MIME-Version: 1.0 Content-Disposition: inline; filename="document.html" Content-Type: text/html; charset="utf-8" Content-Transfer-Encoding: quoted-printable Content-Location: document.html </title= ><style type=3D"text/css">@page Section_1 { size:595.3pt 841.9pt; margin:12= 7.6pt 85.05pt 70.9pt }@page Section_2 { size:595.3pt 841.9pt; margin:56.75p= t 85.05pt 70.85pt }div.Section_1 { page:Section_1 }div.Section_2 { page:Sec= tion_2 }body { line-height:108%; font-family:Calibri; font-size:11pt }h1, h= 2, h3, h4, h5, h6, p { margin:0pt 0pt 8pt }li, table { margin-top:0pt; marg= in-bottom:8pt }h1 { margin-top:12pt; margin-bottom:0pt; page-break-inside:a= void; page-break-after:avoid; line-height:108%; font-family:Calibri; font-s= ize:16pt; font-weight:normal; color:#2e75b5 }h2 { margin-top:2pt; margin-bo= ttom:0pt; text-align:justify; page-break-inside:avoid; page-break-after:avo= id; line-height:200%; font-family:'Times New Roman'; font-size:12pt; font-w= eight:bold; color:#000000 }h3 { margin-top:2pt; margin-bottom:0pt; page-bre= ak-inside:avoid; page-break-after:avoid; line-height:108%; font-family:Cali= bri; font-size:12pt; font-weight:normal; color:#1e4d78 }h4 { margin-top:12p= t; margin-bottom:2pt; page-break-inside:avoid; page-break-after:avoid; line= -height:108%; font-family:Calibri; font-size:12pt; font-weight:bold; font-s= tyle:normal; color:#000000 }h5 { margin-top:11pt; margin-bottom:2pt; page-b= reak-inside:avoid; page-break-after:avoid; line-height:108%; font-family:Ca= libri; font-size:11pt; font-weight:bold; color:#000000 }h6 { margin-top:10p= t; margin-bottom:2pt; page-break-inside:avoid; page-break-after:avoid; line= -height:108%; font-family:Calibri; font-size:10pt; font-weight:bold; color:= #000000 }.BalloonText { margin-bottom:0pt; line-height:normal; font-family:= 'Segoe UI'; font-size:9pt }.Bibliography { margin-bottom:8pt; line-height:1= 08%; font-size:11pt }.Caption { margin-bottom:10pt; line-height:normal; fon= t-size:9pt; font-style:italic; color:#44546a }.CommentSubject { margin-bott= om:8pt; line-height:normal; font-size:10pt; font-weight:bold }.CommentText = { margin-bottom:8pt; line-height:normal; font-size:10pt }.Default { margin-= bottom:0pt; line-height:normal; font-family:'Times New Roman'; font-size:12= pt; color:#000000 }.Footer { margin-bottom:0pt; line-height:normal; font-si= ze:11pt }.FootnoteText { margin-bottom:0pt; line-height:normal; font-size:1= 0pt }.Header { margin-bottom:0pt; line-height:normal; font-size:11pt }.List= Paragraph { margin-left:36pt; margin-bottom:0pt; text-align:justify; line-h= eight:200%; font-family:'Times New Roman'; font-size:12pt }.NormalWeb { mar= gin-top:5pt; margin-bottom:5pt; line-height:normal; font-family:'Times New = Roman'; font-size:12pt }.Subtitle { margin-top:18pt; margin-bottom:4pt; pag= e-break-inside:avoid; page-break-after:avoid; line-height:108%; font-family= :Georgia; font-size:24pt; font-style:italic; color:#666666 }.TOC2 { margin-= left:11pt; margin-bottom:5pt; line-height:108%; font-size:11pt }.TOCHeading= { margin-bottom:8pt; line-height:108%; font-size:11pt }.Title { margin-bot= tom:0pt; text-align:center; line-height:normal; font-family:Verdana; font-s= ize:14pt }span.AsuntodelcomentarioCar { font-size:10pt; font-weight:bold }s= pan.CommentReference { font-size:8pt }span.Emphasis { font-style:italic }sp= an.FootnoteReference { vertical-align:super }span.Hyperlink { text-decorati= on:underline; color:#0563c1 }span.Mencinsinresolver1 { color:#605e5c; backg= round-color:#e1dfdd }span.Mencinsinresolver2 { color:#605e5c; background-co= lor:#e1dfdd }span.PlaceholderText { color:#808080 }span.PrrafodelistaCar { = font-family:'Times New Roman'; font-size:12pt }span.Strong { font-weight:bo= ld }span.TextocomentarioCar { font-size:10pt }span.TextodegloboCar { font-f= amily:'Segoe UI'; font-size:9pt }span.TextonotapieCar { font-size:10pt }spa= n.Ttulo1Car { font-family:'Calibri Light'; font-size:16pt; color:#2e74b5 }s= pan.Ttulo2Car { font-family:'Times New Roman'; font-size:12pt; font-weight:= bold }span.Ttulo3Car { font-family:'Calibri Light'; font-size:12pt; color:#= 1f4d78 }span.TtuloCar { font-family:Verdana; font-size:14pt }span.Unresolve= dMention { color:#605e5c; background-color:#e1dfdd }</style></head><body><d= iv class=3D"Section_1"><div style=3D"clear:both"><p style=3D"margin-right:0= .1pt; margin-left:0.5pt; margin-bottom:0pt; text-indent:-0.5pt; line-height= :normal; font-size:10pt"><span style=3D"height:0pt; display:block; position= :absolute; z-index:-65534"><img src=3D" ANSUhEUgAAAXgAAABUCAYAAACIhCxfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBl= SsOGwAAFfdJREFUeJztnXuwX1V1x79b0Smj0XaYZsYOVk0tttjGDkxaZpQOQ2UYBx1kqIhMEMZY= Bhjaog4SUHlriWIRGgENT5GqKCDykIgoiEIUSQFRAgnh/RQSIK9LQvLpH2ud3H3PPa/fI/fmkvW= Zydyc/Tpr7XPOPue3z9nrKwVBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEARBEE= wVgDsYy4infwC4E1gDrAV+ARwFXJDVbSwDnJy1uxY4sLTvb5X2vaCDvXsBi4F1wCrgmppy04Fzg= PuBF4Abs7zrgNVu9w39tF+qcyhwr7f3MvAocGKpzKOM5wtdbOriUxAEwTiAacB/+YBzOzDD0+8H= HgbmAPsAZwHPAhdldVvLeLk53v6DwLRS3v7ACmDfjvbeXzFQXlwqsx/wkOf9HvgaMMvzfujp84H= z/f/X9NJ+aV87Ac8DG4DPAwcDL2E3iL28zGEVbT6TtdFoU5tPQRAEtQD7+sBxZZa2HjinVO5w4M= JeynjaHOB32BPqVRX7X9LRzs8CNwK7A6djT8vk9YFdsJvMRuAbpfrTsSdkgB2BWf7/tZ7X2n6FT= cd5mVX4zQv7VQNwsm/fBHyppn6jTW0+BUEQNFIzwN8HPAZ8pKFeaxkvNwe4DZjnN4VPlfK7DvB7= l7Z/43YvztJ+4Wm/rKh/rOe9kqUVHN+l/Yo2D8nauMHTHsBuZrtjv5BedL+fBX4FHNbVpjafgiA= IGqkZ4N+LzUWPADcAu1fUay3j5eYAt/n/FwLPADtn+UtK5S8FngN2arG7eH8w37dnuS0AT2FP4M= 8BZ3r+hZ63IWtjk6dd2NZ+gx2Ls0H5cffvKM87g/FsYPQ9RaNNbT4FQRA0UjXAZ3knYk/pa4Dv1= tRvLFMa4Kdhc/G3ZvmdnuAr2n0OeCjbPj0bRA8Bvun/X4/NjV9ebGd1isH08rb2G+yY5YNvPoB/= PcvfBfh34ApgZVbmI202tfnUT78FQbAN0TTAZ2W+hc0BL+y1TD7A+/Z+2IvIL/t2zwM89kJyFXB= Alnap+7ExS3vR077L6Fc7+WBaUH4xPK79Bls+jT3FH5kN9Our6vrNYLmXubDNpjafeuu1IAheDb= xm0AYoPdGmlD4u6TZJezD6MrG1TBUppaskzZd0GKV574627SPpQEmnpZRyG0b872uydl/yv9MkL= StM8HZyGx9oa5/Rl6cF64E5kk6XRErpHEmfdDteJ+nDFb7fIelrmb1tNrX5FATBNsbAA7ykWYyf= A3/O/27fQ5lKUkrHy24GX+3FKOzLki9LOi+lNA/78uQHwKGSbpJEYVup6nJJ35a0TtJ22DuAv/a= 8dZIubWs/pbRrGsvrJb1fNpi/1v26TtJj3u7qGjdulg3cl3Wwqc2nIAiCeoAv+hPpbcBMT1uFzZ= XPxeaQT8WmVW7P6rWW8XJnY1+WzCylTwOWkn0T3sHWnzGetVn+rz1tMTZnPYJ9vVJ833+N558Lf= MP/f13X9ivsOQabllqLTdUchb2LWAnsgc2hj7if84DdgB8D52VttNnU6FMQBEEl1K9kLV7wLcde= CL6Afc+df/3SpcxdpfbLnyJ+CFhWSvsO9oJzVil9QcXgC/BgVmYG8HPsM8X1wB8YO08/DfiJD8h= rgWt7ab+mD+cDT/r+1mCrWj/hebOxm+DL/m8ZcFKpfq1NXXwKgiDYasFXfAZBEARBEARBEARBEA= RBEARBEARBEARBEARBEARBEAwRRoNfFVxfyl+T5X2rQ3t7YQt5XuzRji/5N/P31eR/B1tYtRb4U= U2ZoStI9WvvZAH8m39r/zImRFKOzX8Yo+sWngP+ewJtOx5bFLZLV3uDqUWX49l0LXc9H4Cdgaux= yK2vAJ/ZUj5NaRiV3cMX28wo5R/qC2wuBnbs0N5VPni80lY2q7M3pur0ChWLirAFSOswQY6jsdW= ylzW0NzQFqX7snSww8ZB7sJXF+zC6Anae58/EFkwdjAV8u88vpN0mwLZdsMVgFAN8m73B1KLL8W= y6lrueD37uPu43ie8Bsyfa1ykFJkwxQoXGp98pf91je5f2MsBn9RbXDPArgJuz7Wv9plN5w2FIC= lL92jtZAF8gE1PBVsC+CPzWt6fnfcaoGtX+E2DbLYxKExYDfKO9wdSiy/FsupY71i8eFFbSIjQU= ZAC3+t20/AR/AXBKj20t6HOAX1QeMIHP+KAwP0s7xdMq7WJIClL92Lu1gT2lVypS+bG9ewJsOMM= H96/mA3xN2Vp7g6lHfjz7vJbHnA+YYNBG4Ogtb/3WSz/RJM+X9AZJnyulvyuldEKegE1R3In91H= oZi41yUL/GtlDEtXk2S3vc//5VU8WU0rGSfi5pLll8nDIT5Q9wGrAEmwq7zW8+zwNf6ZLfJ2+Ud= EfJjlnAJZL2k7RF5+Cx2EPvl9RVnGScvS3tH4DF/lnrDyhXe/pc7FfcIuASz1sNnNFUF5s6uMfr= LsV+2Z5e+LIlzxMsWN1dwG+x+EYr3LZvYoIxT2DTn/mAd4PbvtHLn1HnQzbAlnl4C/qWH89+ruX= N9bFIr++TRWv9pF8fTwNfGIKdr378ZH882/4P4H9LZaYBj/qFsw+mKboCi264o5cZ5hN8oXiU65= ge4mlX1LTTWUGqiz+92NtSfq3bvRyLQrmf27YOC7rWmN91P9n+DgcerUi/Lbu4V7EF5zCxedRD/= P+NT/B19ja0Pd0HsBOxm1YRifMsRoVXngLOwSJ7Li3ab6hbfFTwDNnU1SDnSQ/+POL7fhyLwLon= NuCvxkJW7wd8zcuciA3K67BosLtgA/ST2KBX5cNx2PRpIeZe3Pg+uSV8Kx9PeryWK+oX+sWLMDW= 0I93G1dTIhQYZ2BwYwAm+fSPjIzrO8zL7ZGlne1qhjTrMAb6I8JjPzR3taRfXtNNZQaqLP73Y28= HHlWSKV8ARvq8FXfJ73NddmCBJOX06Ftb4Zm/75g5tFXY0cUSpzgVkX17RPsBX2ttg0xdr7Fjk+= Q8Dd2Tlrweea6uL3VTLv3p6Ok/66S+v9wBwV7a9gLF6vdPL+8QGukXYk/rznjbOhwp/1mIPEn1f= A01QOp70eC1X1C9sOiFLKzSPz+rXzqlIX4IfKaVTZT+Z/hUb2De6AlHOO/3v+iztGv/7ln7220I= RSjh/knir/72/SwMtClIT7U++H6WUzpW0UdIOHfM7gckvXptSuqCcl1J6NqU0P6W0h6T7JL25rb= 2U0rmpnXNL1f5F0sHFaCbp055+J+NDItfa28BfSnqywo7iq6ANpfKb5MpZLXXL9aQez5M++6vcv= mTHvrBZKaV8ekPATZJOlfSQpFuzrCofijpHSzpK0tdTSl/p1bcu1BzPztdyTf1CyWy7LO1q//uG= fuycqgyi6HS9pHdLOkVSlUZroVaUf3nxRv87lJeXOSmleZKel7RrlvxuSatkg3bXduoUpCbUH2f= zCYr9hH6t7ALtmt8IcIGkZSmlz3covkLSw13b7oWU0tvz0Uyj8/27ppQ+WJTr0d6cpyRNpzRXTL= dfO73WnYzzpBHsF+k/S5qdUvqYpFphmqzORySdJOnKlNIxnjxU3+qOZ9drueF8uFJ2E8o/632b/= 40vr7rgPwFXAg805D+Nfb50Eja3uQh4JCtzLbCJHuZ2sc8x78PmTMvTQpdgc6NHYi+KVtOw6Ioe= FKS6+NOrvS31nsHmDQ/D1iDc6/uf3iW/Q/uXAJeW7LwYOLJUbgY2n/tkL/YPAhVTNF3trWlvZ+C= P7sNx2Oe+12PTTzO93x5wX6cBt2PTEns21D0de5l5V2lffZ0nPfbPztj8+3JgJ7f5ar+WDvIyxd= TPDzEh+Y3YC+XDsRf0q4D31fiwm/ubTwHuhb2oHYpvbcez7VruUP9abCrqtOz6GONn0AK2WOnsh= vwDfXBbj73kWYxPffhJlzMHe/nzfy37HCnV272Ufw2jXzt8r6GdfhSkav3x/HH219mLvbBbgb0w= G7eACBvAf4sNLiPA7xn7Iqwtv7YvsRdomxjPU55/NHZBbcIGgjuYgG/gM/vGDPAd7G3sSy9zKDa= Iv4ytzP2qpz+RtfcIYwXTR+rqev/j58FDpX01nidD6J9HMhufwj4JzJlf2l7odUawm9fZjH4FM8= 4HbNCu4t5h+EbL8czKVV7LPdRfiN0kRrBzeEIeUIIpAhOgIAX8igpZPWwAWVhVp0v+tkhdXwZBE= Ewo2FPn+VTEeMF+Dr/kTx3jPj9ry9/WaOrLIAiCrQbsm+Wcpb3kB0EQBEEQBEEQBEEQBEEQBEEQ= BEEQBEEQBFsSLChRzkZf6PAQcNoQ93MGtnhnRnvprQ9M7u8xX1yxBls4cyTwE8+fEP+mWj92tZc= +pR6HDRax8Hc0BOrammjqXywc8i3Ak32023fdYCsCWw5daJXOx5Z1n4jFId8AHD7ZNk4m3h9/8J= veZdhK2L2B84AX2MoFP6YK9CH1uIXsKFbA3jmZdgwDXyD2Ch5hcqLqBlsZjIYJzgP+FPGxfzwJ9= swCrpvo/VYB3IQtnz6xIu8IYPlk2PVqhD6lHreAHctfDQO8tHlZf1+D9CB1gy3LINEkC7b3vxuH= 0FZnMJHsC9RjeNwtZMt7Je0uaXlK6eRyvod7bYyxE/TEyGQb4JRD9k5lBunTreV4BCX6HuCxCG0= LZKFDN0j6QZZXJ4+2MpvD/6mnFYGSVvqUxg35/KrPtxZz/d9kNLD/rZL+XtI/ef15VMiStfhQJc= XWKuFWwQGSXiepMrKmJKWU9q/xbxApuQ9hwZ7WeB/9BouOWLWfyr5p6N+mfqusQ4uc2zDsrbGnr= g87+8aoQhNZ/St9e01Lf1yEBWVbzaisYhEM6xbfvte3n/DtocjueXrjuVLTv7v7sRoBVkr6i5JP= tf3foe7AxyOYBBidoslZCszNyjTJo83ABvRHGZXtm4aHAcVCfG6eX8VC4T4PHATMxub7cuWWpYy= q8lTKkjX40ibFVinhVtNWERnzOy39V/ZvECm5HbGQrrd63nxGNTXL+6mTbGvs3xofKuvQIlU3DH= szGxbQ3oc39eIb9sByDxaGd5qnzQCWkSkYleoscZ/OdJuXAQ973l7YQ0sxwO+MDXrFAD8U2T1vq= +1cGdO/nnYf9uHEAX6sXmBU5amt/5vqDuV4BJMAowP8OdgT8yZK8dZpl0fbG4snPTPbPjyrv3l+= FdgXewq4iorIjmQDfJY2TpasxpcmKbaHqZFwq2nrIq97VYc+zP0bREruTOwirAw2RsU8dblv2vq= 3pt3KOrTIuQ3D3iw9H+Dr+vD+Pnybjb0wPM23z6M55PQSsjl4Pz5/zLYfwwd43/4ZPsD79lBk9z= y98ZwtnXfFdZxrno6bR6/aV1vdYR6PYHD6naLZlFI6VtItkj7KWM3IRnm0lNJCmexWoRLzDyml8= 7L6m+fzUkpXS5oraYaka7BY1pU6nZK96FS1LFkVvUix5RJuVRS6ru9sKFOQz1cOIiX3VkkjKaXH= Vc2YedGqvum1f1vqtMm5DWxvDXV9+K4+fPu2pMWSPupJu6sHNTDZ8enlmhqW7J7Ufs7m/fse/3t= 9TX7TvtrqDu14BIMz6EvWOTJprRMYVUXqInF2qaQ9/f+NL6pSSmenlN4j6WDZyVOW0iva71WWbB= AZt7KNC2Q3rb8Fjq2x71LGP70OYsPTkt4MHNpWsKlvuvZvTk2dNjm3odhbQW0f9uObpPMkvQP4h= qTVKaW2B4U2ytfY6/pppI/zu4lV/vfjpfTtOuyrsa6GfzyCAeg8wGPzkjv55tuA6Sml5TJN1h0k= LcReMC2W9IKkM8gkziTdXbSVUvofSeuAiyR9v7Srt0h6DTZXNxebqztC9pSwStLrs7IbJe0AHCP= pA+7Pe7Apn3dJer3bXcXFNXb+UdI02WA0w+vvIGl7YM+atiTpc5JelHQS8H1M+WYmpkZ/u6Q7/e= l1s38NNtztN8wmOy70uqf6T+ndsCmFM8v9KGl6Td+c0NK/42g4Jl+S9Iykj+FybpKOlfRoSulzQ= 7J3Wqns7IY+nN6rb5KUUrpQdq5+QlLtlBv25dSbZMdnJ7ftzyT9ifsuSWtkN4u9gNNlT69/js1Z= 7yzpTyW9Kauf94GyX8Y7ygbEyj7pcK6U+/e7skH7P/383EfSO9yWdU376lD3R8M8HsEEwfiVrLl= e6WV5OjXyaKX2zvIDn6ddWdrHBdj87YOYRNgS4ANZ+fOxed07gfdSLUt2Y4NP4+ykg4RbQ3t7AD= djLxdfwV6Y3Y3PV1b4t3ddX3WxA/++3vtmBXBFzX4+VdM3S5v6t8bHuXV1aJc0HNTeG6mWeqw6j= rV2tgF8lpaVmaXj81jp+KzxMl/Evq5ZBVyBvWh8ADiF4cnu3UjLuUL1eXcs9oJ3A/Zy+Gbs2HyF= lmupqa7nD/V4BEEQDA1sxXbjF1FBEATBFAP7xHMZNeLdQRAEwRQDW3iz3qceKl+UB0EQBEEQBEE= QBEEQBEEQBEEQBMHAAHcABw7Yxi7+Pe1PB2xn0pR+6FE9qdfyDe1sFepGQRC8ysBCv27ApegGaO= dMX/wwfcB2tgqln4lkW/Q5CIIJAItWtwGL91wZIbCm3hgVJuCHwL5DsmmrUPqZSLZFn4Mg2IJgs= b2fAS73pc/ntdeyeDZYzO1F7aX7smvBtjbYbYs+B0HQjX6jSX5epl50mizwUFWs9s/6YP47LObJ= iKRlGqvCdDnjlWbqVH8aFXKqoEVhqNc6VT4B36vwYX/g94zGXT+p1P7m8nRTbupJqSoIgqBvsMB= ChUzbz32gPaJU5mlPfwbYP0vPVZjKSj5Nqj+NCjmelgtBNCoM1fjVpko0zqeyD5mPD/pgfjK2Qh= K/WZR9blPj6axuFARBMBDA0cB92fYh2NP1uLjZPsjdUUobo8LEWKWZNtWfNoWcfIBvVBiqab+1T= o1PY+bBsaft67PtpSW7y+Ub1Xg8rVXdKAiCIKefKZqPSfobH/SQxeNOknZlvEJLWWWmijwEb5vq= Ty+0KQz1W6fKp3IY4V9KmgUcjAlcTJe0fUP5RjUeelOqCoIgkNTjAI/F9n67pH/MtbgknSkbwD4= 1oD1dVH+6KuS0KQwNq04VX5f0kqRz/d+jkk7sof5mGK6STxAEwXh8TnoJJh4wrZS3CxbYfxWm4j= LN054gExX2skt8yuIYnxK51qd4DvI6K3wqZpzqj9d9HFfI8akNgBc8v2hrNiZY/DQm8H0SNre9C= HikwcfGOg0+bfbBt+8BLm7YT+7zTN/nA7gaDyaysBbYE7gYe7k6Fzjc+2BVcQxyn3s6oEEQBAU+= 6BWUlZieYiyXYS8iwebUH8rK5ipMVUozlao/XrdJIadK6adRYajGz9o6VT7V+PALxrMCOL6i/HP= Z/6vUeGrVdap8Hu5RD4IgCDaDPYXfDOyVpc3EPrH81WTaFgTBtsV27UWCHpkn6e8kvR+QpEck7S= bpg5IGCusQBEEQTCLYQq3bgRcw4e21PuVz3GTbFgRBEARBEARBEARBEARBEARBEARBEARBEARBE= ATbFv8Ps2oJYLqsygAAAAAASUVORK5CYII=3D" width=3D"376" height=3D"84" alt=3D""= style=3D"margin-top:-18.2pt; margin-left:228.45pt; position:absolute" /></= span><span style=3D"height:0pt; display:block; position:absolute; z-index:-= 65537"><img src=3D" AUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEPERETFhwXExQaFRERGCEYGh0dHx8fExci= JCIeJBweHx7/2wBDAQUFBQcGBw4ICA4eFBEUHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4= eHh4eHh4eHh4eHh4eHh4eHh4eHh7/wAARCARiAxoDASIAAhEBAxEB/8QAHQABAAICAwEBAAAAAA= AAAAAAAAECAwcFBggECf/EAFYQAQABAgMEBAoGBQYLBQkAAAABAgMEBREGEiExBxNRkRQXQVJTV= WGSotEIFSIycZM2QoGhsxYzN3N1shgjJENydIKDscPSJzViwfAlJjhUVpSj4eL/xAAbAQEBAQEB= AQEBAAAAAAAAAAAAAQIDBAUGB//EADURAQABBAIBAgQDCAEEAwAAAAABAgMREgRRIQUxE0GR8BR= xsRUiMjRSYYHRMyMlNaFCweH/2gAMAwEAAhEDEQA/AOp+EX/TXPflHhF/01z35Yh/ScQ/FxMsvh= F/01335PCL3prvvyxBiGsz2yTiL/prvvyjwi/6a778qSgxB57ZPCL/AKa778nhF/01335YwxBme= 2Xwi/6a778onEX/AE1z35Y0SRELme2TwjEemu+/J4RiPTXffliFxCee2XwjEemue/J4Rf8ATXPf= liDELEyyTiL/AKa778o8IxHprvvyxzzDEJ57ZPCMR6a778nhGI9Nd9+WMXEHlk8Jv6fz1335R4R= f9Nd9+WOeSITEHntl8Iv+mu+/J4Rf9Nd9+WIMQee2XwjEemu+/KJxF/T+eu+/LGieRiFzPbLGIv= 6fz1335T4Rf9Nc96WGOSTEJ57ZZxF/T+eue/KvhF/01335Uq5QqYgzPbJ4Rf8ATXfflMYi/wCmu= +/LDKYamIPPbL4Rf9Nd9+Twi/6a778sQziDz2yTib+v89d9+Twi/wCmu+/LFP3hYiFzPbL4Rf8A= TXffk8Iv+mu+/LELiE89svhF/wBNd9+UTiL+n89d9+WNE8jEdHntk8Iv+mu+/J4Tf9Nd9+WIkxH= R57X8Jv8AprvvyeEYj01335Yo5JMR0uZ7ZPCMR6a778nhGI9Nd9+WMTwZntk8Iv8AprvvyeEX/T= XffljCIhYme2ScRiOXXXfflHhF/wBNd9+WOrmhcR0mZ7ZfCMR6a778nhGI9Nd9+WIMR0Zntk8Jv= +mu+/L7cBN2J6+q5c3pjSJ3p10fHhrU3bkR+r5ZcnHCNI5Mzhiqqe2Xwi/6a77yvhF/01335URL= MRDETPbJ4Rf9Nd9+Twi/6a778sQuIXMsvhF/01335PCL/prvvyxBiDM9s0Yi/wCmue/Ks4i/r/P= XPflSFZ5mIMyy+EX/AE1z35PCL/prnvyxBiDMsvhF/wBNc9+Twi/6a578sQmIXaWXwi/6a578o8= Iv+mu+8xi4hMz2yeEX/TXfeT4Rf1/nrnvSxEczEGZZJxF701z35R4Rf9Nc9+WKQxC7Sy+EX/TXP= ePCL/prnvMQmIMyyTib8R/PXPelXwi96a77zHOqExHS5ntlnEXtP5677yvhF70133lJ5KmIa89s= vhF70133lar96f8AO3PelSeSjFWGqc9snXXvS3PeJv3o/wA7c95VWqGdYazK3X3vS3PeOuvelue= 9KiaYIiDMsnX3vS3Pfk6+96W578qTCFxHSRMrzfvelue/KOvvelue/KkhiDMsnX3vS3Pfk6+96W= 578sYawuZXm/e9Lc9+Udfe9Lc9+VJQawuZZOvvelue/KJv3vS3PflQMQmZWm/ej/O3Peljqu3ef= W3PeUqmJq4E8nOfLpErddd9Lc94m9e9Lc95QZ1WVuvvelue8dfe9LX70qShMQRMxDJF29MxEXK/= ell6y5H+cr96WGiJiNe1fWOx1pojDnVXOX0APS84ANQShMoFAAES5zYnZ3EbVbQ2ckwmKw2GxF+= mqbdV+aopmYjXThE8dIlsefo9bWeTN8m9+5/0PJe51ixVrcqxL0W+NduU7Uxlpsbj/wAHra31tk= 3v3P8AofLmvQTtJleXYjMMZnOTUYfD2qrt2vfuTu00xrPDc4uceq8WZxFf6tTwr8f/ABamE0UzX= XFFMTMzOkaRq27g/o/7XYjC2r9WY5TZqroiqbdddzeomY13Z0p01jlwd+Ry7PHxNyrGfZztWLl3= +GMtQTzG5P8AB52t9bZN79z/AKET9Hja31tk3v3P+h5/2txP6/1dPwV/+lpwbSzToI26wVmq5Zo= y7HREa7tjETFU/hFUU697WuY4DG5bjbmCzDC3sLibU6V2rtE01U/jEvVZ5dm//wAdUS43LNy1/H= GHzTyR5Ezydyw2ws4zowv7aYDNPCKsJe6rF4Lwfdm1Gsfairene4VUzyjnPY3dvUWsTXOMzhKKK= q/4XTB3TY/YWnO9kc22nx+bRleAy+Yooqmx1nX3J/Vj7UacZpjy/e8jhtqtnruRZ1GWUY7CZlXN= uLkXMHVNdM6zPDlrrGjFPKtVXJtxPmGvg3NYqx4lwiJ5OSynJ8Rjs1wuBu10YGMRcijr8VrRbo9= szormWVX8NnWKyvD1xmFdi5VRFeGia6a4j9anTyNxdo21yzNFWM4cfHJLJTYvzcmzFm5NynnRuz= rH7C5h79qqKblm5RVVyiqmYmW4qifmmssdXKFWe/hsRao3rti7RTrprVRMQicNiYtdbOHuxb013= tydNPxNo7XWemCUw5bOMj+r8myvMYzDB4n6wprq6m1VM3LG7MRpXHk11cdfwuJw9NFWIw92zFca= 