MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01D4EFBC.BE89F7B0" Este documento es una página web de un solo archivo, también conocido como "archivo de almacenamiento web". Si está viendo este mensaje, su explorador o editor no admite archivos de almacenamiento web. Descargue un explorador que admita este tipo de archivos. ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"

=

 Recibid= o: 10-02-2019 / Revisado: 15-02-2019 /Aceptado: 04-03-2019/ Publicado: 05-04-2= 019

 

 

Análisis de la metodología de la ANT para fijar la ta= rifa de transporte modalidad taxi

 =

 

 

Analysis of the methodolog= y of the ant to set the transport fee modality taxi

 

Gustavo Javier Aguilar Miranda. [1= ]&  José Luis Llamuca Llamuca. [2= ]

 

DOI: https://doi.or= g/10.33262/visionariodigital.v3i2.391

 

Resumen.<= /p>

En este artículo se presenta el análisis de la metodología de la ANT para determinar la tarifa = de transporte modalidad taxi, y a la vez propone un modelo considerando nuevas= variables como dista= ncia, tiempo en vacío y el pago del seguro social del conductor que la metodología vigente= no determina, y que influyen significativamente en el cálculo erróneo de los costos y por lo tanto de la tarifa. La investigación de campo se realizó a través de encuestas tanto a usuarios como oferentes del servicio además se obtuvo fichas de observación del monitoreo a los recorridos de un grupo de unidades mediante el acompañamiento en su jornada diaria de trabajo, se rea= lizó un análisis técnico de los costos operacionales y de la oferta de kilómetros que permitió sincerar una tarifa acorde a la realidad local.  Los resultados fijaron una tarifa de $1= .38, el costo por km de $0.31 y un valor de arrancada de $0.42, se recomienda una revisión periódica de la tarifa fundamentada en la economía actual.<= o:p>

P= alabras claves: sistema de transporte, = transporte comercial, tarifa de taxi, metodología.

Abstract.                               <= /span>

This article presents the analysis of the methodol= ogy of the ANT to determine the taxi fare, and at the same time proposes a model considering new variables such as distance, idle time and the driver's soci= al security payment that the current methodology does not determines, and that they influence significantly in the erroneous calculation of the costs and therefore of the tariff. The field research was conducted through surveys to both users and service providers, and monitoring records were obtained for = the tours of a group of units by means of accompaniment in their daily work, a technical analysis of the operational costs and the offer of kilometers that allowed to open a rate according to the local reality. The results set a ra= te of $ 1.38, the cost per km of $ 0.31 and a start value of $ 0.42, it is recommended a periodic review of the rate based on the current economy

Keywords: Transport system, commercial transport, taxi rate, methodology.

Introducción.

Para una ciudad constituye un factor imprescindible la regulación de las tarifas del servicio de t= axi ofertadas por las diferentes operadoras, cuyo propósito es garantizar una retribución económica, y además, proporcionar a = los usuarios un servicio de calidad. Los principales beneficiarios de la presen= te investigación de forma directa e indirecta serán la población, las operador= as de taxi y los GADs. 

 

En= tal sentido,  el transporte público es = un servicio fundamental y de gran importancia para la movilidad de la població= n, es el medio a través del cual las personas pueden conectarse de un lugar a otr= o; sin embargo el crecimiento del servicio de taxi en el país se ha realizado = en forma    descontrolada y desordenad= a,  para el efecto, la Agencia Nacional de Tránsito (ANT) en uso de sus facultades  y con el objetivo de garantizar la prestación de un  servicio de calidad en el traslado de  las personas y bienes ofrecido por  las operadoras a sus usuarios y determi= nar tarifas socialmente justas, establece una metodología para la fijación de l= as tarifas, que será tomada  como un c= álculo referencial  y que  permitirá  a los Gobiernos Autónomos Descentralizados (GADS)  regular  el cobro monetario por el servicio, esta metodología que en su inicio aplicaba para la modalidad  en Taxi= Convencional.

 

Al respecto,  el estudio Diseño de un = modelo de costos alternativo para la determinación de la tarifa de taxi modalidad convencional en la ciudad de Cuenca  realizado por  (Aguirre, 2015), afirma que, la metodolog= ía de fijación de tarifas de taxis vigente adolece de varias inconsistencias  como: la contradicción de las fórmulas = para determinar el valor de arranque, desconoce la realidad ecuatoriana al aplic= ar la normativa Euro 4 recomendada para motores a diésel  en donde la mayoría de vehículos utiliz= ados para este  fin son a gasolina, el c= álculo de retorno de la inversión no se utiliza en ninguna fórmula, en la práctica considera difícil o imposible la medición de carreras cortas medianas y lar= gas. Manifiesta además que se desfigura el intento de calcular los costos incurr= idos de manera objetiva, por lo que considerara necesario plantear un modelo que= a más de técnico también sea justo y social.

 

Por tal razón, es conveniente destacar que los modelos matemáticos que conforma= n la metodología vigente no consideran las variables, distancia y tiempo en vací= o es decir el tiempo de viaje que el taxi utiliza desde su estación hasta el mom= ento de recoger al pasajero y luego de efectuado el servicio de traslado del pasajero, el tiempo que utiliza hasta llegar a su destino.

 

Este antecedente pod= ría haber generado inconsistencias y perjudicar a los oferentes del servicio de transporte comercial en taxi ya que no se han tomado en cuenta variables que  inciden de forma crucial en el cálculo de la tarifa y por ende perjudican en el aspecto  económico  además  de   poner en riesgo la calidad del servici= o; es así como, el presente estudio, “Análisis de la metodología de la ANT para fijar la tarifa de transporte modalidad taxi”, aportará con  lineamientos  que permitirán establecer parámetros para fijar una tarifa justa y adecuada que deben pagar los usuarios por el uso de este servicio público y= de igual manera que sea rentable para los dueños de las operadoras del servici= o de transporte terrestre comercial en taxi, incluyendo variables de tiempo y distancia.

 <= /o:p>

Desarroll= o

 

Marco teórico referencial

 

Se destaca un artículo de la Revista de Obras Públicas, Transportes y Ordenación Territorial de Sevilla en España titulad= o “Análisis del Sector del Taxi en Andaluc= ía. Contextualización en España y Europa, en el que se realiza una revisión y análisis del sector= del taxi en varias ciudades de Europa respecto de su normativa, organización, operativa de solicitud de servicio, sistemas tarifarios y servicios de taxi adaptado, con el fin de mejorar y garantizar el servicio, considerando la equidad entre calidad y rentabilidad. Los sistemas tarifarios establecen tarifas de referencia, tarifas obligatorias en cuanto a los tráficos de cor= to recorrido.  (Maeso, E. González, G. Caballero, J., 2010)= .=

 

El análisis de los sistemas tarifarios se estructura basándose en cuatro parámetros: servicio mínimo, bajada de bandera, kilómetro recorrido y hora de espera. En ciudades como Londres, se incluyen aspectos como la velocidad y el destino. En Berlí= n y Roma además de las tarifas generales se dispone de tarifas especiales reducidas, para carreras inferiores a 2 Km. Se diferencian periodos como: laborables diurnos (06:00 a 22:00), laborables nocturnos y festivos, casi t= odas las ciudades aplican la tarifa diurna. La jornada de trabajo diario se limi= ta a 11 horas con dos descansos de 3 horas máximo y media hora como mínimo.  Maeso et al. (2010).=

El artículo “Modelo para el cálculo de la tarifa en equipos de transporte” propone un patrón sencillo para evaluar la estructura de los costos de los equipos empleados para el transporte de bie= nes y/o personas, brinda una descripción de las variables que inciden en la determinación de las tarifas. Destaca la importancia de obtener una informa= ción confiable acerca de las características operacionales de los vehículos para lograr una acertada evaluación de los costos.  (Canti= llo, 1999).

 

Un trabajo significativo es el de Juan Aguir= re, en su tesis “Diseño de un modelo= de Costos alternativo para la determinación de la tarifa de taxi modalidad convencional en la ciudad de Cuenca para el año 2014”, menciona que,= los modelos matemáticos legalmente aprobados no consideran en su cálculo  las necesidades y deseos de los consumi= dores, por lo que cree  necesario establec= er un modelo alternativo de fijación de tarifas de taxis considerando las variabl= es sociales que permiten establecer los umbrales máximos y mínimos de disposic= ión al pago por este servicio, acordes a la realidad socioeconómica de los usua= rios de la localidad.  (Aguirre, 2015).

 

Concepto de Transport= e

 

Existen varias definiciones de transporte, c= ada una de estas definiciones, aporta una parte importante a su concepto global, entre las que se recalca la de (Ga= rrido, 2001)  quien define el transporte como “un sistema organizacional y tecnológico que apunta a trasl= adar personas y mercancías de un lugar a otro para balancear el desfase espacial= y temporal entre los centros de oferta y demanda. Lo anterior plantea el prob= lema de realizar este traslado en forma eficiente y sustentable”.

 

En el mismo sentido, (Izquierdo, 2001) considera al transporte como “un sistema o = un subsistema dentro del sistema territorial o incluso del económico, integrado por tres elementos fundamentales interrelacionados entre sí: la infraestruc= tura, el vehículo y la empresa o servicio que viene a constituir la actividad propiamente dicha”.

 

Transporte Terrestre Comercial

 

Se denomina servicio de transporte comercial= el que se presta a terceras personas a cambio de una contraprestación económic= a, siempre que no sea servicio de transporte colectivo o masivo. Para operar un servicio comercial de transporte se requerirá de un permiso de operación, Dentro de esta clasificación, entre otros, se encuentran el servicio de transporte escolar e institucional, taxis, tricimotos<= /span>, carga pesada, carga liviana, mixto, turístico, los cuales serán prestados únicamente por operadoras de transporte terrestre autorizadas para tal obje= to. El servicio de taxis se prestará exclusivamente en el área del territorio ecuatoriano, establecido en el permiso de operación respectivo; y, fletado ocasionalmente a cualquier parte del país, estando prohibido establecer rut= as y frecuencias. (ANT, 2015) Art. 57. 

 

Transporte Terrestre Comercial en Taxi

 

Consiste en el traslado de terceras personas= a cambio de una contraprestación económica desde un lugar a otro dentro del ámbito intracantonal autorizado para su operaci= ón, excepcionalmente fuera de ese ámbito cuando sea requerido por el pasajero. = Se realizará en vehículos automotores autorizados para ese efecto con capacida= d de hasta cinco pasajeros incluido el conductor. Deberán cumplir las exigencias definidas en el reglamento específico emitido para el efecto y las ordenanz= as que emitan los GADS. (ANT, 2012) Art. 62. 

            =

Subtipos de Transporte Terrestre Comercial en Taxi

 =

Convenciona= les: Consiste e= n el traslado de terceras personas mediante la petición del servicio de manera directa en las vías urbanas, en puntos específicos definidos dentro del mobiliario urbano (paradero de taxi), o mediante la petición a un centro de llamadas.

 =

Ejecutivos<= /span>: Consiste = en el traslado de terceras personas mediante la petición del servicio, exclusivamente, a través de un centro de llamadas, siendo el recorrido autorizado el solicitado por el cliente. (ANT, 2012) Art. 62. 

 

Operadoras de Transpo= rte Terrestre

 

Constituye una operadora de transporte terrestre, toda persona jurídica, sea cooperativa o compañía, que habiendo cumplido con todos los requisitos exigido= s en esta Ley, su Reglamento y demás normativa aplicable, haya obtenido legalmen= te el título habilitante para prestar el servicio de transporte terrestre en cualquiera de sus clases y tipos. (AN= T, 2015) Art. 77. <= o:p>

 

Rutas y Frecuencias

 

Se entenderá por ruta o línea de servicio de transporte público al trazado o conjunto de vías sobre las que se desplazan= los vehículos para otorgar el servicio, atendidos por una misma operadora. (ANT, 2012) Art. 110. 

 

Metodologia.

 

La metodología de trabajo aplicada en la presente investigación se basa princi= palmente en el análisis de la metodología aprobada por la ANT, y estudios previos que determinaron observaciones a esta metodología, con la aplicación de medidas estadísticas que permitan identificar, determinar, promediar, agrupar y condensar la información en parámetros o estimadores a todas las variables = que conforman los insumos para la determinación de la tarifa en esta modalidad = de servicio.

 

Para ello se establec= ió las siguientes etapas:

·&nb= sp;      Recopilación de datos en campo e información prima= ria

·&nb= sp;      Tabulación y procesamiento de la información<= /o:p>

·&nb= sp;      Análisis de la Metodología de la Agencia Nacional = de Tránsito

·&nb= sp;      Determinación y cálculos de variables involucradas=

·&nb= sp;      Cálculo de las tarifas

 

Cada una de estas etapas contempló más de dos actividades específicas que permit= en obtener ya sea una tendencia o la información respectiva de una o más varia= bles incidentes en la investigación realizada.

 

El tamaño de muestra de acuerdo a las recomendacion= es nacionales e internacionales (MTOP, 2010)<= /span> se determinó a partir de la siguiente ecuación:

 

 

La muestra calculada con los datos correspondientes a la población del cantón = de Latacunga de acuerdo a la fórmula aplicada fue d= e 383 encuestas (pero se aplicó un total de 385 encuestas). Por lo que el desarro= llo de la recopilación de datos se dividió en tres actividades específicas que = se detallan a continuación:

 

Determinación de la demanda modal

 

Esta actividad consistió en la aplicación de encuestas origen destino de intercepción a los usuarios en general que están en capacidad de realizar un viaje por si mismos; por medio de la cual fue posible cuantificar la demanda actual determinada por el número de viajes entre zonas según el medio de transporte utilizado.  <= /span>

 

Determinación de la oferta del servicio.

 

La determinación de la oferta de servicio no es más que la identificación del número de kilómetros recorridos por el vehículo para un número de carreras realizadas por éste considerando el porcentaje d= e no ocupación.

 

La actividad requirió de la aplicación de un formulario de monitoreo o seguimi= ento periódico (cada dos horas) a tres unidades vehiculares de diferente marca p= or cada operadora, durante la jornada laboral en cuatro días típicos y un día atípico como lo establece la metodología técnica para este tipo de estudios; con el fin de cuantificar las carreras cortas, carreras intermedias y carreras largas con sus respectivas distancias recorridas en kilómetros para cada tipo de vehículo. Para ello se validó la información a través de los tickets o facturas emitidas en cada carrera realizada.

 

Obtención de informac= ión de costos operacionales.

 

Completando la recolección de datos de campo o información primaria se aplicó un tercer formulario diseñado para identificar los diferentes costos y gastos en los = que incurre cada propietario de este tipo de automotor durante la prestación del servicio. Para ello se entrevistó a una muestra representativa de propietar= ios de vehículos de cada operadora según el tamaño de la flota vehicular existe= nte 70% del total de la flota vehicular= según las recomendaciones del manual de estudios de transporte urbano y para garantizar resultados más confiables).

Resultades.

Sistema de transporte

El servicio de transporte terrestre en el cantón se encuentra en un estado de servicio mejorable, relativamente b= ueno y suficiente para el transporte terrestre urbano intra-cantonal. (Unidad de Movilidad Latacunga, 2019). La estructura del sistema de transpor= te terrestre urbano está distribuida en 5 modalidades, detallados en la tabla = 1. La flota vehicular para el transporte de pasajeros es de 1052 unidades representando un indicador de 193 habitantes por unidad.<= /span>

 

Tabla 1: Sistema de transporte terrestre Latacunga

 

OP= ERADORA DE TRANSPORTE

NÚMERO DE OPERADORAS CANTON LATACUNGA

NUMERO DE VEHÍCULOS

Tr= ansporte comercial, carga liviana

27

235

Tr= ansporte comercial, en taxi ejecutivo

13

225

Tr= ansporte comercial, en taxi convencional

35

348

Tr= ansporte comercial escolar e institucional

11

145

Tr= ansporte público urbano

2

99

TOTAL

 

1052

 

Fuente:= Unidad de movilidad Latacunga (2019)

Realizado por:= Los autores

 

Operadoras de transporte comercial en taxi

De acuerdo la información proporcionada por la UMTTTSVL, la oferta de transporte en la modalidad de Taxi en la ciud= ad de Guano, está conformada por treinta y cinco (35) operadoras de Transporte Comercial de Pasajeros en Taxi Convencional y trece (13) operadoras de transporte Comercial  en Taxi Ejecu= tivo, conformadas   por  una flota vehicular de trescientos cuar= enta y ocho (348) y doscientos veinte y cinco (225) unidades respectivamente, las mismas  se encuentran debidamente registradas y legalizadas en la institución.

Partición Modal

Gráfico 1. Partición modal.

Fuente: Elaboración propia=

 

Análisis: = Del total de encuestados el 58% utiliza como medio transporte el bus, seguido d= el 19% que utiliza auto propio, el 16% utiliza como medio de transporte el tax= i, el 3% utiliza moto, el 3% se moviliza a pie y, el medio de transporte menos utilizado es la bicicleta con el 1%.

Frecuencia de uso<= /span>

Gráfico 2. Frecuencia de uso

Fuente: Elaboración propia=

Análisis: = Los resultados demuestran que el 41% de los encuestados utilizan el servicio de taxi 1 vez por semana, el 26% indican que usan el servicio rara vez, seguido del 22% que lo utiliza dos o más veces por semana, y el 11% utiliza el serv= icio diariamente.

= Horario de uso

Gráfico 3. Horario de uso=

          

Fuente: Elaboración propia

 

Análisis: = El 39% de los encuestados utiliza el servicio de taxi en la mañana, mientras q= ue el 28% lo utiliza en la noche, el 26% en la tarde y el 7% utiliza el servic= io en la madrugada.

 

Oferta del servicio

=  

Para = el estudio de la oferta del servicio se aplicó una encuesta al universo de unidades de las compañías que operan en el cantón distribuidas en distintas parroquias, conformado por 573 taxis, 348 convencionales y 225 ejecutivos.<= o:p>

=  

Conductores con afiliación al IESS

Gráfico 4. Conductores con afiliación al IESS

Fuente: Elaboración propia

Análisis: = Del total de encuestados el 90% no posee afiliación al IESS y apenas el 10% de = los encuestados cuenta con este beneficio.

 

= Número de Carreras Cortas, Intermedias y Largas.

Gráfico 5. Número de carreras cortas intermedias y largas<= o:p>

Fuente: Elaboración propia

 =

Análisis: El promedio de carreras realizadas al día es de 36, de las cuales, el 50% corresponden a carreras cortas, el 33% a carreras intermedias y el 17% a las carreras larg= as

=  

Tiempo en vacío

=  

Cabe destacar que, en la ficha de observación, también se recogió información ac= erca de la distancia y tiempo en vacío de cada carrera realizada por las distint= as unidades, datos que sirvieron para el cálculo de la tarifa, incluyendo así estas variables que no son consideradas en la metodología de la ANT.

=  

Para calcular el tiempo en vacío se tomaron en cuenta los tiempos que la unidad utiliza cuando sale desde la estación a recoger = al usuario y el tiempo de regreso a la parada cuando la carrera termina, media= nte la sumatoria de los tiempos en vacío se obtuvo como resultado una media de 6 minutos de tiempo promedio en vacío. Este valor= se incluye en la Fórmula de Tarifa mínima de carrera, sumado a los kilómetros recorridos con pasajeros.

=  

Distancia en vací= o

=  

Para = el cálculo de la distancia en vacío en la ficha de observación se recogió información sobre la distancia en vacío de recogida al usuario y la distanc= ia en vacío de regreso a la parada; de la sumatoria de las dos distancias en v= acío se obtuvo una media de 1.36 km equivalente a la distancia en vacío promedio. Este valor se incluye en la Fórmula de Tarifa mínima de carrera, sumado a la variable de número de minuto de espera en carrera realizada.

=  

Análisis de la Metodología de la Agencia Nacional de Tránsito (ANT)

=  

La ANT como organismo de control  establec= e la metodología de cálculo referencial para las tarifas por la prestación del servicio de transporte terrestre comercial en taxi en el año 2014, Al respecto,  el estudio Diseño de un = modelo de costos alternativo para la determinación de la tarifa de taxi modalidad convencional en la ciudad de Cuenca  realizado por  (Aguirre, 2015), afirma que, la metodolog= ía de fijación de tarifas de taxis vigente adolece de varias inconsistencias  como: la contradicción de las fórmulas = para determinar el valor de arranque, desconoce la realidad ecuatoriana al aplic= ar la normativa Euro 4 recomendada para motores a diésel  en donde la mayoría de vehículos utiliz= ados para este  fin son a gasolina, el c= álculo de retorno de la inversión no se utiliza  en ninguna fórmula. Manifiesta además   que se desfigura el intento de calcular los costos incurridos de man= era objetiva, por lo que considerara necesario plantear un modelo matemático más técnico.

=  

Por t= al razón, es conveniente destacar que los modelos matemáticos que conforman la metodología vigente no consideran las variables de distancia y tiempo en va= cío. La metodología vigente no especifica el procedimiento para determinar las distancias promedias para carreras cortas, intermedias y largas ni los parámetros a considerar para su cálculo. Para este análisis en el presente estudio se realizó un acompañamiento al recorrido de las unidades en distin= tos días y horarios y mediante un cálculo promedio de las distancias recorridas= por las unidades se pudo determinar estos valores.

=  

Entre otras referencias sobre el análisis de la metodología cabe destacar a (Erráez. G, Orellana M, 2018), quienes ma= nifiestan que una tarifa social debería recoger las necesidades de rentabilidad, recuperación de los costos, mano de obra y demás aspectos de relevancia para los proveedores del servicio, así como la capacidad de pago, ingresos y la frecuencia de uso de los usuarios. De esta manera se cumpliría con el princ= ipio de equidad y trato justo.

=  

Es importante señalar que dentro de los costos fijos la metodología de la ANT incluye como rubros dos tipos de  seguros, el seguro obligatorio de accidentes de tránsito SPATT que se cancela anualmente junto con el valor de la matriculación vehicular, y el seguro privado anual para el vehículo con cobertura todo riesgo; cómo se pu= ede inferir esta metodología  no toma en cuenta el pago al seguro social que según la Constitución de la república e= n su artículo 367 es un derecho irrenunciable  de todas las personas, se rige por los principios del sistema nacion= al de inclusión y equidad social y por los de obligatoriedad, suficiencia, integración, solidaridad y subsidiaridad.

=  

Tomad= o en cuenta el riesgo de trabajo al que expone este tipo de actividad laboral, se debería considerar como una forma de estabilidad económica que cubra al propietario o conductor de la unidad de taxi en el caso de accidentes de trabajo, así como asegurar una pensión mensual mediante la jubilación.

=  

Entre otros aspectos, la metodología de la ANT se refiere al financiamiento que se realiza para la adquisición del vehículo sin tomar en cuenta el costo del puesto en la compañía, además,  la = fórmula para el cálculo del valor residual del activo, es decir el valor que tendrá= el vehículo al final de su vida útil, fue modificada mediante Resolución 107-DIR-2014-ANT, si bien es cierto que la misma  calcula un valor residual de la recuper= ación de capital pero no un costo mensual de capital. Además, dentro de sus varia= bles de cálculo se encuentra el Valor de salvamento, el mismo que refiere a la valoración monetaria del Plan Renova, cuyo incentivo económico implantado p= or el Gobierno Nacional para el proceso de chatarrización de vehículos culminó= el 31 de diciembre del 2015; esta iniciativa durante el año 2017 fue promovida= por el sector privado.

 

Propuesta metodológica para el cálculo de la tarifa=

 

Oferta de Kilómet= ros

 

Para = el cálculo de la tarifa se toman en cuenta dos elementos principales como son = la oferta de kilómetros y los costos operacionales. En este sentido, la oferta= de kilómetro está conformada por información referente al número de días que labora la unidad al mes; el número de carreras y la distancia promedio en Km recorridos ya sean cortas intermedias y largas; el número de kilómetros que recorre la unidad al día con pasajeros; el número de kilómetros que recorre= la unidad al día sin pasajeros.

 

La información recogida a tra= vés de encuestas permitió determinar los datos promedio para el cálculo de la oferta de kilómetros.

Tabla 2: Oferta de Kilómetros

Etiquetas

Datos

# de días promedio que labora la unidad al mes

26

# de Carreras Cortas (CC)

18

Distanc= ia Promedio en km recorridos CC

1.5

# de Carreras Intermedias (CI)

12

Distanc= ia Promedio en km recorridos CI

3.5

# de Carreras Largas (CL)

6

Distanc= ia Promedio en km recorridos CL

9

Total de carreras promedio realizadas al día

36

Km recorridos al día por la unidad con pasajeros

123

Km recorridos al día por la unidad sin pasajeros

49

% de NO ocupación

28%

Km recorridos / día

172

Km recorridos / mes

4472

Km recorridos / año

53664

Fuente: Elabo= ración propia=

 

Fórmulas de cálculo:

 

Kdía =3D ∑ (NCC x KmCC) + (N= CI x KmCI)<= span style=3D'mso-spacerun:yes'>  + (NCL x Km= CL)

Kdía =3D 172

 

Kmes =3D [∑ (NCC x KmCC) + (N= CI x KmCI)<= span style=3D'mso-spacerun:yes'>  + (NCL x Km= CL)] x Dlab

Kmes =3D 4472

 

NC =3D ∑ (NCC + NCI + NCL)

NC =3D 53664

 

 <= /p>

 =3D 28%

 

Costos operaciona= les

Costos fijos

 

Fórmula de cálculo:               Cfi =3D ∑ (MO + Seg + Leg + GA + GOP)

 

Tabla 3: Costos Fijos

Etiquetas

Costo / Año

Costo / Mes

Mano de obra=

7021.8

585.15

Seguro Socia= l

782.88

65.24

Legalización=

 

 

Matriculación vehicular

51

4.25

SPATT=

48

4.00

Permiso de operación

41.8

3.48

Revisión veh= icular

18.09

1.52

Impuesto al rodaje municipal y provincial

22

1.83

Gastos administrativos

 

 

Cuotas socia= les (incluye: comunicación/ radio, garaje)

428.16

35,68

Gastos operativos

 

 

Kit de segur= idad

40

3.33

Taxímetro

52.56

4.38

Total

856.29

708.87

Fuente: Elaboración propia=

 

Cfi =3D ∑ (MO + S= eg + Leg + GA + GOP)

 

Cfi =3D 708.87 mensual carrera diurna             C= fi =3D 855.15 mensual carrera nocturna=

=  

Para el cálculo de la tarifa nocturna se incluye al valor de la remuneración de 585.15 de mano de obra el 25% de incremento estipulado en el código de trabajo.

 

Co= stos variables

 

Fórmula de cálculo:              Cvi =3D= (Com + Rod + Mpre + Mco)

 

Com:<= span lang=3DES style=3D'font-size:12.0pt;line-height:115%;font-family:"Times New= Roman",serif; color:red;mso-ansi-language:ES'> Combustible, según la metodología de la ANT el costo del combustible dependerá de la potencia del motor, de las condiciones de trabajo y del val= or unitario del combustible. ANT (2014). En este caso, las mediciones del rendimiento del consumo de combustible se realizaron con relación al vehícu= lo promedio Chevrolet Aveo Family cilindraje 1.5, = como se evidencia en la Tabla 4, se considera el factor de consumo correspondien= te al rango de 13.1 a 130, en vista de que el RLOTTTSV establece como límites máximos y rangos moderados de velocidad vehicular permitidos en las vías públicas de 50 km/h.

 

Tabla 4: Funciones de los factores de consumo de combustible de vehículos ligeros según cilindrada y velocidad.

CILINDRADA (L)

RANGO DE VELOCIDADES

FACTOR DE CONSUMO (g/km)

(km/hora)1.4 <= ; L <2.0

5 a 13.1

428.06 – 46.696V + 1.697V²

13.1 a 130

135.44 – 2.314V + 0.0144V²

 

Fuente: ANT (2014)

 

Reemplazando los valores de la tabla 4 tenemos que el factor de consumo es igual a 55.74= .

 

Para obtener el gasto promedio de consumo de combustible es necesario el costo de combustible comercial, los resultados de las encuestas determinaros que el combustible que usa el total de encuestados es gasolina extra, el precio de este tipo de combustible tuvo una variación a partir del mes de diciembre d= el 2018, de $1.48 se incrementó a $1.85 debido a la rebaja del subsidio; además los datos de la tabla 2. de la oferta de kilómetros: km recorridos / día = =3D 172; km recorridos / mes =3D 4472; y el valor de factor de consumo.

 

Gasto promedio de combustible =3D (km recorridos * precio combustible) / factor de consumo

Gasto promedio de combustible diario =3D 5.7

Gasto promedio de combustible mensual =3D 148.64=

 

Rod: Para el cálculo de Rodamiento se recogió información mediante proformas de distintas casas comerciales, en vista de que los resultados de las encuestas indicaron que el 47.9% de los encuestados usan neumáticos extranjeros y el 52.1% utiliza neumáticos nacionales.

 

T= abla 5: Costo en neumáticos.

Promedio de # neumáticos/año

Costo Unitario / neumático

Costo neumáticos / mes

Costo neumáticos / año

5.6

88.57

41.05

492.60

Fuente: Elaboración propia

 

El mantenimiento se calcula tomando en cuenta el kilometraje recorrido por las unidades, en base a los datos de la tabla 2 de oferta de kilómetros se obti= ene los datos de los kilómetros recorridos por mes 4472 y los kilómetros recorr= idos por año 53664.

 <= /b>

= Mpre:= El Mantenimiento preventivo

Tabla 6: Rubros Mantenimiento Preventivo

Rubros

Estimado de cambio (Km)

Costo/cambio

Costo/mes

Aceite y lubricante de motor (gal)/mes

5000

27.53

32.80

Aceite y lubricante caja (l)/mes

60000

57,89

5.13

Aceite hidráulico (l)/mes

30000

25,41

4.51

Filtro = de aceite50000

8.72

15.62

Filtro = de aire

10000

8.56

14.98

Filtro = de combustible

15000

7.02

13.90

Engrase general g/año

50000

27,05

3.42

Kit de embrague

90000

184.80

9.19

Betería /mes

50000

125,44

10.45

Alineac= ión y balanceo/mes

10000

22,85

10.23

Frenos (pastillas, zapatas)/mes

10000

56

25.10

Bandas = de accesorios y de distribución/mes

65000

42,58

2.93

Limpiez= a de inyectores

30000

30,58

4.56

Amortig= uadores, terminales de dirección, bujes de suspensión

60000

334.57

24.97

Rectifi= cación de disco de freno y tambor

30000

39,11

5.84

Lavado motor/carrocería

5000

13,44

13.44

TOTAL

 

1011.55

197.05

Fuente: Elaboración propia=

 

= Mco: El = Mantenimiento correctivo

 

T= a= bla 7: Rubros Mantenimiento Correctivo.

Rubros

Estimado de cambio (Km)

Costo/cambio

Costo /mes

Reempla= zo bomba de inyección

200000

325,75

7.29

Reempla= zo elementos sistema de suspensión

100000

352.06

15.77

Element= os sistema eléctrico

15000

44.35

13.24

Reparac= ión del motor

250000

1349.60

24.17

Reparac= ión de caja

300000

1220.93

18.22

TOTAL

 

3292.70

78.70

Fuente: Elaboración propia=

 

Aplicando la fórmula se obtiene el valor de los costos variables

 

Cvi =3D (148.64+ 41.05+ 197.05 + 78.70)

Cvi =3D 465.44

 <= /span>

Costos de capital

Tabla 10: Costos de capital= .

CP +D

CP

D

tc<= span style=3D'font-size:12.0pt;font-family:"Times New Roman",serif;color:windo= wtext; mso-fareast-language:ES-EC'>

 

If<= span style=3D'font-size:12.0pt;font-family:"Times New Roman",serif;color:windo= wtext; mso-fareast-language:ES-EC'>

Kd<= span style=3D'font-size:12.0pt;font-family:"Times New Roman",serif;color:windo= wtext; mso-fareast-language:ES-EC'>

Inversión

Capital propio

Endeudamiento

Tasa de interés real (%)

Plazo deuda (años)

Impuesto fiscal

Interés deuda

21877

5323

9506

0.128

4

0

22343

Fuente: Elaboración propia.

 

Con los datos obtenidos aplicamos la fórmula:

 

 

Cci =3D 199.89

 

Cálculo de la tarifa mínima de carrera en taxi convencional y ejecutivo

 

Para calcular la tarifa mínima de carrera es necesario calcular el valor de costo por kilómetro recorrido, el valor de la arrancada, el costo minuto de esper= a y la eficiencia operacional. La información recogida mediante los recorridos = con las unidades permitió incluir los valores para las variables consideradas p= ara esta metodología como son la distancia y tiempo en vacío.

=  

De ig= ual manera se recogió la información respecto de los tiempos que existen entre = cada carrera, denominado minuto de espera en carrera realizada (Mmecp), el cálculo promedio de los tiempos efectuados de cada carrera refleja un va= lor de 1 minuto.

 <= /b>

Costo por kilómetro recorrido

 <= /b>

 <= /p>

Ck =3D 0.31 (diurno)=                            Ck =3D 0.34 (nocturno)=

 

 Arranc= ada

 

=

 

Ar =3D 0.42 (diurno)                                       Ar = =3D 0.46 (nocturno)

 

Costo minuto de espera

 

Cme =3D 0.07 (diurno)=                                     Cme =3D 0.08 (nocturno)=

 

Con l= os resultados obtenidos se efectuó el cálculo de la tarifa mínima de carrera diurna y nocturna, para lo cual se plant= eó, la siguiente fórmula:

=  

=

=  

Tarifa mínima de Carrera Diurna=

 

TMC =3D 0,42 + (0,31x1,5) + (0,07x1) + (6x0,07)

 

TMC=3D1,38<= /b>

 

 

Tarifa mínima de Carrera Nocturna

 

 

TMC =3D 0,46 + (0,34x1,5) + (0,08x1) + (6x0,08)

 

TMC=3D1,53<= /b>

 

La información obtenida nos permite determinar un costo de la tarifa mínima de carrera para la jornada diurna de $1.38 y para la jornada nocturna de $1.53, fundamentada en la metodología establecida por la ANT incluidas las variabl= es de distancia y tiempo en vacío.

 

Conclusiones.

 

  • Entre las falencias de m= ayor relevancia del modelo matemático de la metodología de ANT se puede mencionar la ausencia de variables de tiempo, distancia en vacío y el = pago del seguro social del conductor en los costos de operación que inciden= en su cálculo, no especifica el procedimiento ni los parámetros para esta= blecer las distancias promedias entre carreras cortas intermedias y largas.
  • El análisis técnico de l= os costos operacionales y la oferta de kilómetros permitió determinar una tarifa acorde a la realidad del cantón Latacunga con lo que se pretende mejorar la calidad del servicio.
  • La propuesta metodológica determinó una tarifa mínima de carrera en el día de $1.38, el costo po= r km recorrido es de $0.31 y la arracada $0.42, el promedio de días que lab= ora una unidad es de 26, el promedio de carreras diarias 36 y el promedio = de km que recorre una unidad por día es de 172.

 

Referencias bibliográficas.

Agencia Naci= onal de Tránsito del Ecuador. (2014). Resolución No. 107-dir-2014-ANT. Reform= a a la metodología para la fijación de tarifas (Taxi convencional) (pág. 4). Quito: Registro Oficial.

Aguirre, J. (2015). Diseño de un modelo de cotos alterntivo para la determinación de la tarifa de taxi modalidad convencional en la ciudad de Cuenca para el año 20= 14. Cuenca.

ANT. (2012).= Reglamento General para la aplicación a la Ley Orgánica de Transporte Terrestre, Tráns= ito y Seguridad Vial. Registro Oficial. Obtenido de https://www.obraspublicas.gob.ec/wp-content/uploads/downloads/2015/03/Decre= to-Ejecutivo-No.-1196-de-11-06-2012-REGLAMENTO-A-LA-LEY-DE-TRANSPORTE-TERRE= STRE-TRANSITO-Y-SEGURIDAD-VIA.pdf

ANT. (2014).= Resolución No.073-DIR-2014-ANT. Metodología para la fijación de tarifas (Taxi Convencional). Obtenido de https://www.ant.gob.ec/index.php/transito-7/resoluciones-2014/file/2396-res= olucion-no-073-dir-2014-ant-metodologia-para-la-fijacion-de-tarifas-taxi-co= nvencional

ANT. (2015).= Ley Orgánica de Transporte Terrestre, Tránsito y Seguridad Vial. Obtenido de https://www.ant.gob.ec/index.php/ant/base-legal/ley-organica-reformatoria-a= -la-ley-organica-de-transporte-terrestre-transito-y-seguridad-vial

Cantillo, V. (1999). Modelo para el cálculo de la tarifa de equios de transporte. . I= ngeniería y Desarrollo. Universidad del Norte.

Domínguez, H. (2006). El servicio invisible : fundamento de un buen servicio al client= e. Bogotá: Ecoe Ediciones.

Erráez. G, Orellana M. (2018). Análisis para la determinación de la tarifa de taxi convencional en el cantón Nabón. Cuenca.

GAD Garrido,= R. (2001). Modelación de sistemas de distribución de carga. Santiago de Chile: Ediciones Universidad Católica.

Hernández. R, Fernández. C, Baptista. P. (2014). Metodología de la Investigación. México D. F.: McGraw-Hill.

INEC. (2010)= . Resultados del Censo 2010 de Población y Vivienda en el Ecuador. Obtenido de Insti= tuto Nacional de Estadísticas y Censos: http://www.ecuadorencifras.gob.ec/wp-con= tent/descargas/Manu-lateral/Resultados-provinciales/chimborazo.pdf

INEC. (2016)= . Encuesta Nacional de Empleo, Desempleo y Subempleo. Indicadores Laborales Marzo 2016= . Obtenido de Instituto Nacional de Estadísticas y Censos: http://www.ecuador= encifras.gob.ec/documentos/web-inec/EMPLEO/2016/Marzo-2016/Presentacion%20E= mpleo_0316.pdf

INEC. (2019)= . Medidas de Inflaciòn. Indice de precios al consumidor. Obtenido de http://www.ecuadorencifras.gob.ec/documentos/web-inec/Inflacion/2018/Diciem= bre-2018/01%20ipc%20Presentacion_IPC_dic2018.pdf

Izquierdo, R. (2001). Transportes un enfoque integral. Tomo I Transporte y Economía del transporte. Madrid: Editorial Ugarte S. I.

Maeso, E. González, G. Caballero, J. (2010). El sector del taxi en Andalucía. Context= ualización en España y Europa. Reflexiones. Revista de Obras Públicas, transporte y ordenación territorial, 55-80.

MDMQ. (2009)= . Municipio del Distrito Metropolitano de Quito. Plan MAestro de Movilidad para el Dist= rito Metropolitanode Quito. Obtenido de file:///C:/Users/C&DSYSTEMS/Downloads/LFLACSO-01-DMQ.pdf

MDMQ. (2015)= . Municipio del Disrito Metropolitno de Quito. Obtenido de Gobierno Abierto. Acta Transcrita de la Sesión extraordinaria de la Comisión de Movilidad. 31 de M= arzo de 2015

MInisterio de Trabajo. (2019). Salarios Mínimos Sectoriales 2019. Obtenido de http://www.trabajo.gob.ec/biblioteca/

Minsiterio de Trabajo. (2012). Código de Trabajo. Registro Oficial Suplemento 167 de 16-dic-2005. Obtenido de http://www.trabajo.gob.ec/wp-content/uploads/d= ownloads/2012/11/C%C3%B3digo-de-Tabajo-PDF.pdf

Molinero, A.= y. (2003). Transporte Público: Planeación, diseño, operación y administraci= ón. Mexico: Limusa.

MTOP. (2010)= . Manual para estudios de origen y destino de transporte de pasajeros y mixto en áre= as municipales distritales y metropolitanas. Quito: Registro Oficial.=

UNE, Norma. (2006). Ministerio de Fomento España. Norma Europea. Obtenido de Man= ual de Apoyo para la Implantación de la Gestión de la calidad según Norma UNE-EN 13816: https://www.fomento.gob.es/recursos_mfom/pdf/6336A739-3BBF-426C-AD69-1F3C59= 833A19/25583/Cap1ElmodelodecalidadsegunUNEEN13817.pdf

Unidad de Movilidad Latacunga. (2019). Compañias de transporte público Latacunga.<= /i> Latacunga.

 


Para citar el artículo indexado.

 

 

Aguilar G. &  Luis J. (2019).  Análisis de la metodología de la ANT para fijar la ta= rifa de transporte modalidad taxi., Revista electrónica Ciencia Digital 3(2), 5-25. Recuperado desde: http://www.cienciadigital.org/revistasc= ienciadigital/index.php/VisionarioDigital/article/view/391/875

 


 

 

 

El artículo que se publica es de exclusiva responsabilidad de los autores y no necesariamente reflejan el pensamiento de la Revista Ciencia Digital.

 

El artículo qu= eda en propiedad de la revista y, por tanto, su publicación parcial y/o total en otro medio tiene que ser autorizado por el director de la Revista Ciencia Digital.

 

 



[1] Escuela Superior Politécnica de Chimborazo, Facult= ad de Administración de Empresas, Riobamba, Ecuador, gustavo.aguilar@espoch.ed= u.ec

[2= ] Escuela Superior Polité= cnica de Chimborazo, Facultad de Administración de Empresas, Riobamba, Ecuador, j= ose.llamuca@espoch.edu.ec

------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/item0025.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml Wul13JournalArticle{85036D1D-B423-4696-A9F8-74A5479186CA}The= effect of polymer surfactant on the rheological properties of nanoemulsion= s.Colloid and Polymer Science 2013 709–716291Wulff-Pérez MiguelMartín-RodriguezAntonioGálvez-RuizMaría J.de Vicente<= b:First>Juan12Zam15= JournalArticle{FB40766B-903F-463C-A57E-3F34CA9E5021}= Composite chitosan/Agarose ferrogels for potential applic= ations in magnetic hyperethermiaGels.201569-801Zamora MoraV= anessaSoaresPaula = I.P.EcheverriaCoro= Hernández Rebeca<= /b:First>MijangosCarmen13Bha10JournalArticle{3EC2A2EA-5A35-480A-9A1D-C11383B455BF}Supermacroprous chitosan-agarose-gelatin cryogels. in vitro characterizati= on and in vivo assesment for cartilage tissue engineering.Journal of the Royal Society Interface2010<= /b:Year>1-15BhatSmuritaT= ripathiAnujKumarAshok14Rui04Report{289ADC54-049A-4459-B615-36603B0D1B08= }Desarrollo de un Sistema de liberación de fármacos bas= ado en nanopartículas magnéticas recubiertas con Polietilénglicol para e= l tratamiento de diferentes enfermedades.2004Universidad Autónoma de Madrid. Departamento de Física Aplicada= .MadridRuiz EstradaGladys Amalia15= Cor11JournalArticle{2CE82786-F4F8-40AE-B743-82C4554E5E89}Hidrogeles na= noestructurados termosensibles sintetizados mediante polimerización en mic= roemulsión inversa.Revista Mexicana de Ingenierí= a Química.2011513-520<= b:Volume>103<= b:Person>CortésJ. A.PuigJ. E.Morales J. A.Men= dizábalE.16MarcadorDeP= osición1JournalArticle{819DA7= 73-947B-4BC2-855C-003DB219D8AF}Enhanced spinnability of n= arbon nanotube fibers by surfactant additionFibere= s and Polymers2014762-766154Song JunyoungKingSoyo ungYoon Sora= ChoDaehwanJeongYoungjin17Ilg13JournalArticle{752C8BEE-7C38-4885-8859-F6= 5068501C9B}Stimuli-responsive hydrogels cross-linked by m= agnetic nanoparticles.Soft Matter<= b:Year>20133465-34689IlgPatrick18Bos15JournalArticle= {8726F6AC-1312-4A0D-94FD-908B651CD5BC}Functionalized microfibers for field-responsive materials and biologica= l applications.2015BossisGeorgesMarinsJéssica A.KuzhirPavel= VolkovaOlgaZubarevAndreyJournal of Intelligent Material Systems and Str= uctures1-919Lin12JournalArticle{CABBB6F0-E9CB-4C6D-BB4E-88B488FEA5A4}Micro= fluidic synthesis of microfibers for magnetic-responsive controlled drug re= lease and cell culture.PLoS ONE20121-873LinYung-ShengHuang= Keng-ShiangYangChi= h-HuiWangChih-YuYangYuh-ShyrongHsuHsiang-ChenLiaoYu-JuTsaiChia-Wen20Tar05JournalArticle{8A89917D-A7C1-4E7C-9FB6-ED9C063087E3}Advances in magnet= ic nanoparticles for biotechnology applications.Jo= urnal of Magnetism and Magnetic Materials200528-34290TartajP.MoralesM. P.González-CarreñoT.Veintemillas-VerdaguerS.= SernaC. J.21= Gar03JournalArticle{9B6= 5BBFA-A814-4A04-9249-A6A47D160DAB}Síntesis y propiedades= de ferrofluidos de magnetita2003= Superficies y Vacío.28-31161García-CerdaL.A.Rodríguez-FernándezO.S.Betancourt-GalindoR.Saldívar-GuerreroR.Torres-TorresM.A.22Dia11JournalArticle{= 7FD6F7BB-B6BD-4D3D-AC43-1AF5FDBD6366}A biotechnological p= erspective on the application of iron oxide magnetic colloids modified with= polysaccharides.2011DiasA.M.G.C.<= b:Person>HussainA.= MarcosA.SR= oqueA.C.A.142–155Biotechnology Advances = 29 2923Lew11JournalArticle{69BACEF5-DDAD-42EE-BC36-71ACEA6223A9}Biohybri= d carbon nanotube/agarose fibers for neural tissue engineering.2011Advanced Functional Materials2624-263221= LewitusDan Y.BranchJonathan R.SmithKaren L.CallegariGerardo<= b:Person>KohnJoachimNeimarkAlexander V.24Est10JournalArticle{AD= 2B1400-8746-4FD6-8914-4CA8F67548A7}Hidrogeles polimérico= s potencialmente aplicables en Agricultura.2010<= b:JournalName>Revista Iberoamericana de Polímeros= 76-87122Estrada GuerreroRodolfo = F.Lemus TorresDafn= eMendoza AnayaDeme= trioRodriguez Lugo= Ventura= 25Ald16Journ= alArticle{D12368F2-04FB-475B-B3C1-20843943EEEC}Facile synthesis of magnetic agarose microfibers by directed s= elfassemblyPolymer201661-6493AldanaSamuelVeredaFernando<= b:Person>Hidalgo-AlvarezRoquede VicenteJuan26Pue18Book{51FF3059= -3BA2-4C70-8B5C-50103EA72496}Programación lineal para la= toma de decisiones2018Riobamba= ESPOCH, Dirección de publicacionesPuenteMarianaIsabelGavilánezÓscarDanilo27<= b:Tag>Iza12Book{6BBD2120-F2BC-= 49A5-91C3-43FB26CF1DC7}Investigación de Operaciones2012MéxicoTrillasIzarJuan28Tah12Bo= ok{58482EF1-5D7B-4C69-8256-8B85470C337D}Investigación de operaciones2012M= éxicoPearson EducaciónTahaHamdy29Mar14Book{FB95A272-4B59-4D50-A9F6-EB816F5D4FA2}Investigación de= Operaciones2014MéxicoGrupo Editorial PatriaMartínezIrisVértizGastón<= b:Last>LópezJesúsJiménezGuillermo= MoncayoLuis<= /b:Author>http://editorialpatria.com.mx/pdffiles/9786074386967.pdf30Gar14<= b:SourceType>JournalArticle{A8DAB7FB-8980-437F-8A9A-= FD324BEB363F}Modelos para la planeacion de transporte ter= restre eficiente2014BogotáGarcíaGiov= aniU= niversidad Militar Nueva Granada 25https://repository.unimilitar.edu.co/bitstream/handle/10654/11836/MODELOS= %20PARA%20LA%20PLANEACION%20DE%20TRANSPORTE%20TERRESTRE%20EFICIENTE%20PARA%= 20EL%20SECTOR%20DE%20HIDROCARBUROS.pdf;jsessionid=3D301D9D10EA65EE54F3D6671= 2C4D8AC8E?sequence=3D131Med07JournalArticle{= C74E74B8-1EB1-4EDE-96A8-D19528FD2CAD}Utilización del mod= elo de transporte para la asignación de trabajos a máquinas considerando = prioridadesRevista Académica de la FI-UADY20079MedinaSRayaKContrerasM<= /b:Author>https://www.redalyc.org/html/467/46711206/32Ada11J= ournalArticle{E8272CDA-C572-454B-92D0-BEAC6DA45424}<= /b:Guid>MODELOS LOGÃSTICOS PARA LA OPTIMIZACIÓN DEL TRANSPORTE D= ECiencia e Ingeniería Neogranadina201125= AdameWilsonFontanillaCarlosArangoMartín<= /b:Author>http://www.scielo.org.co/pdf/cein/v21n1/v21n1a0= 6.pdf33Lóp08<= /b:Tag>JournalArticle{379D5D97-8218-44= 0C-A3A4-C5D3D6F4557C}Modelo matemático de transporte apl= icado a una compañía dedicada a la manufactura y distribución de juguete= s, usando programación lineal enteraRevista Ingen= iería Industrial20088<= b:Author>LópezJu= anOlguínJesúsCamargoClaudiahttps://dialnet.uni= rioja.es/servlet/articulo?codigo=3D399797134Agu14Misc{4AA6C541-C540-41AF-B448-0C37135AC7FD}AguirreJuanDiseño de un modelo de c= otos alterntivo para la determinación de la tarifa de taxi modalidad conve= ncional en la ciudad de Cuenca para el año 20142015Cuenca1<= b:Tag>Mae10JournalArticle{59B2= D933-7DEA-4332-AF57-C5A4D6A17138}El sector del taxi en An= dalucía. Contextualización en España y Europa2010Maeso, E. González, G. Caballero, J.<= /b:Corporate>Reflexiones. Revista de O= bras Públicas, transporte y ordenación territorial55-802Can9= 9JournalArticle{745FB398-0861-= 48DC-9DAE-6E6E674DC95E}<= b:Last>CantilloVictorModelo para el cálculo de la tarifa de equios= de transporte. Ingeniería y Desarrollo. Universi= dad del Norte19993Rod01Book= {4E25E958-5EEC-45A0-B5B0-230E11E4426E}= GarridoRodrigoModelación de sistemas= de distribución de cargaEdiciones Universidad Ca= tólica2001Santiago de ChileEdiciones Universidad Católica4<= /b:RefOrder>Izq01Book{244119BE-4D77-4DE9-931D-BD105051E2CF}IzquierdoRafael<= /b:First>Transportes= un enfoque integral. Tomo I Transporte y Economía del transporte2001MadridEditorial Ugarte = S. I.5AN= T151InternetSite{BD0080DF-0242= -4EA7-A942-D78A566C8CFE}ANTLey Orgánica de Transporte Terrestr= e, Tránsito y Seguridad Vial2015Quitohttps://www.ant.gob.ec/index.php/ant/base-legal/ley-organica-= reformatoria-a-la-ley-organica-de-transporte-terrestre-transito-y-seguridad= -vial6ANT12DocumentFromInternetSite{4D7E3CA1= -9BC5-46BB-8073-79AE261837A0}ANT<= /b:Corporate>Reglamento General para la apli= cación a la Ley Orgánica de Transporte Terrestre, Tránsito y Seguridad = Vial. Registro Oficial2012Quito= https://www.obraspublicas.gob.ec/wp-content/uploads/downloads/2015/0= 3/Decreto-Ejecutivo-No.-1196-de-11-06-2012-REGLAMENTO-A-LA-LEY-DE-TRANSPORT= E-TERRESTRE-TRANSITO-Y-SEGURIDAD-VIA.pdf7<= /b:Source>MTOBook{4FFEB7B2-F11B-40E9-914B-AFF5F6353BDC}MTOP<= /b:Author>Manual para estudios de origen y destino de transporte d= e pasajeros y mixto en áreas municipales distritales y metropolitanas2010QuitoRegistro Ofici= al8Sal14= Report{9D7974E6-D2A1-4785-B4F4= -2B68BF3B43F4}Compañias de transporte público Latacunga= 2019LatacungaUnidad de Movilidad LatacungaChimborazoEcuador<= /b:CountryRegion>9Her1= 41Book{6E4C4F44-4641-4D6A-B935= -66DDAC09E3A6}Metodología de la Investigación= 2014Hernández. R, Ferná= ndez. C, Baptista. PMéxico D. = F.McGraw-Hill10Err18Misc= {D34A3D7E-F321-4C47-A6F8-83798FA96ABB}= Erráez. G, Orellana MAnálisis para la determinación de la tarifa de taxi convencional en = el cantón Nabón2018Cuenca11 ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/props026.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQCn JZ7ynAcAAMsgAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZzYsbyRW/B/I/NH2X9dWtj8Hy ok/P2jO2sWSHPdZIpe7yVHeJqtKMxWII3lMugcAm5JCFve0hhCzswi655I8x2CSbPyKvqlvdVVLJ nhkcMGFGMHSXfu/Vr9579d5T1d3PXibUu8BcEJb2/Pqdmu/hdM4WJI16/rPZpNLxPSFRukCUpbjn b7DwP7v361/dRUcyxgn2QD4VR6jnx1KujqpVMYdhJO6wFU7huyXjCZLwyqPqgqNL0JvQaqNWa1UT RFLfS1ECamcg4y2w93i5JHPs39uqH1OYI5VCDcwpnyrlOJcxsIvzukKIjRhS7l0g2vNhpgW7nOGX 0vcoEhK+6Pk1/edX792toqNciMoDsobcRP/lcrnA4ryh5+TRWTFpEIRBq1/o1wAq93Hj9rg1bhX6 NADN57DSjIuts90YBjnWAGWPDt2j9qhZt/CG/uYe536oPhZegzL9wR5+MhmCFS28BmX4cA8fDrqD ka1fgzJ8aw/frvVHQdvSr0ExJen5HroWtprD7WoLyJLRYye8GwaTdiNXXqIgGoroUlMsWSoPxVqC XjA+AYACUiRJ6snNCi/RHOJ4iCg548Q7IVEMgbdCKRMwXGvUJrUm/FefQD9pj6IjjAxpxQuYiL0h xccTc05Wsuc/AK2+AXn7889vXv/45vVPb7766s3rv+dza1WW3DFKI1Pul+/+8J9vfuv9+4dvf/n6 j9nUu3hh4t/97Xfv/vHP96mHFZemePun79/9+P3bP//+X3/92qG9z9GZCZ+RBAvvEb70nrIEFujg j8/49SRmMSKmRD+NBEqRmsWhfyxjC/1ogyhy4AbYtuNzDqnGBby/fmERnsZ8LYlD48M4sYCnjNEB 404rPFRzGWaerdPIPTlfm7inCF245h6i1PLyeL2CHEtcKocxtmg+oSiVKMIplp76jp1j7FjdF4RY dj0lc84EW0rvC+INEHGaZEbOrGgqhY5JAn7ZuAiCvy3bnD73Boy6Vj3CFzYS9gaiDvIzTC0z3kdr iRKXyhlKqGnwEyRjF8nphs9N3FhI8HSEKfPGCyyES+Yxh/UaTn8Iacbt9lO6SWwkl+TcpfMEMWYi R+x8GKNk5cJOSRqb2M/FOYQo8p4w6YKfMnuHqHfwA0oPuvs5wZa7P5wNnkGGNSmVAaK+WXOHL+9j ZsXvdEOXCLtSTZ8nVortc+KMjsE6skL7BGOKLtECY+/Z5w4GA7aybF6SfhBDVjnGrsB6gOxYVe8p FtjTzc1+njwhwgrZKY7YAT6nm53Es0FpgvghzY/A66bNx1DqElcAPKbzcxP4iEAXCPHiNMpjATqM 4D6o9UmMrAKm3oU7Xjfc8t9V9hjsyxcWjSvsS5DB15aBxG7KvNc2M0StCcqAmSHoMlzpFkQs95ci qrhqsbVTbmlv2tIN0B1ZTU9C0g92QDu9T/i/632gw3j7l28cm+3j9DtuxVayumancyiZHO/0N4dw u13NkPEF+fSbmhFap08w1JH9jHXb09z2NP7/fU9zaD/fdjKH+o3bTsaHDuO2k8kPVz5OJ1M2L9DX qAOP7KBHH/skB099loTSqdxQfCL0wY+A3zOLCQwqOX3miYtTwFUMj6rMwQQWLuJIy3icyd8QGU9j tILTobqvlEQiVx0Jb8UEHBrpYaduhafr5JQtssPOel0dbGaVVSBZjtfCYhwOqmSGbrXLA7xCvWYb 6YPWLQElex0SxmQ2iaaDRHs7qIykj3XBaA4SemUfhUXXwaKj1G9dtccCqBVegR/cHvxM7/lhACIg BOdx0JwvlJ8yV2+9q535MT19yJhWBECDvY2A0tNdxfXg8tTqslC7gqctEka42SS0ZXSDJ2L4GZxH pxq9Co3r+rpbutSip0yh54PQKmm0O+9jcVNfg9xubqCpmSlo6l32/FYzhJCZo1XPX8KhMTwmK4gd oX5zIRrB3ctc8mzD3ySzrLiQIyTizOA66WTZICESc4+SpOer5RduoKnOIZpbvQEJ4ZMl14W08qmR A6fbTsbLJZ5L0+3GiLJ09goZPssVzm+1+M3BSpKtwd3TeHHpndE1f4ogxMJ2XRlwQQTcHdQzay4I XIYViayMv53ClKdd8zZKx1A2jugqRnlFMZN5BtepvKCj3wobGG/5msGghknyQngWqQJrGtWqpkXV yDgcrLofFlKWM5JmWTOtrKKqpjuLWTNsy8COLW9W5A1WWxNDTjMrfJa6d1Nud5vrdvqEokqAwQv7 OaruFQqCQa2czKKmGO+nYZWz81G7dmwX+AFqVykSRtZvbdXu2K2oEc7pYPBGlR/kdqMWhpbbvlJb Wt+bmxfb7OwFJI8RdLlrKoV2JVxbcwQN0VT3JFnagC3yUuZbA568NSc9/8ta2A+GjXBYqXXCcSVo BrVKJ+w3K/0wbNbHYb02GjReQWGRcVIPszv7CVxg0E1+c6/H927vk+0dzZ05S6pM38pXNXF9e19v WLf32U28N1OX875HIOl82WpMus3uoFXpNvuTSjAadCrdYWtQGbWG7dFkNAw73ckr37vQ4KDfHAat cafSqg+HlaBVU/Q73Uo7aDT6QbvfGQf9V3kbAyvP0kduCzCv5nXvvwAAAP//AwBQSwMEFAAGAAgA AAAhAA3RkJ+2AAAAGwEAACcAAAB0aGVtZS90aGVtZS9fcmVscy90aGVtZU1hbmFnZXIueG1sLnJl bHOEj00KwjAUhPeCdwhvb9O6EJEm3YjQrdQDhOQ1DTY/JFHs7Q2uLAguh2G+mWm7l53JE2My3jFo qhoIOumVcZrBbbjsjkBSFk6J2TtksGCCjm837RVnkUsoTSYkUiguMZhyDidKk5zQilT5gK44o49W 5CKjpkHIu9BI93V9oPGbAXzFJL1iEHvVABmWUJr/s/04GolnLx8WXf5RQXPZhQUoosbM4CObqkwE ylu6usTfAAAA//8DAFBLAQItABQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAAAAAAAAAAAAAAAAA AABbQ29udGVudF9UeXBlc10ueG1sUEsBAi0AFAAGAAgAAAAhAKXWp+fAAAAANgEAAAsAAAAAAAAA AAAAAAAAMAEAAF9yZWxzLy5yZWxzUEsBAi0AFAAGAAgAAAAhAGt5lhaDAAAAigAAABwAAAAAAAAA AAAAAAAAGQIAAHRoZW1lL3RoZW1lL3RoZW1lTWFuYWdlci54bWxQSwECLQAUAAYACAAAACEApyWe 8pwHAADLIAAAFgAAAAAAAAAAAAAAAADWAgAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbFBLAQItABQA BgAIAAAAIQAN0ZCftgAAABsBAAAnAAAAAAAAAAAAAAAAAKYKAAB0aGVtZS90aGVtZS9fcmVscy90 aGVtZU1hbmFnZXIueG1sLnJlbHNQSwUGAAAAAAUABQBdAQAAoQsAAAAA ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"





www.visionariodigita= l.org

                                                 =                                                              = ISSN: 2602-8506

                  =                                                           Vol. 3, N°2, p. 5-25, abril - junio, 2019

 Emprendimiento del siglo XXI                  =                                                     Página 21 de 21

 

