiigAooooAKKKKACiiigAoor6K/ZV/Z78QftO/G7 wh8KNE+0WtjqNydT8X63BGHHhvwZpkkUmv6yxZWiE6wyR6fpSTAQ3Ot3+mWcjItyXU21A/Yf/gjd +yf5EGpftV+NdMxNcDUfC/wht7uHBjtx5lh4s8awbwebhvtHhTSJ1KssUfibfG0dxZTV+/8AXPeE vCnh/wAC+F/D3gzwpplvo3hrwro2naBoWl2q7YLHS9LtYrOyt0zlnKQRIHlkLSzSb5ZXeV3Y9DWD d3cAooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVctvbPZSQv8mYc9yMD2HHDGpZGwMAkFuAR2Hc+x7D 3IqIAAADoBgfQUEzvbRevoFRlPT8v8P/AK9SUUGam15orMmeowf8/n/nmoipH09f89KukA8GoymO nPt3/wDr0Gqknt93UqUVKyA9OD6dv/rf54qMgjrQMSiiigCMp6flTCCOtT0hAPBoAgop5THTn27/ AP16ZQAUUUUANKg+x/z1qIqR1/PtU9FAFeipSgPTj+X/ANaoyCOooASgjPBoooAjKen5H/H/AB/O o6sUhAPWgCCsbVrnaq26Hl/mkI7ID8q8HqxGTkH5R7itmYrCjSMflUZPr7AepJwB6k9K5KdXlkeU nLOxYj0yeAPZRgDvgDPc0FwV3fovzKlIVB6/n3pxBHUUlBqQlSPcetMIB61ZppQH2P8AntQBUKEd Of5//X/zxTKslSOv59qaVB6/n3oArFQfY+tRlSPcev8Aj6VYKke49f8AH/OPem0AVioY4xkngY6k +nv6V1tjai1gVD/rG+eQ/wC0QPl6nhR8o9cE96zdMsxNKZmHyRY29MGXqvGP4R8xxjB2+tdAVI9x 6/4+lBnN9PmxtIVB6/n3paKCVJrTddn/AFoQlSPcev8Aj/nHvTasU0oD7H/PagLJ/C9ez/R9SGil Kkdfz7UlBO24UUUUDTa2CiiigtT7/eFMKA9OD+n+fpT6KC2k13ICCOo/HtSVYphQduPY/wCf8aCH FrWL+X9bkVJgeg/IU4gjrSUBzr7S19F+ux/CPRRRXQZhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFf1of8Etf2UP8Ahn/4IxePfFmm/Zvi j8YrXT9f1aO5i23vhzweEa48K+GSsiiW1uZre4bXddgKwyrqF/b6ZexvJocDj8V/+CY/7KB/aO+O dt4l8U6b9p+FXwkm07xN4qW5iLWXiDXvOeXwr4QO4GO4ivb21k1TWoGWSGTQ9MurC48p9Vs3b+uj p0rOb6ff+gBRRRWYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUdOtFNYbhtzjPU+3p+PT6ZoE2krshzuO71 6ey9vz6n647CilII6j8e1JQPfYKKKKCXFPyfdBRRRQZuLj/mv60EIB6j8e9RFD9R/nt/+upqKBqb W+vn1/4JTKen5f4f/XphBHWrpUH2Pr/j/nPvUTIe4yP8/lQaJp7FainlCOnP8/8A69MoGFIQD1H4 96WigCIoR05/n+X/AOumVYppUH2Pr/j/AJz70AQ0U4qR1/Om0AFBAPWiigCMp6fl/wDX/wA/Wo6s UhAPWgCCinlCOnI/X/6/+eKrXEohiZ+p6KPVjwOx4HU8dAaA3MrU7jc4gU/KnzPju56L1/hHJyOp 9RWVU7DeSzcsSSW4BJPJJxxz9PpioipHuPX/AB/zj3pNJ+T7rf8Ar1NLSjtqv66dCNkVhyPx/wA/ 59KrvERyOR/n/P8AWrVFK7W+q7r9V/kUpp+TM+irrRqw6YPb/Pb8PxzVZo2X3H+f8+vtVb7FEdMK A9OP5f8A1qfRQBAQR1FNERkZVUfMxAAHck4/yePU1ZIB61p6baZJuD0GVjB9ejN68D5QfXd+AJuy bL9vCtvCkS87Ryf7zHlj+J6DsMDtU1KQR1FJQYPXUYUB6cH9P/rVGQR1qeigCvRUhT0/L/D/AOvT CCOtACUwoD04/l/9an0UFKXSSuvxXoyAgjg0lWCAetRlPT8v8P8A69Act9Yu/l1Xy/yI6KKKCQoo ooGm1sFFFFBopp76P8P69QIB603Yvp+p/wAadRQVZPdJn8uP/Do79tf/AKErwj/4cLwx/wDJlH/D o79tf/oSvCP/AIcLwx/8mV/W9RV877L8f8zA/kh/4dHftr/9CV4R/wDDheGP/kyj/h0d+2v/ANCV 4R/8OF4Y/wDkyv63qKOd9l+P+YH8kP8Aw6O/bX/6Erwj/wCHC8Mf/JlH/Do79tf/AKErwj/4cLwx /wDJlf1vUUc77L8f8wP5If8Ah0d+2v8A9CV4R/8ADheGP/kyj/h0d+2v/wBCV4R/8OF4Y/8Akyv6 3qKOd9l+P+YH8kP/AA6O/bX/AOhK8I/+HC8Mf/JlH/Do79tf/oSvCP8A4cLwx/8AJlf1vUUc77L8 f8wP5If+HR37a/8A0JXhH/w4Xhj/AOTKP+HR37a//QleEf8Aw4Xhj/5Mr+t6ijnfZfj/AJgfyQ/8 Ojv21/8AoSvCP/hwvDH/AMmUf8Ojv21/+hK8I/8AhwvDH/yZX9b1FHO+y/H/ADA/kh/4dHftr/8A QleEf/DheGP/AJMo/wCHR37a/wD0JXhH/wAOF4Y/+TK/reoo532X4/5gfyQ/8Ojv21/+hK8I/wDh wvDH/wAmUf8ADo79tf8A6Erwj/4cLwx/8mV/W9RRzvsvx/zA/kh/4dHftr/9CV4R/wDDheGP/kyj /h0d+2v/ANCV4R/8OF4Y/wDkyv63qKOd9l+P+YH8kP8Aw6O/bX/6Erwj/wCHC8Mf/JlH/Do79tf/ AKErwj/4cLwx/wDJlf1vUUc77L8f8wP5If8Ah0d+2v8A9CV4R/8ADheGP/kyj/h0d+2v/wBCV4R/ 8OF4Y/8Akyv63qKOd9l+P+YH8kP/AA6O/bX/AOhK8I/+HC8Mf/JlH/Do79tf/oSvCP8A4cLwx/8A Jlf1vUUc77L8f8wP5If+HR37a/8A0JXhH/w4Xhj/AOTKP+HR37a//QleEf8Aw4Xhj/5Mr+t6ijnf Zfj/AJgfyQ/8Ojv21/8AoSvCP/hwvDH/AMmUf8Ojv21/+hK8I/8AhwvDH/yZX9b1FHO+y/H/ADA/ kh/4dHftr/8AQleEf/DheGP/AJMo/wCHR37a/wD0JXhH/wAOF4Y/+TK/reoo532X4/5gfyQ/8Ojv 21/+hK8I/wDhwvDH/wAmUf8ADo79tf8A6Erwj/4cLwx/8mV/W9RRzvsvx/zA/kh/4dHftr/9CV4R /wDDheGP/kyj/h0d+2v/ANCV4R/8OF4Y/wDkyv63qKOd9l+P+YH8kP8Aw6O/bX/6Erwj/wCHC8Mf /JlH/Do79tf/AKErwj/4cLwx/wDJlf1vUUc77L8f8wP5If8Ah0d+2v8A9CV4R/8ADheGP/kyj/h0 d+2v/wBCV4R/8OF4Y/8Akyv63qKOd9l+P+YH8kP/AA6O/bX/AOhK8I/+HC8Mf/JlH/Do79tf/oSv CP8A4cLwx/8AJlf1vUUc77L8f8wP5If+HR37a/8A0JXhH/w4Xhj/AOTKP+HR37a//QleEf8Aw4Xh j/5Mr+t6ijnfZfj/AJgfyQ/8Ojv21/8AoSvCP/hwvDH/AMmUf8Ojv21/+hK8I/8AhwvDH/yZX9b1 FHO+y/H/ADA/kh/4dHftr/8AQleEf/DheGP/AJMo/wCHR37a/wD0JXhH/wAOF4Y/+TK/reoo532X 4/5gfyQ/8Ojv21/+hK8I/wDhwvDH/wAmUf8ADo79tf8A6Erwj/4cLwx/8mV/W9RRzvsvx/zA/kh/ 4dHftr/9CV4R/wDDheGP/kyj/h0d+2v/ANCV4R/8OF4Y/wDkyv63qKOd9l+P+YH8kP8Aw6O/bX/6 Erwj/wCHC8Mf/JlH/Do79tf/AKErwj/4cLwx/wDJlf1vUUc77L8f8wP5If8Ah0d+2v8A9CV4R/8A DheGP/kyj/h0d+2v/wBCV4R/8OF4Y/8Akyv63qKOd9l+P+YH8kP/AA6O/bX/AOhK8I/+HC8Mf/Jl H/Do79tf/oSvCP8A4cLwx/8AJlf1vUUc77L8f8wP5If+HR37a/8A0JXhH/w4Xhj/AOTKP+HR37a/ /QleEf8Aw4Xhj/5Mr+t6ijnfZfj/AJgfMn7IX7OWifsufAzwn8L9OFtc64kR13x3rdumP7f8barD