0zXRNO9Hs1Zpu0VxmJSaKonEwxANson7wT94WAAUETySieQIJCQVjklEckgAMgALCKuaE1c0NEg= PpwVrfr36o+zT/wAUmUl9OEtdVajX708ZZgc3ERKUSCAGmgAEwrPNaFZ5gAAAIACpARzCOYqshI= AVdghJEGiRFVqVXqjgpPDyktoqVWRLk1CCZ4BKqjTVfkiISYBGiRRSrhItKswIBoAKzzWVnmNCt= yeGkLTwY5nWdWaiFdDy6JNHNtACAUxrUMlFOka+WVpjKyiRaYVdnJ9IDq4gA1BKEygUAB92z+ZY= jJ87wWa4Wqab2FvU3aNJ5zE66fhPle4cjzHD5vlGEzPCVb1jFWaLtue2Ko1eEHp76Lu0U5lsbdy= S/cib+WV6W48vVV6zH46Vb0dz8/6/x9rdN2Pl+j6vpl3FU25+bb8NQfSh2ljLNjrOR4e7NOIzS5= pXpPGLVOk1d87sftlt6rhTPHg8d9OW0lW0nSHjblu5FeEwc+C4aaZ1iYpmdZifLrVvcfwfI9H43= x+REz7U+Xv5974Vqce8svQJsxG0nSDhOutb+DwP+VX+z7MxuxP41acOyJev4jSGqfoz7M/U2xH1= rfszRi80r637UcYtRwo/ZPGr/ahsvOsww+VZZicxxdfV4fDWqrtyrsppjWT1XkfiOTMR7R4g4Nr= 4NmJn5+X2jydjOnPbqvF3a8NjMNas1VzNuicLRM006zpGunHho+TF9NXSJep3ac5tWo8s28Lbif= 30y7R6FypjPj6sT6pYh67qjVrDp+2Gw20uy9/NMPYpjNsvtzctV008blEcaqJ7eGsx7fxlk6ANu= 8Vtls9iLWa3IuZpga4pvVxTERcoq13atI4a8JifwjtbKuUxVRVTMRxjR8+PicO/1NL1fuci1/aX= 5/zybP8Ao9ZvhozzHbI5pVM5dn2HqsVUa6R1kROn4TMTMfjNLou2OCjLdq83y+mN2nDY29apiOy= muYj92jkdjti9sNoLE5ns3lt6/Rh7u711q/RbmiuNJ4a1ROvGOMP23J+He4/79WImPf8Av8n5yz= tRe/djOHfelu7Z2TyDZ/o2y/E9ZNiqMXmNdPDfuVVfZie+qdOzdbEznML2X9KucU4bJc0xU3spw= 9vwvLbNu5dws71zTSK+HH26/d5NMYvos6UMXiZxWKyPF4i/Omt25jLVVc6cuM16r47Y/pdy3rcd= dwmfRXVTEXLlnGTcrqiNdIncrmZiNZ75fKq41mqiKfiRM4nPn3mcPbTduRVMzROPH+G1c5wmZXt= o9i82xeb5vcszm/VU4LNMPZtXqat2r7cdVEa08NNJ7YfNjZzjC7P7XYrYe1Fe0E7Q3KcVVat013= qbPk0iYnhy8nll5/xebZ1XjaL2LzLMKsVh6tKK7t+ublqY7JmdYl9uAo2xw9yvOMvpz21cvUzXV= i7EXYmuPOmuOce3Vv8AZk0xG1cf/U+csxy4mZimmfuHo3AxFO3+zmLxtuza2ir2cu1ZluxEVb8R= b03ojhrrv/8AqHUcozLNtvei61iM4x9r6ztbQYezhcbVYojqNaqNJ0jSJ+9PDy6tH0ZrmlGOrx1= GZYynF3Immu/F+qLlUTziatdZY7eOxtvBzgreLxFOFmqK5sxcmKJqjTSd3lrwjj7G6fSJiInbz4= +X5p+OiZ9vD1tRYxNynOcnzbEZ/mdiMDcibmPweGpwtc6RxomimKpnjyn29jX+0+3OZbG7B7DU4= TDYXF4XG5XXTiMNiKNaK9Kbe7Pbw3p4cp1aWq2k2i6rq/r7NdzTTd8LuaadmmqlmxtBnWHt0WbO= Z5jZwsbluKaa7tNqJ8kaaxTyjh7HO16TFudrtUY+nyWrmxVTiiny37snbyrFWui/6ytWZtzhcZV= Yt3Ijd62N2aY4+WOOn4PjxtzarG7B7ceMbDRRh7Ma5bN61RTEXNatIt6c413OPHn+LQ+OvZtart= YHHXcbbqwv81YvVVRNnXSeFM/d8k9zt+0uyHSdORTmO0FjMr+W4a31m9icfTdpt0dsUzXM+XyQt= Xp9NuqJm5EZ/wB58EcraJjWfH+nQ/xAfefMhE/eCfvPsyXLMdnOaWMryzDziMZiKt21biqI3p0m= eczEcoJqimMz7LETM4h8Y7DtXsVtPsrh7OIz/Kq8Fbv1TRbqqu0Vb0xGsx9mqXXkouU3KdqJzC1= UzROKoETySieTbKCQkFY5JRHJIADIACwirmhNXNDSppiaqoppjWZ4OVs0RbtxRHkfNgLURHWzz/= VfWxM5capAGWREpRIIAaaAATCs81oVnmAAAAgAKkBHMI5iqyEkgTPDRCEsyZABUVctWOV6pV1Zl= 0iECUaIqNDRIAAYAAEShMoARokGkeVExrKys8OIK19jHK0zrOsolhqEAJIgBMGU241n2MqtNOka= LOkRhMolCZQqS+gB1cAAaglCZQKAAO+9A+0X8nukXA1XKtMNjf8AJL3HSIiqfsz+yrd/Zq6Emmu= bddNdMzFVMxMTHklxv2ovW6rc/N0tVzbriqPk9m9Le0cbL7A5jmNFURiKrfU4fjzuV8In9nGf2P= JOxOR3tptrMvya3vzOKvRFyqOdNHOur9kRMu29LvSB/K/JtnsDaqq/ybDRcxms88R92f3U6x/pO= 7fRQ2Z3qsx2pvUTpH+S4bWOE8prq/ux3vh8eifTuFXcq/il9K7X+L5FNNPtDfmCwtnBYOzhcPRF= Fqzbpt26Y5RTEaRDT30pdqPANmsPs5h7sxfzGrfvRT5LNPHT9tWn4xEtyXK6bdqquuYimmnWZny= PH/SJiM86QNtMzzjKstx+YYG1c8Hw9VmxVXTTbp5co4a8av8AafL9Jsxcv71+1PmXt51yaLWtPv= Ph0Kr7w52djNrddf5NZv8A/aV/Ja3sVtfcriijZjN5qmdIjwSv5P2P4i1j+KPq+B8G51Lav0RJu= fXefaa9X4Pa17Nd6dP/ADejZ5NZfR+2GxWx+zd6/mlvq8zx9UV3besT1VFOu7Tw8vGZn8fY2Veu= U27VddUxFNMTMzPkfiPUrtN7k1VU+z9HwqKrdiIqeKul2aKukvaGbfLw65H7deP79W8PomfoNmP= 9oT/cped9qsbGZbS5pmNM6xisZdv0+2Kq5qj/AIvRP0TP0GzH+0J/uUvv+q06+n0xP9ny+FO3Km= fzcj0hdMuC2P2ov5FfyPE4quzRRVN2i9FMTvRrwiYcj0Z9KuSbc465ltnDX8BjqKesptXaoqi5T= HPdmPLGscNGifpJf0s5h/U2f7kOL6D7l210rZDNmZiqcRNM6ebNExP7pl5v2VYq4XxY/ixl2/G3= Y5Gk+2cNp/Sk2OwlOXWNrsDYotX6LkWsZuxp1lM/drntmJ4dsxPsfTsztZtBh+irC5fa2EzO/hq= ctm3GMpvURRNO5Mb+nPTy6O4/SEpoq6I863+cRamJ9vW0L7GR/wBhmC/sWf4cvDRyNuLRFcZxU9= NVrF+qaZx4ePrFq7fu02bNuu7drnSii3TrNU9kRHN2rC9Gu3mIsxdt7LZjFNUaxv29ye6dJbh+i= zspg7eQ39qsTYouYu/eqtYeqqNerop5zHZMzr3e2WTb3p2+otp8Zk+V5LRi6MHcmzdvXrs071cT= pMRERyiX2bnqV+u/Nnj0Zx7vn0cO3Tbi5dq92nqui/b+I1nZjG8P9H5u9fR32gznJMmzSxl2yWO= zqmvE0zXXYuU0xbmKdNJ1bx6Oto7u1mxWDz2/haMNXiYr1t0VTVEbtVVPOfwa2+iVH/sDPf8AXa= f7rxXvULl+xcpu0x+7jx57/N6bfFotXaZon3ar23ynaXbTpMzq9gNnMXaxkTRcvYSZpmqzG5TEa= zwiddIl6R6RMtx+YdFuY5XgsNXexlzA027dqOc1cODSu123WO2E6bdqMXgsFh8VViuqtVRdmYim= It0TrGje+2OfYjI9g8ZtDYs27t7D4WL1NqvXdmZ04T5fK4c+u7MWf3YxiMf+m+LTR/1Mz5+f/t4= 9z7ZDaTIruFt5tlV/CVYuqaLEV6fbqjTWI0n2x3uVjou2/mImNmMbx/0fm+3pC6Tsy2yxOVXsXl= uEw05bem7b6qap35maZ0nWf/C2nl3SZ0pY7C0YjB9HlV2zXGtNfVXIiqO2NZ4w+xe5XMt0UzNNM= TOc5l4Ldnj11TETOPyaWzHo624wGHqxOJ2ZzCm1RGtVVNrf0jt+zrL6+g2JjpZ2fif/AJir+5U9= LdGm0u1meXsXh9qdk7uTTboiuzd0ncucdJjjynl+9rXP8mweUfSiyacFaptUYvTE10UxpEVzTXF= Ux+Omv46vLT6lXepuWbsRnWfb8neeHTbmm5RPjLkPpffo9kf+tXP7jzdPOXpH6X36PZH/AK1c/u= PN085e30T+Tp/OXn9S/wCeRE8konk+u8KCQkFY5JRHJIADIACwirmvh7c3bsUxy8sqTzcjgrXV2= tZj7VXGVmcJVOGbSIpiI4RAmUObiAAIlKJBADTQACYVnmtCs8wAAAEABUgI5hHMVWSeRJPJBAAC= J5JVq5pKqzxNOwGXRGqYJQip0RUklUQAAAkqiUJlCgAjQpdnjpC9XCNWGeaSADKwIlIKqtRHHVV= liNI0WIZqkAaEShMoEfQA6uIANQShMoFAAETySiQZMJh7uKxVrC2KJru3q4oopjy1TOkQ9vbB5H= a2Z2Ry7JLUxM4WzFNdURpvVzxqn9szLyp0JXtn8Ftxh812kzC1hMJgaZu24roqq37nKnhETy11/= Y9HR0tdHn/1LY/Juf8AS/M+u1XbldNuimZiH2fTIoopmuqfd8f0gNqf5ObA4mzYu7mNzGfBbOnO= ImPt1fsp1/bMOtfRKiP5I5t/r0f3Iav6fNssPtbtfR9W4nr8rwdqLeHqiJiK6p411aTx7I/2XK9= CXSfk2w2R43AZlgcfiLl/EdbTOHpomIjdiOO9VHYn7PuU+na005qqmJwfi6Z5eZnxD1JpHZBpHZ= DTX+EPsp6nzv3LX/Wir6RGy2k7uTZ1r5NaLX/W+T+zOX/RL3/jbH9Tc0RpLUn0iNvMPkWz9/Z3A= 3qa80zC3uVxTVxs2p4VVT7ZjWIj9vkdF2s+kDnGOw9zDZBldrLYq4RiLtfWXIjtiNNInvabx2Kx= OOxl3GYzEXMRiL1U13LtyrWqqZ8sy+r6f6Nci5Fd+MRHyeHleo0zTrbnywTyemvomfoLmP8AaE/= 3KXmWeTv3Rt0pZtsNlF/Lsvy/BYm3evzemq9vaxOkRpwmOx9j1Xj18ixpR75h4OFeptXdqmzelr= og2l2u23xWeZbjcqtYe7Rbpppv3LkV/Zp0nhFEx+9yPQ50O4jZLP4zzPMbhcVirVFVOGt4femii= ZjSapmqImZ0mY5eV0r/AAiNpvUmVd9z5sGYfSC2uv4au1hsvyvC11RpF2KKq5p9sRNWnfEvkfhv= UptfB8a+3ye6LvDiv4nzd8+lNtFhsFsfa2fouRVi8wu011Ua8abdE6zM/tiI7+x2jY3+gvBf2LP= 9yXkjPM2zLO8yu5lmuMu4vFXfv3Lk/uiPJHshsHKumjPMu2QtbNW8ry+vDWsLOFi5Vv7806aa89= NeLpd9JuU2KLdvzMTmWLfPoqu1VVe0xiG1fot5vhsX0f3MqprpjEYHE179GvHdr+1TV370fsa76= TOiLbC/tpmePyfL4zDB43EV4iiui7TE078700zFUxymZ5auidHd7a/C5zOM2Ns425jLVGtynD29= +JomeVVPKY17W5cP0i9MNFumm7sBN2uI41eCXqd79mqXbV7icmq5Zqp8/KZwtFy3fsxRcifHTYn= Q7lGY5D0bZblebYacNjLMXN+3NUTu63KpjjHDlMOi/RL/AO4M9/12n+62ds7meZ3djbea7TYO1l= 2M6mu7iLFE8LdMazHPX9WImXljo26T822FweMwuX5fg8TRirsXapvb2sTEacNJh4eNZu8qi9FMe= ZmP1eq9cos1W5mfEK9Pn9L2e/1tv+FQ9MbZ5fis/wCijGZflcU3cRi8upixEzpFUzTExGryHtnn= +J2o2mxme4uzbs3sVVFVVFvXdiYpimNNfZH73eNjum3arZ3JbGU+D4HH2MPTFFmq/TVFdNEcqdY= njEfg+ty+BfuWbMUR5p//AB4LHKt03K9vapi2D2EzTKukvZzDbYZZXgcLicRVNuLs0zF2q3TNUU= 8Jnhvbsceer0V0lZlthlOV4avY3JMPmuJqu7t6i7PCinTnpFVOvH2vM3SH0nZztleyy9icLhsDd= y25VcsV4eatd6d3jxnybsaOy5X9IHa7C4O3YxOBy3GXKI0m9XRVTVX7ZiJ01/CIcOXwuZyZou10= xM/OPk6WORYsxNFMzjtuLoyzvpGzTN8RZ2y2cwmV4OixvWrlqmYmq5rHD79Xk18jp+3P/wAT+zH= +rU/8x1b/AAitptf+5Mq+P5uoZx0nZrmfSBl+2d3AYOjGYGiKKLNO91dURFXPjr+tLlY9L5EXKq= tYjMTHif7OlzmWtIiKpnEw2t9L79Hsj/1q5/ch5unnLvXSZ0mZrt3gsHhcwwGDw1GFuVXKZsb2s= zMacdZl0V9r0uxXY48UVx5fP5t2m7dmqn2ETySieT6LyoJCQVjklEckgAMgBTE1VRTHGZFhmwlr= rLu9VH2aebkmOxbi3biny+WWRmZy4zOZRKEyhEAAESlEggBpoABMKzzWhWeYAAACAAqQEcxEiok= nkE8gQACKp0VKuMoYmWojIJ04aoRYkREJBoABAmUCgAIlCZ5oAAq4EqpcniqsrPBhomEJJjVBAa= ERrOkAmmNOKyZjhpBo6QxlACKiUJlCwkvoAdHIAGoJQmUCgACJSiQQnVAoAJIieYTzFAAETyRCZ= 5IgABcgieSUTyQdw6Ltu8XsJmOKxuEwNnGVYi1FuabtU0xEaxOvD8GwavpFZx5Nncv/ADa5aOjk= l4r3p/HvV7105l6KOVet060z4bI2+6ZNp9qsru5X1eGy3BXYim7Th97fuR5aZqmeU9kafta18uq= 1XKFXezx7dinW3GHO5druzmucolMIlMO/ycwBBE/eCfvCgAoInklE8gQSEgrHJKI5JAAZVD7Mvs= 6/42r/AGXz2bc3LkUR5ebk6IimmKY5RwSWKqsLAMuaJQmUAAAIlKJBADTQACYVnmtCs8wAAAEAB= UgROqTmKqTyCeQKlU8BWZ1lFhACNrfqqrfqqjAlE8loGoVE6CKhKAwqJgSiYRREwkEV5KTOsr1y= rozMtQgBFRMITrxJBC1HBERrK/JaYJQlVMS0ySgmQBCQGYOJxa3p7hjSroDicTenuFimrolBOvs= NJ7I7zenuDFXQGlXZ+80q7P3m9PcLrV0IlOlXZ+9E73Yb09wa1dIDj2Gk9i709wmKugOPYcexJr= p7hdaukTzCddeRpPYu9PcGtXQGk9hx7DenuExV0ieSITOunJERPZ+83p7hdaugOPZ+849n7zenu= DWroRPJPHs/eTE6cv3m9PcGtXSI5JIidOX7zSez95vT3Biroq5QqtOunL96vHsN6e4NaukSmEaT= 2JiJ7F3p7TFXQGlXYaVdib09wYq6RP3gmJ15R3mlXYsVU9/f1XWroDSrsNKuxdqe/v6piroRPJO= lXYiYq05G1PZirpBJ9rsPtdhtT39/VcVdKxySjSew+12G1PZrV0kIiqeVMyz4PD13Lv2qZ3aeM8= GZrpj5/p/s1q6fTgrW5b3p+9U+hO7V5s9xu1ebPczNymfn9/VymmrpAndq7J7jdq7J7k3o7+/qa= 1dKyhfcq82e5WaKvNq7jejv7+prV0gTu1+bV3G7X5tXcb0d/f1TWrpCFt2rzau5G5V5tXcb0d/f= 1XSrpUW3KvNq7jcq82ruX4lPa61dKi25V5tXcblXm1dx8Sns1q6RCs819yrzZ7kTRX5snxKezWr= pUW3K/Nk3K/Nk3p7NaulRO5X5sm5X5spvT2a1dIE7lfmyncr82V+JT2aVdKkc1tyvzZNyvzZPiU= 9mtXTHItuV+bJuVebJ8SntYonpSVdGSaavNnuRNFXm1dyb0d/f1XSemOReaKvNk3KvNnuN6O/v6= rFNXSn6qFtyrzZNyvzZN6e/v6prPSsrRyNyvzZTu1+bPcb09/f1WKaukIqW3avNnuJoqn9WruN6= e/v6mKulBbdq82ruRu1ebV3G9Pf39VimrpAtu1ebV3I0r1+5V3JvT39/VqInpWUStNNXm1dyKqa= +W7PcbU9prVM+ykiZpqj9WUaVebPc57U9w3FNXSEeWV4pq82e5E0VebV3LtT2az0qiY1W3avNq7= lqaK9ddyrT8E3p7hIiekUxpCZ5J3avNnuN2rTTdnub3p7WInpSUaLzRV5tXcbtXm1dxvT3DOtXS= sI0WiirzZ7k7tXmz3G9PcGtXSgtNFXmz3I3Kuye5Yqp7TWrp3LSDSAfz3art+v1gANquzWOgA2q= 7NYADars1gNIA2q7NYADars1joANquzWDSOw0gDars1g0g0gDars1g0jsNIA2q7NYNI7DSOwDar= s1g0jsNI7ANquzWDSDSOwDars1g0jsANquzWAA2q7NY6ADars1jo0g0gDaezWAA2ns1joANp7NY= NIANp7NYNI7F7Fmu/eos2bc13LlUU0UxGs1TM8IUbX6ANlJxuY17S4y3/k+FmaMLE/rXPLVp/4Y= nvn2G9XZrDaHRtsvZ2Y2Yw+Cm3ROKrjrMTXpxqrnyfs5fsdn6u35lPctHIZzJiFert+jp7jq7fo= 6e5YTJrCvV2/R09x1dv0dPcsGTWFert+jp7jq7fo6e5YMmsK9Xb9HT3HV2/R09ywZNYV6u36Onu= Ort+jp7lgyawr1dv0dPcdXb9HT3LBk1hXq7fo6e46u36OnuWDJrCvV2/R09x1dv0dPcsGTWFert= +jp7jq7fo6e5YMmsK9Xb9HT3HV2/R09ywZNYV6u36OnuOrt+jp7lgyawr1dv0dPcdXb9HT3LBk1= hXq7fo6e5juUUa6RRT3MtU6QxeXUyawpNuif1ae46ujzKe5cXMmIY9yjzKe46ujzae5fRBmTWFJ= t0eZT3G5R5lPcuTxMyYhTco8ynuRNuif1ae5fSQzJrDH1dHmU9xuUeZT3LmhmTEMfV0eZT3E0Ue= ZT3LmhmTWGLq6PNp7jco8ynuZJjRGhmTEMVymimiat2nh7HxTTTNUzNMcfY+nE1a1bvkhgmnsMy= usMc26J/VjuRNumP1Y7mSeAbSuIYpoo8ynuRuU+ZT3MswrMaG09mIY+rpmrdiiNZ9j77VmiiiKd= yn28GPB0az1kxy4Q+qTaU1hjm3R5lPcjco8ynuZJgMymsMe5R5tPcblHmU9y+iJMyYhTq6fMp7j= co8ynuXRoZlcQr1dHm09yNynzae5eY0QZkxDyIAoAAAAAADlNm8us5pi7+Drm5184a5XhopqiIq= uUxvRTOvOJiJjhpxmHNxsjZxGX5POExNyrGYi7at46idNLPXRNVuY9m5EzOvsB1Adqs7O4DMYw9= WVX780VZnXhbs11UzuWtN6ivhHD7EVzP8Ao8oRmOz+Aw31njaa8VOXW8Pau4KqqaYquVXZjdpqn= TThpc15caJB1Yd3w+x+AuZrjrNzGXreGqtWvq2rWJm7dvUb9qmrhx4RMTppx7HXM5y21l+WZXcm= uucXjLVd+umZ4UUb000RppzndmefKYBxbJcsX7dm3ers3KbVzWKK5p0irTnpPl0dkxWWbO5RRhM= Lm1eZ3sZiMPRfuVYaqiLdimunepiIqiZrnSYmeNKMu2dozKnILFnEXKKsyvXrdVdyY0oppqjjEe= ThPaDrA7rnWyuW2cpxmJw1dzD3cNTFdE3czwt/r41iJjdtzrTOnH9aOE8UWch2ajMcnyrEXszqx= WZ2LNfWW6qIosVXIjSJiYma+M6840iY58QdLZKLF+uzcv0WblVq1p1lcUzNNGs6RrPk1c/YynLM= BlVzMc6nFXonF3MLYs4WuKJqmjTfqqqqidI+1GmkTqxTgMsv5VnGNwN7GdTheo6mL27E/bnSqKt= OE6Tynhy108gOBTHGYh3rB7GYbE5fVrhcwwt/wSq/TexGJs0b1UUTVp1H85uzpMRVrPbo4q7luz= +WYPL4zWrMr+KxuHpxFXg1dFFFiivXd+9EzXOkazyj2g4bGZVj8LirmGu4aubluzTfrij7W7RVT= FUVTMco0qh8TvO1eBw2M2ozXdvXZt4bKLN61VT9je0s2tNY7JieTjL2W7P5ZhcBRm05lfxeMs03= 6/Ba6KKbFFUzux9qJ36tOPOmI4cUHXbdi9ctXbtuzcrt2oibldNOsURM6RrPk4sflduzXZ/LcBf= zmmzfxd+xg8Nhr1uZqiia4uTRrrGn/inSPJp5WfafCZVi8x2fwWCy/H267+Dw+91dym7VNExPCK= Iop3q/brGvZCjpT6MxwWIy/GV4XFUxTdoimZiJ1jjETHH8Jh2jaXZfDYHZ+5mlizicLXYv0Wq7V= /GWb81RVE6Tpb40TExyqjy8+Djdvv0qxP8AoWf4VIOBHZ8Rl2zmVVYPB5vOZ3sXfsW712vDV0U0= WIriKqYiKqZ350mNeNMeSO1lnZzLMBez361xWJuWssrtRanD6UzfiuZ0+9E7vDSfLppPMHUx2bE= YDZzLsJg7uYU5pdu46ib9Fuxdojwe1NVVNOszTO/V9mZnhTHtfBtXl2DyzNacPgL92/h68PavUV= 3aYpqnfoirlHLny/fPMHEAAAAAAAA5HZrKMVn2eYXKsHTrdv17uumsUx5ap9kRxesNn8qwuS5Rh= sswdEUWMPbiintntmfbM8Z/FrvoD2TjLspnaHGWdMXjadLGscaLP/8AXCfwiG00kAEAAAAAAAAA= AAAAAAAAAAAAAAEVArXOsqzxTMaAK6CTQEHDykwAiYQsAqTCUAjQSaAhEwkBVS7O7RMss8Yl8t6= req9nIGHREwvoifaNKaKzHBk/BEwDGmmmaqopjyrT7WbDW9I3/LPIRkpiKaYiOSQDIcABE8ELEg= rp2IWRoIg0hMwgHkIBoAAAAAAfTlWOv5bmWHx+GmIu4e5Tco14xMxPKfY5a3tXmVvM80x9FrDRc= zG1Vbro3Z3LUTGkTRGvCaY4RPHSHAAOUyXPcblOCx+Fw0Wppxtrqq6qqZ1o4TG9TpPCdKqo19sr= YzaDH4vZzCZFd6nwXC3Jroqpo0rq11mIqnXjETVVp/pS4kBzF/aLMLuW5Zgf8VTTltc12bkUzv1= TrrTvTrx3eMRy4SyZhtLisdmOYY6/gsBNeNsRYmjqfsWaY006uJn7Mxuxx9suDAc/Y2nvRhsNax= eV5ZmFzC0dXYv4m1VVcopjlE6VRFUR5IqidHyWs9x1n6uqw/V2bmX3K7tm5RHHeqmJ/DThy0cWA= 5nMs/nF4W9YtZPlWCm/MTeu4ezVFdek66RvVVRTGvmxDH9eYn63y/M+qtddgIsxbp0ndq6rTd14= +zi4oBzeD2jxNq1icPisDgcfhcRfm/NjEUVbtFc/rUTTVFVPZz46Qw4rPL961j7NOFweHtY3qt6= iza3Yoi3y3ePfM6y4oB2j+WmM8Jrxn1VlXhl2xNi9iZtVzXcpmjc5b27E6eWmI/4vkw+0t2nBYX= DY3KsszLwSncw9zFW65rop113daao3o1nlVEw4IBzeY7S47G5pjcxu2cNTdxuFjDXYppmKYp3aa= daY14T9n2xxdgyi3nGOybATTl2QZxaw1G7bu4i7u3MLTvT9iv7dOsRzjeiqNJ4auiEcOUyDte2u= fxic+ziMJVZv2MZbs2bl2KZiJm3FGtVGnCImqjs5Pjs7U4y1cyu/Rg8F4TltEW7eImiqa67cRMR= RXG9uzGkzHKJ9rgAHOY7aO5iMpv5XZyvLcFhr92i7XGHor3t6nXjvVVTOnGeHLs04sWMz7EYqnM= IvYTB1VY6m1TXXNuZqtxbiIjcmZ4a6ce32OIAc/h9p71NjDUYzKsszC7haIosX8TbrmummOVM7t= URVEeTeiex8WIzvHYmjMYxVVF+vMbtN2/cqjSrWmZnhpwiOPLT8NHGgO75HbzfHZDgqbeX5FnNr= DxVFucRd3bmFjemZpq+3R9ny8d6OMuI6QMdbzDae7et3bN6KLVqzVcs0xFuqqi3TTVNMR+rrE6e= zR18AAAAAAAdq6Ltl69qdqLWGroq8Dw+l3FVcvsa/die2Z4d7q9FFVddNFFM1VVTEUxEazMz5Hp= /oq2Xp2X2ZtWLtuPDcREXcTVpxiqeVP4R/x1Qdts0UWrVNu3TFNFEbtNMRpERHKFgQAAAAAAAAA= AAAAAAAAAAAAAAAEJlACswsCKaIXRuhlUmEzGiBUCdCYBCJhICotPFGgIRMJAYr1U00aRzl87Lc= neq1VmIFhSYRMLTGiBVdESvojQEUUzVVEeTyvoiNI0hFmndp9sr6DKEaJAVE6EwCAAEaJBUCTQM= PJv1Pm/qrHfkVfI+p839VY78ir5PYQZR49+p839VY78ir5H1Pm/qrHfkVfJ7CDI8e/U+b+qsd+R= V8j6nzf1VjvyKvk9hBkePfqfN/VWO/Iq+R9T5v6qx35FXyewgyPHv1Pm/qrHfkVfI+p839VY78i= r5PYQZHj36nzf1VjvyKvkfU+b+qsd+RV8nsIMjx79T5v6qx35FXyPqfN/VWO/Iq+T2EGR49+p83= 9VY78ir5H1Pm/qrHfkVfJ7CDI8e/U+b+qsd+RV8j6nzf1VjvyKvk9hBkePfqfN/VWO/Iq+R9T5v= 6qx35FXyewgyPHv1Pm/qrHfkVfI+p839VY78ir5PYQZHj36nzf1VjvyKvkfU+b+qsd+RV8nsIMj= x79T5v6qx35FXyPqfN/VWO/Iq+T2EGR49+p839VY78ir5H1Pm/qrHfkVfJ7CDI8e/U+b+qsd+RV= 8j6nzf1VjvyKvk9hBkePfqfN/VWO/Iq+R9T5v6qx35FXyewgyPHv1Pm/qrHfkVfI+p839VY78ir= 5PYQZHj36nzf1VjvyKvkfU+b+qsd+RV8nsIMjx79T5v6qx35FXyPqfN/VWO/Iq+T2EGRoLoO2Mx= GMz6c5zTCXLWHwMxNq3eomnfu+SdJ8lPP8Zj2t+mkAAAAAAAAAAAAAAAAAAAAAAAAAAAEo0SCIE= 6IkUEJERMImFgVRC8xCsxoCEaSlIKidIRMAMV6dOEMkzpGssEzvTqCso0WmOxAsI4disxw4QugF= J17FrdO9V7EstFO7HADTsNEgipMJ0AVEkwCJ0VnVYBUTMGgIADLkAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANEJAQEwAACInkrouBljFppVq+zGo= rHcnXgxzHYvMcUApx8otMaomAVlCxz4Cpt06zrLIimNI0SIjQlICponSEaAiYQscAVNE6IBAlEw= CNOxCwD7gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAABEaSJJBAaApDFcnWpeqdI/FjkRWY0RosiYgVExohZExAKzTqminSde5OkrQAaACJ4CUaA= AAiYQsAqTCdEAhCyNARoaJQD7QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAETCUV8tAY6p1lCSYBWYQt+wBUmE6I46gmmNOaQBEoWJBUTpKA= NESkBAmdEaSAjRICJhCwCponTjpDNFqNOcgyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKpmfICSroiYXRoLlREwvMI0BWeCY5ABMdiEkgg= JiQA0gARKFkaAgACYRokBAnQimZnSAXs08d5lIjSNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAETr5AAAABBEpAVmEaLExwFUE6IAJAEaCT= TsBAACJhICotPFGgIZbVOnGWOiNameOQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEo0SCIE6IFAAABMHBXRYBSYFpRMT5RVRMxICCY7A= BAlEgAmiNavYC9EaRr2rAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAIaISAgJgFAAABEaImFkAroheYRoKqJQBLJRGkK0RrOq4AAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAmEaCTQEBoCgAmAAETCsx7FyATEaACgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoAiJEmgqAAISiISAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAJgNAFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAB82Z5hgsswdeMzDFWcLhqNN+7dqimmnWdI1meXGTB47B47DU4jA4qzirNX3blquKq= Z/CYXE4ym0Zxl9I0DjenHNsl2tzPLcxyzDY3B4bGXbNE2pm3cppprmImddYmdI9jc2x2e4faXZ3= CZ3hLV21ZxVM1U03YiKo0qmJ104c4d73EvWKYqrjxLz2eXavVTTTPmHMDiNsM+wezGzePz3HzV4= Pg7U3KqaedU+SmPbM6R+155y3pc6Ydrb+JxOymz1ivCWq92YtYWbm5rxiKqpmNZ07O3k870vTo0= vs3tV0xUbJZ5j842bouZph68PGX4avD7kXYqmqLnKrjpGk820NkMfmWO2YwOOzzC0YHH3bMV4ix= GsRaq8scZkHMCsXLc8q6Z/ajrbXpKPeBcRvU6a6xp2q9bbnlcpmfxBcdG2D2h2xzTabO8HtFkVr= LstwtdUYHEUxMTfiK6o1nWZ8kRPk5u7dda9JR3guETE8pAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdA+kFH/ZVm8/1X8Wlqv6= KNdz+Vua2+sq6ucDvTTrw136Y10721PpBf0U5v/uv4tLVP0Uv0yzP+z/+ZS+1x4/7dc/P/T4nJn= HqFv8AL/bXPSF+nmf/ANo3/wCJL1F0Ef0UZH/V3P4lby70hfp5n/8AaN/+JL1F0Ef0UZH/AFdz+= JW9fq/8pb/x+jzel/zVz/P6uH+lD1vidzPq9dOtsb+nZ1tP/wClPosRgvFBgYwu510X73hW7z6z= fnTX27m5+533a7IcHtNs5jsjzCJnD4y1NuqY50z5Ko9sTpP7HnjAdD/S/spexGG2U2is0YO7XvT= VZxdVrf8AJE1UTGkTppy1/F+ah+kbP+k9rT0OZpVFUxMXbHGP62lo7pD2lx1vYXYLZmMxxODyy5= ltGIxlVjXer1rmI1jWN7SKZmI1iJmfwbDnYHpVzbo42iyPabMreYY3F3MNVgou4uKqaYorma+On= DWN3uZdpuhrPcy2L2Ury7G4fBbSZFh6bUzVXPV1xFW9GlUROkxMcJ08vEV1Douw3Rp/KWqrZ3MN= qr2aUYHEzRGNotU2Z/xNe9ru8eWujrnRv0cYPano02h2ov5rjcPisri9Nq3b0mivctRXx8vGexu= fZbKOmarMJsbS3Mkry25hr1u51FFqmuapt1RTxppifvaI6KejvaTZvoq2m2dzO3hox2Y03+oi3e= iqmd+zFEaz5OIjUV7braHDfR8wGW28xxMXcTm17CTfi5O/GHoooq3N7XXjNyI/CNG0Njfo/wCW5= ZisozrGbRZhfx+FuWsTcpoimLVVymYq0jXjprGjjsq6EM4xfQ9c2ZzW7hcHnFjNK8bhLlNzft6T= RTTNNUxx0nSfw0jnychshkfT5lWYZVgsdneXX8nw161Rej/FVV1WIqjejemjemd3WNZnUHVeiq7= l0bT9K9OdYyvC5dVbxNGIvUz9qiiq7ciZp4Tx48I056NfbRW+i21lGJr2ezba+cyt064ecTbtxb= qqjtmNKo/HydjcGUdDu0N+5t/h8yu4bDWM/qmrB3aLm/pMX5uU70Ryj7uriLPR300YTY+5shY/k= /OVVW67PCaN6aapmZ+3NMVeXnzBtH6O2bY7OeijK8XmN+vEYiiblmblc61VU0VzFOs+WdNI19jY= bo/QdszmmyPR7hMkzim1Ti7V25VVFqvep0qqmY4/td4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0D6QX9FOb/7r+LS1T9FL9M= sz/s//AJlLa30gv6Kc3/3X8Wlqr6KX6ZZn/Z//ADKX2+N/465+f+nxOT/5C399tcdIX6eZ/wD2j= f8A4kvUXQR/RRkf9Xc/iVvLvSF+nmf/ANo3/wCJL1F0D8eijJP6u5/Erer1f+Ut/wCP0eb0r+au= f5/V3iZ0pmXmO30+dI2NzXGYLKNlssx84euqJpsYPEXKopirTWYprenJ+7LzL9E+YjpM2p19BV/= Gh+ah+kc1sN0+5rd2ssZBttkNjK5v3ItRdt0XLU2ap+7v0VzM6T26xo2Thts86u9KN/ZKrZbFU5= bbo3qc1+11Vc9XFWkfZ05zNPPyNL/TDs4W1tbs/i8PFMY2vD3Kbkx97dprpmie+qtylvPsbgPpN= ZvcxOKxM4PCZdVfrw8Xatz7ODoqn7PLyA9GOD28zrG7P7LY3N8uyu7muJw9NM0YS1rvXNaoidNI= meETry8jzn0fbPbadMNWabQ4/bjG5XYtYmbdu3aiqunXSKppppiumKaYiY48XEbJ5hnGH6OOky1= czjHX7uCnCW7d2u9VvRpfriZjj9nXQG79rekbPMq6GbW21GSWsDmVdymmrA42muYt63Zo4/dnlG= vk5u6bA5xiNoNi8ozvF27VvEY3CUXrlNqJiiKqo1mI1mZ0/a807Y5Li8z+jts/tZic6xlVWFoqs= 