------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/image001.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAHgAAAAqCAYAAAEPJa+4AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAFxEAABcRAcom8z8AABbISURBVGhD7ZsFlBXH0oA3CSS4S4AQXIIHWByC BXd4uDtBggRJcJfFLbi7w7LALvaQuLufuAtxT/qfr+bWbN/ZWYGf985LTuqcunemu9q7y7om4vXX Xzdp06W9Jozg5+T5U0Zhzea15mDModCbMfuO7Zf/p556ypz6d6zJnz+/eeONN0xERIRbeOXKleau u+6SBKBSlcomJiZGno+fiTE5cuQwmTNn9vIVpHCmTJnMli1bzKlTp8zjjz8uraVKlUqIeea/VKlS 8rw/+oCZPHmyORJ7jPQIE3fpjBDceOON5tCJw/Lcrl0707FjR3m+8847zf333y/PPkyQkHLUmbsW jNAxATfffLOMq1atWl7tZcuXMz/99JM5f/68jFdByp389ymZ+j179gjxjPkzJVMrXLFihSldurTp 0aOHad2+tXnttdck74SzvBH2mgJH46LN5t1bzAMPPCCTt/foPjNgwADTq18vb+bB0HOEqVGrhunf v7+XATZo0MB7rlmzpvfcp08f79lB7+HqkVmjCyAT0qVnV5MuXTpTo3ZNE33muJcHRp8+7hWs36iB DEnzxj4w1stjHjX9yKmjXnrlqpFeGa9hMoKAdOa0Wctm8r5+/XqP9vPPP3d26VFZCNLmzp0r6QDv g4cP8Z7t/5izJ9yGY86dMG+99ZYpWLCgZPihd//ezihizTvvvCPvdkV2p/nX59UbHzTHz8aYs2fP mkuXLiUsky59OpmaAgULmO+//14ybYCQCqC5nujU6/YS7De4vzlw/KA55mxP1nvDtg1enuLChQsT pIEjR470zsYNN9zgpcMfvvrqKxkE7EvTI9hIejT/W1i5cqSJ4MAx5+BRh53lvjW3yZI1q1m5fpWX rjh01DCvxzBgTaecpteuWztst0+YEs/12Eukbdm9Nb7hDBkzCONWuHLlihBrJYWKFJL01q1by//h w4edtYqVpYHFAEw1QDnK1KpTS95/+OEH+X/22Wdlfb2G125Zay5evCiZfmAGqGT8+PHyTqVFihSR Z9ava89uZtCgQZKuAKM8djraNG3a1HzxxRfmjz/+MF27dpU86LyGtRD/YPbs2U3ZsmW9NDba7t27 5R3p07NnT3kmr/Zdtb3nkiVLyj+AzJw6daq3seLi4uSf/AQNlyhRQv71HeCZEWsaMlIBxkwDzz// vPn44489GhUZ+s5/ixYt5Dlq+cL4hrPnyC6JnOOPPvpInvft2yf/2jBrzfPgwYNN0aJFhSuRDu48 uEvyJk2aJP+HTx4JK9O7d2+ZwX916Sjp0vDpy2eEJULgB6buaNyxsIN/TejMiv3OhnTac9f1xLmT 8l++fHlTv359eabHiC6ladu2rfds40033eQ9582bNyxPxVzVqlXD0h2Mf4m9ECfTBOOHTbJr7XzW cdmyZTIbdnratGnNe++9J+nwezuPtY2MjDSrV68OS3cw7OW/h6lvTi1njk2WGMKZ0PygY0aCaBLD E+dPmjMPnTWnL5+VGT10MpjORpbdLXPGxF50VyGIzkZErZaJu3g6sMzuw44sgWfzoicDhKXWrBOv 7rBs7KvatWuHzRZ8xWbLimzijJkyimrMtrABBZayeuIU6fCteW41GTJk8LaLQq9evaTMAV97KEgF ChUQnvbmm2+GqF0YOnSolNlxYKdXRk6xPWBOc9HiRYUQDpscFC9eXGhZfe2EshIbGIAtfoBKlSoJ l6dM6FSLavz111+bKVOmyHvu3LnD6oLzN2/dQsocc7iLnVehQgV5V0QbBmDuNR3tcV+0b8AMNlfu XHIgbTh58qT55ptvQm/GPP300+by5cuhN2POnTsnDUQ7g6bjRYoWESVLAftGO0GnbCCNLV+hYgVz 9OhRSYO3Kj3IoG0gDVncsHFDs2rVKkl76aWXJP3PP/+Ud0xC3hV4RnkIG7Com04GxABCoFixYvKs YFdiA+loocw82obKaoUgi2/nzp2mYOGCMkmzomabnDlzhnLc+rAiAQbx3XffmerVq0t6jpw5ZHGW r1lh0qVNJzS///675E2fPl00ZZ4LFXKVlueee86kSZNGjlDYgBEYEG7YsEEIH330UXnXM0cHb7nl FjkvjRs3ljQFnqfOnioD5rxs3LFR0tgNwPLly01UVJQ8A+Q1bdFUeABlwO37dkj6xUvBShAyCL7C BGkZylPm+PHjIapwyJgxo2M1lvWObIIzvHLdSqngmWeeCRVJHqDPkiWLV4eNcNsVTp0dOnUwrdq1 NtPmTJeJ3Xc0nM5GdtqDm9aYDp3/ZVq2bWmmzJoq9QTRKsJD1m5Z5/CErk6ZVmbyzClyVPx0MmA6 rLj70B4hRLvnfdOmTaFhhQNbjG0CzSpH8Yar2/X8j2PCxBhm1OFqrFprZ2UQFaSnSp3KlC5b2ixa sVg0E2beFl9+5FigIi9atMi8//77plGjRmb48OGBtKAyTJ5hlpzf1KlTx7uJApD86Oho4TeVK1c2 S5Ys8epIBAMTPcxfIL/p0qOLGTdxnBl4zyBTpVqVQLogBGAiM2bM8N79NDayszBCu3XrJtwfLRnx 8vPPPwfSgwwYgDl17tzZTJw4UfgM4i2IPoJZ4Rz/3ZHJFHG15/Be2bqJIewcFw+MASU7iCYxxM1z +tIZUfdQ+6gniM5GysRdOu2Vod0gOhvpY1gZ57j5aWgbNToCzuXnZiCMKGpZlKlYuaLJlDmTwTGT 77Z84huxNasgRDTRiWLFi4VtJ+pYsmppmGixy+BvKVWmVFgZRCH9QPYGlaEv5e8sH1aGLT1z3sww 9ZVBs9IJBkwlW/du8wpjMmG3tWnTxuTLl89Lb9WulcyaXVbLz1k0V2jmz58v50vhkUcekXRcI3TA LoMrjDyUBxvwWJAO72D17TIbtrvyfty4cSFqF15++WVJL3FHCZlE6AMHTCXY6BBnzZrV/PLLL6Eq wmHWrFlCg0fEv9qqF3/77bchapdR2V4VlIiBQwd6ZdRP9MEHH4QojKivhw4dMj/++KO8w8E7d+/s lVFRCFNUeOWVV8L6jPbWpHkToQ8c8EEnkUqqVKkSKpI44MiEtmr1qp7GRKXZsmczW7duDVG50K9f v9BTPFD25AXXP5X/9vzi/sNo1jwQq17FDEAaOjHtsfVHjRol6Rg6WgYsXLiwpAO8MzkJBgxD4ryw hVMKOGSocO8R1/xCqefdBu2EPx3ZjtKiKi1bl10VRKuQL28+5zwvFPNTaZDV6OoVK1aUd4A8de5h sEyaMSnhgPcc2SuE9hbhjsi2jABudtRHBlAGxqYr7O8s74o2NGzYUGS7OvkBtXJs/PLLLyUPYKcM uGegKEZaBsAdp/4+ALdanTp15Hn06NGmY9eOCQfcb3C/sErQkHgvU6aM/Ou2oSL+dftxqcI7Z9nu vILaqWxPNd8A/D7T5swI6/yJE+65RJm444475GqMd87vww8/bJo1a2ZGjh3p7QqFF154QTQ5BfI6 dOggz927dzf9hwxIOOBqNavLlgY4+HaFAI3TCT+g1kHLNlNG8uuvv4Zyjfn0008lDaPeBtIOnjgk Xgue0YwA9UHaXo/NmzdLGrjr0G5xLXL03n33XclHeeKdHaLllWnCGzbt2hw8YNVl8S1TyAa2Tbly 5UJv8cBtJ7QMmHqYTVw7CjhgyefyUmHOnDniAlI5OXr8aNGEFJo3by5lQMQhcODAAVEc4OiUmTZ3 unB7hRo1XDcniwY/AI4cOSIDVoUnbMB9BrjXdAoIb7bW3XffLenKldU+Vu45bJh7JYF2Qz04+nLm yun51PE6ox8rL2Cw0LMboAcZBEpNYldca9askTIqU0GcgRgyHL0gwH6nDAMVev+A2SoQqEscwGLZ v9+95AaQibhsbHnJVqJh25jHpmXHUB9nHuOhU6dO8s71ClYWMl/pQbZ2vYb1hIbVogw3FryrZ9Vf hq3donULoWFbc2w4s7zTLxQVLZNgwMxyamdV4XApBWUyeAbtjoBMAHWOmXCfON76Duxrtu/fIeLP T6tIGbYfV7CU4YZ5y56tYSsbhDBMXEst2rQwPfr0NJt2bpYJsmm8ASP44XrMFhkMAFUyOdAtjgtF 6whEvXfQ/5TgtZRRTKQMhgW6vNNnlzngHIOJzF7onjG/t9AG7qGhQXXj7C5YGiXvfxGMf+nRt6ds q8274l2rcD3kH7EHiCVNb9aquWw/9Xb6ES9jly5dxPupXBdNinc/rSL3MvyrrEcqJOUhUZw5c6ZJ nz69PDdp0iRBvg/DE7r16i7bG9/WDMfEKl6yhLB/2HvWbFlFgWegcjai3SMQhHgs+Qf4R3HQ58QQ 5WH79u0So4No4zlXrlzCOIPoQRWhMFj+YaxMtE3jw4SJmbNklnsYDj7nE+YD4+DgY5eiwLdq2ypB ORsRQ3BaFAjekYl2tEoQcom9dOlSkaOsNpfepFerVi0BrSLik4n57bffxJfdt2/f5CY2MNHDuvXr mqH3DhXO2aFzB5MrdP2RHKKHY65p46iiuHP9dDYqrf2PmPTfadnIyhKp9Nlnnwk9ugN2t3pVAzAw 8e+LhKB179NdtjAyD7n8l8W/ev+vBzpzgJ+yW+/uEl4YkSZdGslQlTOlqEoRMh1+xgZBweHGA6Qh 6BDT0IjO7zB1fz1Xi2iKouc4+gX8c+GKReYeh8VwX9CkhXubyi3sxOmTpD9osX6lK6XIGBFWqCdL Vi81I8aMMG3at5FrseaOVO7UrZMoeOu3rRfp7Amvq0Rpx+knwpGbqVHjRpk2Hdx2CM9r37G9sFBu oFAqmVPKBNUFspasaZq0DhtDu0zJAjOxEvrhNDBpxmSJ5AxkCYkgvJOgxgVLF8iC057fFEgKoWVR 8W2WcZRZrTdbtmyi1hAIu3jxYrNgwQJxSXDdrjRoET369JAFYLGSapc87Dg2R6R1x5IhfQa5KBo7 dqxcHNHOkCFDEsTMtOvYTtqwzZYgJA9zCSukVt14GYSaRzzOfffdJ+MBR4wYIaqYHfTXqFljqSfI pNIFFsshuQWmMAuyaOViCcDQBkD0Pi59udTh8scPGMJPPvmkBIoVKFAgrGzJUiXFqcxkJjcRbKpV G1Z7N3poL/6ADhxfSxwDHfPND2vXrhXthLL1764vp23/8fATQDtwoo07NnuKBlFbjC2lgNdQ9dsq 1asK1wq6PTh86ojY4gULufFOOAEeeuihUC3JQ2xsrBgxlC1esrjZf+yAOAe0/hQtMANmh3FiUDOp DMQhh1f/WgF9Gp+x1oc/etfB3WE3CjaeuhBrevd3PTHo1B9++GGopnDARat1osIGAZuRfBwQGEfq XgLhDsNHu0YKixQ0RvxquLm0HUUNy1TAJ086XIuNqWY3yIZ+YNpEycfvoPaFAhv13nvvlUXHgQEN xhaeV3yDNuA91j7MXTRP1os2UrTATCwyRivgBPrDrf4/8Oqrrwp71fpHjh0lk2z3Ae8tbmvyiY7C NvADLnRYMuwSKxJ2hhXLqQ0CdXMVcE4PDlPkORxi5nz35ogJZWK1X2xGbBF9v/322yWgFwcrTtEn nnjCfPLJJ6Ha4+HMGff7Ci5hOK2cZBZ66YPLhNWyiWwvGaAxuiAhNLjZaQtXvKYjeuybJKJcqQ/W vnHHJtm0yS4wi4ss0UqZwP8UqD8URInRRUaJQL5UinRlqX2nYIPtrbaRONXEAPc/NITXsLhsJGKR SeNDDwWiW+w6QewvDFX6DRLhmxhonJNcGzjjQtQRokMaRrMCG5cbMm0DLqF2n8Lp06e9fFyUNqjL Euc4H6QkucAc8zkLXWcVqDHONmDk+q14draGxAG4OuzPa0DuWQjWsoFoMg3uTp8hvbBO+sLJ4r9I MdcXZIf12aAff/jRH01nAxda0IyfNF60V5QvwgBJ01BAAA8lyo5dbxAyrgkTJiTQC/TkcRHGDSNt ETpImj8GE4ATJBalz3UK3IWy+K9t0M3B5RlemSQXmF3WqGkjKQDyQYoNGgMJG8OlArBIBG/Cyt5+ +20zZswYoYF17NixQ2j4BICvbqDh0ssGBqvtDR05THah25dYcRKSjvaaGCCbNKwRRKlLDPgCCGWN /nNNi2XAmLv3ck8BfVSgz8SXEkJJHhOsShf3Zpw8PDHz5s0L0ytATjf+OJ652oUb0Q4mHWlo5DYQ BKhl/XkAEU2av27dulCqC3Ar0rFujjsKZKILDFvExqpaw/WVMWm2nGByCFskz753tgH5QDwnNJyU lABaIfRgd8dAZyJYYOQWQYG4ysnjtAYBk2wvsH1f5wc1n7CV2UC0o9wCuUwe3l4bWGRxGoTqpy3u KFhEFt9PT2iZ3jJjl+vXP8wv3KJcBdfEJJTbBlxw3GNqO2j+qv2DtOvXtpU9Ey6j13TJnmBlIyCN 2qDfWWBb2toqMoWvivBPDhw40KOxWR40rVq1kkBEG1CItL0hI+7xTrBMfowz+Y7igFlFPgvkl09s Qi0PwkH8ALfRfE6RTrqiTn5kVdf2RXOFG/mBxSPGD0WOBUIs2bESjBftmTrw7PvbAZHHDRu7ugen XC91bUDEMb/4Ygm49AMLrb5fwnV1s4JJLjBKx4y5bkAkqPECNjAIZVuKaMS2fKVjyEGbhg75A7YA PR0oMOu3bQgzX0BMNmzXletWmTx58wgtO52PWDWK3Q/Y5QRP6zfKIF4hNFm0Z7t+ux3Gv2HHRvkc kjKIGTTzF198MVRzOMCm0Zjtm/s69erIGEDqDGoHmxvtukw5N44ERPxpYLkfEBeYVPqVM0hADR5E 7G27nSQXGGTXtWzjansgisZ/CthA2s6gYYM89hyEDILBoAhOmHx/gjBDP7LpcC2u27pednhS7j0b aQdnBJuKoPSKkRXNTanivwTzIyEbjZs1ETcjcwfLD1pYP0LDvHOisWP5Ik0VqSBM55hWcNfFq5bI eBBhQe0ku8AgHW3bIf6zNwJ3NLjmegAaqv3J3MChg8Q8s/uQHLJgLDiyh7JMFP1mk3AS/WO6VqQd HDFeO079LsaKznK92gGlHWdj6TjsdvycLTEMW2DkRbuO7UXp4LYXVXt21GyRR5wUPh9WFyGIeWTL nKuFxx57LIy9E5KKaQTLgn1iM9IH+vIPXhuylqxpSBdwJ9qPxAyxW/HZspuII+ZTNZtGvxP1238K yCdMIuKL/TK7cNEicuvEbmVnckr4BNym+QevCwYmesg32HyOilzR26SxE8dJrEcQfWKIshJZNdKR NXM9b4sr52IkaDuoTGKomj3hE7gLietAmULpAtRTdfDgQXn3K3spQUIfiQ+hfnXso2jpF3pYCgAa PaEZmFI4IOw6UorY7SiFuB0xM1EctU2CeYErV66EcdKrwMDEBMhV38adm+R7ZQLlOXEsNjKCE0je sjXL5aRzR4sTYdvebSIjkSEY+iLLnHfqWLAsyhQpFn6qU4p4ewjRxokSFxcni8DNFnl8YQuw6PiJ 2Vj+8ilBtHQ8SxcuXJD66tatK859Ng0uSMC2jbWM/Z5S5BYMgBNyPaiePepjYVFy+fqBcfvLpgAD E5NE5CafPvIBHouGC06VHBQRkIWHtaMc7Dq0Rz6iadyssbgjg+q8GsSUIAhK3/G2cYL0nfhcxEMS cTvJIpPLCeaeGUe+xuFzWXHbbbfJ87Jly4QWWQc3IZrMX09yiKLJwmqorQZaT5s2TTxW9AGdR21h PHr+OpLBwMT/acQ/jm3KNR1Yr54bY6wIq+QSgIWx068G8SD179/fY/cgzo2WLePNxwYNG4ibEk+W RsxdC9IWrl4CCagLt2eePHnMyJEjw27c8B7id86UKVNY+STRNlX+wb8X5s2b1/wfwqTu9MTyProA AAAASUVORK5CYIJ= ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/image002.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAALsAAAAsCAIAAACykV7GAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAO xAAADsQBlSsOGwAABiFJREFUeF7tXLt64joQVs6zAEU+ngCegN0mVdrtTAnN6VKejgbKpEub6jQx TxA/QT6K2O+SHUm+ydZlJGRhO3aTBaSZ0ej3XDSavfv+/ibTM2kArYF/0COHOjA7b9d39FlvT9lQ F9EjuceOmOz057/7VzCkabx82R/OPVL9QEW5+zFeKTutD4uP581AN6o3Yo/Bxpy3zOsIz7ZhTbLT 4fLkCBfAGndrpVdrf9ObDe1eELAxA3/S44qsjnHKl8E/5R/ylaXH6Bhfs0pKFJ4aXRmbazgMZy4Z jqgqSeOo2sk4IiQSwQFwyb+Ji3+0KMG0xixxCP09AtIVI0BME5f1KSaCWK37ooPlhxg3AsSUq5Sb F2Yd8qcFi5TDjRqhNI1VKGD7BkMryCgBYyQIrKhEVBI6tmG6qrWgBCsogGBRDC9Ew7Yi9t9+yHgQ IzEvKHUAUKJoBa5sBa5L9GalU+P2pAYZ3buvIwi8gAfMXh3hoeyYw5MaOJNgbCYghclchzNq2c6D xhD5wnsKoeivlyh2C20vn5+g+uXyfjGfSQLH7P2NPP6GXzYPEUlYhn7+/yV6UGddaoKb3fNmln0B v8tit9sA0dliScjnl/SkSCvY+bBPVsdXoFfIvFzIxPceCjtjrUcT3V+w0onAu0p9k8Su01e5sAG5 QdAEMUiCQkAkszFGOqJJrQvZ8caMwCuJuqvHwWjd6ZyM8BuHDDgxQ8RgIGgETCG5ko4Ys7m/MmgV lQOHjhhRcyw61WY91hpiMUcV3uR59hU82O7y+TxwdaJVhT8Q7oBtbJ0oWC8UO2HYiKHabz6m1x+r Gbal/BxG2I4rQcn8B1gpTlcVbCOEhMyOk+BZnBPuEGxaQ35OlcB7BOhEEEL0+dtj+rHzGKRSmpen b7ew33oVI8mVrNd9qwnpJVmxxMvfA7lcsrqf+yOopzQhJpSmGR9Iy0nydjj7vHYBICTJ5T3zSVOj lMkrBUXMCJhNNmYEmxh0CYCY4pLamt4QqG6snaS3j4o6f/t+gXAdIOgaJmZBNcDrVzxNzUsreYEs WL7mkuNNc26lAX4eI55L5fDxUAgNiv2JWfcaAKwwxFgApjjTkgrn8/DsVq/QxNegARb50vwMfBLP 6WkCCB8Uhwaz3Yeaotdzqe5fmImDiwYoYgSMsFI8IVA5z07b5m1ZFw7TnHFpABDDAUMxQv/Mfj/S esXLL7h5/2+Ig2dDPxHgdl1dyQ6vfEgOodHJ65GbbhED6K66sd8ur5rIymn0xz7ERsHk0GrjxjtV sA9Ru5ZHy83kHUaJX8luCbWLybLy8jW6pfdwJecKuPKw4b44k0tWb28zbGnjmjV5nRsCMa3LrBIs VDf+8+Wp2jtyhHTRCFLes5adRKnkEXYDgRhOR9crw5JXZduD1913IRamSkCTsdrFWLjbKhRbIVZ5 XzwLQRMryMryNSBFG0GSt/da5c1DORhkOHw9vEpNQBHfiUzdYqr0Qo6v7IYvRJDb+X4ZNzNMiTZE VtDR5yUlcaTjAjPbOTWb0ra28n4ilRewaASxlZKPV7sfhGNC2JhSKrnR0nZXGVtbuHkydrdg6DA5 Zd0tIbySGMeIoaz4W+kOND7JphHEATRqXCD8Eh4xcjYKbdSWYWhJQXe3mFpbGPak3S0hvBLzSbxR EaQQXY14ImjK5vGNIMEqpgKj+T5J9vOqSqs4FlD2ymC0oW1JsehuMfTcEGV3i8NraDkFYc1bFFUm 26YRxFLMfHj3Nsb94r+xJaV4K8V233ZjcdFwqe65aXjnWlzRvVdqbj5Ii6iKSzfOqRHEEjhdxzEd 98rwSAzX3aJrkRF3rQ7yzhEjskZfe5cZGe+NIDIwKRGDCGOo09WeODoqwwr0XXe3dIwYiNxbSSju FLe5QbKTOhd/p9Q+TTJqXf30rlC9CxsDGANiuu6VKX1Sp90tHSPG6u1oDPaKh2sE0SfddcomG3Ot FOb5KGCbyQgjxAPXHiNG/r8HWa7Wy/AutsGLYG0iDc/tg0tj9SGya7fDUVpH332kT+Rw89r1gTz5 7Ulz1ohpYoDulqn7xLQJ0++iBnptY6bN6qEGJsT0cFN6LdKEmF5vTw+F+wsWZnZ0B6egTAAAAABJ RU5ErkJggk== ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/image003.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAwIAAAFrCAYAAABi2D4DAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAAAlwSFlz AAAXEQAAFxEByibzPwAAac1JREFUeF7tvQe4HdV5702+z/dJcvMlcW6+m3Jzk3tTnB47dpzY15hi x8YF27GxMcaAwRiBKKI3GSQkgRAgRBNFEuq99957L6ghod5QRRISEmBK3jv/EeswZzR7z+x9Zp89 s/fvPM96TtmzZ9b6rdlz3v96y/q1c7yv1157rZP37X79zBcEIAABCEAAAhCAAAQgUNsEfu3Xfq2v P0JPCBgNBtwD3APcA9wD3APcA9wD3APcA/VzDzQSAsYXBCAAAQhAAAIQgAAEIFDTBJzYQwjU9DQz OAhAAAIQgAAEIAABCDQmgBDgjoAABCAAAQhAAAIQgEAdEkAI1OGkM2QIQAACEIAABCAAAQggBLgH IAABCEAAAhCAAAQgUIcEEAJ1OOkMGQIQgAAEIAABCEAAAggB7gEIQAACEIAABCAAAQjUIQGEQB1O OkOGAAQgAAEIQAACEIAAQoB7AAIQgAAEIAABCEAAAnVIACFQh5POkCEAAQhAAAIQgAAEIIAQ4B6A AAQgAAEIQAACEIBAHRJACNThpDNkCEAAAhCAAAQgAAEIIAS4ByAAAQhAAAIQgAAEIFCHBBACdTjp DBkCEIAABCAAAQhAAAIIAe4BCEAAAhCAAAQgAAEI1CEBhEAdTjpDhgAEIAABCEAAAhCAAEKAewAC EIAABCAAAQhAAAJ1SAAhUIeTzpAhAAEIQAACEIAABCCAEOAegAAEIAABCEAAAhCAQB0SQAjU4aQz ZAhAoPYJHDlyxNROnz5d+4NlhBCAAAQgUBYBhEBZ2HgTBCAAgWwSePPNN61z5852+eWX+00/8wUB CEAAAhCIIoAQ4L6AAAQgUCMEokSA/sYXBCAAAQhAACHAPQABCECghgkMGzaskScAEVDDk83QIAAB CKRAAI9AChA5BQQgAIFqEwiKAP3MFwQgAAEIQCCOAEIgjhCvQwACEMg4ASUEz5o1yyZOnGgbNmzI eG/pHgQgAAEIZIUAQiArM0E/IACBmiXgKvhUeoDuOvrOV+kE4Fc6M94BAQjkmwBCIN/zR+8hkAqB /fv3+6vJxdrKlStNxyX90vGuco37rr8l+dq1a1dsf9TXLVu2FCyPqZXxuDEVe931U+dxVXh69uyZ iIEMykWLFjWq3uMY6BxRq/ZpX0fX07XUj7hcAfU3zELvK/alc7pwpKRcgufT+6P4l+rRKDTPScqm FpunUvgluV/lsVFf4+aiEPOmfJ7KubeSfE45BgIQyD8BhED+55ARQKDJBGSQhY32Qr/L6ItbcZYR Vuj9SQy0Uvqj60QJjFLPEe6vM9jC54kzVGXwJWEpcRE0Cit1nSQirBCrYsJN90BwnHFcwjdpsflJ ei4Z4IVYx50j6Tw1hV+xz1Apojrtz1McmyY/UDgBBCCQGwIIgdxMFR2FQOUIlGM0FxMDWqkvZATp tbivcvoTXsEu5xzBPjvBUoqBHkzYTSIGggZZJa/j+lJolb8Yq0LCrZJCQGIzyVcx3sWM3VLnqSn8 it0HcV4XxyDtzxNCIMndxTEQqA8CCIH6mGdGCYGiBMKGoEs6lcGgFmU4FTPWihlaSSraxPVHBlSU gRVcYdeKq+t/8Hv4fTpX1HEOWFIDvdAKc/j8QTblCIEoo92FG7kYd62UF2IUJcSKCQG9FvWVthAI boKmOYpbMddcFzOyCxm7zcEv/PnRXGiOovqbJFwu7c8TQoB/CBCAgCOAEOBegAAE/FjtuDCPKMMy ylgLhzFEGV5x4UFJ+hM2RNX/JAZO2BiLC3NK0hdxCJ9XxluheHAdH84VSHKdqFCYYqvKGlvYwI7a aTjOexLFKG0hEI6Bj1stjzo+7h5uLn6F7kNdPzwf6nOxe7C5Pk88BiEAgfokgBCoz3ln1BBoRCCJ Eao3hI3dKIMnbKDJ6A2vaMYZ7En7Ez6vVuXjviohBKJWbEtNCk0y5vCqcpIQmqiwEhmkwa8oD0yQ U5RXIG0hEBYtUYIl2OegQS3+uqfihEBz8St2f0d5Mgp5XTTe5vw8xX12eB0CEKg9AgiB2ptTRgSB kgkkMUKTCoGgseWMubAxGmfAJu1P+Li4VeSoMTTVIxCVyJmkH+FJihtzlAEZNugLTXx4FTounyLK 2xLmVAkhEPY6FRpf2AOj+ytOCDQnvzihG+VdK+Qla87PU8kPDt4AAQjkngBCIPdTyAAg0HQCcUao u0KcRyBsbDmDM8pYLrZinrQ/YQM3SSJy2h6BqBX3OHERNWNxY466TtKZD587nKcRfl3nDa+eh99T CSEQNvALeXjC+Ri6v+KEQHPyixMCUaIkKsyuuT9PSe8njoMABGqHAEKgduaSkUCgbAJxRqhOnMR4 iQpjcJ0Kh88US5JM0p9SVlWDYNIWAlH13cuZiLgxhw3dOK9KsA/h94pB8CtKCETF0wdX6CshBNSn sLiLWikPzqETC3FCoDn5xQkBjTNOVOuY5vw8lXPP8h4IQCD/BBAC+Z9DRgCBJhOIM0J1gag4+PCF o8IY3DGlhAeF+6Pz6m+uRVVfSRomk7YQCPc1Lra90GTFzUFUHH/SiS9HCOjcUfPgrlkpIRAWeGEv T/g+cvMeJwSak18SIRA33+Jcqc9Tkv4lvbc4DgIQyDcBhEC+54/eQyAVAlFGkiupqVXJqEonYWMi bBiG49CjwoMKhdDEVbEJGvPqW1IRIFiVFgLFEj+LTVacYdichmwhY1/sHOtKCYFweFA4JCksSF1f a00IVPLzhBBI5bHJSSBQEwQQAjUxjQwCAk0jUIrhLWMwai+A8EpuVMxz2IgrZ4OrsAgotTpPpYVA kn0SomYri0KgmFegUkIgvBKu+XJzXChmXu+pNSFQyc8TQqBpz0veDYFaIoAQqKXZZCwQKJNAUiGg 1fdCRkTQa1AoPCYc1lHouGIeinASq85RihiotBAIx98nnZI4IRA2DEsRHGEjOcw9KkegmFdA81hJ IRCOjXf5JMVi5uOEQHPyS2Jox+UIVPLzlKR/Se9bjoMABPJNACGQ7/mj9xBIhUBcTL4MsGLhN1Eb ahXb9TX4WpTnIM4oDnsWSjGK0xYCUfH3cRumleMRiIvzL3YjxIUVFRMCOm/YiJYYq6QQCK/8u8To YsZxnBBoTn5xhnZUmFzwc9Dcn6dUHiKcBAIQyCUBhEAup41OQyBdAnGGd9zVoir4JBUCUeFBcf2J qnOfNE8gbSEQZbQlKWMaZho35qjrJPWEhHM8woZqnBAotFdC3AZepYiTcL5I2PMTvsfC902cEGhO fnFCIE6UNPfnKe7zzesQgEDtEkAI1O7cMjIIJCYQZ4TGnSgqmTipEIgKD0rSn3K9AmkLAbEJn7OU 0p6ObdyYy924LMroDAuIOCEQ5RWIC22Ju2fC1wwLgaiyrMFrhscQJwSak18xIaB+hz8v4f0SqvF5 ipsvXocABGqTAEKgNueVUUGgJAJxRmixk4XrzctAl1FXqMXVp9e1kvQn6jxJNvKqhBCIWsEtFq4k o1TGX3AvhSRjjsrlKOYJifKcRFU1SiIE1OdiBmrcKnicByQ8d1H7Vri5ixJacUIg6r4KVkGKusfL 5VeIhc4XxTA49mp9nkp6YHAwBCBQMwQQAjUzlQwEAuUTSGKEFjp7eJfXJGEx4bCP8Ipo0v6EjapC VYiCfa+EEIhabdZ1NE4Z+04UKTwlKBqCRnmSMUcZprqOzqlzB8VXofCSqHCiJEJADKO8C45n2kJA 1wvfJ+5aUZvRJRECzcVP7N1c6POgvkXtw6HxhMfSHJ8nzbcrDxz+nkRMl/+k4Z0QgEDWCCAEsjYj 9AcCVSCQxAgt1K2wYZ0kUTZuN96k/Yk6T9z1KyEExCbKQxEXHhUUQE0Zc9x13OuFvAdJhYDGWcgr UAkhUEh4RM1xEiGg/seFHBVjmZRf0vmIEq7N8Xkq1r8oj1EVHklcEgIQaCYCCIFmAs1lIJBlAkmN 0PAYosIYkowzKuwjaGQl7U/USnycR6JSQsCJgVLiu4OVYpKOOW5lPsrIi9t0rRQhUMg4r4QQiJrf QiFXSYVAc/CLEwKaj6j7tLk+TwiBJE8pjoFAfRBACNTHPDNKCBQlUE44QpRBVYoxGA6VCL63lP6E jdhwmFF44GFDPa7yTil90bVkvGqlt5Ag0N/1enhVu9TrqN/FrhMMTYq7/YPXLrS3Q/Ac4VV1vSfO ExPuQ3i8heYhPL+FVuXDe1TECcI0+YWvHWVoaxwuhKvQfJQiZsLnKPZ5StI/1+ck4XVx9xOvQwAC +SGAEMjPXNFTCEAgZwRkbAbj9uNER7nDC19H1yzVMC/32rXwPvjVwiwyBghAoBwCCIFyqPEeCEAA AhCAAAQgAAEI5JwAQiDnE0j3IQABCEAAAhCAAAQgUA4BhEA51HgPBCAAAQhAAAIQgAAEck4AIZDz CaT7EIAABCAAAQhAAAIQKIcAQqAcarwHAhCAAAQgAAEIQAACOSeAEMj5BNJ9CEAAAhCAAAQgAAEI lEMAIVAONd4DAQhAAAIQgAAEIACBnBNACOR8Auk+BCAAAQhAAAIQgAAEyiGAECiHGu+BAAQgAAEI QAACEIBAzgkgBHI+gXQfAhCAAAQgAAEIQAAC5RBACJRDjfdAAAIQgAAEIAABCEAg5wQQAjmfQLoP AQhAAAIQgAAEIACBcgggBMqhxnsgAAEIQAACEIAABCCQcwIIgZxPIN2HAAQgAAEIQAACEIBAOQQQ AuVQ4z0QgAAEIAABCEAAAhDIOQGEQM4nkO5DAAIQgAAEIAABCECgHAIIgXKo8R4IQAACEIAABCAA AQjknABCIOcTSPchAAEIQAACEIAABCBQDgGEQDnUeA8EIAABCEAAAhCAAARyTgAhkPMJpPsQgAAE IAABCEAAAhAohwBCoBxqvAcCEIAABCAAAQhAAAI5J4AQyPkE0n0IQAACEIAABCAAAQiUQwAhUA41 3gMBCEAAAhCAAAQgAIGcE0AI5HwC6T4EIAABCEAAAhCAAATKIYAQKIca74EABCAAAQhAAAIQgEDO CSAEcj6BdB8CEIAABCAAAQhAAALlEEAIlEON90AAAhCoMQJ79uyxCRMmWOvWre3CCy/0m34/duxY o5Hq9549e/qvd+nS5azXdfCiRYv8Y/iCAAQgAIFsE0AIZHt+6B0EIACBZiEgo37r1q0N19q4caNv 7EsYvPXWWw1/lzhQ05e+hw1+CQq9JywgmmUQXAQCEIAABEoigBAoCRcHQwACEKgfAm7l/+DBgw2D ljiQsa8v/V2/uy8JBomAoKCoH1qMFAIQgED+CCAE8jdn9BgCEMgBgVoItZGXQIZ+cHW/mBCQcJg1 a1YOZocuQgACEICACCAEuA8gAAEIVIBAnkNttLIvg15Gf9iwl7EfDA1yP5MXUIGbiFNCAAIQqDAB hECFAXN6CEAAAo5A1kNtXJJwMFk4mB+gccg74DwFQ4cO9X8nL4B7HAIQgEA+CSAE8jlv9BoCEMgh gTyF2ijOX/H+ai4nIAq5hIA7JklFoRxOG12GAAQgULMEEAI1O7UMDAIQyAqBvIbaSAy4MqGFWMrL obAgfcVVFMrKfNAPCEAAAhA4QwAhwJ0AAQhAoEIE8h5q46oCBSsDBVEpfyBYPrRYInGFEHNaCEAA AhBoAgGEQBPg8VYIQAACSQnkMdRGIUEy7qM2B3PjCeYQIASS3g0cBwEIQCAbBBAC2ZgHegEBCNQB gSyH2oSrHMkb4HIawjkCwbyA4LQVqihUB1PLECEAAQjkkgBCIJfTRqchAIE8EshyqI1EiqoABcOZ FPMf3EzMMQ/mBQTnIaqiUDnztGrVqoZ+RL0/SVIy5UzLIc97IACBeiOAEKi3GWe8EIBA1QgQalMc fdAL4QRJ1DvikpIpZ1q1W5wLQwACOSOAEMjZhNFdCEAgHwSaM9Rm8ODBFtfGjRtnhw4dyjQ8t4GZ VvyLCYFiuQjKWVA5U3k4+IIABCAAgeIEEALcIRCAAAQqQKA5Q23iRIB7fcWKFRUYaWVOWa4QUNhS eDfkyvSQs0IAAhDIPwGEQP7nkBFAAAIQKEpg+/btvsdg6dKluSFVTAgUSkomLyA300tHIQCBjBBA CGRkIugGBCAAgUoR2LVrly8E3MZflbpOmuctJgSikpLJC0iTPueCAATqhQBCoF5mmnFCAAJ1S0C5 ARICeQqZKSYEwhMZLGeapKJQ3d4IDBwCEIBAiABCgFsCAhCAQI0TCAqB//zP/7SoJgSFXnN/b05M pQiBYDnTuIpCzTkGrgUBCEAg6wQQAlmfIfoHAQhAoAQCUcb8m2++6XsEJk6caB9++GGj9sEHHxT9 PXh8MaFQQhcTHZpUCMjLEdz5mN2NE+HlIAhAAAI+AYQANwIEIACBHBIIG+VhA1+/y8hXO3HihC8E xo4da++//35De++99/yfo767vwWPd+dz3wuJhDRwJhECqsykUqEqGeq+EAJp0OccEIBAvRBACNTL TDNOCEAgtwSiVuKdEe6M8rCB/6tf/cpcc0Jg1KhR9s4779jbb7/tt9OnTxds7hgd79q7775rajqv hIITC+qDrh8UCDt37rSRI0fG7m8ggRL1FScEgnkBwfcXqiiU28mn4xCAAAQqSAAhUEG4nBoCEIBA uQQKrfgHDX9njMswl4EeNPJPnTplaidPnvSb20tAYULHjx83GdJqR48ePau513ScjleTmHDn0gq8 zh0UC04gqC8HDhywYcOGJRIBQSHgjP9C38MGf1QVpKiKQuXOAe+DAAQgUOsEEAK1PsOMDwIQyA2B oPEfteIvw98Z/c4Il0Euw1xGujPyZdy/8cYbduTIEVuzfYkt3zKvwSgfvaqn9VjQ4aw2YOFYe2ry 9kat1+ydNmLRLhu5eLffpqzcYyte22+7Xj/sn1/XcWJBQkH9UB8UgiQDf9myZX5/nbciHFIUHG9u JomOQgACEKghAgiBGppMhgIBCOSPQCHj38XuB1f7FcrjVvllcGv1Wwb57r0Hbd6KnTZg0mvWb9Gz 1n1Be2s39ZpG7YmJd5pa+O/u92en97TbB28tqT05aZt1m7HDhntiYf76vbZmy35btWqVLwKmTJni 90/iQP2WcJHXIBxS5AQPoiB/9y49hgAE8k8AIZD/OWQEEIBADgk4wze48h82/mU8Bw1/rcBrlX/x mt2+0f9Yv/V229Or7eqHVzS0Z6Y/7Bn7V5fcukzuVpIIiBIN3YcvsBNP/shWDnzKNs8abZs3b7bD hw83eA7ktZAw0LgUxuRyDVx+AaIghzcyXYYABHJNACGQ6+mj8xCAQJ4IhFf/XahMOORHxr9CbRR2 oxX/zdtet9GztthjfdfbtR1X2s86rCjYnhjzjLWb8rOS22Pjn7PbBm1tUps8aJCd6PxDvy0fN8DG jBlj48aNszlz5tjq1atNu/9qPBqXCyWSt6CQKMBLkKe7m75CAAJ5JIAQyOOs0WcIQCBXBKIEgFv9 V7iMW/l3xr9W/Zev3W3dR71qdz67uqjhHxYFbfr0tYc8IVBqe2T0U00SARIRq3p1spOdL/HbjHEj fCEQbgoZWrx4sW3atMn3bih8SON2yccu6biQlyBXE09nIQABCGScAEIg4xNE9yAAgfwSKBT+o5AY rYJrNVzhMm7lf+uO123Y1NfsjmdW21XtV5TVbntmrCcCriq5tRve2W71jPmmtF1db/BEwA/8NjZC BIRFwfjx402Vf1RqVKJAHMQj7CUIbnpWjV2O83sH0nMIQAACxQkgBLhDIAABCKRMIEoAuPAfCQAX +qPVcMXQT1mw3R71wn6u9Iz/prarH1niiYArS25th3ayVp4QaEo77oUEnXzi+7blhdsivQFRHgL3 t+nTp9vatWv90qPKhQh7CdyeBeE8gpSnjtNBAAIQqCsCCIG6mm4GCwEIVJJAIQHgwn9ceU3Fye/c vd/6jN9kNzyxyq7wBECare2YFtbWEwOltAcGdbRWAz0hUGbr3HOSJwL+w29zencuWQg4QSAvwcKF C23Hjh0N+QQuwdhVHVLYEIKgkncy54YABOqFAEKgXmaacUIAAhUjEJUDoBXsoABQ2IvCXzZu2WvP Dd3oVflZaVe08wRABdqDg2/zRMAVJbXWAx+xWzwRUG4b9Pxzngj4nt/G9e9ho0ePbnKbMWOGX3nI hQ2FBYELGSKpuGK3NieGAARqnABCoMYnmOFBAAKVJRD0Asgw1Wq1cgCUACzD1QmAlet3e1V/1tlP H1pR8XZvzwc9EfDTktr9AzrYzZ4QKLfN6nKPnXz8u34bMWxok0VAUEjMnDnTtm7d6odRiWecIKjs jHN2CEAAArVDACFQO3PJSCAAgWYkUEgAuBwAbfillewNr+2xTp4AuNwTAM3Vbnn2OWsz5fKS2n2e ELhpwNay2+bHr/BEwHdse5erUxUBQUGgMqQKGRJX8ZUgcKVHg1WGSChuxg8Cl4IABHJNACGQ6+mj 8xCAQDUIhEWACwNyScAuB6DbyI1e5Z+VdnlbTwQ0Y7vhiYEliQCJhqYKgWOPed6Axy62eV1bV0wI OFEwf/5827Vrl59DIEEg7hIEwYRixEA1PhlcEwIQyBsBhEDeZoz+QgACVSNQLAxIZS9VBejgwYM2 ePJma9Fplf3EM/6r0a5sN8cenPKTktq9A9rbjZ5HoJzWsds4TwR8229jez5dcSEgQTB27Fh/P4L9 +/f7VYZc2VGXUBzOH6jaTcOFIQABCGSYAEIgw5ND1yAAgewQiPICuDAgxa0rfn31hl12T9dX7DJP AFS7PTDuCk8IXJa4NUUI9Hu6iycCvuW3oYMGNIsQcN6ByZMn+5uTBfMHguFCqi6EdyA7nyN6AgEI ZIsAQiBb80FvIACBjBEo5AVwm4FpNVqr0r3HbbSftltpP26zIhPtvkE32AOTL0vc7u3X3lr231pW m/74HXay0zftwBOXNKsICOYPaGOyffv2+eFC2oNA84N3IGMfJroDAQhkjgBCIHNTQocgAIGsEEji BVi5fqfd+dwau9QTAFlqd/W8xxMBP07c7u3XriwRIPGw+dHL7K1O37Clz9xWNSEgUTBp0iR79dVX 7dChQ36YlksmJncgK58o+gEBCGSNAEIgazNCfyAAgUwQCIqAYElQxaLLC6AdcHuN3Wg/eWil/ejB FZlrrbo+Zr+cfGnido8nBG7wjPpy2nHPG/BWp4tsQrfHqioEnIdg3rx5tmfPngbvgEq5qqSr24iM UKFMfMToBAQgkAECCIEMTAJdgAAEskVAhqJiy92+AAoxUaiJKwm6dcdeu+f5NfZDTwBktV372IDE IkCC4W5PCFzvCYFS2yMvjbW3Hv2634YP6JMJISBBMGHCBH8zMuUOuMpCUaFC2brz6A0EIACB5iWA EGhe3lwNAhDIMIFCoUAKMXEVgeav2GY/e2SlXeKJgCy3y9rOttaTf5S43d3voZJFgERD36ee9ETA 1+xop2/ZqFGjMiMEXGWh1atX+96bcKgQVYUy/EGkaxCAQLMRQAg0G2ouBAEIZJlAWAS43YFdKJAS gvuO32iXPOAJgJy01mMus9aTfpioSQi06Le15DbjsVvtrY7/bus7X+0LgSy2hQsX2uuvv+6HCmk+ XagQYiDLn0j6BgEINAcBhEBzUOYaEIBApgkUygdQ9RntYqtQoDY91toPPAGQp3bPwOsSiQCJBQmB 6zwhUGrb3PFHnhD4qk19oV0mRYATJjNmzPA3IdN8uqpC5A1k+mNJ5yAAgWYggBBoBshcAgIQyC6B KBHg8gEUX/7att12U5fV9n1PBOSt3fHyXXb/pEsStbv6tS1ZBEg0vOl5A051/IoN79Mt00JAgmDi xImmf3qqKqS8AVdilCTi7H4+6RkEIFBZAgiByvLl7BCAQIYJhEWAkklPnTpl2iBMOwSvXr/drnl0 lf3HL1fkst303KOJRIDEgoTALzzDvpTW4cUxduqRC/02fPjwzAsBiYExY8bY2rVr/fnVPGu+Ne+I gQx/UOkaBCBQMQIIgYqh5cQQgECWCcSJgIUrt9qVD6/MpQBwwuXqR/t7QuAHidqdnhC41hMCpbQ+ Tz3hiYALbOfjP8qFCHBhQhIDr7zySkMSMWIgy59U+gYBCFSSAEKgknQ5NwQgkEkChUSAKsuowsz0 ha/Zj9uusO+1zne75IHZdt+k7ydqd/ZrY9f29YRACW16p5vt1MPn2+xn78uVEHCeAYkBJYFrXwhV hsIzkMmPK52CAAQqSAAhUEG4nBoCEMgegWIiQEbhpHmbvbKgK+27ngiohXbf6EvtvomeGIhpd/Zt Yz/3REAp7bWHv+8JgfNsZM/ncicEnBhYs2aNX1EIMZC9zyo9ggAEKk8AIVB5xlwBAhDICIE4ETDN 8wSoNOh3719eM+2uAT+3eyf+R2y7Q0KgjycESmhvdjjfTnX4sg0dPDCXQgAxkJEPJt2AAASqRgAh UDX0XBgCEGhOAnEiYN7y1+xHbZfbdzwRUEvt1h63eyLge7Htjr4P2jWeCEja2nUd7YmAc+1Qx4ts 5MiRuW7afEwbjznPADkDzfnJ5FoQgEA1CSAEqkmfa0MAAs1GQELgww8/9KvDuOpAyglQONC8Za/Z D9sst4vvq73W8plHYkWAhEKpQqD3E4/ZqfZfskVPt8q1CHAixokB3Q+6L6LEQLPdrFwIAhCAQDMR QAg0E2guAwEIVI9AUARoEynVj1fpSCUGSwRc4omAb3sioBbblY/0s3smfje2SQhc7XkEkrZpj7b0 hMAXbUy3zjUhBCQIJAbWrVvni0PEQPU+r1wZAhBoPgIIgeZjzZUgAIEqEHAi4IMPPjAnArSZlOrI b9y03a5ov8K+fa8nAmq0XfLgFE8EfCe23d73AfuZJwSSttfaX2yn2n3BhvTvXTNCQGJg7NixtmnT Jl8kSixKNOq+0f0jj5LuJ74gAAEI1AoBhECtzCTjgAAEziLg8gJkxL333nv29ttv+zvKamfZLdt2 2C1PrbJveQKg1ts9Y7/nCYGLi7bb+zxgV/XemrgdbXeuHW1/ro0YMaKmhIDEgHYg3rZtmy8Wdb/o vkEM8ICBAARqkQBCoBZnlTFBAAL+yq2aEwHvvPOOnThxwg4fPmy7d++2Tn1fsW96IqAe2l1DLre7 PSFQrN1WghC4//mJdrrdv9rKJ66pORHgcgamTZtmO3fu9EWj7huJAYlJ3U/u3uJjBgEIQCDvBBAC eZ9B+g8BCBT0BLjkYImAkydP2pEjR2zPnj3Wc8xa+8Y9y+um3drzJk8EfLtou63PL+1KzyOQpL30 5JN2+qHP28SubX2PQK22OXPm+KJR943uH91HEgMuRIgwIR4+EIBA3gkgBPI+g/QfAhCIFALhCkHa MGrfvn02ae6rfnWgehIC1z/bxu6a+K2iTULgCk8IJGnTHm7hCYF/sWG9X6xZEeDEzdKlS23v3r32 xhtvRO4+zMcPAhCAQJ4JIATyPHv0HQIQKCgCgsnBSvpUJZhVa70KQQ8ut4vurq92ZafnPRHwzaLt tj6t7YpenhBI0Da2u9gTAp+zoUOH1LwQUKjQ2rVr/T0GXCUh5QuoDC3JwzyAIACBvBNACOR9Buk/ BCDQQKBQcrCSPnfs2GF3PLfKvu6JgHpr3/vlFLtzwjeLtlaeEPipJwKStGNt/802PvqjmhcBzisw fvx427JlS2QlIfIFeABBAAJ5JoAQyPPs0XcIQKARgeB+AcG8AMV59xj1in3truV12+4cc7EnBL5R sCUVAvd29RKF2/6zTXvm7roRAhIEs2fPbpQ8HM4X4KMIAQhAII8EEAJ5nDX6DAEIFA0JcjsHu7yA uUtf9XMC/t0TAvXabh98qd0x4aKCrVWf++3ynltj2wuPP+EJgc/YiB5P15UQkBhYuXKln2xOvgAP IAhAoFYIIARqZSYZBwTqmEA4JCi4c/Crm7fYVY+ssK/eubyu283dW6YiBKZ1uNZOt/m0DRk8sO6E gDYb27x5c0O+QHCzMUKE6vgBxNAhkGMCCIEcTx5dhwAEzhAIhwSp7rvqv6sO/KN9V9tXPBFQ7+0X Tz9gt0/4esF2i+cR+InnEYhrGx/6hu3o8PW6EwEuX2DGjBl+vonyTnSfESLEUwgCEMgzAYRAnmeP vkMAAg0iQFWCXEiQQjdU8nH24g32dS8c6Ct30H7asasnAr5WsN3S5z67zBMCce3Yg5+1BU9cZ8OH D6/btmzZMkKEePZAAAI1QQAhUBPTyCAgUL8EgrsHa/dXVyp069at1rLzCrvQEwFNaRdcN9guvPDC M63AuS64cZJdcFmHhuP08wU3T2t0/AW3zG445oIf3mf6/azzXdv3zDFN7HPU+79932S7ffy/F2w3 97rXfvzy1qLt7mcn2OkH/8FGv9ipbkWABNCoUaNs06ZNfoiQ7jdChOr3+cPIIZB3AgiBvM8g/YdA HRMIhgTJG6DdXw8fPuyHBA2csMYu8AzqsptnyMtgbxABnhCIPJcnAnSMb/x71zu/1Tz/fRd878Yz P7s+XNXVLlDT7/r+0fENr0tMeO/xBUNT+l3kvbeN/obd5omBqJZECLzw+GP29oN/b4P79alrISAx oF2HFSKkEDQXIsTeAnX8MGLoEMgpAYRATieObkOg3gkEE4S1wZNWZbXhk3YPXrfB2z24tWeU315+ 8437q3vY+Td7K/cfeQQiz/fjM56A81tO+vh6LUaeEQd6/0d9aHTMTZ63QO/56LXzbvEEg4TD9WOb 1Oe48d466BJPBHw1st3c+1671PMIFGtT219tR7w9BOo5LMiNXTkD69at80PQVJ3q1KlTpvtQIWok Dtf704nxQyA/BBAC+ZkregoBCAQIRCUIK4Fz+/bt9miflaka1MWEQMNrnnHfYIg7Q98TCUmEwPne cUHREGfQl/v6jT1aNEkIbGzz77aq0+UIgY/yI6ZPn24KQTtw4IC9+eabptC09957jx2HeVJBAAK5 IYAQyM1U0VEIQMARcCJAq69ahdVqrBKEVeN9yYoNXoWgZXbebek1Z+xHnfN8byVfr59349SPr+n9 HH6PjP3zr3zOP0bfG36+po/ptTT7W+hcP+/S2m4d95XIdlOve+xHPbYUbccf+LSN69oWIfCREJBX YNWqVaYN644cOWJvvfWWn7Cu+/LDDz/0PQN8QQACEMgyAYRAlmeHvkEAApEEnBDQ6qtWYbUaq1VZ rc4+2G1F6kZ1USHghf/4YT4fGfm+oe8Z92e956ZZdv4lZ3IOzrv8CTvP+/28GyaahIT/c4rCpdC5 LnvkubKFwJ3PjrPTv/wbG9KnB0IgUDFp4sSJpn+k+/fv9xOHnVfAhQjxEYYABCCQZQIIgSzPDn2D AATOIhBOENYqrFZjd+3aZYuWrUvdGyCjupgQ8A1/5QJ85BmQsS9REPceGf++CPDEgP+zyzXw3l8p YXDRvZPKFgLPP/aoLwSGDRuGEAiVTl2+fLmfoK5EdSWsyytA4jAPLwhAIA8EEAJ5mCX6CAEINBAI ewNcuVA9zB54abl9+dalqTdn1Cc+d8spZ1b+L21fsC967TzPc6BznneFFzLktYafi7wvcR8KcGg1 8mvWauyFZ7Wbet5tP+z+WsE2pd1Vtr7DdxABEfsnBHccduVEyRXgoQUBCOSBAEIgD7NEHyEAAZ9A MDdAq65Bb8CCJa949ffTFwEyvEsVAuddN/yMEPjI0A8b7+f9rHsjkaBjv3zDhDOi4SMR0VSDv9D7 Ww36bllCYMODX7VJT92NECiwkdqSJUvwCvCcggAEckcAIZC7KaPDEKhfAsW8Ab98cVnqngBnTJcs BD7KBTj35jln96nFaDv/uy0t+FpzCoGbX77KWo3xPAKhduPLd9kl3TYXbEdb/6MN7fk8QqCAEFCu wObNmxttMoZXoH6fVYwcAnkhgBDIy0zRTwjUOYHgvgFhb8DSFa/YBbcvsXNbVaY5IRB5/utG2bk3 zT5zbe+7Qn50/Ln6e7g/N844IwKuH9/oNT9M6Ipn/b/pu/u5EuP5ubeqHykEvNCgQkLg9qfH2Fv3 f8oGDxro5wjQohmsXLnyLK8AFYTq/MHF8CGQcQIIgYxPEN2DAATOEIiqFKRKLXqIde63NHURENxR OOpnZ6TLaA++7hvxN0yJ7I+fM3B170iBcN4P7vXP8+WfPG7neoKhEiJA5/xJxyftljEXnNVaFhEC XR991LY/dAECIEYETZkypZFXgH0FeHpBAAJZJ4AQyPoM0T8IQKBBCIT3DVD99vXr19v3f7m4YoZz pQzyap334tZD7ZbRnhAItZYv320/eGlTZJvy0FU2o/PNCIEYIaBdh9esWeN7Bdy+Auw2zAMMAhDI MgGEQJZnh75BAAKNvAEqyfjOO+/YiRMnTLsIa9+AIROW25duWUwrgUGrUV8pSQis++WFNrxbF4RA grCoGTNmNOwr4HYbppQoDzIIQCCrBBACWZ0Z+gUBCDQQUFiQvAFKvjx9+rQdPXrU9u7daxs3brQW nRYhAkoQARJNrQZ8pyQhcOT+v7eBfXshBBIIgZEjR/peKnmrtNu1dr3GK8DDDAIQyCoBhEBWZ4Z+ QQACjbwBEgJKEtaGTdq4afv27TZ30So779ZF9n9uppXCoGWPK+3mUec3ai173Gnff/HVs9ptT42x Aw98DhGQQAS4JOr58+f73ip5reS9khcLrwAPNAhAIIsEEAJZnBX6BAEINPIGfPjhh743QMmX2rDp 9ddf95My23VfjAgoQwRd0+WuSCHwHy9utHB7tuPDNr/TNQiBEoSASonKWyWv1bFjx3wvlu5fiVl5 t/iCAAQgkBUCCIGszAT9gAAEIgm4sCCFVyjMQuEWu3btsnXr1tllbRciBMoQAj9++ImzhYC3j0CU EJjU5gob+cIjCIEShICShlevXm07duzwvVfa+E7eLEqJ8pCDAASyRgAhkLUZoT8QgMBZ3oCoJOFp c1bYF29aSCuDwbfuHWQ3jTyvUbvBCw363gsbzmorW3/VBvXujhAoQQgoRGju3LmNkoYJD+LBBgEI ZJEAQiCLs0KfIAABn0B47wCFWezbt89effVV69ADEdAUIXTziAsSCYG9933Ghg4dihAoUQhMmDDB Txres2ePn9yu8KBg0jAfcQhAAAJZIIAQyMIs0AcIQCA2LEjhFarNrhrtr7zyiv24zQK8AWV4A5x4 uLn/d2KFwA1PTbSlD1+KCChRBMgjMGLECFu1apWf1H7o0CE/yV3hQSQN87CDAASyRAAhkKXZoC8Q gEDRsKADBw7Yli1bbOrsZfaFmxbQmsDghm5X2I0jzmtoN3S/0777/PpG7YmOj9kEL7FYHgFa6Qzm zJnjJ7VrB2z2FODhBgEIZJEAQiCLs0KfIACByLAgt3dAh+6eCLiR1hQGVz95pycCvtzQbuh+x1lC YEybq21wj+cQAWUKIVUPCocHUT2IhxsEIJAlAgiBLM0GfYEABBp5BFRlxVULCoYFXfvIfIRAE4XQ j9s/YS2Hf7mhteh2h32n67pGbcV9X7XBgwchBMoUAq56kMKDwtWDKCPKww4CEMgCAYRAFmaBPkAA Ao0IuCRhxVO7TcS0OZM2aVqxYoVdcOt8+7cbaU1h8I17BzQSAtd7HoGwEFj+0HcRAWWKABdKtXDh QqoH8XyDAAQySwAhkNmpoWMQqF8CQSEQ3ERM1YKGT1yICEhJBN047PwGMRAWAtc/Od6mPX4jQqCJ QmDGjBmRm4tpkzy8AvX7jGPkEMgKAYRAVmaCfkAAAo3Cgtxuwiq7qE3Edu/e7W8i9nCPufavLefR UmBwY99v2w3DzvXb9V5o0MXPrW1ojz38mA15sTNCoIlCYPz48X6VK1W7UnibNsWjjCgPOwhAICsE EAJZmQn6AQEINBICyg9QWJDKhiq+Wru0arfWqx9GCKQlhK5/6acFhcDoB6+ygf37IQSaKARGjhzp h7Nt27atURlR3d94BHjoQQAC1SaAEKj2DHB9CEDgLAIykFx+wIkTJ0xlQ11+wHmtEAJpCYFrn2nZ WAg863kEPmoz2/wIEdBEEeA2Ylu8eHGjMqLsMsxDDwIQyAoBhEBWZoJ+QAACDQQUFiQhoPwA1V9/ /fXXfUNqwdwp9rO2E+2CVjPt8zfMpTWRwaUPP2zXD/2S31q8dLt9+5lXGtq0jr+wIUOG0FJgMHPm TNuwYYOp/K12x9Z9rTKi5Anw0IMABKpNACFQ7Rng+hCAwFkEXH6A4qmPHj3qG1AbN260Vxe+bLbk a37bO/0yG9X7brv/kaftO7cNty+2nIEwKFEYfPO+npFC4Lonxtnw5zogAlIQARJT2k9AeQK7du3y 813IE+ChBwEIZIUAQiArM0E/IAABn4DCgsL7B8iAWrt2rW1b8LgnAr5asL067jLr88Kddk/7znbx rUM9cTAdcVBEHHzhpukfCwEvWdh5BDp16GQD+vRECKQkBEaNGmWrVq0y7Sdw6NAhP+9F+S/kCfDQ gwAEqk0AIVDtGeD6EIBAIwJOCLj9A2Q4KVF4zZo1tm/B3Z4I+EpJbeO4H58RB+0627dvHWKfv36m /cv1c2gfMWjZ9+t2/ZD/Y9pQ7FtPr/HbkAevRQSkJALkERg2bJgtW7bMtmzZ4ue7KO8lmCfAIwAC EIBAtQggBKpFnutCAAJnEZAICCcKBzcSe2PhtZ4IuKDJbeXIy63bc/farW2esm+3qm9x0KLbpdZC QsDLEXBCYNijtyEEUhQCShpetGiRbdq0yc93OX78uJ8noDwY8gR4EEIAAtUkgBCoJn2uDQEInOUN cPkB4UThpUuX2qlF3/dEwHkVaStHXuaJg3s8cdDFFwf14jW45ukbzgiBgEdg2NNtbfDgwbQUGcyZ M6dRwrD2xyBhmAcgBCBQbQIIgWrPANeHAAQaCLgdhWUgSQiowopLFF64cKF9uORCTwR8udna/KFX 2TNd7reWv3zWvn3LEPtci9k11y5t195aDP6itXjxNvvmU6vt2sdG24CeLyICUhQBElVTp07181xI GOaBBwEIZIkAQiBLs0FfIFDnBIJCwFUM0o7C69evt2Xzx3oC4EtVb/OHXuGJg/s8cfCMXXTzsNwL g2/c/XIjIdCpQ0cbOHAgQiBlITBhwgR/Qzzlu2iHYSUMs8NwnT/wGD4EMkAAIZCBSaALEIDAGQJR FYN27tzpl15cPbenJwK+mMk2rf/PrNPjD9jP7+1qX79pmH32ulm5aZ+/YYpdN+iLdp3nEfhGl1X2 Ysc2iICURYA8AmPGjGGHYR50EIBA5gggBDI3JXQIAvVLICgEtGJ6+PBhv+SiSi9unPuEJwK+kJs2 rf9VDeLgKy1HZloYXN/76w1CoMfTjyMEKiAEVEI0XDlIlbGUMKz7ni8IQAAC1SCAEKgGda4JAQhE EogqHbpt2zZbvny5bZ97pycC/jXXbUyvn1u7jm3tyrtfsiyJgxYv/sh+4XkELuqy0vp174oQqIAQ UAnRxYsX+ztk79+/398xO1hCFDHAQxECEKgGAYRANahzTQhAoKAQ0AqpVkpVa10111V7XRWDXp93 jScCPl9zbUyva6zdI23sirtesgtvGGH//IuZzd6ufvJ6+8ULt9k1ShTu1wchUAEhoBKiSnh/9dVX bd++fZQQ5RkIAQhkggBCIBPTQCcgAAGXKCwhoJVSrZhq5VQrqFpJfWP+Dz0R8Lmab6fmfcEkDlq3 b2+X3dHdzrthdMWFwQ8faucLgdaduiMCKiAClCOgjcXmz5/fqISoKmNRQpRnHwQgUE0CCIFq0ufa EIBAA4GgEJCBpE2XtHKqFVStpB6Zpz0E/rku26l5/+aJg59VTBxcdFcPXwg8/jRlQyu1f4KEwNy5 c23dunW2Z88eO3r0qLGXAA9ACECg2gQQAtWeAa4PAQj4BMJCILiHgFZSj8z7D08EfJr2EYPDM8/1 xMFVdlfbR+z7rXra/2kx1j5z7Yyy2r+0mGTXvtDKXnixmw0aNIhWAQYSGLNnz/b3ElBJXIQADz4I QCALBBACWZgF+gABCDQIgeBmYlo53bBhg82bN88Oz/2uJwL+iVaEweGZXypbHFzZuZ317d0TEVAB EeDE1axZs/xSuGwqxgMPAhDICgGEQFZmgn5AoM4JBDcTU8iEVkzdZmIKqTg892JPBPwDrUQGOyad b0O6/9z3HHznlj72hesmRHoNftbhSURABUWAxMDMmTNtzZo1pr0xtKmYNs1jU7E6f/AxfAhUmQBC oMoTwOUhAIEzBAoJAcVUz5kzxxMC3/ZEwN/RUmCwc/KXbWj3a+ye9h3te7cNsC+0mGhXth6AEKiw EJgxY0aj3YURAjz9IACBahNACFR7Brg+BCAQKQTeeOMNP4TiYyHwTU8E/A2tAgzeX/T3NmnIQwiB CguB6dOnIwR43kEAApkigBDI1HTQGQjUL4GwR8AJASVXKsny0JyLPBHwKVrKDN5f9Lc2ZUhrRECF RYBCgyQEtEv2jh07/F2ztXs2oUH1+8xj5BDIAgGEQBZmgT5AAAJnhQadLQS+7omAv6KlzGDakLsR Ac0gAhACPOQgAIEsEkAIZHFW6BME6pBAvEfga54I+AtaigxmD7sZEdBMIiAoBLZv345HoA6fcQwZ AlkkgBDI4qzQJwjUIYF4IfBVTwT8b1pKDGYPu8kGDhxIayYGeATq8KHGkCGQAwIIgRxMEl2EQD0Q KCYEzlQN8oTA4j+jpcBgyfAfIwCaSQAExVYwR4DyofXwVGOMEMg+AYRA9ueIHkKgLgjElQ/dOfMS TwT8Ka2JDBYPuxQRUAURII8A5UPr4lHGICGQKwIIgVxNF52FQO0SKCYEtKHYpmk/80TAn9CawGD1 qG8gAqogAuQVYEOx2n12MTII5JkAQiDPs0ffIVBDBIJC4O233/Z3Ft6zZ4+tX7/e5s2bZ6sn3+6J gD+mlclg7eivIgKqJAIkBAYPHmyzZs2yV155xd8fQ1WxtKHYe++9Zx988IFfNYsvCEAAAs1NACHQ 3MS5HgQgEEnACYH333/fJASOHTtme/futQ0bNtj8+fNt4cSHPRHwR7QyGGwYc54NGDCAVkUGEgLa D0P7YjghcPr0aV8IfPjhhwgBnosQgEBVCCAEqoKdi0IAAmECYSFw/Phx27dvn23cuNEWLFhgMye8 5ImAP6CVyGDr+M/boAG9EQFVFAESYUOGDDElvWun7N27d/seL4QAz0EIQKDaBBAC1Z4Brg8BCPgE gkLgnXfesTfffNNef/1127Rpky1atMgmjx/iiYD/XlJbNeB/24UXXui3Yu/VcV3u/XTDsUMf/9tG xx+b/kfWs93f+6/rOP0ePt+iXn/hH1NqHyt5/Nbx/4IIqLIAcJ6YYcOG+SFuCnVTyJs8XvJ84RHg AQgBCFSTAEKgmvS5NgQg0EAgLAROnDhh+/fvt82bN9uSJUtswoQJ9quF/9MztH8/th2c/Eeewf5P DYb9GSEQ/b5Z3f7CP07f3TFbR/2PRsdPePavTE2v63vPdn/X6PU94/7YWrf8nCcQ5LGI719zHLN/ 6l/b4P4v4QnIiBAYNWqU79mSh0ueLnm8JAQUCkdoEA9CCECgWgQQAtUiz3UhAIGzCEgMKHHy3Xff tZMnT9rBgwdty5YttmzZMps0aZIdnfOPnqH9e7HtjGH/555h/t8DHoGz33dw8h/4rw99/FNFz6lj 9oz7Q/8Y9x7Xj7dm/b4nAj5rW0cpkTm+b81xzP6pn0IEZEQAOI/A2LFjfc+WPFzydMnjJc8XQoAH IQQgUE0CCIFq0ufaEIBAIwJhIXDo0CHbtm2brVixwqZOnWp7ZpzvGdufLKl9HBp09vtmdTsTOrRx mDwAhc/7sRD4pCcEzogLd3zPdn/riQ5vx+MS+1Wp44/N/FMb1O9F69+/Py1DDOTRkmdL/3Tl6ZLH CyHAAxACEKg2AYRAtWeA60MAAo3Cg+QR+NWvfmVvvfWWHT582Hbs2GGrVq0y7cq6eeoPPIP7d0pq HwuBs9/X5d5/8I36g5MVzlP4vD3b/Y0XEvTn/jH67n5e1OtPvTChvympP6X2v5Tjj838Exva7wkE QIYEgBNkkydPtuXLl9vWrVt9T5c8XvJ8UTqUByAEIFBNAgiBatLn2hCAwFkeAcVLK4FSNdZVa12l FlV7XTXY10y+zjO6/7+S2sdC4Oz3udcW9foTz6D/64Ywolnd/qzRNY5N/6SXc3AmWXjo43/phRx9 0gsVUkjQP/s/l9qnShx/cvYfIAIyKAAkBBQeNG3aNFu5cqVt377dF7gSuhK8CAEeghCAQDUJIASq SZ9rQwACBYWASiu6TcVUclG7C88c95RndP/XktrHQuDs930sBBQadOb1Cc/+r4+Sh/+04HWOTf8d TwR8xhMD/80TAr/jiYhPfVRR6O/830vtY1OPf3veJ21kv7Z4AjIqBFQ6dObMmbZmzRrbuXOnHTly xBe6CAEegBCAQLUJIASqPQNcHwIQaBQaJI+A21QsvJfAmDFjvMpB/80ztH8zcftYCJz9Hvfawcm/ 23A+/VzsPbp2z3Z/ZYt6KTn4Nz3h8Gd+cz/rtVL619Rj3573uzaibxvr168fLaMMRowY4QtZ9hDg YQcBCGSNAEIgazNCfyBQxwSi9hJwJUQXL17slxDdPf0LnqH964nbx0b92e/pcu/ffpQj8NsN5zs4 +bcDQuDs98zqpjCiv2w4/kwisYTEr3u5BmfeW0r/mnLs+wt/y8b2vxMBkFEB4MSZBGxU6VD2EKjj hx1Dh0BGCCAEMjIRdAMCEDhDIKqEqBIslWg5ZcoUWzH+Ks/Q/i+J28dC4Oz3zOr2xx9VDZKX4czr e8adMeZ7ttO+Ao3fs3XU73ohQZ+2t2b9RsNrZ4SAhMR/8YTAb30kBJL3r5SxBI99f+Fv2vj+NyMC Mi4CJAZcxSDtiSFhS+lQnnYQgEBWCCAEsjIT9AMCEGgkBMKVg1avXm0zZsywqaMe94zu/zdx+1gI nP2eY9N/46PY/r9uOF/Pdn/u/23POCUXf/weHdu65T+d9XcdP+HZP/GP1Xf3cyl9LOfYif1bWN++ fWkZZyAhIAFLxSAecBCAQBYJIASyOCv0CQJ1TMCFBylswiUM796924+vnjNnjo0cOdLLE5CR/v8U bM74L/Q9+N49437LW/0/Y/yrTXj2f3gr+8onaHx+HbOo1/9/1t+PTf91r6LQmYpDQx//Uy9ZWOFE hfuWxmvTBvwUAZBxAeBE2uDBg30BKyGrUrhKFKZiUB0/4Bg6BDJGACGQsQmhOxCodwJBIfD2229b MGF44cKFph1ad037rGdsn1OXbdqAyxEBOREBffr08YUricL1/lRj/BDILgGEQHbnhp5BoC4JhBOG tQPrgQMH/B1Zly5dapMmTbJl435q/+kJgXprC4Z8DRGQExEgj4CEwLhx40wC9tVXX7V9+/b5wlYC l0Thuny8MWgIZI4AQiBzU0KHIACBYMKw22FYGzG5HYanjOxk/7nIEwJ11BAB+cuHUH6AdhRetmyZ bdmyxRe0ErbvvPOOXyJXpXJ1r/MFAQhAoFoEEALVIs91IQCBggScEFDCsNthWHkCa9eu9fMEVJf9 nQX/1T70hEA9tKXDvuSvLtPyxUAbiSk/QAI2uKPwu+++y47CPP8gAIFMEEAIZGIa6AQEIBAkUChP QOEVCrNQuMX6CV+3Dxd6QqDG25qRn61bAXDllVc2JHEHE7/DgujRRx+1Vq1aNRx7/fXXm/4WPO7F F19sOEav6/fweTp06OAfk4bg6tWrl40aNapgfsAHH3yAN4DHHgQgUHUCCIGqTwEdgAAEwgQK5Qko vEJhFgq3mDDsEfvAEwG13NaO+sdUjNI0DNtqnMMZ/8WuLeNdx7Vt27aBlX4O/61169ampnPpe9jg f+aZZ0zCI0oglDv28ePH26JFi2zTpk32+uuvN+QHEBbEMw8CEMgKAYRAVmaCfkAAAo0IROUJqPyi yjDOnDnThg0bZgdn/E973xMDtdg2jf1L69enO0LAM/KLGeKFxEL47/pdxr7O1bVrV18ouPN2797d FwFdunRJjfeAAQNs6tSptmLFCtOGeAcPHrSTJ0+awoIQAjzsIACBrBBACGRlJugHBCBwlhBQMmVw P4E9e/bYhg0bbP78+TZmzBhbNPIye3+BJwRqrG0agwiQkZ7EI+DCh2TcO8PeGfoKAXJ/KyYE5B0I ehTK9QC49yksSHkss2fPtldeecV27tzp7x+gfBflvRAWxMMOAhDICgGEQFZmgn5AAAKRQkCrp6qy 8uabb9r+/fsblREdPqirvT3vE/aeJwRqpe2Z9IfWt3c36927d903JwSKsXjyySd9wSBB8Nxzz9kL L7zgh/3od/3s3qu/3X///f7v+u5+bt++vX98mrwlBFzZ0I0bN9revXvt2LFjlA3lGQcBCGSOAEIg c1NChyAAARFQaFAwPEhhFYcPH/arr7jwoKFDh9rWiZ+x9+Z7QqAGmkRAv17PpmqUpmngNve5wjtD t2jRwjp27HgWn6efftr0mjteP3fr1lhMSRS4Y+666y5fJOh9YcHQ1DFKBAwcONCmTJliy5cvp2wo jzMIQCDTBBACmZ4eOgeB+ibghECx8KBpQ2+2X3kiIO/t0LTfRQQU8YJotd9VBtIqftBglziQCJCB 745p06ZNUUElISARIDHgvAg6h8RC0JNQqjDo2bNnZFiQ9sMgLKi+n2eMHgJZJIAQyOKs0CcIQMAn EK4eFAwPctWDlJR5fPbv2LueGMhrO+iJgIG9zl7pLtUIrfXjZbS7MCA3VicCXKiP/l5IMAT56Bgn KIKhQvq5KaFCyhNw1YLcbsKEBfFAgwAEskoAIZDVmaFfEIBAgxhQcqWqrbhdhpV8uWbNGj8Zc/jw 4bZyzDft3XmeEMhhOzgVEZBUwMgrEM4bcMnCes2dJ+q44DXkLQga+zqnRIaOce9N2qfgcfIGDB48 2KZNm9aoWhC7CfMwgwAEskoAIZDVmaFfEIBAI6+ACw/S6qqSL5WEqRrtWn0dNfBRe8cTAXlrx2f+ ug3p1ZqcgISJ0S4xOGzEy5CPEgISCWGDXufQ34M5BGkJgZdfftlGjx5t8+bNs3Xr1pl2w37jjTeo FsSzDAIQyCwBhEBmp4aOQQACUeFBWl1VTXbVZleNdq2+ahV204RPexWEzslNO/aRCFByKe1sBrfc cou/Su/Y6OcrrrjCb88//3zD37W6L0Ne392x7m8K/Qmy1fv0/uB59bqupZAg/ezChEqdE3kD+vfv b5MmTbKlS5fa5s2bG20iJiGrcrgKd+MLAhCAQFYIIASyMhP0AwIQKEjAJQ0r2VK12LXKqtVWrbpq 9VWrsKMGPGSn556Ti3Zi9idsRO9bEQBFRNAjjzziG+guFEgGvAz8oAhwxrqODVYN0vv0t7Axr7+H xYGO0Tnd+++8887Ia8QJgx49evhharNmzfLD1rT5napcuU3EFN6GEOAhBwEIZI0AQiBrM0J/IACB swi4pGGtqr799tt2/Phxf7VVDzCtvk6ePNmUNPzq+E9nXghIBIzq3RIRUEOeEIUE9e3b1yZMmOCH qylJ2O0dcPr0aX9TPDYR48EGAQhkkQBCIIuzQp8gAIFGBJwQiEoa1s6tShoeOXKkjejXxt6c9Qk7 NeeczDZEQO2FQnXv3t20p8WMGTNs5cqVtm3bNj98jSRhHmQQgEDWCSAEsj5D9A8CEPAJBL0CWmVV 0vC+ffts06ZNtnjxYps4caIfo71sxIX2licEstgm9P0JnoAa8gQoXEjeAJUM1U7CCxYssA0bNtie PXtIEua5BQEI5IIAQiAX00QnIQCB4J4CKiWq2OtDhw417DSs2OwRI0ZY/16d7bjnFciaEJAIUEIp rbYYqPrQkCFDbPr06Q0lQw8cOGDa8+Kdd96x999/n9wAHl8QgEBmCSAEMjs1dAwCEAgTCO807LwC iskOegWWel6Bk7PPyUyb2f/fEQA1KIKUIKzypGPHjrX58+fb+vXrC5YMpVoQzzMIQCCLBBACWZwV +gQBCEQSCO80HPQKuA3GlCswoPeTdnDab2dCCCACassDEPToyBug3ADnDdiyZYs5b4CS2ikZyoMM AhDIOgGEQNZniP5BAAKNCARLiYZzBZYsWeLXcVcFoRmDLrETs86paps/8Et4AmrQEyAxoAThYG5A IW8AJUN5gEEAAlkmgBDI8uzQNwhA4CwChbwCqtuuCkJz5syxUaNGWe+eL9qBqb/tVRE6pyptyZDP IgJqVAQoQVjegGHDhjVUCtIGd3gDeGBBAAJ5I4AQyNuM0V8IQMCvIKRSogq9cF4B7Sug3Vy1r8CU KVNs0KBBNq7f9VURAcuG/INfTYZWmwxeeOEF69evn79vwMKFCwtWCsIbwMMKAhDIOgGEQNZniP5B AAJFvQKugpB2cd25c6etXbvW3214zJgxfiLn8hH/asdnntNsbc3wv7SeL7+ACKhRIfTSSy+ZkoRV oUqVqlavXs2+ATyjIACB3BJACOR26ug4BOqbQNAr4HYb3r9/v7/b8PLly23atGl+Imf3bs/Znsm/ 1yxCABFQmx4A59mRAJA3YODAgf5u1spJcbsIHz161E6dOmW/+tWvGnYRplJQfT+jGD0E8kAAIZCH WaKPEIBArFfgrbfesiNHjvjlG5W4qZANhW4ohGNQjzvs2IxzKto2j/lDPAE16gVwQuD555/3vUzy Ns2dO9fPSVFuivazUAUr9g3gQQUBCOSNAEIgbzNGfyEAgQYCwd2G5RXQJk5K2Ny2bZsfsqHQDZUT VZWXWQMvqpgQ2DT6D6xXj6f8kBFabTJQSJBLEFa5UHmd9A9UuSnHjx/3c1WUs6LcFd2XeAN4UEEA AnkggBDIwyzRRwhAIJKAEwIyvhSSodAMhWjs3bvXNm3a5CcOT5061d/5tdtLz9qmsX9mRz3PQJpt 67jfRwTUuABSqVB5A1SWduLEibZo0SI/QVjeJ3mh5I1Srgq7CPOgggAE8kYAIZC3GaO/EIBAIwJR 5URd4vC6detswYIFNn78eD9EqM9Lv7RDUz9hb0w/J5W2Y/zvWt/uHfAC1LgQ6Nq1qx8SNHr0aL88 rTav2759ux08eND3QrF5GA8lCEAgrwQQAnmdOfoNAQj4BFwYhisn6hKHFSKk2u6rVq2y2bNn+3sL KERoQp8fpiYC+nRr728sRatdBhIBml/tGeBCglSmdt++fXbs2DEShHkOQQACuSaAEMj19NF5CEDA iQHVbC8UIrRs2bKGKkKK835l5N/YkWnnlN32Tvx169/9XgRAjYsgVQhSSJCqBGnHakKCeN5AAAK1 RgAhUGszynggUKcECoUI7dq1q6GKkOK7Fefd86VHbceE37PDnhgote1BBNSFAFJy8LPPPmt9+/a1 sWPH+ntTqEpQVEiQSxCu048ew4YABHJMACGQ48mj6xCAwMcEokKEXBUhGW+K61bJRxl1ffr0sZdf aGvbxn/SDnliIGnbP+UTNrD7HXVhCNdzuJO8Rs8884wfSqaqU6o+tXLlStuyZYtfJUghQaoS5PYM YAdhnkQQgEBeCSAE8jpz9BsCEDiLQFQVIRltMt70sFuxYoXNnDmzoaRo7xfutD2TfsNLIPbEQEzb P/kTNrTH9YiAGg8HkgCSCHB5AdqYTtWnVIVqz5499sYbb1AliGcPBCBQMwQQAjUzlQwEAhAQgWCI kEo6uo3GZMRpF1gZdTLulPwpY6/P87fY656Rf9ATAsXa4O4t/DrytNpmoHCgF1980QYPHuzvHqy8 AG1QpxAzVaM6ceKEv3GY9gxwngD2DODZAwEI5JUAQiCvM0e/IQCBSAIuREhGmow1VRGS8abdX3fu 3OkbdTLuZOTJ2FMs+IAXr7V9nhg44ImBqDbq5R8jAOpABEkEuP0CtCv1/Pnzbe3atUXzAhABPIgg AIE8E0AI5Hn26DsEIFBUDLgqQornVr6A6r4rX0DGnfYXUPKwKsJoBXhY95/agSmeEAi10T0vQwTU iQh47rnn/P0mlEeifBLtTq0StPv37ycvgGcNBCBQkwQQAjU5rQwKAhAIhgi5XYeVLyCjbtu2bX7y sCrBaLMxJwZGeiv/+z0h4NqkPt9CBNSJCJA3QEnk2jTMJQfrH6T2C9Bu1dq1mt2Dea5AAAK1RgAh UGszynggAIEGAuF8ARlzMuqUPKwKMNpsTCu/48aN88WAwoSm9bvI9k8+x/9OPkBt5wNofiUAlBys nYO16ZySyZcvX+4nB+/du7chOVh5Ae+//z55ATxfIACBmiKAEKip6WQwEIBAkEAwX0BGnIw5JQ9L DGilVw9AlYV0YmDQoEHWo0cPG9LzVl8U0GqbwdNPP+2LgF69evmVpGbMmGHafE5J5bt377YjR47Y yZMnG5KD3X4B5AXwnIEABGqFAEKgVmaScUAAApEEwvsLODGgMpBa8d28eXODZ0AJokoglmGoXWWV O4AYqE0xIAHgRMCIESNs+vTpfkWpjRs3NqoQpGRzJZ0jAnjAQAACtUgAIVCLs8qYIACBRgSC+wvI qJMY0EqvVnwlBvQgdGFCSiAeOnSoHyqCEKhNEdClS5dGnoCwCFCFKSWXSwSwaRgPEwhAoJYJIARq eXYZGwQg0ECgmBjQHgNODCiBeNKkSf4+AxIDKiephmcg/6JAwq5z585+XoDmVuFATgRs2LDBLy/r RAA7B/PwgAAE6oEAQqAeZpkxQgACPoGwGNCKrzwD2ijKeQZUMlL147XPgMSAwoQUQqLSkoiB/IoB hXo98cQT/jyqOpASg5UTEAwHQgTwoIAABOqNAEKg3mac8UKgzgkExYDCPtyGY4XEgMKEXn75ZXvq qaf8plVlWr4YyPiXCJBnR/sEqESoqgMpMdjlBIRFQLBCUJ1/ZBg+BCBQwwQQAjU8uQwNAhCIJhAW A8GcAVUTUmnRV155xd90TJ4BiYGePXv6QkChJS6RGEGQfUEgb45EgOZqwIAB/mZh2idAJUJddSBE AE8KCECgXgkgBOp15hk3BOqcQFSY0IkTJ/y68RID2nRMYmDhwoU2ZcoUGz58eEOYkAxLxEC2RYDm R6JNicHaL0ClYbV53Jw5c/ySsdonQCVC5QlSYrDLCcATUOcPBoYPgTojgBCoswlnuBCAwMcECiUQ Swxo0zGJgbVr19rixYtt2rRpfnKp4su7du3qrzJrtRmvQPYEgealU6dO/vworEseHSWAK/dDOSD6 x6cEcVWNkvhz1YEQATwdIACBeiOAEKi3GWe8EIDAWQQ+/PBDv068Ky2qTceOHTtmBw4csB07dtj6 9ev9eHLFlY8ZM8b69+/vJw4/+eST9vjjj/sJqFqBplWfgbwAEmkSaxJt2iNg6tSpvmdHHp6tW7f6 Hh+3WRglQnkgQAAC9UwAIVDPs8/YIQABn0B4B+J3333XTp06ZcePH7eDBw/6G0wpnnzFihV+aInb eEyrzW71WaIAIVA9IaCSoPICuFAg5QNItKky0JIlS3wxt337dt/To52lwzsGSwyyYzAPBAhAoN4I IATqbcYZLwQgEEkgSgwoblzx44ojVyiJdiFWaImSiJU3oNVmrTqrGo1WoWWIyiBFEDSvIJAX4LHH HvPZK6lboUDaGG7u3Lm+eJOI0x4B8vDI0yOPjxLE3Y7BiAAeChCAQL0SQAjU68wzbghA4CwCYTEQ LC+qUBKFlCi0ZN26df4qs0KFVIVGiag9evSwp59+2hcDrlSl24yM72c2ZUu7qYrTo48+6odoKVdD pUG1P4DyORQKtGbNmoZ8AFUGkodHnh55fBABPAAgAAEImP+MVDtHX+4XwEAAAhCoVwJBMaC8AScG FEqikJL9+/f7eQOqP6/qM9qJWCVGVVVI3gFXrUYGqoRB2sYv53veX/kXX3kBlJ8hL8CQIUP8qkAq Dap8DoUCKdnb5QMoKTiqMhDhQPX6SWfcEICACCAEuA8gAAEIhAiExYBLInZ5A1pdVqiQ22/AeQfG jRtngwcP9ivVyFiVoapkYv2MAd90j4CMfjGV10XeAJUFVeK2vABKCFbI1qpVq/zSoMrrUCiQxJtC gaIqAyEC+OhDAAL1TgAhUO93AOOHAAQKEgiWF1VpSYWUaFXZ7TfgvAOKQZd3QOUplTsgw1QGqgxV F74i4xUPQfliQOFWHTt29MOA5HWR92XYsGF+LsDs2bMbvAAK3dq7d2/D/gCFQoEQAXzwIQABCOAR 4B6AAAQgUJRAVN6AEk21yqyY86B3QHsOLF261DdMVVlIhqoMVsWvq5qNDNlHHnnE/xkPQbwokAdA HhWFAbmSoAoDktdFuRmqCLRo0SI/gVuJ3EEvgEK5gl4AhXmRFMyHHQIQgEBjAngEuCMgAAEIxBCI ChWK8g6oMo3CUmSYykCVoapwIcWv9+7d21/JlgiQYfvwww83GLeqeU/7mIFKsoqRRJMEgASBwq0G Dhxoo0eP9sOA5H1RRaANGzb4ZUGVC+B2CZYXIKoqEF4APuoQgAAEEALcAxCAAATKIlDIO+ByB2SI yiBVkqoMVIULKW5dVWy0gu0EgTwEChlSuFCHDh0aNiWrdzGgsB8Z/2oqCRoUAAq3UlK2SoIqGViV m5SjoVwN7fWgsqDFvACIgLJued4EAQjUOAE8AjU+wQwPAhBIl0Ax74CrLCTD1CUTq3qNVq61gu0E gercK2RIuxNr9VsJsDJ+9V15BPUkCDR+hf/IQyIvgAubUgiQPABOAGgjN4VdaXdgFwakHI033njD z9lQ7kZUWVAEQLr3P2eDAARqiwBCoLbmk9FAAALNRKBYZSGXTKyqNbt37/ZXrp0gkIdg+vTpfqlL 5RCo9n337t391W+tgiuPQF4Cl1xci6JAYkfGv8YpAaCfJQjkKVEIlXIAFAKkxOugAFDYlUq3andg 7eugHA23OZjKvCqhO5gLgAhopg8Dl4EABHJLACGQ26mj4xCAQLUJhMWADFEZpIpPV7iQdiXWinVY EChkSBteaUMyVb0ZOXKkv/qtVXDlEThDWUayjGVXLSfPosBttta+fXvf+Jf3Q+FRSppW/L+qLEkY KadCnhPtz6AQIOcBkABweQBOACgZGC9AtT8FXB8CEMgzAYRAnmePvkMAApkgUEgQyFDVinVYEKjE pTYkU837xYsX+1WGFP8+ZswYP49AXgLtVCwjWcayVswlBmREO2+BQmjkRchqU7y/vBpOzLjQJ41H gkZeEIVHafVf4T+TJk3yhZE8JgqlUg6A/kEpAVseAOVfuDyAYmFAeAEy8ZGgExCAQE4IIARyMlF0 EwIQyDYBJwaCew9oIzK3M3HQQ6AcAtW6V7Ubhbto1Vur38ojUKUheQlkHEsU9O3b118xl6dA4TMy sF1OQbt27RrCaxRfr9d0THOLA+fBkLEvoaJ+SQBICCjcSX1S/yVuNB4Z//KCqMSqwqSUAKxN2VRt SUnWEkoqBaocAAkAeQCUfxEUAPK+qByoKwmKAMj254PeQQAC2SSAEMjmvNArCEAgpwSC3gEZqYpZ DwsC5RBox1vtQaBwF61662GsPAJ5CWQUyziWkSxRoHh5JRgPGDDAj6HXaroMa+1YLM+Aq7Uv41te AycQJA7kSXAiQUa5q8ZTiliQoe8EiM7nVvl1HXct/V39cGJE3gxtqNarVy8/7Ef9l7hxxr9i/+UN UZiUVv+VACxhpCRrhVIppCoqBIg8gJx+MOg2BCCQSQIIgUxOC52CAATyTiBKEARzCLS6rVVuhbto 1Vur30osVulReQlkHDtRIE+BwmaUPKsYehnUThgovEa5BTK6ZXxLHCj8Rga5DHOtyruNzLRa74TC Qw89ZG3btm1obdq0afS7XpeR78KRZPzrPDqfzitBoetotV+hPqqApBV/CRUJFnkztOqv/irsSZ4O xf0741+br2mcGq/GrfAfCSMJJAkleVCCOQAIgLx/Iug/BCCQRQIIgSzOCn2CAARqhkBUyJATBG5T MpdH4LwEMoqdKNBKuTwFa9asseXLl/sblclb4ISBVtiVWyCjW+Jg0KBBfo6BDHIJBHkPZKTLgyCD XZ4AiQUZ8FrplzEfbvq7mgsz0vv0fp1H51Ooks6vMB8lOcvoHz58uO+5UDUkZ/irn0qKVtiTwn40 Dmf8K/RH41SYlFv9d+E/SrZWSJU8Ka4KECFANfORYCAQgECGCCAEMjQZdAUCEKhdAoUEgYxdCQJX aUjGsEJiZBxrhVyeAoXLqGqOypC++uqrvrdAhrWSahVGpARbJw5UcUeJtzLItYmZvAcjRozwK/LI YJdQkPGuVXuF7Eg0hJv+rtd1nI7X+yQyZOzrfBIeOr+uo11+tdqvhGd5LrTiL8Gi/qmf6q/6rf4H V/6Dxn+x1X8EQO1+JhgZBCBQfQIIgerPAT2AAATqiEBYELg8gqCXQCExMo4lClRxSJ4C1c3X6rlW 0Z0wUFKtPAaqQCSjW14DxdxrBV4GuVbjFY6jePxZs2b5BrvyDmS8K8xIK/cy5sNNf9frOk7H6316 v86j80l46Pza4EtiREa/Qn2U6KsV/6DhrxwIxfwr/EnjcIm/QeM/uPof3geAJOA6+nAwVAhAoNkJ IASaHTkXhAAEIHCGQDEvgYxj5ylQPoHChxQ7L0M6KAzkMZCxrdV2JR0r5l6GuASCVuNlnEskqDKR hILyDiQWZMBr5V6iIdz0d72u43S8DH29X8a+wnskPGTw6x+IrqfVfoX6qBKSC/cJGv7qt/qvcbi4 f2f8B2P/g6v/CAA+JRCAAAQqTwAhUHnGXAECEIBAUQKFvARaHZeh7KoOSRjIkHbCwHkMguJA4UTy HDiBIONcIkGGuoSCjHZV55EBL4+CREO46e96XcfpeL1P79d55I2Q8JDBr5V+XU9Gv0J9lPgsD0bY 8A/G/DvDPyr2H+OfDwoEIACB5iWAEGhe3lwNAhCAQGJR4PYkCIYPhYWBjGwnDhRu4zwHMsglEGSc y4MgQ13hRTLa1ZxgkGiIas7A17F6n96v8+h8Oq8z+CVGgqv96o8Ei1vxl4jB+OemhwAEIJBNAgiB bM4LvYIABCDQKHQoKAqcMAh6DIJeAxdSJIEQFAlOKMhwlwEf13Scmt6n5kJ7dE5n8EcZ/eFwn3DI Dyv/3NwQgAAEskEAIZCNeaAXEIAABGIJBEOIwvsUhMWBjHHnPZBIcEJBK/Uu/0BGfLHmjg2u7rsV fnd+iZFgmE94t1/Xz9jBcQAEIAABCDQ7AYRAsyPnghCAAATSIxAlDsLeA2ecO6O9nO/uHOHvha6f 3gg5EwQgAAEIVIoAQqBSZDkvBCAAgSoRKGScV+LvVRoil4UABCAAgRQIIARSgMgpIAABCEAAAhCA AAQgkDcCCIG8zRj9hQAEIAABCEAAAhCAQAoEEAIpQOQUEIAABCAAAQhAAAIQyBsBhEDeZoz+QgAC EIAABCAAAQhAIAUCCIEUIHIKCEAAAhCAAAQgAAEI5I0AQiBvM0Z/IQABCEAAAhCAAAQgkAIBhEAK EDkFBCAAAQhAAAIQgAAE8kYAIZC3GaO/EIAABCAAAQhAAAIQSIEAQiAFiJwCAhCAAAQgAAEIQAAC eSOAEMjbjNFfCEAAAhCAAAQgAAEIpEAAIZACRE4BAQhAAAIQgAAEIACBvBFACORtxugvBCAAAQhA AAIQgAAEUiCAEEgBIqeAAAQgAAEIQAACEIBA3gggBPI2Y/QXAhCAAAQgAAEIQAACKRBACKQAkVNA AAIQgAAEIAABCEAgbwQQAnmbMfoLAQhAAAIQgAAEIACBFAggBFKAyCkgAAEIQAACEIAABCCQNwII gbzNGP2FAAQgAAEIQAACEIBACgQQAilA5BQQgAAEIAABCEAAAhDIGwGEQN5mjP5CAAIQgAAEIAAB CEAgBQIIgRQgcgoIQAACEIAABCAAAQjkjQBCIG8zRn8hAAEIQAACEIAABCCQAgGEQAoQOQUEIAAB CEAAAhCAAATyRgAhkLcZo78QgAAEIAABCEAAAhBIgQBCIAWInAICEIAABCAAAQhAAAJ5I4AQyNuM 0V8IQAACEIAABCAAAQikQAAhkAJETgEBCEAAAhCAAAQgAIG8EUAI5G3G6C8EIAABCEAAAhCAAARS IIAQSAEip4AABCAAAQhAAAIQgEDeCCAE8jZj9BcCEIAABCAAAQhAAAIpEEAIpACRU0AAAhCAAAQg AAEIQCBvBBACeZsx+gsBCEAAAhCAAAQgAIEUCCAEUoDIKSAAAQhAAAIQgAAEIJA3AgiBvM0Y/YUA BCAAAQhAAAIQgEAKBBACKUDkFBCAAAQgAAEIQAACEMgbAYRA3maM/kIAAhCAAAQgAAEIQCAFAgiB FCByCghAAAIQgAAEIAABCOSNAEIgbzNGfyEAAQhAAAIQgAAEIJACAYRAChA5Re0Q6Ny5s6nV8lep Yyz1+Msvv9zU+IJAGgRKvf/SuCbnSJ8A85g+U84IgTQIIATSoMg5qkJg0aJFvsGp72l95fmflfru jHB91+9RbEodY6nH16sQSMo/rXu1mucJ3mfFfk6jj6Xef2lcs5RzVOI5VMr183Js1ucxjqP7fOv7 kSNHIg8/ffq0/9x1z9+4c/I6BLJAACGQhVmooz7cNmirJWlJkOhhO2vWrJpZfT7Z+QeWpBViEzbA V65c6bMRo+b8KlcIlPu+tMY2evRoS9Kyzj8xjyUXmCVpCU5Y7blL0MVGh1zVYYUlaUnOm+ZzKG8c k/DJwjHtpvzMkrRifXVz07Nnz4LPVIlCvd6UeWzKe7PAmj7kjwBCIH9zluse3zhgqyVpcYPctWuX v/KiFRg9OPV73r9OPvYtS9KSGqJatarGP5Vyr1nu+9Ka91GjRlmSlnX+iXks+RdPCCRoCU5Y7blL 0MVGh1zWdoUlaXHnTfs5lDeOcXyy8vqDU35iSVoSIeAWWKKO1f+kDRs2NOm5yz2QlbumfvqBEKif uc7ESK/rt9WStLjOTpw4sWFVZtiwYabf4x7iOubNN9/0j3WuWz20g19RD+Hgeyq5wn6q41csSSvV EA3nPBQao/Ou6HUx3b9/v3+ptI533KMYRoWX6NoSelplC7rb0wwFC7IcPny4JWmV4F/on39w7Fpp dHMS9/lI9PqSv/aEQIKW4GSF+h83fzKkw0LehVds2bKl4P2XoEtFD/n+AyssSYu7TpLnUBSbYn8L fhbc9fUMKvT5jOqjzpH0eRd1XCnXLeVaOjb4Veq44uaj0OutJ/3QkrS4/yHqf6HFJ302g6+XM9ZC z0H1q7lYlcuY9+WXAEIgv3OXy55f02erJWnFBhd+ELsVGv29mJEmQ0pND1R9ydgNGyHhf9A6Vkao jnUPY2copz0Bp9p/0ZK0pIaoi12OEztujEE28ibod30VYlLq8XEMo4wjvSfo7XFjqkS4k66VpKXN P4qx/uaEkxu/5sQxTOXeW/zHZklagosVEgJJ5k/jDIpV/e7uvUJsEnSp6CEX37fckrQ0nkNJhUCh sYafQcFnV6FYdV0z6fNOx4m/u8/c8zHpdUu5VtA4Tnr+ps613n/vxO8lasWuFZxH3dfhZ5CeTe7z Gfd/pNgcFlp4Cf4fSnIPpMGNc9QHAYRAfcxzZkb5015bLUkr1mGtFIb/oeh3t4IY9V73cA3+43Qr OEFvQvgh7FbhgiuxUX9LA/Dptv9sSVqcIRpcVdI/+bCxEB6jM64LhVc19fikDAsZk8HxOhEYXm1L g/+QIUMsSUubfyEDMAmPJo178W97QiBBS3CRpH2Nmj8ZhHq/BL37TAbv2aTnTtDNhkO+dtdyS9LS eA41VQhEfX4cp0KCuNTnXXixQONOet1Sr+WYJj1/KfNa6Ng7J3zTkrSkQsD9DwouPslQL+TFKmWs UfdLKe9PgxfnqC8CCIH6mu+qj/bSl7daklasozJuwyuj4dWS8PujHq5RRkn4OBeSEjyfiwGN+ufZ FMBvP/C3lqTFGaLudY0vidfDjbGQR6UQk1KPj2OY1OBLelypczFo0CBL0tLmX0gIOI+AjAC3Slvq mIoev/gcTwgkaAkuWsqcRB3rPlO6F8PGbSnnTtBV/5Dzb1+eqKXxHGqqEIj6fMYJ4nKfd8HxJr1u uddKev6kc1rsuNvGf9WStKRCwPF3hr8LcXPvT/LMLDSHUTybk1UavDlHvgggBPI1X7nv7SXdNluS VmigbvUwbIS7Ve1CBlMhYyL890K/B1fZ3c/FPBDlTNRb93/KkrSkhqiOcyuHxUIt4gytOEZxoiuK XRTDQv0IV+KI62857PWe/v37J2pp8y8kBPR3d19rzC6Wu9zxhd/3/oJzLElLcr1ic5Jk/oJGUTgP ohLzfW6rJZakpfEcaqoQSPrsCvY16XuKsW3qOeKeG0nPn+T+izum1ZgLLUlLKgR0nAsj1M8Sr0EB Gzf2QoKh0LOgOVnFseT12iOAEKi9Oc30iL73wgZL0goNwuUDFDIu9XrUV7FVq2B8ctIHeCUgv3nP X1iSVoohGlU5qNAYk67wu/eXenwcs6g5cqviQeFXCcNQfevdu3eiljb/YkLAXcsJgqCgi+MZ9/rp uedYkhZ3nmL9Tzp/MqJcTHvY21eJ+f7iTQstSUvjOZSWEAh+3pxwChcCKGZgRr0niRCIu25Tn61x 509y/8Udc9PI8yxJK0UIuPAgtzgVDK1M8owtNIfF7pfmYBXHktdrjwBCoPbmNNMjuvi5tZakFRqE jIVCFYKcIVFMCETlCBRbyalUPkBUH4/e+b8sSSvHEC3mEXBjTJojUO7xcRVvkhpMlTAMxfTll19O 1JrKP+zmT1rmNe1xn5h1jiVpSR4opaxYho9149f94TxYQW9b2uPWeP615bxELY3nUCnzHTXWYvHh hSpoufOU+rwLjjfpdcu9VtLzJ7n/4o65Ydi5lqSVIgScIe/CL4PvDc9jKWNN6x6IY8LrEHAEEALc C81K4JtPrbYkLapTzkgoZLC6OOOoShru4RpVNahYYqIzUvSwd6sxqVdv+Wiwh277E0vSSjFE3T+p oBFeyBATm6gxpnV8HMNgX10/3OY8zjAMhsqkfeO+9NJLlqQ1lX+4mpPGHZWLor+7e9Pd23Flckth cnT6OZakJTlnIWM9yfyFxb2rIuTugUoIgc+1mG1JWhrPoaTzrWtFfQaCzyDXH3fPxHnlSn3eBceb 9LppPFuTjivJvRh1TIvBX7QkrRQhEJyvsCAr9MwMersKzWFa90C5rHhf/RFACNTfnFd1xF/r7FXr SNCiOqmwn0KucB3vVmiiwoPcg1luXPegjarLHmV0yIh279HrWt0pVLavKXD33/JHlqQVuoYzJt0Y 9F1GVZKY6/AY4/YRaOrxUQw1N85wdB6M4Hy5zXpcuElTWEe9t2vXrpakNZW/3u/G4Ko6RY0pyFhj T3v/hANTzrEkLQnnQsZ63Pw5gRPM7XH7CLjxVkIIfObaGZakpfUcSjLfulbUZ0B/j3oGFUsgb8rz LjjmJNdtyrWSnD/J/Rd3zLUD/s2StFKFgEsSjqvMVsocpnUPxDHhdQg4AggB7oW6IFAJY6IuwDFI CEAgdwSa83nXnNfK3UTQYQjkgABCIAeTRBebToB/Vk1nyBkgAIF8EGjO511zXisf9OklBPJFACGQ r/mit2US4J9VmeB4GwQgkDsCzfm8a85r5W4i6DAEckAAIZCDSaKLEIAABCAAAQhAAAIQSJsAQiBt opwPAhCAAAQgAAEIQAACOSCAEMjBJNFFCEAAAhCAAAQgAAEIpE0AIZA2Uc4HAQhAAAIQgAAEIACB HBBACORgkugiBCAAAQhAAAIQgAAE0iaAEEibKOeDAAQgAAEIQAACEIBADgggBHIwSXQRAhCAAAQg AAEIQAACaRNACKRNlPNBAAIQgAAEIAABCEAgBwQQAjmYJLoIAQhAAAIQgAAEIACBtAkgBNImyvkg AAEIQAACEIAABCCQAwIIgRxMEl2EAAQgAAEIQAACEIBA2gQQAmkT5XwQgAAEIAABCEAAAhDIAQGE QA4miS5CAAIQgAAEIAABCEAgbQIIgbSJcj4IQAACEIAABCAAAQjkgABCIAeTRBchAAEIQAACEIAA BCCQNgGEQNpEOR8EIAABCEAAAhCAAARyQAAhkINJoosQgAAEIAABCEAAAhBImwBCIG2inA8CEIAA BCAAAQhAAAI5IIAQyMEk0UUIQAACEIAABCAAAQikTQAhkDZRzgcBCEAAAhCAAAQgAIEcEIgUAu6P fH/NYAAD7gHuAe4B7gHuAe4B7gHugVq+B/4vyAp4x+LRC+sAAAAASUVORK5CYIJ= ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/image004.