A2tXwcqrvZ2Yht9F0fzFWRdG0vT1mU3HnO/03RRUb6gFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUg GM+p6/0H4UtFBMo8y3sFMKZ6ce3b/wCtT6KDP3o/1oyAgjg0lWCAetRlPT8v8P8A69Bamnvo/wAP +AR0UUUFhRRRQQ4J7aP8P+AFFFFBnZxfYYUB6cfy/wDrf54qJk7Efj/gf8/nViigtT7/AHoolCPc f57U2rhT0/L/AOv/AJ+tRMg7jB/z+f8Anmg032IKKcVI6/nTaACmFAenH8v/AK3+eKfRQBAQR1pK sVGU9Py/+v8A5+tAEdFKQR1pKACuf1CbzZtq/cjyoI6M3RjwcHBG0d8A9jWtdz+TF8pw7nanqP7z dD90fqQO9YNA07bbleipSg7cex/z/jUZBHWgtT7/AHoYUB6cf59P/wBVREEdR+Pap6KBuKlqtPNb FeipSmenHt2/+tUZBHBpW6rR+Wz9V/TFeUd9V/XXoQtEG6cH/P8AnnPtiq7Iy9R/n/P4e9XaCAet K9t9PPp/wPn95aknt9xUhiaaRI16scE+g7sfYDJ/SupRFjRUUYVFCj6D+p6n3qnY2mxTNgBpBhR3 Ceo/3jz9ADzmr1NNPZmc3d26L8wIzwajKen5H/H/AB/OpKKZBXoqcgHqKjKEdOf5/wD1/wDPFADK QgHg0tFAERTHTn27/wD16ZVikIB6j8e9AEFFOKEe4/z2ptACEA9ajKEdOR+v/wBf/PFS0UFXT+Jf Nb/PuV6KmKg/X1/z1qMqR7j1oBx6rVd1+vYbRRRQSFFFFA1JrZnqFFFFAgooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKCHBPbTy6f8AQgHqPx71GUI6cj9f8A69S0UEXlHT8H t8v+AV6KmKg+x9f8fWoypHuPWg0Uk/J9htFFFBVr7hRRRQZuHb7v+D/mFIQD1FLRQQm4vt5ETIe3 I9O//wBf/PFQlB24Pp2/+t/nirdIVB6/nQaKae+n5FEgjqKSrTIR7j6fzFQlPT8j/j/j+dBZHRQR jg0UAIQD1FRsmMkdB69qlqneS7FEan5nBz7J0PY/ePHUcA0AY1y7TSFgflHyov8Asjv1Iy3X8s9K qVfKg9fzqJk9RkfqP8KV+j0f4P0f/DMbXVar8V6r/h0VaCAetPKEdOf5/wD1/wDPFMpiIyh7c+x6 /wCfyqOrFIQD1H496BptbMgoIB608oR05H6/5+lMoNFNPR6fl/XqRlPT8qfbwmaVU5AHLn0Udfz4 A+uaWta1i8uPcRh3wTxyAPug/mSfc0CkktVpfoWQAAABgAAADoAOAPwoIB6j8e9LRUOHWLs/66mZ EUI6cj9f8/SmVYppUH2PrSU2tJL5/wBfoBDRTipHuPX/AB9KbWiaewCFQev596iKke49f8f8496m ooAr0VMUB9j/AJ7VEVI6/n2oASmlQfY+v+P+c+9OooAhKkdfzptWKYUB6cfy/wDrf54oAiopSCOt JQNNrZ2GFAenB/T/AD9KjII6j8e1T0UDvF7+6+62+aK9FSlB249j/n/GmbG9P1H+NAOL7X81qj06 iiigkKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooBpPcKKKKDNw7 fcMKA9OD+n+fpUZBHUfj2qeigSk46PX13K9FSFPT8qYQR1oNFJPb7uolFFFANJ7oKKKKDNwa21/P /ghTSoPsfWnUUCUmv8n/AFoQMnqMj1/zyKhKEdOR+v8A9ertMKA9OD+n/wBag0Uk/J9iizBAWbgK CT+H9f61jSlpHMh6tjj0A4Axk9PYnnJ960r2TBEQGDwzn9VXpg9ieeOOOaz6Bu/S3o+vz6Feipio PsfWoypHuPX/AB9KN9wUteqfb/J9SMqD7H1qFo/UfiP8/wA/wqxRU2a21XZ/o/0ehd099H3X6r9V qUSpHuPWm1dKA9OD+n/1qgaP1GD+h/z7U009Nn2e/wDwfkJprXdd1t/wPmQ00qD7H1p5Ujr+fakA JOAMk8ADqT6UxD7eAvJkjKJyT2Jzwp5GM9e44x3rVp0EXlRhf4jy3+8f8OlPKA9OD+n/ANb/ADxQ BFRSkEdaSgAooopNJ7q4BTCgPTg/p/8AWp9FQ4taxfy/rcCAgjrSVYqMp6fl/h/9emp9Ho/w/wCA BHRSkEdaSrAYUB6cfy/+tUZBHBqeggHrQBXoqQp6fl/h/wDXqOgAqMp6fl/9f/P1qSigCuRjg0VO QD1FRlCOnI/X/wCvQAyiiigd2tm18z0iiiigQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFAmk90FBAPWiigzcGtVr+f9ehGUPbn2PX/P5VHVikIB6j8e 9AKbW+v5kFFPKEdOf5/l/wDrplBomns7hRRRQDinv94VHLIIo2c9hwOOWPAAyR3984zUlZd5IXfY PuIevPLkYOeg+XkDr1P4BnyO66oqMS5Zm5LElu2Sev09vSoinp+R/wAf8fzqSig1K9FTkA9RUZQj pz/P/wCv/nigTSe6ISgPTg/p/wDWqMgjqPx7VPRQK0lt7y7Pf5Pr8yvQRng1IU9PyphBHWk0nuOM uz16p/qiIp6fkf8AP8/zqS2hBk8wjAToPVj0OPbr6ZxjpSgEkAdTV1V2qF9Ov170JNdbrz3/AOD+ ZTafSz8tv+B+Q6iiimIKjKen5f4f/XqSigCAgjrSVOQDwajKY6c+3f8A+vQAyiiigAooopOKe/39 QEIB4NRlMdOfbv8A/XqWiotKO2q/rp/kBXoqcgHqPx71EUI9x/ntVKafkwG0hAPWloqgIihHTkfr /wDX/wA8UyrFNKg/X1/z1oAhopxUj3HrTaAEKg9fzpnl+/6f/XqSigD0CiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooJcU/XugppU H2Pr/j/nPvTqKDNxlHVfev1ISpH09f8APSm1YphQHpwf0/8Arf54oKU+/wB5Vmk8tCf4jwo46+uC eQOp61mY9efXPf3P481PO5d/9lcheuD6tg45J9ugHrUFBoRlPT8v8P8A69MII61PSEA8GgCCinlM dOfbv/8AXplACFQev596iKke49f8f8496mooAr0hAPBqcoD7H/PamBGLBfXvzigTSfr3W46CIcue ey57epyPy6DipihHTn+f/wBepAAAAOgGKWga9b+ZXoqcqD1/PvURQj3H+e1ADaKKKACiiigBCoPX 8+9RFCPcf57VNRQBXoqYqD7H1/x/zn3qMqR1/OgBtFFFABRRRUuKfk+4DSoPsfX/AB/zn3qMqR1/ OpqKm8o76r+vu+YFeipSgPTj+X/1v88VGQR1qlJPb7gEphQHpwf0/wA/Sn0VQEBBHUfj2pKsU3Yv p+p/xoA7qiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACq1zJtTYPvOCO3C/xH8R8o9Cc9qsk4BJ6Dk1nufMYse/TrwB0H9T 7k0E8qun/wAMyvgdMcelRlPT8v8A6/8An61MUI9x/ntTaCiAgjrSVOQD1FRlCOnP8/8A69ADKQgH qPx70tFAERQjpz/P8v8A9dMqxTSoPsfX/H/OfegCGpEHf8v8/wCf1pNhzjt3I9P6enPepaACiiig AooooAaVB9j6/wCP+c+9RlSOv51NRQBXoqUoD04/l/8AW/zxUZBHUUAJRRRQAUUUUAMKA9OP5f8A 1v8APFRkEdanooAr0VIU9PyP+P8Aj+dRkY4NABRRRQAUUUVDgnqtH+H/AAPkBGU9Py/+v/n61GRj g1YpCAeopc0o6SV/P/g9QIOvSr/9mXn/ADyH/fyP/wCKqfTbTzJhMwzHEcjPeUYKjt9375x0IUEY NdFVp3V0AUUUUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAoopGYKCTnA9Bk+wA9SaAIpDn5AfQt06dlI6/N1PHIBHeoyoPsfWlGeST kkknrjnsM9gMAfTOM0tBk5u+mxCVI9x6/wCPpUZUH2Pr/j/nPvVqmFAenB/T/wCtQWpJ+vZlQqR1 /Om1ZII6j8e1RlAenH8v/rf54oKISoPX8+9RFCPcf57VOQR1pKAK9FTFQfY+tMCHPPT+f+fw70AO QYGe5/l/nn/9VBQHpx/L/wCt/nin0UAQEEdaSrFRlPT8v/r/AOfrQBHRSkEdaSgAooooAKKKKAIy np+R/wAf8fzqMjHBqxSEA9RQBBRTyhHTkfr/APXplABRRRQAUhAPUUtFAERQjpyP1/8Ar0yrFIVB 6/nQBBRTipHuP89abQAUqqXYKoyzEKAO5JwB+dJWvpkGWNww4GVj9yeGb8B8o6g7m7ijfcDTt4Vg iSMYyBlj/eY8sfz4GeQoA7VNRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABULncwHZTk9Dlu3b+H6jn6VIzbRnv0H1PT8O59 gahHHv6n1Pc/iaA3CiiigycGttfz/wCCFFFFBAVGU9Py/wAP/r1JRQWptb6/mVyOxH51GU9Py/8A r/5+tWyAeDUZTHTn27//AF6DRNPZlQjHBoqcgHgioyhHTkfr/wDXoGMooooAKKKKAEIB6ioyhHTk fr/9epaKAK9FTlQev51EVI9x/nrQA2iiigAooooAKQqD1/OlooAhKke49abVimlQfY/560AQ0UpU jr+dJQAUUUUAFNKg+x/z1p1FADI4XkkSNRy5xnsB1JPsoyT3OOM11EaLGixoMKgAH+J9STyT3JJq jYQ7VMzDl+E9kB5P/AiPToAQcNWjQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSHpgdTx9B3PUdP54oE3ZX7ELHc2eoHA9z 3PT8Bz2yOtJTyhHTkD8//r/54plAJp7MKKKKBhRRRQJxT3+/qFFFFBk4teaCiiignbYQgHqPx71G UI6c/wA/y/8A11LRQaKff7ysVB6/nURUj3H+etXCoPsfX/H/ADn3qMqR1/Og0TT2KtFTFQfY+tRF SOv50AJRRRQAUUUUANKg+x9ajKkdfzqaigCvRUpQHpwf0/8ArVGQR1FACUUUUAFFFFABTCgPTg/p /wDWp9FAEBBHUUlWCM8Goynp+X/1/wDP1oAjqa3hM0qp26ufRR1/E9B7kds1DW5ZQ+VFuYYeTDH1 C/wj24OSOuTg9KALYAAAAwAAAB0AHAH4UtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIOcn16fT/6/X8qWigmSbWn/AA4U hUHr+felooMtU+qZCVI9x6/4/wCce9NqxTSgPsf89qC1Pv8Aev8AIhopSpHX8+1JQab7BRRRQAUU UUEuKfkwooooMnFrf7+gUUUUAm1sMKA9OP5f/W/zxUZBHBH+Bqeig0U099PPp/wCoUB6cH9P/rVG QR1FWynp+X/1/wDP1qMjsR/n/Pegsr0VIU9PyP8Aj/j+dR0AFFFFABQRng0UUARlPT8j/j/j+dR1 YpCAeooAgop5Qjpz/P8A+v8A54plABRRRQAUUUdelAFi2hEsg3AFUwzZ/QfiRz7A1sVDBF5UYX+I /M31P+AwPwqagAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKBNJ7hRRRQZuDW2vl1/wCCFMKA9OP5f/Wp9FBK bT00/rsQEEcGkqwQD1qMp6fl/h/9eg0U099H+H/AI6KKKCwooooAKKKKCHBPbTy6f8AKKKKDNprd BSEA9RS0UApNbfd0IihHTkfr/wDXqMgHgirNIVB6/nQaqafkymUI6c/z/wDr/wCeKZVoqR7j/PWm FQev596CiCinFSPcev8Aj/nHvTaACiiigApCoPX8+9LRQBCVI9x6/wCP+ce9NqxTSgPsf89qAIau WcW9y7DKp0z3bt+Q5+uKrBGLBQMkkAY7k/55/PpW1HGI0VB2HJ9SeSfxPbtQA+iiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooE4p7/AH9QooooMnBrzQhAPWoyhHTkfr/9f/PFS0UCUmvTsV6K mKg/X1/z1qMqR7j1oNVJPyfYbRRRQUFFFFANJ76hRRRQZuHb7n/mFFFFBntuFNKg+x9adRQUpNea 8yEqR1/OoygPsf8AParVMKA9OP5f/W/zxQaqSe33FMqR1/PtSVZII4IqMoD04/l/9agZFRSkEcGk oAKKKciF2Cjv39B3J+lAFq2j6yH6L0/E/XsPxq5SKAoCjoBgUtABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU UAFFFFABRRRQAUUUUAFFFFABRRRQS4p+TCiiigycWt/vGFAenB/T/P0qMgjqPx7VPRQNTa81/XUr 0VKUHbj2P+f8ajII60Gqknt93USiiigYUUUUCaT3QUUUUGbg1tqvx/4IUUUUEARng1GU9PyP+P8A j+dSUUFqbW+v5/8ABK5HYj86jKen5f4f/Xq2QD1FRlCOnP8AP/6/+eKDRNPZlSr9tHtXeerdOnC/ z5/liolj3sARwOvXj+XXpV7pQMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigAooooAKKKKCHBPbT8v8AgBQQD1oooM2mt9P67kZT0/Ko6sUhAPUfj3oKU2t9fPr/AMEg op5QjpyP1/z9KZQaJp7MKKKKBhRRRQS4p+vcKKKKDNxa813CiinKMn2HX/CgSvdW3HouBnuf5dqf RRQbhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUA0nvqFFFFBm4dvu/4P+YU0qD7H1p1FBGqfVMhKke49f8fSm1YphQHpwf0/+tQWp9/vIqKUgjrS UGm4UUUUAFTKMD3PX/P+e9MQZOew/nUtArJO6WoUUUUDCiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigTSe4UUUUGbg1tqvx/4IVGU9 Py/w/wDr1JRQSm1t9xAQR1pOtTkA8GkCAHOfp/n/AOtQaxlfTr+AoGAB+f1paKKCgooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigAooooJcU9/vCiiigIx5b9X+gUUUUFBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFfn r/wVF+NvxO/Z5/Y78cfFb4QeJn8I+O9A8TfDyDTNaXTNG1lYrbVfGekadqVtLpuv6fqml3MF7Y3M 9tKtxZSFUkLwtFKqSL+JPwN/4OB/i94fkstM/aB+EnhT4i6YmyG48TeAbq48D+KlTIL3t1pN82t+ GdYuQNwFpYp4RtnBQ+dGUYy/onDnhdxbxbkFbiDh/D4PH4ehjsRgKmC+u08NmDq4elh60p0qWJhT w9aEo4iChGOLp1XKMk4/DzfA8Q+JfCnCmeUMhz/FYnAYjEYKhjqWLeDq18B7KvWxFCMatbDOrWoT jPDzc3PCzpqMoy59JW/rAor5P/ZJ/bP+Cn7aXg3WfGXwbuvEip4Z1Cy0rxRoPizQZNE1vQNQ1C1k vLK3umguNR0W+FxBFM6T6LrOpwJ5TLPJDIVRvrCvh8wy7H5TjcRl2Z4TEYDH4Sp7LE4TFU3Sr0Kn LGajUg3K14ThOLUpRlCcZxlKMlJ/Z4HHYLM8Jh8fl2KoY3BYqmquGxeGqRq0K9NuUVOnUikpLmjO L0i4yhOMoxlGUUUVT1DULHSbC+1XVLy207TNMs7nUNR1C9mjtrOxsbKF7m7vLu4mZIre2treOSae aV1jiiR5HZVUkfxVftwf8HBn7Rfjj4ieIvC37Her6b8IfhDoepXWmaJ43n8LaH4h+Ifj63tJpIH8 QXI8YabrOkeFdG1TYtzo2kWGiQ+ILO0ZJtU1r7VcvpuncZ2JN7H9sNFf5y//AA+L/wCCl3/R2Hjb /wAJ74ef/MdX7i/8Eg/+ChH7Wnxf+En/AAUO+Inxm+Kl38WdY+AHwQ0b4hfDex8YaRosOj6drtl4 Z+MWuTx3kHhWx8NXt5p+q3XhXRYdSg+3wzta2xSzurKWRpqBuDSvp/w+h/VHRX86n/BIH/grX+0n +31+0N8QPhP8ZfCXwX0Dw54W+DOsfEPTrv4ceGvGmi6zLren+N/AfhuG2vLnxH8QvFtlJpjWHijU