14aqqaqb01Ymv7VUzPOI5cJd16ONiLGT9FOIz7M9tcdhMDmmS0xXNWu5goq3at6j7XONNI005g3= 61f0y9ImcbF7SbM5blmEwF+1mt6qi/ViKK5qpiK6I+zu1REfennr5GgdpsRs/lmV3Mbsz0rZ/j8= yszTVasV4a/aivjETMVzOkTEazx56Of6QM5xu0GXdE2bZjX1mMvVVxdr8tdVN63TNU+2d3X9oPV= 0TrCUU8kgAAAAAAD5c1x2Gy7LcRjsXci3Yw9E13KpnlENIXum7OovXOpynAdVvTub81b2nk10nm= DfI0J47s/8AVOW/H8zx3Z/6py34/mDfY0J47s/9U5b8fzPHdn/qnLfj+YN9jQnjuz/1Tlvx/M8d= 2f8AqnLfj+YN9jQnjuz/ANU5b8fzPHdn/qnLfj+YN9jQnjuz/wBU5b8fzPHdn/qnLfj+YN9jQnj= uz/1Tlvx/M8d2f+qct+P5g32NCeO7P/VOW/H8zx3Z/wCqct+P5g32NCeO7P8A1Tlvx/M8d2f+qc= t+P5g32NCeO7P/AFTlvx/M8d2f+qct+P5g32NCeO7P/VOW/H8zx3Z/6py34/mDfY0J47s/9U5b8= fzPHdn/AKpy34/mDfY0J47s/wDVOW/H8zx3Z/6py34/mDfY0J47s/8AVOW/H8zx3Z/6py34/mDf= Y0J47s/9U5b8fzPHdn/qnLfj+YN9jQnjuz/1Tlvx/M8d2f8AqnLfj+YN9jQnjuz/ANU5b8fzPHd= n/qnLfj+YN9jQnjuz/wBU5b8fzPHdn/qnLfj+YN9jQnjuz/1Tlvx/M8d2f+qct+P5g32NCeO7P/= VOW/H8zx3Z/wCqct+P5g32NCeO7P8A1Tlvx/M8d2f+qct+P5g32NCeO7P/AFTlvx/M8d2f+qct+= P5g32NCeO7P/VOW/H8zx3Z/6py34/mDfY0J47s/9U5b8fzPHdn/AKpy34/mDfY0J47s/wDVOW/H= 8zx3Z/6py34/mDfY0J47s/8AVOW/H8zx3Z/6py34/mDfY0J47s/9U5b8fzPHdn/qnLfj+YN9jQn= juz/1Tlvx/M8d2f8AqnLfj+YN9jQnjuz/ANU5b8fzPHdn/qnLfj+YN9jQnjuz/wBU5b8fzPHdn/= qnLfj+YN9jQnjuz/1Tlvx/M8d2f+qct+P5g32NCeO7P/VOW/H8zx3Z/wCqct+P5g32NCeO7P8A1= Tlvx/M8d2f+qct+P5g32NCeO7P/AFTlvx/M8d2f+qct+P5g32NCeO7P/VOW/H8zx3Z/6py34/mD= fY0J47s/9U5b8fzPHdn/AKpy34/mDfYAAAAAOgfSC/opzf8A3X8Wlqn6Kc/++WZ/2f8A8yl6A2q= yLAbSZLfyfM6K68Lf3d+KKt2eExMcfxiHUcs6Idlsruzeyy/m+BuzGk14fH10TMdk6fsfSscu3R= xa7NXvL5nI4tyrk03qfaHnvpB2c2h/lnneJnI8x6i5j71dF2MLXu1UzXOkxOmmjb3Qj0ibNYLZn= LtlsyxNeW4/D79E+E07luqZqmrhV5Of62jv+G2Sv4SdcJtXtDR2Rcv0Xo//ACUSpnex/wBaWYox= teW5lpGmuPwFNdU/hVRNOnc6X+fRyLUWrkeI+bnZ4Ndi5N23PmXaqK6LlmK7dVNdNUaxNM6xMPK= mz+wPTZsttBmWZbM5TTh6sXVVTVXOIw1W9Rv6xwqqnTyS3xkWymY7OxrkOK6ixE8cuv36r2H08u= 5VMb1uefbHsdvwN2q9YpuV2qrNcx9qiqYmaZ/GOE/jD5dURE+Jy+pRVMx5h5syLom6RdrdvMNnv= SNXRbsWK6Krm/et1VXKaJ1i3RTb1iImddeXOZ4y7fRsDtBf+kRme0uKyuP5P4vDVWZv9dR9qKsN= TbmN3Xe5xMcm6yeTLbzVs9sf0ydG2NzHA7H4fA5nleIu79NV27b0nSNIq3a6qZirTSJ8nDyusdF= mTZ3tPsX0lZZl+FpxGaYqrCf4uK6aaZr665VVEVTOnknytqZv0B4bMc0xeNq2zzu14TeruzbpmN= 2neqmdI9nF3rox2AybYDKLuX5RVeuTfudZfvXpia65iNIjhERER5I/EHQb/R/tJjPo2YXY2vC2s= PnliZr6iu9TNMzF+quKd6JmONM683DYDZTpWzrovx+w2f5VgcBhcNg7dOXXYvUTXert3Kaoormm= uY40xMa6Rx0bS262mu5bmeXZXgK5667dprxW7FG9bszFURMTXMU8ao9s6RVMROnDrWf7dZ3Yu4W= xhbNui7ZiunF9XRFcXblM1UxTTEzG7TNVFems68aNeejtRYrrxj5uNV+mlqy/sL0sXdi/5LT0e7= PU2otxbjG2/B4xM6VRVr1nWc5056cnNZr0aba38h6OsNbybevZNXdnH0xibX+J3r9Ncc6vtcI14= atjYTbjG4LIMLi8dh7mJmvfszXNMU1V3KadaaopiNNKt2r4ddJmX04bbPE5ljMDlOBtf427dt7+= JiNImiKp353J+7NVNHCNZ0iume3RPHrhfj0y2BRPBZWjXRZxdQAAAAHA7ebRWNmNm8Rml3dquUx= uWLczp1lyeVP/AJz7IkGsPpB7VxXdo2XwVz7NMxdxkxPOedNH/nP7GnGbHYq/jcbexmKu1XL96u= a7lc85mebCoAKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAPaADIAAAAGgAaQACN2OxMREcgAAAABxeJyTAYjNZzOu1XGJqs9RXVTVMb9ETMxEx7NatJ= 58Z7X3RhcPH+Yt+7DMLmU1hinDYeaYpmzRNMTMxG7w4lGHsUVb1FmimdddYp4/8ArjLKJkxBEAC= gAAAImdImdXm7pr2snaHaSrA4a5M5fgKpt0aTwrufrVe3sj8Pa2p007Wfyd2bqwuFubuYY+Jt2t= OdFHKqv9+ke2fY82rAAKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAPaADIAAAAAAAAAAAAAAAAAAAAAAAA84dPtddXSFepqrqqposW4piZ4Uxprw7= OMz3tfAsAAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAA//Z" width=3D"794" height=3D"1122" alt=3D"" style=3D"margin-top:-36.2= pt; margin-left:-85.35pt; position:absolute" /></span><span style=3D"font-f= amily:Arial"> </span></p><p style=3D"margin-right:0.1pt; margin-left:0= .5pt; margin-bottom:0pt; text-indent:-0.5pt; line-height:normal; font-size:= 10pt"><span style=3D"font-family:Arial"> </span></p><p style=3D"margin= -right:0.1pt; margin-left:0.5pt; margin-bottom:0pt; text-indent:-0.5pt; lin= e-height:normal; font-size:10pt"><span style=3D"font-family:Arial"> </= span></p><p style=3D"margin-right:0.1pt; margin-left:0.5pt; margin-bottom:0= pt; text-indent:-0.5pt; line-height:normal; font-size:10pt"><span style=3D"= font-family:Arial"> </span></p><p style=3D"margin-bottom:0pt; line-hei= ght:normal; font-size:10pt"><span style=3D"height:0pt; display:block; posit= ion:absolute; z-index:-65533"><img src=3D" AAAANSUhEUgAAANIAAAAkCAYAAAD8UmRGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADs= QBlSsOGwAAB+5JREFUeJztnFlIVO8bxz+OOZqaMq6ZjUuhaeaCC45mVJRkEGmLgTd1URQURATSR= XTTXTcREhVFQRcRtJAXlWgWZKhEOVMp7mszuc3oqLjkuP0vxEFtRmf09FP7v5+7c+Y7z/k+z+E7= 73sOqMO1a9emEAgEy0K20gYEgn8BESSBQAJEkAQCCRBBEggkQARJIJAAESSBQAJEkAQCCRBBEgg= kQARJIJCAfy5Ily5d4sSJE5Jr/xZSeDh79iznz59fUj0prp+bm0tOTs6yaqx11q20Aam5devWX9= H+LaT2YG+9+foDBw4QGRm5KmazlvjnViTB8vDw8MDZ2Xmlbaw5bF6RLl68yMjICA8ePAAgISGBz= MxMSkpKKC4uBuDChQt4eXnR2dm5qG5kZAR3d3ebao6MjPDo0SNgeisyPDzM/fv3zd4yMzOJiYnh= 9u3bnDlzBp1Ox9OnT4HpX9jY2FhcXV2RyWRUVlby/PlzYHpLMlvr5ubGsWPH2Lx5M87OzoyOjtL= W1saTJ0/M+s7OTjZs2ICvry/j4+PU1dXx4sULAOLi4khLS0OhUADQ3t7Ow4cPzT5zc3Pp6OjA29= sbhUJBfn4+6enpdnnw9vbmyJEjBAQEIJPJ0Ov1TE5OzrnG7Hq+vr5kZWWxcePGOXqZTMadO3fm6= C9evIiPjw8A169fx2AwkJeXt2hfC2HLTOfP5NevXwt6Xo3YHKTOzk5CQ0PNx+Hh4UxMTBAYGGg+= p1Ao6O/vx8vLa1FdfX09CoXCppr19fXmY61WS2RkJG5ubgwNDQGgVCrp6OjAaDTO8RwaGkpKSgr= fvn3jw4cPDAwMLNhjTk4Ovr6+fP78mcbGRqKiokhISCA7O9scvpCQEKqqqnj79i0qlYro6Giam5= tRq9XExsai1WopKirC39+fvXv3cujQIV6/fm2+hlKp5MePH1RXVzM8PGy3h6ysLHx8fCgpKUGn0= 6FSqQgLC6O7u9tiT5mZmWb9z58/SU1NtarPy8sjOzubLVu2cOPGDfN5W/pazkznz8Qez6sFm4PU= 0NDAjh07iIyMpKamBn9/f3Q6Hd7e3gAkJyfj6OiIRqMhPT19UZ1arSYoKMimmmq12uzj69evREd= Hk5KSQnFxMUFBQfj4+FBUVPSH55lftF+/fi0aovDwcJRKJWVlZbx//x6AtrY2PD09CQsLM+sMBg= OvXr0CoLW1latXrxIcHIxarebx48dmXX19PXFxcfj6+s65zsDAAG/evFmSh9DQUJRKJaWlpXz8+= BGApqYmLl++bLFeSEgImzdvpry83KxvaWmxqreGLX0tpZ8ZZs9EKs//NTYHSaPRcODAAbZt20Zf= Xx/u7u68ffuWnJwcAgICCA4Oxmg08unTJ3bu3Lmorqenh56eHptq9vT0mH20tbVhMBjMK1lCQgL= Dw8OUlZX94bmiooKkpCQyMjLYvn07X758obq62mJ/ISEhwHRQZ9Pe3k5kZCQBAQEA9Pf3z/ncZD= Kxfv16AKKjo0lMTEShULB+/Xrkcjmjo6Nz9PO/b4+HqKgoHBwc5vywAAwODrJu3Z+3Mjg4GJlMZ= rPeGrb0tZR+LM1UKs//NXa9bDAYDPj7+xMfH09/fz/19fUMDQ0RExODn58fnZ2dduns1c7Q2tqK= n58fcrkcpVKJVqu16NdkMnHv3j3UajXe3t4cP36c/fv3W9TOPGfMft6YzcwD+NTU3L+DnDneunU= rmZmZuLi4UFNTQ0FBAV1dXX/UmZiYsFjfFg8uLi4A/P79e855mczybXR2dmZycvKP8FrTW8LWvi= xh60xnz0QKzyuBXe60Wi1eXl4EBgbS0dEBgF6vZ9OmTSgUChobG+3S2audoby8HEdHR/bt24dCo= UCj0Vj1bDKZePPmDTdv3qS3t5eIiAirvcH0CjebgIAARkZGaG1tXXA2ERERyGQy7t69S0FBAWq1= GldX1wW/Y6+HhoYGHBwciI+Pn/O5p6enxXp6vR6ZTEZycrL5nFwut6q3xHL6WspMpfC8Eti1Vqr= ValQqFT4+PuatlE6nIzk5mfHxcfNybKvOHm1QUBAnT57ky5cvFBYW0tXVRVRUFEajkdraWot+9+= zZg1KpRKPRMD4+jlwup6+vz6K2rq4OnU5HUlISk5OT5gfjsLAwq9vB2QwODuLo6EhGRga1tbWkp= qayYcOGRZ/N7PHw/ft39u7di0qlYmxsjN7eXnbt2oVcLrdYT6PRsHv3blQqFSaTCaPRaNbPX1ln= 9+Hi4kJ8fDwmk8nuvubfJ3tnuhTPqwG7ViS9Xk9fXx/j4+NUVVUB00FwcnJCr9fbrbNXO5umpiY= 8PDxoaWmxqqmsrMTFxYWjR4+SnZ3N8PAwhYWFVvX5+fl0d3eTmprK6dOniY2Npbq6mpcvXy46m4= 8fP9Lc3ExSUhKnTp3Cw8PD5i2QPR6Ki4sxmUxkZGRw4sQJxsbGFrzOu3fvMJlMHDx40Kw3GAxWt= 5ilpaUYjUYOHz5MWlrasvtaykzt9bwacBD//OT/jytXrtDS0sKzZ89W2orNrHbPq/c1iEASzp07= h1arpbq6GoVCQWJiIk5OTlRUVKy0NausRc8iSP84NTU1JCYmkpSUxNTUFH19fRQWFtLU1LTS1qy= yFj2LrZ1AIAGr++W8QLBGEEESCCRABEkgkAARJIFAAkSQBAIJEEESCCRABEkgkAARJIFAAkSQBA= IJEEESCCRABEkgkID/ATVU8gvLuCaFAAAAAElFTkSuQmCC" width=3D"210" height=3D"36"= alt=3D"" style=3D"margin-top:9.25pt; margin-left:-39pt; position:absolute"= /></span><span style=3D"font-family:'Times New Roman'"> </span></p><p= style=3D"margin-bottom:0pt; line-height:normal; font-size:10pt"><span styl= e=3D"font-family:'Times New Roman'"> </span></p><p class=3D"Header"><s= pan> </span></p></div><p style=3D"margin-bottom:0pt; text-align:center= ; line-height:normal; font-size:18pt"><a id=3D"_heading_h.69g4nk60n4yq"></a= ><span style=3D"font-family:'Times New Roman'; font-weight:bold">An=C3=A1li= sis de las respuestas emocionales a videos promocionales: un estudio de cas= o con los estudiantes de primer ciclo de la Facultad de Ciencias Administra= tivas y Econ=C3=B3micas de la Universidad T=C3=A9cnica de Cotopaxi</span></= p><p style=3D"text-align:center; line-height:108%; border-bottom:0.75pt sol= id #5b9bd5; padding-bottom:1pt; font-size:14pt"><span style=3D"font-family:= 'Times New Roman'; font-weight:bold"> </span></p><p style=3D"margin-bo= ttom:0pt; text-align:center; line-height:108%; font-size:14pt"><span style= =3D"font-family:'Times New Roman'; font-style:italic">Analysis of emotional= responses to promotional videos: a case study with first-cycle students fr= om the Faculty of Administrative and Economic Sciences at the Technical Uni= versity of Cotopaxi</span></p><p style=3D"margin-bottom:0pt; text-align:cen= ter; line-height:115%; font-size:14pt"><span style=3D"height:0pt; text-alig= n:left; display:block; position:absolute; z-index:0"><img src=3D"data:image= /jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQ= EBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBA= QEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/= wAARCAAxADADASIAAhEBAxEB/8QAHAAAAgIDAQEAAAAAAAAAAAAAAAgFBwMGCQoE/8QAMRAAAQU= AAQMDAwEHBQEAAAAAAgEDBAUGEQAHEgghMRMUIgkVMjVBUWF0FrGztMHw/8QAGwEAAgIDAQAAAA= AAAAAAAAAAAAgCBwEDBQb/xAAtEQACAgIBAgUCBQUAAAAAAAABAgMEBREGABIHExQhMSJBCBUWY= XEyUYGxwf/aAAwDAQACEQMRAD8A9zPbalqrXt/irW0E5thZ5XP2E6bIkPG/LmzaqLJlyHjVxfJx= 190zPxQQRV4AAFEFJ6/r8Xnqayvbc4VbV1MR6fYWE6YUeJDhxQV19995xwQBttsVUlJfj4RS4Tq= u+1tz49tsAHkv4Y3Mj+9wieNLCT4X+XKL8+y/P9+qE9WMOX3Jz2c7WM3Munjau7hHYPwzFPuGYs= uMMeNMBVRXYayHRkPNIqERx2VTlR8C8/yTlWD4fj0zPIbM1XFC7QpzTVq8luwsuQvVcfXWKtGQ8= zvYtxDtUgqvc7aUb6n6DM5GK3WwFFMhmBRu2aVKWdasVh6laWwUkncgRjUezsguNqm29ulF7yfq= a9vsnaPV+Dx1ZOr2XXAZu9PPsIp2Igij9xCponlM+1Pnls3zZeJPcmG+URY7tH+p5hdLbR4G4xd= S3Xuk2L1rlrKwclQQNePuJNNPMJL8dvnlxWXVcFOUbBw/w65gfqVZrL4X1GxcPlIsaurKLtvj2I= sNrwF5wFGf9SdI8UQnpEx9HHpEgkVx18jI+PYR139O3N0uv9VWJzejr2LSltaLeRLOFI4Jt2K9i= 7xvnlfcHWnSaeYcbVHmX22X2jF1oSTgv4q1F5mONJx6i+JGUXGtcM8/5m2yIzaL+atVJQfrEBhf= 6AE7mYg9OXT/AAEXLX4X5vHaXxf5InPRwOfnA47HicJLwoNDSe6MG1VqxyjV5GQQesXJo31CUxM= NqfXHlhweyoazS0DkKzpraK1Lrp0OU44xJjOj5AYF9VfyTlRMF4JshIDESEhTHsc7SRMpo5kNtY= 0qJR2kmPIakSAdYfYgvusutOA8BNuNuCJgaLyKjynC+6c9vRVfWeD1/evsJMsH51Rg9CtjmHHiV= Var5s2XGltJ+XDaPeECZ9MAQUkPS1UUUuSejZXKFkNQKnyhZ+4T5X4Wukp/vx/8nPVlZCr6K00B= bamOOaNm2CY5kWSPe/fuCMO7+Qfg9IdxLONyPB08i8Igs+ZZpX4UYPHBex8707iIy+3lizDL5QJ= 2IuzZO9mme3Vqodv8SPmP4ZPPD7KvtxUxE9/fhF/px/b4603u4Et1ml09eiOSs3OCSYjySo19Rp= 5t0kRFLwbfYBDUOVQXVJU4FVTXsPcK3jcsJmgi1nqgVX+QiEFlFX2ReeETlUT3T4+eoOu739rtB= PcpKvuBj7awWwKmOsh3tbKku2BNWbq14x25Kk9IJqmti+mPkhjW2HipJDkINY+IXEIuecRy/G5b= TU5rsCvQvIoLUcjVmjt4+4vsdGvcggl2qsSEK9p31YOBzD4TLU8nHEthIGlSeBvZZ4J4mgniO/c= d0Mkg2Af6tgEgdJt3d9DWf9W/qbj99tvsVrO39Zk8zThkaKQ4xpbe1qymuTY1lNMBGoq+ZDQo5G= WRLnB9RGjhogvFP5X0Z5b01eoLP99cDoPLDVVfqgn4izeKRew5VlnrCHBj56WqElsy7KfbYSPNN= qRHEhcelPghKjRz8tV/cuS6uzep3V/JwGHB+iCEXsqIjjbjQKX7v5k2nHDYont1H1tTnbF+ZJma= NL8qeU9EsG1ltuBDkwwbdkR5y/WecZcaadaN5k1BBacaIvIXE6oylV8XaZWnL4V8avcl9fBYk5q= /Ko0wVmxCU3lJMcIvzhIpSnmPjVbuAcxLYU9rKxx8d84MBPx2DxKzNbhkvE7HEP0UMKWQYWxV9O= 0Cd0rUHvoWDw5N2E6he0OsLPEYH0m0+ifvO6XeHV18inse4l8QV1dMA25MathS5LzyKJohI0sl9= qMyaiiPBBN1tSbNCVudVZ+eY0Q+QrzSWqL7/wBYL6Lx7/Pv8Lx7fPVRZ7a56+pq63zFxVW9FPiB= JqrCqmRpddLhKSttSIUqMbjD8YkRBB5hSaJfYSJPyLLoLdXKC6Tz9iqLFORVOF5iPJwipx8r/P8= A96ayW9cumOxdECWjBXjmSsG9MrwwRxMK4k3IIdx7jDkv267yX2ek845gqXG8euJoST2IY5rVhr= VkILFia1ZksyzTiMLH5srzMzBB2rrQ2Pc0tnrQXcjUwSeMBdoYcVSbLxcEHIINkQGnsBihL4kor= 4knlwvHHSJy+yNbFp+32Q7od1e1hZTstFrqumgFm4VJa2Oeo+325p4cvY2E29cdS2cqpqXslqCk= amc/05bWbcAPuUStZinv48err4zz4NPRoceO604bYONPMNiy6y62RoQONONk242QoQEKiSISKnS= xd7fT/Rd2peouou8tqG1vs3ZVbVan7CkZ39sycTsMNBupovVj9yX2VVtLI1hxLSPEekMxnnWDUC= FzR13wNfHt9+qnc7a0mWjU1nc+pzH68r6zwlJWwrUrG6h9yp5XeeyTdPsINTqBlXdFCunR+yfZK= S5QukDs5VjR7QJlw9s4nbPA7fVlZ9+8XrYvc/A6Rh6jedBykpo2WhZmqvJVFPk39mxXVzzVg25p= ay6nzrG3a/ZEhuU4zVTTOIl+mHEzpcmfK7kbRZ91oc5pdXNYXDRndHZZLTQtTnS8GssLWfbr5sB= iO6maGqWwiqf3qvSl+4WCj+kDtwzDlRHu4u0nFNbsAlyZS4lXXzmhg3AdcFvNC0Zx7Htvl7RfqN= uJOkNT49kkyJZSWlmrAL2nZG96+32/f+46D9Xzo/4H7H/g6wZf03ZqalBhaHvlip8OBncu6sKgS= QOnv85WVeJgyaKU1B1JslhJBUErQV7UeOsiPbXaTDkqiyHbfpdMsIkHNTK6GARocSnkRYsZoFBq= PHZiE0yy2KcCjbYCICKIn4oiJ0j3bzsPhe22yrNnR6e2WXX08mskQAj4+ogXMiY0LUixuUz1BUS= Z5oqFIiwZD5woMoydjACIDaMRY6GK7AmtNyGzceivtNgDrZm4bjRCAAAmpGRkqCIiiqSqiIir1A= /J18fboAAGgNdPTc/xWx/z53/cf6jOjo6OsL8D+B/ro6Ojo6Os9HX0wf4hXf58X/lHo6Ojo6//2= Q=3D=3D" width=3D"48" height=3D"49" alt=3D"" style=3D"margin-top:68.39pt; m= argin-left:405.65pt; position:absolute" /></span><span style=3D"height:0pt;= text-align:left; display:block; position:absolute; z-index:1"><img src=3D"=  VQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAA2lJREFUOI21lEtoXVUUhr+197n3nNzb= JN6omdTWRmwbikVq4iMxk0ZU2oGgA1FnQcQiUhUnFqo4cGIRQUGd+KDY+Jp25ouiGCOxElqjhba= 0URPzsPQmuY9zzj1nLwcnuU1iQ0f+mzXZe///Wv/aiy1cBV/83NNOPr/VWHunqO5OVNuNlQVjmZ= CGjCVhcPHR3q8XrsaVNUITu/KSlu7LFeSpNNZ+57RTjDTvqFM1IvNiGXWJvD/9x8yXB/efizYU/= Hy8/0W/aA/Xq43r1P3nOCNIFsW2XLleTd648Z/863v3nkjWCL59dp/fWSsfzOXNkShKacvfgnMR= lXjqqqIrwr5vkihyhxbT+K2ne082AAzADZXyPj+wL8ehQ1NH700v0N35OAroutW0rxDF6rUUvdd= aJfdwM9HwqYFSa0GO1SrpfucUVUXEZCQcqQtZ0VEU1QTPtmAkDygiEBTsTxq6hx65fWTOy7l0ex= jKgGrGcjTo2/oKS9EUZ2aPcf/Oo1iTI9UGqFJrzDF5+Sv+Wvg+y+IEVXaGibsbOO5hGBSkbUUQd= RT9zaQuBhE6Ct2MT7/D9OIIVnw6Ct3csfk52oNtTMwcBbE0YteeC7we4LinSI9Z03dBNUVxTdu1= eI7FcBIjHvPVU1Tjv7nn5sNMXv6WSjyFiIg17AAwqpRW9fqayNkiM0tjqDrag67mDCi0ARiB6ga= TsSEEg4htusj2qGeCIr9dW0JR3PKrR2zreIDURZTrZ7NTBYdeBPAU+cY59zxCkFlXjHiI2GY1pZ= btRMkC1gZcX9hFV+lBTs98SDWexYjFGqkldT0J4EkY/ZovBb+klbQ/G1zDYvQntXgWFC5VJ9hSG= mRLaRCnCZeqE3x34SXK9XMY8bK+BvZ8JUzGAEQV+Wy87xm/xbwZ1lwewGmCIIhYnCZXjKvDaQNr= fIzkAKXYZl11wR16omfkyHIP0RB/2CV8GrRkNldbNmKbYU2enC0uV6bkfUNUd8P1ury3ktQADO0= 5UV6azx1IE/dRULDomjGSVXEFhVbrXMoncTV99smBH5ZW327igzP3trY2ONCyyQ6FtbRLUw2yZ8= p+FwARifyCvRDV048rcfXdoT3j5fXp1+BVxdx2um+HGnuX9egX4dY01U0iVK2R80nMaELy42O7R= 39fz/1f8C/hZ5YvjpSKGwAAAABJRU5ErkJggg=3D=3D" width=3D"20" height=3D"20" alt= =3D"" style=3D"margin-top:15.3pt; margin-left:201.95pt; position:absolute" = /></span><span style=3D"font-family:'Times New Roman'; font-style:italic">&= #xa0;</span></p><table style=3D"width:395.55pt; margin-bottom:0pt; padding:= 0pt; border-collapse:collapse"><tr><td style=3D"width:3.25pt; padding:0pt 5= .4pt; vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:center;= line-height:normal; font-size:10pt"><span style=3D"font-family:'Times New = Roman'; font-size:6.67pt; font-weight:bold; vertical-align:super">1</span><= /p></td><td style=3D"width:171.95pt; padding:0pt 5.4pt; vertical-align:top"= ><p style=3D"margin-left:7.1pt; margin-bottom:0pt; text-indent:-7.1pt; text= -align:justify; line-height:normal; font-size:10pt"><span style=3D"font-fam= ily:'Times New Roman'">Scarly Paola Guevara Cadena</span></p></td><td style= =3D"width:10.5pt; padding:0pt 5.4pt; vertical-align:top"><p style=3D"margin= -bottom:0pt; text-align:center; line-height:normal; font-size:10pt"><span s= tyle=3D"font-family:'Times New Roman'"> </span></p></td><td style=3D"w= idth:166.35pt; padding:0pt 5.4pt; vertical-align:top"><p style=3D"margin-bo= ttom:0pt; line-height:normal; font-size:10pt"><span style=3D"font-family:'T= imes New Roman'">https://orcid.org/0009-0009-7749-5076</span></p></td><td s= tyle=3D"padding:0pt; vertical-align:top"></td></tr><tr><td style=3D"width:3= .25pt; padding:0pt 5.4pt; vertical-align:top"><p style=3D"margin-bottom:0pt= ; text-align:center; line-height:normal; font-size:14pt"><span style=3D"fon= t-family:'Times New Roman'"> </span></p></td><td colspan=3D"4" style= =3D"width:370.7pt; padding:0pt 5.4pt; vertical-align:top"><p style=3D"margi= n-bottom:0pt; text-align:justify; line-height:normal; font-size:10pt"><span= style=3D"font-family:'Times New Roman'">Universidad T=C3=A9cnica de Cotopa= xi (UTC), Latacunga, Ecuador.