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAqkAAAFFCAYAAADPSHSjAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAAAlwSFlz AAAXEQAAFxEByibzPwAAW1JJREFUeF7tnQeYHMd5pqnz+XQOZ9/ZZ58ly1aOVnbQyUqUT7KyRFIS JVLMCiQlMYA5AiAIIhAESIAACIoIBEBkkACInImcc+QiLRaZCItAEIyq66/IWvU2emZ6pnt2e7rf fZ56dnemu7rqreqeb/76/7/edo738/zzz3f2ft2hv/mBAAQgAAEIQAACEIBAaxJ429ve9qS9vidS DQUGzAHmAHOAOcAcYA4wB5gDaZkDzUSq4QcCEIAABCAAAQhAAAKtSMCJZERqKw4Cl4YABCAAAQhA AAIQaE4AkcqMgAAEIAABCEAAAhBIHQFEauqGhAZBAAIQgAAEIAABCCBSmQMQgAAEIAABCEAAAqkj gEhN3ZDQIAhAAAIQgAAEIAABRCpzAAIQgAAEIAABCEAgdQQQqakbEhoEAQhAAAIQgAAEIIBIZQ5A AAIQgAAEIAABCKSOACI1dUNCgyAAAQhAAAIQgAAEEKnMAQhAAAIQgAAEIACB1BFApKZuSGgQBCAA AQhAAAIQgAAilTkAAQhAAAIQgAAEIJA6AojU1A0JDYIABCAAAQhAAAIQQKQyByAAAQhAAAIQgAAE UkcAkZq6IaFBEIAABCAAAQhAAAKIVOYABCAAAQhAAAIQgEDqCCBSUzckNAgCEIAABCAAAQhAAJHK HIAABCAAAQhAAAIQSB0BRGrqhoQGQQACEIAABCAAAQggUpkDEIAABCAAAQhAAAKpI4BITd2Q0CAI QAACEIAABCAAAUQqcwACEIAABCAAAQhAIHUEEKmpGxIaBAEIQAACEIAABCCASGUOQAACEIAABCAA AQikjgAiNXVDQoMg0DoEDh8+bFT4iU4AZtFZ1dKRblyPHz8eu9muLu6t2CipIIcEEKk5HHS6XB6B +vp6M2nSpEhl0aJFzSqPem5dXZ05ffp00YZFrcu1df/+/UXr04em2tutWzdz0UUXNSv9+/c3Gzdu POt8veaO1zGlrqEKZs+e3VT3qFGjTNgHf9y+qS/BMQqORbAzaofao75H7UtLMVNbV65ceda46LUk fqLw1rhpvKMKtSh1+scoytzx97Vac89dQ+138yF4P4hFVJFZbI64uaa5GZVrEuNNHRCoVQKI1Fod OdrdYgT0wRr80Cr2v79h5Z5bTISUW1eYyHRt8wvHYn2RIPV/mAbbUOwa7lrB+sM+7OP2rdD5xXiq Hf62lepLSzLTF5ZC41Lqy0yUG6Nc3lFEfLl1luId7Ee15p6uU0icRpm7/nZGnSOu3qS+dEQZc46B QC0SQKTW4qjR5hYlUO6HbxyRqg+vQhbActtRSARE/UB2H6T+eqolFOL2rdj5hURdOSK1pZnJsl5I pOq9uD/l8nZtKWadLrfOtIjUcoRlsTaXO0eiMI07zpwPgVongEit9RGk/VUnEPzw1f/6sAorWjIs JlKD5+pDP0yMhC0FltOOQsu0hT6Q1Q5/f/wfuK0hUosxDutbMYGk98J+oorU1mBWTPDovbg/peaS 5oOsp2Fzs5D1r1Sdwful3OXuanxBUhvClvZd2/RbXwoci0JfEMLmn3OZcT6pejYUut+T+OIRd05w PgTSSACRmsZRoU2pIlDJh6PrQJRzg2JJH5phFpsodRUDJx/A4AdyIR9R1aPjg76plbQhypJpJfWW Y7EOczGIIlJbg1lwqT9MAMVd8o/KW8IqzGc5istGuZbSUjd91Db76yk199RG/zHFvgCIRRh3vR68 TjGLs9gFmep/fiAAgbMJIFKZFRAoQaCSD8dyRKqODVrOZL0L/sRpR9g19MGaBmuW2ha3b2FWPL9w CLOmRhGpYRbNajMLBkxJKAfbEVcAlsM7zNoYxrOcOit56FRSf7kitZDVvVh7gxZn/V/qJ8ydI7gK U6oO3odAHgggUvMwyvQxFoFKPhzLFanBa4RZYuK0IywQp1T0exi0StpQSihUQ6SGWaeD1r9SIrW1 mPlFj7OwBUVNFCFUbNKXO45hy9RBq2K5dZZ7U1ZSf6m5F7Skinc5VuowAR9VbAatqZXcj+Uy5HgI 1BoBRGqtjRjtbXEClXw4litSgx9YYT5qcdoRZrmJmlLHD7ySNpQSCtUQqaozaOEKLuWWEqmtwSwo epxwCRPM5Vp044xjmBgLppCqZG6UczNXUn+puRc2xroXowrNsPOj9inYnyR8jaNem+MgUCsEEKm1 MlK0s9UIVPLhWI5IjWKlChNyalehAK4grLCcm5UArYRFKaEQt29h5+u1MF9Bv/goJVJbg1nYUr8b p+CSf5z0RUmMY9DlIMzlIur8jDIXk2hz2BezMJ9bl8+0lFgNWmLLsXAHz9U1+YEABJoTQKQyIyBQ gkDww1EfRHotrJSyLgXPDYueLvTBGGxHsfymQUts8NxKAzWqJRTi9K2QSA173S8iSonU1mAWttTv pmeSS/6VjGOpc+KOYakHUanrh50f5QtS2JcZ/3kak6j3ZDk+rYjUUiPO+xAwBpHKLIBAmSK1mDgs ZV0qdm6pZcZyRECpdpTzYerHUy2hEKdvxURqmG+qExzlitRqMwu2J+ijGLbkX4nLRhivKIFYpcY+ 7hiWehCVun6lIlXn6ctlIYuqu2ejBDOWM0cQqaVGnPchgEhlDkCgJIE4H75Rzw3u7BTWqHIsukF/ xaT836olFOL0rZhILWZNLVekVuozGJVZ0O0jbNvQ4JJ/pcE2UdtUzheUuGNY6kaspM1RLKn+6/q3 Xg37QhkUqsE2IVJLjSLvQ6A8AlhSy+PF0TkkEOfDN+xDzPnpBQN7SgnVSj6k3XCFieVKhrKSNkQR CpXUW0xA+d8Ls6Zq6bxckVqpz2DUvvkteYXcMYJL/q3ptlHKWh/FOlvOHIzK0V9nlLkX1oZiYtX/ BTD4xaKcLzJhmQXK4cGxEMgDAURqHkaZPsYiUMmHYyFxGPzgDlrGin3IxWlH2NJiOal2ovYnDHQU oRCnb6UsqXo/KCb0BaGUSG1JZmGbBhRzDfG/F2ZxLTXhy+Ud5mpQyv+6lkWq4xe225i/X3GW7ONY YUuNL+9DICsEEKlZGUn6UTUC5X6gF7PwBT+4i/lMBjsUpx1hIqiSrRiDbYiy3JwGkVoo56m/bcGx qRazMPFWaLvMKEI1yhjEnUtRxFic+Rnl5q3W3Ct17eCKh3/8wuZI1NRgQR/YpEV9qX7xPgRqgQAi tRZGiTa2KoE4H75Rzo1qTY1SVzFQQcFTTrocV28wRVKpOsI+xMPaGLdvwfPDrlFKCIaJhCSYRelb qaCdUgF35d4gUdrk6pToCrYvShBR0qKrWnOvFLtirCrd8CFM9EcVt6Xay/sQyBIBRGqWRpO+VIVA OR/olViswlLgVGNv9DCRVsy9QB/AEiP+fJxhorOYGGkpAR5FpKo/xcRgVAtnucxKzZ/g+Kt+jX+h Uir/a5SboFSbXB1h+8xLMFdjfpZqdzXmnu6JUrlQg18QSqV30/HF6gxbPSkn4KoUJ96HQJYIIFKz NJr0pSoEon6gx7EQRtkiMWy5s5iYCbYnzOrjkpZLiLq6JAb8gjb4ARpc/lQdErM6T9eQRUgf0mHH Rc03qeuX07coIlU8wixYToSEidQkmJWaP0G/xyhuGEG2YZbNYjdDsbmk64tF8AuG41RoE4G48zPK zZv03HN9Ul/Vb781U/M5jEHQlztMdKpezWHV4Z/Hhaz5WFGjjD7H5JEAIjWPo06fyyJQSmSUIwYK WR3DdjcqtTd6KX/FsGuVSlweJe1OpUE+xYRUkHG5fYsqUjVWhayphcYmLrNS8yfY1ygBbXF3wyqX t2tjMf/XcuusxB0g6blXap4F3y/n/o1adylLblkPKw6GQMYIIFIzNqB0J3kCpURGEiI1zGIXZVmx 2AdhMdFVjg9kWPR4ucKtlKUvrsApR6QWsqYWE03qb6XMis2fsKX+KDNYlrfg2Jcjdsrlrb6XsvCW W2clIlVskpx75bS5VIBaMSt92H1aavOOKPOAYyCQdQKI1KyPMP2LTSC4RFfqw9p/wXKWcoMfmEFh F8yRWcpSU6ydEsXqVyHhpdf1fjGrnqujWDu0XBpFPMXtm59zlNyhQUukzillwayUWbE5EBQ25Qi3 4FJ0OedG4a356Jaso9xEUer0z5Vy7qPg9ZOee2FuBK6t4hB1Zy99eSh2X/nda6Iw5RgI5J0AIjXv M4D+556APlj9fnOV+MeF+Y9mGWwSzLLMpyX7ltTck/AN1hWnH8E5orpLfRGKcz3OhUAWCSBSsziq 9AkCEIAABCAAAQjUOAFEao0PIM2HAAQgAAEIQAACWSSASM3iqNInCEAAAhCAAAQgUOMEEKk1PoA0 HwIQgAAEIAABCGSRACI1i6NKnyAAAQhAAAIQgECNE0Ck1vgA0nwIQAACEIAABCCQRQKI1CyOKn2C AAQgAAEIQAACNU4AkVrjA0jzIQABCEAAAhCAQBYJIFKzOKr0CQIQgAAEIAABCNQ4AURqjQ8gzYcA BCAAAQhAAAJZJIBIzeKo0icIQAACEIAABCBQ4wQQqTU+gDQfAhCAAAQgAAEIZJEAIjWLo0qfIAAB CEAAAhCAQI0TQKTW+ADSfAhAAAIQgAAEIJBFAojULI4qfYIABCAAAQhAAAI1TgCRWuMDSPMhAAEI QAACEIBAFgkgUrM4qvQJAhCAAAQgAAEI1DgBRGqNDyDNhwAEIAABCEAAAlkkgEjN4qjSJwhAAAIQ gAAEIFDjBBCpNT6ANB8CEIAABCAAAQhkkQAiNYujSp8gAAEIQAACEIBAjRNApNb4ANJ8CEAAAhCA AAQgkEUCiNQsjip9ggAEIAABCEAAAjVOAJFa4wNI8yEAAQhAAAIQgEAWCSBSsziq9AkCEIAABCAA AQjUOAFEao0PIM2HAAQgAAEIQAACWSSASM3iqNInCEAAAhCAAAQgUOMEEKk1PoA0HwIQgAAEIAAB CGSRACI1i6NKnyAAgaoS+P3vf2+KFV08yjFVbSSVQwACEKhxAojUGh9Amg8BCCRPoJTAfOONN0xY ef3115u9Hvzff06payTfK2qEAAQgUFsEEKm1NV60FgIQqAKBMMEYFKESnK689tprxl9effVV4y96 T/+73+5v/zn++oJitpCArULXqRICEIBAagkgUlM7NDQMAhCoFoGgCHSCNEyIOvH5yiuvGJWXX37Z ljNnztjy0ksv2XL69OmCxR3jztFvV4+r1y9k/e1wbQsTrtXiQ70QgAAE0kAAkZqGUaANEIBAVQmU EqV+i6cTok6ASny++OKL5tSpU7acPHnSnDhxwhw/ftyWxsZGc+zYMVuOHj16VnHv6Th3js5XPSqq U/XrOhKzTsAGxasTroVEa1UBUjkEIACBViCASG0F6FwSAhCoPgG/MA1aSp0oDQpSJ0YlHp0AlfA8 cuSIOXz4sDnWsMgcq59rTj7/pDm1pa85s+528/Lq684q65cPMz2m7DirPDVvlxm7eLctizftNSue 328OHHzB1q/rOCErEevEa1C4OotrMdFafbpcAQIQgED1CSBSq8+YK0AAAi1EIIowdUv1zkLqBKks nhKLRw7UmcYdkzwR2secWdPGE6C/Nb9f+i1jlnwtclk3v4e5cfi2ssqDk3aYnlN3mDFvCdhdew/Z 9qhdEsxqp7O4+q2tzs/V79fq59BC6LkMBCAAgcQJIFITR0qFEIBASxMIilN/gJOzljq/UVkoJfok /mQdPbJntTn+/FDz4rq25tUVP/OE6H/ELivndClLoBYStG2f3m56T99pxi3dbdbU7X/TmhsQreqX hLf66beyynqMWG3pmcj1IACBJAkgUpOkSV0QgECLEnAizL+c75byJdwk4GR9lBVSS+laUj98YJdp rBvhWUlvMG8s+44nSL+aeFk6o6O5Ydi2xMtto7aZx2bsNLPXNpjdew9aS6v65aysTrAGxapfsLbo AHExCEAAAjEIIFJjwONUCECgdQgExanfx1RL4VrKd8JUQu6F/TutMH1p7U2eIP1K1cvCKe3M9Z5I rXbpNmm7Gb+03tTtPtBMsKr/4oB1tXXmJ1eFAASSIYBITYYjtUAAAi1AwC9OtaQfZjVV0NEfLKbD PWHaxhOlX2rR8tyzd1ddoAYFsATrtFW7zb4Dh2z/5dIg14ZC1lVcAVpgwnIJCEAgFgFEaix8nAwB CLQEgWLi1G81lc/m4YaVnn/p3Z4o/WKrlTnjbzfXeZbU1ii3eC4Bj8/aaVZu3Wt9WJ07gN+6KnHv Aq0c25YYR64BAQhAoBwCiNRyaHEsBCDQogSiiFMFEr3wgpfGaedMc9rzMzVLvtDqZebTt5rfPrWt 1YsCr2RdPXTokA24kpVZPrrOFQCx2qLTmYtBAAJlEkCklgmMwyEAgeoTKORzqmAoZzmV6JL4Ovr8 KPPyyss8Yfr51JQZY29udYHqF8l3j91unlmyq8kVALFa/TnMFSAAgfgEEKnxGVIDBCCQIIGg9VSR 6mHi9JiXNuq15d/zhOn/TV2ZPqaN+c3Qbakryg7wzOJdZu/+g9ZvVWJVol98XUYAUlclOJmpCgIQ iEUAkRoLHydDAAJJEQhb2ld0ugJ/FADklvUP75huXll5oSdM/y21ZdqYG82vPZGa1nKrJ1af9sSq cwNQJgR/gBX+qknNauqBAATiEECkxqHHuRCAQCIEJFBdrlP5SUqcym9S/pOKUlcA0MHdazyf0197 wvRfU1/SLlKdeG7/zHazbHOD9elVgJXLBiD++KsmMrWpBAIQiEEAkRoDHqdCAALxCBRb2tdStHKc Htq33Rzf0NHbmlTL+v9cE2XamBvMtZ4ltVZK3xk7TN2ufZa3vhToy4FzAcCqGm+OczYEIFA5AURq 5ew4EwIQiEHAL1Cd9dS/tG+DorY+aV5fpm1KP1tTZdro6801Q7bVVNHWrGMX7TQHDx60rhXOBcBZ Vdm1KsZk51QIQKAiAojUirBxEgQgUCmBMN9TFxjlrKcH9tR5S/tXe8L00zVZpo2+rqYEql9Qdxi/ 3ax9vsG6WDirqlwvFFglqyp5VSud+ZwHAQiUSwCRWi4xjocABComELa8LwHkAqNkPT20bbJ5belX PHH6qZotEqlXe5bUWi3XD6szE5ftNAcOHLBWVY2PE6qyejv/4YonAidCAAIQiEAAkRoBEodAAALx CRRa3teysnwh9+/fbxrXt/eE6Sdqvkwb/duaFah+Yf2Qt9Xq9vo3d67yp6sKBlXFnx3UAAEIQOBs AohUZgUEIFB1Ai56X8vFEjha3neR+4osP7BzsTmz4gJPnH48E2Xq6N+YX3mW1ELlki7PmnPPPdeW OMdd9fgqc8END9p6fnB1W6P/g/Vd3HGsPabYdYq9d+OIOjN3bb31VVUGgGBQFcv/Vb99uAAEcksA kZrboafjEKg+gVLL+xI+h7cMNq8v/RdPnH4sM2Xq6F+bX3oiNViu6LvUfN8Tk06g6nec4y68e4BR UR36fb4nRv31Xf7oAvPtS683V3riNew6UV9bMvQxs3/GECtUtQmAf/mf6P/q30dcAQJ5JYBIzevI 028IVJlAIYGq5X0JHS3vH13fxROmH8lcmTr6WvOLwdvOKhKlP2k3zFzRb1WTUI173GW9FtjrXN5n qa3T1XflE+usQL20x5zQtoRdN+y1pwaPMSce+pEth55+yOzb92aqKi3/KxuDC6gi+r/KNxTVQyCH BBCpORx0ugyBahMo5H8qYSP/xn17dpoTq5WY/8OZLIVEql8EOmtqKbFY7Di9V0iknn/9g1YQl6q/ 2Pv3Dlpojna/yJzo9sOmcnjIXWbfrm12AwBF/0uokqaq2ncU9UMgnwQQqfkcd3oNgaoRCBOo2h9e gkbCZm/9ZnPa+p9+MLNl6uhrzM8962ax4sRnnOPO84Toj+8aYK+j3+7vn94/1ui9UnUXe//aQRvN tod/1UygOrF65PHfmD2b19htVTWuGl/5GbvIf/xUq3Z7UTEEckUAkZqr4aazEKgugaBAdflPJWQk aPbtXG5eWX6uJ04/kOkyZfTV5ipPOBYrTqTGOe5yz23ge2/5uF5wS2+j/y/xlv+1zK+/S9Vd7P1F 3dt4AvWCguVYr8tMw5qFZwVUIVSre49ROwTyRACRmqfRpq8QqCKBMIGqSHBFhCvgZn/dZC9ASuml 3pf5MmX0r8xVT3oitUhpEqkJHadrXf7YKvPtS643l/RcYP+WNVXX+d6v2tr/S7XJvT/w4UfMyW7n lywnevzY7Fk8pSmfqov8R6hW8UajagjkiAAiNUeDTVchUC0CpQTq3udneAJV6aXem4sikXqlJxqL FSdSkzpO9fxAfqjeUr/+/pG3/K/i/tZ7pa6l99v1mWCOeRbUKCJVxzihqkA4Jf5HqFbrLqNeCOSP ACI1f2NOjyGQKIFiAlU7Fr0pUJVe6t25KVNG/9JcOcgTqUVKk0hN6LgL2w4zP7jOE6Jv1af6L3lk gf3/0kffjPwv1abfPLHSNHS50Jx88LyyyonuPzYNiybbjA0I1URvLyqDQK4JIFJzPfx0HgLxCbhE /S5Jv4JotMQvgdqwbbF5bcknjVn8D7kqU0b9wlzhicNixYnUJI67qPsc8y1vmf/Sx9c1XVP1/8wT qar/krdEaqlrLevyy7LEqV/MSqjWr5qPUI1/S1EDBCDwFgFEKlMBAhComIBfoCoNUVCgvrLknz1x +q7clSmjfm4u98RhseJEatzjLum7ygrUiz1B6q/r+55V9YI7B9jX9Nv9Xeh6Ix9s5wnUH8Qqx3v8 pKRQrXiycSIEIJA7AojU3A05HYZAMgT8W536BaqCpHZvX2FeWfIZT5y+M5dlyqirQgWqf6epsL+d gIx6nI6XGP1xh7FnXU/i9btewJTqOu/m3kb/FxKonXs+5YnT7ydSjve40NSvXWwt6bKo64tLMI9q MjOQWiAAgawTQKRmfYTpHwSqQCAoUJXQ3aWZ2r1jgzmz7IueOH1HbsvkkVeZywZuq4ly/eMLzf4u P0xEoDqhe+zRy0z9hpVN6amcUPVvoVqFaUmVEIBAxgggUjM2oHQHAtUm4AKlJDi0JaYEqnaSUqL+ +vp6c2r59zxx+ne5LpNHXmku9URq2stVT6w3mzpdbE52/V7i5Wifq0z99rqmhP9uZyqEarXvUOqH QHYIIFKzM5b0BAJVJ+CP5JdAPXPmjDl58qTd6nT37t3m8OrbPHH6t7kvk0deYS7xRGray5TObRIX p37Be2jwHfaLi77A6IuMhKrmjYQqu1JV/XblAhCoeQKI1JofQjoAgZYjEIzkP3XqlDly5IjZs2eP 2bNhsCdO/4biMagFkdq7ey9PoH636qVh0uOmoaHBfpHRFxp9sSHZf8vds1wJArVMAJFay6NH2yHQ ggSCfqhK2q6cmPv27TO7ts4zrysP6uK/pngMJo+83PxswLbUltsenWqOdfUCpVpApB7vdp7ZtXCy 2bt3r/1Coy822i7XL1RbcBpzKQhAoIYIIFJraLBoKgRai0DQD1WBMAqUUgT3zu1bzItLv+CJ07+i vMVg8sjLUitQr3xig9nZ+UeeQP1Oi5VjD//E7Niwyn6h0RcbAqla607muhCoLQKI1NoaL1oLgRYn EOaHKv/CQ4cOmV27dpljKy7yxOn/pPgYTBp5qbnYs6SmsSztdJU52cUTqC1cDve71uys22oj/vUF B//UFr+VuSAEao4AIrXmhowGQ6BlCRTyQ5Wf4b413Txx+peUAAMrUvt7IjVlZWjX+zxx+u1WK/tG d24KpArzT23Zmc3VIACBtBNApKZ9hGgfBFqRQFjCfueHumPrYvPq4nd7AvV/UAIMJo28xFzkCdQ0 lXY9R5ljXbxAqVYUqbr2jsXTbKCd3z+VtFSteJNzaQikmAAiNcWDQ9Mg0NoEJFL9+VC1TKvl2h07 dphjy37gidM/p4QwmDTyZ+annkhNS7n2MS9hfycvUKrLt1q9HOl7ldm+dbPZv39/045UpKVq7Tud 60MgnQQQqekcF1oFgVYnELbM7/Kh1q99whOnfxq5NEz4KzOx57vNndd8ym7T2f22j5pVQ/9PwfP1 no5x24OO7PreZscem/EXpn/7DzbVpf+D7Vk04J32mHLamdSxk0ZebH7iidS0lHUdLzInO38zNaX+ mZ5m586d1q9Z/s3BtFStPvlpAAQgkAoCiNRUDAONgEC6CPij+bXvuj/d1PNb1nnL/H/vib8/iVwk OLc9rej/PzGnZv+ZJx4/YAXmogHaOrV5PbP7vcu+p9/uPXeu+39iz3/0RO8/2vf1W/X562mY8L+s ID42Q64I0duZ1LFWpD7hidQUlAmdb06NOHVC+biX+qpu2VybP1XL/ppfmmcs+6frOUBrINDaBBCp rT0CXB8CKSTgrKhu21P/Mv8Lyy/3hN/bY5WGCX9pheid13yyWT0Hp/wP+/rIru8pWr+OUR1qhzvH tenU7D+19W57+n/FamOcPk4ceZG50BOorV26d+vrCdRvpLIc6neNqaura1r2J9o/hQ8CmgSBViaA SG3lAeDyEEgbgWLL/DvWDveE3x/HLgen/FnTUr6/vtn93mFf3zRKVtfC13lTpMpK+seeSH2zLnd8 //bv86ywstDGb2eldUwc+VPzY0+ktmb5Te/Z5nCn75hTnkhNa9k5ZaBNY6ZtUxXtT5L/tD0NaA8E WpcAIrV1+XN1CKSOgD9YSknXGxsbbRJ2PSxOL/moJ/7+a+zSMOHP3/In/XCzurrf9mH7uoRnsetI iE7sKZeD/2p/u78XDfhbb+n/fbHbF7ePE0f+pFUF6sX91pu6By7wxOl/pro0dr/A1K1dbnejCib5 dy4nqbtBaBAEINBiBBCpLYaaC0Eg/QT8VlQFs8i6JSuXrF27Vj3iib//kkgZ2fUfrBhdNVRL8n+o 0wVKLRrwvz2x+d4ma+vsfgqy+sNxx2a83Qus+tBbrgH/4Pmevt2zrP6Zt8z/Cft3Uu2stJ6JI35s fvS7ulYrcx/4pTnV6es1UfYMu89mi1DWCIKo0v+MoIUQaEkCiNSWpM21IJBiAsFgKVlRZd2SlWvL Fm/r08Uf8sTf22KXg1P++1v+qB8/qy6/SHXXmtjznW8FUkmohl//2Iz/5gnUj3tC9U89kfrfPIH7 nrcstR+0/yfR7nLqaE2R2r9zx5oQp05En/DSYm1dvcQGUR09epQgqhQ/I2gaBFqaACK1pYlzPQik lEDQiiqrlsuJumNFd0/onRO7nJr9R1ZMvulTqqj75nU6kXpwiqyhb76nv93rhdogUbpowF/b4yf2 fIct7m+9l0Tby6lj4ogftYoV9Z4eI0xjJ2+Jv9PXaqrsGdbebNu2zRw4cKDZlqlvvPGG0bzkBwIQ yCcBRGo+x51eQ6AZgbCUU7JqaWegTZs2mVOLPmh+v+ic2MVZOFcO+Z+hdXW/9c3cpwcmv73pff3t RGpYG2Y9Jj/U9zQdr2N3ewJYx7pzk2h7OXU864nUHz7+fIuWy/ssM3s6fremxKkT0ye6fNNsXrnI 7N69u2knKlJS8ZCCAAQQqcwBCEDAWqtktXrttddsYnVnRd2+fbtpWHZzbHEqgffsI29G7ut3IcEn waljNo78i6ZjJDj1ml+IuvPrxnp+qFd/3Jyc9Ue5F6mrvIT9pzr9v5otDU+1sympsKbyQIIABBwB RCpzAQI5J1DIiiofwc0bV5uXF/+1ecMTmXHKQm8pXkLzCc/iWayeI9P/2B73kGdRdcfpHL1W74lV /7k69g5PoAZf1/ESwjpWv93fcdpf7rkTPEvqBf22tlgZ88DN5tQD/1HT5YSXiWDzinBrKpH+OX9I 0f3cEkCk5nbo6TgE3iRQzIpav+xO88ZCT6DGLG65vtBvf/314//EPNHuTWFqLa8Pv8Psn/T2s9qg Yxb29wR0oG1Hpv2xFbk6d0SXdxn9H7f95Z4/YXjLidT23QbVtDj1i+uGp9piTeXBBAEINBFApDIZ IJBzAi4vqnwAFdHv90U9ufCD5nVPBFLKYzC+hUTqr3vNMEc6ft28+MBXM1FOdP2W2bh2dZNvqn+7 VKypOX9Q0f1cEkCk5nLY6TQEzraiarcf5UU9dOiQzVu5eeUIxGmFAl0i9fzHtlS1XNh7tdly//mZ EKd+kV03qb+N9CdvKk8pCEAAkcocgECOCbil/ldffdVaUf15Ufcu+ol5bcE5lAoYtIRIndTxWk+g npu5crDPlWbjxo2heVNJR5XjhxVdzyUBRGouh51OQ+APvqivv/663TP91KlTTbtLrVuzzJxZ8OcI 1AoEqoT9+OE/NOc9trlqpW/nTubFjp5AzWhZv3CmtebLqi/rvuanMk+QN5UnFwTyRQCRmq/xprcQ aCLgD5h66aWXbBL1/fv3Gz0U6pZ0NK96YotSGYNxwzyR2tcTqVUoNzz8rDne0fNB7fiVzJYdw+63 u5xpt7PGxkaj+SlrPyKVBxgE8kUAkZqv8aa3EGgmUmVFVcCUAlSOHDliA1Y2bNhgjiz4jHll/jmU ChmMe+qH5gd9NyVefvboYrOrw7czK06d8D720A/M2rVrza5du8zhw4etld8l92fJn4cYBPJDAJGa n7GmpxAItaK6gCkFqih5/7rlzyJOKxSnTthbkdrHE6kJl2X3X+QJ1C/nomycNqJZOiptMsGSPw8x COSLACI1X+NNbyFgCfgDprSUqiVVLa1u3rzZ7Fr4c/OyJ9IolTN42hOp3++zMdHyZMe7zIv3ewI1 J6XhiRttAJW25lVaNAX2seTPAwwC+SKASM3XeNNbCDSJVP9Sv5ZU6+vrzbp168yReR8zL8/zBBql YgZJi9S2Dz7hidMv5aqc6Px1s3r1arNz504b0OcCqDRvWfLnQQaBfBBApOZjnOklBEKX+rWEeuLE CZuTUrkpVy2fY8544pQSj4FE6vd6b0ikXPHwbHOww394AvWLuSsbpg6zgXwK6FNgH0v+PMggkC8C iNR8jTe9hcBZS/0uN6qW+rcsuNu85IlUSjwGYxMSqT/qucKsu+8882IHT6DmsGwb0q5ZzlSW/HmA QSBfBBCp+RpvegsBK1LDlvoVTb37uW+a08+dQ4nJYOzQZCypkzr8yhOnX8htOdT9h82W/BXlr0A/ lvx5kEEgHwQQqfkYZ3oJgSZfVOWaVJS0P6pfS/0rVqwwJ5/7cwRqTIEqkT926AXmu4+uj1W6dOru idN/z31ZNX9m05K/XFNY8udhBoH8EECk5mes6SkEmpb6JVJdVP++ffts4vS1i7zgHE9gUeIzGBNT pP7moafNkfZeJP99nkjNedk8+pGmKH+5prDkz4MMAvkhgEjNz1jTUwg0LfUrlY8+7JXaRwn8169f b+qeu8K8ONcTaJTYDMYMucB8p9e6isoPH1ludrX/uidOP0/xGDQ8dnWzxP7aeILE/jzMIJAPAojU fIwzvYRA03K//Pm01C//PqX2UYofpfrZN+dT5pQnUCnxGcQRqXPvuwRx6hPoJx74qnVFkUuKslC4 VFQk9uehBoHsE0CkZn+M6SEEzvJHdamnDhw4YHf1WbZsmWmc/Wfm1BxPoFFiMxgz2LOk9vQsqWWW QR1u9wTq/6UEGKyaOd66pMg1hVRUPNAgkB8CiNT8jDU9zTmBYrtMrVgwzJz0xCklGQajPJH67Z5r yyq3dRlkjrf3lvjbf44SYLB2bB+zYcMG09DQwO5TOX+O0f18EUCk5mu86W2OCfhFatAfde3cjgjU BEW6FamPeCI1Yrmw+3Nmb7tzEacFBPrWgXeZNWvWmF27dhntjoZfao4fZHQ9VwQQqbkabjqbZwL+ /KjyR9WHvfNH3Tjr5+bE7HMoCTEoV6Sub/ddc7r9v1EKMGjodbn1S92+fbs5dOgQW6Tm+UFG33NF AJGaq+Gms3km4ERqWH7UXTM/j0BNSKBK7EukfuvhNZHK6Pa/8cTpv1KKMDjc5VtmyZIlZuvWrWyR mueHGH3PHQFEau6GnA7nkYBb6ldEtIKmFHyi/dD1oa8P/wMz32WOe+KKkgyDkRFFapeO3RCnEQX6 onlzzaZNm8zevXtNY2OjzfOrVGranELzmx8IQCB7BBCp2RtTegSBswj4RapL4q8Pe33oL144xxyf 5YkzSmIMRg4633yzx+qi5aquE8zRtp83p9v9CyUCg5XPDrb5fAme4gEHgfwQQKTmZ6zpaY4JhAVN 6cNeEdPL5/Y1jZ5ApSTHoJRIPa/HUrO57X964vSfKREZbBjakeCpHD/D6Ho+CSBS8znu9DpnBPxB U4qMPnLkiKmvr7c7+aya3QGBmrBIH1HCkjqn7U8RpxHFqRPyW/rfZlauXGl27NhhN6FQ8B87T+Xs QUZ3c0cAkZq7IafDeSQQjOx3O02tWrXKrJpxizk28xxKggwkUr/RfVVo6dWhrSdQP0spk0HdY781 y5cvP2vnKe2ghk9qHp9q9DkPBBCpeRhl+ph7AsHIfqXxUTofpfVZO/1Kc9QTaJTkGBQSqdd3GmJO WP9LRGq5DLb3usoG+elDSzulnThxwgYBsj1q7h9vAMgwAURqhgeXrkFABJw/qixOSj+lD3e3HerS pUvNumkXI1ATFunDPUvqf3Zf2az88MHZZu+9XzCn236GUgGDvd3ON4sWLWJ7VB5rEMgRAURqjgab ruaTQLH0U4sXLzZbpv4/c2TGOZQEGQwbeL75+kMrmpWlbX+AOK1AnDpRv6/Ld82CBQvOSkOFJTWf zzV6nQ8CiNR8jDO9zDGBYPop5Ujdt2+f2bx5s7VMbZ36JQRqggJVgj8oUp9qf70nUD9NicHgSMdz zbx582xGij179phjx46RKzXHzzW6ng8CiNR8jDO9zDGBYjlSZZnaPu3j5rAnrCjJMRjus6Te3akP 4jSGOHXi/qTnyzt37lybK3X37t3m6NGj5vTp0yT0z/Gzja5nnwAiNftjTA9zTsCfI1WJ/GWBkiVq 48aN1jJVP/W95vB0T6BREmMgn9SvdVtuLu462Ry693Pm9L2foiTAYM6cOWbdunU2fZrSqCFSc/5w o/uZJ4BIzfwQ08G8EyiWyP+5554ze6b9rXnBE6iU5BgM80Tqd7stMFvbfg1xmoA4dSJ/1qxZNqG/ E6nK+autUUlDlfenHP3PKgFEalZHln5B4C0CYSJVy6VaNtXy6e6pf2MOeSKVkhyDYYMuMFPaX+EJ 1E9SEmQwc+ZMdp3iyQaBHBFApOZosOlqPgkERaqWSSVStWyq5dP6KX9jDk47hxKTwaZn/s6sHfs+ W2b0+zbiNEFx6sS+ROrq1avNzp07zeHDh40sqew6lc/nGr3OBwFEaj7GmV7mmECYSNVyqROpdZM/ iED1CdS9k//IrBr17qYy96kvmhlD/tPMHPoNM3noZWb8U7fZMmF4WzNu3LjQMvmx+z2R+glKwgxm zJhhtEuaE6lsjZrjBxtdzwUBRGouhplO5plAKZG6ZdLHzAFPpGWxbB33F2alJzhVlo/8QJPYlOB8 dlibJsE5blSvgoKzkBAt9vrcnm3M6Xs+TkmYgV+kamtfRGqen2z0PQ8EEKl5GGX6mGsCYSJ1165d Zu3atWb27Nlmy0RPpE71RGrKy5rRf29WjvQEp1fmP/VZKzhVpgw+v0lsysL5zNMjzDPPPNOqZVm3 qxCoCQtUif7p06dbS+qOHTsMIjXXjzU6nxMCiNScDDTdzC+BQpZUiVT5pG6d9E9mvydQW6rsmvj2 JrEpwTlzyFfNdE9sqjw75Od/sG4O79iqQjOO0N3c6XxPpP4TJWEGEqkrV65EpOb3cUbPc0YAkZqz Aae7+SPgF6kKNFHglHxSFd3fJFKneCK1grJx7F81Cc7Fwz5ipg/2xOZbxfluWuvmqH41KzgrEav7 2n/JvHTPxygJM3DL/VhS8/cco8f5JIBIzee40+scEXAiVVHQSn7uF6nKk7rFs6Tu8wTqumc+aNaM fb9ZNfq9Zt6wz3tL6d+wZdLgn5hxntB0pRLRlrdzEKjJC/TG9v9m8EnN0YOLrkLAI4BIZRpAIOME iiXznz9/vg0YypuIrGZ/R40Ybl66+6OUhBns7fg1QwqqjD+s6B4EAgQQqUwJCGScgBOpr732mrWk as/zhoYGs2nTJrNgwQIrUp9++mlKQgxGDhmIQE1YoEr0b+v24yaRqsA/8qRm/MFF9yCAJZU5AIHs EwizpO7Zs8eK1EWLFpkJEyYgUBMSqBL7owb08UTqRygJM9j48JU2GwXbomb/mUUPIeAIYEllLkAg BwTeeOMNI0vqSy+9ZI4dO2b27t1rNm/ebBYvXmyeffZZRGqCIvXpfg8iUBMWqBL9K/q0sYF+2oRC O6bJt1orA6+++qrR/NaXMX4gAIFsEUCkZms86Q0EQgnoQ1wf5mfOnDGNjY1m3759ZsuWLVakTpo0 CZGaoEh9tnc7RGoVROqi37U1CvRTVgq5q8htBZHKAw8C2SaASM32+NI7CFgCsjLJkiqRevz4cbN/ /34rUpcuXWomT55sxo4dS0mIwayHfmtO3/VhSsIM5gztaRTot3HjRiN3Fa0IaGUASyoPOQhklwAi NbtjS88g0ETAidSXX37ZnDhxwhw4cMDU1dWZZcuWmSlTppgxY8YgUhMSqUu6XIJATVigSvRPGT3U LFy40LqpyF1FKwISqfryxXI/DzsIZJMAIjWb40qvINCMgETq66+/biRST548aQ4ePGi2bdtmli9f bqZNm2ZGjx6NSE1IpG7o8F1EasIi9eTd/2R9p+WesnXrVrsSoBUBrQwgUnnYQSC7BBCp2R1begaB ZpZUiVQl9D916pTd93z79u12i0klSB85cqS1plLiM9jT7t8RqQmL1IYOX7VuKbL8awVAKwFaEdCX Ls1rgqZ42EEgmwQQqdkcV3oFgVBLqkSqtkZVjsmdO3fadD6zZs0yo0aNQqAmJNLxR03eH3d998us xX/FihX2y9WhQ4fsigAilQcdBLJNAJGa7fGldxCwBMJypSqNjyKlldZHy/1YUeNbUUcMH25evPND NVNuO/9z5txzzzX6HdbuRb/+uH1fJez9vbd8xDz2s8/a97te+C9G/wePm331J+0xcbjMe+yus3ab 0oqAvnRhSeUhB4HsEkCkZnds6RkEmi33uzRULleqIqQVKa2IaW0TilCNL1KHDxkUS4zFEXLlnisB KmEZJkJ33vTRZu8VEqljr/q0UdG19TsoRp+/8aNWAIeJ13LaO3lIn7NypGpFgMh+HnIQyDYBRGq2 x5feQaCZJdWfhsrlStWuUwpKkV+qhCqlcgbD+vepCZF66NYPW3G6/vqPhYpUvTfll5+y4rKYJVXv SYhKcErY+sWsriGBqmuUI0iDxzbe/Un7JSqYfoocqTzcIJB9AojU7I8xPYSAJeB2nSqUhmq4t1SN QK1coIrdyMe6xRJkccRcOedKgA657DO2rcVEaKn3i4lUWVV1nXLaFXbs9o7ftF+i9GVKuX315YrI fh5qEMgHAURqPsaZXkLA+qX6I/wVfLJjxw6zatUqG+E/YsQIRGpMS/K4R+4xp+74YKrLwVveFKY7 2nzEttOJ1ELtLvZ+34s/a8Ze+Slbj367v2df/Qmj95JgseqhK2wu37DIfpd+itsbAhDIJgFEajbH lV5B4CwCfpEqfz7tfV5fX2/Wrl3bFDyFJTWeJXXqQzckIsySEHeF6pCQHHzZp5vaGUek7rn5w6bL W36tqlP/b73hI+bW8z5n/06iH3P6tbVfovRlSl+qlD6NoCkecBDIBwFEaj7GmV5CoFmEf1jw1Lhx 47CmxrSkzut8RSLCLAlxF1aHrKd+K2pcS2rwGhKmEqgSqvpb1lRdT0K2EtF6/M6PmqdHDW8KmtKX Kn250pcsIvt5qEEg+wQQqdkfY3oIAUvApaHyB09p5x7t4LNkyRIzceJE89RTT9mcqZTKGKy+/7xU i1RZO/1W1KRFqkSplvqDy/+y3lay/L/pge8bfXlasGCB2bRpk1FGimPHjtntUIns58EGgewTQKRm f4zpIQSaCAS3R5VfqpKjK0m6kqUPGzYMgRpDpG9v++VUi1S3tF/o9+RffvKs9pdyB3DWVJ3rF6I6 TxZVve8suOVaiGf3us1MmjTJLF261OjDiu1QeZhBIF8EEKn5Gm96m3MCweAp7Ty1a9cu65c6e/Zs GzilACosqZVZUk/e/gFTa8WJ0ELtLvW+zlv72zf9UA/c/MGm/uu8Ldd/xP6/48Y3U16Vw6bxjo+Y UcOGWH9Ubd8rf1R2msr5A4zu544AIjV3Q06H80wguPOUlk5dUn8tqWpplSX/ygTqsKeGliXCyhFs 1Ty2lAgt9X7DTR+yAtUJUtdWWVXHeMv8+l+/3d9R+/L8fV83Y8eONXPnzjXr1q2zQX74o+b56UXf 80gAkZrHUafPuSVQyC9VDwItqU6ePNkMHToUS2oFS/5PDRqQGZFayi3ALzQlRmf96uNn9V3itSny /9JPG/0fVaDquDmPtGnKj7p582azd+9e09jYiD9qbp9edDyPBBCpeRx1+pxrAn6/VKXyUUofly91 5syZducplvzLt6Y+9UTvskRYOYItb8fapf7B/a2f9PLly822bdvMwYMHzYkTJ4w2o3D5UTWX+YEA BLJLAJGa3bGlZxAIJeD3S9XWkkePHjUNDQ1mw4YNZt68eXYLyiFDhlixSonOYETfbojUhHxytdQv /+g5c+ZYf2n5Tct/mtRTPNQgkC8CiNR8jTe9hUCzVFRK5aMtJv2pqBRNjUiNLk6dkH/m4bvNidve T0mAwdSet5sJEyaYhQsXknqKZxYEckwAkZrjwafr+SQgS6qKlky1dHry5EkbNR1c8pdvKpbU6GJ1 4kM3IVATEKj77vyMTYXmX+o/cOCAXeo/c+YMS/35fGzR65wSQKTmdODpdr4JBLdI9S/5z58/30b5 P/nkk4jUMlweZnX+BSI1AZE698FfNkX1a6lfUf1a6mcr1Hw/s+h9PgkgUvM57vQ65wSKRfkvW7bM TJkyxUb5Kx2VgqgopRksvf9HiNSYIvXobR8ywwb0s7ufLV682BDVn/MHFd3PPQFEau6nAADySiAs yn/nzp1mzZo1TYn9Bw4ciECNKNK33fMlRGpMkbry/gus9d4l8NduaP4E/kT15/VpRb/zSgCRmteR p9+5J1Aosb+sV4sWLbI5KgcPHmz9A4cPH04pweDwbR81x299HyUGg7F9HrCuJnI5UbaJ3bt32+wT RPXn/nEFgJwSQKTmdODpNgSCS/4KTFEuSlmvtA2lrFmyasmaikgtLtKf8lwjEKjxBPrz937FupdM nTrVyOVEH07KOqHsEwRM8byCQD4JIFLzOe70GgKWQDCASttOynolK5asWePHj7ciNa41tW/fvube e+81l112md3D/dprrzXdunU7S/xGPW7AgAGmTZs2TXXp/6CQ7ty5sz2mJQT2kEH9EakxLKgS+JMf vrVZwJTLjRoMmCKBPw8vCOSHACI1P2NNTyFwFoGwACql+6mrq7M7/SgNkERemAgsR/xJlPbq1cvW NWjQoCaBKSHpryfqcRK8KjpXv4NiVGJXgjhuu6P2cegTfRGpMUTq5nu/anPzalveJUuWmC1bttht UI8dO8Y2qDy3IJBjAojUHA8+XYeAy5n6+uuvm1deecWm+VG6H6X9Wb9+fdMOVP3797fR/rKoJlH6 9OljraASksXqK3ScztV7Ovfxxx+3dbl6ZPlVvRLFSbQ1Uh29uyBSY4jUUb06mDFjxtiAPQXuKYCP gCmeTxCAACKVOQCBnBPwB1BpB6rGxkbrC6iHg3wD5SMoofa73/0uMdHnhKVfXIaJwULHFROpN954 o+nQoUNibY0iUsc8cq9pvOW9lAoYrGj3HRugp53OXNqpPXv2WCuqtu199dVXjb5Escyf8wcV3c8l AURqLoedTkPgDwScSJUQ0A5Uzpoqn8B169aZ5557zjzzzDMmSWuqs5Bec801kSypweMkRLXMLwHp lv71d6dOnYzeiyIskzxm/IM3IlArEKhHbvmAGdy3R5MVdfXq1XbnM1lR2WGKpxQEIIBIZQ5AAALW SvXGG29Yq5Wzpu7bt89s3bq1KtbU22+/3S7RP/jgg0UFZaHjJJglXFWHjtH/Er5a5tffSQrQKHXN 7HQVIrUCkfpch4usL2rQiqq0U7KiygUFKyoPKAjklwAiNb9jT88h0ETAH0DlrKkvvPCCcdbUefPm 2fyVCkRS4JNSBVVa+vXr1+SPWqyOqMepjieeeMIKVAlV/S1rqgSshKz+r7StUc9bfN8FiNQyRer+ 2/7J9H+8r43onzNnjvVFxYrKQwkCEPATQKQyHyAAAUugmG+qIv2nT59ud5+SeHRbpkYVce44iVyX hkqCstD5UY9z50uUPvDAA7a+e+65xxb3t94rt53lHr/1ri+YYze/h1IGg2mdfmHHRVvwBiP6g1ZU /FF5SEEgnwQQqfkcd3oNgbMIFPJNdZH+yps6YcIEa0lVEFW5Qk7HOwunlvmLnR/1ONVx33332Xpd fS6oSv87a2wlbS3nnEO3fBiBWoZA3XznF6xVXr7O8nleu3Zts4h+kvfzgIIABEQAkco8gAAEzlr2 d76p2u3H5U3VLlQzZ840o0ePtuLvySeftBbVqOXuu++2S/D6XeycqMepjkceecRceumlTUFdek3X 6N27t73GY489Zv+P2sZKjpNPJVbU6FbkA7d8yAx8tJu1yisPrzJIyPdZPtBE9PMwggAEWO5nDkAA AqEE/NZUBa1oz3TtQtXQ0GA2bdpkFi1aZINcnACMKuq0FC+xeMMNNxQVjFGP03VlzZVAdYLUtUXX cEJYv0uJ4qh9KHTckwMHIFLLsKKO73St/YIjq/yCBQvs7may1is/rzJLyCf6tddes4F8LPPzoIJA vglgSc33+NN7CBRc9pdQ0LKrUgEdPHjQBrUouGXu3LlNKakkFGVJLFUkUIsVd37U43S8xGjHjh3P urZyq1599dX2erfeeqtN9l+qfXHeH9Svlzl687spERgsvecb9suFEvfPmjXLrFq1ymzbts1a62W1 V2YJ8qLyUIIABBwBRCpzAQIQaEYguAuVgli0DKttKl1KKhdEpeV07fAUR+TV+rmDe3U1R2/yRCql KIP6Wz9unni0h00P5oKlNm/ebJS4XymnZLV3KaewovJQggAE8EllDkAAAkWX/WVN1fLryZMnm7ZL 1fKslmknTpxoxamW27V8q12D8liG92iHQI0g0Ed0vcXOk/Hjx9vtdrVRhNv+lMT9PIggAIEwAlhS mRcQgEBBoapE6sEgqu3btxvtDKTclk8//bSN0n700UdzKVAlysd0bYNILSFS59/7fZuv1i3zKwiv rq7Obr+rbXhJOcVDCAIQQKQyByAAgcgEwoKotCwbXPYfOXKkjfbv27evtZTlrUzq+Atz5KZ/pBRg sPaOL5p+fXqZ4cOHm6lTp9qcqFrmVzCegvIIlop8S3IgBHJHAEtq7oacDkMgOgH/TlQKotKyv3ai UjS2lv0V7T958mSbo1TL/gqKyZtIXdDuPARqAYH6/G2fMY/3fMi6hcg9RG4i69evtzuZHTp0yAbl aV7JWo8favT7kiMhkBcCiNS8jDT9hEAFBPxBVP5lfxftryTs8i+Un6HEqZb9tayrhP95Kevu/LI5 0sazpFKaMdh188fME93us4F1StqvrBByE3HR/G6Z3x/NT8qpCm5SToFAhgkgUjM8uHQNAkkQCFv2 V7S/kq/Lr1D+hbNnz27yT+3Zs6f1U82LSN11y8fM4Tb/QPEx2HvT+83Azrc3+aFqEwhtravsEHIX cdH8CsqT3zNW1CTuVOqAQPYIIFKzN6b0CAKJE/Av+0tYyI9Q/oRKH7Rlyxa7a5DSUo0aNcou+Uuo yoKWdaGqPiJQmwv0g23eY4Z3/K3NTyt/Ze0qJT9UbQaxe/dumyVCbiNsfZr4bUqFEMgcAURq5oaU DkEgeQJu2V8WLy3PuiT/zj9148aNZvHixTb/pba7VP5UbVkqEZfl8sTj/RCpASvy0+2usOOvQCn5 K8tvWf7Lfj/UYNJ+lvmTv2epEQJZIIBIzcIo0gcItACBYv6pynepvJcKjNG2qQqkUrS/s6hmVaj2 7/0wItUnUiff82PTp08fO/4KlJo/f76dF9qtTLtKBdNNsczfAjcul4BADRNApNbw4NF0CLQ0gaB/ qvJbSngo36Xyp2rbVAVSPfvss0Z73Sviv1evXtZHNYtl4MMPmBdufBfFYzD/rm/awDlF8k+YMME8 99xzdj4oUErzQ37M2lUKP9SWvmu5HgRqlwAitXbHjpZDoFUIBP1TJTz8gVSK4FYkt4SKBIuEi5b+ syhSh3S7G4HqCdSFd3zNfhlxO0pp/FetWmUD6xRg5w+U0i5mWFBb5dblohCoOQKI1JobMhoMgdYl 4PdPddumukAqRW7roaKIf+1IpdRU2pVJQvXhhx/OnFAd0eXm3IvUqXedZwWqguSUakqZHlasWGEj +RVYVyhhP36orXsfc3UI1AIBRGotjBJthEDKCAT9U12ifxfxL4HihOq4ceOahGr37t1tWqL+/ftn ojx7/1W5FakH2rzbjLn3smYCddasWTbVlDI+aEcpfyQ/+VBTdhPTHAjUAAFEag0MEk2EQBoJFBKq EiYSKBKqsqjJsuYXqg899JBNU5UFoTqr7QXm0A1/n7vScON7zZB214QKVG15qlRTyvzg31FK+VDd nEnjfKZNEIBA+gggUtM3JrQIAjVDwB9I5XakkjBxQlUWNQlVt/QvH1UFU3Xr1s3069fPWlVruSy9 46u5E6i72nzA/O7+m60Lh3xQtcTvLKhBgepPNYUfas3c1jQUAqkhgEhNzVDQEAjUJoFSQtW/9K9g KkX9Kz2VhKoEay2L1K23fCpXInXTTZ80fTrdbcdNvsaykMtSriX+MIH6yiuvsKNUbd7WtBoCqSCA SE3FMNAICNQ2gShCVdHeSkuk9FTKo6mE7xKqivzX8n8tljwt9a+5+V/MI13ut18w9EVDXzhkIZel XBZz/xK/LKgI1Nq+p2k9BNJAAJGahlGgDRDIAIFgDlUJFW1/qaV/RXnrYaP0VMqjqoT/2pFIwrRH jx5WrGobzVoSqv369s6NFXX6Hd8xD3fral00hg0bZhP16wuHvnjIUi4fZOeDikDNwM1MFyCQEgKI 1JQMBM2AQBYIhFlUJVQV9a/0VMqbqQTv2plKW6iOGjXKBlBpZ6oHH3zQWukkVmuh9OvVwxy8/p2Z Lttu/LD5XbvrbPowuWWMHDnSbnWqnaT0hUPjqS8g+iIiX2QEahbuYvoAgfQQQKSmZyxoCQQyQSAo VF16KiV0V2J37UylrTK1p/v06dPN2LFjbQCO/BwlVLX8Xwsi9XfdH8i0QJ1367mmR6f7bAS/trUd M2aMmTZtmlm4cKFZu3at3UlKXzz0BURfRDTOLs0UQVKZuJXpBARanQAitdWHgAZAIHsEwoSqEv5r Zyptkblz506zceNGs3TpUhsZrqT/8nPUcrJyqXbt2tXuAa//01oGdL07kyJ1xw3vNwPv+YVRqjBZ tpWRQRH8M2fONEuWLDHr1683O3bsaNpJSuOKQM3ePUyPIJAGAojUNIwCbYBABgkEhar2bNcWqo2N jebgwYOmvr7eRoQr6b/8G+WnquVkt/wvoSp/1bSK1KEP3Jg5kfrcLV8x3R9ob63ZWt6X37AC3RQg pQj+TZs2mV27dpkDBw7YLxwI1AzeuHQJAikigEhN0WDQFAhkjUDYFqqnT582x48ft4E2CrjRQ0h+ qlpG1nKylv+V3kiWVAVUdenSJZVW1XHtL8+MSHXWU/EWd7lfaHl/6tSp1n9Y/qcKkFIE/6FDh+wX DX3h0BcPbY1Lov6s3bn0BwLpIIBITcc40AoIZJZAUKgqNZECbBRoI39G56e6YcMGu/yvvJuy3smK J2uegqokVCWgtPys1FVpKDPu+oE5cN07arrsvf5dZvotXzcPvWU9VXYFRe8rvZTcMNzyvvM/VYCU vmDoi4YTqM7/VOPMDwQgAIEkCSBSk6RJXRCAQCgBv1CV1U1CVX6Mzk9Vy8da/le+TaU1UvS4rHjO qipxKl/VTp06WbGaBpG6+LYv16xAlTiddvPXTPf77mzyPXXWU2VdUJowuWHIHUPL+/IjVuCbAqRc BL8sqAhUbngIQKCaBBCp1aRL3RCAQDMChfxU3fK/0hnJaqfgHFnxnFV1xIgRZsCAAXYrTmUAeOCB B6y/qsRra5VNN32iJkXqnJu+bB5uf6vlqMh9+QDLau23nir7gtJLyR3Dv7wfFiCFBZWbHAIQqBYB RGq1yFIvBCBQ0KoqC5wsqrLGueV/WelkrZPVTtY7WfFkVZVPpFJVKcJcO1VpSdq5AMiyqhyerSFU a22pX+K0R7tbbOYE8RNHZVQQV/kCi7N4i7uyL2gc5I4htwz/8r7GjRRT3NwQgEBLEECktgRlrgEB CJxlUQ1LU+Wi/xVU5ayq8lVdtmyZzQCgpWi5ACgtkqL+FYUuf9WOHTtay6AsrQr8qXZ5tFfPmrGi OnEqTi4HrfgpMEqJ+efOnWv5ynotK7a4O+upi97XFwmW97mJIQCBliaASG1p4lwPAhCwBIJ+qs6q Kquds6o6X1U9qJRAXi4ASoekdFWjR4+2WQCcWJWF8P7777euALIUanOAapVePbqZ/b/9u9SWrdd/ wEy6+Rt2WV9cnDgVL4lT8ZMrhXiKqyL35RMs3qWspyzvcwNDAAItRQCR2lKkuQ4EIFBw+b+QVVW+ qoooVwYALUErsErpkBYvXmyjz7WHvBOr2qVKPpYKrJJlVUV/y7qauFh9sGPqBOq2695rZrT5iul9 19VNfRcPcXGWU/GSOBU/cXRL++LrIvdlzZbvKdZTblgIQKC1CSBSW3sEuD4EIFDQqqpIcpcBQC4A 2oZTux05f1VtrSrRJcug3ADkY6lAIIlSZQPo3Lmz6dChQzN3gCQE6++63psKkbrnur83s9t80Qy8 4zLbT/VX/VYfxUE8xMVZTsXLiVNxdEv7SswfjNz3+55iPeUmhQAEWoMAIrU1qHNNCEAgslVV+Tid C4DElPwlJa62b99uxaqzrMoNQD6rCgRStPqgQYOsK4CW/mVRVZCVE6xaApeVUVbWSsqQ+69vNZEq Ybrwxs+ZwbdfbDq2b2v7pS1M1R/1V/1WNgRxEA9x8VtOw8SpC4x69dVXbUAbqaW4QSEAgTQQQKSm YRRoAwQg0ETA76sqsSRfVYknJ1YVba4sANpaVWLVWVblW6nNAJTjU9kAtCGA/C+VEUDpq5RbNShY /VZW+W1GFaxj2l/VYiJ143UfstbSYbdcYHre9Zsmi6mEqfqjfql/6qf6q37PmDHDchAPcZGY94tT 8XNR+y6tlNs5CoHKzQgBCKSFACI1LSNBOyAAgWYECgVWSVTJ8ufEqiyrcgOQz6oCgBSlrkT0WtqW FVGbAowfP976rmr5W4JOFkdZHrU0Lquqgq3uu+8+W+TLqtckAiVcdVywTL7nR2bfb/5PVcry6z9l nm3zNdP/1p+ZzvfcYkWp2qc2KTess5iqH+qP+qX+qZ/qr/qt/ouDeIiL+IhTUJw6v1Osp9x8EIBA GgkgUtM4KrQJAhAItaz6c6s6sSpfSrkByGdVuT21v7xSKcl6KCui0ispB6h8VyXklLReFkdt/6ld lrT1qvKsSvxJBCqVlZbQJVYlEJ2vp1I4SbgqL+ukey40q2/6Z7OqzWfNmhs/GUmsNvz2nWbZdZ+0 ZeYN/27G3fRNWyRG+97xc9PnrmuaRLJ8S9UOJ0plLVU71V61W+1XP9Qf9Uv9W758eZPVVK4Q4iAe 4uJ8TiXu/UFRiFNuNAhAIM0EEKlpHh3aBgEIlBSrzg1AAVaNjY02hZJcAWQ91KYA2jlp48aNZs2a NVawLly40Foc5RKgaHf5bo4aNapJtCrgSJZW5VrV8r+W1P0WVecSoNf8lliJ2fbt25t27drZ0rZt W1vc/3pPxyhNlgSwhLCEr8SoE7+6lq6r68tSqpRREqWylo4bN84GQKndar/6IWGqfm3atMn2U/1V v9V/cVB2BHFxPqdYTrmhIACBWiKASK2l0aKtEMg5AecC4E9Z5fdZVTYApVCSK4Csh0qrpNyf8l3V sreEnASdLKwrVqyweULnz59vrZESfxKBWjqXpVLCVQFY8vXUsrrSOEk0ujJw4EBr3XSCVpZYCVdZ WmUBVdHfKnpdAtSlw5LlVudp1yeJYgU7qX4J0pEjR9qIfLVDyfadKFU71V4t5WvbUr8wVf/UT/VX /Vb/xUE8JOLl0xvmc0rUfs5vKLoPgZQTQKSmfIBoHgQgEE4g6LOqpWuJMVkLnSuArIiyJgYFqxLX a0lcPpuyskq0Svwp0EgWSu3CpDysEohaUpdYlICV5VXL7BKQssBKTErMKppeAlOCVmIzWCRy9b5E r0SoLKM6V3WoLtWrSHxdT9fV7lpqh9qjdql9aqfaq3ar/bKYBoWps5q6JX0XrR9c1keccldBAAK1 QACRWgujRBshAIGCBILZAJzfaphgdRZWLYUrkEg+m7JCaplc4k8PRFkotRWrltElELWkLrGogCQJ R/l/KnJeQlYWWInKmTNnWoE5bdo0KzYlbPXb/a3X9b6i7nW8luslRGUdVZ1KESVXBF1P11XQk3xq 1R4nStVOtVftVvudxTRMmPqtpkTrc/NAAAK1SgCRWqsjR7shAIFmBIKuABJnYYLVuQQo4MpvZXWi VRbKhoYGK1yVtkkuArJgarcrCUcJWIlIWTdVlKd11apVVmDKhUCiNlj0ut7XsRKhWq5XHbKOqk7V r+tIkOq6ur6zlPpFqdqrdrulfL/FtJAwxWrKjQIBCNQqAURqrY4c7YYABEpaV53vaphgla+mcwuQ 6HOiVcFXStXkrK0KQpIFU6JRRRZNRc5ryV2CUr6uErMqEpkqyi7gL3pN7+tYnaPzJURVl7YkVf26 jgSp/Ep1fbVDll8nSl1kvtotl4agn6nfYoow5eaAAASyQACRmoVRpA8QgEAoAb91NShYg1ZWJ1pl aZUgdMJVIlFiUaJRS+xOwEpMqijFk8Sliv9viU4nPN17Ol7iV0X1qD7VKwuprqGle11X11c7JKLD RKnzMUWYMvEhAIEsE0CkZnl06RsEIFDQJaCQaHXZAmStdEFYEosqTsA6EStBqSJx6YpEbbC499zx Ot8JUb8YDQpSt4RfSJRiMWWCQwACWSaASM3y6NI3CEAgkktAMPjKuQdIHDqLqxOvWmZ3QVlOyPp/ S2gGS/A4V4dbsveLUb8gDVpKXTsZVghAAAJ5IIBIzcMo00cIQCASgaB7QFgwloSjX8QGBa0TtsV+ uzr8vwtdO1LDOQgCEIBABgkgUjM4qHQJAhCoLoFiYjbOe9VtNbVDAAIQqC0CiNTaGi9aCwEIQAAC EIAABHJBAJGai2GmkxCAAAQgAAEIQKC2CCBSa2u8aC0EIAABCEAAAhDIBQFEai6GmU5CAAIQgAAE IACB2iKASK2t8aK1EIAABCAAAQhAIBcEEKm5GGY6CQEIQAACEIAABGqLACK1tsaL1kIAAhCAAAQg AIFcEECk5mKY6SQEIAABCEAAAhCoLQKI1NoaL1oLAQhAAAIQgAAEckEAkZqLYaaTEIAABCAAAQhA oLYIIFJra7xoLQQgAAEIQAACEMgFAURqLoaZTkIAAhCAAAQgAIHaIoBIra3xorUQgAAEIAABCEAg FwQQqbkYZjoJAQhAAAIQgAAEaosAIrW2xovWQgACEIAABCAAgVwQQKTmYpjpJAQgAAEIQAACEKgt AojU2hovWgsBCEAAAhCAAARyQQCRmothppMQgAAEIAABCECgtgggUmtrvGgtBCAAAQhAAAIQyAUB RGouhplOQgACEIAABCAAgdoigEitrfGitRCAAAQgAAEIQCAXBBCpuRhmOgmBcAL19fXmoosuMqdP nwYRBFqUAHOvRXFzMQjUJAFEak0OW+s3ulu3bkYlqZ+k60uqXVmvZ/bs2WbUqFFZ7yb9SyEB5l4K B4UmQSBlBBCpKRuQ1myOhKKsaq7of32QHD58+KxmJS0qk66vNTm6a2/cuLGJZRraE9YGjXVdXV1a m5e7du3fv9/ec+5e7N+/v9E8yuIPcy+doxr8HMjyHEznCNAqPwFEKvOhiYATp+4FLQHrA1Ova2mO n2gEJOr1YPcL/mhntuxRLLe2LO8oV9O8cfea7j9ZuTWPVq5cGeX0mjmGuZfeoQp+DixatMjOQf3m BwItTQCR2tLEq3S9G4ZtM1FKscsHH07uWCe4wiyqVepOq1Z78sHzTJRSqJHugX78+PFUW1IlgFjq T3aqPfPMMyZKiXpVWVY1n5J0rYl67Woex9yrEt0lXzEmainQhODngJ77hT4bqtQLqoVAEwFEakYm w7VDt5kopRKRquVgPaRkVXU/YVZXfdN2S0X6HfzmrXMmTZpkJN702//hG/YQ1HHOkqv39cGmD+1q /5zs/E0TpURpR5SHu+MbDF5yItffZz+74JioPY6r34qr14I/ulbYcqt/DPXlpJxru/H1W5LdtcNe 87dJ7Sln/vjnRXCeRakrythVcszYsWNNlBK17lICIcm5ozaVuudKzT/VUWwO6X3mXtTRr+C4JZ/x RGrEUqZI9X9RinKPFXveRznfNS/JOR71+VgBeU6pEgFEapXAtnS1Px+8zUQplYhU90Hpf0gFxZcE pN8lwC0RBYWthI/qccfqQ08/wfr0uo7zW/rc0me1LbovdvyKiVKijHEUkVroQ9v5tLrrBJk4EVvI GurGLcznNOzB7x7gbmx0vqs7yrXdlw53jruG32rmXgsKy3Lmj+aQmwNunvmXw6PUFWXsKjlm9OjR JkqJWrezpKrPYT9Jzh03xrqWuy/dlwsnYP33ZNj8KzaHiokO5l7UGVHiuCXv90RqxBJRpFZ6j+l5 UOh5X849muQc93e52PMxodGgmgQIIFITgJiGKi4buM1EKXFEqh467qeU+HIPlrBzwgJBgvU5S5nf kuc+sP3CtxrsT7f/VxOlRLl2KU6ujrDlT73m72sYk7DXXJ364C8kboJ1h31R8PcvyrVdX53A8dfp XnPzotTydbH5468/Sn1hdUUZu0qOGTlypIlSotbtxFux4Kmk5o4TI4X8z8uZA8X6x9yLOvoVHLf4 b4yJWkqIVP9qTKngynKf98FLl7pHk5rj/usWez5WQJ5TqkQAkVolsC1d7U/7bzNRSkuJ1DDRU0yw Bd9zbgP+JfBSD7KkmJ++9xMmSolyvagiNWjZdH31CwbHxH9dZ20NihgXmBJmdQ6rW3U6QSQx4heC ei/KtcP6GvW1MJbBcwuxjMI4yjFRxrPUMcOHDzdRSql69H7YCkbYeUnNnbB7zn+9KHOg2BxSXcy9 KCMf45jFb/dEasRSQqS6tyUQC33Z9VcR9X4t1Lti92hSc9xdu9jzMQZ9Tq0CAURqFaC2RpU/fPx5 E6XEEan+B1XYA0WWmGBUe1Tra9QHXEuIjRfv/JCJUqKMcznt1bFOlOp30Nrot2wE/w5aOjQOhSzO QTcCfz+cNc3vT6b3o1w7qiAtxKTS+VPJXIwydpUcM3ToUBOllKpbYs6Jwih+2EnMnVJzNcocUL8K zSG9x9wrNfLx3n9j4TkmaokqFt0Xi+AX4UrvV3fdUucH25fEHHd1Fns+xhsBzk6aACI1aaKtVN95 fTebKKUSkRrmRxj8QAtblowqPP0iyLXPnRtmSS21VBx3CE7c9n4TpUS5TqkPfn8dEpVOWOp3WOCZ X/QXur4TAoV2kYrygHZCw30xidKPOCI1zvypZC5GGbtKjhk0aJCJUkrV7fyvo+ZITWLuhN1z/nZG mQNhX3j8X26Ze6VGPt77Z+adY6KWqCJVxwWtqXHuV9UX5fxg+5KY46qz1PMx3ghwdtIEEKlJE22l +r776HoTpVQiUp11NMzXMCgqi32oFfuQC75XzCe12vn6jt38HhOlRBnqcj7Y/bkjdV7QglbM/9S1 xVngCokbF+wSJe+tv+1Rrh1HpEY5txDLKF+GyhmHKONa6BjdK1FKsWs41uX4Xicxd0rlRI4yB4L9 8nNn7sWZWdHOPTnnHBO1lCNSnaHCPZPi3K+6bpTzg+1LYo6Xej5Go8xRLUkAkdqStKt4rW89vMZE KeWI1GLJ/IMPGSdk3bKzf8mvmJAt9J7zxwtG98uKWu195l+48V0mSokynOWKI5e6K8wHzM/EMfBH 4Ks9breiQm1TFHwhS7RYOx9WZ23wp5BSX3RMoWtH/eAJOy7O/KlkLkYZu0qO6devn4lSio2P41zu 9ePOHTe/NBZhYxxl/hWbQ8y9cke0/OOPzjzHRC3liFS35O8MBHHuV103yvlh7Ys7x0s9H8snzhnV JoBIrTbhFqr/6w+tMFFKseaUsy1qUBjISuKWKFWPRI5b0qlEpOocfWt3dep6YQE91cB74Lp3mCil 1EPeMQr+LtZmJ+4LWULDmPiDo0pdUx8OhSzR/rrD8txGvba/f1GFa5z5U8lcrMa8UZ29e/eOVNI4 d8LuuWBu4lJzoNgcYu5Va9b9od4D084xUUupORh831nS9Xqc+zXq+WHtq/bzsfojxBXKJYBILZcY x0OgRgmEbQ5Qo12h2TVGgLlXYwNGcyGQEgKI1JQMBM2AQLUJuJ2Aqn0d6odAkABzjzkBAQhUQgCR Wgk1zoFADRIottxag92hyTVEgLlXQ4NFUyGQIgKI1BQNBk2BAAQgAAEIQAACEHiTACKVmQABCEAA AhCAAAQgkDoCiNTUDQkNggAEIAABCEAAAhBApDIHIAABCEAAAhCAAARSRwCRmrohoUEQgAAEIAAB CEAAAohU5gAEIAABCEAAAhCAQOoIIFJTNyQ0CAIQgAAEIAABCEAAkcocgAAEIAABCEAAAhBIHQFE auqGhAZBAAIQgAAEIAABCCBSmQMQgAAEIAABCEAAAqkjgEhN3ZDQIAhAAAIQgAAEIAABRCpzAAIQ gAAEIAABCEAgdQQQqakbEhoEAQhAAAIQgAAEIIBIZQ5AAAIQgAAEIAABCKSOACI1dUNCgyAAAQhA AAIQgAAEEKnMAQhAAAIQgAAEIACB1BFApKZuSGgQBCAAAQhAAAIQgAAilTkAAQhAAAIQgAAEIJA6 AojU1A0JDYIABCAAAQhAAAIQQKQyByAAAQhAAAIQgAAEUkcAkZq6IaFBEIAABCAAAQhAAAKhItW9 yO/nDQxgwBxgDjAHmAPMAeYAc6D15sD/Bz13iVmOWLOfAAAAAElFTkSuQmCC ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/image005.