JZYIdPgumu4rORbxIo5oJ/6K6BNNOzCiiigQUUUUAFFFFABRX8y3/BVL/gsp+1H+xF+1hqPwM+E3 g34Ga34QtPAXgzxRHfeP/CvjnV/ELah4hhv5L6J7zQPiT4X082kbW0YtY10pZkBfzZ5iQV/pQ8Oa jPq/h7QdWuViS51TRtL1G4SBWWFJ72xguZVhV3kdYlklYRq8kjBAAzsQWINppJ99jZooooEFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH4If8F6vH/jv4dfCv9njXfh9418W +BNbHxO8RqNY8G+JNZ8MaqFTwuJEUahol7Y3YVJAHUedhXAYAMM1+Y/7AX/BUL9s1f2iPgd8IfGX xVuvil4C+JHxQ8EeAda0/wCI9la+IdZs7Hxd4hsNButT0zxeEtfFq6nYxXxurNdR1rUdMM8KC506 dHkVv0L/AODhz/ki37PH/ZUPE3/qKCv57v2Ff+T0/wBk3/s4v4N/+p/oNf2d4cZDkmbeCdWpmeUZ Zj6tHB8ZVaNfFYHC1cRRq4dZnWoVKOKdFYqlKlVo0qlN08VFRlBWjZyjL+Q/ETPs8yrxowdHLc3z LA0K9bg2jXw+GxuJp4WtSxFTC0a9OrhfbSwtSNWnVqQqc2GvJSbc+ZRlD+s3/gtd/wAo9/ij/wBj V8Lf/VgaDX8Q9f28f8Frv+Ue/wAUf+xq+Fv/AKsDQa/iHr1Po4f8kFjf+ymzL/1Dys8b6RX/ACXG X/8AZM4H/wBT81P6rP8Ag3f/AOSV/tJ/9lA8Df8AqOavX9Flfzp/8G7/APySv9pP/soHgb/1HNXr +iyv5s8Zv+Tm8Wf9hmE/9VWWH9HeEf8AybfhL/sW1P8A1YZkfmr/AMFg/iNqXwu/4Jt/tVeItHuJ LbUNU8EaR4Ajkhcxymz+KPjXwx8ONZVHXDKTofinUyxBB2BgCDg1/IB/wRM/Zl8DftQ/t2+E/D/x L0Ow8VeBfhn4M8UfF/XvCmrW0d5o3iOTw1daHoHh/TtZs5leC+0mLxV4s0LU7/TbqOWy1W3099L1 CC4sLy5gk/rh/wCC0vg3UPHH/BMz9qHTdKhee90jQfBPjLYiltun+B/if4J8Wa7MygZ2W/h/SNVn ZuAgj8xjtU1/LJ/wb/8Axg8MfCj/AIKEaJpfijUrXSYPjJ8LvGnwh0e9vpo7e0PiTU9U8K+NdC0+ S4lKxpca1e+BU0TS4iwe91fUdP0+APcXcUb/AJgfpcfglbf/AIH/AA5/enZaRpWnWlvYafpmn2Fj Zwx29pZWVlbWtpa28ShIoLe2gijhghjUBY4okVEUAKoAxXkf7RvivWvhx+zv8fPH/hGa30zxR4I+ C/xR8YeHL5rK0vIrTXvDPgfXda0a7msruGazvY7bUbK3me1vIJrW4VWhnikid0b2yvnD9sb/AJNE /ao/7Nw+OH/qsfFFNbr1X5kLdeq/M/Az/giL/wAFJP2u/wBsn9pv4lfDj9oH4h6P4u8JeHvgTrnj bSdP0/wB4D8JzW/iOy+IHw50K3vHv/Cvh3SL6eJNM8QapAbOe4ktHedJmhM0ELp4/wDt+f8ABfv4 x6X8avE3wR/Yk0bwta6D4Q8R3fguf4oa14ebxt4l8d+K7C+bSbv/AIQXQJ5G0G08Pf2qs+n6TLe6 V4i1DxMI7bVLNtMtrqOym+NP+DfrUNU0j9oL9q7VdEaVNa0z9h74sahpDw585dUsvG3wxubBotvz eat3FEY9vO4DHNflT+yP49+Onwx+PXg74h/s4eBrj4hfGXwqus6p4R0W2+Hl38Ury2nfSbyzv9ct PCNpZajLc3mk6fd3V1baibSU6POE1OJ4Lq2guIj+v6Rpyrmei0S02V3c/YJf+Cjf/BfeRVkj8E/H F0dQ6On7FWnMjIwBVlYfCEhlYEFWBIIIIJFfY/8AwV0/4Kfftvfsk/HH4HeAvg/8RrHwVpvi39lL 4Y/ErxhpGq/DbwHrV7J8QNf8V/EjR/EN5K3ifwzqF/prPB4c022fSIHtrKyltZDFaQzS3Bf5p/4e c/8ABeT/AKIN8SP/ABDPxZ/8ytcZ/wAHKmT+3V8Kyev/AAyd4Dz9f+FufHTP60f1t/wBLVq8YrR7 NPt2PMb/AP4LHf8ABYrQ9CTxdrPijXdO8KiCyvf+Eh1X9mvwLYeHZLO/aH7DO2szfDq2svst/wCf AtrPHeItx58X2eVmkjJ/oa/4I8/8FTde/b28LfEDwR8Y9F8P+HvjX8JbDS9d1LV/DUMum+GfHHgr VJ57EeIotLuru8bQ9Y0PUIIbPxLbJdnSp/7V0rUNJS0inu9M0z6Q+I1tb3f/AASB8bQXUENxCf8A gnBr8hinjSWMyQ/sz3U8Mmxwy74Zo45onxujljSRCrorD+T7/gjRqmsaJY/8FJtZ8PPNHr2kf8E4 /j7qmiSW5YTprFhDpd1pjw7fm85b2KExFfm3gbeaOtvXt+iQtJRbsk00tPM+yP20v+Dhj466x8Vv EHgH9irTfCnhn4daDrdz4e0P4i614ah8a+NPiNd2t21iuu6LpOqm48PaL4e1W4Ut4f0ybQtW1y9s mtNQvbywuL19C0/5wt/+CsH/AAWykmgDS+PmjeSMHH7KfhTayMy5+YfDAHBU/eB6cg96zv8Ag3e8 HeCfFf8AwUEmvvF9jp1/qXgj4G+PvGPgBNRihn+zeNofEXgTw6l9YRzBl/tGy8KeI/FU9tKima1C SXUJjkgWRP7wKL/1p+qG2ou3Knp1P5NP+CxH/BUX9tH9k39szU/hF8DfiXovhbwJbfDjwJ4gh0q+ +HHw88TzrqutwajJqM51TxL4Z1XU2SZoIisDXZgh2kQxoGbP3/8A8Faf2lP2/Pgp4D/Zb1j9ijR/ G2vav44svGtx8U38FfBW1+LjRCx0b4e3XhuS/tn8IeKI/DqXF1q3iM2piisF1ApPGPPWwCw/z9f8 HC//ACkW1v8A7I98Lv8A0l1ev3A/4Ksf8FZvGv7CGgfBL4M/A3w/4W1b4weOfhhonjvWvEPjO0vN V0bwX4MlMugaI2n6JZX2nLqmv6/qui6+I5dRvDp+j2ejb5tL1R9Wt308Fb4LJN2fz9T8fdb/AOCm 3/Bd7wvpGo+IvE3h/wCLvh/w/otpPqOsa3rv7HOi6Ro2l6faoZbq91PU774T21nYWVvErSXF1c3E MMMYZ3kQDI/Xv/gjp/wWA8c/tp+M/EP7Pf7Q+keGbT4s6Z4Zu/GHgnxr4UsJNE03xxo+kXFrB4g0 bW9CNzdWlh4o0yO+g1azutGNrpeq6PFqayaXpl1pCz61+Vunf8FS/wDguF4x0C01XSPgt4u8U+Fv EmmJdWOo6Z+x9r+t6Brujanb7orizvLXwzdafqmmX9rLmOaGWe1ureTKtJG+T8uf8EIHmi/4KffB CMq1u0mhfGaK4gCtFjb8I/G0hgeM4KiOaJD5bDKPGuRuWj+trdPQbV07pJrazv8Akf6BtFFFIzCi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP54/8Ag4c/5It+zx/2VDxN/wCooK/n u/YV/wCT0/2Tf+zi/g3/AOp/oNf0I/8ABw5/yRb9nj/sqHib/wBRQV/Pd+wr/wAnp/sm/wDZxfwb /wDU/wBBr+5PCf8A5Mhif+wDjj/0zm5/Fvip/wAnry7/ALCuB/8A1JwJ/Wb/AMFrv+Ue/wAUf+xq +Fv/AKsDQa/iHr+3j/gtd/yj3+KP/Y1fC3/1YGg1/EPU/Rw/5ILG/wDZTZl/6h5WR9Ir/kuMv/7J nA/+p+an9Vn/AAbv/wDJK/2k/wDsoHgb/wBRzV6/osr+dP8A4N3/APklf7Sf/ZQPA3/qOavX9Flf zZ4zf8nN4s/7DMJ/6qssP6O8I/8Ak2/CX/Ytqf8AqwzI53xh4T8PePfCXijwL4t0y31rwp4z8O61 4U8TaNdgta6t4f8AEWm3OkazptyFIYwX2nXlzayhSG8uVsEHBr/P9/ba/wCCPn7W/wCyX8S9ck+H /wAOPH3xo+DX9rTX/gH4m/DXQNT8VanZ6QZ2uNOtfG2jeGLa71nwp4i0iMQW1/qNxp9v4ev7xUut F1OTzmtLX/Qkor8wP0hSa/yP84iy+Nf/AAVx020trCx+Jn/BQq1s7OFLe1tovEv7Q4it4IlCRQxK bk7IokASOMYWNFVEAVQB+1H/AAS78YftpfEr9mz/AIKgaT+0vr/7S3ja5H7M1xZ/DjTfjVd/EvXJ 