</span></p><p style=3D"margin-left:7.1pt; marg= in-bottom:0pt; text-indent:-7.1pt; text-align:justify; line-height:normal">= <span style=3D"height:0pt; text-align:left; display:block; position:absolut= e; z-index:2"><img src=3D" AAAAUCAYAAACNiR0NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAA2lJRE= FUOI21lEtoXVUUhr+197n3nNzbJN6omdTWRmwbikVq4iMxk0ZU2oGgA1FnQcQiUhUnFqo4cGIRQ= UGd+KDY+Jp25ouiGCOxElqjhba0URPzsPQmuY9zzj1nLwcnuU1iQ0f+mzXZe///Wv/aiy1cBV/8= 3NNOPr/VWHunqO5OVNuNlQVjmZCGjCVhcPHR3q8XrsaVNUITu/KSlu7LFeSpNNZ+57RTjDTvqFM= 1IvNiGXWJvD/9x8yXB/efizYU/Hy8/0W/aA/Xq43r1P3nOCNIFsW2XLleTd648Z/863v3nkjWCL= 59dp/fWSsfzOXNkShKacvfgnMRlXjqqqIrwr5vkihyhxbT+K2ne082AAzADZXyPj+wL8ehQ1NH7= 00v0N35OAroutW0rxDF6rUUvddaJfdwM9HwqYFSa0GO1SrpfucUVUXEZCQcqQtZ0VEU1QTPtmAk= DygiEBTsTxq6hx65fWTOy7l0exjKgGrGcjTo2/oKS9EUZ2aPcf/Oo1iTI9UGqFJrzDF5+Sv+Wvg= +y+IEVXaGibsbOO5hGBSkbUUQdRT9zaQuBhE6Ct2MT7/D9OIIVnw6Ct3csfk52oNtTMwcBbE0Yt= eeC7we4LinSI9Z03dBNUVxTdu1eI7FcBIjHvPVU1Tjv7nn5sNMXv6WSjyFiIg17AAwqpRW9fqay= NkiM0tjqDrag67mDCi0ARiB6gaTsSEEg4htusj2qGeCIr9dW0JR3PKrR2zreIDURZTrZ7NTBYde= BPAU+cY59zxCkFlXjHiI2GY1pZbtRMkC1gZcX9hFV+lBTs98SDWexYjFGqkldT0J4EkY/ZovBb+= klbQ/G1zDYvQntXgWFC5VJ9hSGmRLaRCnCZeqE3x34SXK9XMY8bK+BvZ8JUzGAEQV+Wy87xm/xb= wZ1lwewGmCIIhYnCZXjKvDaQNrfIzkAKXYZl11wR16omfkyHIP0RB/2CV8GrRkNldbNmKbYU2en= C0uV6bkfUNUd8P1ury3ktQADO05UV6azx1IE/dRULDomjGSVXEFhVbrXMoncTV99smBH5ZW327i= gzP3trY2ONCyyQ6FtbRLUw2yZ8p+FwARifyCvRDV048rcfXdoT3j5fXp1+BVxdx2um+HGnuX9eg= X4dY01U0iVK2R80nMaELy42O7R39fz/1f8C/hZ5YvjpSKGwAAAABJRU5ErkJggg=3D=3D" widt= h=3D"20" height=3D"20" alt=3D"" style=3D"margin-top:8.95pt; margin-left:182= .5pt; position:absolute" /></span><a href=3D"mailto:scarly.guevara9943@utc.= edu.ec" style=3D"text-decoration:none"><span style=3D"font-family:'Times Ne= w Roman'; font-size:10pt; text-decoration:underline; color:#1155cc">scarly.= guevara9943@utc.edu.ec</span></a></p></td></tr><tr><td style=3D"width:3.25p= t; padding:0pt 5.4pt; vertical-align:top"><p style=3D"margin-bottom:0pt; te= xt-align:center; line-height:normal; font-size:10pt"><span style=3D"font-fa= mily:'Times New Roman'; font-size:6.67pt; font-weight:bold; vertical-align:= super">2</span></p></td><td style=3D"width:171.95pt; padding:0pt 5.4pt; ver= tical-align:top"><p style=3D"margin-left:7.1pt; margin-bottom:0pt; text-ind= ent:-7.1pt; text-align:justify; line-height:normal; font-size:10pt"><span s= tyle=3D"font-family:'Times New Roman'">Dayanna Alejandra Londo=C3=B1o Pe=C3= =B1a</span></p></td><td style=3D"width:10.5pt; padding:0pt 5.4pt; vertical-= align:top"><p style=3D"margin-bottom:0pt; text-align:center; line-height:no= rmal; font-size:10pt"><span style=3D"font-family:'Times New Roman'"> <= /span></p></td><td style=3D"width:166.35pt; padding:0pt 5.4pt; vertical-ali= gn:top"><p style=3D"margin-bottom:0pt; line-height:normal; font-size:10pt">= <span style=3D"font-family:'Times New Roman'">https://orcid.org/0009-0001-6= 048-8517 </span></p></td><td style=3D"padding:0pt; vertical-align:top"></td= ></tr><tr><td style=3D"width:3.25pt; padding:0pt 5.4pt; vertical-align:top"= ><p style=3D"margin-bottom:0pt; text-align:center; line-height:normal; font= -size:14pt"><span style=3D"font-family:'Times New Roman'"> </span></p>= </td><td colspan=3D"4" style=3D"width:370.7pt; padding:0pt 5.4pt; vertical-= align:top"><p style=3D"margin-bottom:0pt; text-align:justify; line-height:n= ormal; font-size:10pt"><span style=3D"font-family:'Times New Roman'">Univer= sidad T=C3=A9cnica de Cotopaxi (UTC), Latacunga, Ecuador.</span></p><p styl= e=3D"margin-left:7.1pt; margin-bottom:0pt; text-indent:-7.1pt; text-align:j= ustify; line-height:normal"><span style=3D"height:0pt; text-align:left; dis= play:block; position:absolute; z-index:3"><img src=3D"data:image/png;base64= ,iVBORw0KGgoAAAANSUhEUgAAABQAAAAUCAYAAACNiR0NAAAABHNCSVQICAgIfAhkiAAAAAlwSF= lzAAAOxAAADsQBlSsOGwAAA2lJREFUOI21lEtoXVUUhr+197n3nNzbJN6omdTWRmwbikVq4iMxk= 0ZU2oGgA1FnQcQiUhUnFqo4cGIRQUGd+KDY+Jp25ouiGCOxElqjhba0URPzsPQmuY9zzj1nLwcn= uU1iQ0f+mzXZe///Wv/aiy1cBV/83NNOPr/VWHunqO5OVNuNlQVjmZCGjCVhcPHR3q8XrsaVNUI= Tu/KSlu7LFeSpNNZ+57RTjDTvqFM1IvNiGXWJvD/9x8yXB/efizYU/Hy8/0W/aA/Xq43r1P3nOC= NIFsW2XLleTd648Z/863v3nkjWCL59dp/fWSsfzOXNkShKacvfgnMRlXjqqqIrwr5vkihyhxbT+= K2ne082AAzADZXyPj+wL8ehQ1NH700v0N35OAroutW0rxDF6rUUvddaJfdwM9HwqYFSa0GO1Srp= fucUVUXEZCQcqQtZ0VEU1QTPtmAkDygiEBTsTxq6hx65fWTOy7l0exjKgGrGcjTo2/oKS9EUZ2a= Pcf/Oo1iTI9UGqFJrzDF5+Sv+Wvg+y+IEVXaGibsbOO5hGBSkbUUQdRT9zaQuBhE6Ct2MT7/D9O= IIVnw6Ct3csfk52oNtTMwcBbE0YteeC7we4LinSI9Z03dBNUVxTdu1eI7FcBIjHvPVU1Tjv7nn5= sNMXv6WSjyFiIg17AAwqpRW9fqayNkiM0tjqDrag67mDCi0ARiB6gaTsSEEg4htusj2qGeCIr9d= W0JR3PKrR2zreIDURZTrZ7NTBYdeBPAU+cY59zxCkFlXjHiI2GY1pZbtRMkC1gZcX9hFV+lBTs9= 8SDWexYjFGqkldT0J4EkY/ZovBb+klbQ/G1zDYvQntXgWFC5VJ9hSGmRLaRCnCZeqE3x34SXK9X= MY8bK+BvZ8JUzGAEQV+Wy87xm/xbwZ1lwewGmCIIhYnCZXjKvDaQNrfIzkAKXYZl11wR16omfky= HIP0RB/2CV8GrRkNldbNmKbYU2enC0uV6bkfUNUd8P1ury3ktQADO05UV6azx1IE/dRULDomjGS= VXEFhVbrXMoncTV99smBH5ZW327igzP3trY2ONCyyQ6FtbRLUw2yZ8p+FwARifyCvRDV048rcfX= doT3j5fXp1+BVxdx2um+HGnuX9egX4dY01U0iVK2R80nMaELy42O7R39fz/1f8C/hZ5YvjpSKGw= AAAABJRU5ErkJggg=3D=3D" width=3D"20" height=3D"20" alt=3D"" style=3D"margin= -top:9.7pt; margin-left:182.5pt; position:absolute" /></span><a href=3D"mai= lto:dayanna.londono8648@utc.edu.ec" style=3D"text-decoration:none"><span st= yle=3D"font-family:'Times New Roman'; font-size:10pt; text-decoration:under= line; color:#1155cc">dayanna.londono8648@utc.edu.ec</span></a></p></td></tr= ><tr><td style=3D"width:3.25pt; padding:0pt 5.4pt; vertical-align:top"><p s= tyle=3D"margin-bottom:0pt; text-align:center; line-height:normal; font-size= :10pt"><span style=3D"font-family:'Times New Roman'; font-size:6.67pt; font= -weight:bold; vertical-align:super">3</span></p></td><td style=3D"width:171= .95pt; padding:0pt 5.4pt; vertical-align:top"><p style=3D"margin-left:7.1pt= ; margin-bottom:0pt; text-indent:-7.1pt; text-align:justify; line-height:no= rmal; font-size:10pt"><span style=3D"font-family:'Times New Roman'">Edison = Rolando S=C3=A1nchez Pallo</span></p></td><td style=3D"width:10.5pt; paddin= g:0pt 5.4pt; vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:= center; line-height:normal; font-size:10pt"><span style=3D"font-family:'Tim= es New Roman'"> </span></p></td><td style=3D"width:166.35pt; padding:0= pt 5.4pt; vertical-align:top"><p style=3D"margin-bottom:0pt; line-height:no= rmal; font-size:10pt"><span style=3D"font-family:'Times New Roman'">https:/= /orcid.org/0000-0002-7086-8038</span></p></td><td style=3D"padding:0pt; ver= tical-align:top"></td></tr><tr><td style=3D"width:3.25pt; padding:0pt 5.4pt= ; vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:center; lin= e-height:normal; font-size:14pt"><span style=3D"font-family:'Times New Roma= n'"> </span></p></td><td colspan=3D"4" style=3D"width:370.7pt; padding= :0pt 5.4pt; vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:j= ustify; line-height:normal; font-size:10pt"><span style=3D"font-family:'Tim= es New Roman'">Universidad T=C3=A9cnica de Cotopaxi (UTC), Latacunga, Ecuad= or</span></p><p style=3D"margin-left:7.1pt; margin-bottom:0pt; text-indent:= -7.1pt; text-align:justify; line-height:normal"><a href=3D"mailto:edison.sa= nchez7257@utc.edu.ec" style=3D"text-decoration:none"><span style=3D"font-fa= mily:'Times New Roman'; font-size:10pt; text-decoration:underline; color:#1= 155cc">edison.sanchez7257@utc.edu.ec</span></a></p></td></tr><tr style=3D"h= eight:0pt"><td style=3D"width:14.05pt"></td><td style=3D"width:182.75pt"></= td><td style=3D"width:21.3pt"></td><td style=3D"width:177.15pt"></td><td st= yle=3D"width:0.3pt"></td></tr></table><p style=3D"text-align:justify"><a id= =3D"_heading_h.n2iyobj7gbod"></a><span> </span></p><table style=3D"wid= th:436.6pt; margin-bottom:0pt; padding:0pt; border-collapse:collapse"><tr><= td colspan=3D"6" style=3D"width:162.9pt; padding:0pt 5.4pt; vertical-align:= top"><p style=3D"margin-bottom:0pt; text-align:right; line-height:115%"><sp= an style=3D"font-family:'Times New Roman'"> </span></p></td><td colspa= n=3D"2" style=3D"width:252.1pt; border-top:0.75pt solid #000000; border-bot= tom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:top"><p style= =3D"margin-bottom:0pt; text-align:right; line-height:115%; font-size:10pt">= <span style=3D"font-family:'Times New Roman'; font-weight:bold">Art=C3=ADcu= lo de Investigaci=C3=B3n Cient=C3=ADfica y Tecnol=C3=B3gica</span></p><p st= yle=3D"margin-bottom:0pt; text-align:right; line-height:115%; font-size:10p= t"><span style=3D"font-family:'Times New Roman'">Enviado: 12/11/2025</span>= </p><p style=3D"margin-bottom:0pt; text-align:right; line-height:115%; font= -size:10pt"><span style=3D"font-family:'Times New Roman'">Revisado:08/12/20= 25 </span></p><p style=3D"margin-bottom:0pt; text-align:right; line-height:= 115%; font-size:10pt"><span style=3D"font-family:'Times New Roman'">Aceptad= o: 22/01/2026 </span></p><p style=3D"margin-bottom:0pt; text-align:right; l= ine-height:115%; font-size:10pt"><span style=3D"font-family:'Times New Roma= n'">Publicado: 09/02/2026</span></p><p style=3D"margin-bottom:0pt; text-ali= gn:right; line-height:115%"><span style=3D"line-height:115%; font-family:'T= imes New Roman'; font-size:10pt; background-color:#ffffff">DOI: </span><a h= ref=3D"https://doi.org/10.33262/visionariodigital.v10i1.3603%20" style=3D"t= ext-decoration:none"><span class=3D"Hyperlink" style=3D"line-height:115%; f= ont-family:'Times New Roman'; font-size:10pt; font-weight:bold; background-= color:#ffffff">https://doi.org/10.33262/visionariodigital.v10i1.3603</span>= <span class=3D"Hyperlink" style=3D"line-height:115%; font-family:'Times New= Roman'; font-size:10pt; background-color:#ffffff"> </span></a><span style= =3D"font-family:'Times New Roman'">    </span><span style=3D= "line-height:115%; font-family:'Times New Roman'; font-size:10pt"> &#x= a0; </span><span style=3D"line-height:115%; font-family:'Times New Roman'; = font-size:9pt; font-weight:bold"> </span><span style=3D"line-height:11= 5%; font-family:'Times New Roman'; font-size:9pt">   </span><span= style=3D"line-height:115%; font-family:'Times New Roman'; font-size:9pt; f= ont-weight:bold; background-color:#ffffff">   </span></p></td></t= r><tr><td colspan=3D"6" style=3D"width:162.9pt; padding:0pt 5.4pt; vertical= -align:top"><p style=3D"margin-bottom:0pt; line-height:115%"><span style=3D= "font-family:'Times New Roman'; color:#0000ff"> </span></p></td><td co= lspan=3D"2" style=3D"width:252.1pt; border-top:0.75pt solid #000000; border= -bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:top"><p sty= le=3D"margin-bottom:0pt; line-height:115%"><span style=3D"font-family:'Time= s New Roman'; font-weight:bold"> </span></p></td></tr><tr><td style=3D= "width:52.2pt; border-top:0.75pt solid #000000; padding:0pt 5.4pt; vertical= -align:top"><p style=3D"margin-bottom:0pt; line-height:115%"><span style=3D= "font-family:'Times New Roman'; font-weight:bold"> </span></p><p style= =3D"margin-bottom:0pt; text-align:justify; line-height:115%"><span style=3D= "font-family:'Times New Roman'; font-weight:bold">C=C3=ADtese:</span><span = style=3D"font-family:'Times New Roman'"> </span></p></td><td style=3D"width= :5.3pt; border-top:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:= top"><p style=3D"margin-bottom:0pt; text-align:justify; line-height:115%"><= span style=3D"font-family:'Times New Roman'; font-weight:bold"> </span= ></p></td><td colspan=3D"5" style=3D"width:340.95pt; border-top:0.75pt soli= d #000000; padding:0pt 5.4pt; vertical-align:top"><p style=3D"margin-bottom= :0pt; text-align:justify; line-height:115%; font-size:10pt"><span style=3D"= font-family:'Times New Roman'"> </span></p><p style=3D"margin-bottom:0= pt; text-align:justify; line-height:115%"><span style=3D"line-height:115%; = font-family:'Times New Roman'; font-size:10pt">Guevara Cadena, S. P., Londo= =C3=B1o Pe=C3=B1a, D. A., & S=C3=A1nchez Pallo, E. R. (2026). An=C3=A1l= isis de las respuestas emocionales a videos promocionales: un estudio de ca= so con los estudiantes de primer ciclo de la Facultad de Ciencias Administr= ativas y Econ=C3=B3micas de la Universidad T=C3=A9cnica de Cotopaxi. </span= ><span style=3D"line-height:115%; font-family:'Times New Roman'; font-size:= 10pt; font-style:italic">Visionario Digital</span><span style=3D"line-heigh= t:115%; font-family:'Times New Roman'; font-size:10pt">, </span><span style= =3D"line-height:115%; font-family:'Times New Roman'; font-size:10pt; font-s= tyle:italic">10</span><span style=3D"line-height:115%; font-family:'Times N= ew Roman'; font-size:10pt">(1), 23-42. </span><a href=3D"https://doi.org/10= .33262/visionariodigital.v10i1.3603" style=3D"text-decoration:none"><span c= lass=3D"Hyperlink" style=3D"line-height:115%; font-family:'Times New Roman'= ; font-size:10pt">https://doi.org/10.33262/visionariodigital.v10i1.3603</sp= an></a><span style=3D"line-height:115%; font-family:'Times New Roman'; font= -size:10pt"> </span></p><p style=3D"margin-bottom:0pt; text-align:justify; = line-height:115%; font-size:10pt"><span style=3D"font-family:'Times New Rom= an'"> </span></p></td><td style=3D"border-top:0.75pt solid #000000; pa= dding:0pt; vertical-align:top"></td></tr><tr><td style=3D"width:52.2pt; pad= ding:0pt 5.4pt; vertical-align:top"><p style=3D"margin-bottom:0pt; text-ali= gn:center; line-height:115%"><span style=3D"height:0pt; text-align:left; di= splay:block; position:absolute; z-index:5"><img src=3D"data:image/jpeg;base= 64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEB= AQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQE= BAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCAAiAE= EDASIAAhEBAxEB/8QAHQAAAgMBAAMBAAAAAAAAAAAAAAcGCAkFAQIDBP/EAD8QAAEEAgEDAQMGC= A8AAAAAAAQCAwUGAQcIAAkRIRITFBUXIjFRcQoWGkGBkZXRJTZSU1dYdpKTl7HS09bh/8QAGwEA= AQUBAQAAAAAAAAAAAAAACAABAwQFBgf/xAA3EQACAQIEAgQLCQEAAAAAAAABAhEDBAAFEiEGMRM= iUbEHM0FhcXSBkbKz8DI0NVJ1gqHD0fH/2gAMAwEAAhEDEQA/ANoq53D9lcz+3jzcmbVW4uhW/U= 