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAjoAAAElCAYAAADtIEgTAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAAAlwSFlz AAAXEQAAFxEByibzPwAANaRJREFUeF7tnQm0FdW553lr9eqVXr26V6/Vq1fe1Hn9Xjqvk5eY+JK8 JC+TiTGJUaNRwSmTSYyJoHFAEOM8ACogKPM8yAyXSQwqgihwQS4gICBwEVAEmS7D5V4m0a/rO7rv K4o6p3adU3VqOL+z1rfOPad27f3t3/dV1f/uvavOX7VzXjt2H+jZTqSb/s0LAhCAAAQgAAEI5ITA mEI/duzaLxgMyAFygBwgB8gBciBvOXCG0BFeEIAABCAAAQhAIAcEjGBD6OQgmHQBAhCAAAQgAIEz CSB0yAgIQAACEIAABHJLAKGT29DSMQhAAAIQgAAEEDrkAAQgAAEIQAACuSWA0MltaOkYBCAAAQhA AAIIHXIAAhCAAAQgAIHcEkDo5Da0dAwCEIAABCAAAYQOOQABCEAAAhCAQG4JIHRyG1o6BgEIQAAC EIAAQoccgAAEIAABCEAgtwQQOrkNLR2DAAQgAAEIQAChQw5AAAIQgAAEIJBbAgid3IaWjkEAAhCA AAQggNAhByAAAQhAAAIQyC0BhE5uQ0vHIAABCEAAAhBA6JADEIAABCAAAQjklgBCJ7ehpWMQgAAE IAABCCB0yAEIQAACEIAABHJLAKGT29DSMQhAAAIQgAAEEDrkAAQgAAEIQAACuSWA0MltaOkYBCAA AQhAAAIIHXIAAhCAAAQgAIHcEkDo5Da0dAwCEIAABCAAAYQOOQABCEAAAhCAQG4JIHRyG1o6Vg6B vfuaxFg5+7NPMAEYBzOKuoRhfvBwc8VVE7+KEVJBlQkgdKoMnObsCaxet0nu7TlILmjfUfoNnSg7 d+0pubO3/NbtOwMb05P2wsUNbe1oW27TdnV70AVC25o6e36gbdi8TVpajgX65S1Q37DuDL/UR/3O 5hWlb2Fjov5FxbhUX236OHf+YlH/g2Jp2rGp0x3zoPz0+l8OS+2Dyc9Rk+aU7Iv6r2W8Oa2ftR6N i82rGvGz8YMyECiXAEKnXHLsFzsBvYi4T9J6YSj1ClvefdHwuxh4vyslLLxtB9VnK1K0vyqMitVn I5qi9C1JxmFiH8TfRjiH5RaUn17/w7LU/b39KiZWigkc2/2Nr1EeI7GfMGgAAkUIIHRIjdQSCHsh CFPe9kLgvTDo6I7fK+xFUestVpe3fh0FKnbh1m1Bryh9S5JxlELH8CwVg7Dc0iJ0woiTUj5HfYwE 5SnbIRAXAYROXGSpt2ICYS6q2phteb8LmP6Hryd9s/5Ah/31IugnMPzEhbdO/az1GStWl800SqkL jm4LekXpW5KMwwgdP/4aY794FhtdC+Lmjm+YKTHTD1uW7n4HjchoPnnLqPAxeabvmr+GRTGhHMcx EpSnbIdAXAQQOnGRpd6KCYS9ENiUVwFjO0qjHVDhY9YJmf30s/dl07bW5W07aBTAO23ldwEKmr6K 0jebuuJiHEboFOOqvnnjqTHxmwKy6WslSV5O/UFCR/vtLlNKCCsLv9xJIn6VcGRfCAQRQOgEEWJ7 YgTCXghsynv/q9fPQS+/qSPvQmebtrUd7+iM/rdd6uVdhKwLXr11BImlKH2zqSsuxlEIHa3Db9RD +1WOeA3Knah8NvWEFTp+/QryOYn4BfnEdghUQgChUwk99o2VgM1F1e1AUHm/C5zNnVnahncUwLu2 I6ht46e3XNA6HfdFx4wkeYVXkFiL0reguuJkHKVo8JtK9I5uBPW10uQvp/6wQkdzJmjEz92PpOJX KUv2h0ApAggd8iO1BMJeCILK+43M2HbeW7d3SiCobdOOVzCVWkzsvegYUeR3F1aptT5R+hZUV5yM oxQ6fhd07+3hQX21zZ1i5cqpP0jo+PHXnLMV9EnFr1KW7A8BhA45kEkC3guBfvYuAHV/9g65e6d0 vOsXgkZC3NC8++oFJ8xokpa1GUVw1+k3bWW2e6evwtz67jfVZetb0MU5TsZRCh2tK2i9VJj8K+cA C2LpV2eQ0NF9/NYg6X6a70GCJ6n4lcOPfSBgS4ARHVtSlKs6Ae+FIOjZKOVcuGw7FVbo6EVF/Tfm 53vQRcdv2sr4G2b6ysuxEt+CLs5+4iAqxlELnbB9KZV/Nrf5e/0Par9coeO3mNjteynBk1T8bHOE chAohwBCpxxq7FMVAlkWOqUuijZTCd47tLxrefymr4o9PC4MxyDfgi7OSV0og/zyS9igfcJwC1oQ Xk775Qod3U+n4YqN7Jjc9FsIn1T8qnJCoZGaJYDQqdnQp7/jYS40fsLCe/GJ8yRu66tefGyeneOd SvL7eQHv9FWlDzO08S2sONDytq+gUbOkR3S8I2HuETubmFZrRMfdjvtnJvyOEa/YifMYsc0DykEg agIInaiJUl9kBIIuqmEvHF7xYPOwPdOG9yLsfZZOqfUc3rVDNoLC/d+433N71C/v9FWxclH6FhST OBlHLXTCTnWWM2oTt8+2v1dVSvC4RVpS8YvspEFFEPAhgNAhLVJLIOiiGlboRDli4B2pCPLVO/pS SmTp6E3Y9UimvN/IT5S+BdUVJ+MoRYPf1F8e7roKOpj9fh7CLeCSil+Q32yHQCUEEDqV0GPfWAkE XVTDCh0/AWE75eBd7xA0Lebd7vdU5GKLkYv9XISN+PGbvgriGMa3oLriZByl0LG5oAf1tdLk99Yf 9Ewlbc/mrqsgv0rdnZhU/IJ8ZjsEKiGA0KmEHvvGSiDshSaovN9/8TYXF7+LolcgBbWtoGxHdYIW kQYtdA4rAMP4FtTPOBlHJXQ0dl7GNgtzo5668j4+IOhxB34ipJwDsFQMk4pfOf1gHwjYEkDo2JKi XNUJBF1Uy7mg+y0aLnWbt99oh98CWxtf/W779a6x8JZRcWR+aNTv3a/Ocn6ewsY35W3Tz7gYRyF0 /H67LKnfuvITLqXElI1QVuEe9NgCr1D23hqfRPyqfnKhwZoigNCpqXBnq7M2F1V3j2zK+wkXPfHr BUIvPG4xEeYXx23aVl+DfkrCu4bC5vks3qmIoDtpil1Mg3yzFTpxMQ4jdDR2JpbKUPtc7FfgbX+9 3F2nn+gs5+jy+0V1jZ/moo6u6OiTChe/cn6CxogY7av22z3y6Pc7aVre+xMRScSvHHbsAwFbAggd W1KUqzoBW/FgHLMt750ysFn7YsoU+2+5krbdFxqvLza/U+TXn7ACUMv71VPu7z/FwTiM0LGNaamp S7+RjVL1ljO1Ve7C82I/Bmvbb1OumM/Vjl/VTy40WFMEEDo1Fe5sddZWPIQVOlreb91N0NqXUlMC tr76rYEwozZ+01Y2EQv6IcYofEsD4yiFjo5eBY2WVUPoaJ+CnmTszctSv3gfxueg9WlRHyM2uUwZ CMRBAKETB1XqjIRA2Gkc71RT0IVMBYLuU2rxr04ZlPodKdPRML56L0bmwuW9sIQZIfBOy7j3jcK3 cvqp+0TJuFRS+f0YpVcgKHczRWmToDZ1utsIyrdSbaoADrrbTmMctP5G21A//Ka6jK/Kwfb5O9WK n008KAOBcgkgdMolx365IqAndO+6C5tpo1xBiLkzMLYDHNX6H81fb112HviXIn6V0GPfJAkgdJKk T9sQgAAEIAABCMRKAKETK14qhwAEIAABCEAgSQIInSTp0zYEIAABCEAAArESQOjEipfKIQABCEAA AhBIkgBCJ0n6tA0BCEAAAhCAQKwEEDqx4qVyCEAAAhCAAASSJIDQSZI+bUMAAhCAAAQgECsBhE6s eKkcAhCAAAQgAIEkCSB0kqRP2xCAAAQgAAEIxEoAoRMrXiqHAAQgAAEIQCBJAgidJOnTNgQgAAEI QAACsRJA6MSKl8ohAAEIQAACEEiSAEInSfq0DQEIQAACEIBArAQQOrHipXIIQAACEIAABJIkgNBJ kj5tQwACEIAABCAQKwGETqx4qRwCEIAABCAAgSQJIHSSpE/bEIAABCAAAQjESgChEyteKocABCAA AQhAIEkCCJ0k6dM2BCAAAQhAAAKxEkDoxIqXyiEAAQhAAAIQSJIAQidJ+rQNAQhAAAIQgECsBBA6 seKlcghAAAIQgAAEkiSA0EmSPm1DAAIQgAAEIBArAYROrHipHAIQgAAEIACBJAkgdJKkT9sQSCmB C9p3lFJm3D54uFlGTZpTKNtv6ETRz95XfcO6QhleEIAABJIggNBJgjptQiCDBLZu31kQNFNnz2/z fu78xaKmL333Cpqdu/bIvT0H+QqgDCLAZQhAIIMEEDoZDBouQyAJAipwVOjs3dfU1rx+VjGjL/1e P5tXS8uxgshRgcQLAhCAQFIEEDpJkaddCGSIgBExOj3lfpUSOjq6s3BxQ4Z6iasQgEAeCSB08hhV +gSBiAmoYFFR4x2dUTHjnroyf7MuJ+IAUB0EIFA2AYRO2ejYEQK1QUCnoFTk6DSU96WLj3WUx6zd 0c+sy6mNvKCXEMgKAYROViKFnxBIiICOzqiQ0feglwodFUQqdmzuyAqqj+0QgAAEKiWA0KmUIPtD IOcEVLio0NGRnaCXTmUZQRR0R1ZQXWyHAAQgEAUBhE4UFKkDAjklsGHztoLIMWtvSnVT1/G4by8v tVA5p7joFgQgkEICCJ0UBgWXIJAWAmb9jfuWcj/fdJGyjvy4R30QOmmJIn5AoLYJIHRqO/70HgJF Ceg6G/PE41KY3Oty3OWK3ZEFcghAAALVJIDQqSZt2oJAhgiYRchBD/xzr8txd8/vjqwMdR9XIQCB nBBA6OQkkHQDAhCAAAQgAIGzCSB0yAoIQAACEIAABHJLAKGT29DSMQhAAAIQgAAEEDrkAAQgAAEI QAACuSWA0MltaOkYBCAAAQhAAAIIHXIAAhCAAAQgAIHcEkDo5Da0dAwCEIAABCAAAYQOOQABCEAA AhCAQG4JIHRyG1o6BgEIQAACEIAAQoccgAAE4iFwZI3IvhdEdo77yDY/ILLhzjZ7a8MsGbjg3TNs 1qr98vy6Jlm65bA07j0mx05+EI9v1AoBCNQMAYROzYSajkIgJgIfnBRpWuKImTGOiLlDZPV1IsvO D7TGVYPltomNVjbAEUTTGvbJ6h3N0nz8dEwdoVoIQCCPBBA6eYwqfYJA3ASOvS2ye5rIm10dQfO9 sqxx1SArkeMnhnrNe0dmOqM/63Yejbun1A8BCGScAEIn4wHEfQhUjcCJ90S29XZGbDo4wuY7FVvj qoFy64TGiq3btLdk6op98u7BE1VDQUMQgEB2CCB0shMrPIVAMgT2z3dGbpwpqWXfitQaVw2oWOR4 hVKPZ9+W+esPypFjTG8lkyy0CoH0EUDopC8meASBxAmcOtEi8s4gkZWXOOLm32OxxlX95U/OiE4c 1nnyVpnhTG0heBJPJRyAQOIEEDqJhwAHIJAeAqdPn5Y333xT5s6dK6df10XFX4/NGlc9HYvIcQsn FTwTlu2VppZT6YGMJxCAQFUJIHSqipvGIJBeAtu2bZN58+bJzJkzC7Z52VBH5Hw1Nmtc1U9ucUZ0 qmVz1hzgdvX0ph+eQSA2Agid2NBSMQSyQaCpqUnmz58vM2bMOMtOv36VI3S+HIs1ruwrt4x3hE4V 7Z66bbL2He7UykZm4iUEoiGA0ImGI7VAIHMEdJpq/fr1vgLHiJ7Ny4Y4IudLsdiWlU/KzY7IScIG LdzFdFbmMhaHIVAeAYROedzYCwKZJlBqFMc9svPs7OnyYYM+J+ecyG3Lyj7SyRE6Sdltk7bKsreO ZDqOOA8BCAQTQOgEM6IEBHJFYOPGjSVHcbxTWLtXPeaInH+J3Las7CWdnnGETsL2TP1eOXX6w1zF mM5AAAL/QQChQzZAoEYI6FTVihUrQokcFT0fjeroM3Q+G6ltWfmEdHREThrsoTlvy57Dzk9Z8IIA BHJHAKGTu5DSIQicTaC1tVUWLFgQWuSY0Z3dq3o4IuczkdqWlY+nQuQYoXXrxK3SsL2Z9IEABHJG AKGTs4DSHQh4Ceh6nOeee07q6urKtjmznN+1ek2nrz4dmW1Z+Zjc5IzopM3qt7Juh6MIAnkigNDJ UzTpCwQ8BPbs2SOzZs0qW+C4xdGhNZ0dkfOPkdmWlT1TJ3KM6Jq7tolcggAEckIAoZOTQNINCHgJ RClyVPC8NG+SyHJn+qr+U5HY5obu8sdxjam1aQ37SSoIQCAHBBA6OQgiXYBA3CLHjOwcev02R+T8 fSS2ueHR1IocI8AmLt9HckEAAhkngNDJeABxHwJeAu+9917hJxymT58euc3/ywRH5PxNJLa54RH5 gzOik3Z7dg3TWBxlEMgyAYROlqOH7xDwENi3b19sIscIp+NrrnGEzicrts0ND6de5BgRxgJlDjUI ZJcAQie7scNzCJxBQG8hnz17duSjON6RodcWjnREzv+q2DY3PCQ3OiM6WbBOE7bK+l2tZBwEIJBB AgidDAYNlyHgJaAPA9Qf5pw2bVpV7PiaDo7Q+Z8V2eaGBzMhcowQU7HzHg8V5OCDQOYIIHQyFzIc hsDZBOrr66sicIyQWr5guCNy/kdFtrnhfvn92MZM2X2z3ubnIjgAIZAxAgidjAUMdyHgJbBhw4aq ihwjdt5//TxH6Pz3sm1Tw31ygyN0smajl+4lCSEAgQwRQOhkKFi4CgEvgUOHDhV+1qFaU1budjbV 93JEzn8t2zY13Js5kWNE2dJGnp7M0QiBrBBA6GQlUvgJAQ8BXZfz4osvytSpUxOz06u/6gid/1KW bWq4R37njOhk0f44fqvsZr0OxyQEMkEAoZOJMOEkBM4msH79+sQEjhFXby593BE5/7ks29RwdyZF jhFmfV/aRVpCAAIZIIDQyUCQcBECflNW+rTiJEdzTNsfrnR+6LP+P4W2TSu6yW/HNGbaVr99lOSE AARSTgChk/IA4R4E/AgkPWXlFli7VnZxRM5fhbZNK+7KtMhRkXb7lG3chcUhCoGUE0DopDxAuAcB L4F33303FSM5RuzMmjFZPlyhT0puF8o2regqv3HEQtZt+qoDJCkEIJBiAgidFAcH1yDgR+CFF16Q KVOmpMp2rrhTPlzaLpS9qUJntCN0Mm43jtsqh4+dJlkhAIGUEkDopDQwuAUBPwJbt25NlcAxgmtm 3SQ57YzqfOCIHVvb6Aid6x2Rkweb+Np+EhYCEEgpAYROSgODWxDwEtDbyfW3rNI2mmP8aVr1azm9 pJ21bXgtP0Ln94zqcMBCILUEEDqpDQ2OQeBMAps3b06tyFGx8/ycMfJ+/SfkfUfs2JgKnV87Izp5 sQmM6nDIQiCVBBA6qQwLTkHgbAJpXJvjHV064IzqnFrczsrWO0LnV47QyYv9jlEdDlsIpJIAQieV YcEpCJxJYO/evTJ58uTU219mj5ZTSz4hp151xE6ArV/uCJ1RjtDJkU1dyR1YHLsQSBsBhE7aIoI/ EPAhsGTJktSLHCPEjqy6VE46IifIVOj80hE5ebKbJ20jfyEAgZQRQOikLCC4AwEvgePHjxd+tDML Izrq49IXB8mJV9oF2hsWQufap1+TKx6sk4s79pIL2ncsmH6+bvDaswSSlr2s25i2cvr3dQNWnVFO 9zNlLr19sG89HXq+UChTrgBbu7OVJIYABFJEAKGTomDgCgT8CLzxxhuZETlGjDWvulCOO2KnlK1z hM4vnBGdUqZi5Op+9W1lrurzakHIqPD5+dD1bd9f44gc/V4Fitan23RfbzkVSWpaRt9NeeOD1qP7 XOsIoiDfim0ftngviQwBCKSIAEInRcHAFQj4EdCfe5g0aVKmbPELA6V1UbuStnZZV/m5ipKQdunH ozbXOKM1Zl/z3dWOUDHfdfhYFF35yLNt36kYMmV0f/1syl/niKOLHJFzlSOswvrkLn/92K38LASH MgRSRAChk6Jg4AoEvARaWloyJXDcguxww/elxRE7xWyNCp2RjtAJaT91RmpUoFwzaG3bvmZaqyB+ Pq7PCJlL7xpzRrmC0HHKtAmdj8truYIoCumPX/lXthwhmSEAgZQQQOikJBC4AQE/Ao2NjZkVOute 7SEtLztCp4iFFTrXDVlfECIqaryC5KKbPlrD4yd0CqM2LjFzuTNlpZ/13fzd3lmX4xZElYqdoa8y fcURDYG0EEDopCUS+AEBHwIvv/yyTJw4MbPWvPwcOeoIHT9ToXOdIziCzIzWmPefOQLlWkf0uPe7 4mMBpNvM91c64sXsY7672hkFMiNCl90zSfSzjvCoUNK/g3yx3X7rlB3kMwQgkBICCJ2UBAI3IOAl cPLkycKTkLMsdNYu6i7NC9v52utLHaEzwhE6IazDk/UFUVIQJk+9dsa+Vzz8bOF7FTcqZn72QN1/ CJ0ibai4MXXp3zqqY/YvCJ8QvnnL7jt6iqSGAARSQAChk4Ig4AIE/AjoQwKzLHKM70eWnSNHFrQ7 y1ToXOsIibCmYkfFyCWOmCm179X9P1ps/FNHvBQrp9uu6PFCYbsKIzXzd6n9bHxexDodDmwIpIIA QicVYcAJCJxNYNOmTYFCZ/DQEXJ/9z7ym5vvKVzUb+7ysPTuN8h3P/2+870920Y5/MqOHD22rYxu 189esfVYnwGFMrYibGt9ZznsCB2vrS5T6BgBo/0tJTiu7P3RrehGyHjLXu6MALnFjJa9yhkl0nKm DRtBU6zMENbpcFhDIBUEEDqpCANOQOBsAvo05AkTJpS0Tnc+JP0HDSuUGe2Ikjvu6VG4uPfs3f+M /fSzfv/IY/3avte/vd+paFLT+vRd63P7MGjI8IKoGjFqTKBvZr9pU56RI698Ug6/5Igdl61a0lWu cURFWOvgiBEzUlNqXx3xKdxOPnj9WW20/3gKzL1Ny2rdWudVH48GhfXNXf4W1ulwWEMgFQQQOqkI A05A4GwCs2bNshYTRlSoENELtooRt0Axi3K9wsn7vX7WOrTcsOGjCnWZfVRIab1GWAWJMPf2rUs7 yyFH5LhNhc7VOnpSwi52xMqVjigxZTo4AkS/U7/aO6LEfK9lrnIEjX7W90s+Xmvj3teUbe+svfmJ s5bHvb9u030uc6au9G99N38H+Vhq+6nTH5LaEIBAwgQQOgkHgOYh4EdAFyKHERKmrBEnboGi28zU lm73ltVRIfNdKaGjozvuEaEw/k11RnUOLfqkHJzfrs1WqtAZ7gidEnZln3q59M+T2qbb1D8VIB2e XnXGfvqd++4svzKmnUu6jpHLu79wVrvtB66Vi2/7SERpm/o5yL+g7dsPnCDBIQCBhAkgdBIOAM1D wI/Anj17yhI6ZkTHLV5UkOgojBnpUbGjU08qXLzTUPqde+rK/K1TX95prDBCR8vuWHaTNDlCx5gK nasckZNnW7q1mQSHAAQSJoDQSTgANA8BPwLbt2+X8ePHh7ZuDzxeEDS9+g48a18VQSqAzMiH/j3K ETzudoaPHN1WRuvSz2Zdjv5djk9mn2dnjJSmlz4hB15sV7CGxV2lgyN08mwz1xwkwSEAgYQJIHQS DgDNQ8CPwPr160OLiqHDRraN2vgJEhU/KnJUwJhFyw/37FuyHRU3OuqjYkf/NvupSCpH+Lyz7Fey 3xE5arUgdPot3EOCQwACCRNA6CQcAJqHgB+BlStXhhI6OjJj1uGoKPEKHSNy7nu0d9s2I1p69Hq6 aFtaxmzXfc3++q7bwo7w6KjO/vmfkH0vtJMVNTCi8+Dcd0lwCEAgYQIInYQDQPMQ8COwaNEieeaZ Z6zt9j93L4zWPPHkAN99ru/058L2Ic5zd0y9+reZxvJrS0d7tF6zTcsOHDys8NnsG8ZHU3Zn/bWy 9/l28tqrXaX9sC25tjvr3ibBIQCBhAkgdBIOAM1DwI/A3LlzrUXOvY989LMH+l5MeBhB4yd0VAR5 93tqwBDR70c601VRC52Fzz0texyhs7wGhE7HSdtJcAhAIGECCJ2EA0DzEPAjMGPGDBk3blygdX/i qYLI0ZGXUuUf6vFkoZy+m3LmO63Dve/Q4SMLImfAoKFnfK9tqJjSsvpu/rbx01tm99If14TQuWH8 NhIcAhBImABCJ+EA0DwEKhE67mfH+P3tFhiP9+kvHTs/2DZdpcJFv/OKEP3eK360jAogs/9d9z9W +FyOyNF9Fsx9WpY5IzpXDt2ceyPDIQCBZAkgdJLlT+sQ8CVQV1cnY8eOzbXNeWl67kWOCjleEIBA sgQQOsnyp3UI1KTQmVU3Xd6aMVB+OXxj7sUOKQ4BCCRLAKGTLH9ah4AvgenTp8uYMWNyaa8+O12a +v9WjvS6UnZN7C5XDNmUayPFIQCBZAkgdJLlT+sQqBmho3dvbZwxRJp7XX6GrZs2LLdC57fjtpLh EIBAwgQQOgkHgOYh4Edg3rx5Mnr06NzYrLpp8t7IztL8xGW+NmvqnFyKnT9OeIsEhwAEEiaA0Ek4 ADQPAT8CCxYsyI3IqZ8zSQ71vcoROJcWtyfby9MTF8nlg9/Mld01YwcJDgEIJEwAoZNwAGgeAn4E Fi9enHmhM2HCeGmc0keaH7/Eyo70/6V0G7MiV0Lnvtk8GZkjHAJJE0DoJB0B2oeADwH9ratRo0Zl 1ubUTZX9A34rzY9dHMoODe8kPx/6Rm7EzmPP81tXHOAQSJoAQifpCNA+BHwIrF27NrMip2HWWEfc XFS27Rr/gPxs8MZc2DPL95HfEIBAwgQQOgkHgOYh4Edgx44dzu9MjcyUTXSmqrY/84A097ywYls3 eaD8bJAjdjJuixuPkOAQgEDCBBA6CQeA5iHgR+Do0aOZEjnPz5wqh/pdLUd7/igymzW5Ti4btCHT tm3/cRIcAhBImABCJ+EA0DwEihHQ586kfVRHH2q4dsYwOdrjh9HbExfLU+NfyrTQaTlxmgSHAAQS JoDQSTgANA+BYgTmzJkjI0aMSK1NnzJJ3hnT1RE4P4jNmvt1kC6jl8mlA9dnzn49ehPJDQEIpIAA QicFQcAFCPgRWL58eWpFzoJZk+XQk1fK0e7nx26Hhtwg1w5ekzmh8+CzPEOHIxsCaSCA0ElDFPAB Aj4ENm/eLMOHD0+V6S3vG6b2lZbu36uq7R7bLXNCZ+KKveQ1BCCQAgIInRQEARcg4Efg2LFjqRI5 M6ZOkvcG3ygtj56XiK2b2Fd+OuCNzNhbLETmwIZAKgggdFIRBpyAgD+Buro6GTZsWOL2yoxn5Mhj P5KWR76TqM2cOCUTQuea4RtJaQhAICUEEDopCQRuQMCPgD4hOUmhM8b5YdEt4x+Rloe/nQ7rcb70 G/dC6sVOvwU8EZkjGgJpIYDQSUsk8AMCPgR27dolQ4cOTcRmOlNVB/q2dwTON1NlR/v8VLqOXCKX 9F+XWntp40HyGQIQSAkBhE5KAoEbEChGYLQzqlJtsVNfN1JaHvpGau3wwF/I1QNXp1boHGx9n4SG AARSQgChk5JA4AYEihF49dVXZciQIVWxcWPHyPZRXaTlwa+n3naPvCOVQueBOdtJZghAIEUEEDop CgauQMCPwIEDB6oicuZOmyBHHr9QWh/8t8zYuvFPyMVPr02VvbL5EIkMAQikiABCJ0XBwBUIFCMw ffr02MSOPqunYepAaX3gK5m0GRMmpEbo/GLEBjl5+kMSGQIQSBEBhE6KgoErEChGYO3atTJ48ODI bdL4cfLOsE6OwPlydu2Rb0iP0S/KxU85IzsJ27BXd5PEEIBAygggdFIWENyBgB+B1tbWwm3mUYqd F6eNk8M9fyCt9/9r5u1o74uk45D6xIXOzoMnSGAIQCBlBBA6KQsI7kCgGIFXXnlFBg0aVLHpHVxv jO8hrfd9KVd2cODPpUP/lXJRvzWJWLfpW0leCEAghQQQOikMCi5BoNiojoqUSsSOTlW999R1jsD5 Yi5t58jbEhE5Kq7W7TxK4kIAAikkgNBJYVBwCQLFCCxZskQGDhxYli2cOlKaH/qatN77hVzbsnF9 qy52Hnl2O0kLAQiklABCJ6WBwS0IFBvV0WfqhBE7I5y7qraM+bMcu/fzFVlj16/KzJt/IHf/+iq5 oH1H6X3Dz2TZ7d8qWqdu0zJaVm3CTT8+o+zubufKsD9c3FaXfvb6uOi27xbKhPV94tgJ8pO+r1fN 3tp3jISFAARSSgChk9LA4BYEihFYvHixDBgwwMqmTxwn+/tcKsfu+VzF1vt3l8mGzl8t1HOg2zmO ALmoIFIW3fqds+p+/pbzCtv03bRt9jWfZ3Y6X9T0s75rfW4/G7t82RFVHWT3XV8M7/sD50r3EfOq InQenrONZIUABFJMAKGT4uDgGgT8CJw4cUJGjRoVKHSWTh3sCITPxmaNXf61IGZUjLjbebvrlz4e wflhybZ1X61D9zX7mHoOdPtCod6PxFF5fWh54ny5aciSWMXOZf3Xyp4jJ0lUCEAgxQQQOikODq5B oBiBLVu2SP/+/X1t5Ijhsl2fjfPn/xer7ejyxbZpKXdb827+buH7Vbc7T1gu4YOW2XLnuYUypi5T fuiNPxGtp9I+HHy6vbR/aoVc+OTqWGzU4l0kKQQgkHICCJ2UBwj3IFCMwHPPPXeW0Jk9aaw0PeY8 GydmkaP1q0gprNX53aVntKef9XsVL6X8UDEzo9P3C2X03fz98p++Jbotqj7sHH5zLCLn92M2ysn3 PyBBIQCBlBNA6KQ8QLgHgWIE9CGCequ5juzo+2sT+0rL3f9cNRv/hwsKgqb+VucHQF3tmsXHC29R wXJh26jPvE7fOaPcu12/IL1/+9PCdq1LP2/p/CVnyqp94e8o+1I/plfkYufN3S0kJwQgkAECCJ0M BAkXIVCMwLp162TMqJHy9qDfRSoMgkTG9js/mrZSUeIt6xY6Zltdx+8VynvFjntfFTdan4od/duI JBVDUQifCaPHy4/7rIrEmLLimIRAdgggdLITKzyFgC+BI+M6ydFun6ma7e3yOen2q/YF4bL5ji+e 1a4ROts6n9O2Tf823xfzdcjvL5SFt3yzsE/dTecVzPyt2yruo/P8oEeH/6VioXPDaOeHO5my4miE QGYIIHQyEyochYA/gQ+PHZGWx74nzXf936qYig4VLUtu+Zpve70+no7adscX2rbr30bo+Pn5XMdv i9ZrtmnZTbd/sfDZ7BtF/470OE9uHLhIftRnZVl2yVOrZSNTVhyKEMgUAYROpsKFsxDwJ3D67del +Z7Pxy50pjujLCpC9L2Y8FDRomUabv1KWxkVLfqdW8yY/dfedm5hhGjPnZ+NXehomwf6XSFX9H1N ftTbETsh7eU3m0hBCEAgYwQQOhkLGO5CoBiBU2uelSNdPx2bvdTpGwWxMviGH5ds4+3OnyuUe+I3 l7SV0330uzdvO+eMfbWsihzv91p++h+/Wyir7+bvqPq3Y/BN8sPeDaFs5KvvknwQgEAGCSB0Mhg0 XIZAMQInFg6OTeiYqadi724RosLFiJvCCJAjVt66/fNn+aZlVEB5BYwKIBVKuu+4G88X/RyVyDH1 LBn1uLXQ6T73LZIOAhDIKAGETkYDh9sQKEbg+JxH5HCXf8IsGIwbNS5Q7PxpwpssPuZwg0CGCSB0 Mhw8XIdAMQLHpnRB6FgInSN3f04eGjpHLui1wtf+MHa9HD1xmkSDAAQyTAChk+Hg4ToEihH48P0T 0jL8ejl05z9iAQwOPvptuaH/y2cJHUQOxxcE8kEAoZOPONILCJxFQMVOqzOyg9gJFnv7+lwml/Vd 1iZ2Ok/exEgOxxQEckIAoZOTQNINCBSdxnrucTnY+f9gAQy2DbxRfvDEa9Jt2ibW5HA4QSBHBBA6 OQomXYFAMQLHl46Xpjv+AQtgsHLedEQOhxEEckYAoZOzgNIdCBQjcPKN56Xpni/IgTs+hXkYNHX9 jBx7ZQTJAwEI5JAAQieHQaVLEChG4IOmnXK432Vy4HZH7GAFBoce+aa8v2M1SQMBCOSUAEInp4Gl WxAoRaD1+Sdl/+3/u+btyNBfiv5WGC8IQCC/BBA6+Y0tPYNASQKndqySpof/Xfbd9vc1Z/vv/hdp XTScDIEABGqAAEKnBoJMFyFQjEDheTtze8r+Lp+uGbHTPK6jfNC8j6SAAARqhABCp0YCTTchUIrA +3sa5dCQn8veW/8ut3bgoW/IyY0vkwgQgECNEUDo1FjA6S4EShFQIaCCIE+CZ/995xamqT48dYLg QwACNUgAoVODQafLEAgicHzVLGl68hLZ86e/zaztf/Dr0rpkHAInKNhsh0DOCSB0ch5gugeBSgic 3LJUDg3/jbx3y99kxg48foEcWz65km6zLwQgkCMCCJ0cBZOuQCAuArqG5+hfesv+R7+TSsGz74Gv ydE53UX95AUBCEDATQChQz5AAAKhCKiYaH6ul+x75Nuy++a/Tsz2PvBvcnj8raKjTrwgAAEIFCOA 0CE3IACBsgl84Dxs7/jaeXKk7n450PviWEWPETatzrTU6aZ3yvaZHSEAgdoigNCprXjTWwjESkDv bDrhjLC0LptcGPVpGna9HOh3uey+7VOyq9MnrWzP3ecU9mme/agcXTi0UN8Hxw7H6jeVQwAC+SWA 0MlvbOkZBCAAAQhAoOYJIHRqPgUAAAEIQAACEMgvAYROfmNLzyAAAQhAAAI1TwChU/MpAAAIQAAC EIBAfgkgdPIbW3oGAQhAAAIQqHkCCJ2aTwEAQAACEIAABPJLAKGT39jSMwhAAAIQgEDNE0Do1HwK AAACEIAABCCQXwIInfzGlp5BAAIQgAAEap4AQqfmUwAAEIAABCAAgfwSQOjkN7b0DAIQgAAEIFDz BBA6NZ8CAIAABCAAAQjklwBCJ7+xpWcQgAAEIACBmieA0Kn5FAAABCAAAQhAIL8EEDr5jS09gwAE IAABCNQ8AYROzacAACAAAQhAAAL5JYDQyW9s6RkEIAABCECg5gkgdGo+BQAAAQhAAAIQyC8BhE5+ Y0vPIAABCEAAAjVPAKFT8ykAAAhAAAIQgEB+CSB08htbegYBCEAAAhCoeQIInZpPAQBAAAIQgAAE 8ksAoZPf2NIzCEAAAhCAQM0TQOjUfAoAAAIQgAAEIJBfAgid/MaWnkEAAhCAAARqngBCp+ZTAAAQ gAAEIACB/BJA6OQ3tvQMAhCAAAQgUPMEEDo1nwIAgAAEIAABCOSXAEInv7GlZxCAAAQgAIGaJ4DQ qfkUAAAEIAABCEAgvwQQOvmNLT2DAAQgAAEI1DwBhE7NpwAAIAABCEAAAvklgNDJb2zpGQQgAAEI QKDmCSB0aj4FAAABCEAAAhDILwGETn5jS88gAAEIQAACNU8AoVPzKQAACEAAAhCAQH4JIHTyG1t6 BgEIQAACEKh5Agidmk8BAEAAAhCAAATySwChk9/Y0jMIQAACEIBAzRNA6NR8CgAAAhCAAAQgkF8C CJ38xpaeQQACEIAABGqeAEKn5lMAABCAAAQgAIH8EkDo5De29AwCEIAABCBQ8wQQOjWfAgCAAAQg AAEI5JcAQie/sU1Nz7Zu3ykXtO8oU2fPL/g0d/7iwmdeyRLQGBAH+xjAy56VTcks8syizzaxyHsZ hE7eIxzQv3t7Dipc7PR9774m39ItLccK2025sMj6DZ1YEDkLFzcUTP/W72r9ZU6aQe9xccrySdvk 46hJc87CE1e/4qo3rvja1luNc4CfL1nkmUWfbfMgz+UQOhmP7q0TGsXGinXTHLgqPHSkxe+l4kS3 l3uQ64nUjObou9ajozx5eDX3ulxszKav5fK1qTttF5oZM2aIjQXlrTLbsHnbGcXi4hhXveXGr7Df svPsrUhD1TgHpC3/ymWeyhwotzM1tB9CJ+PBvumZRrGxoAtGfcO6otMYKlRWr9tUttDJOOKS7jc/ 9hOxMRsG1T6JVrs9N4O6ujqxsaC8VXHuHR2Mq19x1WuTG0XLLPuKI3QsLUDoVPsckEqeAcHIos8V 5VdOdkboZDyQN4xtFBsLumDo9JTfSMvOXXsK35vt7jUd+p2O9riHvvWz+6XldRTn4OHmtrU5+p23 XLXriirsLd2/LzZm016xk2hYNmbUTONiXhpHMyqn0z0aD7/29Huzv24vNspn059SZaZOnSo2FpS3 Jj/13byK9cusDdPtysC9j9nXm6fucqZejYe7Lm8ua13V4ijL/tkROpYWIHTiOgdoszb55z5XeHPY L6bFjheNh9nmfjfdtzmebH22ravS44X9KyOA0KmMX+J7Xz+6UWws6IKh2/Wk7r2w6UnDrIPwnlj0 e/cUlDnBuOvQffQCq2bWAJly+h+keVW7rqgC1/LQN8TGbNorduIOw0bFjYmJXmz1pdzNxd1chP2m IrW87m/ibcSQ3zoYm/6UKjNlyhSxMZu8NWvAigkdb79MrisT97o0U07rc7MzI0buKZ5SuVxNjlL/ N2JtAUInrnOAbf6Zc4VfDtsKHTPNrgJEzW9K3uZ4svXZpq5KjxX2r5wAQqdyhonWcN3IRrExmwuG rnUwozemvJ50zBqIoGFbv1Efs4+5cGi9ppx7xMHrX9x1RRW01vvPFRuzaS+Ir6mjFBudYvS+zOiD ewTDnMjdI3R+5fy+s+lLUJlJkyaJjZWTt16Ofn0wI0FuUW4EeLH1Y7a5XE2OUv/fHKFjaRZCJ45z gG3+Gb5+OWwrdLSc+x8oM+VeKh/9jidbn23OW0HHAtvjJ4DQiZ9xrC10GN4oNmZzwTAHvBE25rbw Yv8p+9XpPSEVu3jbXNTjrCuqoBy757NiYzbt2TApFotS+5qpRY2v++Xdx5RzlzEXCr+Lj02fipWZ MGGC2JhN3moZ9d1MIRXrl7v/fhe3YpyC8j9JjlLfzhE6lmYhdOI4B9jmX6kcDiN03Llaat2RzbEQ dMzYnAMrOU7YNxoCCJ1oOCZWyxVDNomN2V4wdCjWTFXofzXeaSj3CIDW6b0jqxJxUs26ogrY0W6f ERuzaa/Uib5cNtqurdg05fzevXc22fSnVJlx48aJjdnmrV7QzAhhuTkYJDTTyPH9xe3E1mxZJnUO iELo+E1d+a2hKvd48vMxqK5KjxX2r5wAQqdyhonWcOnA9WJjtic5M3Rt1me4h/G9B7lZMOj+D6rc i0y164oqaIe7/JPYmE17xU70lbBxC52g/06DLvQ2fbAtM2rUKLEx27x1j0QUy0G/ER339KnZz8sp 7IhONTm2LmontmbLMq5zQCX5ZzOio+cqXZPjXozsJ3LCHE9BPtvUZXtMUC4+Agid+NhWpeaLn14r NmZ7kjMXDP2vzjt6YyNibMr4jTLYnMjC/kft7nNcF5+mO/5BbMwmGWz7Z8vPtGlOxuWs0bHxu5wy w4cPFxuzzVstZ24193IstUbHfSE05YLW6Hh9smmvHEY2+xxZ0E5szZZl1OcA2/wrdYx6p7/81pjp /sVEatC5oNg/cUHHjM15yyaOlImXAEInXr6x137hk6vFxmxPclrOiBy/W8Xd4sfcuWOmNdz/SYX9 L7jadUUVmL23/p3YmE17xU70lbDRds3CW/fdVOZOOHc83XeamAuGfhfHXVeDBw8WGwuTt+6LX7F+ mfq0T3rxdF8Yzf7Kxq//tkK0mhybXmwnthaGZZTnANv8KyV0zLnFjB6b+LnjbNYUmnr0Xct5z2M2 x5OtzzZ12Rz7lImXAEInXr6x135BrxViY2FOcuaE4f1JCO+JSKe3zAnRPFTQ/PcWVuhUu66oArP7 5r8WG7Npr9iJvhI2pl0Vo+a/YvNcI2+sjCgyMVV/dJSj2E+D2PSpWJn+/fuLjYXJWy1rLojeO/r0 wuXtl/tOQNOOt5zfc3S8PvnFza+9ODi+N6+d2FoYllGeA7Rdm/wLGnU1+WoeVeHNX7Pw2L2ezEzD ucW6zfFk67NtXZUcK+xbOQGETuUMqQECEIAABBImYDvilrCbNJ8AAYROAtBpEgIQgAAEoiXgnUbS 2s3jEdzP1om2VWrLAgGEThaihI8QgAAEIFCSgPn5DjNFa9boRP0MKMKQPQIInezFDI8hAAEIQAAC ELAkgNCxBEUxCEAAAhCAAASyRwChk72Y4TEEIAABCEAAApYEEDqWoCgGAQhAAAIQgED2CCB0shcz PIYABCAAAQhAwJIAQscSFMUgAAEIQAACEMgeAYRO9mKGxxCAAAQgAAEIWBJA6FiCohgEIAABCEAA AtkjgNDJXszwGAIQgAAEIAABSwIIHUtQFIMABCAAAQhAIHsEEDrZixkeQwACEIAABCBgSQChYwmK YhCAAAQgAAEIZI8AQid7McNjCEAAAhCAAAQsCSB0LEFRDAIQgAAEIACB7BFA6GQvZngMAQhAAAIQ gIAlAYSOJSiKQQACEIAABCCQPQIInezFDI8hAAEIQAACELAkgNCxBEUxCEAAAhCAAASyRwChk72Y 4TEEIAABCEAAApYEEDqWoCgGAQhAAAIQgED2CCB0shczPIYABCAAAQhAwJKAr9AxX/K+X2AAA3KA HCAHyAFyIPs58P8BAKa2faR4E7IAAAAASUVORK5CYIJ= ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/image006.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAoQAAAEXCAYAAAA0rVU/AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAAAlwSFlz AAAXEQAAFxEByibzPwAALVxJREFUeF7t3Ym/HUWd9/F5/opn5nlmcZ6ZERR1ZnQcx/FRRwVlVcQ4 ygiOyCiCrInDvglqIAlJWBIICdlIQhICMyCLD8HIEIZlAtkgAbwQkBBIQta75d6bpZ7+HaZCU+nu qu6uPr19zutVr9yc00vVu6r7fG/1OX3/x+8Fj9ff2jb295S6WH7mgQACCCCAAAIIINAqgdmd1r6+ 6R1FwYAxwBhgDDAGGAOMAcZAO8fA+wKh4oEAAggggAACCCDQGgH9CwCBsDVdTkMRQAABBBBAAIH3 CxAIGREIIIAAAggggEDLBQiELR8ANB8BBBBAAAEEECAQMgYQQAABBBBAAIGWCxAIWz4AaD4CCCCA AAIIIEAgZAwggAACCCCAAAItFyAQtnwA0HwEEEAAAQQQQIBAyBhAAAEEEEAAAQRaLkAgbPkAoPkI IIAAAggggACBkDGAAAIIIIAAAgi0XIBA2PIBQPMRQAABBBBAAAECIWMAAQQQQAABBBBouQCBsOUD gOYjgAACCCCAAAIEQsYAAggggAACCCDQcgECYcsHAM1HAAEEEEAAAQQIhIwBBBBAAAEEEECg5QIE wpYPAJqPAAIIIIAAAggQCBkDCCCAAAIIIIBAywUIhC0fADQfAQQQaIvAkyvWqsvHTlVHjjpLzbzr /rY0m3Yi4CRAIHRiYiEEEEAAgToLrHt5QycISpFQ+MprG+vcHOqOgHcBAqF3UjaIAAIIIFAlAQl/ 4TC4Y1dvlapHXRCohACBsBLdQCUQQAABBIoQkPBHGCxClm02TYBA2LQepT0IIIAAAgcF+vsH1Zat 2zuFBwIIxAsQCAseHXIykssVK9e+dLDIZ1nkedsjvO7i+5YqKbKdNOvrE6H8a9tneFmzbuGTang5 /bNt23p7srxrG2Sb0lZZ3uUSj4u1bCeq/rbnovrKd/+YdbCZ2vrE1jfad9nyFQfHlq/PVbn0Rdz4 9+1qc0wa97ZjNPx6eLzKmHUNIK79GN6XjOOk48j2utmutMtnbWvUecX1/JiljnrbZZ8/XcdRVte0 Nkn1sW3LdbzGHXdZzztZ13O1ZzmlCIQFjQIZvPJGqy9VRP0rr8cFDdu6sj05ySUFJf1tuvC+N27a HLlPefMKL2cuFLUts02Tpy1Q8i2+pDfg8DpS/6SHvJ5UJ71uGmtzm0n9E34t7Oyyv6z9Y9ZHvgkZ 12cufaLrYTo/sHR54tjMGgxdbOo07tOcHqSvzP5zcXTtx3DAtB1HttfNdqVdPmtbsxyzeh3XOrqM wazHZ9bzp+s4yurqauNSD9u2XMdr1Pk963kn63ou7WWZ9wQIhAWMBgkPrgeN/JZv/ubvuq7+tlxc KIwKOxLaoh62QOganGzf4LOdbMJ1cwmEaa2zBkL9Zpxmf1n6J85ZgnbSm3hS/5gn5qg3HXN9W1iP GkNpbOoy7l1PD+HPqYUt5Y3M9nA9tqoSCPO0VSyyjhOXc0eabWc5PrOeP21jQLtEjYW0YyjLsRuu n83Zdbz6Ou8Udb5y6ZO2LUMgLKDHowKdHNT6snF4gIffGOU3W3Nd+b+EAb2uzK5ELRPVjLgD13wz lnXTBEI5KYbrE3fARs2O2E42aQNhWmupt758pP81t2G+rk9sRfZP2FT6W/5v9p8Z/MOvh9cPfzxB fg7PaoS/bSnrS9/Jc9L/8q+emc7yppK2L8KzRVUd966nB+mzuOPNdsk6vJ44RI0/eS68HdtxZHs9 6ZcLW9/naavsN+s4sbWpyOMzvO8s50+XcZTH1Wbjsn+9jG1b3TzvFHm+SmPSlmUJhJ572rzUKye/ qBk8eQOWN+PwycWcvYq7caqc+MzAkGYGSepkPtIEwqg3DKmTWf+o/dhONmkCYR7rNPvRyxbZPy6X V8w3ojSWug3mpZeosCLPxV0aiztc8vRFka5m2Eo77l1PD+Hj0WyPfA426ZGlH23r2F7PEwjztDXP OLG1qe7jKI+rzcZ1HMtytm3ZXo/aV9bzTtb10rSXZd8TIBB6HA3yRmqb1YnbnbluVJgKr2sGOFv4 Mg8sM1zkDYS6buZsYZ4Qk3TJOI+12Qcul6aL7p+oQGj2iXnpKMuJ2aWtaQ+JPH1RtGvece9iYV5C NWeqbH8RI0s/2taxvZ41EOZpa55xYgsqdR9HeVxtNi5jOLyMbezYXo/aX9bzTtb10raZ5d8VIBB6 HAnhO+HLQePy2Q+9e3PdqBk/s6pm+Eq6pCgzPuFLNfJzeHbIVyA0t2N+5ibNySTpZJDHOksgLLp/ XAKhOSbSWOo2m6ZxX/BIc1jk6YuiXfOOexeH8KU+Hf7MmTBfX7TS9bH1ve31rIEwT1vzjBNb6Kn7 OMrjarNxGcPdDoSu550izldpPdq0PIHQY2+bsxEu3zDUuzfXdbllhfmZE/MyX/hNQd/uJfxc+KD0 FQilPebl7DQnm/CySYEwj3WWQFh0/7hcMjbHU9o3fWm3+cYp25B9u4y3uEMlT18U7Zp33LucHsLj XV8elmMx3D9Jl42z9KNtHdvrWQNhnrbmGSe20FP3cZTH1WbjMobTnKPTjq08550izldpPdq0PIHQ Y2+bASbNm2yWqXG5HBs+OJMuz+q6mB/o1jMXPgNhkkOak0mSSR7rLIGw6P6RmSV9PzwJE+YbXNRl R/PjCVH/j5qljvsWu7wppfklJm7WsUnj3nZ6MINfeCYw7Jx02Tjcb+FxEL4/YtLsf9QvE2mOM9dA kbeteY/ZpDYVfXzmPX8mjaO8rq79ZxvL+nXb2On2ecf3+crVoY3LEQg99nqeE163TmhmiNSzhATC d//ovZSoR9H9k3SSlZAQdcnR5cQcFRYkXER9i1lvL2qdpMOkyePednoIXxo2Q5952TjN7aHMvk37 0Qvbm3qWGcK8bc0zTmyhp+jjUwfCrOfPpHGU19VmYxvDacdCt887vs9XaT3atDyB0GNv5znhdeuE Js01w4CEDQJhNQNh0mdtXE7MSZ9jlTe3uN++bV+ECB82TR73ttND2M+8LGzO/MR9LtilH80vjdkC n+31tCFAls/b1jzjxBZ6qn7+TBpHeV1tNrYxnHYsuIzXIs47vs5XaT3atDyB0GNv5znhmeva7l0m 1TZ/W036jFn4Mp55bycJHUUGwjBxmjeqKl8y9t0/+j6CEhrMkBZ3GTeNZdIwjzvR2m6XorfZ5HGf 5JZ0qU+vF+7LuJsah/sx7j6Eab+tn3Zs2Jb30dY848QWeqp+/owbRz5cbTZp3+JsY8H2uuv+sp53 sq7nWq82L0cg9Nj75knJ9Q1VqpDlZGn7IHX4wDU/12XOEpohMe1vjXGhL+3MRtLMU9JraazNtrnM LhTdP+HLtFF/bcF2yTjtZd6oYW+20XWbTR73SacHlz8vac6mRF02zvIGa1vH9nra49tHW/OME1vo Kfr4zHv+jBtHPlxtNmnf4mxjx/Z62v35Ou+4nq/S1q9NyxMIPfa2OWOXZoCa67rcdsa8jUzSSd48 oZkBMOmbwWlOOOZ2k+6dFzdjotsRrpO5bB7rLIGw6P4xx0rcZ5XigneasZY05LOc7PP0RdGuecd9 klWaPzGpXW03kHftR1s/2V5PGwh9tDXPOLGdg+o6jny42mzSvsXZxo7t9bT7y1P/IuqSpf5NWYdA 6LEno/7Gp+1bm3rmx1zXdmNq85YzUZ81S5ohlGabv5mFl0/7hiHLR81smbfCcf1N3nZT5jzWWQJh 0f0TFQTSBH7XIGG71J3lBJunL4p2jfrGc5pxH3d6iPqTWrLdqBI2jfolKIu5bR3b62mOb19tzTNO bKGhjuPIl6vNJu1bnG3s2F6P2l/W807W9dK2meXfFSAQeh4JUW82UZcz9ecgwjNo5rr6FhRmFaP+ 5qXtkmLUG6MZurIGQtl31Oc6okKKeV8pCT1m3eT/Lp+jy2MdNnW5ZBwVoH32T5SVeTnJHEdZTsyy jmw3aryY+3OZpdaOefqiyuM+7vQQ/riG7Zc386MdSfcLdQ32tr63vZ4mEPpsa55xYmtT3caRT1eb TZq3Odu2bK9H7SvreSfremnay7LvCRAIPY+GqD+wrg8gmR0wg4752bHwwRZeT888RL3u8qWDuHvD xc2WJL1hRNXBfC7pW6pRl0lkeamL+ddXZLtxb5J5rLMEwqgZDqmf9Gve/olqo7m/pFuPJPVJ+JcO c7ZK19v8yID5l2xsh0mevijSNe+4j2t32NH2VxeivsQV3m7WN1i9XtTYcTlGw0E2qQ4+25pnnNic 6jaOfLqm7e+k49nm7LIvWcbHeaeo85XtfNbW1wmEBfR81KXTuIPInPWRN480nytx/QsIcW+McbOE eQKh7U/2pfGx3f4kzbbirFxnCMWkqP6JC71mQA7PLrmemMPbdhlbsow5i+VymOTpi6Jc8477qHab Ac/FKtxXeb5opevj603btj3fbZX9ZR0ntjYXeXz6Hke+XV3PBS7Hsc3ZdV8+zjtFnq9cLNq2DIGw wB633TcpbmZPfouWWYekgyHusl+4OeH1426Kq0+i4YM8KoRFzdzpdfStMqS9ts986PrZ2qhvw+La PVmtZftpLt3I8ra6i0va/okL0eYbR/j2I0l9Eu7P8LZ13eNO6i71tvVJ1r4owjXvuI9qa/jSuu1y sV7fvGwcrlf4OLX9MqW3Z1vHZWyE6x63Pd9tDXumHSe2NrueW7Icn77HkW/XtP2ddAzbnF32Zc4Q Zj3vZF3Pdo7i9WgBAmEXRoacTMJ/hirNLs110/xZsDT7KXNZs42uoTKqznmssxjUuX/CY7KIcZWn L+rsmmUctXmdPOPE5sY4sgl1//Ws552s63W/hfXdI4Gwvn1HzRFAAAEEEEAAAS8CBEIvjGwEAQQQ QAABBBCorwCBsL59R80RQAABBBBAAAEvAgRCL4xsBAEEEEAAAQQQqK8AgbC+fUfNEUAAAQQQQAAB LwIEQi+MbAQBBBBAAAEEEKivAIGwvn1HzRFAAAEEEEAAAS8CBEIvjGwEAQQQQAABBBCorwCBsL59 R80RQAABBBBAAAEvAgRCL4xsBAEEEEAAAQQQqK8AgbC+fUfNEUAAAQQQQAABLwIEQi+MbAQBBBBA AAEEEKivAIGwvn1HzRFAAAEEEEAAAS8CBEIvjGwEAQQQQAABBBCorwCBsL59R80RQAABBBBAAAEv AgRCL4xsBAEEEEAAAQQQqK8AgbC+fUfNEUAAAQQQQAABLwIEQi+MbAQBBBBAAAEEEKivAIGwvn1H zRFAAAEEEEAAAS8CBEIvjGwEAQQQQAABBBCorwCBsL59R80RQAABBBBAAAEvAgRCL4xsBAEEEEAA AQQQqK8AgbC+fUfNEUAAAQQQQAABLwIEQi+MbAQBBBBAAAEEEKivAIGwvn1HzRFAAAEEEEAAAS8C BEIvjGwEAQQQeFdg5dqX1JGjzuqUuEd//6B6YOnyg8vNvOt+tWXr9vctvmNXr5LnZTuTpy1Q8n/z 8eSKtZ1leCCAAAJ5BQiEeQVZHwEEEAgEJNBJcNNhMCkQXj52amdZCYbykJ/lOf1/eU4CoxT9sxn8 Nm7a3FknKijSIQgggEBaAQJhWjGWRwABBCIEJAAuW76iE9CSZgjXvbyh87rMJOqHnlWUGT/9kGUk 9MlDwmY4YEpwlDD4ymsb6QsEEEDAiwCB0AsjG0EAAQTeE0gKhIvvW9oJd+FLxDrwyWsugVBmCyV8 8kAAAQR8CRAIfUmyHQQQQOC/BZICoX4tKhCGZwEl9IUvGeuf+dwgwwwBBIoQIBAWoco2EUCg1QI+ AqFcetafSZSZQ/k/nxts9bCi8QgUKkAgLJSXjSOAQBsFfARC000CoXxuUEKhyzeQ2+hOmxFAILsA gTC7HWsigAACkQJFBEK5hKy/dGL7BjLdggACCKQVIBCmFWN5BBBAwCLg40sl4V3IF0jCt51J+gYy nYMAAghkESAQZlFjHQQQQCBBICkQyiyfvC63n9EPfduZ8HP6Nbm1jHmPQgIhww8BBHwLEAh9i7I9 BBBovUBSINT3ENQ3ptb/l9BnPsKfGwy/FvcN5NbDA4AAApkFCISZ6VgRAQQQeE8g/BdKon4OW8kt Z/SfpZNl5TOB4b9SopcNf24wvH7UN5DpCwQQQCCPAIEwjx7rIoAAAggggAACDRAgEDagE2kCAggg gAACCCCQR4BAmEePdRFAAAEEEEAAgQYIEAgb0Ik0AQEEEEAAAQQQyCNAIMyjx7oIIIAAAggggEAD BAiEDehEmoAAAggggAACCOQRIBDm0WNdBBColcDeN15Qw6sfUUP/ubhTBv99nBpYdPXB8uJvHlJT fv1mp8z9z83qV2u3d8pjL+1UPVsGO6V3z75atZnKIoAAAi4CBEIXJZZBAIHaCYz0PBOEvkVq4J6f qb7pZ6ndE0ZZywv/Nludv6DHWsY+8Du14Okt6plXd6vt/SO1s6HCCCCAgClAIGRMIIBAIwQODPWr 4eeXqcFfTlS7J31b7R7/jdRFAuF583tSlyvu3aDmPLFZPfHbXWrz7uFGeNIIBBBolwCBsF39TWsR aJbA3hE1vOpXanDhlap3/Em5ywv/NkudGwTCvOXmR99Uz73e2yxrWoMAAo0WIBA2untpHALNFNi/ a4saWjZT9d10ShACv+6tvHDvLHXOvB5v5bJ7Nqj7V21Tuwf53GEzRyKtQqA5AgTC5vQlLUGg8QL7 Nr2s9vzyBtU77sRCyvP3zFRnB4GwiDIruKS8btNA4/uIBiKAQD0FCIT17DdqjUCrBPZv3xhcFr4s CIFfK7RIIDzrzp5Cyy8eeENteGdPq/qPxiKAQPUFCITV7yNqiEBrBTpfFPmPuYWGwHDIlEB4ZhAI u1EWPLNVDQ7vb23f0nAEEKiWAIGwWv1BbRBA4L8FRtY/rvqm/HMQBr/atfL8PXd0JQzqwHnRkg3q yVd20+cIIIBA6QIEwtK7gAoggEBY4ED/DjV416Wq9/oTul7WBoHwR3N7ul4mPvKmensXt6vhSEAA gfIECITl2bNnBBAwBPZueFb1Tf5WEASPL6WsvWeGOiMIhGWUs+e/otasWsuYQAABBEoRIBCWws5O EUDgfQJ7h4PPCs4uJQSGw6cEwh8GgbCMct2ilao3CMODd12i5LOTPBBAAIFuChAIu6nNvhBA4BCB /bs2q4G5Y1TvdceVXtYsmaH+ZU5PKWXHHRccbH//rd9X+7a8ymhBAAEEuiZAIOwaNTtCAAFTQEJP 3+RvBkHo2EqUNUumq9ODQNjtIvs9xGDCiWpk/WMMGgQQQKArAgTCrjCzEwQQiA6Do4IgdExlypq7 p6vvz+7papm35NeJ7R9Z+wiDBwEEEChcgEBYODE7QAABU2DvqytU36QgDI49ulJlzd23q9OCQNit MmbeC6r3xpOtBoRCjiEEEChagEBYtDDbRwCB9wlIGOwdH9xSZuxXKldWB4Hwe7N6ulbemneFswGh kAMJAQSKFCAQFqnLthFA4JAw2BeEwb4gDFaxyAzhPweBsBvlqSV3pjYgFHJAIYBAUQIEwqJk2S4C CLxPYP+2N1T/pJOCEPTlypY1d09T3w0CYdFl3MJnVN/44zM57F33G0YWAggg4F2AQOidlA0igIAp cGBPnxqYcorq+8VRlS5rFk9Tp87sKbScMftFtfvW07I7jDtO7XtzPYMMAQQQ8CpAIPTKycYQQCBK YHD+mCAAHVn5snrxbeqUIBAWWX634Be5Hfpv/Ecl92/kgQACCPgSIBD6kmQ7CCAQKTC8dGoQgL5U iyKB8Dt39BRW7r37AW8OA3f8UKngL7zwQAABBHwIEAh9KLINBBCIFBhZ8yvV9/Mv1qasXnyr+qcg EBZRrpof/J3mG77q1WLo4UmMPAQQQMCLAIHQCyMbQQABU2D/rrdV3/VHew1ARYfL1YtuVSfP6Cmk 7Jh+ViEW+15fzeBDAAEEcgsQCHMTsgEEEIgS2LPwItX/8y/UqqwKAuG3g0Dou8h2i7IYvOVkLh1z CCKAQG4BAmFuQjaAAAKmwN41DwcB6B9qV1Ytmqq+FQRCn2XmoqWFOww/PJFBiAACCOQSIBDm4mNl BBAwBQ70bVcDE45X/T8LAmHNyqqFU9U/Tu/xVsbMWRX8ib6TuuKw7/VVDEYEEEAgswCBMDMdKyKA QJTA0N2XBQHo87UsEgi/GQRCX+XtOcFl8y5ZDE4/nQGJAAIIZBYgEGamY0UEEDAF9m/uUf3Xfq62 ZeXCKWrU7b/1Up5YNKvrDntfeJRBiQACCGQSIBBmYmMlBBCInB1cfGkQgj5b2+IrEE6Y/7jqH/ul rjsMTPoaXzDh0EQAgUwCBMJMbKyEAAKHzg7+NghA/7fWZeXCW9Q3pr2cq5w6fZ3qveWfSnMYeXoR gxMBBBBILUAgTE3GCgggEDk7uOgS1X/NZ2pdVt6VPxD+bu5VpRoMTDyBWUIOUQQQSC1AIExNxgoI IHDI7ODbwezgNX9f+7JywU3qpNteylzuW3h3JQz2rn6QQYoAAgikEiAQpuJiYQQQiBIYfnCc6v/p p2tfJBB+/dYXM5VLZj2l+q8/qhIGg9O+y0BFAAEEUgkQCFNxsTACCBwisHc4uPFycJuZFgfC70x7 Xu287fRKGewPZm15IIAAAq4CBEJXKZZDAIFIgZEV9wZB6O8aUZ5bcKM6cer61EXWq5rB8IPXM2IR QAABZwECoTMVCyKAQJTA4G2nqv6rP9WI8tz8G9XXpq5LVabNf6iSbR+47ki+XMIhiwACzgIEQmcq FkQAAVPgwM631MDVf9uYsnL+JPXVKS84l3NmPKP6xx9T2fbv63mSQYsAAgg4CRAInZhYCAEEogRG nloQhKFPNqasnDdJnXDL887lrTvOr3Tbhx8Yy8BFAAEEnAQIhE5MLIQAAlECQ3eeowau+pvGlJXz JjqHwcfnT6t8uwfHf4WBiwACCDgJEAidmFgIAQQOEQi+XTxw7aeDUPSJxpTngkB4/M1rrWXs7Edr 0/b9G9cyeBFAAAGrAIHQSsQCCCAQJbDvtWcbEwR1qO0EwpuCQJhQvnXLStU3+aTatH1k+SwGMAII IGAVIBBaiVgAAQSiBEaW3hyEoo83qjw37wZ13E1rEstrsy+uVZuH7hrNAEYAAQSsAgRCKxELIIBA lMDQnT9WA1f+daPKc3dOUMfeuDq23HvnvNq1d3BccPsZHggggIBFgEDIEEEAgUwCEjQGrvyrRpXn 5o5Xx04OAmFE+cnt/6EGfvHZWrb3QN+2TH3MSggg0B4BAmF7+pqWIuBN4MCe3loGI1uAlUB4zKRV h5Rv3vSs2jHllNq2ed/6Zd76ng0hgEAzBQiEzexXWoVAoQL7fvuEGrjiLxtX4gKhPF/n9o48fkeh 44GNI4BA/QUIhPXvQ1qAQNcFRp68MwhIH2tceXbuOHX0xJXvK1Nm/Xvt2zl8/7VdHyPsEAEE6iVA IKxXf1FbBCohMLJsahCSPtq4IoHwKxOfO1jOuPVx1X/dF2rfzqEF51Vi3FAJBBCorgCBsLp9Q80Q qKzA8L2Xq4HLP9K48uyc69SXb3j2YHnr9jMb0cY9U0ZVdixRMQQQqIYAgbAa/UAtEKiVwND8cxsR lMxQ++zsIBBOCAJhUB6bc1Nj2jh43T/UanxRWQQQ6L4AgbD75uwRgdoLDN/xPTV4+RGNKxIIj5qw Ql0z/UE1ePXHG9W+2g86GoAAAoUKEAgL5WXjCDRTYM8NRwVh6cONKytmj1UnTnpK9U08tnFta+ZI pFUIIOBLgEDoS5LtINAigT0TjlSDl32ocUUC4eszRjeuXdJXPBBAAIEkAQIh4wMBBFIL7JnwpSA0 Hd640nfDMY1rk+6n1J3MCggg0CoBAmGrupvGIuBHoKmBsIkhl0DoZ8yzFQSaLkAgbHoP0z4EChAY HP9FNXDpYZQaGRQwDNgkAgg0SIBA2KDOpCkIdEuAQFi/MNytscF+EECgngIEwnr2G7VGoFSBoRmn MjtYo9lBCfA8EEAAgSQBAiHjAwEEUgsMLxxNIKxRINxz84mp+5gVEECgXQIEwnb1N61FwIvAyK8m qP5LPkipicGe6ad66Xc2ggACzRUgEDa3b2kZAoUJjDwxmzBYkzAowX14ycWFjQU2jAACzRAgEDaj H2kFAl0V2LtuKYGwToHw0Zu6Oj7YGQII1E+AQFi/PqPGCJQusP+t9arv4r+g1MRAAjwPBBBAIEmA QMj4QACBTAJ9l3+EQFiTQLh/66uZ+piVEECgPQIEwvb0NS1FwKvA4NRvEghrEAj7f/oJr/3OxhBA oJkCBMJm9iutQqBwgaFf/kz1XvTnlIobDEwZVfhYYAcIIFB/AQJh/fuQFiBQisDI6l8SBiseBiWw S3DngQACCNgECIQ2IV5HAIFIgf073vQaCF+64GPqth8crY4cdVanyM8bRn/kkH1s/snhasmZn09c 7o2ffPjgtsZ//wQl/zdnM3999qc7yzR9lnPfq08zghFAAAGrAIHQSsQCCCAQJzBw4wleApWEQR0C JaBJ6JMgd/F3R3V+Doc2eU5e089HLSeBUYqsJ/+awU/2J9uJCoqNCoiXHaHU3iEGMAIIIGAVIBBa iVgAAQTiBIYeuVHtvvDPcpdb/+UrnUD44vkfPbit/zr3453nHjzzM4c898TZnzz4nPwsyz364787 +Fx4W69ecETndV3Pt8cc1gmDa877q9z19tH2IrcxOOdHDF4EEEDASYBA6MTEQgggECWwb9N6L6FK XyaW8KYDkg5yEhb1c3N/+MVOuItaTl7TyyUFQtleOGQWGcjK3vbQ8pkMXAQQQMBJgEDoxMRCCCAQ J9A39vO5Q6HM2MUFvfDsXlJwDC8noW/Jjz7XqZf8q3+WWcRwwCw7sBW9/wO9Wxm4CCCAgJMAgdCJ iYUQQCD2svFD49Suf/0/ucoDZ/59JxDeHYQ3vS0JbzoA6uf0/185/8MHl5OfzeVeH324Gnfa8Z3n 5/7gi0r+v/78j6iLTv1G5+e89a3D+gOzz2DQIoAAAs4CBEJnKhZEAIEogf1bXvESsCQUSmCTECdh TsJh1kBoBjYJgbJtCYXys/7MouynqQFx5IVHGLAIIICAswCB0JmKBRFAIE5gYMb3vITCcJDTM38S 3tLOEJqBULYhM47yvARNPRMp/4a3X4eZP5c69l7zKQYrAgggkEqAQJiKi4URQCBKQGajXIJKmmWe OefdbxnrICfryuVfeS7qkrG8FrV9mXk0Q6XMFMqyOnSmqVcdlt3zyGQGKgIIIJBKgECYiouFEUAg TmD3T/9W7fzJn3or13/vuE7423TBXxzc5tKzPtV57plz/vrgc4//+BOHPKfrsercj3UuFYe3Ieuv O++Izvo9532os67Pepe9rV0XH67282USDlQEEEgpQCBMCcbiCCAQLTD0+B2Zg5UENx3a5N+pp3+5 E9Tk+XDAktck4ElYlJ/1/+U5M4i9dsFhnWV1+NOvy7YXn/HZzvLyr/657CDna/+D913LEEUAAQRS CxAIU5OxAgIIRAkcCP4iRtZZQgll+gsk8q/8X2bvokKSPK8Do142PAMYDn4yoxgVFPXs45wffEFJ cPQVxsreDrODHJsIIJBVgECYVY71EEDgEIHh5/+f2jHmA5SSDAbvu4ZRiQACCGQSIBBmYmMlBBCI E9h9w7EEwhIC4c6LDuOzgxyWCCCQWYBAmJmOFRFAIEpg7+srCYQlBMKhJ+cxIBFAAIHMAgTCzHSs iAACcQL9d41R20f/CaVLBrtvPJHBiAACCOQSIBDm4mNlBBCIEjgwuFvtvOpvCIRdCIQ7Lvyg2hf8 tRgeCCCAQB4BAmEePdZFAIFYgeEXf6O2jf5jSsEGg49OYRQigAACuQUIhLkJ2QACCCRdOiYUFheK d934NQYfAggg4EWAQOiFkY0ggEDcpeMd135avXPBH1E8G2y/8uNq3/aNDDwEEEDAiwCB0AsjG0EA gTgB+XzbtkuPIBB6DITb/vXP1UjPkww6BBBAwJsAgdAbJRtCAIE4Afk8IbOE/mZJBx+bwWBDAAEE vAoQCL1ysjEEEIgTGHhsutp6/h9Schr0LhjNIEMAAQS8CxAIvZOyQQQQiBPou/sSAmGOQLhr2ilK /mY0DwQQQMC3AIHQtyjbQwCBRAGZ4WKmMP1MKWGQAwsBBIoUIBAWqcu2EUAgUoBQmC4QEgY5kBBA oGgBAmHRwmwfAQSiQ+H8C9SW8/43xWKw87bvqAMjXCbmMEIAgWIFCITF+rJ1BBBIEOh/+AYCYUIg 7F18MWGQIwgBBLoiQCDsCjM7QQCBOIGhtQ+rrRd/iGBoBEP5VjYPBBBAoFsCBMJuSbMfBBCIFdi7 uUdt+/nn1OZz/1fry9aLDldD65cxWhBAAIGuChAIu8rNzhBAIE7gwOButWvG91sdCLdPPF5JOOaB AAIIdFuAQNhtcfaHAAKJAoNPL1IyS9am2cItY/5U9S+9mZGBAAIIlCZAICyNnh0jgECcwP7dW1oz W8isIMcBAghUQYBAWIVeoA4IIBApIJ+l23LZX6q3z/mDxpUtFx6m+n9zOz2PAAIIVEKAQFiJbqAS CCAQJyD34JPg1JRguHn0B1TvPVeq/cFnJnkggAACVREgEFalJ6gHAggkCkiA6ntogpKZtbrOGO6c fprat/0NehoBBBConACBsHJdQoUQQCBJoBMMH7lJbbnqk+qts3+/8mXzpR9Tvff9nCDIsEYAgUoL EAgr3T1UDgEEkgSG1i1TO2f9qJKhcNuE49TA0wv5SyMMYQQQqIUAgbAW3UQlEUAgcdYw+FZy//I5 asftp6m3L/iT0gLi9qknd+rBZWHGKwII1E2AQFi3HqO+CCBgFdiz7tdq95Ir1LbJX1ebfvw/Cyvv TDhW7Vp4oRp4amHwJZFd1nqxAAIIIFBVAQJhVXuGeiGAgDcB+esfe1Y/pHofHK+2Tzm5ExS3XPMZ p6C4+ZKPdpaXIuv3LZumhjc8661ubAgBBBCoggCBsAq9QB0QQAABBBBAAIESBQiEJeKzawQQQAAB BBBAoAoCBMIq9AJ1QAABBBBAAAEEShQgEJaIz64RQAABBBBAAIEqCBAIq9AL1AEBBBBAAAEEEChR gEBYIj67RgABBBBAAAEEqiBAIKxCL1AHBBBAAAEEEECgRAECYYn47BoBBBBAAAEEEKiCAIGwCr1A HRBAAAEEEEAAgRIFCIQl4rNrBBBAAAEEEECgCgIEwir0AnVAAAEEEEAAAQRKFCAQlojPrhFAAAEE EEAAgSoIEAir0AvUAQEEEEAAAQQQKFGAQFgiPrtGAAEEEEAAAQSqIEAgrEIvUAcEEEAAAQQQQKBE AQJhifjsGgEEEEAAAQQQqIIAgbAKvUAdEEAAAQQQQACBEgUIhCXis2sEEEAAAQQQQKAKAgTCKvQC dUAAAQQQQAABBEoUIBCWiM+uEUAAAQQQQACBKggQCKvQC9QBAQQQQAABBBAoUYBAWCI+u0YAAQQQ QAABBKogQCCsQi9QBwQQQAABBBBAoEQBAmGJ+OwaAQQQQAABBBCoggCBsAq9QB0QQAABBBBAAIES BQiEJeKzawQQQAABBBBAoAoCBMIq9AJ1QAABBBBAAAEEShQgEJaIz64RQAABBBBAAIEqCBAIq9AL 1AEBBBBAAAEEEChRgEBYIj67RgABBBBAAAEEqiBAIKxCL1AHBBBAAAEEEECgRAECYYn47BoBBBBA AAEEEKiCAIGwCr1AHRBAAAEEEEAAgRIFCIQl4rNrBBBAAAEEEECgCgIEwir0AnVAAAEEEEAAAQRK FCAQlojPrhFAAAEEEEAAgSoIEAir0AvUAQEEEEAAAQQQKFGAQFgiPrtGAAEEEEAAAQSqIEAgrEIv UAcEEEAAAQQQQKBEAQJhifjsGgEEEEAAAQQQqIIAgbAKvUAdEEAAAQQQQACBEgUIhCXis2sEEEAA AQQQQKAKAgTCKvQCdUAAAQQQQAABBEoUIBCWiM+uEUAAAQQQQACBKggQCKvQC9QBAQQQQAABBBAo UYBAWCI+u0YAAT8Cr7y2Uc2863515KizOmXxfUvVxk2b37dx/ZqfPbpv5fKxUzt1kvqZj7g6bdm6 XT2wdLnS6+o2STt5IIAAAkUIEAiLUGWbCCDgLHDe/B7lUuI2+OSKtZ3AJQFKPyQMTp62IHcg7B13 onItcfXToU/+XffyBmudJPTpANjfP9hZXv6V9snzy5avcLZlQQQQQMBVgEDoKsVyCCBQiMCZd/Yo lxK3cz2LJrNqSY8sM4S9Y49WrsUWCCXQ2UKqtEHqaS6nty3Py+vm7GchHcNGEUCgVQIEwlZ1N41F oHoCp8/pUS7FFrhsISlLIOz/2eeVa3GpnxnmzDrJ7F/UTKLetswwmrOh1etRaoQAAnUUIBDWsdeo MwINEvjuzB7lUuKarEOUzBQmzRJmCYQDV39SuRZbIJTXZYZPPt+oH2ad9AxgXDv0DKK0lQcCCCDg U4BA6FOTbSGAQGqBb8/oUS4lacPmF0p27Oo9ZPFMgfCKj6oBx+ISCPUMn/5soFkn/X9bIJTleCCA AAI+BQiEPjXZFgIIpBb4xrSXlUuxbVi+jKFn2KJmC7MEwv5LPqhci0sglGWkbvqLIQRCW6/yOgII dEuAQNgtafaDAAKRAidOXa9ciiufvoRs+wKHy/Z2X/hnyrW4BkL5VrS+5GsGQtsXZGxfOnFpE8sg gAACUQIEQsYFAgiUKnD8zWuVS3GtpA5N5mXVLDOEO8Z8QLkW10Aol4v1F0fMOulby5i3p9Hb1pec ufWM62hgOQQQcBUgELpKsRwCCBQicMykVcqluO48bhYtSyDcev4fKtfiGghlOX0LGrNO4XsQRm1P XxKP+oykqw/LIYAAAswQMgYQQKByAkdNWKFcSlzFJSTpW87I7Jv+gon5Vz2yBMK3z/kD5VrSBMLw LKY5k6kvecu/UTem5q+VVG4IUyEEGiHADGEjupFGINBeAQmDcisXHfgkEEbdkzBLIPShGrff8O1y zP1I6Au3ST5bKLOKtptv+6gv20AAgXYKEAjb2e+0GgEEEEAAAQQQOChAIGQwIIAAAggggAACLRcg ELZ8ANB8BBBAAAEEEECAQMgYQAABBBBAAAEEWi5AIGz5AKD5CCCAAAIIIIAAgZAxgAACCCCAAAII tFyAQNjyAUDzEUAAAQQQQAABAiFjAAEEEEAAAQQQaLkAgbDlA4DmI4AAAggggAACBELGAAIIIIAA Aggg0HIBAmHLBwDNRwABBBBAAAEECISMAQQQQAABBBBAoOUCBMKWDwCajwACCCCAAAIIEAgZAwgg gAACCCCAQMsFCIQtHwA0HwEEEEAAAQQQIBAyBhBAAAEEEEAAgZYLEAhbPgBoPgIIIIAAAgggQCBk DCCAAAIIIIAAAi0XIBC2fADQfAQQQAABBBBAgEDIGEAAAQQQQAABBFouQCBs+QCg+QgggAACCCCA AIGQMYAAAggggAACCLRcgEDY8gFA8xFAAAEEEEAAgchAqJ/k33cUBhgwBhgDjAHGAGOAMdCWMfD/ Ace9f6/qkJNEAAAAAElFTkSuQmCC ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/image007.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAmAAAAEmCAYAAADFgiw8AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAgY0hSTQAAeiYAAICEAAD6AAAAgOgAAHUwAADqYAAAOpgAABdwnLpRPAAAAAlwSFlz AAAXEQAAFxEByibzPwAAMrVJREFUeF7t3YffHMWd5/G9v+L2bm9vb/fWt+t1wPbaPu/a53VgvQSB EAi8Z9bZGJOMTTKYHIURGAkhCQUe5ZxQMBmBEGBAOSEJgQRKKMdHD4rU9W9wPdcqVXdXT/fM1FR/ 5vWql55npkPVu2qmv6ru6ec//Vn0eG/rrj5/ptSN8jMPBBBAAAEEEEAAgYYKjKxt/b0tOxUFA8YA Y4AxwBhgDDAGGAPNGQMnBTDFAwEEEEAAAQQQQKBhAjrgEsAaRsyGEUAAAQQQQACBkwUIYIwIBBBA AAEEEECgyQIEsCaDszsEEEAAAQQQQIAAxhhAAAEEEEAAAQSaLEAAazI4u0MAAQQQQAABBAhgjAEE EEAAAQQQQKDJAgSwJoOzOwQQQAABBBBAgADGGEAAAQQQQAABBJosQABrMji7QwABBBBAAAEECGCM AQQQQAABBBBAoMkCBLAmg7M7BBBAAAEEEECAAMYYQAABBBBAAAEEmixAAGsyOLtDAAEEEEAAAQQI YIwBBBBAAAEEEECgyQIEsCaDszsEEEAAAQQQQIAAxhhAAAEEEEAAAQSaLEAAazI4u0MAAQQQQAAB BAhgjAEEEEAAAQQQQKDJAgSwJoOzu8YIbN+xW0np7OxqzA7YKgIIIIAAAiUKEMBKxGRTzRfYs++A uqXPIHV678trRX7mgQACCCCAgO8CBDDfe4j6JQrYwpc8xwMBBBBAAAHfBQhgvvcQ9UsU6Jgw66SZ L8IXgwUBBBBAoF0ECGDt0lPU8ySBePiSn3kggAACCCDQTgIEsHbqLepaE5AL7ec8N19NnvmcWrx8 DSoIIIAAAgi0nQABrO26jAoj0FgB/Y1S+ZeHXUAb4VM9Ad33XPJQvb4vu8UEsLJFK7g9+UCS2ah4 mTt/QaqEfHjp04j9hoxXm7ZsO2V5md3S33BMWsZcSWbG9DciZfu2D0l5zqxvPbNpUj/bdmy3wnhn wybrsrb15TnTw3X9VWvX574Vh/Sf9Ff826TaUP4Ve3m9yAHHpf7Sd2Lquh+XbcZ9bWPM9e2aZiQ+ rjOxry1Y3j0+tbE85/Jwba/LGGjFtnRfNHNsi2sRc90v4hW/7CH+/pBxy39WXEYwy5gCBDDGRGEB +WCNfyC5HFjkAyu+ju0AZm7X5SBn1sP2wZhUX1nXZR8CJh/ItjYnbSNtn7btmPXIu77rQT0eWJPa E3/edbvmoMpbf5fAnXebrn2bFurTjCTApoVHCeZJ67vcvy5ve9P6qpXbatbYln4sai7bSApeLp81 hT9c2UDQAgSwoLu3OY1L+zBPOrD4GsDkwO/ySPtQdgmTWWGn6EFKtp81C+l6YDHrmrVdm1/eA77e Z9q+8m6zngCW1yhtHzIzldTv8lrWI29708ZAK7fVjLGtLYua5/kPSj3jK6vPeT1sAQJY2P3blNal fZjLa7aHTwHMPPWWdapKZjnSApRLANOnPGVZWzFnUkxjc30JKrY6Jc3I2PpMn0rT17jILF/Sdl0C Q7zfXeov+88zk5q1TdPV9dSmrnfSwVdM4tuOh7S0g3BamHP5Jm9We/OMgWZuK6sfyqyL+VlTxNz2 PpcxoceR/CvvAz1u874nmvLhzE68FiCAed097VG5rP9N204D+hTAzGtEsmZ4bMs34nRqWoCxHehN 06TTobbTp2ltlu2aITXvXxxwPZ0sdbNdi+ZyKrnMGQgJ4WYYTLqmUPpJlk+7Fsw8FWZ7z2SdhnQx dB0Dzd5W2idZmXWJ76eouYyn+BhIC8kybrP6rz0+zallMwUIYM3UDnRftv/Bxj+4bLNgPgUwM2Bk hYt4QJAPZfOD2mUGLG9YcDlIyfAy/8cv/2M3H+ZMk8tpV9upHDnouD5c6y/bs8082MZQnm261lMv Z5s5yTuDFt+nGdolsJn7yBoTru11GQOt2FZSH5RZlzLNzfd10mx+3rHF8ghoAQIYY6GwgPkBavtf uDmD4VsAM0/fJIULc2ZEgolPAczsC3NmyxZuXIOUOTOVNVOYdwYvvrztdJo5w+B64M47wG0Xbudp q21/8dCrA74ZarOCsGt7s8aA1K8V2yoawFzaFd9HUXPzfS39xixX3ncTy6cJEMAYH4UFzA9G2aA5 y2JO3/sWwMxgZZs5knaZ1wXJB7JPAcwMSeZ1KbaZLNcBYPazy3VLetuuB3y9vC0omtfm5d2maztt RkVuM2C2RYc5W9BLm2VzbW/WGMgTwMrcVtEA5lKXpPFTj7ltHEgdXP/D4jreWK66AgSw6vZ9aS23 BTDbdUbxDy7fAphgmB/wtv/tmvf/kfXqCWBilnQBvq1jXA6+LrNGZl2zZl3idTHXFQvXh0v9zW2Z 12BlfXsur2lS3W33jXJtp2052+lHvZx5ujDPrSNspyxdxoBrAKt3W3n7wWVsuNZFu5ZlnnZvPIJY kXcF64oAAYxxUFjAFsBsH/Lxg72PAcz8kM+aPdIfwPUEsLRvUdq+TWUai6U8p4tte7YDhLmdPNe1 NDuAZR2YzdfzmrrOyGRdE5j1BrKdCtPr5DkNWdYYSHpv1jOebNvK2w9ltku7lmWedr8/aafshyCW 9Q7g9SQBAhhjo7BAUgCzXQumP6x8DGDmaUjzFJs5W6Hhyg5gLhfxZ90QNOmgUNUAlnWBe/xNUMTI fDOZ49y8lsx2GjLpdGeewJl1qqxV22rk2Nb2ZZrLNuVzIWkmTL8Pky5ZKPzhygaCFiCABd29zWlc UgBLmwXzMYBJfc1r1+L3/ImHnviBtJ4AZs5gxWcfbNcBuR4ws+7GXiRc+D4DltfUdQYsz7Vu5jbN WVXbPebMYJ90wX9ZYyDPrFXWeHKZTWvW2Nb2ZZrH+1PGf1oQI4Q153gT0l4IYCH1ZovakhbAbLNg ctrF1wBmXjuir8lJu6akngCWZ0bGdpCLX2djhsa0g6Z5cMoTLmzfCnMdclmnE23byXsNWF5T1wCW 51o3c5vxA3bSqUzzNGTScrbwrK8jzDMGyhxPtm3l7Ycy2yX1KdPcNkbSgliRW5W4vpdYLhwBAlg4 fdmylqQFMKmUedCXg4WvAcz8xpq+bi3tQ70VAcw8yJmzKEnBqsxZrDzXj+UNYLZTc836FqTNqJ7b D9hu5pr1J6j067aZsixD1zHgEprK3FbWB1OZ7SrbPK3utr+UkDd8ZtnwetgCBLCw+7cprcsKYEn3 Vcp793iXezG5/IFcs77mNTfmbIIZIM16+BDA0q63iw8C2wHK9X/t5umXPAebrIOsOVBdgmLebbq+ GWxG9fyZmaQ/DeQSwmxjPau9rmPAJYCVua0s9zLbVbZ5Vt3Nz4o874msbfN6+AIEsPD7uOEtzApg tlmwrNNLso552i/rlgm2A6et8VkBzHYbgnh9zcDiQwCTdrrMWtR7k1FbIHINbi4H/Hg/yXbNsGe7 vibrwF1k4JvjM2vs2faVdeF21hcpzG26tNdlDLj2R5nbSuuLMttVtnnWGHKpe9Y2eL26AgSw6vZ9 aS13CWBy4E/7cLT9z9EWqNL+h1nvAcOcAUv7Y9u2A7EvAcz2lXmXv6EoQSDtq/S22ZA8px9dD/iy nO3vTkr9XNpR5uyDbSYl7Xo5Gd8SEvU1g2ZfyLrShqSSdd88V8N6x4DNrsxtFQ1gLnUp21zGQNYt JswQXc9MaWkfxGyo7QQIYG3XZf5V2CWASa1tsyj6Ayzp4GlO8cvycqCTcCYHPQlL8iFpW871Vgy2 g7tte7Jv240y6wlg8uGedkCuZ/ZD1nH5c0G2QCVtkzqJa7xeSad08sx+2cJDvP36zznZ/v5iknnW Nm22ed45tplCfd8nGQN6++IVN9LB1Lw+yOXAbI45c9bPdbbFZQw0clutGttlm+vPJhmX0n/xMW/7 W56yfD3XCuYZlywblgABLKz+bElrXAOYLSBkBbB6L6pN+0p41inItLBo+4CtJ4BlXQdkBlLXA6bt 9KmtzlmnWdPqlzUrYBuEZv2z2q9fT7vuL+82886QZd2E09YGPe7M11wOzFl34C9zDDRyW1l926ix XbZ5VjtcLqNoyQcyO20bAQJY23SVvxXNE8CSZsHSDo55D4RZ9+NxCWC2GRDXbxba2lI0LLgeMG31 Tpp9SZuRtB18sm7umec0U9bBTfaVNWtU1NTlHSVjL891RfIfBtupMJd9Zf2h9DLHQCO3ldW39Qaw tLHdCPM848vlC0IuY4BlqiVAAKtWfzektfGpf5c/22L+T1/WyZohkNezvuEkAclldsY8VZF0Os38 AE7atnkfJ1twsP1h37QDlbmNPKdXzHqnBVJpu7imhQw5NZb2NwpdBpVL+6Xe+jRoWduMG2cFuqR9 6rGXZCTPS731GHaZEU3al3kaNh5WyhwDZW7LpW/T+qGMujTKXNqWdDmCtEnGbJE/1O4yzlkmXAEC WLh9G2zLil7fEyxMwYZJGDNts4JxwV223eqmUd5r4dquwVS4JiDvA/O9AQ0CRQUIYEUFWR8BBBBA AAEEEMgpQADLCcbiCCCAAAIIIIBAUQECWFFB1kcAAQQQQAABBHIKEMBygrE4AggggAACCCBQVIAA VlSQ9RFAAAEEEEAAgZwCBLCcYCyOAAIIIIAAAggUFSCAFRVkfQQQQAABBBBAIKcAASwnGIsjgAAC CCCAAAJFBQhgRQVZHwEEEEAAAQQQyClAAMsJxuIIIIAAAggggEBRAQJYUUHWRwABBBBAAAEEcgoQ wHKCsTgCCCCAAAIIIFBUgABWVJD1EUAAAQQQQACBnAIEsJxgLI4AAggggAACCBQVIIAVFWR9BBBA AAEEEEAgpwABLCcYiyOAAAIIIIAAAkUFCGBFBVkfAQQQQAABBBDIKUAAywnG4ggggAACCCCAQFEB AlhRQdZHAAEEEEAAAQRyChDAcoKxOAIIIIAAAgggUFSAAFZUkPURQAABBBBAAIGcAgSwnGAsjgAC CCCAAAIIFBUggBUVZH0EEEAAAQQQQCCnAAEsJxiLI4AAAggggAACRQUIYEUFWR8BBBBAAAEEEMgp QADLCcbiCCCAAAIIIIBAUQECWFFB1kcAAQQQQAABBHIKEMBygrE4AggggAACCCBQVIAAVlSQ9RFA AAEEEEAAgZwCBLCcYCyOAAIIIIAAAggUFSCAFRVkfQQQQAABBBBAIKcAASwnGIsjgAACCCCAAAJF BQhgRQVZHwGPBBYvX6NO7315rdge+rWkf/U6e/YdUB0TZtW202/IeCW/m4/XFiyvLcMDAQQQQCC/ AAEsvxlrIOCdwPYdu2tBKR6sXCv5zoZNtfUmz3yue5U5z81XUuQh/5pBa9OWbeqWPoOswcx1vyyH AAIIVFmAAFbl3qftwQhIgJo7f0EtEKXNgNkaLMFL1pEQpx/yu4Qsecjz8Rm1zs6uWviS4MYDAQQQ QKA+AQJYfW6shYC3AnkCmA5XMnsWf6QFMJkNk7DHAwEEEECgfgECWP12rImAlwJ5ApgEKVnenM2S kBU/Bal/5rovL7ucSiGAQBsKEMDasNOoMgJpAq4BTE4lyrJyOtF8yKlMfU2ZnKKU37nui3GHAAII lCdAACvPki0h4IWAawCT2SxZVv7NekgAk6AmIczlG5JZ2+N1BBBAoOoCBLCqjwDaH5yAawCTQCXL ykxY1kNOSeqglvUNyaxt8ToCCCCAgFIEMEYBAoEJuASwVWvX18KXvrYrjUCuE4vfhiLtAv3AKGkO Aggg0DABAljDaNkwAq0RcAlg+vqu+K0nbLWVi/Nlpiw+S0YAa02/slcEEAhLgAAWVn/SGgQy7wMm 13HpO9ynccWv+4ovl/QNSegRQAABBNwFCGDuViyJgLcCrn9iSBqgL77PupFq/LqveMNt35D0FoaK IYAAAp4KEMA87RiqhQACCCCAAALhChDAwu1bWoZAEAKHDh1SW7duVatXr+4uS5cuVfPnz+8uLy5c owa+sPmkMmXBDvX08t3qpTV71brtXWp359EgPGgEAgiEIUAAC6MfaQUCQQjEw5YErDlz5qgZM2Zk ltnzFqtfjV/nVPo9u0mNfnWbevXtfYSyIEYNjUCgPQUIYO3Zb9QagWAEdu7cqZYsWaJmz56tpk+f XleZ9dIip/BlC2l3zXxPjX99u3rj3f2q68iJYFxpCAII+C1AAPO7f6gdAkEK7Nu3Ty1fvlw9+eST dQUuM6gVCWBmKJPZseWbDgbpTqMQQMAfAQKYP31BTRAIWuDDDz9Ub731lnr66adLCV3xECYB7Opx 60ott05fr6Yv2qm27T8SdL/QOAQQaI0AAaw17uwVgcoISPCS2a6ZM2eWHrx0CGtEAIsHuuHzPlCb 9xyuTJ/RUAQQaLwAAazxxuwBgUoKSPBatmyZeuKJJ9S0adMaWiSA/TKaAWt0GfD8ZrVuW/bfzqxk h9NoBBDIJUAAy8XFwgggkCXQzOClg12zApgOeBLEmBHLGgm8jgACaQIEMMYHAgiUJrBmzZraLSOm Tp3a1DLzxYXqqmgGrNll1tJdfHOytNHDhhColgABrFr9TWsRaIjAgQMH1Ny5c5sauuIhb+bcKICN jQJYC8rN09arZRv51mRDBhYbRSBgAQJYwJ1L0xBohoDcoV4uhp8yZUrLyhNRALsyCl+tLEOjC/W5 j1gzRhz7QCAMAQJYGP1IKxBouoCe9Wpl8NL79iGASfi7/Yn31IadHza9L9ghAgi0nwABrP36jBoj 0HKBjRs3tnzWKx78JIBdEQUgH8qvJryj5q7e2/I+ogIIIOC3AAHM7/6hdgh4J7B27Vo1efJkr8qM FxaoK8ZEAcyjMvSlD9TR4x95139UCAEE/BAggPnRD9QCgbYQWLRokVfBSwdBCWCXR+HLt9L3qU1c F9YWI5tKItB8AQJY883ZIwJtJ3D8+HH18ssvexm+JIT5GsAkEN43Z6PadfBo2/U5FUYAgcYKEMAa 68vWEWh7Abmx6jPPPKMmTZrkbZEAdlkUdnwtt8x4T32wj78p2fZvBhqAQIkCBLASMdkUAqEJSPia M2eOt8FLh0LfA5gEw2smvas28fckQ3uL0B4E6hYggNVNx4oIhC0gpx19n/nSAWx6NAP2i9HrvC83 T3+P05Fhv21oHQLOAgQwZyoWRKBaAvPmzfN+5qvdApiExDtmvs+F+dV6K9FaBKwCBDAGBgIInCKw cOFCNXHixLYp055/0/vZr/gM3b3RhfncooI3HgLVFiCAVbv/aT0CpwisWLGibYKXDokSwC6NZpfa qTzy/BZGHwIIVFiAAFbhzqfpCJgC69evb7vwJSGsHQOYhMXZS3czCBFAoKICBLCKdjzNRsAU2L9/ f+0+XxMmTGi7IgHs51GgaceydlsXgxEBBCooQACrYKfTZARsAs8++2zbBS8dFts5gF03Zb3a33Wc QYkAAhUTIIBVrMNpLgI2gVWrVqnx48e3bZn63BvqkmgGrF3Lg89uZmAigEDFBAhgFetwmouA7dSj 3M6h7QPYqCiAtXF5ac0+BicCCFRIgABWoc6mqQjYBORmq+PGjWvrMiWaAftZFL7aufxywrtqH6ci eZMiUBkBAlhlupqGInCqwMqVK9s6eOngKAHsp1EAa/fS8ep2hikCCFREgABWkY6mmQiYAsf271Yv PTWLAOZZcFvzAd+K5N2KQBUECGBV6GXaiIBF4PCLI9T+B3ur9ZMfUrNmTFdjx45t2zL52dfVT6Ig FUK5Y/ZGxisCCFRAgABWgU6miQiYAh917lX7H/53tb/vBd1lxexR0X3AJrVlCJv8TBTARkYBLJCy +P2DDFoEEAhcgAAWeAfTPARsAofndqgDfXudUvYM+JH64x+mqjFjxrRVCS2A3TGLWTDeuQiELkAA C72HaR8ChoDMfh34/UXqwAPnJZato25Wz8ye0TYhTALYj6PZr5DKImbBeO8iELQAASzo7qVxCJwq cHju8Ch49XQq70x5WE2fOkWNHj3a6zLp6T8GFb4kSN7OLBhvXwSCFiCABd29NA6BkwU+6twTzX71 jsLXuc5l78MXqSUzR9auDRs1apSXZWIUwH40Yl1wZfnmQwxhBBAIVIAAFmjH0iwEbAJH5o1SB353 Tl1l58CfqRdnT1UjR470rkx46rXgwpcEysEvbWMgI4BAoAIEsEA7lmYhYBPofOynUfjqUahsHH2r mj19ihoxYoQ3JdQAdsnod9ShIycYzAggEKAAASzATqVJCNgEjm9ZUyh4mcFt7dT+auKE8V6EMAlg P4xmjEIsc/kbkbyhEQhSgAAWZLfSKAROFTj8wlB14P6zSy17+l+s3pj18bVhHR0dLSvjn3xV/SAK YCGWO+dsYjgjgECAAgSwADuVJiFgEzg44OIofJ3VkLL9scvU8zOntDaAdUQBLNCydd8RBjUCCAQm QAALrENpDgLW04/vL4uC15kNLxvG3KFmTJ2sHn/88aYWmQH7fhS+Qi3TF+9mYCOAQGACBLDAOpTm IGATOPz0AHWgzxlNK0unD1NjonuHNSuIhR7A7ntqMwMbAQQCEyCABdahNAcBm0DnI99VB/t8p6ll b7/vqldnjlXDhw9veBn7h1fUf0QzYKGWH496Rx09/hGDGwEEAhIggAXUmTQFAZvAiV0b1cH7/rVl 5YMhV6gnp01Uw4YNa1gJPYBJsHzrgy4GOAIIBCRAAAuoM2kKAjaBY6vmRuHr9JaXd8fdrSaOH9eQ ECYB7OIopIRcpnEdGG9wBIISIIAF1Z00BoFTBY48NygKX9/2ouzr20MtnDZMjYxu4jp06NDSypg5 89XFj0cBLOByz5NcB8b7G4GQBAhgIfUmbUHAItA19hp18N5veVV29v+emjdjrBoyZEgppQoB7Ecj 32F8I4BAQAIEsIA6k6YgYBM49NA5qvPeb3pZtgy/Wk2fNF499thjhcro2S+r70WzX6GXHQePMsgR QCAQAQJYIB1JMxCwCZzY9b6XwcsMhG9NeECNHjWy7hA2elYUwIZHASzwsnTTIQY6AggEIkAAC6Qj aQYCNoFjK19Qnfd8oy3K/t+dqV6fOqx2XdjgwYNzFQlg/zcKX6GXJ1fsZaAjgEAgAgSwQDqSZiBg Ezgyb0QUvv6lrcqu6P5hz04dSwCzBMrRr+9koCOAQCACBLBAOpJmIGAPYB2q8+6vt2XZMOImNXn8 GDVo0KDMMnLmPPXvUWAJvfR5egsDHQEEAhEggAXSkTQDAWsAm3VfFL6+1tZl6aR+akTH42rgwIGJ pWgAO+uyvur03pefUsxA993BK1XP26d1L3fOb0aqiwYsOin4XThomZLnZXs9fj1Yye/mdnrd90xt mbyB8dZZmxjoCCAQiAABLJCOpBkI2AQOT7tddd711bYvex/ooV6ZMrx2WvLRRx89pYx44iX13WgG rN6iw1fW+mdGQe3sKFRdFAUxWVZ+luf07/KcBDQp+uceUdCKb7d3/zdq6/SOglnW/szXr5z0HgMd