21XVvAXxvttVtPBlp40a4kkv9Rkj0OC/t9Fja4unXS4p0dharX9Z9FBTlfol/wAB37H8Z3/Bup8I fih4I/bA+MOofED4X+PfCGi6h+zN4m0qK98Y+CvEOgaXe3dx8UPhPP8A2bHc61plpaXNzNaW11N9 jV3lkt4LiTy2iikK/NP7V/8AwTb/AG2/+Cdn7U0vxq/ZT8IfEbxJ8P8AQ/GWoeL/AIL/ABP+FHh6 98b6n4L0zUXvPL8I+PPD9hYa1d2T6Tpl7P4X1afxBpE/hDxnpE215ZxqmpaFY/3j0UC53e9lqrNH 8Qyf8FeP+C1KIqt8NtZkZVVWkf8AZX1gO5AALuI9FjjDMRuYIiICTtRVwBc/4L1/Df41/Ff9qD9n 3xjofwu+Ifi+W+/Yv+Ep8Q6h4V8B+JdX0+08TXPj74v6pq2mXD6Tpd1b2F9bvqMU0umSOlxaw3Nu XiVJIy39ttFAKSTuopb9X1+bPzz8daFrc/8AwSh8Y+GYNG1WbxJN/wAE8/EGhQ+H4tPu5Nbl1uT9 m680+PRo9KSE376q9+RZJp625u2uyLZYTMQlfzv/APBvN8DfHuj/ALRX7RGm/Ff4VeOvDfhPxb+z VrPha9HjPwd4j8OaZrNvq3jnwZb6ho8d1q2n2MU8t1prXe+3glM/2dZpFUKjMv8AZZRTv19fxFey a7/ofwBfH3/gnh+33/wTX/aSPxF/Z98N/FXxF4e8LeINS1T4RfHX4TeGr3xmyeH75bq1t9P8b6Xo +l6xFomqvpF3JonifQ/FOjjw5rxa+isRrOjXSl/Trf8A4Kj/APBcczQJJc/FRlMsSvu/ZH8FLuUs obcV+D64yM5K7cc4xxj+6+ikVz90n5s/h1/4L4fBz4u+N/8AgoFrOueC/hX8R/F2iN8JfhparrHh jwP4n1/S2ure11UXFsuoaVpd3aGeAugmhE3mRbl3qu4Z+qP+C7/7BPx7+J+u/A39qD4P/D3xZ8St F034I+Fvhd8RvDng3Rb/AMQ+J/Cl74av9Y13R/EM3hzTYbnW7rRtUtfFV5p2oXWn2Nxb6FPoCzas bSPUYZn/AK4qKBczVvL8bn8MPgr/AIKnf8FmfAfg/wALeCNK+Hfie70rwh4f0jwzpdxqv7Luq3Gp Ppmh2EGmaeL64t/D9pFcXKWdtDHLcC3jedkMsoaV3duc/wCCJPwc+NHhj/gpZ8GPFXjT4TfEzwvo yaT8YZNQ1zxF4C8U6Do9tPqHwo8bQwrcahqWlWtlbm5vLiO3t0kmQyzyxwxBpHVT/eDRTuHNo0op X9QooopEhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH88f/Bw5/wAkW/Z4/wCy oeJv/UUFfz3fsK/8np/sm/8AZxfwb/8AU/0Gv6Ef+Dhz/ki37PH/AGVDxN/6igr+e79hX/k9P9k3 /s4v4N/+p/oNf3J4T/8AJkMT/wBgHHH/AKZzc/i3xU/5PXl3/YVwP/6k4E/rN/4LXf8AKPf4o/8A Y1fC3/1YGg1/EPX9vH/Ba7/lHv8AFH/savhb/wCrA0Gv4h6n6OH/ACQWN/7KbMv/AFDysj6RX/Jc Zf8A9kzgf/U/NT+qz/g3f/5JX+0n/wBlA8Df+o5q9f0WV/On/wAG7/8AySv9pP8A7KB4G/8AUc1e v6LK/mzxm/5ObxZ/2GYT/wBVWWH9HeEf/Jt+Ev8AsW1P/VhmQV/AZ/wXo1bVbX/gpb8XoLXU9Qto U8IfCIrDBe3MMSlvhr4cZisccioCzEs2AMsSTyTX9+df5/n/AAXw/wCUmPxg/wCxQ+EH/qs/Ddfm Pf5fmfpUPi+TPnjw1/wTY/4KPeMPDGgeM/DH7Onxg1rwx4p0HSvE/h7WLG8sJLfVtB1vT4NV0nUr NDryzvDf6fdW91bqYVmaOVAYw521yfwb/ay/bU/YC+Lz22geMPib8OPFPgrWYrXxn8HPiE/iOPw1 qXlNDcXOg+Nvhzr80FuUvrN1WK+S0sdbsrW7XUNA1bT7iS3vR/oS/sbf8mg/sqf9m3fA3/1WHhev 5c/+Dm34Y+HtC+MP7MPxa0+xtrXxD8RvAnxD8H+I7mCNYpNTh+GOr+Er7RLq9CYFxdw2/wARruwW 7kU3DWVpZWjStb2VrHCMpSu7NK2v4XP2m+Pn7Qfxs/a9/wCCV0fx9/YUi8Z6f8Z/iXpHw71PwtpP gXUbVPF/h3WdO+J2gaP8VPDVrqFw9pbzHw+ml+L9HvbpxbjUNNtJbqKFBdRx1i/8EdLH9vmy+H3x pX9vV/im/iqTxl4Zb4fn4pahZahejw+NEvRq39kvZXNzHHa/2iYPtKuVdpdhwVANfhZ+zn8U/G+k f8G9f7Vs3hzxT4h8Ma18PP2pPDWieGtb8N6zqOh6vpeka94r/Z51u8tbHU9LuLW9tUur7xF4gF0k E6LPBfzRShkmkVvsb/ghd+1DrXgf9j39ub47fHLx3438d6J8HNS0zxdM/ijxRrHiXVf7P0XwJrOq Poehz6/fXptrvXLyCCwsrdHign1K6thL13A7/wBdiWrJ7fFbz+8/qeor/Pe1v9rj/gp//wAFQ/j/ AKh4W+EXi/4sXWq6mNU13QPg38IPG978O/AHgjwnYzwxLPq13HrnhjQza6YbuysZ/GPjzVXvb3U7 +3tEv45tRsdNrhv2ovgr/wAFR/2MtE8KeI/2jvGnxp8AaP421W/0Tw1dw/tJQ+LjqGpaZaRX17bt b+CviT4hubMQ2s0comvobaCTdsikeQFQg5O7SfY/si/4Ky2n7YV5+y7pkP7EL/EFPjKPiv4Te7Pw 1vbSx8Q/8ISuieLBrYknvJ7eE6b/AGg2ifaY/M3tN9mKqQpIzP8AgkXaftnWX7NHi2L9ud/iI/xe b41eJ5NDPxNvbO/1/wD4V6fBfw8XRxbTWVxcxLpP/CQr4qNvGziRbs3zFAroW/CH4pfF/wCLNr/w b3fs3+P7b4ofES38d6j+0rrunah41g8beJYfFt/p6eO/j3AlheeI49TXWLqzSCwsYUtZ7x4Fis7W MIEt4VTsP2JfBH7Xv7Yv/BHL4ueEfg38RvGuufG9/wBtGV9L8S+IPivrmh61a+E9D8BfCTUNT0yH xlqWri/tdPBvriVNKivFt55rq4YQlpZWZ9hW0e3xWvbX/hj4O+Duraq3/BeGS1bU9Qa2/wCHiHxU h+zNe3Jg8pfi/wCMlEXkmQx+WFAUJt2hQABgV/fVX+YJ4a+C/wAf9Z/a5b4CaDqt3H+0qPjV4g+H J1lPGctne/8AC1NK8Tano2tX/wDwnn2tJzPJr1lqEz+Ivtnm3bM155ztNub+tX9g79h//gof8Hf2 X/8AgoP8Pvjv4t1jVPid8a/g8vhf9n29uvjbe+MJ9J8YDwJ8XtHNxaa/Nq11J4Lk/t3xN4Ql/tOG a1bfbx3nmZ0xWjOn3/oVNbO62X/Dn9E1FfxD/wDDpX/gtr/0UnxN/wCJX6p/80dfMFh+05/wUm/4 JVftRab4W+L/AI/+JN7qOhyaHr3ir4VeN/iVqHxF+HfxG8CatMxM+ny3Wsa/o8R1W1tr+z07xRow ttf0DVLa5tpmguLPUdMdE8t9pJvtqfpT/wAHOWoX9j47/ZCFlfXlmJPCXxhMgtbma3EhXWfh+FLi J0DFQSFLZxk46mv3y/4JYzSz/wDBPD9kWaeWSaaT4NeHmklldpJHYyXeWd3LMzH1Yk1/PF/wco+J NM8Zap+w34v0V3l0bxV8MviV4k0mSVQkkmma5cfDXVLB5EDMEd7W6iZ1DMFYkBiBk/0M/wDBKz/l HX+yF/2Rnw7/AOjLun0fy/Ub+CPqz9AKKKKRAUUUUAFFFFABRRRQAUUUUAFFFFABRRXxV+1J+3t8 DP2SNd8M+GPiPF4x1zxF4n0u61uDRvAul6Jq19pWkQXIsrbUdaXWfEfh2O0t9Vu472DS/Jlupbh9 M1AvHCkKPKJN7AfatFfkF/w+s/ZQ/wChM+PP/hJeBP8A55lH/D6z9lD/AKEz48/+El4E/wDnmVXL Ls/6+YH6+0V+QX/D6z9lD/oTPjz/AOEl4E/+eZR/w+s/ZQ/6Ez48/wDhJeBP/nmUcsuz/r5gfr7R X5Bf8PrP2UP+hM+PP/hJeBP/AJ5lH/D6z9lD/oTPjz/4SXgT/wCeZRyy7P8Ar5gfr7RX5Bf8PrP2 