9IhWxLBRpOVDbPemSFkNniNOuqOhjAnovK2nB5J/Ocvp9hTeWcrdb3Yf3ruDcWttyRe1Nh2fYA1= DsVWBqpFskXZqVjA5WNlXzhczR2HZc9lbw7C225E0v4RKPdje6bypGcnOCHr26+51j7KXRf1/wz= n93Whv4Or/EXkl/a6keP2RNf+9Ejxpw9kuS8OeE21y+woUKWV8X5Nb2BK9JUtqdW1ptUSjUfVUT= WS+qG3DMp2gAZ+Dc/zfNuJfB/d397WrVb7h/Mnu99CXDU61wKZrKoCuUAUqWBOpVfdpJnfNOoWb= mV3QtbcMLTtG+0HRVY0WftadgqJOv1861zuSDG0KU6lL4ZhLD+Ij4Z2QBOTHABzHwTTD5jhGOzs= vTGue3XsHg7QNe3HesxW9m8mJ6asBM1t84Vn2gKxWGHhbLHx0MwLbqygQVLrdfkcsMNkrKfwT5J= V7Fhu4Bw51fsvbGruRrXK4XhtvKmhF1mt7JJsNbiGbFBtoMcfiMB2Oer7ZZQbcyay8sUt5p+LlC= QJQEsZwdQ8Do3Conca9I3G98943lK1x53TL7McsTAVPlhH4iTr8HEkUYs6tWg0GHHRmLJkcnE/E= O5+UVpULhtpKljoSpFPrEKFErEgkCJnaQSYEGI235YJjCx1p3j71uCUsk1T9faCjKFGxm0ZmFr9= j5BV1restFa8rVinhzF6oDaemGVSyYLDzg7aXlCRrpEi24UGOgl7tau7uG4WTNL2DkTx2rtE1Ty= A1lszZOt7hSb6mzyb4OsKw7apkeWgCARCAVPhIZHYS6425kksf3aXkJJyP2tbdoAnWpNgA1zyGg= vmosEfsePi4SV0Nq6dukfFbEr85CKHZ2+20xc32Y7E3l1CgzgWzBGXI7CRhC3U4aUh20aK9XuHd= FuW3GzIXilq/bdGmY5yJEiSthVrZ1TarEtKLdXNrcrTUSGK+TkltEm1lXt4U8NhnLmEwoTsojfU= esWECTtGxkc9zE7jfCwj7LzS5e7s4jbU3nYON8dqnjvP6duFwql3rW8Fxe2VRrLSsVsyNbjYhRs= ETNKQh1mTaZw6KM4khA6kLQpcWuHc72xx01jqnMZXuPFmrQ3HLTF+QBs/lRAxe+bCPNa0rs3KoJ= q8mPienp10t81gKQcEwdan2vlFgNbpqGMtrWPby2VJaIsGlqd3ADNncXLLr+468pdZGpFJssbCx= UiSYHHKFvUPNOmTaakc28IgRk8cdKxFR2EBMDIFZUO2uz3VoMh6aVyvp+tgNgaz1HpCxObN1PrO= 04mpuj69idaRblFnrzI4kKfL2UGFbLFi6ue1MpkVZyKeSoQPIzRREyQAWkaVfl1AOZG4jfmN/es= QT8o+01/QXfv2nDf83R0rvybSC/rZF/5WDf9y6OpYte1vefN9e09myxUTgh6du3udJz6ZVS6N4/= RmZxn6vP3/p+3rQv8HXV7NH5JYz65/G2j5xjHn88PN+fXx4/P5+3OPq6i/Drt9cpNN6S5M6I3Pp= KfOrnIqJr0Vmwax2RqA2arbUOo7D7i461WqICeW/gxK23UEkYRllSFDr95haH/AMTOG/IrgtIWy= S0pMyEpUrfJRRFh1nvTXwbRMimMxlpt6P2PpC17QXDnJEINbGNJphEThxSMyYDbaUE49/454qyD= NLfwi5bY5nbV6me8R5ZmmV1qdQVLW4o2ttSSqOlphzTaQ6qKoQM0bgb4Gngzh7PsrvOBsxvMruq= VDJ8rvbLMKLUmW4oNcVK/Rno3KB1iojk03aFnYkEY6feUpFX2XuHtrUC6RjctUbtyZzV7PFOvkC= IkoKbMpcfKBOEiOsFMJJDfday8MQy+37XtsuoXhK8Z/wDIfV2uOD/Pu16z41QTcbrPZPBbekptD= WL03OzdcP8Ak3Wm1Z1pmaU/LOyzArp1OrpuMMSop4yX3/gSxWZFzDm2nIfiZrjuI17WQ+5V7c05= ZdYSchY4kGsS8NGyDUpLjhiPHR9kVGS4cqC3mNbfj3gsxk0F5bVNRcQY5gJuP6d7Q3GTTgW3HQp= vaF2uG4db2bVU1sO/WliwW2EqFujcxkyNXH1RrEcGWQPhrwcTHmEJSykf28huPjuj4p6NdDk6lD= IUEFSdUg6gSDAjlO42JBnBJ03Woi1EJKuJEqVMecNBB8xAI5EbYoto7mBy42M9qjjNxJj9Ea1j9= T8L9ZbhvErseLt0wG8qZgIAkeuVIESRLPwGCNNR47Dh5Bryvcmumy2XcDsPpXXnJbdfKLbWl7u/= Ealid637gLyCkPnBLgbOoKJZq+2tuVlyHFhRbRiP+SzIOCcWrLgb0h8qmLI+OSLhIqHtzH4QWml= WzV0Rxr418m7rL0XQVe1d8/Gl+SNF05JzUJEfHRMfTbzGTcM9mbejwwIw82TAGj2DxzBgc4wmNa= Sy/wDhzwFrfGbT+l95ci5KZhdn6X477NoN1rwcmBLVOLpd2t962DOCyDccAUdLWKLFtxUcSTEyj= oRJA+Ugsk4U2+88iBChmYhVVQDUZjMAiTq1GBpiSYHpd3VFZ3YIigszMQFVRuSxOwAG5J2A3OKZ= cNt47x40dsXW2wJnkBo7WdNst5NrOm0WXU+wr5ONEu7C2i7dYOWiaUQbKWKWm5QZg+vPxgA40RG= ClDn4ffIYcwlNkc59n8rqRnXmzjqbaiNMc5+ILtd2BTabctdiWeEuUlYXvdHUm9ji2KHMjSYpaV= LMGHwRghWGUPiNjnmXCM4j8DavUYfTjO9+Rr0NPW+D2nrCPDvQ6XtGTsTOSqhZGkZKjRWKuPZPx= 5PmHyMtybc9Fw7djGMdUGGcbNK3wi4QBv2EjHI7c21Lda9waPvMudPXKDst3lb1q6Xlo6nQr7hN= aGNWhjMkWxYgzstmixUUlbJIbAD/AJnahVQCo1vVhmJRhSIB66p5BynUCTtMkGMU1zKwdmVbugW= UgFdYmWXWBHlJTrQJIEyAQQNwfYR/JT/dx+7o6+nsJ/mzP8PP+3o6p6G7P5H+4s9NS/Ov1/3v7D= jvZ9E48en0vH6PKfTr3+v2vPr4znGPu8K9Pu6OjqMfab9vdiOnzHpXuXH5HsY8temPRfp6fV9HP= 78/rz110/Vj7sf6dHR068h6B3YnXl7vhXHnqp/M1CHNHSjTiUrbeu2pGnW1pwpDrTm1KahxtxGc= ZSttxGcoWhWMpUnOUqxnGc46Ojq3Y/fLX1ij8xcZ+cfhl76vV+BsLGN19QpQqGkZOkVCRkERcCp= B51ahizEKZSFllSSiAnH05ay45lvOF4yjK15T4ypXmZxevqEPshE4PSKgxNZsZhmZhmtQzUpkvD= ac4KzIICSXkny45n3/AL73v01/S+krydHWw/iW9TX5aY4+n44fqA+Y2Laec/bn9eejo6OsEeT2f= 147LH//2Q=3D=3D" width=3D"65" height=3D"34" alt=3D"editorial1.png" style=3D= "margin-top:35.2pt; margin-left:-1.05pt; position:absolute" /></span><span = style=3D"height:0pt; text-align:left; display:block; position:absolute; z-i= ndex:-5"><img src=3D" CAYAAABqpJ3BAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAACCZJREFUWIW= lWGtsVNcR/ubcu3df3rXXxjYGbCBgXIxCA4ZCmyq1SSJaSJQqkvdHRaVWaiFNVSpVpElVqd2oak= BJBVEStXKltikpbfBGDc2jVQjP0pCiAIXKmPCITcBr8GPXrO193ceZ/jBr1rt37XU6kiXvzJlzv= m/umTlzDq1/9lhvQrcWEWYnDMBiXAreN3dlKLhCz+q/uvPDRZGx8SO6hcXg0uYiApwOxdKl7FEJ= lx0OesNfJt4Z8/niZ7atMabzVaMJ/fdpnZ8FYVYcJLO1aI7nxVzw7Z2dypWuzNrRtKyUJYLPSkK= XCjM3AmhkYPNoQiQrk4m9a396/LmPLg/0Ixy07PxEXWXZAQKPzW45QFNo0CTtzVzd0PXqgFOlHz= KjbLbzAQARgYggiJA2pKc/lnwibqQONS+uamnpOO2wJTCczvTO8WvdPIuIMTOqvI5DbiMVzVFS3= 4Bs6BtJN0hA+SwECskIJDNoHNUzYeP6WMtWGxJiRXNryu1SXiBi3W6iIgRisYR8+ViobfKz/mDf= Vd+CSsf3FELtbPNpOiFBBNCCjKU///7l+Lx8uwgHyUro8iwIUZSQdcyMueXOKw0+5QpyHA6e66n= qHUytYYZm52NYEoZZ+GdaEpIleJotQCRERue1bc2BJ378u499uTYVAHRg2CGUDt2UIZo5fImkif= 1Y6EtkFe2hC1q/iD7YN5JchvxawGBLcldVufObPoXi+ZNZUIXXyZuGRo3vj6XNJi6YYEJMCdd7X= YNrHMxVACZzVgWAIFqT+8Wh93S2toOUymLImRkeFcMBN791Mqe8xbRx38i48bjJ8Ij85Ymt+ir3= v3Ys/0pXMEi2lQTAK81Pdr6quPy7TInvgMiZP4CIoBJ/sbGmbNVPOk5Htt1ZXwBAKERyfqWrv6r= Meb4Y+Gwg0iyOXbPKb2YVoVBI6Gbmc2MpY10BeABSYiyV5pemAQ8A6P51cDxDRojBHzCz7VhDwt= sbS923+5O0K6sTk/8oyWi1XztO4KIHBxENODX+TeTnLams7lTlFxxC5SAzAvlfn5mhCJxsrUv1T= gc+K1t9Z2I+l/YXQWRb1gUR5vi0ByrUtKeAwMGnNiY+HU79DUR9ds7MbDlVurq8tvwaEU1m3LVb= ZZW9Q6nHQIXZQ0Tm0hr37pe3b8qUQiAUCsn6KvUwEYbB9hWlL5pqMgWV4U60RK6xISBuuB10hgF= zCngAgpDwudS/RtxqLNc2v4IeZtB8u8xTBW45vc7TpYDPSrXTGVUE3WKyL0tMcJhErmzVmkKgcm= nsttep/VkhSk/1YgYQIYP+ntub7Nh73vtpNP00M6v5C0nJXOZQnvnH9vWjsyHQeG8qmTasm2BIO= zsxMBDTJzfrFALhYNAa083zppQ3c+uyINIrvOpHK5swZXuduBFfktFlY/7uYQCqQsMPrqg4Mhvw= ABBqazN9Li1DINsvoGmKZ9XC8or2cFgUEACAHfdX3Fp3T8W7RGQAE8GXwGjArf7p1W+3TfkykeH= xn0mWhT0KM2r9zrcjzp7B2RIAAMUeOwDAqZCnrkr1P1ndXpgDALDt0TXJq0PJ11nyOACAIB0Keh= YsdJ3KHffwL443ulTHZqKCKaCplF5S7QmHg+2222AGoXHdKnqcxtPm8IGz0ettrbBsCQBAU3VFT= 0OV+xozGMyZeeXO/fu23N3L7Z2dyoXh9NdThlUQfWawpohzF68k/o0i22A62X3yhsupoobBttgY= hLKcZsV2UHj76qGeaOJFgC0SyvDQ7bHXcu311vJ5NT7lu4TC8CuCMhbzH5Xk5US+rRR5/e1Lnoy= BABW7n1gs3Q5tskraEgCAxdUVhzWVYnUV2tGORx65nWu7GIk/EB2XdXaLqCpdb6x1HzndsdXMt5= Uibp97GRHmwyY4AODzqKMW0gncOYuKEliwrHzIrTn2KaBftbXRJJjNO08Eokm5hSHdBU6MjGlYB= /ukP5J72JUq7btPusczmS0MBOzszABLvO/0iGRWV5RAOLhCnx9w7rq31vtxrt4gZfnQaHo1ERVc= WhTBI16P47X/7liZzLfNCL6zUzk/kGgZGtU3SUZBMwcARDA1Teny+/2TrUzBAZQrB5+6f0oZ3Np= x2tM1lNggJZfbDJcg6paSP8Eso9+++6Q70p3cnDbM5yWjvtj+F4LiHodybuPowcyHpRDIl+5Yau= 6NaDrIDGd+5yOIEzV+995vbVgkzy77zys3hhIrJc/8UDCcMOhU31iDlFwPwK6lAjBxHhHwzljGu= BTaGZoszyUTaA0dVfvjqc+DeWHBIgyWjL5UyjgRIHLHE5mNlwaSS60ZniZ4AhmmA54Fr6ki1ljr= DT+z5kvxtp13bUVzIF/imhLIGPwNEuQvMBLrc3zOww+tbrpp41pUCHdfIqYDL4hSTXO9fxiX/M/= cggKUSCAUYiETxmIw7rfrERUh4i4Hv7EnWJ8qtH52YWaAka700IH+kdieD57+csE9oSQCx3DM43= WJxyWj2mYZ6dXEpQW1/nP/P+ScWZkhBAaX1Hj26LrjR+d/+WjEblwpBGgwZVZGRjKP2bfN0JnR0= bm1ZbLVmPUBcMdpogMmVoh61i8JvOl1Ob7WtqpuV/cLbbeKuc2cxKEQeaD6Y2l5wbTkZYChCBaQ= EGCAYA4ODpa9lT24hkbroxCDL61eFNjAbN/P5IsiCE1zPUbGMPa9e2GwC1KO+z3l4xefWzcWmsG= 3tDeoEItmhNXuCxM/m1fcNXX3jzB+u23KPbo1dFStRo1Ac0mzAwAeuqeZAz1hGQzav4EWk/8B4s= euQ9qAhaIAAAAASUVORK5CYII=3D" width=3D"48" height=3D"30" alt=3D"" style=3D"= margin-top:5.25pt; margin-left:5.4pt; position:absolute" /></span><span sty= le=3D"font-family:'Times New Roman'; font-weight:bold"> </span></p></t= d><td style=3D"width:5.3pt; padding:0pt 5.4pt; vertical-align:top"><p style= =3D"margin-bottom:0pt; text-align:center; line-height:115%"><span style=3D"= font-family:'Times New Roman'; font-weight:bold"> </span></p></td><td = colspan=3D"5" style=3D"width:340.95pt; padding:0pt 5.4pt; vertical-align:to= p"><div style=3D"border-top:0.75pt solid #000000; border-bottom:0.75pt soli= d #000000; clear:both"><p style=3D"margin-bottom:0pt; line-height:115%; pad= ding-top:1pt; font-size:8pt"><span style=3D"font-family:'Times New Roman'; = font-weight:bold; font-style:italic"> </span></p><p style=3D"margin-bo= ttom:0pt; text-align:justify; line-height:115%"><span style=3D"line-height:= 115%; font-family:'Times New Roman'; font-size:8pt; font-weight:bold; font-= style:italic">VISIONARIO DIGITAL, </span><span style=3D"line-height:115%; f= ont-family:'Times New Roman'; font-size:8pt; font-style:italic">e</span><sp= an style=3D"line-height:115%; font-family:'Times New Roman'; font-size:8pt"= >s una revista cient=C3=ADfica, </span><span style=3D"line-height:115%; fon= t-family:'Times New Roman'; font-size:8pt; font-weight:bold">trimestral,</s= pan><span style=3D"line-height:115%; font-family:'Times New Roman'; font-si= ze:8pt"> que se publicar=C3=A1 en soporte electr=C3=B3nico tiene como </spa= n><span style=3D"line-height:115%; font-family:'Times New Roman'; font-size= :8pt; font-weight:bold">misi=C3=B3n </span><span style=3D"line-height:115%;= font-family:'Times New Roman'; font-size:8pt">contribuir a la</span><span = style=3D"line-height:115%; font-family:'Times New Roman'; font-size:8pt">&#= xa0;</span><span style=3D"line-height:115%; font-family:'Times New Roman'; = font-size:8pt"> </span><span style=3D"line-height:115%; font-family:'T= imes New Roman'; font-size:8pt"> formaci=C3=B3n de profesionales competente= s con visi=C3=B3n human=C3=ADstica y cr=C3=ADtica que sean capaces de expon= er sus resultados investigativos y cient=C3=ADficos en la misma medida que = se promueva mediante su intervenci=C3=B3n cambios positivos en la sociedad.= </span><span style=3D"line-height:115%; font-family:'Times New Roman'; font= -size:8pt"> </span><a href=3D"https://visionariodigital.org" style=3D"= text-decoration:none"><span style=3D"line-height:115%; font-family:'Times N= ew Roman'; font-size:8pt; text-decoration:underline; color:#0563c1">https:/= /visionariodigital.org</span></a><span style=3D"line-height:115%; font-fami= ly:'Times New Roman'; font-size:8pt; text-decoration:underline; color:#0563= c1"> </span></p><p style=3D"margin-bottom:0pt; text-align:justify; line-hei= ght:115%"><span style=3D"line-height:115%; font-family:'Times New Roman'; f= ont-size:8pt">La revista es editada por la Editorial Ciencia Digital (Edito= rial de prestigio registrada en la C=C3=A1mara Ecuatoriana de Libro con No = de Afiliaci=C3=B3n 663) </span><a href=3D"http://www.celibro.org.ec" style= =3D"text-decoration:none"><span style=3D"line-height:115%; font-family:'Tim= es New Roman'; font-size:8pt; text-decoration:underline; color:#0563c1">www= .celibro.org.ec</span></a></p><p style=3D"margin-bottom:0pt; line-height:11= 5%; padding-bottom:1pt; font-size:8pt"><span style=3D"font-family:'Times Ne= w Roman'"> </span></p></div><p style=3D"margin-bottom:0pt; text-align:= center; line-height:115%; font-size:8pt"><span style=3D"font-family:'Times = New Roman'; font-weight:bold"> </span></p></td><td style=3D"padding:0p= t; vertical-align:top"></td></tr><tr style=3D"height:23.65pt"><td style=3D"= width:52.2pt; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertic= al-align:top"><p style=3D"margin-bottom:0pt; text-align:center; line-height= :115%"><span style=3D"height:0pt; text-align:left; display:block; position:= absolute; z-index:-4"><img src=3D" EUgAAAE0AAAAcCAYAAAAk2zLiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGw= AAE1VJREFUaIHtmVl4VFW2x3/7nFNThspMCIEQQgIIBBRkaIYWkEFQQbG9Aa+EQRlUtBlaBZtPb= MBuVGznDuA1eMMgiHyIAsokqJhIEpFJgiaoCVAhQAKVpFJVp6rOvg+VFAkCfr7f9XJS+5y19lr/= vaa9InRdl2fPnSVgGAgBCBAIgiQbH42/hQDZuEbz7wAhkciggGYkpQzKRSDl1feimTwZZG8Simw= p4dptAVAQIVktXrXY/homrm4i5NUPZUszmtlD0CYpMQIGHVLTUFQFUVl5Vs54bBaj77kbiXH9PR= otESL4bDJdIhv/aHy2xOu3JJsZKiUGEmkYgEBTlOsbLq41vEkvgTQkhiExBCiKQAjRUg3RwoiW/= FIBKQlII2iPAEUoIV4hQAqJlBJFKOzdtZd/Lv0X6ekd0epdDbRvn0pCQsJvQWsyLiDRdR8ejwev= ruP3+1EUBU1TCQ8Lw2Q2Y9JUhPI7qEmQUqDrOpcvX+ZKrZP6ujqEULDb7URHR2G3R2Exm2h0ebh= GJ8Mw8Pv9XL7sxFlbS63TiTQk9ig7UfYo7NFRWK3WRl3kb0ATQhAIGNTUXKHW6aS2rg5d1wmz2b= BHRRETE43NZkPTtNDeAkFax478/PMvQdCQEiHUkMDmYEkJXreO48w5Thw/TllZGZcuVuNqcGExW= 7BH2WnXLpnumZl0SO9AdEw0iqqFTqr5wSJBGgaXLl6ioKCAY98fxe/3Y7XaMAwDt7uBSHsE/fr/= iR639iAqOhpFDXqPbIxNw5A4rzg5duQYBQcLqK+vJ8wWhqIqeL1eFEWh5209GTBoEHHxsaA0BkA= oQiQet4cffzjFvr1fcOnSJWw2GyaTCY/bQ0AGyEjvyB1D7qBtSjuESQt6umwC30AIgQZNYSFC+a= fxNc4rTvbt3sPX+7/C4/EQGxtL69atiYiIQNd1ampqKCr8jvxvCkhNS+X+v4ynU5fOKKoIRmzQx= xEyKPtSVTW5772H1+Nl3LhxDB8+HLPZjKqqOJ1OtmzZwhd79lFaVsp94+8jJj4WTVwN25qaGj7Z= uo1fT5czcMAAsrKyiIuLw2QycfHiRQ4cOMC2bds4efwkUx6ZQuvk1qFYNQBXvZuv93/Jns9307d= vX555+hnatm1LWFgYNTU1HD9+nLVr17LynVU8PHkSnbp2QTGrhHJSE1KlpaXyzXfe5s9D/9wYns= E4djrreG/V//DD8ROktk9l4sSJjBs3jpiYGCwWC4Zh0NDQwKlTp8j5z384ePAgiqYw5dFp9O7TO= 5hjaAIM6l31vPbKv5GG5P333ycjI4P6+noWL15Mp06dmDNnDnV1dRz8+iB/X/R3OqSnMv7B8YSF= hwPgdrvZ+tFWyk6VsWTJEoYOHUpERATV1dXk5+dzzz334PF4KC0tZcb0GXh0L/MXzCM8IhwhBD6= fj2++/IatH21l/vy/kZ09ifDwcOrq6vD7/URERGAymbhw4QILFy7km/xvmP3UbDqkp4GAwoJDDP= vzMEaNGsXVY5QilAK8bg/vv7uGI4eP0L9vPz7avJk5c+bQpUsXkpKSiIuLIyEhgZSUFIYOHcp7u= bm88MI/EIZg1TsrKTlxEimbPDZYVQ8cOEB5eTm5ublkZmYSFhaGy+Xi4MGDfPHFF0gpiYqKYsTI= EcyfN48jh4/gqDgXShOOsw6++uIrxowZw6BBg4iMjOTixYts2LCBV155hcLCQqSUdO/endw1uVy= oqmLXZ7tCKafKUcWnH3/K1KmPMGvWLGw2G+vXr2f8+PGMGjWKRx55hIMHD9KmTRtWrFhB+5T27P= h0B676ekLGNLpbi5IlEcgA7PlsD8WFRfTs0YN169eTnpGBzWZDUZRQjmnKMyaTiZiYGGbOmsmKf= 7+K1+Nldc5qrtQ4g+egQIO7ge0ff8rMGTPp2bMnqqricrm4ePEi06dPJysri+LiYgDMZjNjx42j= R2YPPt32KboeIBCQfPLxJ9TX17Nq1SomTZrE3r17GTFiBEuWLMHhcDBr1ixOnTqFpmnccsstPPr= oo+z+bDcetxfDkBQVFRNlt/P4YzOxWMxs376dOXPmcP78edq0acOhQ4eYMGEChw8fJjExkeeff5= 6ff/4ZxzlHs8i8FrTGYlV1vort23dgt9vZvHkz8fHxSCnx+/34/X4Mw2hWKCSBQADDMFAUhQkTJ= vDEE09QU13D3l27wB/ACARwOBzofp2p06aiqsGic+bMGbKzs5k/fz5Tp05l/PjxjTlVYLfbGTJk= KJWVVcF9AwEqfiln4cKFLFu2jIqKCrKysigtLWXatGns2bOHrVu30rNnz6BRisLEiRPxeLw4Kh2= 4GlycPv0zw4ePIMoehdfrJScnh9jYWDZs2MDOnTvZuHEjAAsWLACgY8eOxMXFcfbcWQSisQflWk= +TSAH5Bfk0uN089de/0rZtWwKBABcuXKC4uJjCwkLOnDlDIBDA6/VSVlZGfn4+x48fx+l0IoTg6= aefJioqikMFh6i94kQIcDe40RSN1PapwV6q0VsNwwiB33QYTUanp6ej6zqGESAQ8KP7fPTt25eZ= M2eyf/9+Xn31VQYNGsQHH3xAVlYWu3fvpqysjLq6OqSUdO7cGSkldbV1eHWdWqeTrt26opk0fD4= fFouFzMxMkpOTAejUqRNWq5WjR4+i6zoWixnNpOF2e5BG86Zdol3FTOLTdX48WYKmKGRPmoRhGD= gcDubOnUtJSQkmk4nExERWr15NcXExS5cuDXnH6NGjWbRoEfHx8QwcOJADX+6n8kIV9viYxv4s6= JUQrKpmsxm73Y6qqkgpadOmTTNVgiAKRaAIJdh0ChHqDxMSEpgyZQqjR4+mqKiIvLw8Fi1aRKtW= rRg7diwPPvgg7dq1I3ibUEIHFQgEEEIQHh7OsmXL8Pv9xMXFoSgKgUAglHIg2N40XUNa3nNky/B= 01dfjdDppm9yW+Ph4fD4fb7/9Nvn5+Tz22GO88cYbJCUl0dDQwMKFC/F4PLzxxhvMnj2buLi4kK= jBgwej6zoXL14ECVHRURiGwQ8//BDyrNatWzN79mzCw8NRVZV33303lLQNw6CkpASr1YqiKKiaS= kREOCdOnGiKCWpra1m/fj3R0dFkZ2djsVgwmUzs2rWLyZMnM2vWLBRFCVX7mNhYioqK8Hp1hBCs= XLmSxYsXU1JSQk1NDcXFxbjdbgYMGIDZbMbj8eDxeIiMjEQRollwimaehsTtbsDt9tAmLRlFUfD= 7/RQXF2O32xk2bBhdunShV69e6LpORUUFY8aMYfDgwfTv3z/kPYqi0K1bNwIBg7raOpCSVq1aER= EZwepVq8nMzMRisRAREUFycjImkwm3202PHj1CYXuh6gL79++nXbt2mE0mpIDUDml8/vnnZGdn0= 7p1a2pqatixYwd5eXl4vV7S09NZtmwZ8fHxbN68mddff51IeyQJreIxmU107tyJgwe+5sKFKlI7= pNKvXz+2b9/OlClTyMjIoKioiLi4OJ577jl8Ph9HjhzB5WogJaV9s6ZfAUSTpwVxVFUFVVHweDy= hMLJYLOi6jtfrJRAIcPr0aXw+H6qqUl9fj8/no7a2lsrKSnRdR0qJy+VCCIHJpKEgsNos/OW/Hu= DDjz7ks88+a1FMmvZp+u1yudi48QNKy0q5Z9xYVE1FUQT3jr2HijMVrM3Lw+Vykdy2LWvXruWFF= 14gLS2NdevW0a9fP9LT0+nVuzd+I8C9943FYjGjKoLb+/YmgGTJkqW43W6ysrJYsmQJcXFxlJWV= MXToUHJzc+nduzdnz57lH0v+QcdOHUlsnRi6mzaRFopNICwsnPCIcBwOB36/H5PJRHZ2Nk888QR= z584lPT2dffv28eabbzJkyBAKCwuZMWMGVVVVNDQ08PHHH2M2mzl06BCaphEdFR2aEvTt15cTR0= 8wZ84chBCMGjWK5ORkHnroIbxeLwB1dXWsW7eO1994nTvuHEpim0QQEkVAq6RERtw1kpyVOVhtV= qZNe4SkpCSGDRtGamoqbdq0wev1snvvHubNncutvXoxZOiQoD8ogpj4WCb890RWvZPDU0/9leXL= l5Odnc2ECRMIBAKoqorVauXHH39k+vTp6F6d+8ePx2y1tJiCAKhPPjX7hcKiQlI7pKJpKke++56= ff/mFMWPGkJKSQlpaGsnJyRQUFIT6oaysLEaPHk1paSnHjh0jMjKS1157jZSUFACWLl3K5SuXGX= 33aKKjo4Nep6jcdlsvTpedJicnh6LiIrp3z2T48OH06dOH4uJipj/6KB9u+ZAhw4dw1913YbaaG= 71QoKoKySltkTLAqpWr2bFjB4mJrbFYrZhMZo4dO86zCxbw1ltv0alzJ2bNmolm1lBU0TTCID4h= gXZt2/H+mvfZsGEDYRHhREZGovt8nHM4ePnll5g3bz6BQIAFC54hPiEWoQQnJ+fOnqND+/akp2c= gSkt/lG++8zaDhw1BSoPi/EOsfHslQ+8cxsaNGzGbzQD4fL7GkDM1qzBGKFQ1TcMwDAoLCxl25z= DS0juy4O8LsIVZr6ZQqeDz6hQVFbF71x4c5xyoioJEYhgB0jMyuPveu0nvnIFmNjWb7V1Nw37dR= +mPP7Hzk52UlpaimTSQAsMwSEpK4s6Rw+nTpy8WixlDbWpjBFIYSAmqVDh/ppKtWz/m5A8n8fl9= KELB5/MRlxBH//79GDliJBH2CALCQApQpeBQ/iGG3TGEUaNGB8NTSok0JBJBl65dSUpOYteuXXz= 00Uc88MADWCwWzGZzs4TY6KaqGmpWDcPg/PnzzJ8/H03TuPveuzFbbc2GkMEsYLKY+dPAAfS87V= auOJ24PR6EENhsVqJjYjGbtcZ7K82mg1eBM5lMdOvendQOHalz1eNucGMYBrYwG/aISGw2K6oSv= GQr8mrVE6HppqR12ySmPzaD2ro66uvq8fl9aKpKTEwM0VH2IB5IBKA0zWGbtSOalJJ6Vz0Xqqow= m0zYbGFMmpLNv1e8xtPPPE1iYiL9+/cnIiIiOJBTlFBv1iTI7/fz66+/MnfuXL777jsGDh5It27= dqL1yhYDfj9I0Gmu8qjV1PlaTBavJEsLFXVePR8rrDx6vIYmCWWiYwiIbv5d43W68bncI5OaNQo= spb7NhaERYGE1TDL+uc+nipav8zfo0V50r5DSipKREDhw0kMjISFRVZex94+jVpw/FRUWsz8vDZ= g3jiccf54EHHiA5ORmLxdKin3I6nRw6dIjly//F90e+55auXZn6yDQCRoB3V79L7WXnzSy/Pv3u= BPgm736P94/u2/htfX09eXl5jBo1KuhpNdU11FTXAPDhps0kp6TQ9099sdmsrFvzv7z88sts2bK= FQYMGkZmZSUJCAi6Xi4qKCvLz8zl8+DDOOieDh/yZcfffj81q4/01ayg58QM+3d9CB5PJFGqEGx= oaQusul4uwsDAMw8Dlct3QXovFgtVqxeVyYbPZCAQC6LpObGwsQghqamrw+Xw35A+mAhuJiYk4n= U6uXLmCqqpERkZSW1uL3++/IW8TadcuVJ2vJOed/zB3/lx69uxB4tN/Y9+efRQUFFByqgSTZkLT= NKSU+Hw+JMEr0EOTH6ZTl05YLVY2rF3Pt998+xvAAKKjo9m0aRPnzp3D5/ORl5fHpEmTePLJJ8n= JyWHx4sWcPn36hgp37NiRF198kXnz5nHnnXdy6dIlLBYLDz/8MIFAgNzcXHbu3HlT41esWIHf7y= c2NpZFixZht9t56aWXeOqppygrK2uRv64leT3QAv4A5b/8wovLlvL444+TkZHBxOyHGDN2DOccD= srLy6msrETTNDp37kJKSgrxcXFYrWF4vR7ezVlN/jf56I2917WkaRpms5ktW7Ywfvx4ysvLsVgs= 5ObmcvbsWc6cOXNDhQFsNhtpaWksW7aMU6dOoSgK9913HwsWLKChoYHExESU5v+kuQ4NGjSIDRs= 2sH37djweD5MmTeL48eNMmDCBF1988aagieuBFgTOz/lz5/nnsn8xYtRIRt41gvhWccQlJtDjtl= sbiwBIaWAYwQRc9O23bNq4icrKyptu2gRceHg4drsdTdNYsmQJhYWFdOnSJXSpv6HSQvDTTz+hq= ioDBgxg27ZtREZGUl1djdvtDo2ybkSKovDkk08ycOBAnnvuOdasWUNmZibl5eWMGTOG5cuXt5i4= XFf/665KQEo8DQ3s2PYJB7/8ioyMDDqmdyQxMZGIyAh8uk519WXOnDnDqZISKs850HX9ppsBodl= cq1atQgBVVFRQXV3N+fPnfxc0v9+Py+XirbfeYtOmTbhcLrZv387zzz+PEIJvv/2WI0eO3DCvqa= rKs88+y65duygtLaVz587U1NRw9OhRMjIyuP322ykoKLipDuLkyZOya9euv2usEAJFVdBUDZPJh= GEY6Lr+m5HK71F4eDj9+/dHURQcDgenT5/G7/czePBgvvzyy9895bi4OGJjYzl79iyZmZk4HA5c= Lhc9evRASsmJEye4fPnyDXVSFIX27dtzyy23UF1dzZUrV/D5fJSXl5Oeno7X6+XXX3+9Lu/OnTs= ZOXIkory8XE6ePPmmija/UF9v/Xrvbiarqc/7I7zXNtbN6Y/Ia95fNpfbXMaN+FesWBGaDv8//U= H6Pw/h65aldWKXAAAAAElFTkSuQmCC" width=3D"77" height=3D"28" alt=3D"" style= =3D"margin-top:0.15pt; margin-left:0pt; position:absolute" /></span><span s= tyle=3D"font-family:'Times New Roman'; font-weight:bold"> </span></p><= /td><td style=3D"width:5.3pt; border-bottom:0.75pt solid #000000; padding:0= pt 5.4pt; vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:cen= ter; line-height:115%"><span style=3D"font-family:'Times New Roman'; font-w= eight:bold"> </span></p></td><td colspan=3D"5" style=3D"width:340.95pt= ; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:top= "><p style=3D"margin-bottom:0pt; text-align:justify; line-height:115%"><spa= n style=3D"line-height:115%; font-family:'Times New Roman'; font-size:8pt; = font-style:italic">Esta revista est=C3=A1 protegida bajo una licencia Creat= ive Commons Atribuci=C3=B3n-No Comercial-Compartir Igual 4.0 International.