AQQCESCABdKRNAMBm8CHo6+Mwtc/B1O2DvyJmjlxtD2ADYsCWJ2lO4ClrH9+35drs1q97n+hez/y c+25e5/pfk5+793vjdrvFz6yqPa6rtdFg1bWwtcFD71WV12vnEgA452OQCgCBLBQepJ2IGAR+PDx S1Tnnf8UXHl7xG/V2FEj1IABA2pFZsAuigJPvUUHsLT1z/nthFqY6h2FKr2c/CzPyWv6Ofn9giiA ye/6df1ajxtGqp53za67nhd3cDNW3ugIhCJAAAulJ2kHAhaBrv69ovD1lWDLwon91dDobvrNCGA6 pNkCmLwWD1nnRqcg5Xf5V/98XjRLJgGs3pCo12OgI4BAGAIEsDD6kVYgYBU49OBZqvOO/x102Xv/ meoPM55QF8opvzqLeQH+2b8arM6LTi/Gt6eXuSCa9dLPy8/6+e7nBi5Tsr6eGbsg+v38aEasduox +rneOur1GOoIIBCGAAEsjH6kFQhYBbr69VSH7vhy8GXp+P6Fg008VJ0dzVRJgOoZzVrp510DmBmw JHRJ+JIQJj/rbUtIqyeQMdQRQCAMAQJYGP1IKxBICGDnRuHrS8GXJVEA6z307dJKr4ffqAWwM+Tb in/arg5g5/df2P2c/Nx9ajJh/xK4et7zdG2dc26bViv6Z3ktb70Z6gggEIYAASyMfqQVCFgFDo+4 VB26/YvBlyXj++UOMmnBxxasevzpInxbAJPXbNs7987ZtRmveIiTcCe/633kCWCXT9jASEcAgUAE CGCBdCTNQMAmcHjEz6Pw9Y/Bl7IDWK+HXq3NbMXDk8xiyXPnPTCvO1D17PPxbSjiz+lAJduQGbQL Bq4ggPH2RACBUwQIYAwKBAIWODzhmih8fSH4smT8w3XPgEnI0rNSEp7kZwlOUs5/dGn3diVIyXNn 1a7dWlErejlzFkvWk9fi25VlZF/xU5D6Z9dZsOumvR/waKVpCFRLgABWrf6mtRUTODLjdnXots8H X5aMe1hdMGRtXaXnfc+rs67/+KL72nVfv+irzrljluo1YMkp2+vVb8FJy/a4dWoU0pafspxs79x7 njp1/WibZ1398Tcke9w03rqPtHbcNps/RVSxtzDNDViAABZw59I0BI6+3BGFr88FX5aM+31d4ave 0Naq9YbM386gRgCBQAQIYIF0JM1AwCZwbPlT6tCtpwVfqhLApi/ZzUBHAIFABAhggXQkzUDAJnBi 65oofH02+LJk3EOVmAF7Y8NBBjoCCAQiQAALpCNpBgJWgWOHo/D1meDLkrEPqvMfWxN82bz3CAMd AQQCESCABdKRNAOBJIGu+7+hDt3y6aDLkjHRNxYrEMCOHv+IgY4AAoEIEMAC6UiagUCSwJFRl6qu Wz5VV1l3wxfVjCu/rW764UXd3xKU37fe+LmTtue6nKw39NKza9t68GfnnbIdqedLv/p6bZk8da5C ALtq4noGOQIIBCRAAAuoM2kKAjaBoy88GoWZf6irPPiznmrVdV/qXnfxtV+phScJZLtu+mz3867L zbjyW1Gg+1ZtPfl36KVnnVSvdTf8Y23bW288LVd9l4x5QPUavDroMmDuVgY4AggEJEAAC6gzaQoC NoETG5eqrps/WVqR0CQh7P0bolmwlO3alpP11l3/hdp6sr78rrex68bPROHrQrXq2i/mrmsVAtj8 dfsZ4AggEJAAASygzqQpCCQJfHj3l6NQ8/ellAd/em4tOG39TTQDlrJN23IfB7DP19Z7/4bT/hTA Pq7X0EvPVE9f9fW66rhkzO+Cnv2S2b3Ow8cZ4AggEJAAASygzqQpCCReBzbuyrqCTTxg7brx07WA JCEqLSilLScha8YV36zVRf7VP7909ddqAazekLg4CmDnDX4r2PLrKVz/xbsbgdAECGCh9SjtQcAi cPSVkerQb/+urqL/RI/+d3oUnHb+5lOnbMtluS03fEbpmbFxvzhdye9vX/e52qlH+bneOi4eHQWw QVEAC7Q8/so2xjUCCAQmQAALrENpDgI2gY/2bK473MRD0cpr5SL5C2tFglNSYHJdTkKX3pb8POTn Z378DcnoNGeeQBZ6AFux5RADGwEEAhMggAXWoTQHgcTrwIZ9X3Xe9L8KlxXXfOHjkPSTc1K35bLc kJ+foeZe9dXadqZd/o1a0T/La671XTT6ftVz0KogyyVj3mZQI4BAgAIEsAA7lSYhYBM4tnCac6BJ Cz4brvts9z3Biiz31BX/J5rx+v8hS0Ld29eeVquj3gcBbJWa8OYOBjQCCAQoQAALsFNpEgJWgejP EnVGf5bINdQkLSchScJS1gxV2nIyO3bTD3urHTf8Q3d9igWwPurcgSuDLNsPHGVAI4BAgAIEsAA7 lSYhkCRweMpv1MEbP+Fc+kanGZf/+vPdy6+/9jNKnpOwtPaaz3Y/77qc7HvT9Z9SN/6g90nry/OP XXKGmnbZv9S2Kf/qn13qu2hUmAHs5ic2MJgRQCBQAQJYoB1LsxCwnoZcO885fEnwkfA15tJvd59y lOAlwUiCWDwYuS6ng9bcq/75lHpIMNPhTvYpv7uEL1km1AD2/Oq9DGQEEAhUgAAWaMfSLASSBA49 cq5zsHENQK1ebtHIPuqcR1cEVX7QsVod4Y9v80ZGIFgBAliwXUvDELALHFv5rDrwm78NqiwceV9Q 4UvC5MylOxnCCCAQsAABLODOpWkIJM6C9T+HAObxjBmzX7x3EQhfgAAWfh/TQgROETgazYLtv+F/ BlMWjghrBozZL960CIQvQAALv49pIQJWgc5+PYIJYAuiANZjwPIgyvcff4trv3jPIlABAQJYBTqZ JiJgEzi2Zh4BzMPQ9uSKXQxYBBCogAABrAKdTBMRSBLoGvdLte/6v2n78uaIe4OY/bp2yjsMVgQQ qIgAAawiHU0zEbAJfHRgh9p/0yfDCGCPRKcg27y8u6OLgYoAAhURIIBVpKNpJgJJAodf7ggigJ39 yDLVzmXoy1sZpAggUCEBAliFOpumIpAkcHDA+WrvdX/dtuXNjnvV2f2jANam5ScjuOkq704EqiZA AKtaj9NeBCwCJ/ZsUvtuPY0A1oIA1+vR5Wr1B4cYlwggUDEBAljFOpzmIpAkcHTFM20cwO5RZ/Vf 2pZlxuIdDEoEEKigAAGsgp1OkxFIEuiaeZfac+3/aLvyxuN3q7P6RQGszcrdszcwGBFAoKICBLCK djzNRsAm8NGxw+rAI70IYE0Icj/ueEt1Hj7OQEQAgYoKEMAq2vE0G4EkgY+69qu993xV7b7mr9qm vDG8vWbALhy8Qm3bf4RBiAACFRYggFW482k6AkkCJ3ZvaqsQJgHszIeXtEXpOWCZWr21k8GHAAIV FyCAVXwA0HwEkgSObV6ldt/8abXrmv/ufXl9+F1tEb4kJC7csJ9BhwACCCgCGIMAAQQSBY6u+6Pa ff0n1K5fRyHM49IuAezZVbsZbQgggEBNgADGQEAAgVSBI6tfVLt++ym189d/6W1phwBG+OKNhgAC cQECGOMBAQQyBY5tXul1CPtjdAryjN8v9rKc+8hStYDTjpljjAUQqJoAAaxqPU57EahT4Hh0Yf7u u/5J7fjVf/OuvDbsTi/DV++BXHBf53BjNQSCFyCABd/FNBCB8gROHNih9vT9NwKYw2zbD4evVBt3 f1gePltCAIGgBAhgQXUnjUGg8QJys9aDU27yKoTJDNi/PbTIm3LnzHfVQW6y2vjByB4QaGMBAlgb dx5VR6CVAh8uekLtuPGTavvVf9Hy4ksAO6f/EjV90fZWdgv7RgCBNhEggLVJR1FNBHwUOLZtndr9 wHc8CGB3qO88tLCl5fvDVqi3uMGqj8OUOiHgpQABzMtuoVIItI/AR0ejU5JPPqi2X/vXatsv/2tL yqtDb29p+Br84iZOObbPkKWmCHghQADzohuoBALtLyCzYXsHX9yaADbkdvWvDy5oevnluNXRrNfB 9u88WoAAAk0XIIA1nZwdIhC2QO3asFs+19Qg9mqTA1ivAYvVtIXbwu5IWocAAg0VIIA1lJeNI1BN ATkt2fniULX95tPUB1f9l4aXZgUwCV6jX93C6cZqDmtajUCpAgSwUjnZGAIIxAUkiHW9PlHtuP3L DQ1hjQ5g3x28tDbjxa0lGN8IIFCWAAGsLEm2gwACqQISxHY/ckFDgtgr0SnI0/u+WXq5dNRKNXvJ dnXk2Al6FwEEEChVgABWKicbQwCBLIHjuzeqA3/oq7bf/iW19co/L6XMf+y20sLXRYOWqEFzN3IX +6yO5HUEECgkQAArxMfKCCBQRODI26+q/RNvUDvu/lqhIFY0gP3H0GWq71Pr1Stv7ynSHNZFAAEE nAUIYM5ULIgAAo0UOLF/u+paOKOuQCYB7NsPvOFcLhy4WN0z+x319Iod6oN9hxvZLLaNAAIIWAUI YAwMBBDwVuBwNEMmoUxOWe7puFTt6tdL7ejzbbXliv98UrEFsB8PX66umbha3TbjbTXqlc21sLV0 436u5/K2t6kYAtUSIIBVq79pLQIIIIAAAgh4IEAA86ATqAICCCCAAAIIVEuAAFat/qa1CCCAAAII IOCBAAHMg06gCggggAACCCBQLQECWLX6m9YigAACCCCAgAcCBDAPOoEqIIAAAggggEC1BAhg1epv WosAAggggAACHggQwDzoBKqAAAIIIIAAAtUSIIBVq79pLQIIIIAAAgh4IEAA86ATqAICCCCAAAII VEuAAFat/qa1CCCAAAIIIOCBAAHMg06gCggggAACCCBQLQECWLX6m9YigAACCCCAgAcCBDAPOoEq IIAAAggggEC1BAhg1epvWosAAggggAACHggQwDzoBKqAAAIIIIAAAtUSIIBVq79pLQIIIIAAAgh4 IEAA86ATqAICCCCAAAIIVEuAAFat/qa1CCCAAAIIIOCBAAHMg06gCggggAACCCBQLQECWLX6m9Yi gAACCCCAgAcCBDAPOoEqIIAAAggggEC1BAhg1epvWosAAggggAACHggQwDzoBKqAAAIIIIAAAtUS IIBVq79pLQIIIIAAAgh4IEAA86ATqAICCCCAAAIIVEuAAFat/qa1CCCAAAIIIOCBAAHMg06gCggg gAACCCBQLQECWLX6m9YigAACCCCAgAcCBDAPOoEqIIAAAggggEC1BAhg1epvWosAAggggAACHggQ wDzoBKqAAAIIIIAAAtUSIIBVq79pLQIIIIAAAgh4IEAA86ATqAICCCCAAAIIVEuAAFat/qa1CCCA AAIIIOCBAAHMg06gCggggAACCCBQLQECWLX6m9YigAACCCCAgAcCBDAPOoEqIIAAAggggEC1BAhg 1epvWosAAggggAACHggQwDzoBKqAAAIIIIAAAtUSIIBVq79pLQIIIIAAAgh4IEAA86ATqAICCCCA AAIIVEuAAFat/qa1CCCAAAIIIOCBAAHMg06gCggggAACCCBQLQECWLX6m9YigEATBU7vfbmSoh+3 9BmkpPBAAAEECGCMAQRyCryzYZPqmDCrdmCVMue5+Wr7jt05txL24mbwCLu1ya0LJYDRn1UdwbS7 kQIEsEbqsm2vBK4et065lLRKv7ZgeS10zZ2/oHuxTVu21QJZ2Y9WHfQO9O2lXEpae4vUvci6ZfdB 0e350Jbp06crl9Ko/ixqyPoIhCpAAAu1Z2nXKQKXjVmnXEoSncxyyQG135DxTdFt1cH7wP1nKpfS qAN2q9rdiE71oS3Tpk1TLqVR/dkIV7aJQAgCBLAQepE2OAn8bNQ65VKSNiazXnJAXbV2feb+9uw7 UDs1qQ/AMkMmM2Xxh7w2eeZzSpaVf+V3fX2QXi/+r6zb2dlVm32T5fTy8dm4zIo5LNB57zeVS8lz wI63Ne5i1j2p3bKvuJM+9ZvHU4wlREuA1vWR9W3PmW3L2rcsL/2rty39LeuYAcz8vRn9OXnyZOVS 8vRnfFmXNqSNddmWfm+Z/a/347IPh6HNIgh4JUAA86o7qEwjBX40Yp1yKUl10AfXrOu95MArASl+ WlJfMxZfV8+mybJyXZkOGXr/ttkT2Y5eNn7gklBT1qPzzq8ol5LngK3bKobaQB905bSuGaRk+fjD NNXhJm6c5qnDql5eQrQ8J7+bz5mh0GXfenZUb0vW0eMl3hazT5vRn5MmTVIuJU9/xpd1aUNa34i3 WEnIkiI/m+PZZR9ljX+2g0CzBAhgzZJmPy0X+N7j65RLSaqoPnhmBTA9wxOf8ZKfzVkbvb3Fy9dY d+ly+koOWC7L5cE/dNvnlEvJc8DWdZRgoh+67ua3Am3tsZmaz6V52vZvPpdUH5d925bRoSwtgJmG jejPCRMmKJeSpz/TlrW1Iatv4iFc3g9mAG+GU573CMsiUIYAAawMRbbRFgIXDlunXErRAKZPD8qB yAwbeQ7GrsHKdTnXTuq6+e+VS8lzwE6qo+1523PaNL5PfaDWATbNwXU/9e7b1udSV3N7Ln3lsoxr X8py48aNcyp5+jNr/3naLcvG/xOiv+iSdx9Zy/M6Ar4JEMB86xHq0zCB8x9bo1xKUgX0QTZrBsw1 bGQdaJNe16ds9OtZ28kLevDGTyiXkueA7WpiCy3x58w2y+/6mrxGBTDbPvVzWft2CSKN7s/Ro0cr l5KnP81ls9qQ1je2U5C26xqz9pF3nLM8Aq0WIIC1ugfYf9MEzh24UrmUpArp00xZF+Hrg41tBix+ ui0rONle1xfrx2cMsraTF3jf9X+jXEqeA3ZZASzPPuPLFpkBc/G19bktTJrbakZ/dnR0KJdSr61L G5IM5XpGueYrfhG+LXy57CPvOGd5BFotQABrdQ+w/6YJnP3IMuVSkiokBws5kMjBIO2Rdg1Y/OCS dWAvEhqKoO6+5q+US8lzwC4awGym5v4bNQPmsm8dEOLX/blcA+bax0X6c9iwYcql5OnPvOE2rf/j /1FJqkMznIoYsy4C9QgQwOpRY522FDjj94uVS3EJV2k3YjW/ESfbk29xyexX/GCTFcD0NyfloK7X 09+s07Nw8ZmDsjpl+9V/oVxKngN2ngBma3fcVFvIc+a3IGU/tofrAdy2nMu+9ZcszG9B6v7SdTK3 34z+HDx4sHIpefozvqxLG9JmwMxTvGJozoK57KOs8c92EGiWAAGsWdLsp+UCp/d9U7mUrIrK6b/4 LQZsf4pI3x1fH1xkmfg3AGUfWQEsfisDffNXeU4HFAl0Uhc9+5JVb9fXt17558ql5Dlg5wlgtnbL vmym5m09GhHAXPYty0go1tcJmvd3SwpgzejPAQMGKJeS1p+6XWZYknVc2pDU//qC+/hp/fgtQnSd XPbhOr5ZDgFfBAhgvvQE9UAAAQQqJpAnmFeMhuZWQIAAVoFOpokIIICAjwLmqUWpo769iHmDXh/r T50QKCJAACuix7oIIIAAAnUL6D/ZFT/FKafYk25OXPeOWBEBDwUIYB52ClVCAAEEEEAAgbAFCGBh 9y+tQwABBBBAAAEPBQhgHnYKVUIAAQQQQACBsAUIYGH3L61DAAEEEEAAAQ8FCGAedgpVQgABBBBA AIGwBQhgYfcvrUMAAQQQQAABDwUIYB52ClVCAAEEEEAAgbAFCGBh9y+tQwABBBBAAAEPBQhgHnYK VUIAAQQQQACBsAUIYGH3L61DAAEEEEAAAQ8FCGAedgpVQgABBBBAAIGwBQhgYfcvrUMAAQQQQAAB DwUIYB52ClVCAAEEEEAAgbAFCGBh9y+tQwABBBBAAAEPBQhgHnYKVUIAAQQQQACBsAUIYGH3L61D AAEEEEAAAQ8FCGAedgpVQgABBBBAAIGwBQhgYfcvrUMAAQQQQAABDwUIYB52ClVCAAEEEEAAgbAF CGBh9y+tQwABBBBAAAEPBQhgHnYKVUIAAQQQQACBsAWsAUw/yb87FQYYMAYYA4wBxgBjgDHQqDHw /wBbYXjYMzJYqQAAAABJRU5ErkJggk== ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/image008.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAMoAAAAqCAIAAAB9Q1N9AAAAAXNSR0IArs4c6QAAAAlwSFlzAAAO xAAADsQBlSsOGwAABtRJREFUeF7tXLta4zoQdvZZCAUfTxCeIEtDRZvOLnebdJR0NE4ZOtpUNLGb 05In4EuB/S7ZmZFkXSzFdo5NUCxVxLpZo99z+UdicjgcolCCBIaRwK9hhvV41HJ1NxHlblXCSvJE /E5yjxd2llcH7RWKIYEinUXRLC344yKLZ3FWiJ9BXO0lELSX46OePd5fQVW5SlbFdP2xnl/hz1C6 SWASfK+awMA8TjePxcf9Nnm5XgKwuok0tJYSCNqrjq7tZje7jV6S7f3awBb3y9AlK/MEfDRyxugv VqBG+G5JzprAwxG7bO3t6EhakuMFJc7sCwZHLC2yLAOPjPwzbM/8NPiL+2tYFadphk+hveLHjUSI YpnRyNbbuFxCF0BDc+6VXujmA3CUJ9gDPH+tjRoYVPBrnPvyGgR46XvK0IXoAQ1kUWGksmp6DXpB bClGgjbyh1Rulwee5hUFeOkyQlAJbBj8BDbUkEO/eWOmwmgsrY06XvNuXFyL4Nqrrn25en6N4oc5 e3b15y2d7f5OwTVHdhWd+PfXqhZ/l1+fr++iMvr8wmbwjDlv5P3//oyzNR9vjCHlxX0wpy6IjCEv zEVXn5BOM3WX2gI8MnK/RGSAIyEZe+rrXEa/wHv1q1OAllhEbx9/AldGchXGEdhp5GhsFA0S1yzX JpJvGo9jzciVOYwn2KC7hFJ3YyjldhMxuj8UkkCl0EmRE6mj6uUijfVAyeLvMqNRdcMUHdI+/EmR OYP8yzAASsCo2VbvVwd7r8TDYjm0vayYxr9ehfCS0Y0S/zDYicBIigoGnxk8IUKwSv8SlgxKUkb7 3ot8JAuogGKSy3wrOYusJv6Z18nUTKWDAF4SUxpHo4JGCrVALlonCpWGNtXGY3Ubc637zoo5cTHm I9ncMy8TtQraHgupgo+kfdOoQWsV017UQ9UxdmyRPgNyR9NGSlM7E6mA+cxyG/30XClxgJCVM5wh VUR1eJkcsQIpexW69vPl434xmUw3t2mBHE2eYDYXgh/p73PXvNzub6ZICD3FERA+qG/gUXRNviyR RrN0WWN5wN/dRfyAS/B4zyeBMn/5Wn4ADnabLXJy7w9vh0OnILfY71yv76gyv+iscqQYeMnf54S0 oah47kRYsu66q4VxPN9meDzzcS3NmLkjWkuNVXQ3RTeAzGuvVKE+JqvSWXugE75IbzFdhISzEmSj 7hJB9/wB9NfzqszfI0FyUyyByk0v+cvfXRQ/2Zig+dohCMlzj96enSKA41/G1fUt6A3rhrT5pHb7 wtWsXqXAC2xixLEF/UHZ8fwHZEIYaoqoQhdaVFSyi2eJrunNLDInAJbxN6RZRp0XabNn39imXL1/ RjyB1XVaVCpKV8h/VU6PvYqntMHnMxIY3CLiqSZmGmvefp1u4OaRkxTMjwyJkVP0z1B98GhHWgg3 HAO1I1krWzpe2WKChmJjbVUIrzq2OOlFNho4LZlH0yw2PK7RIpJzi/CMSrj/MBRQOo9LYNASo84v H/lUQZ0iBEQ3mhMrBauqU/CWKq8O5Kjp4ppeb+LKIHuQ/cdPopKbaKStm/p33s9aBy3b3fPswEca e/3/37eHEbyClziPUEeCRZGqwgFoVTmq4S+ZVYfA6vtj8M59XnHDJfYAiH6H8AxeRAJbw2qQrsuN gO2WdQr9R/nUAU7MNMCLOxi9z35k2n4x02E0/+DlBJh91cyZreoUr3aww1jufR509gYN3gEU/TX1 EV5uG1mTixn80P7GmFOraS3uGdHlHwpQOGtc+bg85EK/DZDJYxjLkQJ5Qtp8na6zg03nbjR54cJ3 c8wOa23BlfYHnTYj+QmvlgCrUSdyg+yyOf2SmTPqUHa82+z8HBNab8Ry8xW3AK82gG/dxkbLaJ3t 6Br+kpnDOLLXaXnFzcwQ84VpENLbNIqjtWB7bOir9qJzHg1cgs0yfsclMzu8JNjtyVlCjoj9HFip sr+MgFLP3Tnw2CNUThnKV3g1g8sQP485v+OSmR1eKmIMfgI37ghyAEnMU9Ta6Aj8meg6eAkvIxp0 fFYocUW/maaSeUKSudb2jisHefayuubPVSY/8W1lmmzw6jY7b82uHlX5Olw2W1Bt9h9pGeFFPYRX O3BpH7t68uf7L5mdMnuVepH4V6MHPZ9jfEinWLGB+ngHLye48Ji2IaSeicbWuB5kr44s3DyOMMj8 Jw3q2S3tPFnsn2wHLMvVYhOZZ83myxt2pLaXct5LZq7Z89X2J/8PspNAeaZOztOtBB9rHHkkV9Rl EXLmczCXrtkxSz9AUquLYBrahlvavWi2MIhdAp4Zx7CNfkkgwMuv/fLsbQO8PNswv173H6AYEFw+ f3KlAAAAAElFTkSuQmCC ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/image009.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAACQAAAAWCAIAAAAn0KlpAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAO xAAADsQBlSsOGwAAAWFJREFUSEvtVNuNhDAMhCsr9BPaCc2EYthecuNnHKLT/ZxYaXX+AYw947Gd rK215Sn7eoqIeN5C9jr2bV3XbT8nqfh1iPfcEQIbgsw5uF8n8AiQbNuPl6BiZu0qaVlyvVqrORU8 ul0llzo6EHsLqlmyxS6ALAlp4rkqoXMGkSEWwcYqbxJXcvgSH5ASsGJJVJBRcd3plqViiIxeO5fD RIioFBUjIbCFQKEaeyMVsluU8X/jV01zimiF8BhJLgslTK07dl7ilYzi8UV95m7UrC/ut4E4cOy8 tfonWc7FMxuseqECyFvjbR5EcO9RmQ75N12yIN06U5ikkw1T1DF0LhvMVH3vbSCjvL72LodAZOa1 jDuINUlh8YZJ+j7TfEy7kuFsRCZZIN4Fn860nTO4NlIr5vNGx8AVENnMpAtpW8OwbLfzdT9QcqAt lniGG2IF7mN38Vsu4kfU/Sv7kzZ/bhu/AbNFQFPETt5YAAAAAElFTkSuQmCC ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/image010.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAQ0AAAAnCAIAAACaMIq7AAAAAXNSR0IArs4c6QAAAAlwSFlzAAAO xAAADsQBlSsOGwAABmlJREFUeF7tXD+aqjAQj3sWeMV+noA9gb5mK1s7LLWxs9zORkvpbLfa5sEJ 5AR+WyzcxTeBiAGCJOwgQUKzuobJMJP5k5lfGF0uF2IuIwEjgbsSeDHyMRIwEqiVwJDsJFiMrtfb PiYkWCyCWgGZAUYCIIGB2Em8fxuNpuddBGkmvY5kDt89swSeQQKc/0v94NvbIgA/iHkNwk7i/XwV OrvotLSY7Kzl6eK7mII0tDqTwOQQ7RwC+k19YOTPiDe1R6jJwhDsJNiuQuJuMiNhCp2sd+QH2e10 tlbMxJkErMnyRA3HmyJaygDsJPiC/Mp5tUtLyVoellaSkcEFkZp9GiWbF3P1WQLWcgPZgveFtv8c gJ3c1/c1A/Omc3KkYdt3w5WN6In6vNx6zLv96mByP3g7uQrT9dnuBdIxiNl4nghTW4ZWVxIYgJ0k niX8jmRFbP0ZE3I2OxdZeek5LvoOhcl2Q24HYCcsV/0o7TpgQ1KZX43/XEtjDQVrbutSAvH+wyPO 7C+aEgdgJ4RMDlADhl0Hv0EHI4ENyWFS0mawmHrObl3+oUu9m7nlJRAH+0XSBzgWK5zyNMojWeNt AH/y/ZKs3J5s3Xm58L8MQCz9f8RiI8xx3J1/7SgjPd7I4CApgGU0Jf5FEFx+44G0ujcGH/v5erx1 Wh/AHQ3Z37PNejlBS38ewLV4Ci7vUoI/Jc0GUz3tTG+5iZnmqtQBuoIcc316lJGATSY9KftzdlyT j/kz9KNSOxkw/ImuMQr08qat9xfpelVoYWZ+i91082NFKpPDHRAOBe2MNwIbocsZxdPR1XNjKVjY ELgAPgLldUKgPbUZP0M/igJi6BOVsnLI+lwfKbsTkYl2uzbJt8h5U9IgZ7W9Tw62lO6jqgjQHF2k riKJKwTKTbtwKBrOzSFgRMxDUyl2cx/Eky7gT+CC7NW3HllLP7iIg8Xb1zsH5ZRiO/73GRbLoxBH tj/vRzwcKIU0XONV/HMutS2svzMn/PzXbzBQKq5aP8fVFKgPSr+WvVElBjc3AT/qRqMwRTd+o81Z G8eTyHdFkYj+m1mL48AnQXCoCjMpQAclnjC1JZPzii0WFFFCV5vquUtbqn/C6kFMuB507JKOhOCC TFl85fJjlk8nkmNFpvIUUv7y+QdB22dkT71Q0Oexp+dZWv+MNuPyALrvFHh3bJHxmyMe4c5rnEIi +o1wkLAT2tvMGm/UEPDrJupTZCcTNflQsfoyDHJS/1mFdNXnD1XWLdvELUMkClfzXA2AoqDhrEBa crUm73iHaXI8F8WrUoioe7Ti75qoMmOD5++F1MKfKFJGFsZROlqWO2hbKTiVKVIinQXgiokrHo2m 7tlVzLvk/Y21PBYspcVIkeO5+LjyPKtaid46fYHKXQLVr4Y/qQRNubyrJEKVKdTl/wx3lC1F5qko pFMBASpDstEYdT/YaJoWb6J5Vw38KSlXcCVwtNcv0Iw13u/hLE1rU7QouUeTzltKKrFtmooBounj LMQ4d+KASpbZYvB7mBaywHoX5JQ2jdILtt+3sY2rGIzErSpSmEK3xAqBH8V6VyZkJiNOQInUox0r dzmuH7EfS+oQ9S7ojdwhJgqH+gUaKmML2CyyzLo1/Ol1BDl2QUK7RF9ZCJx9JwvKd0slypuBK1O/ FlAFfkvZRSjaSSNeyzchlX+bc9OAAf102ms7SV1ZKSRlCzj5nX2r6vgw/YOPvetUeVKc7dT2nZov L7w7u+yHK8+tqU4l6sIPSwEVJ1J721Da8RGUKxRnZcOhYEE1WqzWNiPW8l1QwIo2ZKsELsNgieLZ tmSjgiHQVqf9tRNluE1tAVxxbSQba7CULdpLPRQZUBgO7+o5PAwvfOUL7PN0UALV66vT3trJ/bcN iZYQLU5iHpmGMh09Sd/zRrOCsbU+VGOd9tZOVJVGj/OCmeSOTHNdUXvlca1yWbg5dohSfaiBj3+g Tp/fTuBgCb3ASnJvTqVLjOuK5vfxsicb8UPUwFe+5OM/Xqe9tRNpV34r36JjLmj/jEhjeiTXwICH aazT3tpJLdym9fWW1GYgSJlXs2CJWmOd9tZOauE2WMoT04GtDcB/oTmDHqTa5Vtz6kpvkMJ+lrs6 xWtndUOpCm6T+//v2oHioza/o9mNsHoyq4Y6Ne8lwvZKht4zSqDHedczqsM8k6YSMHaiqWIMW1pJ 4D9XndvzrFB90gAAAABJRU5ErkJggk== ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/image011.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAL8AAAAoCAIAAAAg67yqAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAO xAAADsQBlSsOGwAABflJREFUeF7tXDt66joQFnctJEW+rMCsgJwmVdp0UEJDl/J2NLgk3W1TpQle QVhBvhTH3kvujB7Ww5IlGwfbIDcJWNKMRr/mpRGTn58fEp8ogVYS+KdVr9gpSgAlcOnoKdLlbJYW cbE7kECRzmbLNFOFCZZr+E++S9yzT3a5fQbQK3G+rJt0vltweovD8IVzVg51mZKz0m5PjOHHxAL9 1gEQfGdd/PxQggOHtI1Jv0NBSWAeFsQ+HJuT3rhmnh7qjp4e6r/JQIW08sVYLNd09R+g4bh+1qzQ dPUCi2p7ivR5TXabufkOtO/Nwxt5oeoqB0EcjRbZdn1cvKymhExXn5/4lz7F3y+S3N2cqP+91B3j d0Mdp+GbfoWBKun5Zpe8/svWob06OHtPbr9CrAk2tegk3DaaBoEvtOEQTy5lVjvfEN3jpX6KRM/J QCndMaEHhEsXoM6C8AWwanqKvhrsscHFIxuy7+s9KP/i1VIH1CqWmftdjIMQ6kGWyzd9UMWKSUfi TtJCvGOxXHxN53tk/PXBE0ZZNX3x8XYki8eKMSvxMt9TeXHY7MuGjOj9rbBircxXHfUs3ZINWmb6 ZOnH7eazhHIn1NFoeaafLUuTjlsBrbST9M1dQr7+gu06RVv205fK1asJ7B62x+o5DJ7dAW8UCHo3 PvrdimKET4JXt/vfJBL1MGC32C7SQk4j0z2lWaF+baMn/z76/F7cnsnTn8rI0NXiMYNXLbePabmk v82Y9FPXiGTb7yfh8tupw5gdMpC9vxIWK2iPkzRvNTb0QNDw8LXLpVmxImh6e0+O37n2DrWt58El thgoEK0NU77RmlHH9eO0IcP5frcRS9kFdWCldvqOmM5JWghqXOgB27y+P5j72rKMpWGW7yii1lue Ki1giSaG90Q3YNUvQtHe35IiWy6zRohRG/ups9ZAZfZMNnstVXAydVRUddPnu40G4UWWzthEnROX YOvHd2lD1e6UmDE3H9naWOaQQTZJstCT1M5gnTlaRmtjBv6YCxwbkcG2Uefp0MXuYGTOQ6gHxVy1 DEjmwN8SHDhIS9k28Zpzx4lAGyg07oPLU/V5a3xBf3pW58HhMQcyGoCewJFaNjsfA4pgQ9Ajg4uQ RF3L2dd301Mxuv2oO+cKzvy1ThP+ynSHO6i+x1T05Jizkq4l7nWubTh++gJPbWxcCxCaAPOelHIN bdqM4a5hP5xR9a9Z1hI9YoU4YvSsemC+s59JRaq9SYDHXBjMwHkh7NL9nAb980c4ARLxB/rY8NKS CWkdg8SOFyEBxK3UO3YUq6dLpQdSa8Ya5WF72zqR8IkSQMvFAeF0DxS7VR6keX2JE/mK3ccgAUCP T/NU9IiSETjTFC9Cy1/iJLyqp4y3eD7LVQeqASlarjPtq37JgNfMT0DkAQ+cJU1kUh7PNMBlvruZ /nmCcN48PrLvKO0Az5xhwEnDJe7TC5wToIehgry+syMgrOlUjpTx8AcexBaehkA7LEqEM594UeEC 4dB0SlQxgDOspwlL86TnCYVBOr/n06+GjtTtEpjA100BF9tHCTAJjKtCYyirhp4hfXiNR7ZkHyeK vzgUXn+Vj6iUW0mAH+7LWga4w1Gtrmg19Ig6RcvVbm+Ctnkghx+scYRyqu07edys2BnPVT0jQvqA WBU1LlCVsJDVVIxB5T4Nv2jDygBEAZaWpldKxtSLq0oQM+QIJaS+Z0CrNhBW1GSocd4HJSFQ6QHo SnbwYNEHLYkBkNEPWs0aq2akhSFq3QxrU9527asuJkDWET0BQjKblEut17HIZlrJo9aIwop5SxJI tLBKXlRkcBtDtVFETwv0KOtuvZ6qFeBpHxTVo5RLmkVXeMGeXi0dOoQiepqjx2J99Ipvs0Hp0Sgv /GXUIyiWjfmexjESnt3Iy4H4ixLHtw/1J5G0mz3KPS3xQxzsbg+7csb64T0cfrII/6Xs4s804AZa Y+Y77tB86111j8oNAVEcJY2M227pPyughlvldR8RpdFVHrzlivmejnfjVQ0XLddVLXfHk43o6Vig VzXc/w+QG5aKKffBAAAAAElFTkSuQmCC ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/image012.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAALgAAAAoCAIAAADCN6fTAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAO xAAADsQBlSsOGwAABltJREFUeF7tXD124jAQNnsW2CKPE8AJIE2qtOlMiRs6SjoaKHFHmypN7BPA CXgpAndhZ0Y/lmT5B9vrmCA3+yIkzWjmm9FoNNre9Xr13OckUCSBP0Ud3O9OAigBBxTCwWU7G/d6 vfH28nCwuGzHsPTxbBvnrx22nvv6zpsRKnO0OTfEd+MTNsRXtWkin6DuR8lwtkC1xZy6hAi8auy0 Neq88QkWBI2Rz8GB62oKKFxGihgFzZEhWlCBSpQPVDVgabqeI3UJ/iaqhG+ufmkf8m+bHPDHhHdi CtZSQNcCME3JXQYK8T7ioj3jX1xRzQElbUrQwqjgTxp8tD9JiAIYSjcDTbQEoSRYQpFpZxuguWaD kDpQAwrQLASJupgsA+wuUEgLhgdtGig5OCEYSKkZqOFqoR4bhgXepOmPw0RRIjPvKrumChREXI72 dY9S2vnn7z+dDWYvn+9Hz3+ZJMFlf344zPt6sAmRGMSgFIupoVg8o9ZebxZjoMr7pCPV89cR5xv+ NaYVRI5fZxbqvgXDaKfwonDxvADlh1OkZHyX7xNASF2C139+HXnH908tbizLLQu749n47Xtx2E00 nrGZr3m8ArL841NL5rAb7zc2Oe7/HeIovmZzMZ0FCupw9DRISV9v6M+XPtr9YadBaLK7opsfkZao D5h8CmUeaRIsXCejSIp+ETARqjCPRv353g4V2xK4NrRVlOQWdBgMeoNpSODWvng2mJ5eWRhyXg6T DjS1gprB6ml/YJvmMVwZljN4onjw9G07/nQWKAUIYdYFh9qPl30aAfDbZHeIhuF0vKU+YIBlJgRU gVmFH+gd0KWhq4nXgbdZTOLZ1FuCJs7RMHgzJKxAhQu7HLGkVzluac9CHRscxB+h5y/nzMf0Jy8S GjobgBphLeTZbvo6DZQML0gLJOsK0Loytg3EClhTEHjLsijBeXHQaQpefPCOuw3g47TZz/ugC3BP QAr1kOZLQuXTkL7ZlZyYdasryy2R0qCCcxY7X7KseDuDvQd2n0GQ9ku5wOksUMgumG3zDzNDiSkL 60KnkZEpimcrbxn52T3suzJYNwWA4IVgBoKJKUKLd+ZQCRQFpJdAbipDqYXcSibSUCnlG0B+g5W3 2B3gkwc2dWRuxNZZoHgTESQyGFy267QRQHwb+eBb0pEkRm204+AuPQwGdjTl7soeepNXC0wyXAKD ivqZS4ghKD6OLMgrx20ytQ4V3EeOwZrZCzgNDGYtUEYcULhKwnxPgcsesclupU9PP9FRz7fxI6GM zuhMmiS5kkOnaBNehy3WdirNORLqiQp2PqYYhefdJGEzC6fT4ckTxoH1UFuGWzPhJonzk7kUFFJQ cogak5IQJC5tecbcjHd38ygtATMjI5lOnCQJ2yppkJZWU53MjZnZ5nKe1Vlue2R+oqltbn6EXgkR 6B4l7ZB+hO/WiYoLmUo509a5bZYgppfxMqjgFqoHVGW8Anm8aYh/we5/y5GyVNDtOt21BNRTT/zh +SxXox1L73p9jvmGJKAAJf54WuzwTJpGiryNGG9jnsm23G0wlmRffvUg/3nEqqCGtNSFacSGB0G9 vF23HCbVM1zqXrfZTdPN1kUJiGBW4CRJTBjpgKbryvKF0QUTekwesvTCtx5ILYdweYKfuAUwL8PL yq2RraeLNvUYPGWpmQElXn8tFTmw5AtkhdM1FsVwwTtK62e95C2ez/XohAQAKHDRMPW08hpxUQ0V CwWl2Z1Yg2OiDQkk91iinC+pdCH62Kw0PWJO6jE2nYKo0QnhRgmY93F8uGJLWvW+aWORn/du4kZe Wuz+8JeCFWVtveyAxvR7msQF3/UFSXfrUdrYd+vQGGL9vVkUNUzKb7HUFopPzkkMD9Uz6iZeh3j7 Yx1Qqsv8GUstzfpVMR2U2sIrgqVZHQe1TJ61eLk6G+2MdECpI2eqc7VW2GG9s7XmsT/XHwzUId/m WAeUetKe7DDysD7rqTdx10Y7oNTVSOaznroTd2u8A0p9fVCJN8a16y85GZVt5z03qU+23RkcUBqR NwtWwlA+5sTniVDXYz7GoweumRUajbDynyZxQKkq2BN7lyw+gkqqAQJdtQwHUPLm7e+zeLBiwumR h2UlYeHpiPgfXKR4dPTc8f2HVjNb1bjcuN8vAbf1/H4dN7JCB5RGxPj7J/kHiMHP1xSztioAAAAA SUVORK5CYIJ= ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/image013.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAKgAAAAnCAIAAAAUz5TuAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAO xAAADsQBlSsOGwAABiJJREFUeF7tWzt64jAQdvYskCJfTgAnYLdJtW06UyYN3Zbb0eASurRb0QSf IJwgXwrsu7Azo5E0siTMw2w2tl3F0QjL80v/PH2z3++T/uqeBr5175X7N0YN9MDX74N8eoPXNFei ZTYWd/XTm5PghYyzsoHfBKrv4FUsRkp3o0WBr79JtSrTTUAdKM4DNHOUbmjala5is0h5fbhEXiM+ DJ8ubi94fnLB3C89lQC0+G1A06N0EcET9oXZIVcGnbA1O6vAHVkBPrg1T8ais8CjRvUhhgMWxZzP WTPHrB4eoh4JLfzD3jZ34PddBV7jDkcqDfI2DBhrsNDKZ4sggBFiKe2fsAlgMUsbzjk2+4FpKLo/ LPMQFYR/pH53oURHgTc2vnK+WGkO3bpsK5jCZeUKKUv1A0qwIfi4woaKeQhH4C5cjctsTjeBN5Tp MSvh5UEtiF4A74oJBzBy5tRuixuNOtx51eT6XexddhN4i15I2fJQK0dacLsdPCgWxN6d4Ykc4Azt 0R+MPY7jeJbqZByfr1dJ+jBBLQ6efqXJ6reMjMvdezK6G7KO8/nzlmXd4NkXs5OCYXaZrd+T5H0X DcKHdzaGC/xC8bElusCduFpzUuHsgL6LwCPuFqTJbDHa/nl14dh+FJiqybNsrbM200DaxBW7vx2U WUhMZX0ek9kLPwrEch//we19sn2e80gJQjciV0Or/vljkAx+/FTIRx921G44iR9aIGzdOuZv9tSl 1dyo9A79S7nPPOrmfaJirpqIwdndZzMftdCFm7kRQYKM5Op+5RiYbtCz76/uaaCLVN89lANvLIEv y3w6xgKEusbjkCHqtdYODRjgwfsYDr+vtvcqXQ2GabsFp7cdb9m/ha8B5QhoD8dmHJ0c8THeQi/z pTRACRztrIbqPjoZDX4tCOoENsWT5qaSocYBE5GOFqE6p9WRTJ562/JflUa+FGTNLBaB94+7+W0o YQDEXBBQZUtGaqSCHQ58HKagvCRaDDXaTBmxmdftf0VrAIA/dN5JjAWcuJfPojuk9xANFhCTUjQc KVhdB4PemseseUXfAPyBA38e7urRI7gOVrnVSnqqv84JqPtVe+Ldcn+lLGEOrnPEq+e9el/38H78 8zQA4RzlfhPM/lL6uMwen7ei3oA5YsAds8Qw+PoHgjxd4cCyAQzdDSEBgDlqTDbjpeoQKi3QSGNg T+DNa0DxLaSdZXefcNPdppNK3wf79YLSTd8Kcj24f9fsSfy849KCJ/e5enOWoHn5O5AbOKNvT+1P XLU4Vw9VS0g6VzgSKq1TnZUeuyXUyZIqYMqmNXSZLLhdCBpAnRQ/NyeODfbeq5245Bawlv8KJrfk 5hBUaZNbqANJhvruqZO0FWrZ5o4ftID051nBrizRnrQiIdzC1ivIH1AYWdPoVG2t85qszlWpCFO9 3JXfuPlZ+a0WUv3gabl8mtTzNfZOJdA1YygSghQVoRAVR+IRHuZRkg1IUmiUbpbU3mUvateytmTy ACku7sVCw8RfZjkr4P+bh6jPqPQjY7Pqab+FwNe/NElQM52EBuPW+4/5PJm9IQ177VgUoubz3eyN RwH19cPLfu/7ghT1pnc7ac1xuop/A1eezW9nb8AH77ssezUrmE+nr/B/qpVSM1iSTJbIGmq/RmZV 2sgi+riM0P7n2YeoHqCTn6SZFKI2uTXWnnufoslo1a5lvAnq0ULar/bR+g3ahvmdxm+4Mc5AdWns NSgkas2bAayFNl6/W1QJiLrX9ebor9bLO7VRmuUdNBknB9HwjfM0uQnYRYxuigPnsntUn08fP369 LMkJgO4THRUhC+s2amTqQ73SRzVKa24mC8Ed29Ko638bk48rMC4H+ht6RHSDA72vV07EKWfhuoOt 4CG2/5/J+rK1hU4lHnZL0OLOIV2eCeFBgMzVJB1RgUzoC1snVJOfvPKZp3DOd/FNFCDXzo/Cr/wg E0qfdxR043E7k0F43RVltpHqsUdZfJqARUKVOQ5UAkV52e4INuEepITUkY3Se5EFd6qUtoParEuv LUz0uh1CfMnvvJFdt8qXU8tM7dWnbI8MAtom1j0b3zYEz3yfHvgzFffVp/0FmbZnVM6ULS8AAAAA SUVORK5CYIJ= ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/image014.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAbYAAAAkCAIAAABqsojbAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAO xAAADsQBlSsOGwAACNpJREFUeF7tXTt22zoQpd9a7BQ+XoG8AifNq9ymo0qrcecyXRqptM9r0rpy E2kF1gpyXETaix4GHxIAAcyAH5O0R1Us4TNzZ+ZiMACZs9PpVPCHEWAEGAFGIITAP9OH5bi5Pmv1 We6mrxxLyAgwApNGYAYUeX73a71QIJZbkfTin4NpP2noWThGgBGYPgIzoMiiqEjy6SspM7RIdfoW YAkZAUZgwgjMgiIdkrzeHHE8z7/d6sQTb8stGAFGgBGIITATigSSfN2WoMV+9Z1AkudfrtjojAAj wAh0ReBsVifau+XZ1yeh8mJ9eL0776o792cEGAFGAEFgNlmk1OPmUZ3E7FcXpKIkm58RYAQYgU4I zIsi809uOoHDnRkBRuCzIzA3irSKksTj7clZ+LhZXpPOnCYneX8Cibuu18vNjnDwljcnY5uHVzGU ITLFmHRz/JbhFFuokxtZlMwS77AuF7l9siZAGos6Qc78Ws0xJe5Te3esTCxQQfoeD53wozQYArix A62dbQCJcr11OaU4nQzd+ExeB2Z1Fdu7uq16LkpvzMNWEFE1Wg4lZCiWT5JpT4DxOlARDI7SNeAY vP0eRwy64AMTcavsqEesLU+8k0+ch9wMBMCnHgpbsph9NcyMo76mJYzToyFOJzfQcHohyBdrMgDV NGiiAIV0EEoLKo/1g1kb1wnW0HeqZ8Wah47EkwQv5nDhTlF6ks23ktM7cBEhjGNsl0QsLXa2c2kT m2US1G4um9mjtu9AWgGGwra92K170uOo9RTtOvZliAZ1kOilvcyDUI27YBTADjr9sX+pv9UUUpRl aXOIzEkhwpzcSS4Zdl4gvsDThHYIaTqGdBWdIu0BQtlyS1tIo8sZmkVGREgjRvLcDPgsJWEBbmwq MobqpylFQZwiW2HbjwJ5o0A4UOIob9Q+WvdjCCvh0kKR6KWNAkNSjQOG2GibTyLjk0Rnc4j02q2/ CbTSUFr+F6rS5qVyJo1Pk2TS/pIgVb2hGgVKKZp6RSZMyDDxMA5SMIaY6KTxkAl5ONF1JZTiRkA0 MogeZaM80lBZjaKhqORIIePsewSYTRgbkhFWpgGwjQnmKau82HwZ22dk4Y/HUR+yjWWIRKBF6MUF z9IdgHdCz3HsaOD0gZ5KvkwM1RSZ0E75qJMyQ3/fu7F4b7NW4H00SSY5MhGHQmjV1Woj8itRXgV6 EkwC1Vs8F0bDOAgvhpid9EHW7hV9VQBvS2ELPbyk++gJlt7myYXJLytXKq/FB4aQI2r9K3CSyMgg UNNLOP4LjunNTMheese21iKprNk/iWAxSgXWnjz80TjqQ7bRDNGghDp8w3aW2lY/baXnmWBLARsL nD7Qq8yuQ6SiSJQhKxIBj22kXSosCFtenPMyW8hp06lnXDcr+vxGqDo24TTS4YZAIRmwKXQfmRIk mE+nOmiuW7uiXw7RkDvyOBuZOpuNGjqWJUimNW9oajYK22Z4bF13jSlbr1EHldJEV2IlcdIPjbPp QWNx5COcK9vEDGEy8fixI0BX4yr+ckAOAZsOHJIbI5a13NJQZGLSSgP5j7UmyFDVAaMqQ355AYDv 2bG9eYwiG3JYAyWWjJBAFteG5Q2NlyhtqA1efS8ArbYmFnC7klKfxjWj3RHR+cMrQoS8PZKou2oH vIyA8xDYuu4bU9aUcYD8sGMttGJAjSN3m+cKam919L03X7apGaJewGM+7Ky/ogTk3QwJKJQMHJIb Y5a1BjFXxw9v+6L89yZUHBQ/qV/g1RBPq9XVw6P46/j7eb+4/WY9KH1xSX25jnglRZz3ch6+Pm6+ r/blNqdLrSF0vqpfQAmg7N8O5ncA5OpLf8+BA3jW8HIaBDEQAUgbJHt6Sb8f+Lh5+VMUf/4mLmPv Xp6Mic/vHsri6Yf3OhBHZfFHZV6rp5A6iMzx759icXnR8B97GOkzvpf1gXMLbF0tIspKpXTAvr4+ 3t3E3YGAPzWOPIQzZRvVECH6kN8l6KUA79KRJm7+v1zeO29fCAKbDByKG2dYtlAUeQQxIwQnfjK+ D5KVWyBI5e3uRzrq6qd+ZOIo1D0b9iESTZBSnuQnFELF7ueqWN/H+rqsgE1A+R3A8ygsjZi0CSxC 8s1uwJEC0uBLjsQjEt+Le/Hi4f3z7yO0Cj22IoerSOzmXreuRXdUtvy20FF33C1h4DAyGmLJ0Mfd 5lo/Qg+NC7XuiO5yPXPNFYtoCqJ1m2xsXS1iyhZqWVPLjpDfaOULR8WfFkfdZBvVEMFAS9NLhSXg K7z40SbIGLCpwCG5MWpZm2f1QYWStJEKm72et5Wt0lTve+vsT21N8p59yapCOiUapKe/m9NHZVbp yGhUHzfk3ZJEN4Pe9qmuOTi37C3EbJl1PSZQj1SVeYVzvJW1Z9cm1vpaJc74/kQ/XKBsHd0Y17av B5V7S7gaBp/QTpWwzdZnP2lPCo6T8Eaiss5hdtCbM/GnxFFX2cY0RKycFKEXu4ruXUDDgI0Ztyt6 zdKpdekni6DGbpxDkKnA7ksPAkV694r6mnnC46AEiNbvTAxh1ebPh22W2d/PEOhMWXKP1djRYp4U iZxzhJClRePQNvkYHkRFyanDNzr1jUXf41G1nEG79zTENAKtk1FcFWZIkXI/iacVg4dkSyvIKzwt xG853YjdZKYfucwZel9Ad1E/D7ZZWL2zIea9VjWkn9dbx6Fqvrm+EOcs7d46Lg4Sfv54vvzV7gg8 7wiBWzMCnxaBmQYaHA+93T7cO3cXZkaRnQjy0zosK84IMAJtEZgVRUqCFFcZ8Ws+beHgfowAI8AI 2AjM6K3ju+VF815d1JqCTge+lsmOxAgwAh8fgdlQ5G4p/u9D/+Jxwj59PLXx8c3PGjICjEAagZlQ ZCZBimrxD/jPZPnDCDACjEAnBOZQi5QlSP9xR4LW4mYNH10TcOImjAAjEEVg+lmkfBKbLcgIMAKM wBgIzCGLHAMXnpMRYAQYAYHA9LNINhMjwAgwAqMhwBQ5GvQ8MSPACEwfAabI6duIJWQEGIHREPgf WnkL0XEntkQAAAAASUVORK5CYIJ= ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/image015.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCADEAXMDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKb 5hNG/wBBQA6g9OlNycZAp1G4Hjf7e3xq8Z/s6/sqeLPjN8Pxa/2todvBLZreQ+ZGS1xGhDDIyCrH vXwp8Lf+DhzX7YR23xp+ANvcLnEl54b1Axtj1Ec24Z/4GK+v/wDgrcuf+CfPxF/68Lb/ANK4a/BX Z6Gv1ngPhvJ88yeq8XTvJTsndppWXY/L+Nc+zTJ80prCzsnG7WjT1fc/eD4Cf8FZv2Jvj0kFtpvx PXw/qU2B/ZXiiP7LIG9N+TE34Oa+kLDU7DUrWO/069iuIZlDxTQyBldfUEdRX8x5jB7169+zv+3b +1F+y5dxf8Kr+KV8mnxyBpNC1CQ3FlJzyPKc4XPqu0+9dWbeFseVzy+r/wBuy/Rr9UcuW+I9RWjj qf8A29H/ACf+Z/QwrfNUleCf8E7/ANrzVP20f2foPi1rfhOLR76HUptPvLe3m3xySRhCZEzyAd/3 TnGOpr3uvyTFYWtgcTPD1VaUXZ+qP1LC4mjjMPGtSd4yV0FFFFc50BQTgZNFcL+0h8ePCf7NXwU8 RfGrxtMFsdB09p/L3YaeT7scS/7TuVUfWgDmf2vP23v2fv2LvBH/AAlvxm8U+XcTKx0vQ7FRJe6g w/hjjyMD1diFHc1+bfxh/wCDjX43a1ezWvwP+C+h6HZ7sQ3WuSSXlyR6kKURfphvrXwz+0n+0Z8T P2qvjBqnxj+KmsNc6hqUxMNupPk2UGSY7eIH7qIDgDqepySSeFAxXRGnHqB9qf8AD/X/AIKEkk/8 JB4TUdl/4RlOPb71H/D/AG/4KE/9B/wn/wCEwn/xVfFW45wRS1XLHsB9qf8AD/T/AIKFE/8AIweE /wDwmU/+Lr9AP+CNn7bXx3/bb+HXjPxN8c77TJ7rQ9at7axOmacLdRG8RY7gCdxyK/Cuv13/AODb Nz/wpr4lHH/MzWf/AKTtUTjHl0QH0J+03/wV7/ZT/ZJ+L998E/inY+KX1nT7eGW4bTNJjmh2yoHX DGVecHnisD4T/wDBcL9jP4z/ABN0L4UeELHxguqeItUhsLBrvRY0jEsjBV3ETEgZ6nBr83/+C5p3 f8FF/FQP/QK03/0lSvI/+CfBC/tw/Csf9T1p3P8A22Wl7OPLcD+kSiiisQCiiigAooooAKKKKACi iigAooooAKKKKACiiigDm/i58TPD3wX+F/iD4ueMEuG0nw1o9xqWoi0iDymGGMyPtUkZbC8DIya+ O/8AiIQ/YRzxpvjj/wAEEX/x+voT/goYx/4YU+MAI/5pzrH/AKSSV/N+AnXHNaU4xkrsD+j/APY8 /bd+Dn7cnhHVvG/wXg1iOz0bUlsbxdYslgfzTGHG0B2yMEd+teyjgYr84f8Ag28JX9nP4gEf9DpH /wCkkdfo8OlRJcrAKKKKQBRRRQAUUUUAfhV4A/4LJ/t9eBGjE/xWt9cijxmHXtJimDD0LKFf8mz7 19H/AAf/AODhy/XybP48fAeJm4E2oeGL0qp9xDNnH08w1+ZtNfd0C5+tf05jODOG8dfnw6T7x938 j+dMLxXn+Da5K7fk9fzP6Dv2YP2/P2Zv2t4Ps/wm8fxvqqR759B1BTBeRjuQjffA/vIWFe15yARX 4H/8EnHmi/4KD/Dfyn2Z1K6DbW+8PsU/FfvegwM1+HcYZBh+Hc1WHoSbi48yvutdj9j4TzzEZ7lr rVopSTtofOX/AAVt/wCUfPxE/wCvC2/9K4a/Bav3p/4K2/8AKPn4if8AXhbf+lcNfgtX6X4Wf8ie t/18/RHwHiP/AMjal/g/VhTZAMZJp1NfpX6cfnR+zn/BBBf+MKLg/wDU5Xv/AKBDX29XxH/wQS/5 MluP+xxvP/RcNfblfyzxR/yUWK/xs/o/hn/kQ4f/AAoKKKK8E90K/Mv/AIOPvjTc6L8N/AnwF0y/ 2/25qNxquqQq2CYrcKkQPsXkYj3j9q/TSvxE/wCDhHxZPr37dFn4eeUmPRPBdlDGvYeZJNMf/Q/0 FaU9ZAfCwAHIFfSH/BMX9hC5/bs+Pv8Awi2t31zZeE9BhS98TXlqv7xo92Ft0Y8B5CCM87QGODgC vm9unSv2q/4N6fhjp3hr9jXUviKloovvE3iy48242/MYbdEijX6BjKf+BVrN2iB9OfC79hP9kH4P 6FH4e8C/s9eFoIVUK01xpMdxNL/tPJIGZz7k11X/AAzf+z5/0Q/wn/4T9v8A/EV2g4GKK57sDi/+ Gb/2fP8Aoh/hP/wn7f8A+Ira8KfD/wAC+Abaa28D+DtM0eO4cPPHpdhHAsjAYBYIBk49a2qKVwPj D9sD/gol/wAE+/2ffjtqXww+Pvwlk1bxLZ2tvJdXn/CKwXW5HjDIPMc5OFIHtXMfBL/gqN/wTK+J fxg8N/D/AOHHwUey17WNYgtNIuj4Lt4vKuHYBG3rymDj5h0r4P8A+C5//KRjxT/2CdN/9JUryH/g nz/yfF8Kf+x50/8A9HLWyj7twP6RAcjIrN8V+LPDXgrRZvEni7xDZ6Xp9qhe4vtQukhhiX1Z3IAH 40njDxXoHgfwrqXjLxTqUdnpuk2Ml3f3UxwsUMalmY/QCv5//wDgop/wUW+Jf7cvxOuv+JrdWPgX Trth4b8Oq5VCg4E8wHDysOec7c4HvnCLmB+rPxO/4Lef8E/PhrqsmiwfE+88RTRPteTw7pMk8Ofa Vtqt9VJHvXI/8RB37C//AD4+MP8AwSr/APF1+IKsMbR2pdy5xmtvZRA/b3/iIN/YX/58PGH/AIJV /wDjlfT3wU/ag+HXx6/Z/h/aS8Epfr4fmsrm6jW6twk3lwFt/wAuTz8hxzzX80pI6A1+63/BMUhf +CQ2n8f8yvrf/oVxUSpqIGI3/BwX+w1HK0TWPjDKsQf+JKv/AMXR/wARB37DH/QP8Yf+CVf/AIuv xIu/+PqT/ro386jzVeziB+3f/EQd+wx/0D/GH/glX/4uur+E3/Bb/wDYH+KviKLwvP8AEHUPDdxc OEgm8SaY1vblj0BlG5U+rYHvX4M5B4pvDGn7OIH9Tmj6vpeu6XBrOjalBeWtzGJLe6tphJHKp6Mr Dgg+oq1mvx7/AOCDX7d/ivwv8UY/2OfiDrc95oGupJJ4VNxMW/s+7UF2hXPRJFDHaMAMOBya/Vr4 2/F7wf8AAf4U678XvHt20Ok6Bp8l3eMuNzBRwi+rMcKB3JrGUXGVgLvxA+JXgD4V+HpvFvxI8aaZ oWl24zNf6reJBEvtuYgZ9upr5U8e/wDBdX/gn94I1STSdP8AHesa+0TENPouhyvC30d9ufw4r8if 22P24fjF+278ULnxr4/1aaDSIZ3GgeHY7gm306Ak7QBgBpMY3ORlj6DAHi4YDjmtI0u4H7fD/g4N /YX/AOfDxh/4JV/+OUf8RB37C4/5cPGH/glX/wCOV+IYYHiin7OIH9K2sftBfCrW/wBk2f8Aac1z TLi68F3Xgk+ILmzuLNXkl09rbzyjRE4LGM4Kk47V8Xr/AMFfv+CSfUfACT/wg7WvWp9v/DisAj/m 29e3/UIFfg+ODwtTTipAf0UfsHftQfs0ftReB9c8U/sx+CW0TTNN1ZbXUIG0WOy8yfyg4bbHw3yk DJp37Zf/AAUO+BX7C9zoNt8Z7fWXbxCk7WP9l2Im/wBUUDbssMffGK+Xf+DbvH/DOXxAz/0Osf8A 6SR15/8A8HKjg6v8KR/076p/6FBU8v7ywHuZ/wCDg79hcf8ALh4w/wDBKv8A8XSf8RB/7C//AD4e MP8AwSr/APF1+IucdaNw9a19lED9wtM/4OA/2Dr+7S3u5PFlnG3DTy6DuVfrtcn9K+nP2f8A9q39 n/8Aah0A+IPgZ8UtN16JFBuLe3l23Fv7SQuA6fiAPSv5oAwbpXY/Ab48/Ev9mv4paX8XPhR4hm0/ VNMmD/u5CI7iPPzQyrnDxsOCp4/EA1LpLoB/TmpyuaK8w/Zq/ah8DftEfAfwv8atMuYrOPxBpSXE lm8uTBKCUljz32yKy59qKxtID+deg9aKD1r+xD+Uz6G/4JPjP/BQX4bH/qJXX/pHPX74p92vwP8A +CTv/KQT4bf9hK6/9I56/fBPu1+B+KH/ACPqf+Bfmz9q8Of+RRP/ABfoj5x/4K2/8o+fiJ/14W3/ AKVw1+C1fvT/AMFbf+UfPxE/68Lb/wBK4a/BavrvCz/kT1v+vn6I+a8R/wDkbUv8H6sKa/SnU1+l fpx+dH7Pf8EE/wDkyW4/7HG8/wDRcNfblfEf/BBP/kyW4/7HG8/9Fw19uV/LPFH/ACUWK/xy/M/p Dhn/AJEOH/woKKKK8E9wK/CP/gvCsi/8FEdc8zv4f00r9PJP/wBev3cr8Uf+DiDwTcaB+2jovjDy WEOveC7Zll28GSKaaJl+oUL/AN9CtKXxAfBLdK/eL/ghXJC//BOnwyIiMrrGprJ/vfaW/pivwdbn tX7Kf8G7Pxj0nxH+zJ4j+DEl6v8AaXhnxI92sG7k2tyilWA9pI5M+mRWlT4QP0QooB4ornAKKKKA PwZ/4Ln/APKRjxT/ANgnTf8A0lSvIf8Agnz/AMnx/Cn/ALHjT/8A0etevf8ABc//AJSMeKf+wTpv /pKleQ/8E+f+T4/hT/2PGn/+j1ro/wCXYH66f8F1vjPffCr9hTUvDuk3HlXXjLVrfSNynB8k5llx 9Vj2n2Y1+FKKB0NfsB/wcjzTj4FfDu3GfLbxdMzf7wtXx/M1+QNFP4QP0n/4It/sWfsuax4Uk/aZ /ag8QeEb65nvGh8L+G/EGp2/l26ocNcywyNhmLZCBhgBc4yQR+mNt4m/Y9s4lt7XxJ8NY441xHHH eaeqqPQAHgV/NQJHUbVkYfQ0vnS95pKHTcne4H9LD+MP2Re3in4b/wDgdYf41qfEeLw8vwD8SP4V SzGnyeFb6S0OnhPJdGt3IZNnykHOcjrX8yLyy9RM9f0UfAE5/wCCZ/hfd1/4Uzb/APprFZyhy21A /nbu/wDj6k/66N/Ov0U/4N+vgX8FvjX4h+JUHxh+E3hzxSlhZ6e1iviDRYLwW5ZptxTzVbaTgZxj OK/Ou7/4+pP+ujfzr9Pv+Dav/kZvir/146Z/6HNWtTSDA/QLUv2AP2H9T0+bT7n9kr4drHMhV2g8 I2kTgEdQ6RhlPuCCPWvwz/4KW/s7+Dv2XP2zvF3wj+Hcbx6FbyQXWl28khdreOaFJPKyeSFZmAzz gDr1r+iw9K/BT/guL/ykX8Wf9g3Tf/SVKyp35gPL/wDgnHdXFn+3j8KJ7aRlb/hNrJdy+jSbSPyN fpP/AMHFXxk1Twn+zn4T+D2k3jRf8JZ4gebUArf6y2tUDbD7GSSM/wDAK/NX/gnb/wAn1/Cf/seL D/0aK+2P+DlKec+LfhTAD+6Gn6o2P9rfB/StJfxEB+YGCDxX6j/8Ec/+CTvwi+Kfwltf2oP2l/DK a5HrE7nwz4duXYW628bFTPMoI8ws4bCn5dqgnOePy3c4Oc1/SB/wTxs9Osf2GPhLBpqKsbeAdMch f77W6M3/AI8WoqXsBci/YJ/YjhjWKP8AZG+G+1Rj5vBdkT+Zjp3/AAwd+xL2/ZG+G3/hFWP/AMar 1iiue7A8P/bp8NaB4Q/4J7/FPwx4W0e103TdO+F+qW2n6fY26xQ20KWTqkaIoCqqgABQAABgV/OV k4yK/pD/AOChf/Jifxg/7JzrH/pJJX83fb862p7AfsV/wbef8m5fED/sdo//AEkjr9DNZ8K+GvEB R/EHh+xvvKz5f2y0SXZn03A4r88/+Dbz/k3L4gf9jtH/AOkkdY//AAW2/wCCm/xB+D2vD9k74AeJ W0vU5rFZvFeuWcmLm3SQZS2iYf6pinzMw+YAqARk1Mo3qWQH31rlx+zb4XufsniV/A+nS/8APO+a zhb8mwao/wDCYfsiHr4p+HH/AIHWH+NfzW6p4g17XLyTUdd1u8vLiRt0k93cvI7n1JYkk1X86TvK 1V7LzA/Yv/gst8A/2Nfib+zBrHxe+Hmr+CbPxr4X8q4tLjw/fWiTX8JlVJIJFibMvytuXIJBXjjI P44Ab+TTmlcjaXbH+0aBjtWkVyqwHtnwh/bk+LXwf+Hmn/Dnw1rs0Njp3neRGshwPMmeU9/VzRXi eB6UVQHWUHrRQetf1wfymfQ//BJ3/lIJ8Nv+wldf+kc9fvgn3a/A/wD4JO/8pBPht/2Err/0jnr9 8E+7X4H4of8AI+p/4F+bP2rw5/5FNT/F+iPnH/grb/yj5+In/Xhbf+lcNfgtX70/8Fbf+UfPxE/6 8Lb/ANK4a/BavrvCz/kT1v8Ar5+iPmvEf/kbUv8AB+rCmv0p1NfpX6cfnR+z3/BBP/kyW4/7HG8/ 9Fw19uV8R/8ABBP/AJMluP8Ascbz/wBFw19uV/LPFH/JRYr/ABy/M/pDhn/kQ4f/AAoKKKK8E9wK /On/AIOJ/gTqHjX9n/wv8ctGsGmk8G6xJb6k0a8x2l0EG8+wljjHtvr9Fq5/4p/DPwp8Yfh5rXwx 8b6et1pOu6fJaX0LAco64yPQjqD2IFVF2kB/L0G5xivY/wBh39svx5+w98crX4u+DrKO/tZIfsuu 6PNIVS+tSclMj7rgjcrc4YDIIJBsft0fsQfFD9h74w3fgTxfYzXOh3FxI/hnxCsJEOoW275TnoJF UgMmSQfUEE+KAbutdGkkB+9Pw2/4Lff8E/vHOgQ6rrPxOuvDt00YM2na1pcqyRNjldyBlbnuDzXS f8Pg/wDgnZ/0cbp//gFcf/G6/nxC85Ap2AeoqfZRA/oM/wCHwf8AwTs/6ON0/wD8Arj/AON16n+z 1+1d8Bv2qdK1DXPgR4+t9etdKuEgv5reF08qRl3BTvUdhX80HToK/Xj/AINsUx8GviVn/oZbP/0Q 1ZzpqMbgfIv/AAXP/wCUjHin/sE6b/6SpXkP/BPn/k+P4U/9jxp//o9a9e/4Lnf8pF/FR/6hWm/+ kqV5D/wT5/5Pj+FP/Y8af/6PWtvsAfqt/wAHBPwt1Dxv+xXZ+N9Otmkbwn4qt7u62j7sMqPAWPtu kT86/EhW3DgV/Tz8cvhF4Z+PPwi8RfB3xgjNpviLSZrG5ZR80e9cCRf9pWww91FfzlftT/sx/E39 kf4x6p8H/idpUkdxaTMbC+8krFqFsSfLniJ6qw+uDkHpUU5aWA+1f+CPv7MH/BOn9sj4e33gH4z/ AA2af4iaHO80+PEl5b/2hZMw2SpGkyr8hO1sDj5T3zX2sv8AwRB/4Jstx/wo28/8KrUf/j9fg74b 8SeIfCWsW/iTwpr15puoWzb7a+sLloZYjjqrqQR+HrXqUP7fn7bNvEsMP7VPjoKi4UHxHOf5tTlG Td0wP2Qb/gh9/wAE2s/8kOvP/Cq1H/4/Xu3ivwR4a+Gf7M2q/DrwbYNa6Tofgi4sdNt2maQxQRWj Ii7mJZsKBySSe9fz9n/goJ+2+Bx+1V45/wDChm/+Kr9jf2A/HvjX4o/8Errfxx8RfFV9rWsXnhjW vtWpajcGWaXb56jcx5OAAKzlGUdwPwWu/wDj6k/66N/Ov0+/4Nq/+Rm+Kv8A146Z/wChzV+YN3/x 9Sf9dG/nX6ff8G1f/IzfFX/rx0z/ANDmrSp8DA/WI9K/BT/guL/ykX8Wf9g3Tf8A0lSv3rPSvwU/ 4Li/8pF/FvH/ADDdN/8ASVKzpfEB5Z/wTt/5Pr+E/wD2PFh/6NFfoV/wcifDu/1H4XfDr4q2tqzQ aXrV1p15Iq52efEHQn0GYWH1Ir89f+Cduf8Ahuv4Ukj/AJniw/8ARor97v2x/wBmrQP2sv2cvEnw M1qWOFtWs86feSKWFrdId0UnHOAwGcc4JqpPlmmB/NXgMK/bT/gh/wDtt/D34sfs1aP+zlrviG3t fGPguBrWLT7iYK17YqxMcsWT8+1TsYDkbQehr8cfjH8HfiJ8A/iRqnwp+KXhybS9a0i4MV3bzLw3 o6N/GjDkMOCDXPWN7eaZdx6hpt5Nb3ELbopoJCjI3qCOQa0kudAf1OrKhH3hS70/vD86/mJT4+fH ONQsfxo8WAKMAf8ACQ3PH/j9L/w0B8dz/wA1p8Wf+FFc/wDxdZexfcD+hL/goU2f2FPjAP8AqnOs f+kklfzft90H2r959Zv9Q1j/AIIeTavq1/NdXVz+zp5tzc3EpeSWRtIBLMx5JJ6k8mvwYYZAA7Cq orcD9iP+Dbz/AJNy+IH/AGO0f/pJHX5r/wDBQjxRq3i/9uP4ra1rEzSTf8J1qNspbtHDO0Ma/gka j8K/Sj/g28/5Ny+IH/Y7R/8ApJHXxV/wWi/Zv1r4E/tv+IvE40+RdF8cTnW9LuvL+RpJAPtCZ6bh LvP0YGlH+IwPPv8AgnD+zl4B/as/a88M/Bb4najc2+i6gLiW8Wzm8uScRQtIIlb+EsV6jnGcc1+v UH/BDz/gm0kSqfgletgY3N4s1Dn3/wBfX4P6Dr+u+FdZtvEfhjWrrTtQs5RJa31jcNFLC46MrKQQ fpXqcf8AwUA/bcijWJP2qvHW1RgZ8RT/APxVVKMpdQP0r/4KCf8ABJf9hT4G/sc+PPiz8M/hJdWO vaHo4n026k8RX0wik81FzseUq3BPBBFfjmhzk5r07xn+2d+1j8RPDN54L8dftEeLtW0nUIvLvtOv 9alkhnTIO1lY4IyBXmYGKqMXHcAoooqgOsoPWig9a/rg/lM+h/8Agk7/AMpBPht/2Err/wBI56/f BPu1+B//AASd/wCUgnw2/wCwldf+kc9fvgn3a/A/FD/kfU/8C/Nn7V4c/wDIpqf4v0R84/8ABW3/ AJR8/ET/AK8Lb/0rhr8Fq/en/grb/wAo+fiJ/wBeFt/6Vw1+C1fXeFn/ACJ63/Xz9EfNeI//ACNq X+D9WFNfpTqa/Sv04/Oj9nv+CCf/ACZLcf8AY43n/ouGvtyviP8A4IJ/8mS3H/Y43n/ouGvtyv5Z 4o/5KLFf45fmf0hwz/yIcP8A4UFFFFeCe4FFFFAHJfGT4HfCb4/eDJvh98YvAWn+INJuOWtNQgDb Gx99G+8jjsykEetfBHxc/wCDcj4KeItUn1L4O/GjWvDsUjFo9N1K1S9ji/2Q+VbA9yx9zX6SUVSl KOwH5Ln/AINrvHIb5P2oNK29t2gSf/HKB/wbYeOif+Tn9J/8J+T/AOLr9aKKftJdwPyX/wCIa/x5 nj9qLSf/AAn5P/i6+xv+CY//AAT513/gn74K8UeE9Y+Itr4ibxBqkN3HNa2LQCEJGU2kMxznOa+o qKTlKWjA/Pv9vP8A4IreK/2yv2lNW+PWm/HLT9Dh1KztYV0640l5mTyoljzuDAHOM9K439nX/ggJ 4z+Bnx48JfGO7/aH03UI/DOvW2ovZR6JIjTiJw2wMXOCcehr9NqKOeVrABG4YNeZ/tMfsjfAP9rf wh/whnxw8AW+rRRq32G+X93dWTH+OGUfMh9uQe4NemUVPoB+X/xD/wCDbXwhd38lx8LP2jb+yt2b MdtrWkLMyD03xsuf++a5cf8ABtf46/6Of0n/AMEEv/xdfrRRV+0kB+S7f8G13jo/83P6T/4IJf8A 4uvvj9lv9kvU/wBnb9je3/ZbvfF8OpXFvpV9Z/2tDalEY3BkIbYSTxv9e1e4UUnKT3A/JeT/AINs vHU0zy/8NPaUu5s4/sGXj/yJX1V/wTE/4Jk+IP8Agn1qvi3UNY+Kdp4jHiWC1jjW109oPJ8ppDk7 mOc7/wBK+vqKHOTVmAjZ28V+fX7eH/BFPxZ+2P8AtKav8edN+Oen6JDqlraxLp9xpMkrJ5UQTO4O Ac4z0r9BqKUZOOwH5l/s3/8ABAjxl8B/j54R+Mt3+0NpuoReGdet9QksY9FkRp1jcNsDFzgnHpX6 aMoYYNFFOUnLcDxn9rP9g79m/wDbN8PLpPxm8CxzX8Ee3T/EFi3k31n7LIPvL/sOGXvjIBr4Z8bf 8G2Glzag8vw6/aYuILZmzHDrGhiR0HoWjcZ/75FfqZRRGUogfkuf+Da3x12/ah0n/wAEEv8A8co/ 4hr/AB3/ANHQaR/4IJf/AIuv1oop+0l3A8Vk/ZW1N/2B/wDhjP8A4S2H7V/wrMeFf7c+zny94s/s 3n7M5xn5tuc18Ar/AMG2HjvqP2oNJ/8ABDL/APF1+tFFJSlHYD5l/wCCZn7A2tfsBfDbxF4B1j4h W/iJ9c1xdQS5tbFoViAhWPYQzHJ+XOa9K/al/ZJ+C/7Yfw4m+Gnxp8LLeW+7zLC/hOy6sJsf6yKT qp9RyGHBBr1Cipu73A/Kvxf/AMG2G/VJJPAP7TRjs2b93Fq+h7pFHoWjcA/XArLH/Btf46xz+1Bp P/hPyf8AxdfrRRV+0kB+S/8AxDY+Ov8Ao57Sf/Cfk/8Ai6P+IbHx1/0c9pP/AIT8n/xdfrRRR7SX cD8l/wDiGx8df9HPaT/4T8n/AMXRX60UUe0l3A/mHoPWig9a/sE/lM+h/wDgk7/ykE+G3/YSuv8A 0jnr98E+7X4H/wDBJ3/lIJ8Nv+wldf8ApHPX74J92vwPxQ/5H1P/AAL82ftXhz/yKan+L9EfOP8A wVt/5R8/ET/rwtv/AErhr8Fq/en/AIK2/wDKPn4if9eFt/6Vw1+C1fXeFn/Inrf9fP0R814j/wDI 2pf4P1YU1+lOpr9K/Tj86P2e/wCCCf8AyZLcf9jjef8AouGvtyviP/ggn/yZLcf9jjef+i4a+3K/ lnij/kosV/jl+Z/SHDP/ACIcP/hQUUUV4J7gUE8UUEZGKAMXxR8QvA3gcQv428a6To63G4WzapqE dv5pXG7bvYbsZGcdM+9ZP/DQfwH/AOi2+Ef/AAo7b/4uvzn/AODlkY8P/CEf9Pmtf+gWdflH+NaR p8yuB/Tp/wANB/Af/otvhH/wo7b/AOLo/wCGg/gP/wBFt8I/+FHbf/F1/MXj3ox71Xsl3A/p4svj t8FNRuVtNP8AjD4WnmY4WOHxBbMzewAfJrqIbiO4jWeCVXjYZV1YEMPXNfyvqXV9ytjHQ169+zf+ 3l+1X+ynqcN18JPi3qkGnxS+ZJ4fvrprjT5uckNA52jPdl2t70ez7MD+kagnHWvmf/gnD/wUe+Hf 7efgGaS3s10bxho0aDX9AeTOM9J4T1aInjnlTwexP0wCGGaxa5dGAA56UEgdTX4p/tTf8Fjv28fh h+0p46+HXg/4k6fb6Vofiq+stPhfQoHZIY5mVAWK5JwOpr1L/glP/wAFP/2wv2pP2ytH+EPxi8dW WoaHeaTfzz20OjwwsXigZ0O5QDwRVezkB+rQOelFIuQvIpakAooooAKKKKAAkDrRXg//AAUn+NXx C/Z2/Y08YfGD4W6nHZ65pMNu1lcTW6yqpe4jQ/K3B+VjX5Hj/guR/wAFFAP+Sp6Z0/6F23/+Jqow lLYD96KbK4jjLlgoXkk9q+UP+CPH7UHxk/a6/ZY1L4ofG7XbfUdYt/Gl3p8U9vZpAogjtrV1XamB kNK/Pv7V9T64M6Lef9esn/oJpWs7AcuP2hPgTnDfGzwkP97xFbf/ABdanhj4nfDzxvdSWfgrx9ou sTQoHmh0zVIrhkXONxCMSBnua/l9vAftcxz/AMtW/nX6Of8ABt2D/wAL8+IH/Yqw/wDpQKuVO0bg fsJnPSiiiswCiiigAooooAKyfFfjnwd4Gtkv/Gni3TdIt5ZPLhm1O+jt0d8Z2guRk4BOOta1fnP/ AMHIQA/Zl8B4/wCh7/8AbK4qormdgPudv2hfgOoz/wALs8I/+FHbf/F10+jazpev6dDq+i6nb3lr cJvt7q0mWSOVf7yspII9wa/ljIOOtf0Yf8EyBj9gP4Uc/wDMn239aqUOUD3aiiiswP5h6D1ooPWv 7EP5TPof/gk7/wApBPht/wBhK6/9I56/fBPu1+B//BJ3/lIJ8Nv+wldf+kc9fvgn3a/A/FD/AJH1 P/AvzZ+1eHP/ACKan+L9EfOP/BW3/lHz8RP+vC2/9K4a/Bav3p/4K2/8o+fiJ/14W3/pXDX4LV9d 4Wf8iet/18/RHzXiP/yNqX+D9WFNfpTqa/Sv04/Oj9nv+CCf/Jktx/2ON5/6Lhr7cr4j/wCCCf8A yZLcf9jjef8AouGvtyv5Z4o/5KLFf45fmf0hwz/yIcP/AIUFFFFeCe4FFFFAH5cf8HLf/IB+EP8A 1+61/wCgWdflFX6u/wDBy3/yAfhD/wBfutf+gWdflF1rop/w0B9Hfsw/8EsP2tP2uvhinxd+Dmj6 HNo0l9NaK+oa0sEnmRkBvlIPHIr0R/8Aggf/AMFCkGf+Ec8K/wDhTJ/8TX3v/wAEBVX/AIYBteP+ Zs1I/wDjyV9tkA9RUyqS5gP5w/2lv+Ce37Xf7JdqNY+M3wivLXSWcKuuafIl3Z5PADSxEiMk9A+0 ntXi5B6E1/UZ458E+FviN4U1DwL420S31HSdWtHtr+xuow0c0bjBBB/yK/nH/bZ/Z4uv2Wf2pPGH wQkD/ZtI1Mtpkjnl7OUCWBj6/u3X8RVU582gEX7Gn7SviP8AZG/aM8OfG3QLibydPvFj1i1iYj7V YuQJoj65Xp/tBT2r+kXwt4h0nxb4csfFOg3S3FjqVnHdWc6HKyRyKGVh9QRX8tL9M1/Qh/wSM+Jz /FT/AIJ8fDvVbq58y60zTZNJuiWzhraZ4kz7+WIz+NTVXUD8/f2nv+CJ37c/xW/aN8b/ABK8I6D4 bfS9e8UX1/p7XHiBEcwyzM6ll2/KcEcV6d/wS3/4JRftd/smftgaP8Zvi/o2gw6HZ6XfW80lhraz yb5YGRMIF5GTz6V4/wDtTf8ABZH9vD4X/tJeOvh14P8AiNpsGl6H4qvrHT4ZNBgdkhjmZUBYrliA BzXqH/BKn/gqJ+2F+1J+2Ro3wh+MfjixvtDvNKv55re30eGFi8UBdDuUZ6iiXPygfq0DkZoppbbH 1r4q/bx/4LTfBX9kTXrz4XeA9F/4TbxnaLturS3uxFZ2EmPuzSgNlh3jUZHQlTWSTewH2vRX4Y+L f+C+v7fviS/kudG1XwvocLNlLXT9BDBB6bpndj+dY/8Aw/L/AOCimP8AkqOlf+E7bf8AxNX7KQH7 zUV+DI/4Ll/8FFf+ioaX/wCE7bf/ABNdJ8HP+C1X/BQDxd8YPCnhHXfiVpsljqviWxs7yNfD8ALR S3CI4BC8fKx5o9nID9UP+CjHwL8f/tMfsfeLvgt8Lra1l1zWYbdbGO8uRDGdlxG5y5HHyqa/J8f8 EDv+ChXQ+HPCv/hTJ/8AE1+rX/BSP42/EL9nT9jbxh8YfhZqcdnrmkQ27WNzNbrKqF7iNDlW4Pys a/JD/h+X/wAFFQcf8LR0r/wnbf8A+Jp0+e2gH6f/APBIn9lH4v8A7Gv7MGo/Cj412Wnw6tc+MrrU o006+FwnkSW9rGvzADndE/Hpj1r6d1tx/Yt4R/z6yf8AoJr5Y/4I+ftS/GP9rn9lXUvin8b9cg1D WLbxnd6fHcW9kkCiCO2tXVdqDBO6V+ff2r84vir/AMFq/wBv/RPiD4k8Kab8SdMWzs9ZvLSCNtBt yREszoozt6hQKSjKUgPi67/4+pP+ujfzr9Hf+DbsgfHv4gEn/mVIf/SgV+bxdpHaRjyzZNenfsu/ tjfHf9jnxJqXir4FeIrbT7zVrRbW8kubFJw0YbcBhwcc962lG8bAf0rfSgHNfgyv/Bcv/gokXVW+ KGl7SwB/4p23/wDia/Zn9pX4j+Kvhx+yn4u+KXhS8SHWNJ8IXF/ZTyQhlWZYd4O08EZ7GudxlED0 2ivwZ/4fmf8ABRX/AKKhpf8A4Ttt/wDE0f8AD8z/AIKK/wDRUNL/APCdtv8ACq9nID95qK/Bj/h+ b/wUUBBPxP0rr/0Ltt/hXqv7O/8AwcQ/tC+GPEdvZftG+BtF8TaHI224utHtTZ30P+2vzGOTHdSq k9mFHs5AfslX5z/8HIf/ACbN4D/7Hr/2yuK+5vgL8dvht+0h8L9L+L/wo8RR6lourQ74ZFOGicHD RSL1R1PBU8j8q+Gf+DkP/k2bwH/2PX/tlcVMfiA/HM9K/ov/AOCZP/Jgfwo/7E+2/rX86B6V/Rf/ AMEyf+TA/hR/2J9t/Wtq3woD3WiiiucD+Yeg9aKD1r+xD+Uz6H/4JO/8pBPht/2Err/0jnr98E+7 X4H/APBJ3/lIJ8Nv+wldf+kc9fvgn3a/A/FD/kfU/wDAvzZ+1eHP/Ipqf4v0R84/8Fbf+UfPxE/6 8Lb/ANK4a/Bav3p/4K2/8o+fiJ/14W3/AKVw1+C1fXeFn/Inrf8AXz9EfNeI/wDyNqX+D9WFNfpT qa/Sv04/Oj9nv+CCf/Jktx/2ON5/6Lhr7cr4j/4IJ/8AJktx/wBjjef+i4a+3K/lnij/AJKLFf45 fmf0hwz/AMiHD/4UFFFFeCe4FFFFAH5cf8HLf/IB+EP/AF+61/6BZ1+UVfq7/wAHLf8AyAfhD/1+ 61/6BZ1+UVdFP+GgP3K/4IC/8mAWv/Y2aj/6ElfbVfEv/BAX/kwC1/7GzUf/AEJK+2qxl8Q5bhX4 n/8ABw74btdL/bV0fX7eIK2qeB7Vp8D7zRzzpuPvt2j6KK/bCvxW/wCDiTW7a+/bM0DRYn3SWHgW 3Mw/ul7icgfkM/jVU/iEfAg+90r9sf8Ag3o1We9/Yk1LS3fK2fja8CfN03RQtj86/E4HBzX7W/8A BvDps9n+xRq2osPluvG92U99sMIrSp8IH5Tftz/8nmfFD/setU/9KXr3L/gg/wD8pGfDv/YA1X/0 lavDf25/+TzPih/2PWqf+lL17n/wQe/5SMeHc/8AQA1X/wBJWofw/ID9O/8AgrX+1/e/sgfsl6l4 h8K3Bj8TeJLhdI8OyK2DBJIrGSf/AIBGGI/2yn1H8/8Ad3d5e3UmoajcyTzTSF5ppnLO7E5LEnkk nqf/ANdfp1/wcm+OLiXxz8M/hok7eTb6Te6lJH2LSSLGCfoIz+Z9a/MNs4xRTVo3A7b4Gfs5/HH9 pTxK3hD4H/DXU/EV5Goa4FjDmOBT0aSQ4RB/vEfoa93X/gid/wAFIXXePgNH+PiSw/8Aj1frb/wS 4/Zv8Ofs4/sZ+D9D0/S4YtT1rSodX126WMeZcXNwgk+ZupCqVUA9AtfROAEwKmVWXQD+Zb9ob9m3 4xfsr+PF+Gnxw8LLo+tNZx3a2q3kU/7lyQrbomZex4zmq/7ORz+0R4DP/U56X/6VxV9Z/wDBwQoH 7dcJ/wCpNsf/AEOWvkz9nHj9ofwHj/oc9L/9K4q0Um4gfuh/wWZ/5RyfEP8A697T/wBK4q/n97D6 V/QF/wAFmf8AlHJ8Q/8Ar3tP/SuKv5/e34VNH4QP2y/4N4QW/YT1pR3+JGof+kdjXyD8UP8AghF+ 3Pr/AI78ReL7AeEPsd9q95eQ79fIby3ldxkeXwcH86+v/wDg3d/5MX1n/spOof8ApHY19y62oGjX XH/LvJ/6Caz5nGbsB/LOyNG7I3VWxXr37IP7EXxr/bd8U6t4Q+Co0n7Xo1it3ef2tfGBfLZ9g2na 2TmvJbvi6kH/AE0b+dfo5/wbdru+PfxBz/0KkH/pQK2lK0bgefp/wb9/t87ldk8G4DA/8jEf/jVf r5+0Z8MfE3xP/Ze8WfCLwz9n/tbWfCc+nWfnzbY/OeHYNzYOBnvivSO2KjuJ4rZDNMyqirl3ZgAB 65rnlKUgPw/H/Bv1+31j7vgz/wAKI/8Axqj/AIh+v2+v7ng3/wAKI/8AxqvvD9oz/gur+xv8CfEl 54M8OPqnjbUrCZorlvD0aC0SRTgr9odgGweMoGHvXkn/ABEofCYk7P2YPEJHY/2/B/8AG605qnQD 5K+JX/BDX9vr4b+E7zxg/hHRNaisYWmns9D1kTXBQDJKoyqXOB0XJPYGvj+eOW3ke2niZJEYrIjD BUjqD6V+uT/8HJfwmY/N+y/4g5/6j0H/AMar8t/jv488O/FH41eLPiR4T8OvpOm694gu9Qs9LkkD G1jmlaQRZAAON2OAOlVGU+qA+7f+DeP9o/WvC/xy139mfU7xm0nxJpkmpafEzcQ3kG3dtHbfETnH XyxXuv8Awcg8fsy+Ax/1Pf8A7Z3FfD//AARSmlh/4KOeBTG5G6PUFb6fY5a+4P8Ag5CGP2ZfAY/6 nr/2yuKmStUuB+OZ6V/Rf/wTJ/5MD+FH/Yn239a/nQPSv6L/APgmT/yYH8KP+xPtv61Vb4UB7rRR RXOB/MPQetFB61/Yh/KZ9D/8Enf+Ugnw2/7CV1/6Rz1++Cfdr8D/APgk7/ykE+G3/YSuv/SOev3w T7tfgfih/wAj6n/gX5s/avDn/kU1P8X6I+cf+Ctv/KPn4if9eFt/6Vw1+C1fvT/wVt/5R8/ET/rw tv8A0rhr8Fs19d4Wf8iet/18/RHzXiP/AMjal/g/VhTX6U6mueOlfpx+dH7Pf8EE/wDkyW4/7HG8 /wDRcNfblfEP/BBKQH9iS4YD/mcrz/0XDX26HBGa/lnij/kosV/jZ/R/DP8AyIcP/hQtFAORnFFe Ce6FFFFAH5cf8HLf/IB+EP8A1+61/wCgWdflFX6u/wDBy3/yAfhD/wBfutf+gWdflFXRT+BAfuV/ wQEI/wCGALXn/mbNR/8AQkr7aJA6mvwU/Yy/4LBfGr9in4MR/BTwL8NvDeqWMepT3outUafzd0pG V+RgMDHpXrDf8HHf7TrDA+CngvP+9df/ABys3TlzAfsPrWr6foOm3Gt6tfR29paQNNc3E0gVIo1B LMxPAAAzX85//BQj9oyP9qn9r3xl8Y7CfzNNur8Wuit2NnAoiiI/3lTd9W967f8Aa1/4K4ftdftd +F5vAHinXrHw/wCHbni80bw7btCt0v8AdldmZ3X/AGchfavmDOBzWlOPLqwA9M5r+gL/AII3fDNv hp/wTz8BW9zbGO41q3uNXuAVxnz53aM/9+hFX4b/ALM3wG8UftN/HXw38EfCSN9p13Uo4Zp1XP2a DOZZj7IgZvw96/pU8BeD9G+HvgjR/Anh23EVho2mw2VnGP4Y4kCKPyFTWlsgP5xf25/+TzPih/2P Wqf+lL17p/wQe/5SL+Hf+wDqv/pK1eF/tz/8nmfFD/setU/9KXr3T/gg9/ykX8O/9gHVf/SVqp/D 8gPVf+DkTS7mH9of4f6yUPkzeD5YlbtuW6ckfky1+cQbYyvj7rZr9jP+Din4G6p4x/Z+8LfHDRdO eb/hEdae21Ro1yYrW6VQHb/ZEqRrn1kFfjkWyNmKKesUB/TL+yp4q0nxr+zR4B8U6JcpJa3vg/Tn jZOn/HsgI/AgivQO1fi//wAEvv8Agsxpn7Kfw+g/Z/8A2hfDmoal4XspnbQ9a0sCS4sFY7jC8TEb 4wckFTlc4wRjH2gP+C9n/BPLZz4s8TdP+hZl/wAaxlGVwPhH/g4LGP264QP+hNsf/Qpa+S/2cf8A k4fwH/2Oel/+lcVe2/8ABWn9qn4R/tf/ALUcfxV+C+oXlxpC+HbazMl9ZNA/mozlhtPb5hzXiX7O P/Jw/gP/ALHPS/8A0rirePwgfuh/wWZ/5RyfEP8A697T/wBK4q/n97fhX9AX/BZn/lHJ8Q/+ve0/ 9K4q/n97fhSpfCwP2z/4N3f+TF9Z/wCyk6h/6R2Nfc+t4/sa7z/z7Sf+gmvhj/g3d/5MX1n/ALKT qH/pHY191anA91p1xbRj5pIWVfqQRWMvjA/lmu/+PqT/AK6N/Ov0c/4Nuz/xf34gf9ipB/6Uivzl 1CCa21C4t542V45nV1bqGDEEV9Sf8Eiv23vAX7Ev7RV94h+Kltdf8I74i0n+z769s4vMezYSCRJS nVlyCDjkZyAcYreS90D9+q+I/wDgu5+094n/AGf/ANky18HeBtWex1Xx5qjaY11C22SOzRN8+09i 2UTPo57mu+g/4LHf8E6Z0Vl/aJs1LAfK2m3QP0/1dfK//BypbXeoeDPg94gs9zWK32sRySfw75I7 Jk/NY3P4VhFe8rgflB1+duT1zXd+Af2Xf2l/iroS+KPhn+z5428QaazFE1HRfC91cwOwOCBJHGVJ B6gGuFI445r9wv2Uf+Cv37AGj/s8+D/DOv8AxNXwvfaT4etLG80e60qYeRLFEqNtMaFSpIJBB5z2 NdEpSjsB+SY/YS/baH3v2RPiX/4Q99/8arzPxH4a8Q+DtfvPCvi3QbzS9U0+4aC/07ULdoZreRT8 yOjAMrA9QRkV+/w/4LE/8E6f+jjLL/wW3X/xuvxG/ba8feFPil+1z8RfiL4F1Vb7R9a8W3l3pl4q MomheQlXAYAjI9RUxlKW6A9b/wCCK3/KRrwJ/u3/AP6Ry19xf8HIf/Js3gP/ALHr/wBsrivh3/gi t/yka8Cf7t//AOkctfcX/ByH/wAmzeA/+x6/9srilL+IgPxzPSv6L/8AgmT/AMmB/Cj/ALE+2/rX 86B6V/Rf/wAEyf8AkwP4Uf8AYn239adX4UB7rRRRXOB/MPQetFI2euK/sQ/lM+h/+CTpP/DwX4bD /qJXX/pFPX74p92vwO/4JPnP/BQj4bH/AKiV1/6RT1+925duM1+B+KH/ACPqf+Bfmz9q8Of+RTU/ xP8AJHzn/wAFbv8AlHx8Rf8AsH23/pXDX4Lmv6LP2tfgCv7UH7PniL4Gv4kbSRr1vHF/aCw+b5Oy VJM7cjP3Mde9fntrf/Buv42SMnw3+0lpszfwi80WSMf+Ou1ehwBxLk+TZfUo4upyyc7rRvSyXRHD xxkObZpmFOrhafMlGz1Xdvqz83Ac9Ka+AwOK+4vGf/BAv9sTQI2m8K+J/COtqq52R6hLBI30Dx4/ UV4z43/4Jd/t5+AjI+rfs461dRx5zNpLRXikDv8AuXY/oDX6dh+KOH8Tb2eJh83b8z87r8O55h0/ aUJL0Tf5XPpb/gkL/wAFL/gH+zb8NZf2e/jU17pH2rXJr218QiHzLQeYqLskC/MmNv3sEc84r9TP Anj/AMF/Enw/B4q8A+KbHWNNuF3Q3un3Cyxv+Kmv5uvF/wAM/iF8P7trDxz4E1jR7hfvRapp0kLL +DgV0/wD/at/aA/Zm11dc+CfxMv9HbzQ89irCS1uMdpIXBRh26Z9CK+M4g4BwucVZ4zAVUpyd2m7 xb8n0v8AcfW5HxvisppxwuMpXhHRNaSS9Ha9j+jlN235qWvz2/ZC/wCC7fwv+I8tv4P/AGntGj8I 6m6hRr1lvfTpX/2wcvDn33KO5Ffevhrxb4b8Z6Hb+JfCevWmpafeRiS1vrGdZIpVI+8rKSCK/IM0 ybMsnrezxdNx7Po/R7H6nlucZdm1HnwtRS8uq9UalFRhwxzTh9zivLPU3Py6/wCDlv8A5APwh/6/ da/9As6/KKv6bPi9+zh8D/2gksIfjb8LtI8TJpbSHT11a1EotzJt3lc9N21c/wC6K4n/AIdtfsH/ APRq3g3/AMFK1pCooxsB/OTRjNf0bf8ADtr9g/8A6NW8G/8AgpWj/h21+wf/ANGreDf/AAUrV+1i B/OQSR0rsPgx+z78av2h/E0fg/4M/DnVPEF87hWWxtiY4s93kOFQepYgV/QbYf8ABO39hzTLgXFl +yv4LVlOVZtFjb9GBr1Dwf4C8F/D7TF0TwN4R03R7NPu2ul2KQRj/gKACk6vYD5T/wCCV3/BMDQv 2G/Cs/jfx9NZ6t8QdatVS+vIFDR6ZCeTbQsevON78bioxwBn7EA2jAowPSg7u1Yybk7gfzX/ALc/ /J5nxQ/7HrVP/Sl69z/4IP8A/KRfw7/2AdV/9JWr9evEf7AH7GHjLxDeeK/Ff7NXhO+1LUbp7i+v rjS1aSeVzuZ2PcknJNafw0/Yv/ZY+DPi6Hx38KPgR4d0HWIInjh1LTdPWOVEcbWUEdiODWjnpYDs viT8OPCPxY8Bat8NvHWlJfaTrVjJa39tIOHjcYP0I6g9iAa/CL9vn/glN8ev2PfF+oa14c8OX/iX wE0hk03xFY25la3jJOI7lV5jdem7G1uoPUD9+QcJ8w+tNnht7uBraeFZEkUq0brkMPQj0qYy5QP5 XtpP3qXHGK/pO8X/ALD/AOyH491CTVfF/wCzb4NvbqVt0lxJoMIdz6kqASaxj/wTe/YOC/8AJqvg 3p/0CVrT20ewH85QGDkV2X7OP/Jw/gP/ALHPS/8A0rir3T/gsP4V+CHw9/bX1T4ffATwzpOkaXo2 j2kF9Y6NGqwpdlS8gOP4gGUH0PHY14/+yD4bvPGX7WXw08M6fEWlvPHekphRnC/a4izfgoJ/CtdH G4H7ef8ABZj/AJRzfEIf9O9p/wClcNfz+544r+ob4g/DbwR8WPCd14D+JHhe01rR77aLzTb+LfDM FYMNy98EA15f/wAO2/2D+/7K3g3/AMFK1hGfLGwHz5/wbu/8mL6z/wBlJ1D/ANI7Gvu+TO3Irl/h R8Fvhb8CPDcng74PeAtN8O6TLeNdyWGl24jjaZlVWkIH8RCKM+iiuqqJO7uB/P3/AMFW/wBi7x3+ yt+074i1weGp18H+KNWm1Hw7qkUX7j98xke3yOFdGLDacfLgjivl4LlQ/rX9SHjDwV4S8faLJ4b8 b+F9P1jT5hiax1KzSaJ/qrgivKrz/gnV+w3qM7XN5+yx4LLN126LGv6KAK1jU01A/nHgUecg/wBo fzr+gz/gol+xmf21/wBkA/DjRZo4fEGmww6n4Zml4X7VHFjyieyyKWTPYkHtXTn/AIJufsIqMp+y t4Nz/wBgla9rtreO3iWGONVWNQsaj+EAYxUyqc1gP5efiL8NvH3wj8YXnw/+JnhO+0XWLCVo7qwv 7cxuhB64PUehHBHIzWKBjmv6c/id+z/8E/jRGsPxZ+E/h/xEI/8AVtq2lxTMn0Zhkfga4L/h25+w iTk/sreDfw0lar2yA/nJIB4IpAgByBX9G/8Aw7c/YQ/6NX8Hf+ClaP8Ah23+wf8A9GreDf8AwUrR 7RAfjn/wRW/5SNeBP92//wDSOWvuL/g5D/5Nm8B/9j1/7ZXFfYfw+/Yj/ZO+Efi218e/DL4AeGtF 1iz3C11LT9PWOaLcpVsMOmVJH0NdH8XvgL8IPj5o1r4e+M3w50vxJZWN19ptbXVbYSJFNtK7wD0O 0sPxqXP3rgfzGnpX9F//AATJ/wCTA/hR/wBifbf1qY/8E2v2EO37K3g3/wAFK16z4J8GeGfh54Ws fBPgrQrfS9J023EGn6faR7Y4Ix0VR2AolPmA1qKKKzA/mJEUxOFib/vk1INL1VhldNuCPaFv8K/p mtdI0mzXZaabbwr/AHY4Qv8AKrH2W2xlYF/75r9el4r1ebTCr/wL/wC1PyuPhnHriP8AyX/gn82f wm+I3xL+BHxG0v4tfDuWSx1vRZml0+7ksxII2ZGQ/K4IOVZhyO9fV3g//gvH+3B4cVU8Qab4S15V +81/okkTH8YJEAP4Gv2cNpbsPmgX/vmq114e0O+XF/o9tN/12t1b+Yrycdx1lubTUsZl8ZtaX5ne 3a9j0MHwXmeWrlwuNcV2tpf7z8vPC3/BxN4xhCp45/Zs0+b+/JpeuSR5+iyRt/6FXpnhH/g4S/Z0 1Jo4/F3wh8VaWzH55LcwXCL7/fVv0r7c1X4JfBzXwU134UeG7xW5YXWhwSZ/76Q1zOr/ALF37JGt Bl1D9mnwO27q0fhm2Qn8VQV49TNOEKz1wMo+cZv9dD1qeW8VUdsZGX+KH6o8p8Df8Fkf2BfGyp53 xffR5G4EesaXPFz9QrL+teteDf2vf2W/iHtHg/4+eE75pMBY01yFWOe21mBz7YzXH63/AMEyP2Ed eBF3+zV4djZurWtu0R/8dYVxPiL/AIItfsB68jCH4W3mms3/AC00/Wp1YfTczfyrikuFK3wOrD1U ZL80zsi+KKa95U5+jlH/ADPpjV9A8F+ONJ+xa9pGm6tYzDPl3MCTxsPXDAivDPit/wAErP2GPi6k smrfA6w0y5lB/wBM0CRrOQH1xGdufqprzqw/4IyfD7wA7XHwC/ab+J3gl2bcsWma6DCW/wBpNq7v xNadl+yj/wAFLvhq+fh/+3rYeI4V5W18Z+Fw272LozN+tOj7HCyUsFj+V+anD8romt7TER5cZguZ eTjL87M+f/jR/wAG8tuxmvvgB8cmUdYdO8U2YbHoPOhA/wDRdeJeFPCf/BUz/glz4gbVtJ8Kapce G7ebzLy3t86hpNymeSyoSYsj+LCEetfoXY/F7/gpX8NIVT4lfsw+FfHVvH/rL/wL4m+yzEepguwN xPopFbnhn/goP8M5Ln+yPjN8N/Gnw7u84f8A4Svw7KtqT3xcxb4se7Fa+go8TZ/7F0cXGGKpdU2m /vXvJ+qPDqcP5LKsquFlPD1Fta6X46W+ZxP7FX/BXf4AftSCHwh4vmj8F+LpCqf2VqlyPIu3/wCm EpwDz/C2G9M9a+tkl3rwd1fMXxg/4J//ALCH7bGkT+M9J0bShf3mWXxN4Nuo45PMP8beXlHPruBJ 71xfgbQ/27/2AIl07Wbu4+Nnwzt8JG1r8uvaTEOhCOT56hcfKGJ4/hFfPYzCZTjpOeBbpz6059/7 sv0dj3sJi81waUcalUh0qQ/9uj09UfahcdqcDkZrjfgz8c/hn8ePDCeLfhp4ljvrf7txCymO4tJO 8c0TAPE47qwBrsgc9K+eqU505uM1Zrue/TqQqRUou6YUUUVJYUUUUAFFFFABRRRQBleOrie08E6x dW0rRyR6XcPHIpwVYRsQQfUGv5yLv9uL9saO8mjj/ab8bKqzMAP+Ein6Z/3q/pA8R6U2u+Hr7Q1m 8s3lnLB5m3O3ehXOO+M1+V8v/BtbrNxO8x/aytvmcnH/AAiTcf8AkxWlNxW4HwX/AMNy/tkf9HO+ Nv8Awop//iqbP+29+2FcwtBP+0z42ZXGGX/hIp+f/Hq+9f8AiGl1j/o7G2/8JJv/AJJoP/BtNrAG R+1lbf8AhIt/8k1pzUwPy8v7+/1O+m1PUryW5ubiRpLi4mkLPK5OSzMeSSe5r76/4IJfsf8AiL4n ftB/8NQeINLaPw34LEi6dcSr8t3qLoVVU9fLQlmPYslfQnwT/wCDc/4J+Etfh1v42/GbVvFkEMm9 dL0/T10+GT2dt8jkf7pWv0E+HPw18C/CfwbY/D74ceF7PR9F0uHyrHT7GERxxrnPQdSSSSepJJOS amVRWsgN5elFFFYgDHAzimeZtHzClY4Jr5g/4Ks/tg+If2Qv2am1/wAESCPxF4h1BdM0e6ZQwtWK M7zYPUqiHH+0RXXgcFXzHGQw1H4ptJHLjsZRwGFniKvwxV2fTn2uMPsLLn03U9JQ4yPyr4C/4J0/ sP8Ah7xz8FrX9rz9pbx1r2ueMvFdjJe2ms3WvTxyaVaEkqUdXBDcbic4AOAMZz7P/wAE5P2rbz4+ fAzXNY8aa+t03g/xJeaTJ4juCI01C1iO6K5YnADGMjd7jPeu3HZT9WdX2M+dU2oydrau607q6t+h w4PNvrEabqw5PaJuKbu7LXXtoz6Vkk2rkCuT+Hfx0+FPxY1XXND+HXjmw1e88N6i1jr1taSZeyuA SCjggY5VhkcEqeeDXm3x2/bo+Bngb9n7xn8VfBPxO0XWrjw7pbmKHT75JM3LkxwrweQZMDIyODX5 2/sn/Cn9rmH4deHovgz8UdH8I+KPi5rb+IdT1fUtWWHUL21gm8uOOKM581f3txOQeHBxnsezLeH5 YzBVK9afs7NKPNom7NyvpeyWpy5hn0cLjKdGjH2l027au2yt0u2frR49+Knw/wDhZoqeIfiR4w0/ Q7GS6S3jvNSulhjaVz8qBm4yewrchvYbiFZ4ZFZHUGORTwwPQ1+T/wC234a/as+M37S3gn/gnlrf 7R0fji4uLmDUtSvo/C8dkNPbDkyS7JD5gSHc+Mr1UdTX2zpXhPxdob6X8JPix+29Zx3UKQxw6P4d 0210q6njVlEaZeSWQAjauVIJzweazx2SU8HhaNT2qcppysk/hvaL2vrrvYrB51UxWKqw9k1GDUbt rWXVb20+Z9FrJkZYUGT5ScV4Dc/t0eGPDX7X2s/steOPDf8AYlnpHhdNXTxdqmopFb3AIQsoVgOB uxuDHlSMV03xj+N/hTWP2Zdf+I/ws+NHhqxju9Lmt9D8VXl8psYbxgUjLOuekhA7kHseleXLL8VG UFKLSlaztp7221/8z0o5hhZQk4yTcb3XXTc9XSXf0FO3e1eHfsq3njv4D/spaNqn7XXxr03UtUhi kuNS8RXV8nkLG7lok844EgCEfN3zx0Fdlo37Tv7P3iCfSrbRvjBoFxJrl01tpKR6khN3MoUtGgzy wDLx/tD1qamDrQqSjBcyTauk7O3mXRxlGdOLm1FtJ2bV1c2Piv8AGb4a/A/wt/wm3xX8XWmh6SLi OA316xCCRzhV4B6mug0zUrTVrGLUrC5SaCeNZIZY2DK6sMggjsRX54f8Fbtfvf2nf2lPhd+wF4Kv WkN1q0eq+IlhY/uchlXdj+5D5r/8DFfoR4Z0Sx8M6BZ+HdMi2W9jax29uv8AdRFCgfkK68bl8cHl 9CtKT56l3btG9k/nr8jmweYTxeOr0or3KdlfvK12vloX6KKK8o9QMD0ooooAKPwoooAKMZ6iiigA wPSjA9KKKADA9KCAeCKKKAGhAOg/Oo7qytLqMw3VvHIrcMkihgR+NTUEZ6ijbYLJ7nF2XwD+Euke Lv8AhO/Dngey0jWGb/SNQ0dTaSXI/uzeVtEy+zhgO1dcsI8vB/WpdvuaTbjvTlKc9ZO/qTGnCHwq x5v4x/Z08Map4tf4oeA5m8L+LzCI31zSo1X7YoORHdRfduU/3vmH8LKa6rwlq/ieWH+yvGelx2+o RRjzJLUlre4H99CeRz1RuRn+IfMd/bxgmkMeWzn9KqVWpOPLPWxEaMISvHT8hU+6KWgcDFFQahRR RQAUUUUAFFFFABRgelFFABRRRQAUUUUAFBOOtFB6c0ARTywwq0k7hVVdzMewr8uf+CgfxvuP+CoP xP0/9i/9lX4enWpvDOtveXvi64uvLtY2RGikI4I8obsbzyxxtB4J+6v299b8V6B+xx8StX8EGVdT i8I3n2d4c70BTDsMcghCxz2xXwB/wRw+Hni7x1+yl8WrL4C+O7Lw78RdQ1W2tIdZu4yz2dn5YYMu PmUsTKA3YgHqOPtOGaFLB4Krm8rc9OUYxveycvtStq0l0PjeJK1TF4ynlSXu1IuUrWu0vsq+l2e2 fsC/A/8A4Kj/AAe8a6J8NfjV4o8LN8M9Dsms5tJe4guZHtwrBFi8tQ4OccuQNvBBrM/4KdateeI/ ih8Of+Cc/wACba18O2/jzU0vfFUOjW6W6valyPmCAZGI5JG9fLHWvUL79k3wt+y98GdL+IFj411y 6+JFjdWQk8ST6/dSPrN/LNGjwNE7lXik3MBGV4HIwQTXQ/tK/sN+Ifij+0p4L/a4+EXxGtfD3jHw pbNZv/a2mm7tbq1ZZVwVV0IYCeXHODu7YzRDNMLLOPrlXlStK3LHli5pe7JpN9Xe/wCASy3FQyv6 rT5m7xveV2oNq8U9Omlj5S/bx+CHwi8fftLfCv8AYA/Z98Kw2M1jplsvjLULVmH2fS4XeVIpTnBY AzzFiMlpUJPOBnaH448BfF3/AIKCat8fLK5jt/hL+zj4b+zaTJb/ACW7PbxvHBDF675txAGcqg9Q a+mtG/4JmX+i/tKap8covjZd3Fv4o8Pix8YLcWA+3XspYGYxShtsCSgKpCqSq5VSM5GZ8Pv+CUNl 4Q+E3jb4LX/xJgm0LW9R1C98OwWmlmJrWedCkUty28+eYV+VFAVV5bkkbfQp51lcMLGk6rdoct7O 95v94/W2i8vuPPqZLmU8RKoqaV5X6WtBfu16X1fmfMXwK+NWofCf4afFT/gq18U4lm8W+OdQuNJ+ HOnzHJQs20suf+WcYCL/ALsBHVhnuPhp8PfH/wAGv2XfAPxo8R/C6D4ieNvi58QNP1Xxh/aEMl3q P2ASfaY0t0WRXZ40TzMA7Vb7w2jj2s/8Er9P8W/shL+zv8T/AIgw3OsWOiw6foGraXYGO10wRSiU OkLMSzyyLumckF84G0ACvUf2Z/2XvHPw6tdB1r45fEe38Ua34X0UaR4d/s+xNtZ2NqFClxGWJad1 VQ0hxwNqgDOefH55l06M5U2m+e1tdYRjaEVtZJ6vbXU6cHk+YQqQjUVly3vppJu82+76LfQ+cf8A gpp4svPB/wAAfE3xj8f/AA7t7fxV48az8L+BdI1KKG5u9LtNrvK3y7lSZy0jHYTt/dgkla+ffjB4 N8aeHvgv8I/+CUPw6Am8SeIryLXfHUiy5W0lmYyLbt2CxoS757xqe9foT+2f+yBrX7TurfD/AMUe GvGVlpGo+BPEh1KBdU003dtOrBQQ0QZdzqURlycdQetcRc/8E0Y7X9pe2+OXhr4pTWtvdeGZdL8S edal9Qu5ZZA81xFPuAhkkGULBTsViExwVWV53l+FwNOM370eadtWlJLlgvRK703e4sxybHYjGTlB aPljfS/K3eb9W9PJbHzufs/7d/7ePhn9kjS7iS6+E/wZ02MalbNMfK1aW2VIyzgH5laQhB1yiseN 2Bi+Lbf4XfGv/gqBda94H0uz0H4c/BuRtb8X6xDuW3kvIFUSSdSAS0UUSqoGRCSB1r6h0r/gnBrn wt/aV8Q/GT9nj4tw+FdF8aaWll4k0n+yvOnt1G3c9nIWCxu23IZ1bazE4PAGD4L/AOCSWl+FPD/x K+HEvxUk/wCEV8bXUt1Y2NvZn7TFMYysX2iYsTPHEzF1QbdzHLE9K6IZ1ldN3hUaXs1GKs95P95J 6WctXbp5mMsnzOpG0qd3zuUndaqK9xLrbRXPKP8AgnjLqXjX4q+Nv+Cg3ivw59q8RfELxQ2hfDjT 7zJYwlh5soxkhI4YwrOOiwuO/P6TW+duW698V4d+xx+yHdfs2+B9E0Lxl4xt/EGqaDo50zS57Ww+ z29lbGTzHEaEsfMkbDPITlsAYAGK9ziGK+UzzHUsfmEp0/hWkf8ACtEvkvxbPp8jwVTBYFRqK0nq /V6u/wA9vKw6iiivHPZCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigCvfWFlqNrNY39rHNDNGY5YpF3K6kYIIPUEV+TP7dHg4f8Evv jXD8XP2OvEuqeHbjXpmTUNHmmSfT2Q5bYIimdoPQFjt7Yoor7bgf95j50Z6wlF3T1T9Vs/mfG8Zf u8LTqx0kpKzW69Huj7W/YxtdQ/aE8N6L+0H8ZvEN7r2tWsW7S7W58tLLTpGXDSwwxoo8wgkeY+5g CQCAa+lIlVo8kUUV8/nkY08znCKslslsvRdD3snblgYzlq3u+r9WP2L/AHaTy0/u0UV5CPUDy0DD C0BV447UUUuwC7VznFII0HRaKKYA6KB92kCqzciiigGOCKOi0oAHQUUUwCiiigD/2Q== ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/image016.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCADeAfwDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKMj1oAKKKKACiiigAoooo AKKKKACiiigAoqh4o8U+G/BPh+88V+L9dtNM0zT7dp76/vp1iigjUZLMzEAACvz8/aU/4OG/gN8O 9VuPDX7PXw8vvHE8DlDrN3ObGwYjj5NymWQZzztQdwTTUXLYD9EqK/GPVP8Ag47/AGvZrpn0T4Of Dq3gJOyO7s76Z1HoWW6QH8qr/wDERt+2r/0Sv4X/APgn1H/5OqvZzA/aSivxb/4iNv21f+iV/C// AME+o/8AydWv8Pf+Dhb9snxZ4+0PwtqPww+GiW+p6xbWk7w6TqAdUklVGKk3pAOCcZB+lHs5gfsb RVPxBr+k+FtAvfFGvXXkWOnWcl1eT7Gby4o1Lu2FBJwoJwASe1fMX/D7D/gmd/0ch/5aWrf/ACLU 2bA+qaK8o/Zq/be/Zi/a+m1aD9nj4lf8JA+hrE2qD+yLu18kSbth/wBIij3Z2N93OMc16vSAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorhf2hP2k/gv+yv4DX4mfHfxj/YeiNex2gvfs Fxc/vnDFV2QRu/IU84xx1rxD/h9h/wAEzv8Ao5A/+Ejq3/yLTSbA+qaK5X4LfGz4Z/tDfDnT/i18 IPEf9reH9UDmxv8A7JLB5uxyjfJMquMMpHKjpXVUgCiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAoorM8Z+MvC/w+8L33jTxprttpmlabbNcX19dyhI4Y1GSxJ/l36U4xlJpR V2xSlGEXKTskHjLxh4X8AeFr/wAaeM9dttN0rTLZri+vruUJHDGoyWJP+T0rm/gH+0F8JP2mPAEH xN+Dfi+HV9KmlaJnVCkkMq9UkRgGjYdcEcggjIINfjv/AMFN/wDgpx4o/bF8US/Dv4c3Nzpvw606 5P2W1yySavIrcXM4/u8ApGfu9Tz08q/Ym/bX+Kn7E/xSi8b+CrprvSLt0TxB4ellIg1CEE/98yKC Sj44PqCQf07D+GmOrZK8ROXLXeqh0t2b/mf3LZ+X5xifELB0s3VGMb0NnLz7r+6vvZ/QpRXA/s3f tI/C39qn4WWHxY+E2urdWN3GBc2znE9jPgFoJV/hdScehGCCQQa76vzStRq4erKlVi4yi7NPdM/Q 6NaliKaqU3eLV011QUUUVmahRRRQAUUUUAFIzBVLE4A70teAf8FP/j9dfs3/ALEHjrx9pN79n1S6 0w6Vo8qthkubs+Srr/tIGZx/uUWuB+XH/BZD/go/4i/ag+Ld98CPhn4hkh+Hnha+a3ZbaQqus3sZ 2vPJg/PGrBljHTAL/wAQx8Qgd6Vmd2LuxJJySTyTWt4A8C+Kvif440j4ceB9Ke+1jXdRhsdNs4+s s0rhFXPYZPJPAHJ6V1RSirDaMiiv3J/ZD/4Id/sn/BbwVY3nxx8J2/j3xZLCr6lcaqWaxgkPJjhg BClR03PuLdeMhR70v/BPf9hVQFH7H/w34HfwdZn/ANp1HtYiP5vK6b4K/wDJY/CX/YzWH/pRHX9D 3/Dvj9hX/oz/AOG3/hG2f/xupbD9gf8AYi0q+h1PTf2Svh3b3NtKstvPD4QtFeN1IKspEeQQQCD7 Ue1iB1X7QYz8A/G3r/wiOo4/8BZK/mMyexr+pXxR/wAI9/wjeof8JatsdK+xS/2kLxQYTb7D5m8H grtznPGM18k/aP8AghkeukfADP8A2CtO/wDiKiEuUasfNH/BtVzrPxXz/wA+ul/+hXFfq5XjP7KM n7CL3Gs/8MZ2fw+ilCQ/26fA9pbxErlvK87yVGRnfjPvXs1RJ3dxBRSM6ICzsAAMkk8CvP8Axv8A tYfsxfDa7fTvHn7QPg7SbmM4ktL3xFbpMn1TfuH5UgPQaK8b/wCHhv7Dg/5uq8Ef+D2L/Gk/4eG/ sN/9HVeCf/B7F/jTswPZaKx/AXxA8E/FHwlaePPh14osta0a/VzZanp04lhnCuyNtYcHDKyn3U15 1qn7fX7FmiancaNq/wC074Ntru0neG6t5tbjV4pEYqyMM8EEEEe1KzA9dorxv/h4b+w5/wBHVeCP /B7F/jR/w8N/Yc/6Oq8Ef+D2L/GnZgeyUV5R4f8A26v2NfFOoppGg/tPeCLi5kOI4v8AhIoFLH0G 5gCfavVLe5t7uFbm1nSSNxlJI2DKw9QR1pWaAfRRRQAUVn+IvFfhjwfpr6z4u8RWGl2cQzJdajeJ BGo9SzkAV5nqf7e/7FWj3LWl/wDtS+BVdTghPEcDj81YihJsD1yivG/+Hhv7Dn/R1Xgj/wAHsX+N aPhD9t39kX4geJrLwX4I/aK8Jarq2pTiGw06y1iN5Z5D0VVByT7U7MD5r/4ODgP+GEICOv8Awm1h /wCi56/ELJ9TX9MH7TT/ALMSfDpG/azt/Cknhb+0Itq+MbeGS0+04by+JQV343YPXrXz95//AAQx /wCgR8AP/BVp3/xFXCdkPQ3f+CLgH/DuXwDx2vv/AEsmr6orjfgIfgY3wu01v2cIfD8fg/8Aef2S nhiGNLIfOd/lrGAo+fdnA65pnxY/aO+BHwJns7b4yfFnQ/DUmoo7WKaxfrCZ1TAYru64yM/WoerE drRXjX/Dw79hs/8AN1Xgn/wexf40v/Dw39hz/o6rwR/4PYv8aLMD2SivILL/AIKA/sSahcraWv7V Hgcu5wobxDCo/NmAFeneGfF/hTxrpSa74O8S6fq1jKMxXmmXiTxOPZ0JB/A0mmgNGiiigAooooAK KKKACiiigAooooAKKKQnHagAYkdPWjOODXgv7YH/AAUZ/Zv/AGNbA2nj/wAR/wBo+IZIt9n4W0ki S7kz0L87YV/2nIz2B6V+av7QX/Bc39rn4o389l8LP7P8B6SzEQpp8QuLwrn+KeUYz/uotfUZLwdn meRVSjDlh/NLRfLq/krHzWb8V5Nk8nCrPmn/ACx1fz6L5s/aQsAMikDqOC2T9K/nU1v9s39rjxHe tqGtftN+PJ5WOcnxXdgL9FEgC/QAV13wr/4Kdfty/CO/ju9E/aH1/UoUYE2XiS6OowsPTE+4gf7p FfU1PCvNY0rwrwcu3vL8bP8AI+ch4lZa6lpUZKPfR/h/wT9/Xfahbk4B6CvxO/4Kv/8ABQz4n/tI fE3Uvgfpun6n4a8G+GtSe3fRbuNobi/uI3I865Q4IGRlIz93qeTx9afsWf8ABcz4a/FvUrT4eftN aRa+ENauWWO3162kY6bcuegfdlrYk92LLzywruP+CmP/AATK8I/tl+E2+LXwmjs7H4gWdmHtbuPa sOtwgZWGZhxux9yXtwDlcY8/h6hT4T4his6oNX0jJ7Rf8y6Nee8Tsz6tU4nyJvKa17ayitG12fVP y2Z+J3fpQAB0FX/FfhXxJ4F8T3/gzxjoV1puqaZcvb31jeRFJIJVOGVgfTFUK/oKM4zipRd09mj8 PacXZ7o9j/Yp/bV+Kf7E/wAVIvHfga7e60q6dY/EPh+aYiDUIQT1H8Mi5JV+qk9wSD+6v7Nn7S3w r/aq+Fdh8WPhNrq3dldKFurVziexnwC8Eq/wupP0IwQSCDX844AHSvYv2LP20/ip+xP8UovHPgG7 a50u6dU8Q+HpZSINRhBPUfwyKCdr4ypPcEg/B8ZcG0s+ovE4ZcuIivlJdn59n8npt9pwnxXVySqs PX1oN/OLfVeXdfNH9C340V59+zP+0x8K/wBq74WWXxX+FGtpc2dyoW7tHYCexnwN0Eq/wsp/AjBB IINeggg9K/nytRq4arKlVi4yi7NPdM/c6NalXpKpTleL1TXVBRRRWZqFFFFABX5zf8HH/jS40z9n LwL4EhnITVvF8l1NGD94W9swB/Oav0Zr8sv+DlyWRbP4QQDOx5dbZueMgWWP5mqh8aA/Kivur/g3 3+Dth8Q/20bz4gavZrND4L8MzXlruAOy7mdYI259EaUj3we1fCtfqH/wbT2Vs/if4taiyjzo7HSY 0P8Ass90T+qit6jtED9YRwKKKK5gCiiigDj/ANoT/kgnjfP/AEKOpf8ApLJX8xdf06ftC/8AJA/G /wD2KOpf+kslfzF1tSH0P1I/4Nqf+Qz8V/8Ar10v/wBCuK/UL4ieP/CHwq8Dar8R/H2txabo2i2M l3qV9MfliiRck+pPYAckkAcmvy+/4Nqf+Qz8V/8Ar10v/wBCuK7r/g4s/aF1Pwh8GvCX7O2hag0L eLNRl1DWRE5BktLUKEibH8LSyK3uYR71MlepYGfHP7fv/BXn4/ftb+J77wx8PvEWoeEPAEcrR2Wj 6ZdNDcX8Y48y7kQgvu6+WDsXjhiNx+QmyzF2JJJ5JPWg5xwK/TT/AIJaf8EV/Afxq+Fdh+0V+1fH qEthraGbw54XtblrcSW+cLc3Dr8+HwSqKV+XDEndgbXjBCPzLyPWjGeBX9A0f/BG3/gnGiBP+Gcb M4HU6rd5/wDRtL/w5v8A+Ccf/Rt9l/4Nbv8A+O1HtY9h3G/8EZgP+HaXwwA5/wBF1L/063lfhZ+0 V/ycF46/7HLU/wD0rlr+k34QfCH4efAb4c6b8JvhT4dTSfD+kLIun6fHK7iESSvK/wAzkscvIx5P ev5sf2if+TgfHX/Y5an/AOlctTT3YI46ivpr/gk9+yj8KP2yP2o5fhF8ZI9RbSF8NXV8o0y88iQT RvEF+bB4w7cYr9LP+Ifz9gH/AJ9vGP8A4Uf/ANrrRzjF2Yj8OeD+VfXn/BMz/gqT8UP2PPiJpvgj x74nvdX+GmoXKw6npV3M0p0pWIX7TbZyU28Fox8rDPG7BHSf8FdP+CWfgz9hbT9A+KXwe8T6ne+F td1E6dPY6zIkk9ld+W0q7ZFVd6MiPwVypTknIr4fHFP3ZxA/qesL+y1Sxh1PTbpJ7e4iWSCaJtyy IwyrAjqCCCDXy1/wVE/4KU+Hv2C/h7baZ4bs7bVvHviCFjoOk3DExW0QOGu5wCDsBBCrkF2BAOFY jtP+CZvi7UvGX7Anws8Qa5cGSceEoIJZXbJYQ5iDEnuRGCa/D7/gop+0Fqn7TP7Yvjb4l3l+81km ry6doaF8rDY27mOJV9AQC5x/E7HvWEI3kBxfx0/aS+Of7SviuXxl8bviXqmv3cjlokvLlvItwSfk iiHyRKMnhQB+dcOMdq3vhd8M/Gnxl+ImjfCv4d6O9/revX6WmnWiHG+Rj1J7KBkkngAEnpX66/BL /g3a/Zp0Lwfbf8L28feJNf8AEEkQa9bR7tLOzicjlY1KM7AHI3M3PXaK3coxA/Gyvev+CXn/ACkG +E3/AGN8H/oLV+pv/EP7+wF/z7+Mv/Cj/wDtddP8Ff8Agiz+xf8AAT4raF8ZPAcHigaz4dv1vNON 5rnmReYucbl2DcOemah1ItWA47/g4Ox/wwdBgf8AM72H/ouevxCr9vf+Dg7j9g6D/sd7D/0XPX4h U6Xwj6H7+f8ABFv/AJRyeAfpfZ/8DJq+Q/8Ag5Vx/wAJb8KR/wBQ/VP/AEO3r69/4It/8o5PAP8A u33/AKWS16p+0V+xb+zV+1hd6Xe/H34aQ+IJdGjlTTWmu5ovJWQqXA8t1zkqvX0rK/LMR/NcDjtS 7v8AZH5V/QN/w5w/4Jx/9G32X/g1u/8A47Qf+CN//BOM/wDNuFl/4Nbv/wCO1oqysO5/PxxnNek/ s0ftafHb9knx5b+Pfgr45u9OeOYNe6Y0rNZ36DrHPDnbICOM9R1BB5r9VP24v+CHH7L+sfBHXPF/ 7Nfha68L+K9E02a9sba31CWa21Dy0LmB0lZtrMFIVlIwxGcjivxiqouM0Fz+kz9in9q7wf8Atm/s 9aJ8cPCcYt5LtDb6zpu/cbC+QASwk9wCQVJxlWU969Yr8pP+Da74j6l/a/xQ+EtzdO1n9m0/VrOE t8scgaWGY49WBhH/AAAV+rdYSXLKwgoooqQCiiigAooooAKKKMgdTQAhYKMk1+fH/BTv/gsDY/By 4v8A4B/sw6nb3nilVaHWvEqESQ6S2cNFF2knHc8qh45bIWX/AILCf8FNbj4IafcfsyfAfX9nizUL b/ioNZtJfm0iB/8AlkhHSdx36opB6sCPyKeSaaVpp5C7sxLsxyWPck1+r8D8DxxsI5hmEfc3hF/a /vPy7Lr6H5hxjxjLCzlgMDL3tpSXTyXn3fT1LfiLxF4h8X65d+JfFWuXepajezNNeX99O0s08hOS 7OxJYn1NUwMDAJ/GjIPIr1H9lv8AY5+PH7X/AIv/AOEV+DfhB7mOFgNR1i5Pl2dip5zLKRgHGcKM sewNfs1fEYXAYd1KslCEd76JI/JqFDE4zEKFKLnOXa7Z5fn2pMEnPHFfr98A/wDggP8As7eD9Mgv vjz4u1bxfqhUGe1spjY2StjlQEJlcA/xF1z/AHR0rt/iL/wQ8/YX8ZaHJZ+GPCuseGb7ZiC/0vWZ ZNrdsxzl1YfkfevhaviXw5TxHs0pyX8yjp+LT/A+0peH2f1KHPLlT/lb1/Kx+JQDAkqv5195f8Es v+Cr+r/ATULL4CftDa5PeeCbiRYdI1i5kaSTQ2PAQk5LW54GP+WfUcZFeM/t2f8ABNX41fsQ6suq 6q/9v+EbqbZYeJ7KAqisTxHOmSYXPbJKnsTyB85gjIevosTh8l4uym11OnLaS3i+66prs0eBh6+b 8L5nezhUjuns1+q/4c/a/wD4KUf8E2PBP7bXglPjD8HHsLfx1b2Cy6ff2zJ9n16DaGWKV14JK/6u XnGQD8vT8YfF3hLxN8P/ABPe+C/G2h3Omarpty9vf2N5EUkglU4ZWB9/z/Gvtv8A4JWf8FVNT/Z5 1C0+Afx91ia68DXMwj0rVJ3LyaE5PA7k25OMr/B1HGRX2L/wUk/4Jt+Bv23PAq/GH4QyWFv47trE S6bqUDL5GuwbdyRSuvBJX/Vy5OM4OVPHwuV5pmHBOYLK80fNh5fw59v+B3X2fQ+yzLLcFxdgXmWW q1dfHDv3+fZ9fU/E+kwd2QcVpeL/AAh4o8AeJr/wZ410O50zVdMuntr+xvIikkMqnDKwPv8Ah/Os 6v1eE4zipRd09j80lCUXaSs0ewfsX/tofFP9in4pxePfAV29zplyyR+IPD80xFvqMAPQjosi5JR8 ZUnuCQf3W/Zn/aZ+FX7Vvwssfit8J9bW5tLhAt5ZuwE9jPjLQTL/AAsD+BHIyCDX85B3Z+U16/8A sZftm/Fb9iz4pw+Pfh/fNPp1wypr+gTSkW+owA/dYdA4ydj4ypPcEg/CcY8G0s+pPE4ZKNeK+Ul2 fn2fy22+z4U4sqZJV+r17ui3/wCAvuvLuvmj+hoGivOv2Y/2nPhZ+1h8KrL4r/CrWlntrhQt9ZSM BPYXGPmglX+Fh69GGCMg16LkZxX8+VqNbD1ZUqsXGUXZp7pn7pQr0sRSjVpyTi1dNdQooorM1Cvz J/4OUfDklx8Nfhf4tVSVtNc1C0Yjt5sMTj/0TX6bV8c/8F0fg7dfFT9gXWtb021Mt34P1a11tNq5 byULRTfgI5mY/wC4KqGk0B+ENfo3/wAG3vjuy0r9oTx58PLi42y6x4Viu7dCcbzb3ADfkJ/51+cg IPQ16r+xL+0tqf7Iv7TXhb46WEDzW2l32zV7SM4a5sZBsnjH+1sYle24LXRNXjYZ/SfRXOfCj4sf Dz42+AdN+Jnwu8VWmsaLqtuJrS9s5QwIPVWHVXB4ZTgggggEV0dcogooooA4/wDaF/5IH43/AOxR 1L/0lkr+Yuv6dP2hf+SB+N/+xR1L/wBJZK/mLrakPofqT/wbU/8AIZ+K/wD166X/AOhXFea/8HFe vXGo/tkeHNFdj5WneA7cIueMvc3Dk/U8D8BXpX/BtT/yGfiv/wBeul/+hXFef/8ABxp4VuNM/ay8 JeKxC3kar4HSNZCODJDdTBlH0V4z/wACp/8AL0GfntjPBr6k8P8A/BZb/goR4X0Ky8NaD8aLW1sd PtY7aztofDViEiiRQqIB5PAAAH4V8t9Oa/QT4Xf8G/3xR+L/AMOtE+KHgr9pnwhc6Tr+mQ31hMLC 55jkUMAevIzgjsQRVycVuI8q/wCH2n/BR/8A6LrD/wCE5Y//ABmg/wDBbT/go+Bn/hesP/hOWP8A 8Zr3T/iG2+Pf/RxXhH/wX3X+FJ/xDbfHrv8AtFeEv/Bfdf4VF6Y9D9SP2Y/GHiH4h/s6+BvHvi2+ Fzqms+FLC81C4Eap5k0kCO7bVAAySTgACv5xv2if+TgfHX/Y5an/AOlctf0jfAb4e6h8Jfgp4T+F 2q6hFd3Ph7w9aadPdQKQkrwxKhZQeQCVyM+tfzc/tE/8nA+Ov+xy1P8A9K5amnuOO59af8G+f/J+ c3/Ykah/6Mgr9v6/ED/g3z/5Pzm/7EjUP/RkFft/Sq/ESfnz/wAHHf8AyZ14P/7KZb/+m+/r8Ya/ Z7/g47/5M68H/wDZTLf/ANN9/X4w1dPSBSP3/wD+CcuuS+GP+CU/gvxJBjfp/ga8uUz6o07D+Vfg CzvKxlkcszHLMxySfWv6BP8Agmnocfif/glx4E8NyuVXUPBlzbFgOm951/rX8/8AfWF3pd7Npt/A Yp7eZopo26q6nDA/QgiinuxLc+5f+DfDwFpXiv8Abku/E2o26SS+GvBl5e2RdQdkskkNvuHodkzj Pua/bqvwu/4IMfF3Rfhl+3fa+H9dvY7ePxh4eu9It5ZWwpnylxGmT3YwbR6kgdTX7o5FZ1L8wPcK KKKgR8M/8HB3/Jh8H/Y72H/ouevxBr9vf+Dg7/kw+D/sdrD/ANFz1+IVdFL4QP39/wCCLf8Ayjk8 A/7t9/6WS1a/4KPf8FMPhx+wH4UtbOTSl8QeNNahZ9F8OpceWqxg7TcTuASkYOQABlyCBjDMtT/g i5/yjk8A/wC7ff8ApZLX49/8FNfjHrPxv/bm+I3ifVL1poNP8SXOkaWpfKx2lpI0EYX0B2F8erms 1FSm7geo+Nf+C73/AAUM8U6tLfaJ470Pw/bMxMVhpfh2B0jHYbpxI5Pvn8Kxf+H2f/BR/HPx2g/8 Jyx/+M14h+zD+zV8S/2tvjLpnwP+FFtbNqupLJIZ72by4baGNC8ksjAEhQB2BJJAHJr7hi/4Nt/j +0atN+0R4QVio3KthdEA+mcc1o/ZrcZ4Re/8Fqf+CjGoWc1hd/HGF4p4mjkX/hHbEZUjBH+q9DXy qWd3Z3HLEk4Hev0b1X/g3G+O2k6Xc6pN+0P4TZLaB5XVdPuckKpJA49q/OaeIwTvAWBKOVJHscVU XHoGh+jf/Btuf+MiviGP+pKi/wDSuOv2Hr8eP+Dbf/k4v4h/9iVF/wClcdfsPWFT42IKKKKgAooo oAKKKKADpXi37fX7V2k/sd/s36z8V5vKm1Z1Fl4csZG/4+b2QEJx3VQGkb/ZQ+or2n6V+QP/AAX8 +O934u/aJ0H4E2F239neFNEW6u4g3BvbkknI9oVix/vtX0nCWTxzvPaWHn8C96X+Ff5uy+Z89xRm ryfJqleD99+7H1en4b/I+FPFnirxF468UX/jPxhq81/qep3clzf3ly5Z5pXYszsfUk1Q9cDJ60Dp Xof7K37OfjD9qz47aF8EvBiFJdUuN17fFCyWdqg3SzN7KoOBkZJC9SK/pmrWw+CwzqTajCCu+ySX 6H8806dfF1404JynN/Ntnpn/AATu/wCCeXjv9uLx+Li4afSfBGkzL/b+uiLJY9fs8OeGlYYyeQgO 454Dft78Gfgr8MfgF4Asfhr8JvCVto+kWEYWOC3QbpGxgySN1kc92bJNM+BXwQ+H/wCzt8LtJ+Ef wz0dLPSdJtVjjAUb5nwN00h/ikY8lj3rr6/m3irinF8R4t6uNGPwx/V92/w6H9AcN8N4bIsKrpSq y+KX6Lsgooor5Q+nMbx/4A8G/FHwfqHgH4geHbbVdH1S2aC+sLyMOkqH2PQg4II5BAIwRX4lf8FK P+CaHjT9i3xZL4x8FxXOrfD3U7lv7M1EqWfTmY5FtcEdD0CucB/rkV+51Y/j7wJ4R+JvhG/8B+PP D9tqmkapbNBfWN3GGjlQ9iD0PcEcggEcivpuGeJ8bw5i+aD5qcvij0fmuzXf5M+c4i4cwmf4Xlnp Uj8Muq8vQ/md6gHGCa+6v+CWH/BVbVP2dNUsvgH8etWlu/AtzKI9M1Ody76E7cAdy1uTjK/wckcZ FcF/wUs/4JoeMP2L/GEnjTwZFdar8PNVuj/Z2obC0mmOx4tbgj0zhZDgP9civmLwv4Y8ReNvElp4 R8KaJc6jqepXCQWNjaRF5ZpGOFVVHJJJr98rwyTi7JeaTUqUle+zi+/k11/yPxHDyzjhjN+VJxqJ 2t0kv1UunX5o/aP/AIKQf8E2vAf7cngVPi98IZ7C28cQaeJtM1O2ZTb65Bt3JFK68HI+5LzjODlT x+L/AIx8IeKfh94pv/BHjXQLrTNW0y6e3v7C8iKSQyKcFSD9Px61+8P/AATP/Zs+Ln7Lv7M+m/D7 4x+PZ9V1GVvtMelO4eLRUYD/AESN+S4B5PO0MSFGOW4H/gqb/wAE0vD/AO1v4JuPij8NNLgtPiJo 1qWt5I0CjWYVGfs0v+3gHY56H5TwePzLhbi+GR495XiKvtMOpWhPtrp/26/w3Wh+h8ScLTzfBrMq FPkr2TlDv/wV+PXU/Eug5A4FTalpmo6LqVxo+r2Uttd2szQ3VvOhV4pFJDIwPIIIIIPpUNft6aau j8haez0PZ/2Hf20/iN+xR8YLfx54VuJbvRbt0i8S6AZiIr63B546LIoJKPjg56gkH96Pgz8X/A3x 3+GmkfFj4cayl9pGs2iz20ynlM/ejcfwupyrKeQQRX82GBjGK+6v+CJH7bt58GPi+v7Nnj7WT/wj HjS6VdKM8nyWGpnhNueizcIf9oIfWvzXxA4Wp5jg3mGGj+9pq8v70V+q3Xlp2PvuCOI54DFrA15f u5vS/wBmT/R/mfsdRSL0H0pa/BT9uCsvxt4Q0D4g+DdW8B+KrBbrTNa02ex1G2ccSwSxtG6n6qxF alFAH8137Zv7LXjP9jv9oLXfgt4vtpjFaXLS6LqDxkJf2LkmGZT0OV4YAnawYdq8sr+i/wDbt/YC +Dv7eHw5Twr4+jOna3pyu3h7xNaQhriwkYcgjI8yJiBujJGcZBUgEfjl+0l/wR+/bg/Z21e58r4V XvjHRY3P2bW/CFu94JE7M0CAyxHHUFcDn5iOa6ITT3A8W+DX7TX7Qn7PV3JefBL4x+IPDXnNung0 zUnSGY9i8WSjn3ZTivVE/wCCt3/BRVRg/tQ62ff7Pb//ABqvD774X/EvS7hrTU/h5rttKhw8VxpM yMp9CCuRUH/CA+O/+hK1f/wWy/8AxNV7lxnvH/D2/wD4KK/9HQa3/wCA9t/8are+Ff8AwVb/AOCg uu/E/wAOaJq37S+szWt5r1nBcwtb2+JI3nRWU4j7gkV80/8ACA+O/wDoStX/APBbL/8AE10vwZ8C eOIvjB4Ull8G6qqr4lsSzNp0oAH2hOT8tL3AP6Of2hOfgF43/wCxR1L/ANJZK/mLr+nX4/xyTfAf xpBDGzu/hLUVVVGSSbaTAxX80H/CA+O/+hK1f/wWy/8AxNRSaQdD9M/+Dan/AJDPxX/69dL/APQr ivZf+C/f7L2rfGH9mLTfjR4R0x7nUvh7fyT30cUe5jpkyhZ2GOfkdIXP+yHPavJf+Db3QNd0PWPi odb0S8s/MttL8v7VbPHuw1xnG4DNfqTqem6frOnz6TqtjDc2tzE0Vzb3EYdJY2GGVlPDAgkEHrmp k7VLoD+WLqK+1f8AgnD/AMFjvHX7FHhX/hT3xD8HTeLvBSTNLpsEN8IbvSmdtziIsCrxkknyztwz Ehhkg+r/ALf/APwQa+IWgeJ7/wCJ37F9pHrGiXUjTT+DJZxHdWBOSVt3c7Zo/RSQ65AG7Ga+BfGf 7O3x++HWpPpHjz4J+LNHuUbBi1Hw/cRE+43IAw9xkVpeM0Fz9Yk/4OOv2WyoL/Bjxsp7j/RTj/yJ S/8AERx+yz/0Rrxr+Vt/8cr8gP8AhAfHf/Qlat/4LZf/AIml/wCEA8d/9CVq3/gtl/8AiaXJAD+k 39lv9obwx+1Z8B/D/wAfvBuj3thpniGOd7W01Hb50YiuJYG3bSRy0RIwehFfzmftE/8AJwPjr/sc tT/9K5a/dr/gjrY3umf8E3PhnZalZy28yWupb4Z4yjrnVLs8g8jg5r8Ov2hfAvjaf4++OJofB2qu j+MNTZGXTpSGBupMEHbyKmnuwW59P/8ABvn/AMn5zf8AYkah/wCjIK/b+vxO/wCCAvhbxPo37dUt 5q/hy/tYv+EKv1825tHjXPmQcZYAZr9saVT4hH58/wDBx3/yZ14P/wCymW//AKb7+vxhr9pv+Dij R9W1v9kHwha6NpVzdyL8SbdmjtoGkYL/AGffDJCg8cjn3r8cP+EA8df9CVq//gtl/wDiaun8BSP6 A/8Agk2M/wDBO34WD/qAN/6Plr8e/wDgrN+zBq37MP7aHifTxpzx6F4pu5Nd8O3AjIjeG4dmeIHp mOXemOuNpP3hX7E/8EprO707/gnv8L7HULWSCaPQGEkMyFWU+fLwQeRW3+3H+w38Jv26vhQ3w7+I itZahZu03h/xDbQh59NnIwSASN6NgBoyQGAHIIBGcZcs2Sfzn6JreseGtZtPEXh/U57K/sbhJ7O8 tpSkkMqEMrqw5VgQCCK/Rv4I/wDBxx8WPBvhC28P/Gz4C2HjDULaJYzren68dNknwMbpI/IlUue5 XaM9q+cv2lf+CSX7bX7N2s3Ec/wl1DxZo0bE2+veEbR72OSPnDPFGDJEcDkMuB6kc14FdfDX4jWM zW954B1uGRThkl0qZSD9CtbNQlqxn6f/APETDpHf9ja4/wDC/X/5Bru/2Yv+C+emftI/H/wp8Cof 2W5tHbxRqyWK6m3jNZxbbgTv8v7Im/p03D61+QH/AAgPjv8A6ErV/wDwWy//ABNe7f8ABMfwZ4w0 /wDb9+FN7feFNThhj8WwNJLLYSKqja3JJGAKhxp2A/TH/g4NOf2Dbc/9TtYf+i56/EKv3E/4L+aX qes/sMQWmkabcXUv/CaWDeVbQs7Y2T84UE4r8Uf+EB8d/wDQlav/AOC2X/4mnSaUdQP3m/4IugH/ AIJx+AQf7t7/AOlktfiz+3T4H1L4b/tlfE/wfqsDxvb+ONSeHzBgvBJcPLE//Ao3Rvxr9rP+CNNh e6Z/wTu8B2OpWctvMgvd8M8ZRl/0uXqDyK8V/wCCxv8AwSk8U/tO6rH+0l+zrYQz+L7ayW317QC6 xnV4U/1csTMQvnIuVIP31CgEFQGmMkp6iPzN/YI/a6v/ANiP9pHS/jrb+FV1u1gtJ7LU9M+0eS81 vMuG2PtbaysFYZGDtwcZyP0th/4OO/2XXiVpvgt41RyMsmbU4P18zmvyZ8Y/AT45fD7WZfD/AI6+ DvijSL2FsSW2oaFcRNnPUbkGR7jg1k/8IB47HH/CFat/4LZf/iauUYSd2B+umvf8HFP7Luq6HeaV F8HfGqtc2kkSsRbYBZSM/wCs96/He5lWe7lnQcPIWGfc5rT/AOEB8d/9CVq//gtl/wDiaX/hAfHf /Qlav/4LZf8A4mnHljsB+g3/AAbb/wDJxfxD/wCxKi/9K46/YevyF/4Ny/DfiLRP2hfiBPrOgXto j+DIlR7q0eMMftcfALAZr9eqxqfGwCiiioAKKKKACiiigAPTmvwO/wCCr1/e6h/wUF+JUl8xzHq0 MUYY9EW1hC4/Dn8a/fH61+K3/BdT4NX/AMPf2zX+IKWjDT/Gmi297FcBflNxEPIljz/eAjjb6SCv 0bwwr06XEMoS3lBpeqaf5I+B8RaVSeRRnHaM039zX5s+MB0r9Tv+Deb4L6ZF4K8cftBXlsj3lzqi aDYysvzRRxRxzygHtuMsWf8AcFfljwev6V+rH/BvP8ZNEufhj41+ANxdompWWuDXbaFm+aaCaGKB yo7hWgTPp5g9a/R/EJ4hcL1fZ9483pf/ADsfAcDew/1jp+07St620/C5+j6kj5T1xS0g55pa/nI/ fEFFFFAwoIB60UUAY/jvwH4Q+JfhDUPAnjvw9bappOqWzQX1hdx745UbqCD37gjkEAjBFfPn7HP/ AAS3+AH7HXxC1v4leGTPrWq313J/YdxqkYZtGtG/5YRnJ3PyQZThiuBgc7vps57GkCkdTk967KOY 47DYaph6VRqE/iSejscdbAYPEYiFepTTnD4XbVXDYoOQMfShun8qWiuKx2H4/wD/AAXd/ZLsvhZ8 XtM/aL8GaYsGm+Nnki1mOGPCRalGATIfQyod3u0bnvXwNnLEelfuN/wWw8F6f4r/AOCf/ibU7iFT caFqOn39m5HKN9pSJj/3xK9fhyBjiv6N8Pcyq5jw7FVXd024X8kk19yaR+Bcc5fTwGfSdPRTSlb1 un+KuLUun397pGoQatply8NzbSrLbzRnDRupyrAjoQQDUVFfbtKSs9j5C7Tut0f0N/sKftBJ+07+ yt4P+Ls0yNfXmmC31gKfu3sJMU3HbLoWA9GFeu1+dH/BvD8SLjV/hN4/+FNzckromt2moWsZP3Vu o3Rsf8Ct8n/er9F/xr+V+JMvjlee4jDR+GMnb0eq/Bn9J8P46WY5NRry3cdfVaP8UFFFFeIeyFGB RRQAx7eCXHmQo2Om5c0n2Kz/AOfSL/v2KkooAj+xWf8Az6Rf9+xQLO0ByLWP/vgVJRQAjKGBVhkH rUYsrMDAtIv+/YqWigBscEMWfKiVc9dq4p1FFABgUjIjja6gg9QRmlooAi+xWf8Az6Rf9+xR9is/ +fSL/v2KlooAakUcahI41UDoFGBTTZ2hOTax/wDfAqSigBiW1tG2+O3RT6qoFPoooAbJDFKMSxqw ByAwzTfsVn/z6Rf9+xUlFACKiIAqIAB0AFLRRQAYHpTHt7eQ5kgRv95QafRQBH9is/8An0i/79ih bS1RgyW0YI6EIOKkooAa8MUo2yxqwHZhkU37FZ/8+kX/AH7FSUUAIkcca7I0CgdABilwDzRRQA14 YpRtljVh6MM037FZ/wDPpF/37FSUUAR/YrP/AJ9Iv+/Yo+xWf/PpF/37FSUUAMjt4Im3RQopPUqo FPoooAKKKKACiiigAoorE+I3xE8FfCfwVqPxD+IfiK20rRtLtzNfX13IFSNR/Mk4AA5JIAyTVQhO pJRirt7Imcowi5Sdki34m8V+GfBmjS+IvF3iCy0uwgKia91C6SGFCzBV3O5AGSQBk8kivn7/AIKc fsZ2/wC2h+zlcaF4diiPivQXbUfC07EDfIFw9uW/uyKMegYIe1fl5/wUg/4KT+Nf21/GTeG/DM11 pHgDSrk/2RpG7a96wJAurjHVjn5UyQg9SST9B/8ABJ//AIKyy6C2nfsyftReIy1gWW38LeLL6Uf6 NwAlrcMf4OySE5BIU8YI/RocFcQZJgaWbUX++g+ZwW6X6vfmXbufAT4uyTOMbUyyqv3U1yqfRv8A TybPzg1jR9W8O6rc6Fr2mzWV7ZXDwXdpcxFJIZUJVkZTypBBBB6V2P7OH7QnxB/Zd+MOkfGb4bXo i1DSpsvBIT5V3AwxJBIO6spI9jgjBANfqR/wVZ/4JXWf7RFjc/tF/s+6XDF41gt9+r6RBwmuxqPv r2FwB0P8YAB5wT+Qeo2F/pN/NpWq2UtvcW8jRT286FHidTgqynkEEEEGv1fI87y7ivLHZK7VpwfS +69H0f6n5nnGT4/hrMFd6J3hNdbbPya6r9D+hn9j39sH4Vftk/CuD4k/DrUFjuECx61os0gNxp1x gExuO6nna+MMB6ggeshga/nO/ZY/am+Kv7IXxTtPij8K9YKSREJqOmzMTb6hbk/NDKvcdweqnBGC K/db9jv9sT4V/tm/Cu3+I3w4vlhuYgsWuaHNKDcabcYyUcDqp52v0YD1BA/F+MOD6/D9d1qN5UJP R9Y+T/R9T9a4V4ro55R9jV92tHdd/Nfquh65RRketFfEH2YUUUUAFFFFABRRTWbnAoA+QP8AguL8 QrHwd+wfq3huadVufE+tWNhapnk7ZhcOfpthI/4EK/Ece1feH/BeH9p62+Knx+0z4C+GtRWbTPAc LnUWicFX1GYKXU46mNFVfZmcV8Hjk5r+jvD7LqmX8Nwc1aVRufydkvvST+Z+A8cY+OP4gmobQSj6 21f4toWiiivtj5E/Rf8A4N1rmdPi98SLJWPlP4cs3cerLcOB+jN+dfrDX5if8G6XgudI/ih8Q5os Ru2madbPjqQJ5ZB+sX51+ndfzbx/UhU4rr8vTlXz5Ufv/A0JQ4ao83Xmf3yYUUUV8afWnCftL/Hn w9+zF8DvEHx28WaRd32neHbVZ7q0sNvnSK0ix4XcQM5cHk9q+KP+Ijv9l7/oivjf8rX/AOO19Bf8 FdOP+Cc/xRP/AFBYf/SqGv5661pwUlqB+yf/ABEd/svf9EV8b/la/wDx2j/iI7/Ze/6Ir43/ACtf /jtfjZRWns4gfsn/AMRHf7L3/RFfG/5Wv/x2ut+Hn/BwJ+wr4xv4tN8TweLvDDSEA3Oq6KksCn3a 3kkYfUqBX4f0EGl7KIH9P3wo+M/wo+OfhSLxv8H/AIhaT4j0qXgXmk3qzKjf3XAOUYd1YAjuK6av 5pf2Wv2s/jV+x/8AEy1+Jnwc8VTWkscijUNMlctaajCCC0M0fRlI43feXOVINf0E/seftVeA/wBs j4EaP8bvAZ8lL1DFqemvIGk0+8TiWB8eh5B43Kyt3rKUHED026u7Wxt3vL25jhiiUtJLK4VUUdSS eAPesf8A4Wd8Nv8AooWh/wDg2h/+Krh/24yV/Y1+KbqSCPAGrYIP/TrJX82gurjHNxL/AN/D/jTh DnQH9SOjeJvDfiJZG8P+ILK/ERAlNndJLsJ6Z2k4zg1er8wv+DamWSXwd8XDJKzY1PRsbmJx+7vK /T2okrOwBRRRSAKKKKACgnHWiigDFl+JPw7glaCfx7oqOjFXR9UhBUjgggtwan0rxp4O126+w6H4 s0y8m2lvJtL+ORsDqcKScV/NF+0Nc3I+P3jkC5k48Yan0c/8/UlfWf8Awb73FxJ+3fKkk7sP+ELv zhmJ/jhrR0/dvcdj9va+d/28/wDgo58L/wBgJfDbfEfwVrer/wDCSm5Fp/Y/lfu/J8vdu8xl6+YM Y9DX0RX5X/8AByv/AKr4Tf72rf8AttUxSk7CO+P/AAcefsvZx/wpXxv+Vr/8dr76+HvjGx+IngLR fH2mW0sNtrelW9/bwzY3ok0ayKrY4yAwziv5cj94V/TX+y9/ybX8P/8AsStL/wDSWOqqRUdgO6oo orMAooooAKKKKACvLf2xP2qvB/7GXwQvfjr468P6hqen2V7b20lppmzzWaaQIpG8gYBPPNepV8a/ 8F5P+Udmv/8AYf0v/wBKVpxV2gW55x/xEd/svf8ARFfG/wCVr/8AHa+wv2P/ANqXwj+2R8DdP+PP gfQNQ03TdRurmCG01PZ5ymGVo2J2EjkqSOelfzVV+8P/AAQk/wCUcPhb/sNat/6WyVpOEYrQD7Do oorIAooooAKKKKAMX4h/EDwh8K/BepfEPx9rkOm6NpNq1xqF9cNhIox39ySQABySQBya/EH/AIKQ /wDBSTxr+2z43bw54clutK+H+k3JbSNHYhXvHGQLm4x1cg/KmSEHuST+5XiPw9ovivQ7rw14j0m3 vtPvoGgvLO7iDxzRsMMrKeCCO1fjJ/wVF/4Jca1+ylrc/wAYfg5p8998PL2bMsSlpJdCkYn93IeS YScBZCeCdrc4Lfo3hxVyOnmrWL/jP+G38Pmv8Xb8NT8/4/pZxUy5fVv4S+NLfy/7d7/jofF4GBya UOytlcj6UnC/K2cj1pelfv8A0PxJNvY/Sb/gk7/wVlPhttP/AGYv2n/En/EvysHhbxVeyf8AHoMA La3DH/ln2SQ5K5CnjBHrf/BVP/glXp37QmnXf7Qn7PGkQW/jaCHzdW0m3GE12Mc71xwLgDof4wAD zg1+PrHBBA/Gv0j/AOCTn/BWT/hE3039mH9pzxITpjstv4V8UX0g/wBD4wlrcOf+WfZZDypOD8uC v5hxFw5jcnxrzrJdJLWcFs11aXZ9V81qfoeQ59hM1wv9kZu7xekJvRrsm+/Z/J6H5xahYX2kX82l anYzW1xbStFPBPGUeJ1OCrKeQQeCDXoH7Ln7UfxW/ZG+Ktp8VPhZrBjliYLf2EpzBfwE/NDKvcHs eqnBBBFfp/8A8FUf+CVml/tD6XeftBfs+6RBb+N4IfN1TSrf5Y9djHO5ccC4A6Ho44PODX5JeHvh 3458V+Orb4aaB4UvrnxBc3v2OHR47ZvPM+4qYymMggg5B6YOelfTZRnmU8VZTKU0rWtUhLp3+XZ/ qfO5rk2acN5nFQbve8JR6+Xr5fof0B/sc/tjfCn9s34VQfEX4c3wiuowseuaHPKpuNNuMco4HVTz tfow9CCB69XyX/wS9/4Jw6f+xT4Ll8YeM7wXvjzX7RU1Z4Jz5FjFkMLaMcByCAWcjkjjA6/Wlfzt nFLLqOZ1YYCblST91v8ArVdn1P3nJ6mPq5dTnjYqNRrVL+tH3XQKKKK8w9MKKKKACvA/+CiX7Z3h z9jD4B33i97qGTxLqsb2fhTTXcbprkjmUr3jiBDt/wABXqwr0X9oT9oD4a/sz/C3Uvi58U9cWz0z ToiVRWHm3Up+5DEpI3ux4A/E4AJr8Ff2zP2uPiH+2Z8aLz4qeN5WhtkZodB0hHzHp1oGJWNfVj1Z +rMc9MAfbcFcL1M+xyrVY/uIP3n/ADP+Vfr2Xqj43i/iWlkmDdKm71prRdl/M/07s8z8Qa/rPivX r3xR4j1GW71DUbuS5vruZsvNM7Fndj3JYkn61Uoor+jYxUYqK2R+DNuTu3dsKQnPAx+dKcY5r079 jT9nTWf2qP2j/DHwa0qFzb39+surzopP2ewjIeeQ46fICBnqzKO9Y4nE0sHhp16jtGKbfolcuhRq 4mvGjTV5SaS+bsfr5/wRm+CM/wAHP2HtB1DVLMxah4tuJdbuQwwfLlwsH4eSiN/wM19XVT0DQtK8 M6HZeHNDs0t7OwtI7a0gjGFjiRQqqPYAAVcr+T8yxs8xzCrip7zk3972+SP6by7Bwy/A08NHaEUv u/zCiiiuI7T5v/4K6/8AKOb4o/8AYFi/9Koa/nrr+hT/AIK6/wDKOb4o/wDYFi/9Koa/nrrelsPo fUH/AASf/Yz+GH7cP7Qur/Cr4r6pq1pp9j4Um1KGTR50jkMqXEEYBLqw24kbt1xX6Gf8Q7v7F3/Q 7eOf/BnB/wDGa+T/APg3T/5PS8R/9k8uv/Sy0r9qKmpKSloI/PPxZ/wbmfsqalpMsPhL4t+NNLvS h8m5nkt7mMN23J5alh7Bl+tfm1+3X+wL8ZP2DviHB4U+IRh1LR9TDPoHiSxjYW98q43KQ3+rlXI3 Ic9QQSDmv6Ma+Z/+CuP7PmlftBfsMeM7ObT0l1Pwxp76/ospX545rVGd1U/7cXmpjvuHpSjUknqB /PnX6Df8G9v7St/4A/aU1X9nbWNQYaP430x57GF2+VNRthuUgHpuh80HHUon4fnzXqP7Efj+4+Fv 7X/w18eW8rILDxpp5nKHBaF51jlX/gUbuv41tNXjYa1P6M/ir8PNF+Lvw1174WeJJ54tP8RaPcad eyWrhZFimjMbFSQQGwxwSK+J/wDiHe/Yuxj/AITbxz/4M4P/AIzX1V+2jqWo6N+yH8TdX0e/mtbu 28C6pLbXVtKUkidbWQqysuCpB5BHSv53/wDhpb9o3/ov/jb/AMKq8/8AjlYwjJ7MR+/H7Ef/AAT8 +Dn7BmneIdL+EWs63eR+JZ7aW+OtXMchQwLIE2bEXH+tbOc9q92r82f+DdX4jfEL4h+EvirN4/8A Hes649rqOkC1fWNUmujCGju9wQyMducDOOuB6V+kGpalp+j6fPqurX0Nra20TS3FxcSBEiRRlmZj wAACST0qZJqWoE1JmvyZ/by/4L7eMp/El98Nv2KFt7HTrSVopfHF9ZpNNdsMgtbQyAokeejurFuu 1e/wn4w/ba/a/wDHuoPqfir9pnxxcSucts8SXEKf98Ruqj8BVKnJgf0p0V/Mj/w0t+0b/wBF/wDG 3/hVXn/xyj/hpb9o3/ov/jb/AMKq8/8AjlP2T7gf03UhbI6V/Ml/w0t+0b/0X/xt/wCFVef/AByv 6Pf2eLu71H4AeBr/AFC6knnn8H6ZJPNM5Z5Ha1jLMxPJJJJJPXNRODigPknxh/wQF/Y88b+LtV8a ar4y8apdavqU97crDqUARZJZGkYKDDwMscV6F+yD/wAEl/2dP2K/iyfjD8LvEnia61N9MlsTFq17 FJF5chUscLGpz8o71+MXx8/aL/aDsPjr41sbH47eMoYIfFupRwwxeJ7tUjQXUgCqBJgADAAFfU3/ AAQe+MXxc8d/tvS6J43+KfiPWbIeDr6QWmq65cXEW8PDhtsjkZGTzjvVuM+W9xn7NggnANflh/wc sHEPwm/3tW/9tq1v+Dib4mfEb4eTfC8eAPH+t6H9qXUzc/2Pqs1t5202+N3lsN2MnGemTX5YeMPi X8RviF5H/Cf+P9b1z7Lu+zf2xqs1z5W7GdvmMducDOOuBThB7iMM4yDX9NX7L3/Jtfw//wCxL0v/ ANJY6/mVIz3rsrH9oj9oDTLKHTdN+OnjG3t7eNY4IIPE92iRoowFVRJgADgAVc48wH9OZOBmivx0 /wCCBPxf+LPjz9sXWNI8c/FDxFrVongm6kS11bW57mNXE8ADBZHIBwTz15r6Z/4OCfHfjfwB+yh4 X1XwJ4x1XRLqXx1FFLc6TqEttI6fZLk7S0bAkZAOOnArDlfNygfeVFfzIj9pb9o3H/Jf/G3/AIVV 5/8AHKP+Glv2jf8Aov8A42/8Kq8/+OVfsn3A/puo71/Mkn7TP7SEbiSP9oLxurA5DDxXeAj/AMiV 7T+zT/wV+/ba/Z08Q2s1x8Vb3xfoSSL9s0DxVMbpZk7hZnzLE3oVbGcZDdKPZMD+gSvjX/gvJ/yj s1//ALD+l/8ApSte9fsgftYfDX9sz4I6d8avhpM6Q3JMOpabOwM2nXageZBJjuMgg/xKVbvXgv8A wXk/5R2a/wD9h/S//SlaiKamhrc/CWv3h/4ISf8AKOLwt/2GtW/9LZa/B6v3h/4ISf8AKOLwt/2G tW/9LZa2q/CI+w6KKK5wCiiigAooooAMc5qj4h8O6H4q0S68OeI9JgvrC+gaG8s7qIPHNGwwysp4 IINXqDntQm07rcUopppo/Fr/AIKjf8Etda/ZV1m4+Mvwa06e++Hd7NmeAbpJdCkY8JIeSYSSArk5 BO1ucFvisE5xke1f02a/4f0bxTo914e8RaXBe2F7A0N3Z3MYeOaNhhlZTwQRX40f8FSf+CWus/ss azc/Gb4L6bPffD28m3XMC7pJdCkZv9W/cwkkBZCcgna3Yt+48EcbrHKOX5hL95tGT+15P+9+frv+ N8YcHvBSljsFH3N5R7ea8vLp6HxX25HWkdVOCR0OQfSgcYUZo65BFfqmqPzbRqzP0h/4JQ/8FZX8 ISab+zN+054iZ9JcrbeF/FF4+TZHGFtrhj1i7K5yVyAflwV/RXQP2X/gDoXxtvv2k9C+HenR+LtW slgudZiTl15y6rnarsCAzgbmAAJNfzkj5en86/RH/glz/wAFff8AhVlvY/s9ftS61PN4djKweH/F MuXfTFxhYbg9WhGMB+SmcHK/d/JOMuC68faY/KrpyX7yEdLp7tJb+ceu6P07hPi2k3DBZnZ2fuSe tn2bf4PofrOFAOfelqpomu6N4k0m217w/qkF7ZXkKy2l3ayiSOZGGQyspIYEdxVvNfirTi7M/X01 JXQUUUhZRxmgYprgv2iv2kfhT+y58Nrz4ofF7xFHY2FspWCFcGe8mx8sMKZy7n06DkkgAkeP/tu/ 8FTf2ff2PtPuvDkWpR+J/GgQrb+G9LnVvIk7G6kBxCvty5/u9x+N37UP7WXxp/a7+IUvxB+MHiRr l1LLpumQZS00+InPlwx9h0yxyzY5Jr7rhfgfHZ5NVq6dOh36y8o/57drnxXEnGODyeLo0Gp1uy2j 6+flv6HU/t1/t4/E79t/4ltrviOaTT/DmnSOvh3w9FJmK0jJ++/9+VgBub2wMCvDB0pMelLjHAr+ gcHgsLl+Fjh8PHlhFWSX9avu+p+IYrF4nHYiVevLmlLd/p6IKCcDNFBz2rpOZsQHJGRkHtX7Nf8A BFX9iKb9n34NS/HP4g6T5XivxtbxvbwzJiSw0370aYP3WkyJG9gg7Gvj/wD4I/8A/BOy4/aT+IUX x2+KWjEeBvDd6r2sFwpA1i9Q7hGo/iiQgF/U4XnLY/ZyGFIYxHGoVVUBVUYAHtX434j8Txmv7Kwz 86jX3qP6v7u5+rcAcOzi/wC08Qv8C/OX+X3jx060UdKK/Hz9XCiiigD5v/4K6/8AKOb4o/8AYFi/ 9Koa/nrr+hT/AIK6/wDKOb4o/wDYFi/9Koa/nrrelsPoffv/AAbp/wDJ6XiP/snd1/6WWdftPX4s f8G6f/J6XiP/ALJ3df8ApZZ1+09RU+MQVg/FPTIta+GPiPR50DJdaFdwurDghoXU/wA63q5b44+I rPwl8F/FvijUJxHDp3hm+uZZGPCqlu7E/pULcD+Ye6i8m7lhHRJGUfgcVo+Br6XTPG2j6lC2Ht9V t5EI7FZVIP6VmzSGaZ5j1dy2M+prY+G2lya38RdA0aEZe71q1hXju0yr/Wutgf0X/tpStP8AsRfE yd+r/DnU2P1Nm9fzbV/SX+2vB9l/Yn+J1t/zz+HeqL+VnIK/m0rKlsB+sv8AwbS/8ib8Xf8AsJ6N /wCi7yu7/wCDgX9qrV/hL+z5o/wA8Iam9tqPj+6l/taWJsN/ZcAHmR8dPMkeJSe6q471wn/BtL/y Jvxd/wCwno3/AKLvK8J/4OF/F13rn7cGneGpZP3OieCbOKJB0BklmlJ+p3D8hU2vVGfCBOBnFfSn 7D3/AAS0/aQ/botJ/FXghdP0HwtbXBgl8Sa6ZBFNIMbkgRFLTMM8/dUdC2eK+bYYJbqZLWBCzyOF RR3JOAK/pu/Z1+EHh74BfAzwr8HfC1tHHZ+H9FgtVMS4EkgUGST6u5Zye5Y1U5cq0B3PzEX/AINr PiZgbv2pNCzjn/inZv8A45XzD/wUS/4Ju+I/+CfF14YtfEHxQsfEh8TJctEbPTng8jySgOdzNnO/ 9K/oNr8pf+Dlb/kK/Cn/AK99U/8AQoKmE5OQj8ta/pv/AGbP+TdfAP8A2Jel/wDpJFX8yFf03/s2 f8m6+Af+xL0v/wBJIqdbZD6H84H7Q/8AyX/xz/2OOp/+lclfWv8Awb6f8n4S/wDYl3//AKHDXyV+ 0P8A8l/8c/8AY46n/wClclfWv/Bvp/yfhL/2Jd//AOhw1cv4YH6Sf8FD/wDgmt4W/wCCg7+GG8Sf FC/8Of8ACMi58n7DYJP5/neXndvYYx5Y6etflh/wVI/4Jq+Fv+CfEfg5/DXxR1DxIfE5vBML7T0g 8jyfKxt2sc58w/lX71V+V/8Awcr/AOq+E3+9q3/ttWVOUr2EflUSQcCv1S+FH/BvD8NPiP8AC/w5 8Qbj9pLXbWTXNDtL+S2TQ4WWJpoVkKAl+QN2M+1flafvCv6a/wBl7/k2v4f/APYlaX/6Sx1pUbWw Hzr+wR/wSH8GfsH/ABhvPi94d+MuqeIJrvRZdOayvdLjhVVd433hlYnI8vGPevTf+CgP7DHh/wDb 5+FOl/CvxH4+vPD0Oma6mpLd2VmkzOyxSR7CGIAGJCc+1e71y3xk+NHwy+AHw81D4qfFzxZbaNoe mRhrm9uW6knCoqjl3Y4AUAkk1jeTd+oH56/8Q1vwtHA/ag1//wAEEH/xyj/iGu+F3/R0Gv8A/ggg /wDjlRfFL/g5I+H2l65LZ/Bz9nPVNYsY3Kpfa9q6WTTAfxCONJSoPbJz0yB0rlf+IlnxX/0aRp// AIWEn/yNV/vQIvjp/wAG4+teGPAF/wCI/gV8e5dd1qyt2mh0PWtIW3W82jJRJkdtrkD5Qy4JwCQD kfmNeWd5p13Lp+oWzwTwSNHNDIuGR1JBUjsQQRX6en/g5Z8VkY/4ZI0//wALB/8A5Gr84Pi/48h+ KfxY8T/E230GPSo/EXiC81NNMhl8xLQTzPKIQ2BuC7tucDOM4FXDn+0B93f8G6vxq1rwz+0j4m+B k167aX4n8OtfR27N8qXdqy4dR2JjkcHHUKM/dFfZX/BeT/lHZr//AGH9L/8ASla/Ob/ghS7p/wAF G/Cyo2A2j6qG9x9jkP8ASv0Z/wCC8n/KOzX/APsP6X/6UrUS0qoD8Ja/eH/ghJ/yji8Lf9hrVv8A 0tlr8Hq/eH/ghJ/yji8Lf9hrVv8A0tlq6vwgfYdFFFc4BRRRQAUUUUAFFFFAAelUtd0LSPEuj3Ph /XdLgvLK9haG8tLmIPHNGwwysp4II4wau0UJtO63E0pKzPxe/wCCpf8AwS01f9lrV7n41fBbTZ7z 4fXk+66tUy8mhys3COepgJICuTkE7W7FvifJxljX9Nut6Ho/iTSbrQtf02G8sb2Bobu0uYw8c0bA hlZTwQQcYr8bP+Cpf/BLHVf2XdUufjb8EdNnvPh9eTbryzBLyaFIzcK3cwEkBXOSPut2J/b+COOF jVHL8wl+82jJ/a8n/e8+vrv+N8YcHvBuWOwMfc3lFfZ815eXT0PibrxSEelAJJ5HHY0tfq2x+b6N HuH7Kv8AwUP/AGn/ANkGdLH4Z+Nzc6H5m+bw3rCG4s3J6lVyGjJ7lGXPfNfb3w6/4OJvCEtjHH8W f2d9SguQoEk3h7VI5UY+oSbYR9Nxr8saK+azPhHh/N6jqV6C5n1jeLfrbf5n0GXcT55lcOSjWfL2 dmvx/Q/Vzxn/AMHEvwptrF/+Fe/s8+Iby5Kny/7Z1GC3QH38vzCa+T/2kf8Agsd+2P8AtB2lx4f0 3xHbeC9FuAVksfC6tHNIno9wxMh99pQH07V8p0Vjl/BXDeXVFUp0FKS6ybl+en4GmO4t4gzCHJUr NLtFJflr+I6ee4up2ubiZpJHYtJJIxLMTySSfem0UV9VsrHzgUE460Uh+XLdfagTdlcOD368V9If 8E6P+Ce/jX9t34jq91Hcaf4I0i4RvEWthcFu/wBmgJGGlYd+iA5PYGx/wT0/4JufEr9trxbHrGox z6L4F0+4A1jX2TBnxyYLbIw8h6E9EByecKf26+EHwg+H3wJ+H2m/C/4X+HYdL0bSoBFbW0I6nu7n q7seWY8kkmvzjjTjWllNOWDwUr13o30h/wDbdl069j73hLhCpmlRYvFxtRWye8vl27lz4d/Dzwd8 KvBOl/DzwFoMGm6Ro9mltYWVuuFjjUYHuSepJ5JJJ5NbdFFfgcpSnJyk7t7n7dCEacVGKskFFFFI oKKKKAPm/wD4K6/8o5vij/2BYv8A0qhr+euv6FP+Cuv/ACjm+KP/AGBYv/SqGv5663pbD6H37/wb p/8AJ6XiP/snl1/6WWdftPX8437CX7bPjD9g/wCLN/8AFvwV4M03XLq/0KTTHtdUlkSNEeWKQuDG Qc5iA/E19a/8RJH7QX/RvHg7/wADbr/4qpnFuWgWZ+wlfF//AAXE/ar0X4D/ALH2p/C7T9VQeJPi HG2lWdmjjzFsj/x9TEdQmz91nuZR7kfG/ir/AIONv2qdU0mWy8K/B3wTpVzIhVb2Rbq4aP8A2lUy quf94Ee1fEXxv+PPxa/aP+IN18UPjT40utc1q7AVrm4ICxxj7scaKAsaDsqgD8STRGm76hY5Cvav +CcvwxuPi9+3H8MvBcdt5sR8WWt5eLjj7PbN9okz6ZSMj6mvFa/UD/g3Z/ZU1C68UeIv2vfE+nMt na2r6J4YaReJZnKtczL/ALqqsef+mjjtWs3aIj9EP25M/wDDGfxUz/0IGrf+kklfzX1/Sh+3L/yZ n8VP+xA1b/0lkr+a+opbAfrL/wAG0v8AyJvxd/7Cejf+i7yvnj/g4D0i6sP2+31GaMiO+8HadJCS PvBTKhP5qR+FfQ//AAbS/wDIm/F3/sJ6N/6LvKp/8HIHwD1G7sfAn7S+l2TSQWfmeH9YlQE+WHLT 2xPoN3njPqwHcUk7VR9T8rdMv20rU7bU0QM1vOkoU9yrA4/Sv6ivBfiHSPFvhDSvFOgXYnsdS06C 6s5gfvxSRqyn8QRX8t2Mjmv0p/4Ji/8ABbPwj8Bvhbp/7PX7U2m6nNpeiR+T4e8TaZbid4LfOVgn jyGKrkhXTJ24UrxmnUi2tAaZ+vdflL/wcrf8hb4U/wDXvqn84K+oB/wXI/4JzEf8lc1Ef9y3d/8A xFfAv/BbH9t79nX9sm98A3HwD8XXGqroUV8upefps1v5ZkMWzHmKN2drdPSogmpCPg+v6b/2bP8A k3XwD/2Jel/+kkVfzIV/Tf8As2f8m6+Af+xL0v8A9JIqqtsh9D+cD9of/kv/AI5/7HHU/wD0rkr6 1/4N9P8Ak/CX/sS7/wD9Dhr5K/aH/wCS/wDjn/scdT/9K5K+tf8Ag30/5Pwl/wCxLv8A/wBDhq5f wwP2/r8r/wDg5X/1Xwm/3tW/9tq/VCvy1/4OWbKcaT8JdS2nyzc6tFn/AGttqcflWNP4hH5SHrk1 /TX+y9j/AIZr+H+D/wAyXpf/AKSx1/Mrj3r9tP8Agnz/AMFfv2P9U/Zs8J+AfjJ8U7Xwj4n8OaJb 6ZqNtrUUiRXBgjWMTRSqpQqwUHaSGBJGCBk6VU2gPvCvxh/4ODf2ldf8c/tKaf8As46dqLroXg3T Ibm7tkf5ZtRuFLl2A67YTGoz0LP61+qPwe/bM/ZZ/aB8Ty+DPgr8cdA8SarDaNcy2Ol3e+RYVIBc jHQFgPxr8S/+CzmkalpH/BRz4hHUY2UXctlcW4bvG1nCAR7cGopr3tQPmLTtO1DV9Qg0nSbGa6ur qZYra2gjLySyMcKqqOWJJAAHJNfQuj/8Elf+Ci+u6bFqtj+yxrqxToGjW6u7SCTB9UlmV1PsQDXn /wCxt8WPCnwK/an8B/F/xzZyz6P4f8SW93qMcMe9xErYZgvcrndj2r919I/4Kp/8E9NX0+LU4P2r PC8STKGWO7nkhkUejI6BlPsRWkpSi9EB+OJ/4I//APBSIf8ANreq/wDg3sP/AJIr5+8aeDvEvw88 Yar4B8Z6S9hrGiajNYarYyOrNb3ELmOSMlSQSrKRkEjjgmv6GP8Ah6D/AME+j0/az8Hf+DE//E1+ Df7Ynirw945/a1+J/jXwjq8OoaVq/wAQdYvdNv7Zsx3NvLeyvHIp7qysCD6GiEpSeoHvP/BCv/lI 54U/7BGq/wDpHJX6Nf8ABeT/AJR2a/8A9h/S/wD0pWvzl/4IV/8AKRzwp/2CNV/9I5K/Rr/gvJ/y js1//sP6X/6UrUT/AIqA/CWv3h/4ISf8o4vC3/Ya1b/0tlr8Hq/eH/ghJ/yji8Lf9hrVv/S2Wrq/ CB9h0UUVzgFFFFABRRRQAUUUUAFFFFABgHqKp65ouleItKudB13TYLyyvYGhu7W4jDxzRsCGVlPB BHGKuUYGc0Xad0JpSVmfjz/wU0/4JE+JPgRe6h8cf2cNHuNT8EuWn1LRIQZLjRMnJKjrJbjseWQd cgbq+DASecZ5/Kv6d3jSRDHIu5SMEHuK+Fv25v8Agij8KvjzdXfxH/Z6u7bwd4onLST6cY8aZfyE 5JKqCYHJ/iQFT3XvX6/wr4iqnCOEzV7aKpv/AOBf/Jff3PyriXgOU5vE5at9XD/5Hp8vuPxyor0j 9oP9kX9on9l7XH0b4z/DLUdKj8wrBqXlebZ3HoY5kyjZ9MgjuAa83OfT8a/X8PicPi6Sq0ZqUXs0 7r8D8ur0K+GqOnWi4yXRqzCijI6ZpMmtrGLdhaKVI5ZWCRLkngADJJ9hX0X+zF/wSx/a+/aent9R 0b4fy+HdBmILeIPEyNbQlD3jQjzJeOm1cepFceNzDA5bRdXFVFCPm/6udWEwWMx9X2eHpub8l/Vv mfOaRyzSrAkZZnbEaqOWPpivvr/gnr/wRe8b/GC5sfix+1LY3WgeFzsmsvDxzFfamvUeYOsER46/ OQeNvDV9p/sXf8Elv2cv2TJbbxdqVofF/i+EK667rEKmO1kA628PKx+zHc/ow6V9VBFHQd6/IeJf EmpXjLD5VeKejm93/hXT1evZI/UeHfD+NFqvmT5mtoLb/t59fTbvcy/BXgrwp8O/C1l4K8EeH7XS 9J023WCxsLOIJHDGowFAH+TWrRRX5NKUpycpO7Z+oRjGEVGKskFFFFIoKKKKACiiigD5v/4K6kf8 O5/iiM/8wWL/ANKoa/ns3MOM1/UN8S/hn4E+MXgfUPht8TPDcGr6HqsQj1DTrnOydAwYA7SD1UHr 2rxT/h05/wAE7v8Ao1nw9/31P/8AHK0hNRQ7n88m5vWjcf8AIr+hv/h05/wTu/6NZ8Pf99T/APxy j/h05/wTu/6NZ8Pf99T/APxyr9sgufzx5J4oGT0HWv6HB/wSd/4J3Kc/8Ms+Hj9WnP8A7Urr/h7+ wj+xt8Kb6PVfAH7NHg3TruE5jvE0SJ5lPqHcFs/jR7VCPxi/YE/4JM/H79snxHYeJPE2h3vhX4fi VZL3xHfwGOS7izylojjMjEdHI2DqSeh/dT4TfCrwN8Efhxo/wo+G2hx6domh2S22n2kfOxRkkk92 ZiWZjyWYnvXQqqooVRgDoBS1lKbkwPK/25P+TNPimP8AqQNW/wDSWSv5r6/qT8X+EvDvj3wrqPgn xfpcd9pWrWUlpqNlLnZPBIpV0OOcFSR+NeEf8Onf+Cd//RrPh7/vqf8A+OVUJqKGfJH/AAbS/wDI m/F3/sJ6N/6LvK/RL46fBXwF+0T8J9b+DXxM0v7Xo2u2Zt7pFOHjPVZEP8LowDKexArL+A37K/7P 37MNtqdn8Bvhhp/hqLWJIn1NLAvi4aMMELbmPQO3T1r0Gpk7yuI/nk/bn/4Jq/tA/sR+Lbo+IdAu NZ8HvOf7K8YafblreSMn5VmxnyJR0KtgE/dJFfOzKuelf1P3dnZ6hbSWd9axzwyoUlilQMrqRggg 8EEdq8c8a/8ABOr9hn4g3r6l4p/Za8GzXMrFpLiDR0t3Y+5i2k1oqtlqgP5w6K/oc/4dOf8ABO7/ AKNZ8Pf99T//AByvze/4Ltfs4/s0fszeMfh94S+Afw20zw5c6jpt7d6tDp7OWlQSRpEzbmPGRIB9 Gqo1IydhnwJX9N/7Nn/JuvgH/sS9L/8ASSKv5kO+K/p5+BOkXfh/4I+DtBv4yk9j4V0+3nRhgq6W 0asPzBqa2yDofzb/ALQzEfH7xyAf+Zx1P/0rkr60/wCDfUk/t4Sk/wDQl3//AKHDX6ga3/wS1/YC 8R6zd+Idb/Zm0G5vb+6kuLy4kabdLK7FnY4k6liT+NdL8Fv2FP2Sv2dvGJ8f/Bb4JaV4f1g2r2xv 7Jpd/lOQWT5nIwdo/Kk6icbBc9ar5K/4LK/sgeJf2tf2TJYvh7pjXnifwjqC6vpFlGPnvECMk8C+ rGNiwHdo1HevrWggHqKzTs7iP5X7u0vNPu5bDULSSCeCQpNDMhV42BwVYHkEEYwajwD1Ff0qfFX9 ir9kv436xL4i+K/7PPhTW9Sm/wBdqV3pEf2h/rKoDn864c/8Enf+Cd5OT+yz4e59GnH/ALUrb2qA /Nn/AIN3f+T1taH/AFIl1/6UW9fRX/Bd/wD4J8eNfjLZ6f8AtX/Bnw5Nqmq6HposfFOlWUe6eezV 2aO4jQcu0ZdgwGTsIPRK+zfgj+w7+yj+zh4rl8cfBH4LaV4e1aeza1lvbJpN7QsysU+ZiMEqp/Cv V6zc/f5kB/K4VeNikikMOoI6UBj2Ir+kr4ofsI/sc/GfV5fEPxM/Zw8KapqNw26fUH0pI55Gzklp I9rMfqa5D/h05/wTuxj/AIZZ8Pf99T//ABytPbAfzxnnrShiOBX9Df8Aw6c/4J3f9Gs+Hv8Avqf/ AOOUf8OnP+Cd3/RrPh7/AL6n/wDjlHtUB+Uf/BCwk/8ABRzwqT/0CNV/9I5K/Rr/AILxn/jXZr5H /Qf0v/0pWvaPhD+wB+x38BfHNt8SvhD8CNI0LXbSOSO21K0aXzI1kUo4G5yOVJHSu5+MXwU+Fvx/ 8ETfDf4w+DrXXdDuJo5ptOvC2x3jbcjHaQeCM9azlK81ID+YXcx71+8H/BCQj/h3F4W5/wCY1q3/ AKWy13f/AA6c/wCCd3/RrPh7/vqf/wCOV7D8H/gx8MPgF4Ft/hp8H/B9toWhWksklvptoW8uN5GL uRuJPLEnr3qpzUkB09FFFZAFFFFABRRRQAUUUUAFFFFABRRRQAUmDnmlooAqazoejeI9Nm0fxBpd vfWlwmye1u4VkjkX0ZWBBH1r56+Kf/BJf9g/4r3Et9qXwRtdIupiS9z4cuJLLJPfZGfLz77a+kKK 68Jj8dgJ82Gqyg/7ra/I5MTgcFjI2r04y9UmfC+o/wDBvz+xfe3BmtPHfxEs0Jz5MGs2bKP++7Rj +ta/hT/gg7+wx4duEn1VvGOubCD5eqa8iqcevkRR19o0V60uLOJJx5Xip29TzY8McPxlzLDR+48p +D/7D37JnwGlivPhZ8B/D+nXcONmoPZ+fcg+vnS7nH4GvVQoAxilorxK+IxGKnz1puT7ttv8T16O HoYeHLSgorskl+QgBB7YpaKKxtY2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA Cub+MfiPVfB3wj8U+LtDlVL3SvDt7d2bugZVljgd1JB4Iyo4rpK5z4v+GdU8a/CfxP4O0QRm81bw 9e2doJX2p5ssDouT2GWGTQB+Iw/4Lzf8FFMf8j14f/8ACXt/8KX/AIfzf8FFP+h68P8A/hL2/wDh Wl/xD/8A/BQD/nx8Hf8AhSf/AGul/wCIf/8A4KAf8+Xg7/wpP/tddH7odjLb/gvH/wAFFXUqPHug L7/8Itb/AOFfNPx4/aB+Lv7S/wAQ7j4p/GzxnPres3EaxG4lRUWKJc7Y0RQFRBk8ADkk9STX1V/x D/8A/BQE/wDLn4OH/cyf/a66r4Yf8G637V/iHWI0+KXxH8JeHNODjz5LO4lvpyv+wgRVJ+rj8aE6 a2A+af8AgnZ+yzrP7Xf7V/hf4ZW2mvNpFvepqHiefblINPhZWk3H/b+WMerSD3r+jNVCjA6V41+x d+wr8Df2Gvh6/gv4S6ZLNeXpV9a8Qajta81GQDjeygBUGTtRQFXJ6kkn2aspy5mIKKKKgAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//Z ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/image017.