UP8AoTPjz/4SXgT/AOeZR/w+s/ZQ/wChM+PP/hJeBP8A55lHLLs/6+YH6+0V+QX/AA+s/ZQ/6Ez4 8/8AhJeBP/nmUf8AD6z9lD/oTPjz/wCEl4E/+eZRyy7P+vmB+vtFfkF/w+s/ZQ/6Ez48/wDhJeBP /nmUf8PrP2UP+hM+PP8A4SXgT/55lHLLs/6+YH6+0V+QX/D6z9lD/oTPjz/4SXgT/wCeZR/w+s/Z Q/6Ez48/+El4E/8AnmUcsuz/AK+YH6+0V+QX/D6z9lD/AKEz48/+El4E/wDnmUf8PrP2UP8AoTPj z/4SXgT/AOeZRyy7P+vmB+vtFfkF/wAPrP2UP+hM+PP/AISXgT/55lH/AA+s/ZQ/6Ez48/8AhJeB P/nmUcsuz/r5gfr7RX5Bf8PrP2UP+hM+PP8A4SXgT/55lH/D6z9lD/oTPjz/AOEl4E/+eZRyy7P+ vmB+vtFfkF/w+s/ZQ/6Ez48/+El4E/8AnmUf8PrP2UP+hM+PP/hJeBP/AJ5lHLLs/wCvmB+vtFfk F/w+s/ZQ/wChM+PP/hJeBP8A55lH/D6z9lD/AKEz48/+El4E/wDnmUcsuz/r5gfr7RX5Bf8AD6z9 lD/oTPjz/wCEl4E/+eZR/wAPrP2UP+hM+PP/AISXgT/55lHLLs/6+YH6+0V+QX/D6z9lD/oTPjz/ AOEl4E/+eZR/w+s/ZQ/6Ez48/wDhJeBP/nmUcsuz/r5gfr7RX5Bf8PrP2UP+hM+PP/hJeBP/AJ5l H/D6z9lD/oTPjz/4SXgT/wCeZRyy7P8Ar5gfr7RX5Bf8PrP2UP8AoTPjz/4SXgT/AOeZR/w+s/ZQ /wChM+PP/hJeBP8A55lHLLs/6+YH6+0V+QX/AA+s/ZQ/6Ez48/8AhJeBP/nmUf8AD6z9lD/oTPjz /wCEl4E/+eZRyy7P+vmB+vtFfkF/w+s/ZQ/6Ez48/wDhJeBP/nmUf8PrP2UP+hM+PP8A4SXgT/55 lHLLs/6+YH6+0V+QX/D6z9lD/oTPjz/4SXgT/wCeZR/w+s/ZQ/6Ez48/+El4E/8AnmUcsuz/AK+Y H6+0V+QX/D6z9lD/AKEz48/+El4E/wDnmUf8PrP2UP8AoTPjz/4SXgT/AOeZRyy7P+vmB+vtFfkF /wAPrP2UP+hM+PP/AISXgT/55lH/AA+s/ZQ/6Ez48/8AhJeBP/nmUcsuz/r5gfr7RX5Bf8PrP2UP +hM+PP8A4SXgT/55lH/D6z9lD/oTPjz/AOEl4E/+eZRyy7P+vmB+vtFfkF/w+s/ZQ/6Ez48/+El4 E/8AnmUf8PrP2UP+hM+PP/hJeBP/AJ5lHLLs/wCvmB+vtFfkF/w+s/ZQ/wChM+PP/hJeBP8A55lH /D6z9lD/AKEz48/+El4E/wDnmUcsuz/r5gfr7RX5Bf8AD6z9lD/oTPjz/wCEl4E/+eZR/wAPrP2U P+hM+PP/AISXgT/55lHLLs/6+YH6+0V+QX/D6z9lD/oTPjz/AOEl4E/+eZR/w+s/ZQ/6Ez48/wDh JeBP/nmUcsuz/r5gfr7RX5Bf8PrP2UP+hM+PP/hJeBP/AJ5lH/D6z9lD/oTPjz/4SXgT/wCeZRyy 7P8Ar5gfr7RX5Bf8PrP2UP8AoTPjz/4SXgT/AOeZR/w+s/ZQ/wChM+PP/hJeBP8A55lHLLs/6+YH 6+0V+QX/AA+s/ZQ/6Ez48/8AhJeBP/nmUf8AD6z9lD/oTPjz/wCEl4E/+eZRyy7P+vmB+vtFfkF/ w+s/ZQ/6Ez48/wDhJeBP/nmUf8PrP2UP+hM+PP8A4SXgT/55lHLLs/6+YH6+0V+QX/D6z9lD/oTP jz/4SXgT/wCeZR/w+s/ZQ/6Ez48/+El4E/8AnmUcsuz/AK+YH6+0V+QX/D6z9lD/AKEz48/+El4E /wDnmUf8PrP2UP8AoTPjz/4SXgT/AOeZRyy7P+vmB+vtFfkF/wAPrP2UP+hM+PP/AISXgT/55lH/ AA+s/ZQ/6Ez48/8AhJeBP/nmUcsuz/r5gfr7RX5Bf8PrP2UP+hM+PP8A4SXgT/55lH/D6z9lD/oT Pjz/AOEl4E/+eZRyy7P+vmB+vtFfkF/w+s/ZQ/6Ez48/+El4E/8AnmUf8PrP2UP+hM+PP/hJeBP/ AJ5lHLLs/wCvmB+vtFfkF/w+s/ZQ/wChM+PP/hJeBP8A55lH/D6z9lD/AKEz48/+El4E/wDnmUcs uz/r5gfr7RX5Bf8AD6z9lD/oTPjz/wCEl4E/+eZR/wAPrP2UP+hM+PP/AISXgT/55lHLLs/6+YH6 +0V+QX/D6z9lD/oTPjz/AOEl4E/+eZR/w+s/ZQ/6Ez48/wDhJeBP/nmUcsuz/r5gfr7RX5Bf8PrP 2UP+hM+PP/hJeBP/AJ5lH/D6z9lD/oTPjz/4SXgT/wCeZRyy7P8Ar5gfr7RX5Bf8PrP2UP8AoTPj z/4SXgT/AOeZR/w+s/ZQ/wChM+PP/hJeBP8A55lHLLs/6+YH6+0V+QX/AA+s/ZQ/6Ez48/8AhJeB P/nmUf8AD6z9lD/oTPjz/wCEl4E/+eZRyy7P+vmB+vtFfkF/w+s/ZQ/6Ez48/wDhJeBP/nmUf8Pr P2UP+hM+PP8A4SXgT/55lHLLs/6+YH6+0V+QX/D6z9lD/oTPjz/4SXgT/wCeZR/w+s/ZQ/6Ez48/ +El4E/8AnmUcsuz/AK+YH6+0V+QX/D6z9lD/AKEz48/+El4E/wDnmUf8PrP2UP8AoTPjz/4SXgT/ AOeZRyy7P+vmB+vtFfkF/wAPrP2UP+hM+PP/AISXgT/55lH/AA+s/ZQ/6Ez48/8AhJeBP/nmUcsu z/r5gfr7RX5Bf8PrP2UP+hM+PP8A4SXgT/55lH/D6z9lD/oTPjz/AOEl4E/+eZRyy7P+vmB+vtFf kF/w+s/ZQ/6Ez48/+El4E/8AnmUf8PrP2UP+hM+PP/hJeBP/AJ5lHLLs/wCvmB+vtFfkF/w+s/ZQ /wChM+PP/hJeBP8A55lH/D6z9lD/AKEz48/+El4E/wDnmUcsuz/r5gfr7RX5Bf8AD6z9lD/oTPjz /wCEl4E/+eZR/wAPrP2UP+hM+PP/AISXgT/55lHLLs/6+YH6+0V+QX/D6z9lD/oTPjz/AOEl4E/+ eZR/w+s/ZQ/6Ez48/wDhJeBP/nmUcsuz/r5gfr7RX5Bf8PrP2UP+hM+PP/hJeBP/AJ5lH/D6z9lD /oTPjz/4SXgT/wCeZRyy7P8Ar5gfr7RX5Bf8PrP2UP8AoTPjz/4SXgT/AOeZR/w+s/ZQ/wChM+PP /hJeBP8A55lHLLs/6+YH6+0V+QX/AA+s/ZQ/6Ez48/8AhJeBP/nmUf8AD6z9lD/oTPjz/wCEl4E/ +eZRyy7P+vmB+vtFfkF/w+s/ZQ/6Ez48/wDhJeBP/nmUf8PrP2UP+hM+PP8A4SXgT/55lHLLs/6+ YH6+0V+QX/D6z9lD/oTPjz/4SXgT/wCeZR/w+s/ZQ/6Ez48/+El4E/8AnmUcsuz/AK+YH6+0UUVI BRRRQAUUUUAFFFFABRRRQB/PH/wcOf8AJFv2eP8AsqHib/1FBX8937Cv/J6f7Jv/AGcX8G//AFP9 Br+hH/g4c/5It+zx/wBlQ8Tf+ooK/nu/YV/5PT/ZN/7OL+Df/qf6DX9yeE//ACZDE/8AYBxx/wCm c3P4t8VP+T15d/2FcD/+pOBP6zf+C13/ACj3+KP/AGNXwt/9WBoNfxD1/c9/wWA8F+MfiB+wl8Sv DPgPwn4m8beJLrxJ8OLm28P+EdB1TxJrdxbWHjjRbu+uINK0a1vb+aCztIpbq7ljt2jt7eKSaZkj RmH8S/ib4afEbwXu/wCEx8AeNvCewlX/AOEm8K67oO1gcFW/tSwtdpBIBBwcnFc30csTho8EYzDy xOGjiHxJmE1h5YjDxxDhLCZYozVCVeNdxk4yUZKi4ycZKMpOMktvpD4TF1OMcDiaeExdTDQ4bwUZ 4mnhcVUw8JRx2aSlGeIhhp4eEoxlGUozrxlGMoylGKkm/wCnb/g3f/5JX+0n/wBlA8Df+o5q9f0W V/FP/wAEtf8AgpL4N/Ycbx34O+I3w+1/xL4L+JWvaFrF94p8J6hZPr3hefR7G805QvhnUls7TXbK 4S8E07Jr+l3dmsDmC31J5UgT+tr4BftR/AT9p7w4fE3wQ+JXh7xvbQQxS6ppVrO9j4o0Ay4VYvEP hXUo7TX9FZpCY4pb7T4rW7ZWeyuLmLbI34j438L8QYPjXPuIK+U4xZJmOJw1TCZpTpOtgpKOBwOH