= Copia de la licencia: </span><a href=3D"https://creativecommons.org/licens= es/by-nc-sa/4.0/deed.es" style=3D"text-decoration:none"><span style=3D"line= -height:115%; font-family:'Times New Roman'; font-size:8pt; font-style:ital= ic; text-decoration:underline; color:#0000ff">https://creativecommons.org/l= icenses/by-nc-sa/4.0/deed.es</span></a><span style=3D"line-height:115%; fon= t-family:'Times New Roman'; font-size:8pt; font-style:italic"> </span></p><= /td><td style=3D"border-bottom:0.75pt solid #000000; padding:0pt; vertical-= align:top"></td></tr><tr><td colspan=3D"3" style=3D"width:92.9pt; border-to= p:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:top"><p style=3D"= margin-bottom:0pt; text-align:justify; line-height:115%; font-size:12pt"><s= pan style=3D"font-family:'Times New Roman'; font-weight:bold; color:#767171= ">Palabras clave:</span><span style=3D"font-family:'Times New Roman'; color= :#767171"> </span></p><p style=3D"margin-bottom:0pt; line-height:115%; font= -size:12pt"><span style=3D"font-family:'Times New Roman'">Respuestas emocio= nales; comunicaci=C3=B3n audiovisual institucional; neuromarketing; </span>= </p><p style=3D"margin-bottom:0pt; line-height:115%; font-size:12pt"><span = style=3D"font-family:'Times New Roman'">an=C3=A1lisis biom=C3=A9trico; reco= nocimiento facial; FaceReader.</span></p></td><td colspan=3D"2" style=3D"wi= dth:4.15pt; border-top:0.75pt solid #000000; padding:0pt 5.4pt; vertical-al= ign:top"><p style=3D"margin-bottom:0pt; text-align:justify; line-height:115= %; font-size:12pt"><span style=3D"font-family:'Times New Roman'; font-weigh= t:bold"> </span></p></td><td colspan=3D"3" style=3D"width:307.15pt; bo= rder-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:= 0pt 5.4pt; vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:ju= stify; line-height:115%; font-size:12pt"><span style=3D"font-family:'Times = New Roman'; font-weight:bold">Resumen </span></p><p style=3D"margin-bottom:= 0pt; text-align:justify; line-height:115%; font-size:12pt"><span style=3D"f= ont-family:'Times New Roman'; font-weight:bold">Introducci=C3=B3n: </span><= span style=3D"font-family:'Times New Roman'">esta investigaci=C3=B3n analiz= a las reacciones emocionales inducidas por un est=C3=ADmulo audiovisual pro= mocional institucional entre los estudiantes de primer ciclo de la Facultad= De Ciencias Administrativas y Econ=C3=B3micas de la Universidad T=C3=A9cni= ca de Cotopaxi, considerando la importancia de la comunicaci=C3=B3n audiovi= sual en contextos universitarios y su impacto en la atenci=C3=B3n y la resp= uesta emocional. </span><span style=3D"font-family:'Times New Roman'; font-= weight:bold">Objetivos: </span><span style=3D"font-family:'Times New Roman'= ">el objetivo principal fue examinar las reacciones emocionales de primer o= rden de los estudiantes bajo la exposici=C3=B3n a los videos promocionales = institucionales utilizando el software FaceReader, con el fin de determinar= el patr=C3=B3n principal de respuesta emocional bajo el est=C3=ADmulo audi= ovisual. </span><span style=3D"font-family:'Times New Roman'; font-weight:b= old">Metodolog=C3=ADa: </span><span style=3D"font-family:'Times New Roman'"= >el estudio fue cuantitativo, no experimental transversal, descriptivo; la = muestra estuvo compuesta por 50 estudiantes, cuyas expresiones faciales fue= ron registradas mientras ve=C3=ADan un est=C3=ADmulo audiovisual integrado.= El an=C3=A1lisis biom=C3=A9trico reportando las emociones b=C3=A1sicas, in= dicadores de valencia emocional, nivel de activaci=C3=B3n y atenci=C3=B3n, = procesados estad=C3=ADsticamente por el software SPSS versi=C3=B3n 26.</spa= n><span style=3D"font-family:'Times New Roman'; font-weight:bold"> Resultad= os: </span><span style=3D"font-family:'Times New Roman'">los resultados rev= elaron que la mayor=C3=ADa de las respuestas fueron de emoci=C3=B3n neutral= , y hubo altos grados de indicador de atenci=C3=B3n y bajos niveles de conf= usi=C3=B3n; tambi=C3=A9n hubo un ligero aumento en la valencia positiva sob= re los sentimientos de valencia negativa, sin registrarse una respuesta emo= cional de alta intensidad.</span><span style=3D"font-family:'Times New Roma= n'; font-weight:bold"> Conclusi=C3=B3n: </span><span style=3D"font-family:'= Times New Roman'">La investigaci=C3=B3n indica que el est=C3=ADmulo audiovi= sual integrado provoc=C3=B3 respuestas emocionales estables y una atenci=C3= =B3n adecuada en los estudiantes. </span><span style=3D"font-family:'Times = New Roman'; font-weight:bold">=C3=81rea de estudio general: </span><span st= yle=3D"font-family:'Times New Roman'">Administraci=C3=B3n. </span><span sty= le=3D"font-family:'Times New Roman'; font-weight:bold">=C3=81rea de estudio= espec=C3=ADfica: </span><span style=3D"font-family:'Times New Roman'">Comu= nicaci=C3=B3n Institucional y Neuromarketing. </span><span style=3D"font-fa= mily:'Times New Roman'; font-weight:bold; background-color:#ffffff">Tipo de= estudio:</span><span style=3D"font-family:'Times New Roman'; background-co= lor:#ffffff"> Art=C3=ADculo original.</span></p><p style=3D"margin-bottom:0= pt; text-align:justify; line-height:115%; font-size:12pt"><span style=3D"fo= nt-family:'Times New Roman'; color:#333333"> </span></p></td></tr><tr>= <td colspan=3D"4" style=3D"width:96.15pt; padding:0pt 5.4pt; vertical-align= :top"><p style=3D"margin-bottom:0pt; text-align:justify; line-height:115%; = font-size:12pt"><span style=3D"font-family:'Times New Roman'; font-weight:b= old; color:#767171">Keywords:</span><span style=3D"font-family:'Times New R= oman'; color:#767171"> </span></p><p style=3D"margin-bottom:0pt; line-heigh= t:115%; font-size:12pt"><span style=3D"font-family:'Times New Roman'">Emoti= onal responses; institutional audiovisual communication; neuromarketing; </= span></p><p style=3D"margin-bottom:0pt; line-height:115%; font-size:12pt"><= span style=3D"font-family:'Times New Roman'">biometric analysis; </span></p= ><p style=3D"margin-bottom:0pt; line-height:115%; font-size:12pt"><span sty= le=3D"font-family:'Times New Roman'">facial recognition; FaceReader.</span>= </p></td><td style=3D"width:0.9pt; padding:0pt 5.4pt; vertical-align:top"><= p style=3D"margin-bottom:0pt; text-align:justify; line-height:115%; font-si= ze:12pt"><span style=3D"font-family:'Times New Roman'; font-weight:bold">&#= xa0;</span></p></td><td colspan=3D"3" style=3D"width:307.15pt; border-top:0= .75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt;= vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:justify; lin= e-height:115%; font-size:12pt"><span style=3D"font-family:'Times New Roman'= ; font-weight:bold">Abstract</span></p><p style=3D"margin-bottom:0pt; text-= align:justify; line-height:115%; font-size:12pt"><span style=3D"font-family= :'Times New Roman'; font-weight:bold">Introduction. </span><span style=3D"f= ont-family:'Times New Roman'">This study analyzes the emotional responses g= enerated by an institutional promotional audiovisual stimulus in first cycl= e students from the Faculty of Administrative and Economic Sciences of the = Technical University of Cotopaxi, considering the relevance of audiovisual = communication in university contexts and its influence on attention and emo= tional response. </span><span style=3D"font-family:'Times New Roman'; font-= weight:bold">Objective. </span><span style=3D"font-family:'Times New Roman'= ">The main objective was to analyze the emotional responses produced by an = institutional promotional video in students using the FaceReader software, = to identify the predominant emotional trend during exposure to the audiovis= ual stimulus.</span><span style=3D"font-family:'Times New Roman'; font-weig= ht:bold"> Methodology. </span><span style=3D"font-family:'Times New Roman'"= >The research followed a quantitative approach with a non-experimental, cro= ss-sectional, and descriptive design. The sample consisted of 50 students w= hose facial expressions were recorded during the viewing of an integrated i= nstitutional audiovisual stimulus. The biometric analysis evaluated basic e= motions as well as emotional valence, arousal level, and attention indicato= rs, with the data statistically processed using SPSS version 26. </span><sp= an style=3D"font-family:'Times New Roman'; font-weight:bold">Results. </spa= n><span style=3D"font-family:'Times New Roman'">The findings revealed a pre= dominance of neutral emotion, accompanied by elevated levels of attention a= nd low levels of confusion, as well as slightly higher values of positive e= motional valence compared to negative valence, without registering high int= ensity emotional reactions. </span><span style=3D"font-family:'Times New Ro= man'; font-weight:bold">Conclusion. </span><span style=3D"font-family:'Time= s New Roman'">It is concluded that the institutional audiovisual stimulus g= enerated stable emotional responses and adequate levels on the application = of biometric tools for the analysis of institutional audiovisual. </span><s= pan style=3D"font-family:'Times New Roman'; font-weight:bold">General Area = of Study: </span><span style=3D"font-family:'Times New Roman'">Administrati= on. </span><span style=3D"font-family:'Times New Roman'; font-weight:bold">= Specific area of study: </span><span style=3D"font-family:'Times New Roman'= ">Institutional communication and neuromarketing. </span><span style=3D"fon= t-family:'Times New Roman'; font-weight:bold; background-color:#ffffff">Typ= e of study:</span><span style=3D"font-family:'Times New Roman'; background-= color:#ffffff"> Original article.</span></p><p style=3D"margin-bottom:0pt; = text-align:justify; line-height:115%; font-size:12pt"><span style=3D"font-f= amily:'Times New Roman'"> </span></p></td></tr><tr style=3D"height:0pt= "><td style=3D"width:63pt"></td><td style=3D"width:16.1pt"></td><td style= =3D"width:24.6pt"></td><td style=3D"width:3.25pt"></td><td style=3D"width:1= 1.7pt"></td><td style=3D"width:55.05pt"></td><td style=3D"width:257.15pt"><= /td><td style=3D"width:5.75pt"></td></tr></table><p style=3D"text-align:jus= tify"><span> </span></p><p style=3D"text-align:justify; line-height:10= 8%; font-size:12pt"><span style=3D"font-family:'Times New Roman'; font-weig= ht:bold"> </span></p><ol style=3D"margin:0pt; padding-left:0pt"><li st= yle=3D"margin-left:17.3pt; margin-bottom:10pt; text-align:justify; line-hei= ght:115%; padding-left:4pt; font-family:'Times New Roman'; font-size:12pt; = font-weight:bold"><span>Introducci=C3=B3n</span></li></ol><p style=3D"margi= n-bottom:10pt; text-align:justify; line-height:115%; font-size:12pt"><a id= =3D"_heading_h.qtmfqbmz5r98"></a><span style=3D"font-family:'Times New Roma= n'">Esta inundaci=C3=B3n general de propaganda es la realidad actual de los= negocios y los medios, lo que hace que la tarea de captar y establecer rel= aciones con las audiencias sea muy dif=C3=ADcil en un entorno caracterizado= por la saturaci=C3=B3n de mensajes promocionales (Benavides & Loyola, = 2025). Se reconoce que los estudios de mercado convencionales, basados en g= ran medida en el razonamiento racional y la comunicaci=C3=B3n oral, no capt= uran adecuadamente las manifestaciones del comportamiento humano, por cuant= o que muchas de las decisiones y respuestas se realizan mediante un proceso= inconsciente y autom=C3=A1tico (Baraybar-Fern=C3=A1ndez et al., 2017; Ram= =C3=ADrez-Brice=C3=B1o, 2016).</span></p><p style=3D"margin-bottom:10pt; te= xt-align:justify; line-height:115%; font-size:12pt"><span style=3D"font-fam= ily:'Times New Roman'">En este sentido la neuro comunicaci=C3=B3n instituci= onal surgi=C3=B3 como un enfoque interdisciplinario que re=C3=BAne ideas en= psicolog=C3=ADa del consumidor, la neurociencia y neuropsicolog=C3=ADa, co= n el objetivo de explorar lo procesos emocionales que desencadenan la inter= pretaci=C3=B3n de los mensajes comunicativos (Cevallos & Tinoco, 2025; = Ram=C3=ADrez-Brice=C3=B1o, 2016). Para poder examinar los est=C3=ADmulos pu= blicitarios, es necesario entender las respuestas emocionales, tal como se = demostr=C3=B3 en diversas investigaciones que confirman que las funciones c= ognitivas y las emociones interact=C3=BAan entre s=C3=AD (Baraybar-Fern=C3= =A1ndez et al., 2017; Benavides & Gonz=C3=A1lez, 2025).</span></p><p st= yle=3D"margin-bottom:10pt; text-align:justify; line-height:115%; font-size:= 12pt"><span style=3D"font-family:'Times New Roman'">Cuantificar las respues= tas emocionales involuntarias de los individuos es esencial para entender e= l impacto de la propaganda (Baraybar-Fern=C3=A1ndez et al., 2017; Cevallos = & Tinoco, 2025). En el =C3=A1rea de la neuro comunicaci=C3=B3n instituc= ional, se utilizan t=C3=A9cnicas biom=C3=A9tricas no intrusivas para determ= inar las respuestas subconscientes con mayor precisi=C3=B3n que los m=C3=A9= todos convencionales (Cevallos & Tinoco, 2025). Por nombrar una de esta= s herramientas, una de las mejores en el campo es el software de reconocimi= ento facial, tambi=C3=A9n conocido como </span><span style=3D"font-family:'= Times New Roman'; font-style:italic">FaceReader </span><span style=3D"font-= family:'Times New Roman'">(Rodas & Montoya-Restrepo, 2019; Cevallos &am= p; Tinoco, 2025; Ram=C3=ADrez-Brice=C3=B1o, 2016).