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCAGhAh0DASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAoorx7xl/wUN/YD+HPiu/8CfEP9uH4QaBrmlXLW2q aNrfxK0q0u7OZfvRywyzq8bjurAEUAew0V4Uf+Cof/BNAf8AOQ/4Gf8Ah2tG/wDkmt/4aft3fsQf Gjxhb/D34Oftj/Cvxbr94rtaaF4Z+IWm395OEUsxSGCdnYBQScDgAk0AerUUAg9KKACiiigAoooo AKKKKACiiigAoopryIgJY4wMmgB1FRx3VtNzFOjDOMqwNPBB6Uk09g6i0UUUwCiiigAooooAKKKK ACiivIfHX/BQX9gr4X+Lr/wB8S/22/hF4d17S5vJ1PRNc+JGl2l3ZyYB2Swyzq8bYIOGAPIoA9eo rwv/AIeh/wDBM/8A6SIfAz/w7Wjf/JNbPw8/b7/YT+LvjKx+HXwn/bT+E3ijxDqbsmm6F4d+I2mX t5dsqM7COGGdnchFZjtBwFJ6CgD1uikVgwyKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr4Z+O3/BuV/wSg/aS +MfiX48/F74EanqXibxbrE+p65fL4svohNcysWdgiyBVGTwAAAMV9zUUAfy4/wDB0l/wSs/Yx/4J oal8Hm/ZF8AX2gp4xi1k63Fd61PeLIbY2nlbfOYlMec+cdcj0ryL/g1gw3/Ban4Zgj/mG610/wCw dPX3R/wfFf8AH/8As6/9cfEv89Pr4X/4NXv+U1Xwy/7Butf+m6egD+upQAPxpaB0/GigAooooAKK KKACiiigAornfAfxe+FvxSvNa0/4b/ELR9dn8Oao+m6/DpWoRztp14n3reYISY5B3VsGuioAbIxR dwx171+ZX/BQj9vT4j+J/iDqXw4+HniKew0XTrmS1SPT5ijXbKQrSSMpyRuBwOmK/TO5QSQNG2cM CDivxW/am+Ffin4PftCa/Z+ILKR1g1CV03g4eNm3I4PcEEGvyrxVx2YYbLaFKjJxhOTUmtL2Xuxv 2er87H6x4TYHLsVmlerXipVIRTinra796ST6rReV2S/Bb9pz4/fCnxLFruneNtRglEgbynuGaKUd SroxIYH0xX6HfsKf8FLvhP8Atk+LPEnwVht30T4g+DIIbjXfDt0c/aLORU8u+tmH34WZgpH3kYhW 6qT+X+m+I/8AhLL0SR2xRI+CeleU/wDBLX4y6x43/wCDjjQpfhFetPp1v4c1DRNfmtiGjntIbOR5 t56bVnEeD/ejXFcPhLLHOhiPaXULqy6J+X6noeL8MBHEYf2SXPZ3el2vP06ep/RhRRRX7Gfi4UUU UAFFFFABRRRQAV8zftM/8Ecf+CZP7XV9rPiH46fsa+C9S17Xpmm1TxTZaWLLVp5iu3zWvLfZK7AY +8xHAyDivpmigD+NT/guv/wS+sP+CVX7ct38EfB+q3uoeDfEGjx6/wCC7rUWDTpZSSSRtBIygBni kidN2ASApI5rV/4Nr+f+C3PwGXpnWdVH/lFv6/QL/g+D8OWMXj79n3xikarcy6Rr9nK4Xl41lsnQ E56As/H+2a/Pz/g2t/5TefAX/sNar/6Zb+gD+xZBgEZ70tIvf60tABRRRQAUUUUAFFeZ/tj/ABWm +B37Lnj34sWt2YLjQvCl7c2kwbBWcREREe+8rj3xX5h/sW/8HD3jrwp9m8Dftk+G38QWW4IPGGjR JFeRDpma3UBJR6lNh9mNceIx+GwtWMKrtfr0+Z9dkXA/EHEuV1sdl1NTVJpON7Sel3yp6OytdXvq rJn7EUVwfwE/aU+B/wC0x4Nj8efA/wCJWm+IdNcDzHs5f3kDEA7JY2w8Tc/dYA13BuIcH94OldcZ RnHmi7o+Wr0K+FrSpVouM4uzTVmn2aeqJKK+MP24f+C1H7M37JYvPB3g28Tx34zhBT+xtIu8W1pJ j/l4uQGVcd0Tc3GDt614d/wSL/4KufG39rb9rzxP8Nv2gfEVsLfXtEN14R0qyt1it7GW3fLwJgbm LxOzFnZifJ9wBxSzHCRxEaKleT002Xqz6/D8AcUV8grZxKjyUaceb3tJSV1dxja9ktbuysnZs/UC iiiu4+LCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig D+fz/g+K/wCP/wDZ1/64+Jf56fXwv/wavf8AKar4Zf8AYN1r/wBN09fdH/B8V/x//s6/9cfEv89P r4X/AODV7/lNV8Mv+wbrX/punoA/rrHT8aKB0/GigAooyD3pCwHU0ALRSb19aXIxmgAryv8AbY/a o8FfsVfsreOv2oPiBPGuneDfD8995TyBTczhdsECk/xSStGg93r1GWaKKMyyyBVUZZmOAB65r+a3 /g6w/wCC0fhb9qLxhF/wT5/Zl8Yx6h4L8Kap9o8e63p8weDWNViJEdtG6EiSGA5JPIaXGP8AVgkA +xP+DNzx94o+K37N3x9+J/jXUPter+IvjM2papc9PMuJrKKSRsdssx47V+yNfil/wZIf8mV/GP8A 7KjB/wCm2Cv2toACAeory79pT9lP4a/tKeFrjSfEtilrqwtXj0vXYYszWjnoSMgSoDjKNwQTjBOa 9RJA60h2g8gflXNi8HhMfh3QxNNTg91JJp/JnThMZi8BiI18NUcJx2cW0180fhr+1B/wRQ/4LeeL NVu/h18K/il8Ih4WvZWi/t3Q7m5025kgbALTLKsrxHBOVhZuhwxr7G/4Ijf8ELPBX/BKzSdW+Jvj zxpa+L/ip4lsxZ6prdjAyWenWhZJGtLXf87BpFVnlYKX2J8q4wf0E+U8cUKVI+XH4UsHgsJl+HVD DQUILZIrG47GZjiHXxM3Ob3bFooorqOQKKMj1pNwPQ0ALRRRQAUUdKQyIOrUALRSb1PO6gMCcA0A fz+f8HxH/H9+zz/1x8Q/zsa/Oz/g2t/5TefAX/sNar/6Zb+v0T/4PiP+P79nn/rj4h/nY1+c3/Bt 5f2+m/8ABbP4C3NyxCnX9RiXAzlpNJvUUf8AfTCgD+xxe/1paRRgf40pIHJNABRSb19aN6+tAC0U Ag9DSPnacUAfEf8AwcAfE9PAn/BPvUvCUdwEn8X6/Y6cq7sFo0lF0+P+/Cg+xr8HMHoxz6n1r9l/ +C5fwm+PP7YfxU+Fv7LH7P3gq61e4tLe/wBZ1ycAraWQkMcFu88p+WPiO4wDy27gGof2Wv8Ag3N+ DPhPT7bxB+1L47v/ABRqgAaTRdCnNrp6HrtMhXzZfTIMY9q+WzHB4rH5g1TWkUld7dz+m/D7i3hn gbgWlLHVf3taU6nJFc07X5VddLqKacmlqfkt8IPjX8WPgJ4wh8e/B34gap4f1eD7l3pt0Yy4yDsc fdkUkDKsCD3Fe/ftE/8ABY79uH9pH4dW3wu8TeP7bRtPW18rVpPDNqbOXVefvTOrEgEcFI9iHJyu Div20+HH/BPX9iH4WWyW/g/9lPwNE0Ywl3e+HYLu4/7/AE6u/wD49XX6p+zP+zjrNkLDVv2fvBF3 AkZRILnwpZyIF9ArR4x7VpTyXGU6bgq1k91rb9Dz8x8YeEcdmNPFVMp9pOHwzk4cy/B/LXR6rU/l 2JYks5+Ynk46++a9D/ZM+N+ofs3/ALSngn422EzBfD3iK2ubxFbHm228LPH/AMCiZ1z/ALVfux8a P+COH/BPz402syXXwCsPDV1KDtvvB2NOeM+qpGPK/NCPavzx/bS/4N+fjh8GNPvPHP7NHiN/HeiW ytJLo9xGI9WhjGT8qqNlxgf3drHjCHtwVsoxuEfPD3rdt/uPu8p8WOC+KKUsDiW6LqJxtUSUWpKz Skm0t/tcp+0vh3xBpvinRLPxFotyk9nf2sdxazoeJI3UMrD2IINXq/n2+DP/AAWa/wCCgf7NOh6f 8MLXxXp97p/h22j0+30jxRoKyPbxwqEWJmXy5RtChcFsjFfQXw9/4OXfjBY+XD8Vf2cPD2oD/lrP oGp3FofwSYy/+hV7dLPcFNLnun6f5XPxbMfBTjPCzk8NGFaPTlmk2umkuXX0bP2Hor8+fg7/AMHE X7LPxL1/TfB/iH4T+OdF1PVb2K1tlt7a3vYTLI4RV3LKr8sQOENfoHbsXTJz1/ir0qGJoYlN05Xs fnmdcO53w7WjSzKhKlKV7XtrbezTaY+iiitzxQooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKAP5/P+D4r/j//AGdf+uPiX+en18L/APBq9/ymq+GX/YN1r/03T190f8Hx X/H/APs6/wDXHxL/AD0+vhf/AINXv+U1Xwy/7Butf+m6egD+usdPxrmPi/8AGT4ZfAP4b6x8XvjH 4z0/w74Z0G0a51fWdTuBHBbRrjlie5JACjJYkAAkgHpx0/Gv5s/+Dw//AIKO+L/H/wC01Yf8E5/B esy2fhjwHaWuqeL7eCTA1LVbqBJ4Elx1WG3kjZR03TsTyowAfRfxA/4OXf23f29f2kJ/2XP+CIn7 JFt4j8rcx8Z+MIGJMIbabtomeOKzgyRhp3LNkDap4r3nw1+zB/wdJeI9CHiLxZ/wUT+Cnh7UZIxI dBtvBQuoo2xnZ5ot+eeM818of8GbP7b37MmieH/Ff7CV74Ni0T4m67qc+v2XiEnd/wAJDaRxIv2X J5R7cB3VM7WV3YfMGz++yLtQL6CgD8H/ANpv/guH/wAF2P8Agjr8U9N8Jf8ABRb9nT4efEPwvqsr DSPFHh1JbGHU0UDcsNzFlYpRuBMc0G7HQY+av0Q/4Jsf8FyP2RP+CnPwo1vxH8F/7RsfG3hjRpb/ AF74a6iq/wBpoqITut8fLcxswCB05DEBgpIzW/4OJP2fPCv7Qn/BID4yaVr2lxS3fhnw7/wkmh3L KN9td2MiThkPGC0ayRnn7srV/Jf+xv8AtWfE39in9pjwf+0z8I9cmstZ8K6zFdqsL4W6gDYmtnHR o5IyyMp4IagD9e/+Cp//AAUr/wCC/v7demap8HvgJ+wN8VfhP8N75XgubbSfDN4+r6rbkMClzdBB 5aMD80cQUdizjOfxR+J/wz+Inwc8fal8NPix4N1Hw/4i0mZY9U0bVrZobm1dkVwro3KkqynB7EV/ d98L/HWj/FL4b+HviZoBBsfEWh2mp2RHeKeFZU/8dcV/Hl/wcOAf8Ppfj+Mf8zhD/wCkNtQB9P8A /BvH/wAFPf2zP2Dv2e/Hngf9mf8A4JjeJ/jtpuueMo7/AFDXNB1i4tk02cWkcYt2EVlcAsVUPksv DdO9ffGof8HJ/wDwVE0qc2t9/wAG9fxHSQAEqPEOot+o0Yisf/gyRO79iv4xbuf+Lowdf+wbBX7W bV9KAPxtvv8Ag5J/4Kiadoj+I7//AIN7/iJFZRx+Y8zeI9QO1fXaNHz+ldf8K/8Ag5E+IvxX+GWj fECP9kjTdDn1KBpLnTLzxVLcNbsHK+WW+zRnIKnOQOvQY5/WKYZTg8g8V+AX7aHjbwf8RP2tPiP4 t8BQxLpc/jG/jgaBQEkaKZopJBj+/Ijv/wACr43jXNcflOX06mEnyycrPRPSzfVM+34FyjLs4zGr SxkOeKhdK7Wt0ujR9h2H/BfL416lBeyeG/2Ml8V3trYyT23h7w3rEzX1+64xFCDE2WJI4x615v8A Fv8A4Oh/2jfgH4Tn8d/Gj/git8WvC+i2237Tq+tai9vbRbmCLukazCrliAMkZJFc3/wSe0UH9qDw 94hdOf7Zht4zj2Zm/wDZa+u/+Dk7SrPU/wDgi78aRdpkW+l2M8eOzpf25Brm4FzvH51hsRLFT5nC fKnZL7MX0S7m/H2SZdkmMw8MJDkU4cz1b+1JdW+x+fL/APB8RpJnKQf8E67kpuwhf4kqCR6kfYTj 86/WT9pr/gqV+yh+xb+yr4e/ao/am8bxeGrLxNoNvf6PoMBNzf6hNLBHKba2iUBpmXzFUvhUXILF Qc1/ErCT5oJbHua/UT/gnD/wTt/bQ/4OMv2jIvjH+0x8S9U074Y+BtO0/RNR8SC2wqW1tAkcWl6b GfkEhRAzvyEMhd9zOA33Z8CfQP7UX/B6p+0H4g8Q3Olfsefss+GtA0dJCLbVPGtzNf304zw/lQNF FF/ukyfWvH/DP/B4/wD8FUND1yK+8R+Dvhhq9rG377T5vDc0Ik55G+O4DDj0r+hL9lP/AIJb/sE/ sZeBbXwD8Bv2XPCemwwQhJ9SvtLS9v7tsDc81zOHkckjJy2OwAAArwf/AIKpf8G+/wCw5/wUG+Eu rP4U+Emg+AviXb2ckvhvxn4Z0xbQm4AJWK6ih2x3ETtgMWBdc7lYHIIBxX/BIX/g5d/Zc/4KWeIb H4FfEbw0fhn8UruMDT9Bvb7z7DWnCsWWzuSq/vAFz5UgVjnCl8Gv0uRtwzjFfwTavp/j34IfFO60 Wa5utF8SeE9dkgeS1mKS2V7bTFSVdTkMrpwR6V/ZD/wSA/b+tv21f+CXngf9r74l61bW2o2+h3Nv 45vHIRIbvT2eK5ncDhQyxefjHSQYoA9m/bF/bL/Z9/YR+BWr/tEftKeOYdC8OaSoXeyl57y4ZSY7 a3jHMsz7SFUehJIUEj8Bf2tf+DxL9tP4xePH8DfsGfArR/COmXF19m0i51ixbV9Zv2Y7VxEpEUbN xiMLIQf4jXxX/wAFxf8Agrf8Q/8Agqn+1bf+Io9TubX4beFLyex+Hfh/ftRbYOR9tlUcNPOAGYnJ VdqA4XJ/Uv8A4M7/APgmp8NIfg9q/wDwUl+JHh221PxTqOt3GjeBJLmLcNJtYVC3NxGDwJZXcpux lVjOD85oA8V8N/tIf8HmPiDSk+LOm+DPHT6Uief/AGZd+BNEhMideLd4VuCMdhzXqX7B/wDwdufG T4f/ABot/wBnH/grf8B4/Dci3iWWoeMdK0mewutJlZgu+90+TJMYzuZ4tpVeQj5r97UACgAYx0zX yD/wWA/4JFfAP/gqf+znqvg7xR4asNP+IWm6fLL4D8bR24W5sL1UcxRSuuGltXY7XiYkYbcMMoIA Pyn/AOD1Pxn4V+I2gfsz+PfAviC01bRdZ0vXL3StUsJxLBd28gsGSSN14ZWUggjsa/Or/g3f/wCU 0nwA/wCxvm/9IbmvD/2jPiN+0r4a8NWH7DXx/wBRuli+DfibWLPTtF1AbpdHuZZI0u7ZWPPl+Zb7 gvQFmI+9XuH/AAbv/wDKaT4Af9jfN/6Q3NAH9llfMf8AwUl/4K1/sb/8EuPh/F4q/aS8cOdZ1GJ3 8O+DdGQT6nqhGRlI8gRxbhgyyFUB4yT8p3P+CnH7fHw+/wCCbH7HHiz9qbx6i3UulWvkeHdHMm1t U1OUFbe2B7Atyx7IjHtX8immeI/2kP8AgsX/AMFHvD9j8WPHV1qvjL4s+N7TTp9Ql+aPT7eafBWK MEBIYIi5WNcAKh7mgD9fPBf/AAc4f8Fav+Cg3xNu/h5/wTC/4JwaPe29u+GuNUkn1GW3Q52vcXAe 2tbbIB+VifZjXrHiP9sD/g7f/Z/0H/haPxL/AGEPhj4y0e1h83UtD8PXFtc3cSDO4COzvjKxwP8A lmJB7Gv1I/ZB/ZG+BX7EXwH0T9nf9nzwTa6LoGiWyRgRRjzrybYA9zO/WWZyMs7ZJ+mK9NkQOpXH XrQB+XX/AATZ/wCDpT9kX9sXx9afs/ftIeDrz4L/ABHurv7Fb6fr12ZdNurwME+zrclEMEpYkBJk QZG3cWwD9bf8FIf2yf2jP2Ovhjonjf8AZs/Yf8R/HS+1LVmtdT0XwzqBgk06ARlhcMRDLuUthcYH Jr8zf+DuT/glF8Mdd+BLf8FL/g34Pi0zxj4e1O2tviCbKPYmq6dKTEl3Io48+KUxKXxlkc5J2LXM /wDBr1/wXu8VfEDXtI/4Jr/tk+MZtRv3gMPwt8YajNullWNP+QVcORl22qTFIxydvlkk7KAO+/aA /wCDpv8Aah/ZRt7XXP2kP+CK/jTwRDqc/wBns73xF4se2S5kVd/lrI+n4YhSTtz3Nef+H/8Ag9sl 8T65ZeGPD/8AwTZu7u/1C6jtrK2h+JKlppZGCoi/6D1LEAfWv1W/4K1f8E+/Cf8AwUu/Yf8AF37M utrBDq9zbC/8IanKP+PDVoPmt5M9lY5if/Ylbviv4ufiJ8PfH/wX+Jer/Df4gaDeaN4i8N6tNZap Y3CGOW1uYZCrqfQhl6j6igD+rH9n7/gtJ/wUj+MHxt8KfDHxp/wQv+JXhLRdd121s9X8VX+vu8Gk W0kqrJdupslDLGpLkbhkL1FfpSrbk3AfhX59f8G5P/BUKx/4KOfsIaZpXjvxBHP8SvhrFBoPjOKZ x516iRKLbUccZEyDDH/nrFJ6jP6BzTQQwNLNKqxqpLMzYAHuaAPyV+MX/Bw//wAFFv2fPh5qHxa+ Nv8AwQc+IHhnwzpMXmanrmreM/LtrZSQAXf7DgZJAHuQK5L4A/8AB0P+2F+1f4Zu/G37N/8AwRP8 c+NdIsbz7Jd6j4f8XPcQxT7QxjLrp+N21lOPcV4N/wAFMv2qPjV/wcU/8FC9H/4JY/sKeIJI/g14 R1X7V428Z2wL2l68JAm1CQjG63hO6KBM4llbfyCpX9x/2QP2T/gz+xJ+zt4Z/Zo+A/hmPTPDvhqw WCEYzJdy9ZbmZv45ZXy7N6tgYAAAB+cfxD/Y8+JX/BXf9mnWv2sfEn7EWrfs+fGTStYntbXwrrl3 vPie0jijdZJWMUIV2Z3RJCucxYYkEFfyw1rRNX8N6xdeH9f02ezvrK4eC8tbmMpJDIhKsjA8gggg g+lf1aSoCuNmeeRivx6/4OFv2HrHwN4u079sr4e6MIbLxDcCx8ZxwphUvQo8i5/7aKrK3T5o1JyW r5vOsvhyPEU1qt/8z+hvBvj/ABMMZHIcfPmhL+E3vFpX5L/ytfD2ei0at8w/8EfPg4fjP/wUI+H+ mT2nnWmg6g2vXi44AtAZUz/21Edf0R24Ij5HU561+Rn/AAbQ/CBLrxj8Rvj1fwDFlp1todhI3Yyv 5836RQ8+5r9dhgj5cfhXXkVL2eC5n9pt/ofL+Nma/X+M3h09KEIx+b99/wDpSXyCiiivZPyEKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+fz/g+K/4/wD9nX/rj4l/ np9fC/8Awavf8pqvhl/2Dda/9N09fdH/AAfFf8f/AOzr/wBcfEv89Pr4h/4NS9MbU/8AgtT8Owsu wwaFrs3TO7bps3FAH9cI6fjX86P/AAdA/wDBEn9sv4p/tw6n+3F+yr8DNe+IOheN9LsV8Rad4SsH vr/T7+0tYrTJtYgZHjeGGEhkVsMH3Y4z/RavSsP4kfEX4ffCDwNqnxM+J/i/TdA0DRrR7rVdY1a6 WG3tYVGWd3YgAf570AfgN/wa8/8ABEL9sP4J/tej9t39rn4Pav4A0rwvot1b+GNE8SW5ttQ1C9uE 8oyG3Yb44o4jJy4UszLgEAkf0KryAfavxE/bq/4PLfgV8ONZvvAf7BPwMufiBfQSNCnivxYz2WmS ScgNDBGfPnTOMbjCTzjjBPz34V/4LWf8HTX7Wdr/AMJL+z5+ytdWukXg3Wlz4e+D0os3U8jyri+M gcYxyHP1oA/ab/gs7qFrpf8AwSi/aCvb2TbEnwr1fcwGetuwH6mv4nl4YfWv2a/bo+OP/B03r37D 3xGX9tT4byaZ8KbzQlg8a3F/oOk280Vo80a/L5TeYMuUU7RnDEV+Mp+/x69qAP7if+CY97dal/wT c/Z81K9l3zXHwR8JyzORyzto9qSfzNfyi/8ABw7/AMppfj//ANjhD/6Q21f1bf8ABLn/AJRnfs6/ 9kL8I/8ApltK/lJ/4OHf+U0vx/8A+xwh/wDSG2oA/X//AIMj/wDkyv4x/wDZUYP/AE2wV+1tfil/ wZH/APJlfxj/AOyowf8Aptgr9raAPM/2zvjxpn7L/wCyZ8R/2hdWkQR+DvBmo6pGsjYEk0Vu7RR5 /wBqQIv1av5uP2Rtf1bxX+zn4X8Ua/ePcX2pWkt1e3Ehy0ksk8jux9yxJ/Gv1I/4O5v2nv8AhR// AASquPhRpWp+VqnxS8WWWioivtY2UJN3ct7j9zFGR6TV+WH7CdlNq37M3gHTLYnfcaesS/VpnFfn niO0sppN/wA//tsj9J8MU3nFZLrD/wBuifo9/wAE09Kj8O/Ff4emcbXu9dSZwe5ckL+m2vpf/g5A /wCULnxwProVp/6XW9eEfsjWUWn/ALQfgLT4UxHDr9miD0AYAfyr3b/g49/5QufHH/sB2v8A6X29 eF4PVZV8rxc31q3++MT2PGOkqObYSK6UrfdJn8dSEBhmv7f/APgl18Fvhn8BP+Cevwd+H3wo8KW2 kaUPh9pV89vbpzLc3VrHcTzOeru8srsWPJJ9q/h/XqPrX91X7DX/ACZR8H/+yW+H/wD02wV+wH48 epUjjPHr60tIfvCgD+Ib/gq7YWmlf8FNfj1YWUWyGL4s66EQHoPtstfph/wTx+OXiX4Rf8GlH7S2 oaPqskM9146vNDsWViDGmoR6ZbzgEcjMUkv4nNfmp/wVv/5SgfH/AP7K3rv/AKWy19z/ALMl3a2v /BpF8eEuZdpm+ONrHEP7zZ0w4/IGgD8kicPk9jzX9bP/AAahalLqP/BGHwNHJGqi18R63CpUfeAv XbJ9/m/Sv5JSMHGK/rS/4NMv+UMvhD/sbNc/9KzQB+lVIy7hilooA/kx/wCDsf4O+HvhT/wWG8T6 x4dtYoV8Y+F9K128SLvcvE0Ejkdixg3H1znvXkP/AAbwf8ppPgB/2N83/pDc173/AMHf7P8A8Pgb wbjgfDrRce3yy14J/wAG8P8Aymi+AHOP+Kumwf8AtxuaAPvL/g9O/a61TxV+0X8OP2K9H1Bv7L8J +H28Sa1bJJ8sl9eM8UO4d2SGJiPQXB/vV8B/8EDvi78B/gH/AMFVfhj8Z/2kviHpnhXwp4cnvry7 1vVy3kQSiymWLO0E5LsoHHU12v8Awc6eL9Q8Xf8ABa74xTXkjlbCTSdPgVm4WOHS7VMD0BILfVj6 1U/4N4P+Ce37Pn/BS39vq6/Z4/aVttVm8NWvw/1HWfL0XUTazvcQz2saDzADhf37EjHOBQB/SKv/ AAcDf8EaAOf+Cgngb/vu5/8AjNL/AMRA/wDwRn/6SCeBv++7n/4zXg1j/wAGiP8AwRwtblZ7jwN4 9uUXOYZvHU4VuO+xQ35GtD/iEo/4Iuf9Eb8Yf+HAvv8A4ugCp/wU4/4LJ/8ABH39pb/gnh8bPgZ4 c/bj8E6tq/iP4Y6zbaBpkbXBa41IWcj2armLG77QsOPfFfys/D34geK/hV4/0b4k+AtYl07WvD+q wahpN/bSbXguIZBJG4Psyg1/V9pf/BqJ/wAEXdMjaP8A4UL4inJOd1z45v2I+h8wVZP/AAaqf8EX M7h+zrrOc/8AQ6X/AP8AHaAPsf8AYr+Pa/tW/si/Db9pA2iW7+N/BWm6zNBGPljkngSR1UegYtj8 K/FL/g70/wCCTAja3/4KgfA7wuW3GHTfirZ2cP3cAJbamQo7/LDI3r5R/vGv3P8AgD8C/hv+zN8G /DvwC+D+iPpvhfwnpcen6FYSXLzGC3TO1C7ks2M9Sav/ABX+FngL42fDTX/hF8TvDdtq3h7xNpM+ m61pt1GGS5t5kKOhB9icHscHtQB/Gn/wRv8A+CkHir/gmB+3F4c+PtrLcz+GLxhpPj3SIm4vNJld fMIUkAyRFVlTOPmjxkBjX7V/8HFn/BaRbr4V+Hf+Ce//AATt8TN4q8e/GjTLR7/U/Csnnz2uk3oU wWsPlnP2i7RwPVYmJ4Lgj8RP+Cuv/BOrxz/wTD/bW8S/s5eIEnn0N5DqXgfV5U/5CWjyyOIJCcAF 12tE+OA8bdsV7t/wbK/tG/ssfAP/AIKjeF/EH7V+j280msWD6P4K8T6pOrQeH9VkAjhlcPwN6Zt1 k/5ZmQdBkgA/oR/4Ib/8EnfB3/BKv9kay8DX8NpffEXxPHHqHxE8QW+GE11glLSNuvkQK2xf7zb3 43YH2qoIGCaFCAZTHPpS0AFeO/t8fA6w/aK/ZF8f/Ca8tRNJqPh2aSwXbkpdwDz4GX3Ekafy717F TXijkzvXORgg96ipBVIOL2asdOCxdbAYyniaTtKnJSXrF3X5H82f7C37dvxh/YN+LEXjbwJeSXej 3Mix+JvDM8pEF/CD83HRJVGdsgGVxzkZFfv9+yl+1p8If2wPhHZ/F34P60Lm1nAS/sJXAudOuMAt bzKCdrrkexBBGQa/mt+KulWmhfFLxHoliCILPXryCAHqESd1H44Ar0H9i39tH4wfsQ/Fy3+Jnwu1 Ey2shWPXNAuJW+y6nb5GY3UdGH8L4yp6cEg/GZbmc8DP2c9YX+7zR/X3iF4cYTjLB/X8GlDFpXT2 U1bSMvPtLps7rb+mEHIB9aK85/ZX/aJ8PftVfA3w98dPCmi6lptlrtp5qWOqWxjliYEqw5GHXcDh 1+Vhgg16NX2kZRnFSi7pn8f4nDV8HiJ0K0eWcG4tPo07NfeFFFFUYBRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQB/P5/wfFf8f/7Ov/XHxL/PT6+Lf+DTL/lNZ4E/7FfxD/6b Zq+2P+D4ywuEX9nLVGUeVJ/wk8SHPO5f7NJ4+jCvif8A4NMv+U1ngT/sV/EP/ptmoA/rRubqCzhe 4uZVSONC8jscBVAySfav5JP+C+n/AAW9+LP/AAUp/aA1n4S/Dbxjcab8EfDOrPb+G9GspCi628RC nULroZSzAtGh+WNCMDcWY/0u/wDBVzxX4o8Ef8E1fjp4p8F+b/adp8LtZNqYThlLWrqzA9iFZjn2 r+IhGYuMevpQB/RP/wAGsX/BET4D33wA0X/gpN+0r4KtfEvibX72eT4faNq9uJbPSbSGXy1vvLbK yXDvHIVLAhEwQNzZH7nxQrEAqAAAYAAwAK+Mv+Der4leDviZ/wAEdfgdqHg26hePS/Cp0m/jibPk 3dtNJFMh9DuUn/gQPevs9jgcHmgD4r/4OKRn/giz8fDn/mVbb/04WtfxsgENg+tf1K/8Hdv7aHhz 4Qf8E7V/ZA0bUY7jxf8AGPWrS3h0yBt06abZXUN1NMEHIDSxQRA9/MYDpx/LW3Eh7c96AP7hP+CX P/KM79nX/shfhH/0y2lfyk/8HDv/ACml+P8A/wBjhD/6Q21f1af8Euz/AMazf2dsMMj4F+EuM/8A UGtK/lP/AODiazubP/gtT8forqFkZvFdtIA3919PtWU/irA/jQB+vf8AwZH/APJlfxj/AOyowf8A ptgr9rT0r8Sf+DI7WbCT9kn40+HY5P8ASbf4jWdzKvoklgiqfzif8q/bbI9RQB/NF/wei/tNHx5+ 2t8Pv2XtH1EvZeAfBZ1HU4VbhdQv5WOCPVbeCAg/9NTWZ/wSu0T+2fgx8PpWQslnozzycccO4X/x 5h+VfDn/AAWz+ON1+0P/AMFXvjv8Rpbgy28fxF1DSdOYtkG1sJDZQkegZIA2P9o1+iP/AASH0Zo/ 2SPDfiCQAeZpiQRE+gkdm/Ur+Vflni3W9hw3GXVzt98Wj9W8IaXtuJJxe3Jf7pRZ92/srHH7SHgj /sZLX/0MV7R/wcfanpyf8EbvjZo0l/Ct3P4eglhtmlAkeNNQtQ7hc5KqXQEgYBdc9RXyyn7Q/g39 k5h+0t4+trq40fwQDrF/bWChpp44AXMaAkDc2MDPAzntXxh8VvE//BQ3/god+yr+1H/wWD/al0Q+ Hvhnqnwfk8HfC3w7M5RY7aXxDpV2GtY8DfGotWEly2DLI425CYXzPBZf8IuJf/Txf+ko9Hxr/wCR 3hv+vb/9KZ+Mw6j61/dT+w1/yZR8H/8Aslvh/wD9NsFfwrD7341/dT+w1/yZR8H/APslvh//ANNs Ffsx+MHqVIfvClpD94UAfxF/8Fb/APlKB8f/APsreu/+lstfZPwb/tI/8Gl/xY/s9XK/8NH2P2nY M4j8qyzn2ztr42/4K3f8pP8A4/8A/ZWtd/8AS2Wv2F/4N8v2QNN/by/4N3fjz+yreukdz4q8c6pH o1zJ0t9RjsbGa0kPsJ448+q7h3oA/n0YYbGfxr+tH/g0yx/w5l8HkH/ma9c/9KzX8o/xF+H/AIw+ FPxA1r4Z+P8AQp9M1zw9q0+navp9yhWS2uYZGjkjYeoZSK/pq/4Mzfi9a+M/+Cafin4Vm4X7T4L+ Jd2jQ7huEN3bwTo+MdC3mge6GgD9eKKKbI4VN/mKoHVj0AoA/lG/4O7tVF5/wWP1uzEJQ2XgPQoi 277+YGfPt9/H4V4b/wAG8RA/4LRfADP/AEN83/pDc1Y/4OGf2pvDX7XX/BWz4rfETwTexXei6NqU XhzS76AgpdJp8YtnlUjhlaVJCrd12nvUH/BvAAf+C0nwAz/0N03/AKQ3NAHo/wDwdT/DW/8Ah/8A 8FpfiNqE9r5dt4l0jRNXsX248xH0+GF2/wC/0Ewz/s16P/wZvXNvb/8ABXDUIpplVp/hDrKQgnl2 +1WDYHvtVj+FfXv/AAeifsMav4k8J/D79vzwVoMlwugI3hjxpLChJhtpJDLZTv6IJWmjJ7GVPWvz X/4NrP2itE/Zt/4LCfC3W/E+ora6d4nnuvDNxNLIFTffQNDACT/038nHvigD+wmikRiwyR+dLQAV Q8SeKfDfg7Q7vxP4s16y0zTbCBpr7UNQukggt4x1d5HIVFHck4q+SB1NfkD/AMHRf7a3ibxN4Y8I f8Eev2YZG1X4mfG3V7KPXbKwkzJZ6WbgeXE+PuefKoJzjEULk8MDQB+t/hnxR4b8aaJb+JvCGv2W qabdpvtNQ066SeCZckbkkQlWGQeQT0rg/wBr39rD4N/sS/s8eKP2lvjt4hXTvDvhfTXubkrzLcyY xHbwr1eWR8Iq+rdgCaofsgfs/eCf2Hf2P/A/7O2i6jBBpHw/8JQWVzqEzCONjFHuuLly2NoZzJIS f7xz3r8Vv2jvHHxZ/wCDpD/gpRB+y58C9c1DS/2Wvg7qS3PifxJbqVTVZQxR7hTxummAeK3Uk7I9 8xHLLQB4r8LP+Cf/AO27/wAHQXxY+LH/AAUI+K/iqbwZ4U0/TbvS/hRaXUfmQSXUO57XS4t2MW8e 8me4A5llJAyWC/kh8TPhv48+C/xI1r4X/Efw/caN4j8NatNYavpt0NstrcwuUdD7hlPI9iK/uu+C HwU+Gn7PPwo0H4IfCHwla6J4X8MaXDp+i6VaphIII12qCerMerMSSxJJJJJP4rf8HbH/AARyTxz4 Zm/4Ke/s9eFSdY0W2jg+Kum2ceWvLNdscOpBR1aIYSTA5j2sf9WxIB9E/wDBsj/wWTj/AG/v2dW/ Zo+OniTzfiz8N9OjjmurqXMviHSgdkV5/tSx/LHL1JOxz984/U1W3LuAIz61/Cn+x3+1h8Xf2Iv2 kPCv7T3wU1prLxB4U1Fbm3Df6u5iPyy28o6NHJGWRh6NkcgGv7P/APgnt+3N8Iv+Cin7KXhj9qL4 NX6/Y9atQmq6YZA8ukaggH2izlx/EjHr/EpVhwwoA9uqh4j8Rab4W0O+8Q6vMI7XT7OS6uZGOAsc aFmP5A1fJA6mvkv/AILRftLWX7Ov7Dfia3tL0R634xi/sHRUBG4mb/XuP92ASH6layr1Y0KMqj6K 56eS5ZXzrNqGBpL3qs4x+96v5K7fkfgH4x1u48TeLtU8TXABl1DUZ7lwo6tJIznH4mv0W/4JK/8A BGG++MT6Z+0p+1f4fkt/CmUuvDnhW5Xa+sDhknnGcpB6IRuk74X73Pf8EDv2M/gL+0t8U/EXxJ+L 8Q1e78CSWk+l+GZ0/wBHkkkLlLmXn94FaMgRkbc8nPAr9t4YIY4wkcQUAYAAxwK+byjLIVksRV1X Rfq/8j+ivFbxKxOUVJ5DlV4TSSnPZpNX5YebTV5dNlrqodJ0jTtEsINL0iyhtbW3iEcFtbxhEjQD AVVHAAHYVaoAwMCivqdj+Y223dhRRRQIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAK+NP2vv+C+H/AATP/YX+Oepfs5/tHfGHU9I8V6Tb2819ZW3hm7uURJoxJGRJGhU5VgeDxX2X XPa78JPhV4p1J9Z8TfDLw/qN5IAJLu/0aCaRgBgAs6EnA4oA/mi/4OlP+CsH7E//AAU30L4KWP7I PxGvdek8GXfiCTXxe6JcWYhW6TTxDt85Rvz9nlzjpgetfK//AAb8/ti/Ab9g3/gpt4U/aQ/aU8T3 Gj+E9L0LWLa8vrbT5bl0knspIogI4wWOXYDOOK/r5/4UF8C85/4Uv4T6dvDtt/8AEUf8KD+BX/RF vCf/AITtt/8AEUAfn943/wCDnr/gh38SPCOq/D7xb8cdVv8ASNd02fT9UspvBN+UuLeaNo5Iz+76 FWI/Gv51/wDgqT/wTM+K/wDwTn+OD6VfaHqOofDfxOi6n8M/HDWji21fTJlWWFWcqAtxGkiLJEfm DDP3WUn+yn/hQfwLzn/hS/hPj/qXbb/4in/FL4F/Bf44eBJvhf8AGT4UeHfFXhueMJLoXiDR4bu0 YD7v7qVWUYwMEDIxxQB/Iz/wSJ/4L1/tU/8ABJGPU/AvgnQNK8ZeAdbvReah4Q1yaSMQXO0K09rN GcwuyqqsCrK20cAjNfoN8Rv+D3DxJq/gGXSfg3+wfDYeLJ4zHaXuueLzd2cUhGFbyIoI3fDY+XeM 9M96/QT4jf8ABrv/AMEXviLqU2p/8Mu3GhNM25ovDfim+tY1Oc/KnmkL9BgV6P8Assf8EGv+CU37 H3ia38c/CT9kjQrjXrOQSWWt+KHk1W4tXBBDxfamdYnBGQ6qGHY0AfCX/BEn/glv+0v+2T8eJ/8A gsj/AMFePt2s+KdUQt8N/B3iOyMQs4WRkW8e0ZQsESo3+jwgDGTKfm2mv5/f2xP2a/HH7I37UXjj 9nL4haXc2eo+FPEt1Yj7ZEUaeBJWEM4yBlZI9rhhwQ2a/usWKNMBFwAMADpivEP2r/8Agmr+wh+3 E8N3+1T+y94U8YX1vH5dtrF9YeXfxJ2RbqEpME/2d+32oA+Lf+CXX/Be3/glx4e/4JqfCjQPi9+1 f4b8IeIvAnw60vw/r3hzWmkS9Sews47YtHEFLTK4iDqY92d+OCCB+Kv/AAXt8KfE79qL9oLWf+Cs PgX9nvxNofwX+JmsLpvhXxRq1k0Z1RrK3itxeyRkZt47gITDv++ImxyCK/oj+Fv/AAb6/wDBHX4Q eLIPGvhb9hbwndX9rIHtjr7XGpwxsDkHybqWSIkEAglTjHFfUvjz4NfCX4o/Dq5+EPxH+Gmha74V vLQWtz4c1XSop7GSEDCxmF1KbQAMDHGBjFAH8s//AAbF/wDBXD4Sf8Ezf2jfFvgX9pDVJtN8A/E6 xsob3Xo4WlTSL+0aYwTyKuW8plnlRyoJHyEjCmv3D/ai/wCDjf8A4JkfArwcJ/hH8aLX4x+MdSUR +GvA3wxzqV3qFy4xFEzxgpDlioOSXGThGOFMmr/8Gyv/AARZ1fXpNeb9j63tvNl3tZ2fiTUI7cH0 CCfgewr3n9lz/glp/wAE8/2L75db/Zo/ZH8GeGNVVQo16LSxcaiBxwLucvMoyAcBwM9qAP4yP2s/ DfxU8MftJ+NbX42/DbU/B3ii78R3V/q3hrWbdormwe5ka4EThgDwsq8kcgg1+p//AATN+MU/gP8A ZD8H6FJoz3qS6dvtxDJhg5dwR0Oc8dOa/c/9sr/gj/8A8E6f2+vE8Hjr9p/9mjR9c8Q28CQL4htp ZbO+kiXO2OSaBkaVRk4D7sdsU34Tf8Egv+Cf3wQ8LWHg/wCG/wADIrGy02HyrPfqlxLJGuScB3cn qT3r43jfhyvxNlcMNS5bqXN7zaWzW6TfU+14G4kw3DOaTxNfms48vupN7p7NpdO5+Zfgjwl4T+JX i3S9b/bFvNM0v4bxX0UniXTNWuBBZrpwcfaGu3YgLEIt24sRxnpXtf8AwW+/4KJf8E0Pil/wSB+K /wAAP2dP2y/hFqmqSeGbW28O+FfDPi+ykkkSK6tyILeCFyTtRThVGAF9q+7PEX/BNn9jbxfoF74U 8WfCGHUtL1K1e21HTru/naK5gdSrxON/KspII9DXmH/EP7/wRqPX/gn54GP1S5/+O1zcCcN5lw1g 61HGOHvSTioXsla3VI6OPuJst4nxtGthFNcsWpOdrt3v0bP4yFU7sZH51/YJ+xF/wWz/AOCTlh+y n8MPA+tft7fDrS9W0j4f6NYanY6zrQsnt7mGxhjljbzwgyrKwz044Ndl/wAQ/f8AwRn/AOkfXgX/ AL93P/x2j/iH7/4I045/4J+eBj7lLk/+1a+7Pgj6db41fCRfhC/7QB+I2jf8IPH4fbXX8W/2jH/Z 40xYTO155+dnkiIGTzM7doznFfPUv/Bcj/gkKjsjf8FEfhblc5x4niI/DHWvfofgF8Grf4Fn9mZP h3pp8At4Ybw6/hWSIvaNpTQG3azZWJ3RGElCpPKkivAB/wAEL/8AgkAP+cd/wwPufDqE/wA6AP5H P+CjvxG8I/GP9vv4yfFPwBrMGoaJ4h+JOsX+k39tJvjuLeW7kaORT3VlIIPoa/bb/g0+/wCCgX7D /wCy1/wT38VfDz9o/wDay8AeBddufibeXtvpPivxRbWM8tu9naIsqpK6llLIwyO6mv0t/wCHGH/B ID/pHd8L/wDwnEpk/wDwQq/4I/XEDW0n/BPH4ZBXUqSmgKrAH0YEEfUGgD8pf+C7/wDwTP8A2dP+ CpOva5+3h/wSD+Lvgr4neOdCsYm+LHgX4f67Bf3GoQ4fytQhigLFrnC7Gj4MoQFQXVg/5u/8Eiv+ Csvx7/4I2/tI6j4isPCk2p+G9aaOx+IXgXUd1vJcJEzbXTdgw3MRZ9pYEYZlYc5H9Y37Kn/BPD9i r9h681i//ZO/Z40LwNN4giij1mTRRKDdrEWMYbe7fdLNjHrXnv7bn/BFz/gm3+39dSa/+0P+zXpM viGVNreLdAzp2qMO2+eDaZsdvMD47YoA8l+Gv/Bz3/wRl8e+BIPF2pftSt4auZLbzJdB8QeHb1L2 FucxsIo5ELD/AGXIPY1+d/8AwVe/4OpNc/ad0a7/AGN/+CUngfxI0/i1v7IuPHFxpzLqV952Y/s+ mWqEyI8m4KJXxJyQqA4evpuX/gzC/wCCXMmuHVk+MHxoW23ZGmr4k00xD23HT/M/8er6/wD2Ff8A gh1/wTa/4J5a9H43/Z/+AVvJ4qgjZIfF/iW6bUdRhBxnypJflgJxyY1UkZGccUAfzJ/8FKP+CO3x Z/4Jj/sz/CP4pftEeJVHjn4oXV/PqPhW3+ZNEgiigdIZZCMvckyt5gHyrgKCxBNct/wQ8+Lnwy+A n/BV34K/F/4y+ONO8N+GND8Tyz6xrmq3Ait7SM2dwgZ3PCjcyjPqRX9fH7TP7DX7If7Zcekw/tT/ ALPfhnx2mgtKdHTxHYC4W0Mm3zCgJwN21c/QV5P/AMOMP+CQP/SO/wCF/wD4TiUAc98VP+Cnv/BF f9r/AMA6n+y/46/bX+FniXSfHtqdEu9CPiGNnvPtB8tUQdpNzKUYcqwUjBAr+cX/AILC/wDBF39p L/gkX8df+Er0a11PWfhjd6v9p8D/ABB06JyLXEheG2unUAQXSBQeyvt3Ieqr/SvoX/BCr/gkX4Y8 W2Xjrw5+wb4GsdV02/ivbC7tLaaP7PPG4dHRVk2qVZQRgY4r6c8aeAvBHxI8M3ngr4h+ENM13RtR iMV/pOs2MdzbXKHqskUgKuPYg0AflN/wRi/4Oef2Wf2l/hFovwe/bq+Kmk/Dv4o6Rax2d3rviW6S z0nxBsUKLlbmRhHBK2MvHIVBY/ITnA/SST9tH9j2Lw03jOX9qz4bLo6R731VvHOni2VcZ3GXztuM d818d/tDf8Guv/BHn4+anPrVp8Ar3wLeXDl3k8A63JYwhicnbbsJIVH+yqBR2FeJWP8AwZe/8Ev7 bWV1K4+NfxruIA5Y2EviPSxER/dyunB//Hs0Adr/AMFDv+Don9ir4DaJc/DL9iTVP+F4fFPUibLw 7Y+EoHutLhu3yqNJcR/8fA3YxHb7y5wMqDkeFf8ABKj9ljw7+w38TLz/AILHf8F3vjponhL4u/FG 8uU8E6d47vlgk0tJIw0rsjj9zc+URGkK/wCph+U4LFV/RX9h/wD4Iv8A/BOH/gn1dp4g/Z2/Zv0q HxEibR4u14nUdVUHGQk82TCDjkRhM984Fev/ALRv7I/7Mf7WPh6y8PftLfAXwn48s9Jne40q28Wa HDfR2kzrtaSNZVYKxAAJHUCgD8Rv+Dhb/gvn8P8A9pnTNJ/4Jz/8E+/jroU2g+NJYoPiN8Tf7RNv p0du8iBbNLk42xdWuJAMbAEGcvX2N/wTD/a9/wCCFf8AwTG/Zf8AC37Kvwr/AOCgXw11DU5JEm8Q 65b6kHl1vVZdokmkZFO1d2EjViAiKo7EnnP2XfA//BFHxl8Wtd/ZV/aU/wCCeXwP8IfEXw3r1zpS S3XgKxisNZMcrKjxO6YjkZQpMbEZLfKT0H2Np/8AwRx/4JPQSQ6lYf8ABOz4ORyRuskE0XgGxBVg chgRH1yAc1lRr0q8eaDv+nqenmuTZlkmIVHGU3FtJp9JRe0ovZp9189T6UtLu3vrdLu0lEkUqB45 FPDKRkEexFeQ/to/tbfsefsk/C/+3/21fifofhrwp4gkfSj/AG/byTQ37PGxe3McaOXzHuyNpBGa 9ftra3s4EtbWFY440CRxoMBVAwAB2GK4P9oH9lb9mz9q7w7Z+Ef2mPgZ4W8eaXp939rsdO8V6LDf Q28+0r5qJKpCttJGRzg1qeYfxb/8FHvhf+y98Jv2ufFfhv8AYu+NGn+OvhhcXn27wjrFis6mC2lG 77JKJ40bzIWzGTghlVWzzgfT/wDwbt/8FiL3/gl/+09/wiPxY1u4/wCFQePp47XxdF8zrpFxuAi1 REHeMZWQAEtGx4JRRX9KB/4Iy/8ABJg4Df8ABOX4NHA7/D+x/wDjdcr8Xf8AgmX/AMESfgN4Nu/i J8W/2G/gVoOj2SFpr3UPA9gi9Cdqgx5djg4VQST0FJyUVdmlKlVr1FTpxcpN2SSu2+yS3Ot+CP8A wWA/4JmftMeIz4L+B37ZvgvXtXWxnvjp0V80Mq28ETSzSlZlQhUjVmY/wgHNfjx/wVk/bzn/AG5P 2i3vvDF1J/whPhUSWXhOF8r5yttMt2y9mkZRj/YVOhzXO/ty/Gr9irxl8QBpX7B/7HHgP4ZaBp5m hbxL4f8ACVtp+q6wjqUcPJEoaO3ZSR5Wfm6v2A+fVBY7VGSewFfI5vmccT+5pP3er7/8A/qzwo8N a3D/APwrZpG1eStCP/PtPdv+81p/dV1u3b7v/wCDef4tL4A/bnn8C3VwVtvGXhW5slQtwbiFkuIz jPJ2xyAf75r90EcOMgHr3r+aL9hHxV4u+FH7YPw3+JWj6DqMy6X4usnvBa2cjs1q0ojnHyjvE7j8 a/pbgIZNw7816WQVObCuD6P8/wCmfnvjtl8MPxRRxcNqtNX9YNr8nEfRRRXun4iFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUVkeN/Hfg74beGrzxn4+8VaboukWEXmXup6tepbwQLnG55JCFUcjqe9AGvRXg3w+/4Kgf8E8/ it4ps/BHw6/bN+HWr6tqM5h06ytPE9uWvJAcFIiWAlbOBhSete7o28ZyPwoAdRXjvxw/b8/Y/wD2 cfGEfw6+MXx60XTPEctt9oTw3bebe6l5P/PQ2tqkkwTp8xXHvWn8BP2zv2Wv2opr6y/Z++O/hvxT eaWxXVdN02/H2uxOcYnt2xLCc/31FAHps0sUETTzSBURSzsxwAB1NY/w8+Ifgr4seC9O+Ivw68RW +r6Hq1uJ9N1K0bMVxGSQGU9xkGvzl/4L2/8ABcj4HfsW/AXxd+zV8GPiDZa38ZvEWmT6RHp2kziQ +GUnjZHu7l1yI5VRiY4vvlirFQvJ7v8A4Ip/txfsfWn/AATs+APwRvv2pPAa+NT4I0/T28LSeKrU ah9sIx5Hkb9/mZIG3GeaAPveZgsTMxAAUkkngV+Tl3+zb+0P/wAFvP2/bj9o3XPij4r8EfssfDu4 bR/Blt4f1y4sJ/H00MpF1cIYXR1tnmUqJyPmjRRGclmH6T/tHfFn4BfCP4T6r4g/aX+IWh+G/CNx CbPU77XtUW0hkSUbTFvLKSzAkbVOTnivM/hv/wAFM/8AgnXrGsaP8K/Bn7R3hfSLq8RLXw7pGqwT aQt0qhVSK1F3FCsoA2gCPcMYxxQB71o/hnRfD/he28H6RaeRp9nYpaW0CSN+7hVAiqGJ3cKAM5z3 zmvwj/4OhP2d/AP7Bvwv+FvjH9k7XfG3hDUvFHijUIdcuYfiZrt39pRIEdV23V5IqYZiflA/Kv3q Vg8YcMCCMgg8GvxQ/wCD0L/khPwO/wCxw1P/ANJY6AP2M+C881z8HvClzczPJJJ4asWkkkYszE26 Ekk9SfWulrl/gkcfBfwif+pXsP8A0mjrifip+3v+xl8EfGrfDf4q/tMeDtG8RJF5kug3GtRtexpj O5oEJdVx3IA5oA9eorg/gf8AtO/s+ftL6HP4l/Z7+NHhnxnY2sgju7jw7rEV0Ldz/BII2Jjb2YA1 295eW1hbPe3k6RRRKWlllYKqKBkkk8AAdzQBLRXzJr//AAWY/wCCV3hjx4fhnrn7fPwwg1lZzBJb DxRCyRyZxseVSYkbPGGYGu2/aZ/4KAfsh/shfAy3/aP+Pfxz0PR/CF8UXSdViuftP9qO67kS1SHc 1wzDJ+QHABJwASAD2WivJv2a/wBt79mH9rb9n6H9qH4F/FzTNW8ESCb7RrU7NapZtCcSpOs4Uwsn UhwOCDyCDXLJ/wAFVv8AgnGZEB/bV+HQie6+zLeHxJCLYzdNgnJ8vdnjG7rx14oA+gqbKcRscZ46 VX0PW9I8SaTb69oGqW99ZXcKy2l5aTLJFPGwyroykhlIOQQcGn6nciz06e8YgCKFnJJ6YGaAs3oj +f8A/wCC0/h/Q5/2yLn4z+D0C6X49sBeIVHAu7SWTTrpfqJbRifUsfWue/Zg/wCCuH7bn7LVrb6B 4W+J767oEGAmg+KIvtcKL/djZiJYh7K4HtzT/jV4lT9oj9i+8+IcchmvPh78XtTWZj1XTtc3XMRO P4RcWs2M8Au3rXg/wu+D3xT+NXiJPCXwl+H+reIdQfGLbSrF5SgzjLEDCL6sxAGOTXwFWrVjivaU W05a6ee/43P7pyvK8pxHDMcBm8ITjh7037S1ko/C7vZ8jg7767n6d/Dz/g5kQ2kcHxV/ZVc3CgCW 68P+JPkc9yIposp348xvrXV6j/wcvfAn7Gz6T+zV4smmPRbjVLWND/wJdxH5V+fUf7KHwO+CKfbv 2vP2hrKDUYRmTwB8PPL1bVCw/wCWc9wG+y2pzkEF5GH93vU8B/4J8/HqP/hC9E8P6z8GNXg/d6N4 j1bWZda07UByQNQwivbOTx5sKlADynBJ7lmWZxVnUV+ztf8A4HzsfG1vD3w3xFX2tHA1ZU1vKDqc i80nLmmvOmpJH0t8Z/8Ag5E/aD8VWkum/BP4KaB4TDKVj1DU719TuF91G2KMH2Kt+NfC/wAdv2l/ jz+014lPi346/FDVfEd4GJhF9cfuYAe0cS4SIeygVP8AHb9mL4x/s8X1uvxB8Ng6ZqALaN4i0yZb rTdUj7Pb3MZMcgxjjO4HggUfsu/BeT4//HXw/wDDV7r7NptxdfaNf1BjhbHTYAZbu4Y9gkKO31xX DXxGNxU1Tqyd+234H3OSZDwVw5gXjstowjBRbc170rJa++25eqT30sfqV/wRR/4JkfBPW/2XIvjl +0h8GdE8Sap4vvPtegxeIdOS4Fnp6DZGyq+QDI29845Up+P3r4b/AGVP2a/B8ax+GPgD4NsQuNv2 bw3bLj/xz2rE/Yb+LPgv42fsv+EPiD8OtEXTNCn0+S20jTlP/Hva280lvEh9wkS/nXrlfZYPDYel hoKCT0Wttz+PeLOIc9zPP8VPE1JwfPJcnM7Rs7KNk7aJJee5U0rRNJ0OIW2j6XbWkX/PO2hVF/IA Vboort2Pkm23dhRRRQIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigBJBlcZI9xX4zftgfGyb/gp3/wAHC3gb/gmF4uvHu/g1 8K2n1Txj4aVz9m1/U7fTmvCLlQcSxpK1vDsbgfvu7c/sxJ93/wCtX4N/sS6BqXww/wCDvn4qeH/F ySQ3GtyeIrvTfOH+tiubGO9i2nAyPJz06bcdjQB+vf7VH7B/7On7VH7Nus/s1eM/hZoUGj3umPBo 72WmRQNo9wFIhubYooMMkbbWBTHTHQkV8Mf8G737f/7Qfx7+B3xX/Y0+N2sPrnxL+BN7Npej6tqL ky31ovm28Edy5yWkjnt3Rn6lSmclSW/VCT7h4rwX9p39pn9nL9iH4a/En4v3fhrTYtU8IeBpvFGu 2OkackU97EZHjt1klVQA01wGRS5yTvboGIAPz/8A+DZz4Xft9eEfi9+0H42/bm/Zs1nQNT8Ta9Dq Evjbxn4fntNU1PUGeVZYIJZlHn2aqNymPKKThSQePGv+CyHjJv2S/wDg44+APxm+C94dG1bxLbaH F4uGnp5Y1KKW+ksnSYDAl3wfIc84Ve6gj0b/AIJjfCf45/8ABfrw/wCJ/wBtn9vP9pTxxp3gZfFF xpXg34Q/D3xPPpOlWyxIjPJMYiHmI8wICTuO1iWwQtfGf/BWn9lv4Jfsgf8ABcn4JfB/4FRanFpi XPha7uodX8QXGozrPJqjAkyXDu65VVO3OOc45oA/Rz/g6+8AeBdN/wCCV2r+LtP8FaRb6tP4+0Yz anBp0aXEhaR87pQu4575POK92/4ImfAL4HT/APBMP4AfECf4MeFH14/D/T7ptafw7am7M+CfM84p v3/7Wc+9eQf8HZv/ACiO1H/sftE/9GSV9Hf8ERv+USv7P/8A2TXT/wD0E0AfDf8AwVa+Gn/BR74i f8F2/gD4i8B/s06r49+EnhSaxm003Wgz3nh2zlmZ49Qub2RVMUE8aFXjaUggxRFd3Svdf+DoL4fe BvEv/BInxl4l8QaXbNqHhrVtJvPD14YR5ttcG8jiPlsOUzHJIDg8j868J/a5/b4/aZ/4KSf8FfW/ 4I5fsrfG/VvhR4F8MXF4nxG8deFZjFrOoNa24kuoYZeDCqyYt124JZmdiygLXHf8F8f+CTf7IX7G n/BMXxH8WfAOseOdR8Upr+l20WreLfiDfag1y0s4Em6OSTy3YjJ+7xjIxigD7s/4N+/jh47/AGgP +CTHwo8b/EbXLnU9VtNOuNKnv7x90syWlzJBGWYkliI0Rdx5O3nnmvh7/g9C/wCSE/A7/scNT/8A SWOvq/8A4NiBj/gjX8N/+whrH/pwmr5Q/wCD0L/khPwO/wCxw1P/ANJY6APsj/grB+3hr3/BPX/g kQfjP4Du0h8Xan4c0nQ/CErrkQXtzAimfB6mKISyAdCyKDxmsr/g3P8A2e/CHgv/AIJoeD/jfq2n Q6t41+Kct34l8X+LNSQT3+pTzXMioJZ3y7KqIoAJxkserMT8+f8AB0b4J8QeI/8AgjT8NPE+lQO9 p4f8R6DcamVBOyOTT5IVY46DfIoye7Ad6+yf+CEGvWniL/gkV8CLy0aL914JS3lWHorxzSowPvle fegD89/+C8PjPV/+CRP/AAVB+DP/AAUT/ZptF0a38c2s9h8TNA08iG115LaaLzGmjUBHkkgmxvPI eBH65Jzf+DrH/gpx8R7zSvhn/wAE9/2WPFV1ap8VtItda8TX2nztHNf2V1KiafZKyNkJKwd5F/iA jXkFxU3/AAej6xZ3Phn4CeC4I1e/udW1m4iUH5ygS2jxj0LOo+tfHX/BdX4deLf2Xv8AgpN+yx8R PirbzQ6bYfDDwM08k6sAraZOi3aZPdSBkdRkHuMgH7J/Af8A4Nyf+CZXw+/Y3sf2afHv7OOgeI9X u9BWHxH47vLRTq89+8Y825guSN9vtckoiYUAAEHnP4n/ALE37HngK+/4Kr+PP+CMX7aPiLV/Eeja dY+LfC/wfuNU1ec2fh7WpYhJZarHbBgoZ4YlfYBje44I5r+qfTby31Cxiv7OVZIZ41kikRsh1YAg g9wQetfzZ+HtOuf2jP8Ag8XvL/4ZK09voHxUlm1K4tv4I9N0/wAq6YkekkTRnn+dAHEaJ+y18eP2 T/2kvhR/wb+fE74y2GpaH4w+K9l4i+KcPg++n+yX/wBrMCQWJeRInaNba2ErKVA8y4zzsVq/pS8Q /s5fA3xN8Ibr4C6v8JPD8ng670ltNl8OLpcS2gtWTZ5axhcKAOmMY6jmvwk/bT0XU/hl/wAHdXgD xR4phjSz13xb4au7Ca5U7DC9kltuU+qyRvj/AGhX9CTY2n0xQB+J/wDwbt/tUfED9nX/AIKA/Gf/ AII2/ELxfd6r4Y8La5rVx8N31GcvJafY7zY9shJyEkt2E+wcK0chH3uf1e/bZ+JcXwl/ZE+JHxB+ 0GKTTfBt+1tIDjbM0LJGf++2WvxD/wCCcGlXvxS/4Oxvip4v8JxFrDQPEHiy51OaJcrHHGhsySR0 zNIi/U1+k3/BwF8YE+Hf7CFz4ItrrZeeM/EFppyIGwfIjY3EpHqMRIp/3658XV9jhZz7Jnv8K5c8 24lweDSvz1IJ+l05fck2fkH+y/8AtI+FPgbo3jXwj8RfhPF418P+MtJtYLvQ7jUpLSL7Ta3SXFvK zx/PhSrKQCCVdhkAmpvih+3H8dviF4dfwB4bvdO8D+Em4HhDwHZDTbFlxjEvlnzLk+pmdyf0rx6i vgFWqqHInof3hLJMrnjJYqdNSm2nrdpNJJNRbcVKyS5kk7Ja6Csd7F2JJJyxJ6mppdMvY9Li1d7c i2nuJIIpexdFRmH4B1P41BXsOl/D7+2v2CtX+I0dsSdE+KdraSS4zhLmwkOPbLQr+VRGHPc6MZio YOMHLaUox/8AAnZfjYzfgR+1v8WfgTZT+FbCay8QeE79v+Jt4J8U232zS7wdyYmP7p+4kjKODzni vTNY/aC/ZH8E/A/xnrP7NHhDxH4a8d+P7SLQdU8P6pOtzZaPpjsZrxrK5GHZZmSGLZINyqXGWGSf mSg9K0jXqRjbf16enb8jixWQ5fia/trOLbTlyuynZprnW0tUtWr9L2bT/cP/AIN2fi5beOP2LdR+ HE1wGvPBvimeAxlssLe4VZ42x2BczKPdDX37X4Wf8G/n7TUPwZ/a/n+Euu34i0r4h6abOPe/yLfx EyW59PmHmp65cCv3RjYuu4ivssnrKtgI946fdt+B/H3ixk08n42xDt7ta1SP/b3xf+TKQ6iiivUP zYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAMA9RXwv/wUd/4Jb/EL4rftT/Dv/gpb+xLrWi6N8b/hrNsksNdZotP8 VaeUaJ7S4lQMYX8mWeMSBWyspU4wpH3RRQB8s+IP2nP+ClWueEDoXgD/AIJkXOj+LbnbCmq+LPil ob6BZOcBp2ezuZLyeNckhBbIzYwdmc1Cn/BNaT4lfsa/E34AftN/FSXxX41+M+nzf8J943trFYFj uWjC20VpDk+Xa2m1BFET821mfLSOT9WUUAfiT+wX/wAE8f8Ag4h/4JQzeIvgD+y/YfCPxp4A1vWm vLfU/EetbILWZlEZulj3JPGSqIWjw4yoxk5J1v23f+DfT9tL4hfED4VftpeBfiboHxK+OOj+KV1r 4r3HiG/Ol2msPHNbyWlvYkKy29vbxwmBUIBK4fBbK1+0FFAHwl+37+wn+1z/AMFSv+Cffjj4KfHC Dwn4A8V6pd2Oo+CPDOlaxJqdrptxZ5fbd33lRGYzszKdkO2JQpHmHJrm/wDgmR8Ff+CxH7Pv7Jvg n9iz4l/DX4ceD7XwZKLIfEoeLjq1xJpSXBkEUOmxwqhnKExrJJOFVdrGMkba/RGigD8a/wBt7/gi N/wUN+Dv/BUG4/4Kkf8ABKvxZ4bvdY1nVZtU1Twx4l1BbYwXdxCYbxMy/u54Jt8jlSysjOdvKqa9 K+MX/BMH/gpf/wAFUfgP4l0//gpr498FeFb608OXMfww+HfgZnk06x11oyseq6jNuYzMozGkasyo ssjD5sCv1KooA/PT/gjN+yx/wUr/AGLv2ePCP7HHxm+GvgLw/wCG/COu3t7qHjTTfGDanc6zayyy yi0hshboLdmeQZneU7UTiPc3y+If8F6P2Gf+CmX/AAVf8J+CvAPws/Y2tPDsfgnxHe3f9pav8StL dL+KRBGhREcMmQobDcjOK/XqigD5Y0b4S/Ej9s/9mjXP2Nv23P2Op/CHhLUPBcGlXF8fG9hqJu5U WNQ0S2pLQujIsqu3AZBXzN+wl8Af+Csv/BHvwpqX7Jvgn9mSw/aL+ElvrV1d+Bte0Dx/puhaxpEM z+Y0E8GpSRxupYs3ySEq7tglSAv6gUUAfmXN/wAEuf2l/wDgpB/wUO8Mft2f8FJvh/pPgnwZ8N7C KH4e/Byz8QQ6vcSTpMZvtF/cwDyBmTa7RxFw3lxqW2qd3Bf8HQukfAP9qTwj4D/YJ8L/AAc1/wCI X7SPiCefUvhTpXhSSKKbSYBt+1T3c037tLWRIiChI3GDduTZur9ca/AT/gtT+198bv8AgkV/wcCe Hv8AgoC3wj/4Srwt4h+F0ekWVld3LW8V7bhWjuYYZ9jiGaOQRSfdbhxkYbNAHrv7MN5/wdj/AAi/ ZG0v9lD/AIZI+Hpv9P0saTonxI8S+PtLlv8AR7YLsiaSO3vJEneJMBW2OcKNyua+mv8Agib/AMEO fDn/AATGttc+Ofxi8cR+Ovjb44SRvFPivyj5NnHK4mltrYv8zb5RvklbDSMBwoGD8L3P/B8J4dFq 66f/AME37xZdvyNN8VUZQfcDTRkfjX0T/wAE8f8Ag7V/ZC/bM+MekfAX4xfBzWPhRrviG9Sy0K/v tai1LTLm5dlSOF51jieFnY7RujK5xlhmnawHvH/BZz/gj/P/AMFEbDwr8c/gN40g8HfG74aXMdz4 J8S3AIt7lUnWYW1wVBICuN6PhtjFvlIY1Po37VX/AAWwm+HE3gXX/wDglLpUXjsWTWkHja1+Muin w49ztwt60Bk+2rEGO4wiJmONuQOR9xRsXXJFOpAfDv8AwRp/4JCwf8E3/C/ib4p/Fvxhb+LfjL8S bx73x34lt4yIIvMlaZrSDdgsnmsXeQgF3wcAKAPkH/g5A+Oi+K/2h/CfwG0y9zbeE9Ca+1CNWP8A x93T8Bh/sxRoQf8ApoRX7K65rNj4f0u41rU7hYba0t3nuZX6RxopZmPsACa/mV/bI+Ot5+0v+1D4 4+N1zMzRa94huJtPVjnyrRW2W6D6RKg98Zrws+r+zwqpreT/AAWv+R+2eBuSPH8T1MfJe7h4Oz/v z91f+S8x5pRRRXyB/XAV9u/sv/DmHx7/AMEV/wBoC7gsw93ovjnStTgkx0EAtw/5RSTfnXxFX6yf 8EZfhhJ8T/8AglT8c/AZjVzr+qapDbp1y/8AZUAQH/gYFehltP2tdw7xl+R8F4jZh/ZeRUsVf4K9 B/JVIt/gj8m6KvnRLYHjxFYY9d7/APxFH9i23/QxWH/fUn/xFefZn3PtYf0mJ4X8Ta54K8S6f4w8 L6lJZalpV7Fd2F3C2HhmjYOjg+oYA1/SX+wX+1p4W/bK/Zm8P/GfRZ40vp4fs3iCwQnNlfx/LLGR 2BPzr6q61/NVdQJbTGFLqKcAffiJ2/qBX1V/wSY/4KF337C3xzNp4tuZZPAXil4rfxPbKu77Ky5E V4g9Y9x3AfeQnuFr1cpxqwmItJ+7Lf8ARn5d4rcGS4syJV8LG+Io3lH+9F25oersnHzSXVn9CVFU PDfiXRPF2i2fiTw1qlvfaff26z2V7ayh45o2UMrKw4IIIOav19unc/jGScZNPdBRRRQIKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/Fn/grF+0V45/4Kx/8ABTmw/wCCDHwV 8P8Ahew8MaQPtvxO8f65oEOo3lj5dql1L/Z5kBFs6I8cO9QHaWUKWVFbd+01fhx/wU6/Zs/a3/4J U/8ABYyL/gtn+zP8GtT+JHw+8TwlPiP4f0ON5LjTw9pHa3IdY1ZkjcRpcJNhlWRGD7VxkA+vPhV/ wa+/8Eb/AIb+E4fD2ofs03Pii5SAR3Gs+JvEl3NdTtjlz5TxxoTjOERQM8AV+Y3/AAcif8EG/wBm b/gnv8HPD37a/wCxMuq+HbL/AITC20jX/ClzqT3MMMsySyQXVq0mZEw8OxkLMPnQqBhq/Q7wz/wd of8ABJPVvCkWr6zrPxE0jVDFul8O3XgK5kuVfGSgeItExzwDvA9cV5V4vg/ad/4OPP2gfh/Bqv7P Hij4X/sifD7xJB4kvrnxxafZdT8dXsORDGkGflgaORlyMqqySnzCxRQAfqr+zZq/iLX/ANnnwJrn i8yHVr3wdpk+pmViXNw9pG0hYnvuJzXbEhRkniorK3gs7WO0tYUjiiQJHGihVVQMAADoABT5mCxl iR+NAHx7/wAFu/2n4v2eP2IdZ0XR9UEOuePGPh7TljbEiwzIxuZBz0EIZcjoZFr8AzwcV9p/8Fz/ ANrFf2if2w7r4f8AhrVfO8O/DyJtJtgjZSW93Zu5B2zuAiz/ANMveviz6DHsK+GzfE/WMY7bR0X6 n9seE/Dj4e4SpurG1Sv+8l3V/hXyjbTu2FFFFeYfpgV+4P8AwbraUtr+wxql6Yk/0zxveMcHrtig Xn8q/D6v3o/4IGaK2k/8E6dEunX/AI//ABHqdwD7eds7f7lezkSvjvk/0Pxzxyq8nBKj/NVgvwk/ 0PxG/aA8BH4V/HTxj8NRCyJoXia+solbskc7qv8A46BXIV9V/wDBYvwJoPw2/wCCi/xF0+XR7zbq d5bapFJDeJGsgubWKVyAYjj94zjqfu18x/avDXfS9Q/8GSf/ABmvLxFN0q8odm1+J+k5DmDzLI8L i+Vv2lOEunWKfcz8jPT9KDtPUfpX6o/8EdP+CRPwl+MXwxuP2iv2q/hu+qaX4ghEfhDw/f3ksYEC kbr1mhMbHeQQg6bQW53A19qf8Oav+CZ//Rqulf8Ag41D/wCSK9KhkuLr0lUTSv3v/kfnmd+M/C+S ZpVwMqdSpKm7NwUHG/VJuavZ6Ppc/N//AIJC/wDBXm7/AGXru2/Z1/aH1W4ufAN1Pt0fWJGLvoEj HkHJ5tSSSQOUOSAQTX7XeHNf0XxTolt4j8Oaxb6hYXsKz2d7aTrJFPEygq6OpIZSCCCOtfN7/wDB Gn/gmkR+7/ZY0pTng/2vqH/yRXt3wQ+Avwt/Zz8Dp8Nvg74dk0nQ4p2lt9ObUbi5SAsBkR+fI5Re M7FIXJJxkkn6PLsPjcLT9nWaaW29/TbY/nvj3O+EOI8b9fyqjUpVpP31JQ5Jf3lyzbUu+lpb6Pfs KKKK9I/PAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApBGi9FApaKAMY/D n4fNq/8AwkB8C6N9v8zzPt39mRedv/vb9u7Pvmtjav8AdFLRQAAAcCvnr/gph+1/ZfsZ/sn+IfiV b3iLr97EdN8KwE8yX8oIVvpGu6Q+yY719C18A/8ABRv/AIJn/tRf8FGPj5ZTap8V9A8I/Dvwzb+T oVs8ct5dzSyBTcXDRKEQEkBBmTIVB/eIrkxsq8cO1RV5PRf5n0vCOGybEZ9Slm1VU8PB8073fMlt FJJtuTsnZbXfQ/EK+vr3Vb+fVNSuHmuLmZpZ5pGyzux3MxPckkmom+Xlhj61+23wg/4NzP2PvCPl XfxY8b+KfGE6EGSD7Wthbt6giH95j6SA19S/CH/gnv8AsYfAkRSfDH9nTwvZXEIGy9uNNW6uAR38 2fe+ffOa+ZpZDjJ6zaj+L/r5n9I5n468K4NOODpVKzW2ihH75a/+Sn89Pwm/ZF/ad+Oksa/CT4Ee KNcSUjZc2ekSeTj181gEx15Jrh/EvhzXfB3iG98KeKdKmsNS067ktr6yuU2yQTIxV0YdiCCK/qsi sYYUEcMaIq/dVEwBX5O/8HAX/BPs210P23fhVoRKyFLbx5a20f3TgLFfYA78RufXYf7xq8bkv1bD e0hLma39Dl4P8Z48QcQxwGMoRowqaQak37/RSbS+JbWW9lrfT8p29A2M+tf0P/8ABGvw2PDv/BNb 4YRNH813pt3dt7iW+ndT/wB8Fa/nhPXBHfnnFf0z/sIeEn8CfsWfC3wlNHtksvAemJKPVzbozH8W JP40cPRvipvsvzf/AACfH3EKPD+FofzVb/8AgMGv/bj8qf8Ag5C8ALoP7WHhT4hRw7U17wasMknY vbzyDH12yL+leE/8Er/2DdX/AG5P2i7XSNatpYvBXhxo7/xbehSBJEHG20U/35cFcj7qh26gV+gv /Bwp+zz4v+Nvhr4On4daBNqOuT+M59CsraBCWka8iV1yR0UG2JyeACSeM19XfsAfsZeE/wBiT9nH SPhFoXkzao+LzxNqaR4N9fuo8x/XauAig9FUdya6XlrxGbTlJe4rN+d1t/n5HgUvEX+wvCnB0sPL /apqdOPeKjJpz+UbKPm79Gey6DoeleGtJtfD2habFaWVjbJb2dtAm1IYkUKqKB0AAAA9qu0UV9Kf zq25Nt7sKKKKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABTfKjznYOOlOooAAAOlFFFABWX4z8G+GfH/AIT1PwT4w0eG/wBL1exltNRs7hNyTwyKVdGB 6ggmtSkYEqQO4pNJqxUZShJSi7Nar1P51f25f+CfvjD9k39su1+A1lZz3eieKNYhbwRqDIWF1az3 HlpExAwZY2Oxh9DjDDP9DnhXRLXw14Y07w5Y/wCp0+xitof92NAo/QVwvx5/ZY+FP7RGq+D9f8f6 MsmoeB/FFtrmg3sajzIp4jnYSQcxscZX1VT1Ar0eNCiBDjj0FedgcBHBVajjtK1j77jLjivxflmA pV1+9oxmpvpKT5UpL1UbvzuV73RdI1Ka2uNR0yCeSzm820eaIMYZNpXehP3W2swyOcMR3qyFCjAF LRXpHwDbYUUUUCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q== ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/image018.