catag6qwtT21GpBU8WsNKdk6cqilFP8AavBjiXIcbwXkGR4bNcHPOctwVWljMslVVLG05LGY2tzU 6Fb2U8RS9lWpzdXC/WacU2p+zcZHv1f5/n/BfD/lJj8YP+xQ+EH/AKrPw3X+gHX8h3/BWz/glT+3 J+1L+3B8RvjN8EfhHp3i34d+IPDnw50/StbuPiT8M/Dktxd+H/BGi6NqsTaT4l8XaRq8AttRs7iF XnsY451QSwNJE6ufxPv/AF1P2SGj17M/oV/ZE+NHwd0v9kr9mC01L4sfDTTrvT/2dPgrbX9rfeO/ C1pcWNxafDTw1FdW95DcarHJbTW0sckdxFMqSQyI6SKrKQP5NP8Agv8A/ti/DD9pr9on4aeAPg94 r0fx54N+AvhLxBp2peMfDt/BqnhzUvHXjnU9Nu/EdhoOq2bS2Gs6fo+leGfC9tLq+nXVxZT6rJqV jC7f2c003hf/AA4i/wCCn3/Rv2kf+Hl+Cn/zwK+pf2Zf+DdP9q/xx410ef8AaX1Pwl8E/hpaXsE/ iS10bxTo/jj4i6xYxSq82meG7bw22r+FNOuL6JZLY63rGvSLpDSx3seha75T2DhSUU7uSe+3n951 XgL4Zan4C/4Nt/jv4k1O2mtv+Fv/AB78OfEXSxOjRySaNafGH4NfDa1lVHAb7PPd/D2/ubZyoWaG 4W4jLwyxu3kf7CWm6vqv/BGv/gqta6IsrXkWrfCrUphDuL/2Ro2paJq+vs23nyl0Gx1Jp8/KIBIW +XNf0wf8FHP2QvE/xL/4Jt+MP2S/2WPAen3Opafpvwd8N/DrwNFrWi+HbKDw94B+IPgrU5rf+2vE +p6ZpqyWfh/Qru6luNS1IXepXMTs0l1qF1iX5Q/4Iy/8E/PjV+zf8BP2ovhB+158MNM0TSfjZrOn ac/htvFnhHxdZeJvBt94O1bw14ltLybwdr2tRWkVxBqMllJFdT2ty6TNJApC71F/X4Cvo315k7fc fml/wbKeLvBOl/Gv9pjwdq17p1r488W/DzwLqPgy3upYob/UtE8La74hbxnaaX5hVrmSKTW/C9/d 2duzTNa2T3pia3sZ5YPqn/g5z/5Ir+y3/wBlR8c/+onp1fB37Qf/AAb4ftl/Cf4m3uvfsl69ovxR 8ExarNqPgjUk8daZ8N/in4Xtnlka2stbk1y68P6JLqOmwutouveHvEAGrCNr5tI0NpzpsP5u/tqf sj/t8fs1+H/Auq/tjJ4qi0LxTrOraf4JXxH8Z9B+J6Pq+nWVtc6s1pYaT408UTaWyWdxaia8lt7W OUPHCJnbCUf5Mdk5JqS3WnXQ/SH4s/8AKuD+zF/2dDr/AP6sD9oWv1f/AODbD/kw/wCJH/Z1Hj3/ ANVZ8Fa+J/Af7K3xx/a6/wCCAf7M/wALPgH4Qg8Y+OIvj14z8YtpN34i8N+Foj4e0f4n/HXTNQvk 1PxXqui6XIYL3VLOEW6XhuZS7mKJ1hmKfrJ/wRO/ZQ+Ov7HX7J/jX4X/ALQfhC28FeNdY+Pfi3xx p+k2viXwx4qjm8Nap4D+GOh2N+dR8J6vrWmxPNqXhvWIDZy3aXka2yzSwJDcW7ynb+uontJdeY/m C+EM0Nv/AMF5neeWOFG/4KM/E+BXldY1M1z8Z/F9tbxBmIBknuJYoIkB3SSyJGgLsoP9hn/BTL9q PxH+x3+xd8Yfjh4JgtJ/HmlWeheGfArX9vHd2Nh4o8aeIdN8M2WuXdpMr292nhyDUbvxDFY3Uctp qNzpcGn3cbW11Lj+dP8A4KF/8EQP2xPEn7WvxR+On7LOlaD488IfFPx9qnxYsVt/Hvh7wL4x8E+M PE2qP4j8RW0//CVap4ftWS38VXN/qWgapoerXEsdlNaJNDZXlq2/64/ZJ/4Js/tz/FP9lD9tr9nH 9vzxh4+srz4u2Xwcn+BniLx38ZLb42p4U8T+AdS8Z+Ip9Ssrew8b+K30TSzri+DLbxHZRzaXPr2j PNb2zyy2aSWoDs7O60STXXofjd+zH4K/4LCf8FCrfx58SPg7+0V8bte03w14gg0fxHq+sftMeJPA mmRa7qNp/ao0nRdCh8UWMFtBbWUsNwbbStIs9HsobmCC22NmCP41/bx+Bn7WX7P3xi0LwX+2R4s1 vxj8UdR+HejeJdH1TXviXqHxUvIvA174i8V6ZpViniLUtQ1Ke1t4tc0fxJMmjrOsVtJcS3ixK1+7 v+ifhz/gj9/wWa+A2qeIdH+Cb+IfDmmahdRDUdc+DX7TuhfD/RPFP2HzY7K9ntZfHPgbXLtIo5ZD af23odtdW6TOohiLutcZ8QP+COX/AAWJ+LOtW/iT4qeAfEXxM8RWmmwaNa6/8QP2kvhn4z1q20e2 uby8ttJt9V8R/FDUr6HTbe81C/u4LGOdbWK5vryeOJZbmZ3Raave8bdFZJ/ee8f8F4f+SU/8EvP+ zYbr/wBRv4P1/TV/wSs/5R1/shf9kZ8O/wDoy7r8fv8AgrD/AME3P2wv2oPAH7CWhfBT4YWPizU/ gn8C7jwV8SLe48ffD7w6uheI30X4cWa2MU3iTxPpMOrobjw/qqfa9HkvrMC2VzOEngaT9xf2BvhV 45+B37Gv7Onwj+JekR6B498AfDTRvDvirRotS0zWI9O1e0e4NxbJqmjXl/pV6qCRMT2N5c27Z+SV sHDfX1/Vmb+GPqz68ooopEhRRRQAUUUUAFFFFABRRRQAUUUUAcJ8T/iP4V+EPw+8XfEzxtfDTvC/ gvRLzXNWuBtaaSK1TEFjZRMyC41LU7t7fTdMtFYPeahdW1rH88q1/EX8fPjR4p/aD+LfjX4t+L5C NU8WarJc22nrM81roWi26ra6H4fsGcL/AKHo2lw21lG+xHupIpb2dTdXM7v+tv8AwWL/AGr/APhK PFOn/sv+C9S36D4MubXX/ihc2kuYtT8XvAJtD8MPJE22W28M2Vx/aWpQM0sL65f2kM0cN/4dNfhj WsFZX6v8v+CAUUUVYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF AH+ghRRRXOAUUUUAFFFFABRRRQAUUUUAfmL/AMFOv2FvHP7dPgP4YeEvA3jPwn4LuvAvi/VvEV/d eLIdYmt7y21DRf7Mjgs10ezvJBPHL+8fzljj8v7rFvlr8mPBH/BBv9qD4b+MPCvxB8E/tIfCTRfG XgjxDo/ivwvq6+H/ABLef2V4g0C/g1TSNQW11LRL7T7s2l9awTi3vrC6tJinl3FvNEzxt/VDRX6N kHirxnw1ksOHsqxmAhlMHjP9mxWUYHG88cfOc8VCrPEXlVp1faVIypzTj7Oc6dnGTT+Bz3wz4P4j zh59muAxVXNXHCRjisPmmYYOVP6iksJOlHC1IRp1KLjGUakLT54xnfmjFr8mNA+F/wDwWR8NPE8/ 7TP7JHxFWILuh8b/AA58QaLHcbevnt4B8HeHpl3/AMRgkiPJ27eK9csPFv8AwU70BSvjP4IfsdfF O3KFZ4Phx8Yfib4AluYyCroqfED4e+I7aNpFJzFLLLEMlDKw+av0Lorxa/FksW74rhvg2pfd0OHY ZbPvpUyrNsC4O+qcad10tZHt0eG44ayw+fcVU0lZRrZ7PHwsu8czyzGuXrKq29bt3ufk548+HHw/ +JNtOf2jf+CTt9NNc5Nz4o+F037P/wAQNTQtnzT/AG94V8cfD34rbDnfjTtCneVtrGISAY+GvE// AAT2/Y20vxNY+Of2eP2g/jz+wX8VNPke70A/Frw98RfAvhyxujgx6dpuvfFDTfA2o3q3EgFpcSaX 8TPFFndwM8Is9QAkik/pIprokisjqro6sjo6hldGBDKykEMrAkMpBBBIIxXq5b4iZxlcXTwNbM8B QnGUKmDw2eY/HZZVpyXLKlVybianxFltWjKLcZ0X7OEoNx0Wh52Y8DZNmklVzDCZdjsRGaqU8ZWy nB4LM6NSNnCpRzfIZZJmVKtCSU411VqVeZR1srH5TfDf9pD9rn9my1sdF/bf8C6f8U/haIIDpv7Y P7PtpL4p0C206QI8Oq/FvwFo+n2mu6Hpy20qy33jPQPDcGg22Io/sN+hudaH6heHfEfh/wAX6FpP ifwrreleJPDeu2MGp6Lr2h6ha6ro+raddIJLa907UbKWa0vLWdCGjngleNx0bg03Q/DXh3wzbT2f