</span></p><p style=3D"ma= rgin-bottom:10pt; text-align:justify; line-height:115%; font-size:12pt"><sp= an style=3D"font-family:'Times New Roman'">El FaceReader una tecnolog=C3=AD= a indispensable que proporciona evaluaciones mediante el proceso inmediato = de las expresiones faciales de los clientes y las asocia con un conjunto es= pec=C3=ADfico de emociones (Rodas & Montoya-Restrepo, 2019; Ram=C3=ADre= z-Brice=C3=B1o, 2016). Algunas de las emociones b=C3=A1sicas que esta herra= mienta tiene la capacidad de detectar al leer micro expresiones faciales so= n: disgusto (o desagrado), alegr=C3=ADa (o disfrute/felicidad), miedo, desp= recio, ira (o rabia), tristeza, sorpresa y el estado neutral (Rodas & M= ontoya-Restrepo, 2019; Andrade-Zotamba et al., 2021). En el caso de experie= ncias multisensoriales en forma de videos institucionales, FaceReader reali= za una caracterizaci=C3=B3n fisiol=C3=B3gica de los m=C3=BAsculos faciales,= incluidas las micro expresiones involuntarias. As=C3=AD se sigue una evalu= aci=C3=B3n objetiva de la respuesta emocional (Rodas & Montoya-Restrepo= , 2019; Ram=C3=ADrez-Brice=C3=B1o, 2016).</span></p><p style=3D"margin-bott= om:10pt; text-align:justify; line-height:115%; font-size:12pt"><span style= =3D"font-family:'Times New Roman'">Seg=C3=BAn varios estudios a nivel inter= nacional, los mensajes de propaganda que son m=C3=A1s emocionalmente intens= os tienen un mayor impacto y pueden promover el recuerdo de la marca (Baray= bar-Fern=C3=A1ndez et al., 2017; Baraybar-Fern=C3=A1ndez et al., 2023; Roda= s & Montoya-Restrepo, 2019). Las t=C3=A9cnicas (por ejemplo, Eye Tracki= ng, FaceReader)</span><span style=3D"font-family:'Times New Roman'">  = </span><span style=3D"font-family:'Times New Roman'">permiti=C3=B3 desarrol= lar m=C3=A9todos precisos para determinar qu=C3=A9 elementos evocan la mayo= r respuesta emocional y cognitiva de los consumidores (Rodas & Montoya-= Restrepo, 2019). La codificaci=C3=B3n facial, seg=C3=BAn estos autores, es = crucial para establecer reacciones emocionales positivas, negativas o neutr= ales; al analizar anuncios de televisi=C3=B3n, se encuentra que la tristeza= y la alegr=C3=ADa son las respuestas emocionales m=C3=A1s frecuentes.</spa= n></p><p style=3D"margin-bottom:10pt; text-align:justify; line-height:115%;= font-size:12pt"><a id=3D"_heading_h.3ruupt119nh8"></a><span style=3D"font-= family:'Times New Roman'">Se realizaron estudios sobre si los efectos de la= publicidad emocional que son prevalentes en todo el mundo tambi=C3=A9n ocu= rren en Am=C3=A9rica Latina (Benavides Polo & Gonz=C3=A1lez Loyola, 202= 5). La publicidad emocional en Ecuador resulta en mayor compromiso y una ev= aluaci=C3=B3n positiva de la marca que la publicidad racional (Andrade-Zota= mba et al., 2021). Estudios recientes se demostr=C3=B3 que la publicidad au= diovisual genera respuestas emocionales medibles en la audiencia, las cuale= s pueden ser analizadas objetivamente mediante el uso de herramientas biom= =C3=A9tricas de neuromarketing (Castro-Anal=C3=BAiza & Pazmi=C3=B1o-Chi= mbana, 2023)</span></p><p style=3D"margin-bottom:10pt; text-align:justify; = line-height:115%; font-size:12pt"><a id=3D"_heading_h.lqaayomc51lt"></a><sp= an style=3D"font-family:'Times New Roman'">Por otro lado, investigaciones r= ecientes de la </span><span style=3D"font-family:'Times New Roman'; text-de= coration:underline">Universidad T=C3=A9cnica de Machala</span><span style= =3D"font-family:'Times New Roman'"> emplearon t=C3=A9cnicas como la </span>= <span style=3D"font-family:'Times New Roman'; text-decoration:underline">El= ectroencefalograf=C3=ADa (EEG</span><span style=3D"font-family:'Times New R= oman'">) para examinar las respuestas emocionales de los estudiantes ante e= st=C3=ADmulos sensoriales y publicidad (Cevallos & Tinoco, 2025), propo= niendo la integraci=C3=B3n del an=C3=A1lisis facial con la finalidad de obt= ener una perspectiva m=C3=A1s completa del comportamiento del consumidor.</= span></p><p style=3D"margin-bottom:10pt; text-align:justify; line-height:11= 5%; font-size:12pt"><span style=3D"font-family:'Times New Roman'">Finalment= e, este estudio desarrollado en la Facultad de Ciencias Administrativas y E= con=C3=B3micas de la </span><span style=3D"font-family:'Times New Roman'; t= ext-decoration:underline">Universidad T=C3=A9cnica de Cotopaxi (UTC</span><= span style=3D"font-family:'Times New Roman'">) busca aplicar como metodolog= =C3=ADa la de reconocimiento facial</span><span style=3D"font-family:'Times= New Roman'">  </span><span style=3D"font-family:'Times New Roman'">(<= /span><span style=3D"font-family:'Times New Roman'; font-style:italic">Face= Reader</span><span style=3D"font-family:'Times New Roman'">) con el fin de = analizar las emociones de los alumnos frente al contenido de los videos ins= titucionales. Entender c=C3=B3mo los j=C3=B3venes de la Generaci=C3=B3n Z r= eaccionan a nivel emocional a los est=C3=ADmulos audiovisuales es el objeti= vo de este an=C3=A1lisis, ya que sus emociones impactan en la intenci=C3=B3= n de compartir contenido y en la memoria (Mu=C3=B1oz-Pico & Viteri-Manc= ero, 2022; Ram=C3=ADrez-Brice=C3=B1o, 2016). Investigaciones recientes indi= can que los integrantes de este grupo generacional suelen mostrar reaccione= s emocionales moderadas ante los mensajes publicitarios, valorando m=C3=A1s= la coherencia y el contenido significativo que la estimulaci=C3=B3n emocio= nal intensa (Karimulla et al., 2025). La utilizaci=C3=B3n del FaceReader po= sibilita un entendimiento mucho m=C3=A1s completo de la efectividad emocion= al de los mensajes publicitarios(Baraybar-Fern=C3=A1ndez et al., 2017; Bara= ybar-Fern=C3=A1ndez et al., 2023).</span></p><h3 style=3D"margin-top:0pt; m= argin-bottom:10pt; text-align:justify; line-height:115%"><span style=3D"fon= t-family:'Times New Roman'; font-style:italic; color:#000000">1.1. Planteam= iento del problema</span></h3><p style=3D"margin-bottom:10pt; text-align:ju= stify; line-height:115%; font-size:12pt"><span style=3D"font-family:'Times = New Roman'">El contenido audiovisual institucional integrado pretende gener= ar reacciones emocionales en la audiencia, a trav=C3=A9s de emociones como = la tristeza, la ira o la alegr=C3=ADa de forma deliberada dentro de los men= sajes publicitarios para crear expresiones atractivas y transmitir sensacio= nes vinculadas a las marcas (Baraybar-Fern=C3=A1ndez et al., 2017; Mu=C3=B1= oz-Pico & Viteri-Mancero, 2022). Seg=C3=BAn varios estudios, los videos= institucionales con contenido emocional son m=C3=A1s propensos a atraer la= atenci=C3=B3n de quien observa y a facilitar el procesamiento del mensaje;= es por esa raz=C3=B3n que se vio el inter=C3=A9s acad=C3=A9mico por examin= ar las reacciones emocionales que estos est=C3=ADmulos visuales producen (B= enavides Polo & Gonz=C3=A1lez Loyola, 2025).</span></p><p style=3D"marg= in-bottom:10pt; text-align:justify; line-height:115%; font-size:12pt"><span= style=3D"font-family:'Times New Roman'">Sin embargo, uno de los retos m=C3= =A1s importantes al momento de analizar la comunicaci=C3=B3n audiovisual in= stitucional es la dificultad para poder medir objetivamente las respuestas = emocionales profundas, en particular las que suceden de forma inconsciente = y autom=C3=A1tica, adem=C3=A1s las herramientas de neuromarketing demostrar= on que las reacciones a nivel fisiol=C3=B3gico pueden diferir de lo que las= personas manifiestan por medio de instrumentos tradicionales, como encuest= as o entrevistas (Baraybar-Fern=C3=A1ndez et al., 2017; Cevallos & Tino= co, 2025).</span></p><p style=3D"margin-bottom:10pt; text-align:justify; li= ne-height:115%; font-size:12pt"><span style=3D"font-family:'Times New Roman= '">En relaci=C3=B3n con los estudiantes de la </span><span style=3D"font-fa= mily:'Times New Roman'; text-decoration:underline">Universidad T=C3=A9cnica= de Cotopaxi (UTC</span><span style=3D"font-family:'Times New Roman'">), ha= y muy poca informaci=C3=B3n sobre los diferentes patrones de respuestas emo= cionales que se generan al ver los videos institucionales, especialmente aq= uellas que se encuentran expresadas por medio de micro expresiones faciales= . Adem=C3=A1s, hay poca evidencia emp=C3=ADrica que posibilite la descripci= =C3=B3n de estas respuestas emocionales objetivas (Cevallos & Tinoco, 2= 025; Baraybar-Fern=C3=A1ndez et al., 2023).</span></p><p style=3D"margin-bo= ttom:10pt; text-align:justify; line-height:115%; font-size:12pt"><span styl= e=3D"font-family:'Times New Roman'">Dentro de este contexto, es acertado in= cluir metodolog=C3=ADas biom=C3=A9tricas que ayuden en la cuantificaci=C3= =B3n de las respuestas emocionales en tiempo real, tomando en cuenta los in= dicadores como la activaci=C3=B3n y la valencia emocional, adem=C3=A1s el a= n=C3=A1lisis de las reacciones emocionales involuntarias provocadas por est= =C3=ADmulos audiovisuales puede ser abordado de manera objetiva mediante la= utilizaci=C3=B3n de herramientas de neuromarketing como el FaceReader (Rod= as & Montoya-Restrepo, 2019; Baraybar-Fern=C3=A1ndez et al., 2023). Es = por esta raz=C3=B3n que se propone la importancia de llevar a cabo un estud= io de caso que analice las respuestas emocionales de los estudiantes de la = Facultad de Ciencias Administrativas y Econ=C3=B3micas de la Universidad T= =C3=A9cnica de Cotopaxi frente a videos institucionales; tomando en cuenta = que este estudio tendr=C3=A1 como principal eje el an=C3=A1lisis biom=C3=A9= trico facial, enfocando el an=C3=A1lisis exclusivamente en la respuesta emo= cional involuntaria registrada mediante biometr=C3=ADa facial.</span></p><p= style=3D"margin-bottom:10pt; text-align:justify; line-height:115%; font-si= ze:12pt"><span style=3D"font-family:'Times New Roman'">De lo anterior, se d= esprende la siguiente pregunta central de investigaci=C3=B3n:</span></p><p = style=3D"margin-bottom:10pt; text-align:justify; line-height:115%; font-siz= e:12pt"><span style=3D"font-family:'Times New Roman'">=C2=BFCu=C3=A1les son= las respuestas emocionales que se generan en los estudiantes de primer cic= lo de la Facultad de Ciencias Administrativas y Econ=C3=B3micas de la Unive= rsidad T=C3=A9cnica de Cotopaxi durante la visualizaci=C3=B3n del video pro= mocional integrado, analizados mediante el uso del software FaceReader?</sp= an></p><p style=3D"margin-bottom:10pt; text-align:justify; line-height:115%= ; font-size:12pt"><span style=3D"font-family:'Times New Roman'; font-style:= italic">Preguntas espec=C3=ADficas:</span></p><ul style=3D"margin:0pt; padd= ing-left:0pt"><li class=3D"ListParagraph" style=3D"margin-top:14pt; margin-= left:17.63pt; line-height:115%; padding-left:3.67pt; font-family:serif"><sp= an style=3D"font-family:'Times New Roman'">=C2=BFQu=C3=A9 tipo de valencia = emocional (positiva, negativa o neutral) predomina en los estudiantes duran= te la visualizaci=C3=B3n del video promocional integrado, seg=C3=BAn el an= =C3=A1lisis biom=C3=A9trico facial?</span></li><li class=3D"ListParagraph" = style=3D"margin-left:17.63pt; line-height:115%; padding-left:3.67pt; font-f= amily:serif"><span style=3D"font-family:'Times New Roman'">=C2=BFQu=C3=A9 n= iveles de activaci=C3=B3n emocional se registran en los estudiantes a lo la= rgo de la exposici=C3=B3n al est=C3=ADmulo audiovisual integrado, de acuerd= o con los indicadores biom=C3=A9tricos proporcionados por FaceReader?</span= ></li><li class=3D"ListParagraph" style=3D"margin-left:17.63pt; margin-bott= om:10pt; line-height:115%; padding-left:3.67pt; font-family:serif"><span st= yle=3D"font-family:'Times New Roman'">=C2=BFQu=C3=A9 patrones emocionales g= enerales se identifican en las respuestas faciales de los estudiantes ante = el est=C3=ADmulo audiovisual promocional integrado?</span></li></ul><h3 sty= le=3D"margin-top:0pt; margin-bottom:10pt; text-align:justify; line-height:1= 15%"><a id=3D"_heading_h.wvb0hwm4jv1"></a><span style=3D"font-family:'Times= New Roman'; font-style:italic; color:#000000">1.2. Objetivos de la investi= gaci=C3=B3n</span></h3><p style=3D"margin-bottom:10pt; text-align:justify; = line-height:115%; font-size:12pt"><span style=3D"font-family:'Times New Rom= an'; font-style:italic">Objetivo general: </span><span style=3D"font-family= :'Times New Roman'">analizar las respuestas emocionales que los videos prom= ocionales generan en los estudiantes del primer ciclo de la Facultad de Cie= ncias Administrativas y Econ=C3=B3micas de la Universidad T=C3=A9cnica de C= otopaxi, mediante el software FaceReader, con el fin de identificar cu=C3= =A1l es la tendencia emocional m=C3=A1s com=C3=BAn durante la observaci=C3= =B3n del est=C3=ADmulo audiovisual.</span></p><p style=3D"margin-bottom:10p= t; text-align:justify; line-height:115%; font-size:12pt"><span style=3D"fon= t-family:'Times New Roman'; font-style:italic">Objetivos espec=C3=ADficos:<= /span></p><p style=3D"margin-top:12pt; margin-left:21.3pt; margin-bottom:0p= t; text-indent:-18pt; text-align:justify; line-height:115%; font-size:12pt"= ><span style=3D"font-family:'Times New Roman'"><span style=3D"font-family:'= Noto Sans Symbols'">=E2=97=8F</span></span><span style=3D"width:10.8pt; fon= t:7pt 'Times New Roman'; display:inline-block">     = 0;  </span><span style=3D"font-family:'Times New Roman'">Determinar me= diante el software FaceReader, la inclinaci=C3=B3n afectiva (positiva, neut= ral o negativa) que manifiestan los estudiantes como respuesta al contenido= del video promocional analizado.</span></p><p style=3D"margin-left:21.3pt;= margin-bottom:0pt; text-indent:-18pt; text-align:justify; line-height:115%= ; font-size:12pt"><span style=3D"font-family:'Times New Roman'"><span style= =3D"font-family:'Noto Sans Symbols'">=E2=97=8F</span></span><span style=3D"= width:10.8pt; font:7pt 'Times New Roman'; display:inline-block">  = ;     </span><span style=3D"font-family:'Times New Roma= n'">Analizar la intensidad de la respuesta emocional de los estudiantes fre= nte al est=C3=ADmulo promocional, bas=C3=A1ndose en las m=C3=A9tricas de ac= tivaci=C3=B3n registradas por el sistema biom=C3=A9trico FaceReader.</span>= </p><p style=3D"margin-left:21.3pt; margin-bottom:10pt; text-indent:-18pt; = text-align:justify; line-height:115%; font-size:12pt"><span style=3D"font-f= amily:'Times New Roman'"><span style=3D"font-family:'Noto Sans Symbols'">= =E2=97=8F</span></span><span style=3D"width:10.8pt; font:7pt 'Times New Rom= an'; display:inline-block">       </span><spa= n style=3D"font-family:'Times New Roman'">Definir las tendencias expresivas= recurrentes en el grupo de estudio al procesar el anuncio publicitario, ba= jo una metodolog=C3=ADa de estudio de caso centrada en la respuesta no verb= al.</span></p><p style=3D"margin-bottom:10pt; text-align:justify; line-heig= ht:115%; font-size:12pt"><span style=3D"font-family:'Times New Roman'">La m= etodolog=C3=ADa que se presenta a continuaci=C3=B3n describe el dise=C3=B1o= no experimental empleado para la recolecci=C3=B3n de los datos mediante el= software FaceReader y su an=C3=A1lisis se lo realizar=C3=A1 por medio del = programa SPSS, lo que permitir=C3=A1 analizar los resultados para el an=C3= =A1lisis propuesto.</span></p><ol start=3D"2" style=3D"margin:0pt; padding-= left:0pt"><li class=3D"ListParagraph" style=3D"margin-left:14pt; margin-bot= tom:10pt; line-height:115%; padding-left:4pt; font-weight:bold"><span>Metod= olog=C3=ADa</span></li></ol><h2 style=3D"margin-top:0pt; margin-bottom:10pt= ; page-break-inside:auto; page-break-after:auto; line-height:115%"><a id=3D= "_heading_h.n9l2zrnw8p6l"></a><span style=3D"font-weight:normal">El present= e estudio se desarroll=C3=B3 bajo un enfoque cuantitativo, sustentado bajo = el an=C3=A1lisis de datos biom=C3=A9tricos recabados por medio del software= FaceReader, en el que se pudo registrar de manera directa las diferentes r= espuestas emocionales de los estudiantes durante la visualizaci=C3=B3n de u= n est=C3=ADmulo audiovisual promocional. El enfoque cuantitativo se disting= ue por la utilizaci=C3=B3n e implementaci=C3=B3n de mediciones num=C3=A9ric= as y procedimientos estad=C3=ADsticos para el an=C3=A1lisis sistem=C3=A1tic= o de cada uno de los fen=C3=B3menos observables, siendo adecuado en estudio= s que emplean herramientas tecnol=C3=B3gicas para el registro psicofisiol= =C3=B3gico de la conducta humana (Creswell & Creswell, 2017; Babbie, 20= 13).