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAicAAACeCAYAAADpCqpJAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAADsIAAA7CARUoSoAAAIb9SURBVHhe7V0FgF3F1f6er+8mG3cIJMGd/riE ECC4hODuLRS3YkWDO6WlOJRSpC0aCBaspbgHS0ggnqzv8/f+883c2fd2s9l9vm8390tm371z7x05 M3POGTvjiEWDcYfDjVg8DqfDCSAuzgbgQFho4aSLy1+HQ+hjPcoRYrGohO6SOHRMEmXfgtQnZikW i6m6FY1H4FB1TGqZ0NTtiOnqpgjLCxcf2bBhw4aN1RyOSCwWj8YdcIvMiEOERZ+TkJnDFWlFzFUK pygRUVHgXDnWTqIxUU1EQIvoFifKj6J/34FT9I0Y1S6HSym/opno2hUXpcwR1zSVW4c8c8i9fMGn NmzYsGFjNYcjHI/H3fGgXLrlzu65doaA6AwljrDQx2P55AaiFlqjVWp8QdzqIJyphBglL8JhFbl1 IyJ0kBpow4YNGzZswBGNx+JORPHhz3X4yxsLUOGjiKAAscGBkmWNrXjgxC0RjUXgcuZafEbxyueL cOVL8zDAJzR3inLYR0jPbLhdTsSCAYwdPRQR+R1W60NNiQOj+5dhUP9yjBtcijKPV39gw4YNGzZs WHDEY+E4e67q5vBnUVvjRjjqhMstftGo8l9d0RqOYbcNB+Kfv/sNItLDdzuzH9mIqymMxPTQvrd/ illf/gRnSTmcEkc88aj3Qw2SOKQasR451NROzFK+OMuDOEdN4lhveA02GVWNrcfX4jdjqjBuaJV+ yQLX5nD1SlRNB0ndFMdRp9wri4UF60JcFThHzRwkVTuwnnC9Dn/5rjPL+sewGI9TtO6YFETH+AiW lVvafsd6asOGDRuFhEOYUFwtWBTGd/yDn+OZD+ajutQDUVnUmoG2EfjVDnHMrwvj2yu3wvgR/UWO RuHIgzCkQjh0SD+4uFhU4uhT9Lbqj1JERNAxa+raGh6KcaQoGlYzO+FIBOGYS69RCTVgu03WwV7r V+LA/xuF2lI9uiKiXP7Iy/Kfa1acvVw5MYoH0ZkyYNqleZatsmDCowLSmaKTrJgQtnJiw4aNnoJS TsiMyIh+WFiHCRe/g6HVJdJTDSHm8Ky2ukk4GkOZ14kfb9gVEaWYuLLeS2LobHDdCz/g5ue+hruy AuXhZgScJasNvSn/HNR+RSDGRMkIu0pREWlEq6NU7YxyBBoRiLgRjDmw7gDg2Inr4LjthsDnK5Wv o8rfl+VIQk+DyoDL1X2tSvW9XECPrmjFxFZObNiw0VMQ5SQW5xCvk7slHC6MOX+WCIZmERZuOJUE Wb0YlOo0SpYbWsOYPnUdnLLzmtJZD4nA9AiNsqMFlRPCMP2hv3sZDrcXbmerxFEmD8IS9epBb5KC dS4iarBL6OGKBkQ5K0WJQ5RiEZAhh1coIcqcKIYxUQtbgqKQRIDd1umHyw9cR00D9QU8/vjfUV1d JXlmG2xf9rF4GG63B7vvvrt+nuVusbfefBuNTY2a9hIW/1nVXf02Nzdg2rRpfNWGDRs2ehRq5MS6 Vrjjle9w8TPfo6qiBM6oSIPVSDnRIxsUiDHMb4oj9tfdxY89SPYoKRyy66lTzHJawiVK4FtfL8Xk m/+LgZUihCUCLSSMqOj7MKNIqvJZ2eaWYnVv1Tn1VP9Xfs5YBI0RD6KiPK8xtBw3H74ZJo6vVe9K TRXdLgiIMOcyDpfQmfZ7ih0XX3QpPvjgI3i9K6eVZFixoh4zZryIyqpyyzd16GkjQ04ntt9uIsrL y+CSjod0StQ7tDsTlXbOd9dbfz3cfPP1+PXXhfKOVTYWpA8Dr8eHAQP763t5aBVTwfDrrwskTr1m RmLXnoJQKIQRI4aJf2FGl2xkBrv8bKSDDsqJNgrmOeopDO5fIVcijAvMgHoOXJzohsMVQUMghinr DcHjp2wiflEhARk1lZTsiBGiYhIV53Zjt5v/g4/n1KHETTNvDJvFsNoQW0EpKOaaV9aNIoX4KI/E C4g4I3A7RTkJOxCNOdDc0ojhwwfjmZM3wHrDKuWlmBa6Em7Y4YHXfFvEmPfzLzj66OMwYECtql+J 5qiV4ubmZhx8yME48ohDLf/UocOiEujEs8/+E3+5935Rckgn/czUZ/4uXrIYTz/9BL799ntceMFF qKiokgdagSEoQDbddFNMn35Nu28LiYMOmoampia4RIg5RMBRYXKIot9QX4e//+NvGDZsqPWmjWKE XX420kG7oYBITFv0nLjRCISivDKMcjWAGiEJIhah0Avhor3GKG8qJsqAWJuUzBxe2jVxuxANBTHj i2VKMZFI+V9QeGbf01ACznLqh37qgXpo3WhwAaw3XgJHMAiPMwiXN4z+1dVoWbYYG10yC4fd8z95 i+G4RUVxyLscSyluUJEaNXoE1hg7Wq0rMUJfC34qy3FUVlbiqSf/oT9IE1o50UT85z+fQ1l5mbrW IypUhPQ74UgY66w7Af37cxQqjrKycpSXiyuraHNlpRWokF8DHXZhUeItRUV5pU4f0yS/dCWlZaLw 59YGkY3cwy4/G+mgnXLijIXlbwxn7bY2Wlv97HORV5ETrQZqShwxhxfOaAtGD+2P9Uf0U1M5tN6q hxuzpwB3QFHZufK571BT7loNaJo7cDQlgjBCXh+CMRe8Ue5iCcApjG1wtQ8vi7JXe+pLeP7jX9UW 43ivGCLWisNRRx6u2ptBQvDrLb/BYAhffPGl5ZceqIT8/PPPmD9P6OKSOidhJ3YAsfk7RBlvwgnH H6feZ11XxgE59M4pTuOcbAuJkRST9oJCcStpkWrKyexkkrTKvVBKvWKjiGGXn4000E45cTi93KOD yevWwi29ejKjmCOGiMsDV5znv/RdqLNzRDlbHKnAJbuNoI9i0IYF695sdnAIHRnuLW8sQKVb2/6w kSqkfOSvOxqDR5iaGthziBISc8CFKMp9TpR4Ytj/no9x4v3/k7f5QhRhKdNgVGgdpRXk4oJDTZvE sf3220tL1DaFtNIgqVdO+aC0tBRPP/Uv9ZzgyEdqIxe6fv3tb39DVVVFJ99I+5aw+tX0wyabbKx9 5F4dN8Ahd/W95biQJ27YBdNaeG7AGTtuH1fLZZR9GGiFS9Jso/hhl5+NdNBOOUE8Ak9cL8w7deI4 hAIheIUJeWMh6bP6hEX1ZfWEx85FEQr6ccz2a8idzmsOdJI2kLKvfL0cgUAQEWffp2dOwXLg1Ju6 0VMeHE1hr14ZMpP/cWcJhpS78cSHy7HBha+AZ0Z5nB74HBEEhd7FjIMOmgq/36+UEqNEKEVBFDGP x4N33nlH+RH0S0VZ1gsPgddeewNer7YVY8I3v83NTTj5pJPUM4IG7wLSBgKBVrS2Btoc0xYMBay3 9AhMoREOh9HS3CLpaZX0MV1+tLQwrUGlTNkobtjlZyMdtFsQG+ViTWF83NK6oAEY8fuXMaB/NSqi LaKccBETX+2eKfZKCBmaIk4ctGEl/nzC/6lBxvaaW26w9VVv48fFzSh3RxB2UEGxkQuwFntFCfHH XHC6PKJkBhAW4f7ZH7fHqAFViEdF8LtoI6V4YNZ+0Pn9rZiyx34YNGig8jcwSkizMPWTTzkee+21 p3ruVG2x+6mrV2bMxC0334aqaqGBEMmEx2u6UDiIf/3rGeVH/PTTHLzw4ouoKC9DjMNTVgWNRqIY Nnwo9txzD7U+JlUFKZd44P6H1ZST7oFzIblcCBlIm2OOPRJVVe0tC9soLtjlZyMdtFNOYtytI3eu iPzxuLHlpa9iTkMcJWrIWZQTdlX7kjglg6ZwkNYSF1VkYUMAs6/aAWOHVQsxItKCcrsVdXFTECN/ 9zxG1FagJe6Gj4s2C8zg+yykLDn9WBJrRQg+ZaMnLEJ0eUsUH12+PTYYWXyMzygL5vcPF1+BL7/8 Aj4fRzl0veAz40rLfXjk4YfoKwpKRBh894sIjzzyGDQ3tsLrc6/UO/X7g5h2yP447LDDVPjGQmxX MIoThUtxoY/xptUOdvnZaI+V7Jzw1vSIHnpvHk574GsMqorCj3J4YsG+I0zJjIW5l0WbUOcajJLI cnhKyzHnuh0RFqXBLQ2F29yyAZU9Z1zv9uFCw8v+8RVue3MOKpxecJYhHk3Q2kaWEBpT0eSvqqOK 5g4ERa9e2uTHR5ftiI1HVYo/S8Ul5RIDrf4WA0ybmz37O/z2tDPQr19/KwtJyov8W163HA8/fD+G DRtmfbkyktvvnDlzceIJJ6tdONpeT6Kp871ly5fi9ddfte4j8tyNlpYWNDQ0wOPxSr3lvicN1mGv 24v+tf3UvdyKohJti4tIVli4E2nRoiVwudJVYhyIRMKSxyFy3f7bhQsXqfg62sngdMHQoYNVG+sM kYi0ZzefJb6ZP38eFi1eghXLl0saPfJOSNmAGTJkKNZaa612+SKS6Wqu1bocB2mQu04Mwzbhd0xD OBzC0qXLlWE+liXLpP0bK4N5r66uUXlLhhm1I0x8/GUZctqlvr7BotmqYRTVIUNYVgZUcmNqLUlH pFt+ZoSOYFzJYXJL8q+//iphLkQoxI0cWrkZNGgQxowZI22oRr1H6HTqeE2+O9LWRvFhJeWkIyqO +yfKaipQEfUjrNZJ9BVITzvuFDEVUatpFrcEcMdhG+DoHcbKsyhi0sA4PZANYsLwY8K43MpEmBs1 J72Ikgq5d5TBG6nrY/QsAkhV1iNh8st7p6iY0YDQ2IFfG/z47JrdsN7QckRiYcWcXDkUKrnCoYcd iaA/qARQwlCaFhzBYBCTdt0Zv/3tacq/O9x66+144/U34fOVKMbP8BICyI9dJu2I00//nXqXz7h7 5+2338Zll10hwqxC0c0gJIJxk002wbXXXqXCMGnSILMHvvzyazz91DP434f/g8cttV6ES3IYXUJe 48JIl3QYlixbgvfem2U9SODggw9Dswglpyg8Th7+qJQDpyhT9fjbE4+uZCeD6UsWat98851aHPzR Rx+p6WvKLPMOacLNS8wX78eNG4d9990LO+ywg/rW5DVZqBk6vPvue7j00stRXUWrxV2y03bgm8zz QBGo2267LXbddRcR0kNUuHTJyh7x2Wef4/TfnamU12hU6jCFfFfRyWNNJ9LAKfQZji223AKHHDJV 6oReg0UFgGBcJs5Zs2bh8suuQkVF14b/SAp+z/rl8XowefJkHH30EYomkQjrcPt1XumWn1Ekkmnx 9yf+gRdfekmUyjp1T0WIROBzKrUlJSVS7yJqKzzL7sAD91dTpXzHKE09NS1pIz20r/2dYK8tBiEQ lgJ1saufesMrdrAnSVPpIWGGgbgHzZFYm2IS4Vy+0u6zA4Ukj7KjYvLch/MQlftSBKQ740fE6e2a sdhIH8JsVKmR6Yhzi2ISdVep2/7VVfjN1e+hsblRGXJzFOkCvMMPOxR+f0CULC3YDQPlLxe1vvji DHVvFJdkkJmTkRu88PxL8o1PMWJagSV4zfeamhpxwgknKD/eSwzqmkpRSUkpSnzi+Gs5n7cUpSWJ 3reJh+liEi+44CKcdea5+OSTT9V7Xm8JSn1l7cLo0kl8PnnfI3lMjicZHrd+pt+l88m3Ihg9vk7t ZGih7JK8NuOUU07Dmb8/C198/qWy2VJaqm25VFRUokqUCmVzQ/x9km7a4Jg752dcd+2NOPTQI/Dx x59a+dQ0MnlPpgG/o+VdjsKk6tziSCcK2qf+8TSOOfp4TL/uRhWeWcycDIZfWlomZaR/O5ZRR8c0 UXHgNeNbsmQ5nvz7P7DP3vvhmWefVWHquLSgNnGqOsDvugmfdK+srJaaI4pBOIannnwaU6bsg7fe mrWSYkKkW36JdDnx1FNPY++99seDDz4sCk6ryj/LjAoUy4/KdE1Nf0VT2lKJCj9/+aUZOOzQIzF9 +vUSmnRGpC6wzBhmcjuxUZzoVjk5Z/e1EW5pQdTSYvsKmJOQKA0+RwytoTBO2n608qfVQpo+l8yq +6wgvYKIJUQufWE+arzSS3DWoNwRRNThkjTYDSRvEOYTdQkjDzUi4vCg1BVHFfwYf8mH6jF7b8WH GPbYYzdJutQZccm1g7xUeLRiuv95/0OpniunP7l9vvyyKCYevUOHQjr5tOFQMITtttteGHyJekbm r1uErvYUNmQNyr6JcU6ORiUrRIm4zjjjTHz+2VdqKN30yAl+o5KkwmDYSeF1cHyH8klnITmeBExY tItB67V6RETa6yrsZPD5//73IQ444CAsXLAY1dXV1q4l0kHTglNTOgzmV39DOnKHVFVVDUKBMM47 7zw8+tjj6v1kJOhNYafvSUvjku87e2aEpVY2SiV9/fDWm7PUVBzD7Aj5TKWX0y1KkUiiX0fHZy5a n45z2on5YpnGlFE/xvOnu/+CO++8oy0tHFUwCi/91Eeq/NqHSW9zzfdU/ZGwGX5ltSh9orRcc/V0 qX8zVVjJ4LfplJ/BeeddiL/8+QEpO5ZJlYqLaWZ+dBq4VpLtJQqnW0JiniULJaU+9O/XH++8/R9R Uo5CS2uz+k7lz0bRo+tSikWw2eiB2mBYXA/79R1wzYn0KKRxNflbcfYe6yhfB6cCpAJrBp0dpPnB I2EtrW/Gp/OWStfBhXLpzfvhUWsebOQPZF1x2uYRxk8lkAMlLncZgmE/dprOKQNhjFIGQVZpKRMu MO1pSFVUmLTrRISDvEm0N/JijvZVVlbgH0/93fLVMO2SgoJrR4hnn30OvhKfrsvi9PC97jE2tTTg pFOOV+91ZNQMiszdJcJPbdFWlGTkdOoVBaaH4b74wgx8+833Kl0mLhMmv+fQPc2V6yQmhdeJ4+4g /qM14M7gEAVTrZ1h25TfuLITw2/5Pn8Zp54SIebP/0UJthoRxhxBSha+Zj0Z00uQdvpa00hDC97+ /QbgwfsfxjPP6NEGPic9zbf6h4Jb3xN8h/d8j9eMMxGuBm85GmLiptDnriqebXTD9beqd3SZWt+p d3SalVdy+XR0pI9kV1Ih7zNunW8TVk1NDZ595gV8+NFH6l6Pmmia8B1Nq0R4KhyhOz9nGdAWjjLY J+nTSob4s6zlmgrEtddch8bGRuWvFUAJJYXyY3h0Bueeez6++fpbtW5Gnwml0086MH5dr/m1eKh0 sb2LAqjKl+mmnaAStZbqqCP0SCHRsSxsFB9SksCn77oWWoN9aDGsgGsTymPNaBVePm54DdYelDyU zKqefV51T9OFy//1I/qVlKimotZDSNz87Uv0LDpYNNZMlXQXHcQdQY30Oj/4vgU3zpgt7zjhiQUQ dJVYH/UsjHA75ZSTUVfHOfVE/VDVRVore9kff/SJshNhYL6j8OEOniVLluLHH35S75pnBC8jkQgm TJiA4R3m95Ne0zD3wvCVS0JymI8++qhSTIwQ5a8WnnF1Hg/XyXB9C21ZcLpqVS4gju+3+v0IB7TA WQmkgXXJq/ap0mC8Jn1nnH6mMjDHewpfI0xJJy4ubW1tQX1DvdB6hTqtuaGxQfknC3EdlgP9+/fH nXfcpRZg8rkRyAl0lhoN5ou9dpYZ7cXQ8VofuKjXPxiBzF9ON73wwgtqUSqfGUTCEfkuJEK/WdFV h9e5M3ZEwqGwVSY6T6ZsCI503XTjzeqa/hbZ2uAwZS+O/0waqRCEQkFFK7coDBGpUwSD1eE4lPJz 8y1awdI0FKRQfuZ7gsrgF198oUaVqCgy3YbuTAstGwcCfqxYsRwNTfVSfvVCl4Cik0JSejhixoW3 55x9nnqUTFcbxQnh31ZN7QQBeVJC2xERN8pO+CdG1JQmKlqvRxwR6alxrcnN09bF8duNsvxziHir ULgMVSc/j2qfNCppWH2Fer0NVFNKpD7Xe0pREl6BX+q9+OnGHbFGrfSoo2Hhv94eZ1imF0gGfM45 54mCMceahpD0s5U6RcjEnaoXOO2QqTj8cH0YYELoaCF0xx134pUZr6OsLGHXRTdzhzDwOkyffi02 3ngj/aAD3n//P/jjH69CdVWNJdR0jaUwpBXZyy7/g7onAiIIdp+8p9rhwrQbIcu46LbbfjtwW7RJ X3cw7zU3NeOcc8+0fBM48sij0docgNujt0U7hB7xGBdU1uGRRx+yFj5qPP743/DoI08oxYlg9JSt /A2G/EKbMkydOhUbbbShWr9AOzPc/fHYY4/j57nz1fRHcrp5TeE2YsRw3HHnre2eKZpdcQ2qrEMV CT6n61/bH1tssamiD60ZGwbAKbfXXp8pArYFPg+VYwrRBA1aW1pxyGFTceihhyiakrY81ffJvz+l 1lpEY2Hx66ggJUGKm5YQ6uuaMPPVmaIscJdVIs0E46qvr8ett96EddfTI8fEqvLDbzltVzugn8Tt wNy5Pyvlp7SU1oe14pJMLyoNM1/Ta6SIVMrPxEPsNnkvVYc5xcb8t42SyHOOymy3/TaYNGkXjB49 WilI9HvzzTfx0ksz1NoTKucGJtzly5fj3j/fg7FjaWjTRjGjS+UkYm2phcOFidNn4ctfWuFTp+jK J1LQiWre+8BMO6XRL2iKIPzXKdLYOZSd+90bT743F0c+9CUGVvrg4Mpyq+HZKDCkmkecHlFMpLfl rYEj0owSrxM/Xr87+2QiuShce3b3jm6KZKJOtaPkwgsuFaHCHSCEtDeu+9AyQH5j+MfTT+jrJIZO 7L77nqgor1ICxDzjL53b48Tf/vbYSt8YpKOc/PDD9zjt1DPUkLuOg0P8bjRIj//qa67CJptuaL2Z CZjR9spiOsrJbpOniHCt1umX/2q6K+6R7yIoKy/Bww8/aL25MqZfdwPeffd9tVjT5F/Ty4nly5bh wYf/qpQUg1UJcwruzbbcDH+4+ALLd2Vwoe6SxdzObNZR6FGBSCSKzTbfEH/4wx+sciDryEx5/vnn eTjxxJOkTPUoEsH0UeBzsfCRRx6Gg6cdpPyJzvJDcDRmiy02xx8uudDyAa6//ka8Pes9NdrDUaDk 8OtW1OPJpx5v29abjnLy9NNP4a/3PaLqP5US0sCMmlDBOP+887DLrjup+45YvnwFjjj8GElTWVt6 +KvKJBzB2uPXwvXTr1H+NooXXdZ2lzQGKvuipuCM3Sag0R9GxBGRSlUCZx84a6clFMUR23PERCpu hg0/GWTObETSBlTjIy578VfU+oTxREU46HZio0fggFvqbMRdClc0KHXbhQUNTtz4wjfSCIpD0daM VKdks802U4xZM2tJoWLk+hnfq29oxOzZs6179aPw9jvvqPeomBiGzl8KohbpjZ9wgl5rwnCzBQ8k ZFoYtg5Pr0ngVu3RY/RIJP31s5WdSYNe0KinhIzT610yw1dffaW+NwJJHc3PbpYjLnRbgRtvvMF6 sz0YL3H+Bee2KXbJIJ2psMx4WduG6Q4SM6IR2uAwaJ9/Yv/99xeh39pGQzp9LQqK9SnvmRfyFEMn 80uY7zqGb/xHjx6FnXfeQS2ETgafeURR4AhId+C7rIfRDmuzzjvvHFHCQvLc0pqTwHRzSisd6HwA M195S2jtUyMi9GNYzD+PUNhCFL7OFBPzbW1tf5x40jFKmUqun/KjFtX+778fqPdsFDe6lMi0A8LR BUrVvTcaBJ9TNFjpffIQtSgXHum60CvB9Qh1gRjOnzxS3VPZyhZqoRgbguqFOzB7YQN+mL9YeujS yISx9WZ69XpQ1kn5CLtWQorrfgaUunDhs98hID1cLoQuNhxy6FRlEItC0RjcMgKXvcInn/yHflFg BNXjjz6htleSqXNYm71OfsNf7vLYeWfN1OmXLdgj5ogjhQbrPR3XUXCb6d//rkd1GI+Oa2Vn0sDp CV7ze+NnBE0meO/999VUAJGIX/iZ0GT4iOHtRljaI7H2Y+eJE1cSrEwTFxl/+KFeRNoVTJztofOd cEB1tbZcbOJN/q59EMyHXohr6MRf9USu9XftXcIf2GqrbRBOUpToz/xQ4aAQ7w46nPZlYsqovLJM FN+V19S0+lvSLkeTp2++/bZtzZTJA+OngrXPPvtY96vGPvvuo5RxQrUB+cc2xOSwDL/88iv1zEbx okvlhGbduaAzZK1sP3j7deBoWS4KijByNd+ZOQPpaYSjcaw9tBLjh/RTzBWOlffZpw1pRDFhzmqr neDGGXPB02B5fgmNDtnoYQiPI5NSF6KoOETZrvG4MO3ez/TzIkCCEQP77bevWuDH+qnTrcF3uBZl 1qx31T0ZLpk6h7O/++47NbVCxm562Bw94TqVQw+bZr3P+pkIL1PQqJeGGfWIqrhKvHp04eCph4o7 BAccMBWHHnI4pso174078MCD1e9ZZ52Lxx/7OxoaG9vyn0yHdPHz3Lmqh5wsGHlNITV+3Hh1z+uO sOSiwvrrr6vWmBgwPcwj8zdnzk+Wb/ZgOqjgpTJlQ/qadRRPPfUUrvzjNThQaDvt4EMx9aD2tKWb etA0ZaeFv3ffdY9aZ2NAeug8RaX0EnRKB0ah2m33ydhtj12x227ym+T22nsPiZPradILn7usOEKV DKaXdZzrnMaNW9vybQ/mh++pvMk/Lso1+aTBOt2GdHv44Ycf9Ec2ihZdtgg3wghKo/FE/er+4klD sShcrkYZnPGgFHP2DK6gYMW1fpsCEVyy51q8oY+qxNmC1HBKxecaHWm6eOjtuSh3cTuiMBQ1MpNn ejF/zEZSPvPp+NMG3qt/ctnhXiH53SIAS4KsldsMn/t0MWYv0Nseexod6+Gukyfp4WlOmXQgotft w4wZryjmS9DAFo2Kmbl/488RA9qxmDZtqrrXhZGbAtlpx50kfUHF8BkfBRYFAY1/Mc6odAK4lisU inBZj9wbJ8JG2kk4HBVlYp5awHrotCPwxBNPKiFk0p4JFqgdNbpDZcDweHjhqFF6uonp7QilBFrx jhw5StLYXoHhM7qQKC254BcG7LhwDVF3eaYhtTfeeBN77LE37v/rI/jow48lHbSMyprM0TEqYAn6 8lkoyN06rFeJ+pAMNVIhzzIBwyMdTjj+OPz2tNNw6mkntXPnnXeudM6qVH1MB0uXLlHhdkyv6kTK /2TT9Mkw35iyYVmbMlT1Up4xv3Rc/GyjuNG1uu7wQh1B5tRa7KjBVRg/qEwZFovG9dbYXgOpsFFR ErzxEEKSL0c8gsO2GiEP2Gg1g8gWMdrLEJqwEfzljbnwuaX3xsZCvziVFuvFfEDyF5O4XI4YIjSZ Hw3puPPoeDIu55rJDHjPnSQ0YOeKS29Q7t2SZzd7ZkJrTmsVV3WRMhFmH4+FUVvhw0kPaONsYeZF /Lh2uRhw3HFHo7m5ybpLgHXM6/Pg2Wf+ZflAWY9lz5rMl8xYM2sngiKgdt9jsvUWCyF3FfH3Z56O pqYGEZCcbmDoVE6kLdBWiigARmnR19pYl3a0kyEdH2snRkUFrbaWqpNr77zzbhW2qleWSwdc9Mh6 yXgNVDjyTx+q2Dk44mm+KS2lXRR1uRJo+p5bWHMFpov2VDrm06y7oSE14u1Z7ysDZ2WlZWpar0QU 62Ratqexvjb1oSOYT0PbJDKlhZXDZfqTHdPOuFZWBLtCIEhld2V6JKez4zPC5ClRhondakwr24Sa gpT06PN4bBQzupbIUsiqnNtqRRxnTB6L1kAYnjhNbGdYq3sEIkxjEYRF0YoEmnDIdnp4l0hmYlmB JptjmqTXvjwHlSVyLWHrXovyzhukSYpiEkcYbkT8jVgQ8qKuKYy65jw5CXtpcwx1rVH4Q1HVew6E /cqoWQjCGCVNIWcYIaFJTFTcEmEaGXbQ8gMpkFgkCK9LykeUlHfntODLXxqV0TzWByqZPYHkukhG W1s7AGuPH4tIeOXeJwX7999/j8bGJnz44YfK9oRZa0Hwe659amysxwknHGv56vzlos4zfG71vOnm G1FXtwx+P+1eeFRapTaq56k4MwVFgco1GM8++yy+/vqbtnTynXTAc7E6+04tLO4i28nPOqNP+zCz p193MLLfCPc//vGPaqqC6TDCljQzdOzMUWnkO52hszymi/Zh8DrZ6edpxyPpNiMdyeC9PGq77gzJ 8THfJhz+Mk18xDBIGxvFja6Vkw5gr+iUHcagMeSQnrH0QHpRAUtTlYrJBi2CNRDFFVM4apJjKNsD wOwFDfh5WQvccsNmsop2lHN4YlEsDblwwZ7j8expm+AJcX87NU/ut5vg2ZPXx4PHb4IL9l4X07YZ g+3GDUet9OhWNPixoonGtKTnFg7AI0qK3y10KKrqwhqhF4xWwo8aUSQvffob9YTnFnsKVGap4IjD D1dGvJJB5kqmyzNFXnpxhgj0f1vbOfWQj2HQXJy44447qGe5BuMg/TbddGM88OD9GDZ8KBYtWqhG FbgDJUiFdRWOz7g9mfkwQ+8Mj/dVlf3wp3vuU36dCanuUFtb20aHZDCYFSv0gXHdCaf6+jql2CWD 31Ap4ELZ5F55vkB+a/DMM/+Ex+1RtGAaDE1IO6aLtFyJ3v6AmtLjeiM+T5eOPQWeok10LCM96tF1 HpK/oZ0Vk2f+6mdaQVnV1JCN4kFayknM2sp4wMaDpLesT3btPZC0CsOKSh4mjOiPobWJPfystLnI C61zElc+/xNqytIibU7gl95qRawVZ01ZF3usX409Nx6GvfLlNhqGyZuMxIFbDMM5k8eoE52fPn0z fHn1b7DsT3vjwRN/gx3X74dmYeSLWhxwh8xYhO7R9TQ4muVxRRFxlSIs1xzuf/bTRWhq9QsD9Il6 ErTe7DlQwHJIf9ttt0FpWal1r2lnmC0XOT777D+ViW8zRZIMGjQ78SS9fTjXMO2GvyNHjsDdd9+O hx95ECeceBx2mrgjJk7aCbuswk2avDO23PI3SoCacJg/pp+7ir788ksVRybt0ignHb9lT9qsNegs XLWmwcLcuXPl/cQOLqaRaeMvz+gpDBLpeeedd9rsrjANdAR/qYCSlqRpMo1J/50n7oDJu03CRhuv 32umMmiN1yisyXllkfH040WLFqn77vDz3J/bFhCTbtpp5XLYsGHK30bxIk0JqjX5c/ZYE800MW1V mt4AadKISU9ohT+KiyX9yQ2/M0aVCRgH8dh736HC7cOqzgjJB5iFlkAEv999nNxJb5RrXCR6FlG+ nPWH0SdR04cKr0OUliF48pQtsfCuvTF9v7XU4Xt1wTAiohy6hDa0cNmjEHrFeZYL7TaQaYlg6l/u xhXP0eaDCMl4QjD1FHS91E10v/32kt6vtiuSzLAphOmomNAvWYGhsF1r3Fh1FD398wE9upBoP1RS 9tlnb5z5+zNw+um/XaX77W9Pw0UXn4vzLzwH/tZWlWaTN62guPHTTz9aNEgPG2y4gRoxMHQwYJgf f/Spuk5+lqCNjp+YNesdteMnGXzGMthggw0snzwjnmDPc+fOk3ajp3AI/jI/PF36kksvUrQkTTuj 9WmnnYJ9990bqWwZLgaord5sn5JHlr9xvKeC+d///le9R1LQj8Wn6UKFRtNnwYJf27ZO63fMVF8M oUgI66+/nnpmo3iRnnIib8fiEfxmrYHwlroR1fWgV0At2IxKZZWe6KH/R9sm+WDWTtzx6o+oLK9C RK4LOY3BBtjgj+Ci3al4RaAM5fN/Hp31h9Fbf9uDEydeZwxnTF4LC2/dHpfvubb08lrR6A+JvzkM rmfA9Ko6wUWQkhBhW/AKs//zrLnyxIlYmov48gHDkIlp0w5WtOO9YdYG5j3jr59JfWhowKmnnqRf yhP0aINm/plg/fXXR0T1knWaTV6o9LSI0pIJtt9uO/g7EcT6oLgYXnzxJRWPUeR4zZ66od2KFfX4 +JOP263fMe/zvf/b6jeWb37BOA2Sp76MvzpJWMi+7nrrqvuOYN7Md71FMWGaie132FYpmMk04HVJ aana0aXv1Y/8amWdu5PMluw///mvalQxmV5SveSdGMpLyzB8eMLCr43iRFrKSTzmkg/0J2futAZa Q7ri9wZQADVF3Dh+O210LWxNUeUad73yI0qkh+NxhMhqLd/8IxiJYY+NBqkhcVrEpHLU06DgEjGj dm5wkew5e4zDx9fugjEDvFgekJ4MuUUPQpeO/BXmxbKiIhVq9eOVr5eAp7oXA8hYyXh5qu6OO22f tHbASr3FeNsYsAUKrn79q7HRRhvJ9+2teuYKjNOsf+g4nZQqZs58rW3o3YDhUUZ5OvinAioQAwbU ivAZ0iaYDUgirr25++578f77/21LOx175Pzl+TW/P+NMVFfyLJoEWAZ8v7W1GXvuuYflm18YQU2U +Lh7qGN7Yb3w4u1Z71j37WHyRXCLeW+AyePuu+2mDBCaMjT0567K5qZWXHThJVLWCYXSlCXxyCOP 438f/E/RJhnsb/ilfU/ebVfLx0Yxo8uzdVaCMDlOF7iccdS1BNH/1Fcwsn+J7oEyGKtyFAtU1kza BL/UBbDgtskYUu2VfMSVCfNc4oOf67HVpbMwcoBbhLEbbnYm80kSyQNzRrIvbgzh5bN/g53WGaBG tEQlEP+enZqIxyJqBMIhygkXsqkFbdY8/qF3fYB/frYEteUeIZFFpJ6sPkLLkMMDd7AFv9lgGJ4+ eTPrQc+Cddgw5jlz5uL4407EwIGDhJYs9/YVTF4TP13XuYPn7HPOxC677CzvUjnhdtPuCZzO2Tpf ffWtCIkLUcU1GIw8TYWYYTc2NKotsclsiNc8WfmVV59XShnTwfyncjYLLdRyrQjPJjrv3ItEURmg wjP5YFgEF48OGjwAW2yxBWrlncWLF+Onn37C7G+/U4fbud0cNeHIik6npAotLX5M2nUnnHHG6e3C XNVZNIpmm26Eyy67xPJZGV3TexOh98Xq/vLLrsKnn36q0mZoRZrQUBzvuRXb+BtQsLOzQkWV4TJM fpOMzso1m/x0hdTKL7G76IjDjkFLa4sawWL6DX3oqLi43U5VfsNH6M0NS5cuxkcffqLOCzILlvmu Kiv5F0MYDfVN+Pdz/0RJiTKSod6xUZxIs7sjDE7Kk4sJ+5WXYtu1K9EKqTjCEGjOXh5Y7/U8WCGp ZbtFMEZFQAalMWwxploUE+sEUMlDtoiIChKTxmT6pTf/+yv0qxJmKsq+S5Eij/SQ/EUkfzT6Fow6 MLzCKYrJIHkgvQhpkCyrHofTrVJB0/CiCqq0agYax+OnbYmDNq5FvT+GqCi7UZdQsQerDxXsklgA 8JXh2Q/aG2jqyPQLCcOMiTXWGIMxY8YoOx56KFt5K/BaHQwo9Zryl0KIignBraipKCbpI6aO5fe3 BtQ0ijFdnqqjgPH6vErokMbmlwJqjTXWUIoJYfKfCswiVp5NtNlmmysT5qQFwzXlSOFHhaiurgEv vPASHnrwYcx4+RXM+WmuEmocydH2e/S7TBe35AqjU4oJoRXDPCNpXnjiLjsqmjEtRsHgNdNKR1p2 pC8XflKholLBaZ2OikkxgvQ25XTNdVeqXVMsfxqVM+BzlhON0v33v//DP558Wp3WPOutd9WiXz4z 7aaNXlKFGuqbcfzxx6sze6iw2ShupFdbrQI3zOL0Xccj2NIkwsUDn6gp1E+LCdQ/Ag4vSmMtaG6N 4LwptAjLB9LbyAGzJu8QFYgbUkX5ieGZj5cAnhKlFDH0RHPKPUhrryOEsPSKQxE/Tpg8wXoi5cN/ Vhn1JFQKWF/0j/LR6dJpe+jUrbDThkMQaBYBEhWlMYkZFxzC8GLC7DxxP7zS25zxyS/Wg55Hclke cughInDabytOgAsGOfXQgiOPOtzyyx+YLgoTl9My/qV+U3cUGgzDOH3vxLLlS/Hb351ixdI+/+ng +huuRv/aGtWT5noTKhwU5BRYJu0UZMbxGdNghCOvue6Bjtuj77vvXuXP783OxbwiqTlst922qKqu QkwpTXrUhi45rZ3RlyMn5llvgSlvLq4+/4Lz1KiWy5pnTc4zrzmSRCvPyihdifBeKWfCvMN8U9mt q6vDzhN3xNSDD1D3pImN4kZWJXTQlsPVNkzuxIig/cr2nocwuzgttjoRcFYgJkzvgC04/BdGlOfo xLNfLyPNXnqrbDRO3PLCbJSXelEmipCIOYQ5naFfywvYfqNRYaZxF5r8cVy4GxfC9j78+9T1MWDQ QFGwWqVM8kmxrsGYaToMXDDnBR7+YLl+IEhmiD2NXXbZSeqcXlNimLgB1UAKUk5tHHxw4gj8ju8V Czqmi0JjxYoVmDr1IGy22SaWb3Z4+OEHMGGdcVguCg8pxGkQCiwj4IlV/TI9Lc3N8PrcuP+B+zBk yNB23+UdVjSm7v3pT3fC79c2SwiTFuM6wvgVLL05BvM3efIkNeXU0LhCjf4YxbKz8iN42XYvZKNh whV1y3DgQfvhAlF0bMWk9yDrUjpu66GISAUohBXU9BAXWVcCrygozaEwTttJL4QNxT1wKdPu2VdQ sgyn2r7mwM2vzEOJR5QF6anQfLw3FlZTBfmDxC7hB6Sx7bPhAN0qexnCoghAlNrXz9oYzYEIZ/gV TdVfiyEXCozNJXFGXdKL9jjx3Kfz9QOBEQ7Fgv333xeNjY2KWRvHAwJpobWhobFtwZ9JdjrpJ/Om +XBlKM2aDtDhB5VgTwbDpTIUthyvI+HUHaen+A3Db2pskjjCOOGE49XWV71Opj04TaHTpvOr06h/ OSrSERRkxE03XY9zzjsTHo8XTU1NaG5ukXzqnTfmHeaF90wP88o1O/w94KAD8Pe//w2DBw+SdxKL M9nmDbgwM2jRKdlxXUtHmnXEKumtvk3QgHHSfsvf/vY4xq41FkuXLBXFqaXt/UxdZ2nMJj9dId3y M2VCI4KPP/6oWl/Cwy1pVI7TNywrlp8uD13efJ9p9PsDWLJ0qToj6e6778KJJ56g3jGKCd+zUdxI b0FsJ/jy1yZsculrGFRdoc5UKRohKdmKOzyIOaJYuLwe82/aB8NrvUoI8bRlKifZpjQujcMhysjr sxuw541vobayTDylkQkNRLeXJORXYeMQ75LmIN67ZGdsPqp3rMZPRjQmPUBOBcCN6S/PxRXPfoWB ZRyWdSLidsKl5vkLU5+oEKlpOqvsFjUE8d21EzFmkBcRKrRStx3WkHFPgU2VvUJuEb7llltQWcEd JYnmK6xcrTX43e9+q8ycG5jvUsHs2bPxj388rbZhJssLCoI11hyFqVOntoX37bff45qruXCyWvxW Fi7dgWFQkKy19tpYe621sOdeu6upFaKzNN9x+92Sv1a1qFqvfdPvcb0F88zdScnoLIxPP/0cr702 E/PmzcOSxSuUjZWm5ia1s6OmploZWOMIyfbbb4fttt+6bTuxDkvHyTD5SyHOUZhvvvkGTz/9NEpL KtS7BuFIQK2dOfjggztNC9EVvcesORIHT9XfGpgw5s+fj6+/mo1PP/sMbkkDBXO6IwKsL/xu9Ogx aqSNAjvb/HSFTMsvOa76+nrMnDlTLXheuqReFM1mLFu2TN6JqfKrrKxSdZ92TLhOh+lNhqFlumm3 UXhkp5xwi6LDjdFnv4y49ETicl1MZa5W7ksPjOeTfHL51pZv7hDj6cyiAE258QO8//NSVHCFP/Mv JJXmlFdasNTYu/R43Jh7o/SUadTMslDbWxCV+kMT8k75y0W8a57+MkLuMIKeUlS0Si/WQ0WhcDAK CguxIRDG5XuvjTN3X0vKmWshYuLbs8PBFB5kqqkIoWSGnipSEXB8h2DQxqZENugsnZmkPRPwlGKe MKy3pDpFQfG0KUfJ6Co9RqB3BcNiO4aRDr0J8z3DS1cR6Q4mH9nkJ9/oWA5MBpXbSIQ7ljgq4miz omtg0koUOr02skNWNZzKCHH2bmujTjrB7HEWDaRSxt1e1AUcuHgKtefcp42nWzYEgnj1y/koI1Mz dV8aQf7bQRxNIaH95LHqTu2W6mWIxt1wi4KnVZA4bjl6fSxo9KAqFEO0RMqrwNVJpYMFJ/99bide /panAYtiohhcz9dtMlc6w3D529FRmNHxOl2YMDjlYa6THcM1DJ7CnH4GydepwnxDgUiY+1UJEfaO +Q6dyaPJL10qMHERtLiqF1OWqwMMk0dtTPjEqtLDd/iMvwzXpK2jI8xvMszzVOidrIzwms9MGjN1 hhYMh2HSL5v8dIdclx/Do0LJUScuiDW7dJLjMOC9jd6F7NRvESxSjXHyDiNVD0SqNmsB//OheqWn wOF5r2jUEZcTB24xVFKTqNS5Ay3C/oDSklK51HnPK5Joyx/2Gn47iQthpaHT+m0vg0dywVOUHVI2 tDuzz6YjMKbGgUg8iHCEtg16rg55pd58MNvasaPne/R1kaAzZks/yjIt0NKnHXueHEXQcrDz7xm2 EWAGnSQlJZgwKBj1Al9122neNBIKkc5jIj3mvmvo3Uz8pWAz8Zswea9p2D6sVaUn+d2uRjI6C5NI l94mHSa8zsJMB4yfwp7B0DEOE2Ym+eke2ZUf3zFKlElrMk2MP3+Tw+t4b6N3YNU1MAXQXDCndjhf O3GdWgTDIUS5pdDBxY2sDJ03uIJAom6KiOK00xh1G1l5fV3aUFvtRQnQDUIrO9e/+DMqSrxwqimK PDYAiZMLbZ0OHpTmUgvCDt5ylMQocYpe4lBMt3eB/MLNP9ILN3ubzt93LFa0eMVL6NuD1YfMrDnk wNImWmRlafc8fZkm4zreJzuiK+GyahiLogxj5XCTw+S1iYtIvk4VZvpAh63j7A4m3s5cOuD7Jj/m W44GdXa9KiR/vypHJNOtPbKjt3GdfZuK0/Ezjvbp7Oxd44hV56d7mHx05lJBd9+x3JLzQWSTXhs9 h6xKjfzEwW25gjN2HYv6kBfuSAAhZylc0iPIq7DuBqyXK5qjuHSKVk7cjuxHTlyiBcScHhFUzJcL r3yxEKFIHO64HzGhQz6ntUhLryOMIHxgCpb6HThzd2uxlyskL/S+aR0WkuYfqiLJbxQnbbum0FLK S+pRfnc7dQOJulSq9qxvl8iNMNQcbD3PFsmMuCNTJrSfYdgrP+8Oyd93Fr5Bx2ddvNotTFjJYa4q 7mzi0WAAya49ksNvf73yuwT9jVsVzLPO3tF+6YXR2btdfNoldDgmvETYHcNPhnnW1TurQgafrBId 4zfpTvY2fubaRu9CVsqJYtdquDuKyRsMRT8XD5dyISY9e2dPGtQShMJR/GbCYPSrKJf0RBB1tj9n IRPQ1DJ3yLit4/Sv/ddsVJSLQqaGZ4UO+az/ErY7Flc2WoKRMMYNcGOjkTXKXEvMGqfq7YjwJGWp kgdtNgAtMa+11qOHIFGXuB34z8/68Lmers82bNiwsTohK+WEhs141HzI4tvH7DAaDREXPPGACFHx KDQ/pzBjnPLbGIzi3F30yZNMiiOW2oKrrsD8qggcbixt9uOdH5rgdUURFsXHI3HmO7shyUKpI4qm oAMX7KWt3UYcMRGcZRJ371tz0hFOa3TrhB1GoiUg1z2pcUncXPD8+bx6677rHQw2bNiwYSN3yEo5 4VJG4eDwWIz7nN3XRkMLFROH9Hol6EIKF1EOYjRxLMI6Ahe8COGALbThNY7m6LnV7ODiWJHKqxPT n/8JFWUuuCWfSidy5lk1YSQeN6KRGALRCI7ZTu/SUWs2BM5euFunI6TWSD4j2GbCIPkNINaji1Dj yn7EJ/NbrNt8q542bNiwYcMgK4mtRAcVEXUHDKguw+ajq4EgLbBSYlsPCgCuyfDEQgigBOFAM46c uK71hElkCrMXdFyQqteuOHDfW3NQ7rXMYIvjvwQl8gDmIRJCLBzCYdvodTSEyhv/W0pKr0aMo1Na 0d1j07UQTLKQWXBI3XW53Vi6lGbP+wh9bdiwYaOXIPvhhA44ZZc10BINIRT3CUMvbG8zBpcoD3HU +SO4ak89sqB31uQGzjinTmjafAn8ERpCshZcicurYkIwH64SLGqN4cLdEspJ34JTdAI9/bbnetUI Co17CixNqqHlJT78uISjJ7ZyYsOGDRuFQk6VEyoCx247Gs0hD7wIqrGEQoE7ZSISqzPcgv9baxCq yj05VUwIfR6PA3986lNUl/u0wlAgkJK0JbPZ6GqMG1bNjn2fQ8QZ10cgCHZZrz8CYW2zQJdjD+SY 00ryf84ya2rHhg0bNmwUBDlVTmLW0PfU/xuOYEgLmYLCEcXyljjO33e8vuWIRg6H412inPyyrBGf LgqhzJFnuyYdwG21LYEwTt9NL4SlEam+Br1qRv8dNaBK6M08OtS6Gn1EfQEVFImOB72VeJz4ZpHf 8swvaEDKGJHKtWKdDySnMTm5vSX9NnoXTL2iYztJF4nv29ddG5mBJIzFNB0zoWeiPDovz5wqJy41 7RHDBbuNxBI/JzoKVwEovF3RIDw+D/Zaf7AkIx9xOzD9lfmo8ECdXlvQ/KlCBI78vxFyx7UYPaD8 5RlqakyNTmlsMnYwAjz7hGogjVUVjtwChzQOxuzEvKWNll/+wXKmQp0J8+0p6LTqwmH6bdjIF0z9 yqTTyW+0+XstEG1kC/KqhFXeTMDv6Dorz9xO60ivNxpzYqORAzCixoeIMqlaIEgGW0JunLzTKHWb n421Mdw362dUl3nhKLCRsNZQFMdur/NGC7G0ttLXscXIEqmhtJtDM9WFXRzLmssVMHGJ/9eGwmzT piVLYzW1u8PXigGGoRirn8nIRHjYsJEKWLcyrV88P0l/bysn2YIjy8YibyZWeFkOhnd0ptxkdypx ByhjYKKY0pT6dc9/jetemIvKUrXhWCkPkgr1Xu4gwkP1t/WowpK6IBbcNQm15aXqxFtXjrfXPvb+ XJz44JeolTzB5UE8FlGEzR+s/Enm5tcFsOCWXTC0X6nkVXoAkj93LzuFOF3cN+tHnPW32aoOKVGd lzrUORiV2xFDY9SFDYeX4Y3ztrGe5A/3//URvPPO2+qkaacoRUUJIX9cekpkSsNHDEX//rUYMWK4 Opp+yJCBGDhwkPWiDRu5helhn3nm2WhpalW76dIBBWFTUyOmTjsQe06ZYvnayAb33/8A3nn7Pfh8 0pFME6FQCGutvSYuvPB8KVvNU5KRW+VEmBaPvqcACYaDKD1xBkZVe0Fz7+rsFw7/5ky4cF+HEx4R 0iKmEY2EscaQSrx78XYiuOUJK3KWDJ5MWK2JFKIx1etd8jbq6+vh9ImCEOGBXbnKS2eIIyKReySX TTEfxvcH3r9sJ12IKjWCAgnqnsIbXy/Bnrf9FwMqfYipg+FyOtDXLdgziEoJ0Iz9j9fvYvnmDzff fCtem/mGNHSerqoV7mIsYiMkOETONh+RtsD6WlFRjsrKSqy//gbYfvttseFG64uipRVo0pJjUQYM I5PeVjI6sq50Owpm6sx8l9+ORu8H6W2c6fGmi+Tv0wW/Y5zTph2GgD+Y9ugiv29t9ePYY4/C1IMP tHxtZINbbr4dM2e+hpISUU7YHNOoEjwfbtz4sbjpphvayjYZOeX2OnCpfLEofB4fdhCJ2hIVUeqM i8KQ24YvWYFbFJOg06uMoy0OeXDBHjyhF+qeJ/vkAloZAH5Y0oQf5y8SxUQLSpfkKWdaXSdg/nzM h9ONYEs9ztpjbeWvBDTpnAFj6G1Yc2g/hCkARfgx31J/CwyhcSyC5mBh1veQYbtdbjVyQsbLXw5D F5ujwsH08cBPMqXKygpRTCokBw7U1dXjzTffxCWXXI4jjjgKd9xxN3755VcpP5c4rqXRhZiJYOsI MjSDTMIjvY2QzUV6+jpII9KLZZ8pvUwYRjFMByZOt9u1Up1MxbHe8ltngTs5fRkc4XUJz2KdcGfA r4yC2Vl9yunICUNiD0kNKAgz+vdHv2Lanz/FgFKpjE4PnOw9ZVipO4JxuR0hBFxVcAYbERQlaNld U+RBCDGHV9gklYose2YimGgUzCVpPv6vH+OZT5ei1K1Dpal12lXJTW46R1yUoIirBK2BZjTcvafl u3rBdcy/MaqfDyGhtIuFnqP60y0kLm4d59bmn5c2If7oQdaD/OHWW2/HG6+/JQK/VO7IvAuU1xwg uefDX71IDmhuboJHlJgtt9xceqxHY9iwoeodNcoqQiobGNbF+N566y18990PiuGlB4bhQL9+/bDv vntrLxudgiNk9977Z1RWVCLK9YRqN13qCAQCmDr1INTW9m9XX9LF4YcfiYA/1CbY0kFLSwuOPvpI HHjQ/paPjWxw26134fXXX9cjJ2mCIydrj1sT119/neXTHjlWTnSF0yHq6/ITn0NtmV6ExGmYDOvj SmAcHJGJiFLSKo3mrJ3H4NL91wF3MPP03ig1fL1SIWPEJJKoNEDpJ8J7/PMYVCkKFtPPbbzyG8+n ciJxczFmc0szjt15HG6amrB4uzrBcfTzGF3tRNjrgysSEY+8Ubw9VNk74IsFMKfFh/hfJlsP8oe+ oJyodm4pHoa1cPQxEPQjJm11jymTceqpJyv/bMF4TJw33nQjZrz8OkpLfNbTrsGUmelRzn1PmLAO br3tBnVvo3MEgyHssssk1FT3lzvSPXXRwTcbGhrxwAN/wdixa7bVl0xgKyfFg3wqJzkd30qubOb6 2O1GozkiSoTTI9U59crcHRhWNM4hxhgamqI4fXc9peNmfXW4JGPZZ01iEMXEiQfemifhSmMSH83Q uI9Dr0PJG4R+sWgY9REP/jB5WA4p17swurYMUekNO9W6hkLCIapnHGFXmcQdQEuBpnZ6K9jeKXCM QqJHTqx7eVZSUobS0hK88PxLOOboE7Dg10XqPa5bSf4uHZgpGcLjKhHFpFTFk4orVb8lypWVlcHj za4jszqApC7xlaK8vFxoRlqnSW9fSdtoWaaKiY3VBzlVTgwS9S6G03ZdEy2BIJyxUPKD7CFhcZoo LEJr8jrVqCnVPSaVIQcVh+zj4tiLBIYbn/8K5aVlKkyOpnALcS7C7w7haBw7ruFDv+oaOGK9/9Th TFDijCIkAkxt6y0wQ5MYRciKwsudX0rrtdEVjILC33aO681E96Bg4tqUhoYGnHDCyfjPf/6TUe+3 czAuxRbScDp9Os1WMDZSQqKcO6Prqp0NG6kiL8qJQSwew4TBFVhzYAXCDg9rtPUkezAkCqwlrV6c O2UN7ZljcNjyy1+a8M3yICqc2iKsapDW83yCpGoORHDeXutbPnktqqLF8AFV4G4vPU6Vu/qTGvT6 IgrQUDi9+fXVFWwfKyHJi8+VkiK970svvQJvv/2u8uNIS8/Blpo2bBQb8ivx1AmzUZy+23gEW1uV cFf6SY6UlEjUiVpXEBM3GCGaUD6MdDlxw3PfobLShzjNp+fZcI8KXWjDX47QlLkd2H3DIYjEwwUf NSgWlLo5PcAJNVKlcDQwsZHs3NK9cEXhrMT2RRgFhD1uKnvsuNRU9cPVV12Dd955L4cjKDZs2OgL yKtyogSKMKNTdhiO5qBE5oip81K4PTYWy3IOX4L2R8I4cfI4das3/GaHWCyEkLoIqHvu/Hn44+Wo 5sJbrjnJ8XboZFAYcpoq4PDBG/OjOQycOGkd9cTpcAsZV881D6wnQn6oo3UKClUi4kLS0/cgnCOF enUFlZLkRbJqhEVcRUUVrrzyavz4w1zlz+fG2bBhY/VFXpUTJVTi3Nrnwl4bD0FjWJiTwwlnJAiH O9tpnjgaAnGcO2mkXCszb9o7CzgdLrglTWGHXnl806vzUetqltClV6dGLvLIMMmQHR6UxFoRdFfC 39KKC3YfLQ9oUC6KKKfFVkeQ7hbZC6mfqGgl3nbC1EbGIP1Iy/a/MWXLhVtTzzzzrHbv2bBhY/VG fqd1hPlEVAwxnLnbmggGgwhLF9jr1DYQskEwEsPEdQagpqJUTYFEcmBYh0qIMx6G25JDd7zyA9y+ Mrgcovzku+suwTuEXlGnF+FgCDuvPwRVpR5E1KLcuKTBZtiFBvUROhu5gVHwkn+NosJRld//Xiso hK2g2LCxeiOvygkNzPMvx+S3Gz8AtZ4woi7aPZVoOa2TLucXhqWZVhyN/ggunEKrqdzw64JbxZUd hFWqtDkkrP/Nrcei5a1w0qiTwyXKiShU6aY3HXDKiAcTiYLSEAjg3CljlTe3s3LUhOfrrM7okdwn Rcr1UsUOq2lkJdj5rXE6LO3MM/NrrjMFv6dSYmyi+Hw+fP3Vt2r9Ce+NApMWmKQ0nMmjjQyRRMuU nA0baSCvyonD4QYnI8xSjSMmbYRo8wqEnSVaMUmnwgojiXJKiDsnog4MkCB2WncAH8BFuZ4DxcGJ kGVm34lr/v0VKitK4RIlSi2GpfW1LBlyV1CKkdArGomgutSFievwADUtEnUhZZ+/XomYqLhCAKeU S0H5GyNzcCuxKIacn4wW91ZuVk2ni1OD2jBZJsoDvzGKgQpDwnJK3pn/WJxHCOhw255n0R6SwyJ4 XV1djenXaUNolne3SKRBfiW9THOqzimMg7/MXxZZWW1gykwplC6heAd6duckhKTytu0G2egaeVZO tL0RUyHP3mUYVgT0FIUrHkpL2FBMexxhhGMRhKMBHLXLeOsJza0x/BS5WRcIxn3wCsMKhGN47rMl KHHrtOtD2BKMNB/gqIw7FkIwHMHpu61n+ep8qb95jLuYIWwQLv4tODMTRiz/nG4XIqKY+KwD7IoX 0pqoWMctVVbqC+sshW5qTismNIpm6ho3UsclvLjIFbWZO6kOJpSCzJFIY3sl5aGHHuVTdd8VzLfm mrxApTNFF4tysbnLyp+9W6g7cLc3eTrribruhKZdOcKUVyrla2P1Rl6Vk46orSjFJmMHIRgIIOYq leqZBoOTuhyLcU2IC/X+GP6wm7YIm0t4Le3+npnfo5Qnw2pvQULByhdIC9qjbZAO+nm70m4L02Ij wAXVNECXgzVF6UDNslH4yTVLfkhttfIvVrB+8rwTl4vKRByNjY1oaKgXV5eiq0ddXR2ampqwYsUK dbQ8w2hqblRnokQiYaW4UDAR5jdbMN1GSWGYtD766CNUTroH5Zxpl+zN+/3+tBzz1draglAoiGDQ 2qFnY5VgGXHdIE/2JQ/vjKZduUCw1QqJ5VbY9myj9yGnZ+t0jxie/O8vOP7+z1FZ7k3zIDf2kpwI CBPafFgJXjp/B8s/d4jSEqjDjUG/nwlPjFZB89yArPzrnzhaQ3FstVYNnvv9/ylGkG+FqDdg3Hkz 0RgOwgufKAy52ZWVCtgonGqBsgfLVojg/usBKM1zdcj2bB3WGdoLqa+vxx133oayshIltFMF3zXK wsKFC8XHqRSUOXPmYPbsbzHv5wUqbJ5CbOySmHqabX1NhONAS0szjj7mCBx00AHW086hTzjm1JML L744Q9L4DdzcBZgimFwqRFRShg8fgYMPzv/hjr0ZoVBAHZFfJgokaSdFlgbiQucgjjrqCAwaNEgU 3ZhSpDOBfbZO8aDXHPzXHeKICLt1w3nc8xhV5VILWVPmZ5JKjlgvrm/Fy+dui50ncL1J7vHG7IXY 44ZPMbg6imjMm3r60oWQPeZ0q7UMLqf0eoUpL22O4O3zNsWWaw+R3q/Qis9Xc4w46w2EYwFwHIuH OearODpCCUuODsRD+KVOBNg928NbUm49zQ+yUU6SlYPly5fh1Zkvt93nCi0trcrk/FNPPYM5P81V puh5CrBRapLTkC74LRUF/obDYQnHiaefeULuOZ1HhalzQZZNnDZ6BiwzItNys5WT4kGvOfivO5jd sEdvPQytIZ4wq+9TAYfZY5Ewait8WjGJ58MiLHD9C/NRWRpFIM6zdPKstwnjVQxZLsPSCxxU6VCK SSweVot/bQBLli2HmzTqCQHEOieMlAuu862YZItk5YCOAj7XKC8vw8SJO+Oee+7Eb393mhri54m+ HM3KhZJAJYfheL1eNWLz5VdfSZgu5Sf/O0W2cdooPEwdtWGjKxRUAkagRwLOnjQKSwMuNaefMuTd lrADp0/SW2xjyjR+bhEOBPHyV4vgdXng5YLdPDYgYeVqoSfBXmFAlLWzdtd5U6cqc5WeDXAih3Zn 4mp7QJ6VxWSw7KNSBm4v4kHbdD1BJUErEMCee+6Ou0VJ8frcbScLZwsjsBgHFaF/Pfucuue0DVuM DRs2Vh8UduRE1BPy+/VGDcDYAU5EYlaPaFWMTfwTTxxo8QdxlloIK4HkYeTk8hfnoJ/02hyOiDDE bC3Ydg2uMYlyJ4QoJtFoBMFQGL+dSLstMWVrReVxNcecZU3weHjaNLeysgYUGKIgRmJODO5faXms 3jCjI9QheD1y5HDce++f4A+2tk3JmPcyVVYYDuHxeJTNExs2cgVTJ532qHSvQGEXxEoPKyydII+I mRtn/IxL/vU9RvgCaHRUwhcPSmqSKo0ki1MbnnhYWUnlMPWWa/TDc2dvA0SCiLhc0qPObk1GXO0C 8YjoC0uF9WDgGa/CHYvC7XMqi7A0r5234UdS3RFDKO5W01U7TuiPJ0/7jW5AmvvnL+5egte+XoY9 b/0PBldI75zrk9Sez8LQhMXgdsbQGHZjaFkMX163q/Ukf8jFglgKd645eeHFf6vpkXyC60E47fLF F1/hzN+fjdraWpUGU2+Tr7uDeVfVfwGvuWvo9jtuxTrrjFejKUZxSYbx52JLXqfXZnRc/OuU7zKZ N0+GyUNyOswvs5VW0ooScTQ1NcMtiiOzYhVVyiBdyspK22jUsTy5YywYFF5Mm1ICXRcSROM3NTU1 OOH4k9SOoXTWnJiyCQT8OODA/bDvvvuqacl0wBHCqqpKyUOZ5dM5Lr74EgQDPJOr8EoQ80k3ZMhQ DBpci/HjJ2D06JFyP8R6g9B0jUZJa9JQ09jU1XTQZxbEcmmbMx4QInikR+pC6TH/wICBA+ERJUEv AE1UNqbK4eCZMl64wn4sCLjx2llbYAcR4rQuG5UK7JJ/2SDCiSYOwLgl7C8XYMqtH2FQtfTUVTc9 N/Poq4KqHrEgXG4v5q/w4+M/7owNR1TphzYU7n9rDn732JcYWOlDOC7lXUjlRJxT6mSrowQbDfZi 5gXb6gd5RG9UToRKqo3ccP2NePvt91FaWqLu01cUdPrNN7z2+wPYb/+9ceyxRyu/jjCsi9/86Z77 8MabrytLs6lCx8XtsSFh4uNxxRWX6gcZgukxQpfXpI/L1X73EHc7LVq0RO2A+vXXX7F48WLlx7Sk S69swS3n/Mc0U7hcffWV1pPOwV1Nh0w7HJWVwqcsswvpoKmxCbfceiPGjBmj6NMxv7fccitem/mG 1FupQ8owni5fAyot3OXjdfuERXeurK4KDIvvRyIiZyRaybXku3343YH18aijDse0aQd3mn6Dgw8+ BIFWUU4y3I2UKUx6+Mt8ckSe9HK7XUpZGTduLPaYsgfWW29d9R6pQPMDRhnMpP71GeWElcEpvdFo XNQKocNut3yAj39YAq8wFC4LTS5wJsodF+HgrIA33IiQw4nFt+0hlTIo70rl5ORHlutOwlLBPRR4 Tje2uuodzF3WIuqOTgNdVxUwa0jYcdH8A6E4yr0OzL1xF+uBDYPfPvwZnvhggdDHhbAwQncBlRMF UYJbwsCeGw3AQyduYXnmD71NOaFQI4yQ2H3yXigrL1M9WvploqAYMC+RSBSDh9TinnvuFiZKQd++ vRvWxThuu/VOvPLKTJSmwyQlafyWi3rHjl0LN98y3XqQGZgewzOS8/3999/j1VdfwxdffCmKSB2W LFkqZeyDy+lReTLvmvwUCoyXcbKcSkvL8MTfH7GedA4Kk8m7TsHAgQMUL1d5tZ6lgvrGBvzlL/dg jTU6V05uvfUOzHz1DbXeqLNT60keZcfH+razMFaF5He1UpI+rVta/Djq6ENF+ZjaZdzZ7CbKFMnp Mdf8p3IqfJN55uwDbfqMHDUcxxxzFLbaaiv1vm7H5B3pp7fP7NbhIs8Axzs4nSI4e9IYtIZjmoBS GdsVtnjGRCGhgtIcceKMSTyhlyzbq4iZWpXsGi72/EQxWdISxP9+XK4WXpKpMh3ZMNbUIBVHeub+ YAAX7p57g3J9AR/OrYebvQ/uasqAmWSLOOuCxDuyf9fDuKs72EMj9txrL6VEEGSQ2YBtjz2+2bO/ U/edMXraRGlro/JDwcXealpOeo1s84wrWzDPhn/4/a147NG/4dhjTsQZZ5yNl158BYsXLUFE+N2A 2oGoKK8ShaBUKZBcX8Mt2bwupDNxMv5UBamLvUqBx+dMm94uEX6mvGLC+zqCRyXwSAEqJkybLpuE YzopZBlGV8pBZ+j4DQVxx/C7c0qRLKzITBvJeRT1Uf0lpFqqUc3KykqsWF6PS/5wBc4770I0NTfL Myp8uqNRTCgopcnsPaSVFDSJNmn9QaIQiOYelXuXm5RV7xEUCmFRZJyOGFr8AZw1eYLyZ4I1A8g+ 6SaEO1/8FpWl7kShWkwmn1BkkD9+aaMnTVxT7hN5X10RIQliIfmjafHZvEbQDp6Uhvyjny6fwkDH F47GMYoHOdlYCWwvdKbHdfgR09QW4Fy0TcNkuSB63s+/WL7t0a6JKkWFaUrNsSox/DZmrqYp0gO/ ZSeGv8k847HHnsARhx+Dxx9/Ag0NDaKIVChFhMLVxEmY78x9oZFIi9DO2X3+uYiftn/4XTRMutEv dcc2ZfLqIr/vAD2gQTq6EkpukqMflQSGocosTfAblpcZfUkOOyUnApzKUzHClGWiTDUStEr4U8nq 378Ws7/9HkcefrQa0eP0ox5BoeIYU9NCPY38SuAOIJFU2aqFrLqQT95lHQRDATgj7bfuCknhQRTh gB97bTYKJR7NALlwTX+aeDdTxCymesdrP8Pn07tzEoWZZ0gU/mAYR287St+qlrl6wwmOorFuxPDT oibFrFjeql6I8MlBkacBiZdrmyTesYPttUCdge3EOKK6ugprr72WGjrOZIi4M3BnxXff6dGTbsE6 kqJziNOzhBRU1vcZgPzC8Iyvv/4GRx55tCgnj8kTbYpf9bYlyuTzueiSr43rKTBqLaq7hqKTlW7t oWmZsmuHjvcCCd+ErX7kG5ZTm1OGsrLjz/xWj4pLOB3D78apBFp06snyWhWYJlOv+NuZX+JZ3Fof 5sS5556H119/QynX5p18d85TQY+n4Hc7D0F92IV4J9ZQScIVYTfOnjRSe+QY7I8//cEchOI0jh6W tiCVUFwhwFiW++M415quso2usTzMNmrgpa9XiEKqr1WJFJgXsP063Q5EwlGMH1jcBtiKCTtP3Anh cEQEAHtemReaYaI+Xwl+/GmO5dsNGF0aLtumrnvhen3NU089izPPPBvNzS2orKhSPXzmQfMT7ZJ5 S6H4TKqQ1FlXaSCRtdRculjp+7aLrNBWJia4VF0vgKlXndW1zp5xWo9TjDdcfxO++ebbTt/pKfSo ROQx7MNrq7DpEAdCMSGG0ug0hDUhHHNiSHkMW48fjLg1zJdrTJ8xF1Uerj3Jr10TA621AqFIDBsP r8CEETVqFxPNpK/uCIuCpg3TufDyl0vgy/fZRt2AJcU1AiMGlEkZ5b9u9H7EscMO20MdopfBNElH 6F4cMO/neZZPccGs07j5plvwl3vvQ01VP7hdXpVu0wu1YaMYQeXDTOOwHpeXV+Dss89XIrAYFBOi h7vruvGetut4+AMUzgmicBTDHwjIs3W0hxrSyxLxCMKKYehCmVMXxMdzFsPlLkVcDfXlt1C4/tbh 4i6GMJpDcZy2G42uRZWS5rJHTuAWBTRqCbWZn82D15rK6wlQOQ5FHBgxkDtnBGpY10ZXYNMaMmSw 1HFOYWRXn42A59qEBQt+tXx7HmTodEbxuPHGmzBjxkzU9KuRGkM/PSyupw7sOmOjOKEV/4SCwrbm cXtw8YWXqPtiQI9KRNV0RVAfs/0a8KvVkLrBKwjxGkMOnLMrpz0i8nL2DZ3WPj0SLi2zErc89xUq K6pFMZB+MYNPij7nkLDj7jhcUZ50WwGEm3HctpyuioNm4Ixp/9UZPAGYhvVe/XKFqPOeHtacRT2R suLIFmEfJ9A9LHmN8ePGIxohvbJvUGz2CxfxhOSeh1mkybpBxv7AAw+KYvIK+tX0EyavR3nobxi/ DRvFiuR6qn+htrf/938f4JtvZxdF/e1R/s+twnGHNlI0dcsR8IcTAiAg13tuMkQPnQqPo5XYbMFR CyAohNdM84G356PE5VUrHVQhKd/8wRGPIOB0Ix5owNStxis/pZRIxD03RlA8UFu7BX9562eU+3pW NWFdoAXFrdaq1fdG8tpYJbjOgqCRrc7sVGQCbj8NBtKz5JkvsHdJPsF8fvTxJ3j0kb+hpqY/tEEw Mnn9XjEwdhs2uoOpp0r2WXW3proG10+/Xt/0MHpWORFhHbdWYP9+l+Fo5L5aUklcg1xfOHmMflF6 Ks4c7GZRFi0dXsm0Aw+/O1cdwV8qqklMFCAX17zkYuqoC1AR80RDaiHspfvpQ/5cch/hYmB7zQkc lnCb8dk8eKRs9NBaD0HiDkp13HQYp3WkZ5Gj3Sd9GUaBGzVqJCJhLojNHJphcqIkDo/Xo6yTFgMM Q7/isivRv19/pTxlDIvdaJanb9JVgjP9rmihaGEcpwcTTj1u+1U/aSE5jExcqjDvmynAfLr26Uuk 0/ymB9oW8mD+/F8wZ85cy6/n0KPKiRs0aiOQnsfmYwdhULkbobgDEWEAI6rc2GrcQPVMJIMwgUyI 3QFKwdGjMze9OAdVPFFV7qn46AWP+ZSGUlkl+EjcifWG12BMbblUIGaNe4YEWZ4T1BvBdT4xTtlJ kejSdeLe139CUGqGxxox60mEwjFst64eOenxxPQiDBo0EFEp26ygmiOZrVzKn6VLl2n/IsDtt9+h BAMNi/GXYBrTGjFhvhwULjHhAcnD6xKGlWdFgy6ceT/5tzcjGqE59SgikTBiUW1rg1aCjaOFUz5X U2hO0s76MAWQNhz5MuXVMexUnNqFFl11pIb+NBkfiYRUWrUJ+dy7iPqNqqMXaFuIynskwnVOie3A 6dYHVj1WrLLScjzz9L+UH8Fw0g0rFyjswX/d4MoXfsQtz38rhIjhkgM3xFm76G22uQIL1O1y4/sl fqx3/ssY3E9vERUiCKPIaDNdyiCVabp/RWMIfzl2Y0zbiutN8hlj8SMuTCjqFhU1KrR3cRrAhWGn vySKCc9OKhOlkQcz9gyNosIAeVL0srv3FOVJGKKkI9+nmfY28/UdoQS2xD979mz8/vRzUFlVqZhk JmB7odCmRl/XsAJ//vOfMGbMqvlBPs1oJ6OpqQn77LMvBtQOkbyRdWaav7iaso6K0BPuo+4pfCk0 yf+YfyVIVxW8POf3fJ9Kkk/KusQn9SbN5DBeOl+JB48++rDl2zlo5n/KHnujtpbm69Nf8MszhP50 713KfH1neOSRx/DOO++gVOp/VNoc61IymE6Px4t58+aptkgapZoGfmuUk4qKCmWThxsR0gEPG9xv v32xxx67KbrTim0yTP1fsGChii/frIuKCNNRV9eADz/8H15/7U2sWLEclZXV8lSXazplZGjEX54j 9O/nnraerBp95myd7tAaCqL8xBmq1xz66+7ik1thEBGBw5Nmj3loNl78z/fwlpYWTj0QMocdPvib G1D/533AE5Ed3L68OiMmPQAHx894GJcbT7z/E4566EcMKQsIuUpUzzK/KuOqEQhHsfXYWvzz91tK 2XGEh8pJftPS25UTg5/mzMGpJ5+uTnDNSjmxhH9jUwNuv/1WZeBtVSiUcnLzzbdi1lvvKNpmmjcN Dvuzlx1BIBjAkMFDsMGG62LcuHGq/IcOHSJl2XX4pBEVmZKSMrz08kt45eWZaeefdYauGJSTVHHk UUcLHw0K/9QLk1MB88h3W1pacNLJJ2CvvaZYT9KHWRhttpIbkCasr92VWz5x333348m//0NZgE23 jAz/oMLDsnruhWeVotgV+szZOt2hzOvDVmtWYOcNOJSe+6RRMWHv/PE3v4a3rEK37nxDNX75kctI yI9jd9bn6MSyPLSwL4DTXC4hjMOh1yec8bfvMMTjR9BTBadaUFnYRm7KiRfBcAy7rNtfbkLK/ooD 6fWyVmdUV1UJgxPlOwvhzS+l5UhRaLdsWXFM68yY8Sp8PDVX8sZ0pQPzvs4TD5JrUYewXX/9tbj/ gT/jzDN/jylT9sDEiTth3XXXwYQJE7p066wzQd5bF2uuOQZDhwxuE5q9FUw/aUOhqgV9R1j0lp/0 KK/BsGl+vtXfYvmkB5M2CvDOwDqhqzzTr8+PyyeYHlPmvCZVjj/+WJx40vGoq6vLuI5S6eKo0Bef f97m1xMoKuVEqidO2XkN/HYSd7Jkt6Cuc7hwz+s/odznlmJkXzi/YEWOOt1wSQ+QZwSt8EdxnrU1 2knJvLrD4RYasZxLcPk/PkdrSBqB2wO39CZjBe59sP2xp+60yqwlHMW+Gw+UJ17xkzRmabdjdUKl KCdmeDh7OOCS8mBvrtAw6Te/77z9HmjGnNMo9Eu3V5osLBoaGnHoYQfhtttuwfrrr6f8CPM8VZj3 9dbt3g1TZ/i7KgWAyFQJU/SXT7M5zV4rIBwdWTl9ifrAdwrT+TSjN6Zu0R144AEYP2EswqFwG01N PUkFfJfKyfx5Cywf+lkXBURRcdyYKA/T/m80pqzXT13nA7e+Mhce6fkIq7B88gQpTYcUsCOqzwxq ibqx6YhyDOkvvUoRdFSOVnfw7BqX0OiXxSvwx5fno6bUqUaUnKKc5HsNUGcgb6GtFUc4iMoSJ0YM qpZilJrIhs+HNrqE6e2y5HidYNbpg7xQCwEHwuGQOjSv0DDpN78zX30dZeVlygIuhUI6DJ9hGPo0 Nzfh+BOOxeGHH67utfBQl21xpYpEGnu/8sy8dKWUyBv6r8pzesoh31V0Vpw/PRobMAwT56ri1v58 L//l0TENrEOmjh199FFo9fvb6ijf7a6+mnf4y3JYtGhxm39PoLhqdCwOj1uYGtdjpN7uU8YX8+ow Z1mTdM698MQCeRc4PNLd54ggHHMgEAzjon1o7ZYZY+VVr6zWcDl1D2i7Gz7C0EqrB6D+ZMo+skNc 6h9ZF3cD7L3xUOWnyknK0UqZjS5gmBhHOXjwX3fMsCswKFUeEgYVE6536CmYfLz73rsqLXTsvafD tDXTd6rdFdtsuzUOOmh/5ZegUR4Yno126CkhW0gY5W7TTTdT7dDUr1Tzbt7jbziS/6mprlBUyono bcqKa5S2A4Qx5RpXvzwX/UqkB8ZhemVbxHqQD7CQRcmKwoWYy4vyWAv223SIVBZ5Ru02B2eP9H54 seeN72CFPwanaKM9zTy4wM4dD2JpEDh2m+HKjwpmXK05sdEdTPlxxwAbV1blKe1ENSHhAzRyxhN+ ewJaqXBg/i/z5TfBLumXUCxSA/PDUaCLL75Q7hLftldSbNjIDGYKx4yecOGxuU63fnE31LJlbMem DajLgqK4Rk6EAm4hgupDdzm8lxo4JM8tacLi1P2z/5kLt/R6OEwfjtPGSh4ZAhmOKCUQZcvv9+Oo SRtqf4mbQ8LyV9/3YUSE/hyL4MkEFDAsD61z6hGT/e78CG/NXiYKo1NKiNvyeo5Bsy6EpUwc0iRi 0TB2WHeI9UC3yp5onL0NhhHSHkQmwjsZrDeiLQob0OHU1nJxcs/hk48+g8fjVmkxLl3lq7W1FQdP m6quzfd0FCrphmWj+EHFWv+S9xWGt7EumdGTwYP1IulM6ip7Y6Fgz1pmLqqtxLkGl9C5uWra6cGd M2bjomd/QE0ZGYyifV4lDonqjkcQdLqwfFkIv945CQMq099u1ZsRjUeV9qsOVeROKSqEyqKmA3vf 9l+8+fl89BehEwnzPWH4HD3RJVNw6PIKoyXkxuRNavHI8ZvrBwVEX7Fz8tFHH+MPF12Gquoq60mG kEKhktLQ2IA//ekO6QnqnW6dIR9bGg1rJGO//Y67MfOV11BamlkbZlh1dfV4deaL6t7QKld46h/P 4MEHH057hInpoutNW4kPP/xIBPyhlbbypgLukDr66CNx4EH7Wz75g6FRMp3YUV24cBE+++xzLFmy BIsXLxL6a6Uil+DU47fffKfs8vA63fJiWY8btzamX3+N5dM5VputxLmGOqzNWrxy3au/oMKnBaMq pDQbViaIiTAOSBK2Hle72ikmRFyUMy5spn2QqMMniokb3y1owPgLZuLdb5ehurra6mWzjNIXxjmF JIG7dOqCMRy3zTDL00Y6MMyP235zwWypmGhlNY6qqiwVnQxglBNizpw5cLszH+3k/P+48frICoab jqCw0VuRUAhmvT0LF130B1GMjsNJJ52M+++/Hy889xI+/vAzfPrJ5/j4o0/x0Yef5Mz95/0P1Egd FTijmCTX596APq2cqGkbhwcfza3HohWtcLsKyBCkIsQ9DrSuiODiA9awPFcvuDhNQpJzK6hoyRc+ 8Qk2uOI/0nvxo9TnVuXjFDqpXcOcz++hxqMbbRxR0Y/6e4LYcR0qJ1SWbKQDw/wWL14sxZkb1sJ1 QLSc2q9f4ad1khWIBb/+mpXCxV7idttto6719vkC8iIbPQKn8L23Zs3CUUcdh6uvnK5GMrjlu7b/ QJSWlKudX16fFz6fT41ucKST17lyRLq7yooJfVo50eaJHZj+wg/oX0pRWDiGwB4fz1ioLAV2mcCd HysLOx5EqI5qiIfVU222uvc4njyrrynaVY7UXwOOlCxt9OOqZz/HyLNfw11vLcSAcg9iLp80XHlB XifD59wsvyx0b5KNlo7x0vlbQzhx9/XlSUxt97aRHkz5zZ07T5hidvQz5cLfmDD0XA97pwqTp6VL shsNoiXYsWP1tJTL5ZF82cpvX4Oqq7FEuV7yh8tx1ZXXorGhETU1NUoB0fxOj2R0/M0HGHZPtZ1s 0ac5sMvpQTAcwdMf/AJfiWiSUnkKiRZ/CKdPGaeuWXFXQtwBNZjjkErLH+4K6UWO20XZqNiu1CiV /A2G/Ph5eQB/mjkbu978H6x33gxc98pCuEWDrylxwRWPwO2kUiBfOPRODBUG6VFgsEwMs+B1Q8iJ S3enkTwH3DH7lOh0YRjsd7O/V4w4GzAslgkV/IGDB1m+PYdsGTwXJo4erddaMF/5EkY2ehaan8Rx 5JFH45OPP0Vt/1pl0MzUZ8XrrLJP9stHnTDhGpfr8PONPr0glrjhua9x5Uvz0N8XQ9TBqYTCgGRd 0BhE0z17oswbRQQetR+lPaJY1hzDsx/9gnIPK1DvOpmYJ0UvbY5gQXMc85Y1YEl9GD8ubcWCehqp cqDU7USpR5SYWAQuUV7CzsLRvzuwfMhIjL2KoPTOd1xvCJ48eRNwdz+t1DpchS2PvnK2zs47TcKA AYOErpZHBjB54cK8IUMG4+577rCedI58LYhVdSOoF4L2798/Ywa/fPkKvDzj3yKoOGqiWW4uhYW9 IDY15HNBrKkvxx57AlYsr1N1kXRiOtO1i9PTKIYFsX1eORl15kuIxKQn7BbxmMfhMwU2dAmfpxwH RNhtOaYGz5+9ldo15IxH4BTlqD3C+PDnELY4/yX4aqvgEYHYmyDUhNsRh+gfkuconC4vfE5tgCvs 8MATDyIUd8ElDJnbc7mFu1igGAkvmCa5XtAYwfdXb401hlSre7XTq8DnH/UF5eTjTz7BJRdfJkKy Iqu2Zhg9FYMtttwMF198gfWkc+RTOeHzPffYBzX9ajLO0/Lly0U5ea5NOck1H7KVk9SQ790606dP x6xZ76GivFLudDlTMWG7zEe55wv2bp0cQ60xiYeUXQ1WjDe+WY5FzRSa1rBZmsw+LbCRSwWkdVvu +mj0R3DWHpwioAgnoTvTAT0ocUdQVuHDUG8YNaUu9OsljmmtLXWguoTHtTtRUloCn9uh1pNERahT MYm4SpTy4owE9KLXIgKTExEliiM6jSEHJq1bI4pJP1VPWJaFVkx6I4xgM9fE27PeBo+1JxM2fpmC n0dFqV1jzZ5dUJ48wpYxJC/miP1s6WKjOJBc/4nZ336PV195XRSTirZnZs0Hr3uLYlIs6FPKCdcx IOaVHrpeCHvDc1+p81qiogTwWP58s4SwxO91xhGSTu+gchd25q6PWFAJwugqpmwcjpikzymC0iPv yZuswL3AKeHj4JCJU+hNpSym1pA4RUF0xPUUmlMEC9+Jqekc+a6IwBEuriuJCdNoCQZx5xHaSJ46 sEvSayM1GOZsGO/Mma8rIZztsfE6vLjaqbP2WnoLbk+BignPgEoWRGlDssNt8wSFlY3eD9ZRKh8G 06+7ATU1uoPD6svnik/aiklG6FutRIRj3MmRijia/AG89G0zSkRZgMulBGa+5aOy5xEVhhqM4LRJ eugyCp8aoOepxF2Bae5taEdONkT6sBGqa+PX4b0iAafeYqIQNoSAQ7YcjLGDOAxrIx2Q4ZpeIfHx x5+ooVoqJ9FYRNeHDGEYOu2DrLtu4tTenoBeM6Ct3mYOEWTWDh3mzdDMRm9GYmrr++9/wPxfflHl apRPU8a2YpIZ+pgKz0rACuHG9S//jMpS7ibxwhMJSE8+v6eaqp54NICIuwqtLU04Z8q6+gF3tdCu gT1NUBRQ/ILCgQwjxrVBYdx//Kb0VM9tpI6OAvbhhx5FeWm59CaFQUu9z5aiDJ92IMrLuQan8DBC RRtfy26ailurF/yqj6C3hVXPIJvy6ww6PB3mU089jZISn1rnxdEUPkulnPmeSZe5TvbLFrkKpyfQ p5QTBzgvrK/vefVbVLtjiMk9D5UTdkn2oh/mARKF9MSdaAmGsOvGw/UWYekpuUS75ohK760ifQe0 LeHiNJrTJwpjFMsaA7jp4A3g5jROvHctRi4WkKZkwt9++x2++OJLdXYVp3SooGQrgzkKs8WW+hiB 5OHzQoF83TB3lzs7VsnRl5/n/ayucyl8bKQG0luP8lkeOQFHDnWn89133kNpaamaAiRSVUyYJr7L a/6ae+OnBEcmjj/yPetdT7SdXKBPKSdUQIQNYOYXS9AUkgrC6RxRDrimg7+sTHmDaCeOuBtBfxMu OZCjJlJJpfeonatvEboXwjCCQNyL0kgDWqNurD24DKftzOk3vdXbRnogTck/iauvulYZmuJRBGSG tIOTLSKRMDbblKNa0oRSYPb5gGHs3M4cownhDMGprm+/ma2uabzQDP3bKByMAiB6c05g6vjixUtE kdadG6NYdAeTFk5bmvf5EwgE1Pk7zS3N6lycxqbGzFxjo6q7ui0mKTu9CH2qhTjjWou98sW56Feu D/iTIrdUkjwzN4krLHEMrCzHb0ZWi4fdEy8msHFGpaGWOCJoclagQZjAzAt3kieivErZuaz1ADZS B2lKIXvbrXegrq5O9dJUeyOXzQHIpHfcaUfrrmdg8jJixEjrhPPMwOH+t99+V127XO42pcdG4ZGr nYNmlOTHn35sG/FIFXyXygKNFTIcKin+QCvGrr0GDj/iUBx//LG4+por8McrL8vI3XTzdFGoh7Qp J+a3N6FPKSc8+XZxSxjvfbMQblVZrAd5guo56gv544C/pQln703z5zynRZ9tYKPn0FY2llMLlkUJ WdHcirsPXweDK7mRmGuCpLffzYJlGyuDzO75517Ec+JKS8uyZn6qPam2pEcsBg8ajKrKnluonJyd sWuOVQIk094nhdfiRUuwdOnStnsbhYNRBlim5AG5gCnDuXPmKOUznbrBd/m9rlNA//61uP/++3DT jTdg6tQDsd9++2DTTTfFFltsnpFbd911la0htiOdb3vkpOBoT3AnbnhxLqpLY4g582uuXhe4U3rc UYQcIuREHW+NAL/daTAndNSWWhs9B5Y8TeVH2CiV47oSFxqDEey3/iAcv8Na1otRKTtude79wsK0 hWyYEL81ztwn/ybjz/feh9tuuwMDBw6Qu8zjJBg+GSgdGSrXm0zZa7e2Zz2B5HjHrj1G9XANk88k TZUVVfjrXx9Q1zxXS//qcJhnG/kHy2/FshXWXW5QX98gfzOro0xPXd0K3HrrDaitrc2oXq0K0kVW U5GmzvK3N6HPqe/3v/q1sland8hYnnkAgyZ7oT2PcnCeMIBDfjNSKoBbKSw0yGaj5yDNEWG44Ral 0RULyVUYzdEARlWW4MkzftPGBGjXhMO83F3S22GYkFxYPukhQZPE9535zZkzFyeddAqeffbfap2J sgPiEgXdejcTtKVdwB5lc3MT9t57T3VP9ARjZZymd7z55pshEAiqNNIvOb2pgMn3eN14ZcZMrFhR J/eJhYpG6bGRP7CsSGM6ruXIJcLhUNrlx/dZ7kzXsGFDUVFZ0eafO0j9lPBM3nsbejVH7kj0Zz/6 FcG4ExF3CbzxsBRN/gqEYbscYVFOJD6Jc0XQh/P20JYsaQwupgzB2ehJsIyckRCCzlK0xt3g8Yof XLmVftbLjgroDmwLtIRMgcdVVpmYrmdbMu3J/BrhvGLFCjz//As4/fQzcfLJp2LZ0uWoFIaaiaDu DCr9Tn0GCQ2vbbjR+hJ+VduzbMPPFCZeWv3UC34TQsXQKBUwGOavX7/+OOuss5WfoW22ip2N7mHq KNd4fP7555ZvdjBlxp1p6YLfsvw5rTNy5CjLNz9Ip54WE3q1ckImnIyrnv8JlSXSW0YIETWMbz3I CyRwEXg+6ZU3O8uxVnUY64+slZoa5uZhOO1R2sJDGrwqcv6KguimQT6nG2FRHuNNi/D+5ZNR6i1F XJgJp+H6FqhY6ApfVlaOm266GbfcfDtuvvm21N1Nt+LGG27BrbfeqY57v+SSK3D+eRfhkGlHYNrB h+Hue/6EBb8uVNMTNFGfjHSFdWcgr+euFo6aHH30UZafZuI9ASN8zO+kSZPUCCkVwEwUCm679njc otitwO/P0AqKEZo9lcfVDSy3hYsXYZ61rTsbmPpOWzxpVoU2qPQs1PZv8oV062mxoFe3iBhEEYio yRUsrGvF53OWKTsLDtFGY9JLkWavX8wDWC1D8EnlisDfHMR5e6+t/GMOGn4jo7ZNoBcU0gDDDi9c sQjinKqR+4hUbw65hlqaMeu6fbFmf6nuoqjERGnpC9M4yWB9pHViCrnS0hK8PetdvPnmW3jrzVmp u7fewTvvvIvXX3sdX37xlbgv8d1336t5a5rlriyrUszUCGbGxV86I2SzA9eahDBo4CBsvPFGyseE m33YmSFZ4Zo8eWe0tjbD6/W12wKaCpLzwcP5fvzxJ5x40smiiDV3Ek7q+TXvqXPF+jjMNJjOc/r1 zZRBP6nLF15wieVroBeOmjA7C3tVzwYM0AchZgKOps2bNx9RfSCcYNXxpwsHTw4ThTgTRboY0Ks5 dJwmzpQRHBeuf/kHYZ4+fbaLw6OMbMmFfjEP4JRBCVrREnXDEWrB8TuOU/4UenR5jNpGJ2B5VKEe IdLeGUdUanYsFEZdxItPrpqICQM4pyuFIv953F8u7HAUFZg1jhAJEyKj9HlL1NqrdJxPeoCcDqIx KfYGOQSudiGQuqzQ8j+ZQaspJPE3TH9lIZsOJAz5R2F97vnnWH4aDLcnRhZMfszvmmPXVIsWM1lj QPAb0omONF6+tB4H7D9VnUY9f/4v1ltEYnqtO5j3fL6+vzvQ5JXKAIVuuiDdWY844s4RMI4GvvPO e9ZTPT1p4uiM/sbP1H3+EiOGjxDlIv3jDfT7cVRVVeGcc85XaRLfpGfZgTyO+aUi3RsVFIckuPep VBaUdUrReOFww33CixhaQaGTfaGmAlLNhSgawi7st+kg3H/sxtaT9PDVgjpsdul7GFTtFmkqaS9M 8vsepECC8MItiokv2oLlopRUuB348eqtUFJeKY/JPIp7NItC6o3X3xJFgebayXxXn8pANhSJRDFs +BDceedtivmno5Dk8+j2ZPzzn//CX/78V7UexihnmYECjsP6TmXPhUrZ0GGDlT0VTv3U1FTLM9bX VbNnCh+uf6EC+dNPP+Lnub+oabF0QLrT+Uo8ePTRhy3fzsFRrSl77C0Kmh4pSDfv9fX1+NO9d2GN NfS5Y5niD3+4FF9+8Y1SptMB88k0G5EXjcaE9q2KfhPWmYB+/arVqCP9SfeO+QsGQ9huu22x9dZ6 3ZrBkiVLcei0I1A7oNby6R5MAxUGsxiatA1Hgthss80wfvx4RSPSOFNwa/8D9z+EX3/9VeUv3fJi esaNWxvTr7/G8ukc+Wx3vVs54TYpadyPvjMfJz7yEQaUlRWMnyuyCe9ctDyCr6/bDmsPoT2G9CO3 lZPMwSJQ7U0uuF3YE4soGwbLQh5sOcyJNy6ZpN6LWKcPe13F3btc3ZSTjqyHNkCef/FfKJd2XKzK CbHnnnuhxFchwsWUT/rlxLw7hXdFRSGj0DA9XApGhsZDArk2apVB85EzYVyLigyVmnTBdND1BuWE 6WScd919D2a89Koq63TSYOpb4hv+6lEQHuzIha3qXCihq3k3GVQgTzjxWEybdrA858gJp2V0HZ2y +z4oK9e2fuhMWruCeYfxG0WFCnpY6MxRRNaB9CicAFNfXlaulFWTl1TSZFAMyknhx0pziJjFHKbP mIP+ZR5VIIUEl7tMGFYuikmVXNsWYQsJtjeXQ5pwNIyo06MsvHIp8i8BF07aYbClmJCBROF2usTZ RvGKCYZRGmZJWxFnnvk7pZhkMmRfCFCIEGedeZYyD85F19ppAZ8OOLVAM/bMPmcYjYDyej1wi5LB aRpfiU8x/U6d9PDNFBzfpWKSbhp6G0z21lxjDSXEUxW0REfBrGmlA+QIlEfoTjqaw/v0dXuak9Ys I/NNMnbcaTs1skJ/E1eq5UEFh+XPX5Z/eUW5WpdUVVGFigxdZUWlUkxMne2N6NXKCavJT4ub8eW8 pYiL8JHqoB8UCM2BKC6cwm1gPCtDV1obhQHLOhh3weUWxSTqx/IQldUSzDpvK9w8bWN5SmWR88h6 TVKf25zTB0AGzsW2PE+Ew9l777O3Yqbk6emMmhQKRuDsPHEnrLXWmtbaE/2M6U1VGClQKYmzfsp3 sYSSlizYjN+qkPxeKu/3dpjsrbfeeor26bD7jjQy99pPgpIyMM+N6wzJ3sl1dO999lTTc1rhXPX3 yeA7iTTo93lNqHv+z9glRtU6xtFb0KuVEykCXP7CT6itqoA3FtDH4BcIrELBaBSHbrOmXLmsXUM2 CgVpavA5omgIRLAs7MFJWw/GrzfthG3GVsqzOMJcEWujaEFGqWyaRMKo6VeFa6/7o/UkwViLDUZw ELfdfos6CyUSDSshZdYOpAXr9eTPTBiphpXu+70ZJD/rxahRI9Up0ZyqTQcdacT7BP3SpyHTYurp +PETMGr0CLlimhKKQXdITgORbhq6ggmrYxy9Bb2egz/5znco8wijc5To2ptHKOYkjrH4QzEct/UQ 5c+K6FSL12xkC0Vi/hrHP+pa052OTCkoyuCyJj+2XrMa3/5xW9x42CbyTBpgXBiDPPc47Gm2nobp sRln/MxvOBxBeUUZHn74QeWn2pHVGzXvFRNMPug4jXLbbbegvr5OKSYcOTVpLsa09wVwLYgRspN3 2xXBoLbYS/QEzVlXmR6uFSLOOecs1DWsUPfJu2P4Y1eJ9NGrlBPRU4WBcYRCl/QDs+bC4/bC6Ygj xO2hyjc/YEVjRaTxLm5XbmiN4JJ911HPnEos2rUvW1CpcDuF0cdpoURoygVhXFfCXogoHQ4pe38g hMZAFOsOr8FbF++IF87eBqNq9ToFzv8TUkKio3jUtY2egWkvxulpD618UAnx+4OoqCjBY48lFmGq 9mVxcaOkFBPMegOC6Rw/fhyuu+5aNDQ0qAWVTL9RsEw+bOQOyZZYjzj8MGWG3tA6ue4UGmaH1Drr TMDuu+0mShMN9SXSRNMGDoeerrSROnrhyIkwiEhQXV3z79koKytFEB6UOvy655wnSD1TZuodopgE Y8AGI6sxrF8FYtJrkhZiqybZQgjolAYciHsQdpQgIjQOO91C3zgiUSeW+yNoCAH7/98ofHz51njz gq2w2Zga62OWD+3LSCGpX4aVv7pgI3UkCw6nlCd7lS0tzZgwYW08+tgjbe+Y95JdMYLC0KSPIyY8 Afaqq69QW1KZNz6PhHunXYnih64jVABp62THHXdEa2trOwWl0GgfZxxnn30Who8YKp2olkSaaPiR HS3rLRupoVcpJw7V2COiqpbg21/r8GNdGOWimrikckajZBj6vfzAATeP+nN6UO+P4aIpo5WvRC2N hfPNvVDPKyqIEuLwwhcPwh1rQSAShb+5GX5p2OsMceO+ozdG3d27489Hroexg2tEUdRDqbYAKE4Y IUIhzV+6QMCvhMnhRx6GG268TvziSsD3VhihuOWWW+DhRx5ESakXzS2NarcHzwfqCWHZl0F6m5Ep 4rLLL5L7iKJ18rRaz0GX97333qPs1HCBLNPEUTW3SxsztJE6epVEpRkQUwEv/fdPGFgSU4f8ucNN iNCGhTzj41Qd/5h/2mPVUI+lUURCIficMRz0G1FO+D1NpUuPUG7Ue5mAVVp0bBVCn3Oa0LxQjvd0 nMKhcIqIC4SjaApG0drUhPqIT2jqxh6bjcL9x26CH6fvhNcv3hmH/N8wNdUT4/ROVBg/6cUw+xiK PUuG5qYck8ug4z2FM5UPjig0N7dg1OhheOjh+3HoIdOsd3t2jUm2cZr8Mo+1tf3x2GOPYPLkXbGi frn4aYXMvCNvt4vP+CeeZ45sv08P2Spcmac1WTExef6TKAItrc1KQWHajL+hazJtkv0ycd2B9YBp JLiOatPNNm47AZltgO1hVWGmEn4xI7P0d/1Nr1JOmFhl2yTux9MfzFM9lCA1FqmUTnXgnhS4+puK k4oEy/CZ0Ciu9qeL/yoctwuH4UUsFMARO68v9zzDhZVNLgWZ9ZK4q8SFQCiCoPQqA6EoAsFI33GB kCgecTS2RtAYjKEuEEFdKxWROPzSYQ7EnSh1xLDV6CqctNNYPHrqVvjq8q0w/5bd8cgx62N/UQBr Sj1CJhKZpaZWk2i7JuJDmve13qnpHep61XXjLTTIgAyDNUIimeGa8uA1GXVrqx4pGTlqBG6+5Qbc fvvtGDiQpsf1uxxV6RheOjCCQEHqUTrkMmngLz90qi3n6cGkOXkK5/TTf4eHHnoAEyaspXrOqvcs Cjgf832+Z+KmIxLpSA8mLBNuvsHkshVmCmXgLAM6GyTn09BuxIjh+Otf75OwQ6KkNLUzTEcY2tLx Ohuno9bp1zKhPVgPktN4xRWX4aKLz4evhCNqTWoBr0EizPZlyE+LwSmYX0Fn+SXUWhqlNKY7csV3 SQNNz85GUHuVhVgebsXKfe0L3+GiZ39EbYlmDlLtqDOr69TByhtW6xO4kDIQdYqq0lXD49bVVixu jGPhvfthSDnfzXbRZQhzl8dw/hOfw1NWCm8smnYuih1eVxwjBvZDXHo2Ywb6UOl1YlCFC4P6lWJM /1J4vLZxNIPbbr0br702Uxl74jShXvytmWxxQDNRrTxpZq98LRYSCgc1k5Hbiopy7LDDDthzrykY OZJbLHMPI4TobrvtDrw+800RBKlZqmTS+T3PD6Llz/XWXQ/XTr/SepoZGB7pY/DrgoV4/t8v4PU3 Xkdri1/Rhsa8+I55r6OQSr28E8oVf5VP0nWqMPGmZiE2jCl77IXa2oFp103y5/qGRtz757swZszo lWiVKUhTKgXEXXfdg+dfeAFup1v8aDHXo/LGX7MeKBtw9O+oow/D1KkHSbicyu9a0UpO2/vv/xcv vvASPvvsM6VA0QosR9yZNlOPmdZiAUeiJkwYJ52KG1U+SLrO8nvHHXfilRmvqZPQtQKTev1luDyv 6oYbru20PvQq5SQsefc4g1jQwHMOwnA5s0t6RJQSzgU2+4OoFwZFQ26Ks3YCkpxGv0j/nSfUSFpC kpb0znboiKiQ3pUmM+lziIfkD4WdUxptdvTs7bh++k14+eUZHZST4kJCIFLAUrBygSiEOZVh7XFj sfnmm2O99dbFWGE6BnpNVufMLRswHXRkatdffyNeVibNU1d2dV445B7GuHHjceddt1hPMgMZLMFw ec1zczTnAL79djY++eRTfP7F5/jm62+UXyyq3zO90nRZMd+n8OOIBC2L+qjop8lODA1TUU5oAXWH 7SeiX79+cLu5zk+nO1XU1dXhsccfxpprrqHiTFeR6ghD72ShxpG6V199Df/73weY/e0PUrbS4RP6 kkbZtifatTnuuGNw6KGHSN5F/ri67pwyfcxjx3yyLsz9+WcsXrQYCxYuEBkk3WLWgSKSxFQchg8f jqOOOkKVFdFZeU2/7ka8+spMZc3YvJcquBZn3PhxouDcqmjVq5UTjpxoBheRNkhCZcvsjC0MhpNq Q/GLUuNT0wvZDFESERHKIoKkUKn0hOFUi6b6DlySJ2aI0188dC8GKT82WA5XkeaimAhbVetI4OIZ 06mWQd/EV199hV9+0Ye30WKly11c9CCrILfQPMqhpmiqq2swePAgZe67MxgGzV/Ti8wVkpnmF198 iUWLFwmjTyeOhHJQXl6Brbb6P8s/c+hepmayDFcrbyuXI7cfL126DMuXL7e2xK4sxLoDBS5pQMXk v//9L9595wMph/QPw6NLRTnh6MOMGa+qsuYW/47CpDsEAkFss83WqKriCeHpfdsZmG4j1HhN8pHe yaD/wkWL0NTYpM6LSZPE7cD8Dx06VOr7YFXO3dVnQ1uSSSughTuYNldI5KHz8vr888+Fvoul3Xnk nfSkVzgcRU1NDbbccnPLpz16mXIiFVEUlJjTo4WcKujMkx9l78+6ZihOVYFWVXnUG9yvo9Mg32Y7 6qFWUUicEbhVyBKi9aRvQC0HEigak3ykr9BM2IgoLNpLxIM8l6u4vNXLGq6NzkGWYpiwuSaXyXXx Mmy6dIVkvpDIayL/yViVfy7w7LP/wl/ve0CdyZIqDO04uuArcasFvYUBlYrsyy1ZMSEMaXnbVTkU GlpJNW2gfbqKJY1dQdOXyrO+N8h32oujVacIJ7ViUUyYaAcrNglDvwwdVQGSlk58LH+G2ZnjM9F9 1aUrJ9MxXN4JhxvsIKtRGAbZhxxpquhK0M8qM5KO/qS/Vg+Zd75goy8gmWGZ63wUL8MuFsWESOS1 88yuyj8X4OnG6cAIFgr4wk8f5qbcTBjMh6atdobO+aR3OtCjOZ2nq1jS2BWYxs6Sme+0F0/LtmHD hg0baUH3aqEWa6YrLMz7/K2o4FSLDRvFA1s5sWHDho1eiORh9Tlz5oA7VNJBYvQkjoGDBlm+NmwU B2zlxIYNGzYyhBm5ML/5xsrx6d/PPvscPIwwXXBqhLuV1hijLV7bsFEssJUTGzZs2MgAZuTB/BYK Jj6uFwEc+Oab2QgEAhmlgTtQuAtyjTXGWD42bBQHbOXEhg0bNjJEIRWTjnGZrazXXHVtRmtGGB5H ToKBIDbeeCPL14aN4oCtnNiwYcNGBqCiUCjFhDBxmV8a8DrphFNRV9+gFJV008L3aa+jorIC/fvX Wr42bBQHepWdExs2bNgoFtCo15V/vFpZxy0EnKKALFq4UI12zJk7F01NjaisqILHoy1bpzuKQ/sb NEk/ceLO+N3pp1q+NmwUB2zlxIYNGzYyQDAUxKSJu6O2tlbteElz4CIjGNseHClRdp8kTsPC01NM OKXjwLJlK/DAA/dh5Kjh1hMbNooDtnJiw4YNGxmAIydT9thblJMBanFqutMqPQmyfbrKynLcL8qJ sbZqw0axwK6NNmzYsLGawCglVKTq6upx6m9PUf62YmKj2GDXSBs2bNhYDUClhEoIFZNgMIgJ66yF zTfbjE+sbck2bBQPbOXEhg0bNvo4zGiJPksnjqamZlx/w3TrmX5uw0YxwVZObNiwYWM1AJUTKiEr 6pbiij9eirLSsrYRk960XsbG6gFbObFhw4aNPgIqH8kuGVREGhrqceSRR2DbbbdWNk6MwmKvObFR bLBrpA0bNmz0ARhlhApH8kiIVlSA5cuX4YQTj8dRRx0p93p3jq2Y2ChW2LXShg0bNno5qGQYpcQo KVQ6OFoSCPjR3NyIm2+5EQcddIDyM+/biomNYoVdM23YsGGjj4CKhxkR8fsDWLF8Obbbfhu89PJz 2GijDdU7Wnmx15jYKG7YRths2LBhIwMYI2z9+w8Qgd+zW3HJxqmYRCJRSVdQfBzYeeJ2OPXU01Be rs3rx2IROByuNgUmeerHho1ig62c2LBhw0YGCPiD2GmnXVBTUyN3PSHo9dRMOByGz+fD6NEjsNnm m2OTjTfBJpu2P2VYs3m+bw+W2+gdsJUTGzZs2MgQ33//A0pKSuSq8Gw0Go2pc30qKyssHxs2+g5s 5cSGDRs2MgBZZ7FMjXCqhjDpYdrsxa42ejNs5cSGDRs2MgSVAioEZh1HoWEUJKOM0HYJTyw2/jZs 9FbYyokNGzZsZAByTq0U9IwSQDP0jJvpsPUQG30NtnJiw4YNGzZs2CgiAP8PbbXdzQbfU04AAAAA SUVORK5CYIJ= ------=_NextPart_01D4EFBC.BE89F7B0 Content-Location: file:///C:/0A8B9369/okP1V3N2AnalisisdelametodologiadelaANTparafijarlatarifadetransportemodalidadtaxi_archivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01D4EFBC.BE89F7B0--