hvQdG8P2dzcy3lxZ6JpllpVpPeTndPdy21hBBDJdTnme4dDNMQvmO21ccn4R+FfhD4f61rWqeBbH /hE7DxLcz6j4h8KaMRbeD77XLh/Nm8S2fh1QNP0HxDeSmR9Z1DQItNTxJJPLd+JLbVtTisNQsfns 3zHK82lUxVPLKWUY/mcprLqao5XjrtXnLLFVrQynFO8pP+zsRVyyq7pYPAylG3uZbgcdlsY4aeYV 8zwaSjTeYT9tmOFsrKDzBU6UsyoJJJSx1CGPgrc2KxiUpP0eiiivnz2AooooA/ii8T+B/wDg4lfx L4hbRb39qgaO2uas2kiD4heEUgGmm/uDYeSj+JVdYvspi8tWUMqbQwBBFeQeIv8AgnB/wWj/AG0/ G3grRv2itH+It9p2gyXNpp3jP45/Evw3N4V8BafrM1o2taja6bY+IdW1WWS8+wWP2+Lwz4e1LVtR Fjp8dxG1vZwvb/3eUU7lKVtlH1seCfsu/ADwz+y1+z58J/2fvCN1LqGi/DDwlZ6ANWngS1n13V5J rjVPEniKe0ieSO0n8ReJNQ1bW5rWOWVLaS/aBZZRGJG9v1HULHSdPvtV1O6hsdN0yzutQ1C9uHEd vZ2NlA9zd3U8h4SG3gikllc8KiMx6Vcr88v+Ckfxb8b/AA2+Efw28JeC9btPA8f7QHx1+HvwB8Yf FTUrCy1DTvhd4G+ITanb+JvFMkWqRzaRDdtYWj6Za3esRf2baJe3Vw1xaXsdjcJ6eS5XVzrNsBlV GcKdTG4hU3UqNqFOlCnXxOIqPlhUnJ08LhMXUhSp06tWtUhSoUqVSrWpwl5ua5jSyrLsZmVeM508 JS9o4U0pTqTnVoYejTXNKEY+0xGLw0JVKk6dKlCdStVqU6VGrOPZfA39trwz8bLb4c+Jo/AniHwT 8PPjj4v8Y+DfgT4p8S6rop1b4hXfgjR/E+vapql54QspptS8J6LqOmeDPE8+hXmoXV3JctpaQ6rb 6NLq+gJq2T8Z/wBuvwz8LvjH8PvhZ4T8A+Lvjn/wlPgvUPF2vyfBuKz8Xa7oiX/jPS/AvgW20+yS 6tdAvxrutReNJdZm1bxL4fg0LSvB+oXwnvZlFg/x3oP7JPjvwZ+zx8Qf2a/hr4c8T6FqvjC28GeI pPBeqftC3vxL174dfClviLZ6D488EaFquqaT4Z8E/DfxR8VvhtdeNhp8/he8h0XxRcJ4s0LU9YW2 8O6frV3554u/YS/apvvFfi3xt4J8FfD7wLqU/jH4mfETwjonhjxNomk6HpHiH4deArPwP+yJo1rD p0OlLDovgWw1zxr4vsL9IrKTUPjBf3N/410S18NvZ6wf02hw/wAB1M1xlapmWEw+Wr6/h8vwWMzK dBV4TVKGW4/E14VsRjoShGrJ1ZYWdXD4ivg8VjKbp4WrhcGfEVs24wp5dhKX1GtWzDlwFbH4rBYO nWUJxjWnmOFwtGtCjhqinUpRVKNeFKtQo4nDYWftMTGvjD9EPgF+2snxtbxZqdx8I/FngnwbZfEv xj4J8GeLNe8R/DqK18R6P8PdPtF8ba5Lp/8Awmf9qX9x4f8AENp4s0y6tvANn47057TRIb9NW8u4 uPsnv0nx78A3nhv4a+LPB0mq/EjRfir4j8CaB4Zm8BWUes3Nva/EDSYPEel+KNesLi60+90Xwzpn hW4i8V+Iru8gW/0jw839oS6bIMRn87v2ff2EviJ4D+I1wfEN1N4S8LeDtJ+Geg/Cvxf4Z1jw5qms aH8N/DPw117Tdb+H+nWOuad4gk0Xxd4o+Lvi7V/in8SfF9nZWllrXibRNC1XQrqZ7v7N4e+cNZ/4 J8ftXxX3jnXPAVv4Y8E63NL+0T448DHSvFmm2NjpPxD8WQp8LPhy1iIY7ma2h0H9n61HhX4avcCG 78NeIdf8Q+Ptf8SaJra2nhubjrcP8C43NMVDC5/g8swlOng6mHjVxFaeFqxxNKpRVOpiKk6uJ9vR n9VxmMnh/wCFP6/h3how+rVJ9dPNuK8Ll2GnXyfEZhi5SxkMT7KGHp4iEqFVVVUpUoxp4Z0qsFXw uDpVUpVYLA4h4jnqYiFL9n/iv8e/h18Kvhb8UfijqHiXw/qmnfCzwl4j8T61YadrmnXN20+gxXEU WitHbTXEtvqOpa1FD4ftYZIvNOr3UVl5ZuD5Vdn8MvEfiDxh8N/h/wCLfFnhpvBninxT4K8LeIvE ng97qS+fwrrut6HY6lq3hyS8ltbGW6k0S/uZ9NkuJLO1eV7ZnaCItsH4wz/8E/fi/qnxTgvtN+Hn gvwZ8I/+Ew+CnhSz8Jvrmi3PlfAz4NeBD4q8I2Xja00a8ig8W6jq/wAdLTQdX+NtjPJqeo+IpvC3 hvTfCniG/wDDsN54ib9y9PtZLGwsbKW9u9Sls7O2tZNRvzAb6/kt4Uie9vDawWtsbu6ZDPcG3tre AzSOYoIo9sa/LcQZdkWV4LAUcrzGnm2MxVapi8TiYypqeCwywtClSy6pTw1WrhfavE1K2JrVFOcu aEaNOUqdKpUre5lGMzbHYrF1cdg55dhcPThhsPh5JyWKrvEVqlXHRqVYQrqkqFOlh6NOUYe7OVap FVKkIUbdFFFfJn0AUUUUAFFFFABRRRQAUUUUAFfKX7Z37Suk/ssfAjxR8RpntZ/FV0h8OfDvRrgq 39r+NNUgnGmmSAkGbT9Ghiude1dd0Yk07TZ7WOVbq6tlf6sZlVSzEKqgszMQFVQMkkngADkk8Acm v5Af+Ck/7VzftM/He9sfDWom5+FPwua+8K+BhBKWstavBOi+JfGaKCUf+3r61ittNmB2v4f0vR5h HDcXF2r1FXfl1/rzA+Adb1rVvEms6t4h17ULnVtc17U77WdZ1S9kM15qWq6ndS3uoX93M3zS3N3d zy3E8h5eSRmPWsyiitgCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK KKACiiigD/QQooornAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig ArC8TeFvDPjXQtR8L+MvDmheLfDWrwi31bw74m0jT9e0LVLdZElWDUdI1W3u9PvYRLHHKIrm3lQS IjhdyqRu0VUJzpzjUpznTqQlGcKlOcqc4Ti1KM4ThKE4TjJKUZwnCUZJOMotJqZRjOMoTjGcJxcZ wnGM4SjJOMoyjKMoyjKLcZRlGUZJtSjJNp8t4Q8DeCvh9pI0HwF4P8L+CdDEvnjRvCOgaT4b0oT+ TDbmf+z9HtLO08429vBAZfJ8wxQQxltkaBepoop1KlSrOVWrUqVak5OU6lWpOrUnJ7ynUqTqVJyd leU6k5PrJhCEKcYwpwhCEUoxhCMYQjFbRjCEYQjFdIxjFLokFFFFQUFFFFABRRRQAUUUUAFFFFAB RRRQAUUVyvjjxp4b+HPg7xN488YalFpHhjwjouoa/rmozEbbbT9Nt3uZzGmQ09xIqeTaWse6a7up IbaBHmljRgD80f8Agq1+1f8A8KM+DB+FnhHUvs/xM+MtlfaUslrMUvfDfgEA2niXXA0Z8y1utYEh 8OaNIfKdjcaxqFlOt1omK/lHr3v9pr49+JP2lfjR4z+LXiMywLrt8bbw7o0kvmx+G/CWns9v4e0G HBMW6zsdst/LCscd9q9zqOpGNJL2QV4JW0VZefUAoooqgCiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigD/AEEKKKK5wCiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr+en/ AILI/tYfarrTv2U/BWpZt7J9N8UfF24tJgVlvCseoeFPBc+08raI1t4r1aFgym4l8M7HWW0vIa/o Wr+Ev4/317qXx1+M17qN5dX97cfFT4gNPd3txLdXU7DxVqqBprid5JZWCKqAu7EKqqDgAVcFd+gH kdFFFagFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QB//2R== ------=_NextPart_01DC322D.ECA9A450 Content-Location: file:///C:/0D2A2649/03-3Metodologiapararesolverproblemasmatematicos(1)_archivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01DC322D.ECA9A450--