</span></h2><p style=3D"margin-bottom:10pt; text-align:justify; line-he= ight:115%; font-size:12pt"><span style=3D"font-family:'Times New Roman'">El= estudio se clasifica como una investigaci=C3=B3n de tipo exploratoria y de= scriptiva, ya que se orienta a identificar y describir las respuestas emoci= onales generadas por un est=C3=ADmulo audiovisual en una poblaci=C3=B3n esp= ec=C3=ADfica, prescindiendo de establecer relaciones causales ni generaliza= r los resultados a otros contextos.</span></p><p style=3D"margin-bottom:10p= t; text-align:justify; line-height:115%; font-size:12pt"><span style=3D"fon= t-family:'Times New Roman'">El dise=C3=B1o de la investigaci=C3=B3n fue no = experimental y transversal, esto se debe a que no se manipul=C3=B3 directam= ente ninguna variable y la recolecci=C3=B3n de los datos se realiz=C3=B3 en= un =C3=BAnico momento temporal durante la exposici=C3=B3n al est=C3=ADmulo= audiovisual. En concordancia con Hern=C3=A1ndez et al. (2014) estos estudi= os se caracterizan por observar los fen=C3=B3menos tal y como ocurren en su= contexto natural, sin intervenci=C3=B3n del investigador.</span></p><h2 st= yle=3D"margin-top:0pt; margin-bottom:10pt; page-break-inside:auto; page-bre= ak-after:auto; line-height:115%"><a id=3D"_heading_h.59k0drk7em85"></a><spa= n style=3D"font-weight:normal; font-style:italic">2.1.</span><span style=3D= "width:18pt; font-weight:normal; font-style:italic; display:inline-block">&= #xa0;</span><span style=3D"font-weight:normal; font-style:italic">Poblaci= =C3=B3n y muestra</span></h2><p style=3D"margin-bottom:10pt; text-align:jus= tify; line-height:115%; font-size:12pt"><span style=3D"font-family:'Times N= ew Roman'">La poblaci=C3=B3n objetivo del estudio estuvo conformada por los= estudiantes de primer ciclo de las carreras que forman parte de la Faculta= d de Ciencias Administrativas y Econ=C3=B3micas de la </span><span style=3D= "font-family:'Times New Roman'; text-decoration:underline">Universidad T=C3= =A9cnica de Cotopaxi</span><span style=3D"font-family:'Times New Roman'">, = integrada por un total de 343 estudiantes.</span><br /><span style=3D"font-= family:'Times New Roman'">Sin embargo, debido a la naturaleza experimental = del estudio, el registro emocional mediante FaceReader requiere condiciones= espec=C3=ADficas, tales como la disponibilidad presencial del estudiante, = tiempo individual de calibraci=C3=B3n y captura, condiciones de iluminaci= =C3=B3n estable, participaci=C3=B3n voluntaria y sesiones de grabaci=C3=B3n= en un entorno controlado, por lo que la muestra de la investigaci=C3=B3n f= ue tomada en base a</span><span style=3D"font-family:'Times New Roman'">&#x= a0; </span><span style=3D"font-family:'Times New Roman'">literatura especia= lizada en estudios con FaceReader que respaldan el uso de muestras peque=C3= =B1as debido al tiempo requerido por cada sesi=C3=B3n individual y la profu= ndidad del an=C3=A1lisis emocional. Diversas investigaciones emplearon mues= tras entre 20 y 50 participantes, lo que es suficiente para identificar pat= rones emocionales en estudios experimentales audiovisuales (Baraybar-Fern= =C3=A1ndez et al., 2017; Rodas & Montoya-Restrepo, 2019; Andrade-Zotamb= a et al., 2021). Como se muestra en la </span><a href=3D"#tabla1" style=3D"= text-decoration:none"><span class=3D"Hyperlink" style=3D"font-family:'Times= New Roman'; font-weight:bold; text-decoration:none; color:#000000">Tabla 1= </span></a><span style=3D"font-family:'Times New Roman'">, estos estudios e= videncian que el uso de muestras reducidas resulta metodol=C3=B3gicamente a= decuado en investigaciones que emplean herramientas biom=C3=A9tricas para e= l an=C3=A1lisis de respuestas emocionales. </span></p><p style=3D"margin-bo= ttom:10pt; text-align:center; line-height:115%; font-size:12pt"><a id=3D"ta= bla1"><span style=3D"font-family:'Times New Roman'; font-weight:bold">Tabla= 1</span><span style=3D"font-family:'Times New Roman'; font-weight:bold; co= lor:#44546a"> </span></a></p><p style=3D"margin-bottom:10pt; text-align:cen= ter; line-height:115%; font-size:12pt"><span style=3D"font-family:'Times Ne= w Roman'; font-style:italic">Justificaci=C3=B3n del tama=C3=B1o de la muest= ra</span></p><table style=3D"width:425.15pt; margin-bottom:0pt; padding:0pt= ; border-collapse:collapse"><tr style=3D"height:27.75pt"><td style=3D"width= :153.6pt; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #0000= 00; padding:0pt 5pt; vertical-align:top"><p style=3D"margin-bottom:0pt; tex= t-align:center; line-height:115%; font-size:10pt"><span style=3D"font-famil= y:'Times New Roman'">Autor (es)</span></p></td><td style=3D"width:157.1pt; = border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; paddin= g:0pt 5pt; vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:ce= nter; line-height:115%; font-size:10pt"><span style=3D"font-family:'Times N= ew Roman'">Tipo de estudio</span></p></td><td style=3D"width:84.4pt; border= -top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt = 5pt; vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:center; = line-height:115%; font-size:10pt"><span style=3D"font-family:'Times New Rom= an'">Tama=C3=B1o de la muestra</span></p></td></tr><tr style=3D"height:27.7= 5pt"><td style=3D"width:153.6pt; padding:0pt 5pt; vertical-align:top"><p st= yle=3D"margin-bottom:0pt; text-align:justify; line-height:115%; font-size:1= 0pt"><span style=3D"font-family:'Times New Roman'">Baraybar-Fern=C3=A1ndez = et al. (2017)</span></p></td><td style=3D"width:157.1pt; padding:0pt 5pt; v= ertical-align:top"><p style=3D"margin-bottom:0pt; text-align:justify; line-= height:115%; font-size:10pt"><span style=3D"font-family:'Times New Roman'">= Respuesta emocional a publicidad televisiva</span></p></td><td style=3D"wid= th:84.4pt; padding:0pt 5pt; vertical-align:top"><p style=3D"margin-bottom:0= pt; text-align:justify; line-height:115%; font-size:10pt"><span style=3D"fo= nt-family:'Times New Roman'">30 participantes</span></p></td></tr><tr style= =3D"height:27pt"><td style=3D"width:153.6pt; padding:0pt 5pt; vertical-alig= n:top"><p style=3D"margin-bottom:0pt; text-align:justify; line-height:115%;= font-size:10pt"><span style=3D"font-family:'Times New Roman'">Rodas & = Montoya-Restrepo (2019)</span></p></td><td style=3D"width:157.1pt; padding:= 0pt 5pt; vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:just= ify; line-height:115%; font-size:10pt"><span style=3D"font-family:'Times Ne= w Roman'">An=C3=A1lisis publicitario con Eye Tracking y FaceReader</span></= p></td><td style=3D"width:84.4pt; padding:0pt 5pt; vertical-align:top"><p s= tyle=3D"margin-bottom:0pt; text-align:justify; line-height:115%; font-size:= 10pt"><span style=3D"font-family:'Times New Roman'">24 participantes</span>= </p></td></tr><tr style=3D"height:27.75pt"><td style=3D"width:153.6pt; bord= er-bottom:0.75pt solid #000000; padding:0pt 5pt; vertical-align:top"><p sty= le=3D"margin-bottom:0pt; text-align:justify; line-height:115%; font-size:10= pt"><span style=3D"font-family:'Times New Roman'">Andrade-Zotamba et al. (2= 021)</span></p></td><td style=3D"width:157.1pt; border-bottom:0.75pt solid = #000000; padding:0pt 5pt; vertical-align:top"><p style=3D"margin-bottom:0pt= ; text-align:justify; line-height:115%; font-size:10pt"><span style=3D"font= -family:'Times New Roman'">Engagement emocional en publicidad</span></p></t= d><td style=3D"width:84.4pt; border-bottom:0.75pt solid #000000; padding:0p= t 5pt; vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:justif= y; line-height:115%; font-size:10pt"><span style=3D"font-family:'Times New = Roman'">25-40 participantes</span></p></td></tr></table><p style=3D"margin-= top:10pt; margin-bottom:10pt; text-align:justify; line-height:115%; font-si= ze:12pt"><span style=3D"font-family:'Times New Roman'"> </span><span s= tyle=3D"font-family:'Times New Roman'">Por tanto, una muestra de 50 estudia= ntes resulta metodol=C3=B3gicamente adecuada y consistente con los est=C3= =A1ndares establecidos en investigaciones similares. El n=C3=BAmero final d= e participantes estar=C3=A1 compuesto por los estudiantes que acepten parti= cipar voluntariamente y cumplan con los requisitos de presencia, disponibil= idad horaria y correcta detecci=C3=B3n facial por parte del software.</span= ></p><h2 style=3D"margin-top:0pt; margin-bottom:10pt; page-break-inside:aut= o; page-break-after:auto; line-height:115%"><a id=3D"_heading_h.yl8ftcn2sdv= w"></a><span style=3D"font-weight:normal; font-style:italic">2.2.</span><sp= an style=3D"width:18pt; font-weight:normal; font-style:italic; display:inli= ne-block"> </span><span style=3D"font-weight:normal; font-style:italic= ">Materiales</span></h2><p style=3D"margin-bottom:10pt; text-align:justify;= line-height:115%; font-size:12pt"><span style=3D"font-family:'Times New Ro= man'">Para la ejecuci=C3=B3n del estudio se emplearon los siguientes materi= ales y herramientas tecnol=C3=B3gicas:</span></p><p style=3D"margin-bottom:= 10pt; text-align:justify; line-height:115%; font-size:12pt"><span style=3D"= font-family:'Times New Roman'"> </span></p><h3 style=3D"margin-top:0pt= ; margin-left:36pt; margin-bottom:10pt; text-indent:-18pt; text-align:justi= fy; page-break-inside:auto; page-break-after:auto; line-height:115%"><span = style=3D"font-family:'Times New Roman'; font-size:14pt; font-style:italic; = color:#000000"><span>a)</span></span><span style=3D"width:6.34pt; font:7pt = 'Times New Roman'; display:inline-block">    </span><a id=3D= "_heading_h.xjhwfjutfix4"></a><span style=3D"font-family:'Times New Roman';= font-style:italic; color:#000000">Software FaceReader</span></h3><p style= =3D"margin-bottom:10pt; text-align:justify; line-height:115%; font-size:12p= t"><span style=3D"font-family:'Times New Roman'">El software FaceReader, en= su versi=C3=B3n 8.1 y creado por </span><span style=3D"font-family:'Times = New Roman'; font-style:italic">Noldus Information Technology</span><span st= yle=3D"font-family:'Times New Roman'">, fue la primera herramienta biom=C3= =A9trica utilizada en la investigaci=C3=B3n. Esta herramienta utiliza los a= lgoritmos de inteligencia artificial del sistema </span><span style=3D"font= -family:'Times New Roman'; font-style:italic; text-decoration:underline">FA= CS (Facial Action Coding System</span><span style=3D"font-family:'Times New= Roman'">) de Ekman y Friesen, que permite reconocer las emociones fundamen= tales: desagrado, alegr=C3=ADa, ira, miedo, asombro y tristeza; as=C3=AD co= mo la expresi=C3=B3n neutral. Adem=C3=A1s, investigaciones recientes demues= tran que los m=C3=A9todos autom=C3=A1ticos de reconocimiento de emociones e= n im=C3=A1genes y video como FaceReader est=C3=A1n transformando la investi= gaci=C3=B3n en marketing y comunicaci=C3=B3n al permitir an=C3=A1lisis de r= espuestas emocionales de forma no invasiva y en tiempo real (Bohorquez et a= l., 2025).</span></p><p style=3D"margin-bottom:10pt; text-align:justify; li= ne-height:115%; font-size:12pt"><span style=3D"font-family:'Times New Roman= '">Adem=C3=A1s, FaceReader produce m=C3=A9tricas avanzadas de respuesta emo= cional, como el compromiso (</span><span style=3D"font-family:'Times New Ro= man'; font-style:italic">engagement</span><span style=3D"font-family:'Times= New Roman'">), la valencia emocional y el nivel de activaci=C3=B3n (</span= ><span style=3D"font-family:'Times New Roman'; font-style:italic">arousal</= span><span style=3D"font-family:'Times New Roman'">), que se emplean frecue= ntemente en estudios de neuromarketing y en an=C3=A1lisis de emociones apli= cados a est=C3=ADmulos audiovisuales. La exactitud y fiabilidad de esta her= ramienta fueron confirmadas en investigaciones sobre comunicaci=C3=B3n emoc= ional y psicolog=C3=ADa del consumidor, seg=C3=BAn estudios anteriores (Lew= inski et al., 2014; St=C3=B6ckli et al., 2017).</span></p><p class=3D"ListP= aragraph" style=3D"margin-bottom:10pt; text-indent:-18pt; line-height:115%"= ><span style=3D"font-style:italic"><span>b)</span></span><span style=3D"wid= th:8pt; font:7pt 'Times New Roman'; display:inline-block">   = ;  </span><span style=3D"font-style:italic">Equipamiento t=C3=A9cnico<= /span></p><p style=3D"margin-bottom:10pt; text-align:justify; line-height:1= 15%; font-size:12pt"><span style=3D"font-family:'Times New Roman'">Con el p= rop=C3=B3sito de asegurar la precisi=C3=B3n en el an=C3=A1lisis biom=C3=A9t= rico, se utiliz=C3=B3 una estaci=C3=B3n de c=C3=B3mputo equipada con una c= =C3=A1mara de alta resoluci=C3=B3n y capacidad de procesamiento suficiente = para el funcionamiento de </span><span style=3D"font-family:'Times New Roma= n'; font-style:italic">FaceReader</span><span style=3D"font-family:'Times N= ew Roman'">. El levantamiento de datos se llev=C3=B3 a cabo en un ambiente = controlado, caracterizado por una iluminaci=C3=B3n equilibrada y un fondo n= eutro, factores que minimizaron las distracciones y optimizaron el registro= de las expresiones de los participantes.</span></p><h3 style=3D"margin-top= :0pt; margin-left:36pt; margin-bottom:10pt; text-indent:-18pt; text-align:j= ustify; page-break-inside:auto; page-break-after:auto; line-height:115%"><s= pan style=3D"font-family:'Times New Roman'; font-style:italic; color:#00000= 0"><span>c)</span></span><span style=3D"width:8.68pt; font:7pt 'Times New R= oman'; display:inline-block">      </span><a id=3D= "_heading_h.nrcx46nmh27s"></a><span style=3D"font-family:'Times New Roman';= font-style:italic; color:#000000">Est=C3=ADmulos audiovisuales</span></h3>= <p style=3D"margin-bottom:10pt; text-align:justify; line-height:115%; font-= size:12pt"><span style=3D"font-family:Times">El est=C3=ADmulo audiovisual c= onstituy=C3=B3 un video promocional institucional integrado, el cual se rea= liz=C3=B3 utilizando cuatro dimensiones conceptuales previamente definidas:= la reacci=C3=B3n emocional global, la atenci=C3=B3n y el </span><span styl= e=3D"font-family:Times; font-style:italic">engagement</span><span style=3D"= font-family:Times">, la claridad del mensaje a nivel y el impacto emocional= del protagonista. Estas dimensiones se emplearon solamente como criterios = conceptuales para seleccionar y organizar el contenido audiovisual, no como= unidades independientes de an=C3=A1lisis biom=C3=A9trico.</span></p><p sty= le=3D"margin-bottom:10pt; text-align:justify; line-height:115%; font-size:1= 2pt"><span style=3D"font-family:Times">Al principio, se tom=C3=B3 en cuenta= la posibilidad de analizar los contenidos audiovisuales de manera segmenta= da por dichas dimensiones. Sin embargo, al momento de poner en marcha opera= tivamente el an=C3=A1lisis en el software FaceReader, se detectaron restric= ciones en la configuraci=C3=B3n del registro del est=C3=ADmulo dividido en = segmentos; debido a ello, se decidi=C3=B3 combinar las dimensiones en un = =C3=BAnico est=C3=ADmulo audiovisual. Esta elecci=C3=B3n metodol=C3=B3gica = permiti=C3=B3 garantizar un registro biom=C3=A9trico estable y fiable, enfo= cando el an=C3=A1lisis en la reacci=C3=B3n emocional general de los partici= pantes ante el contenido promocional.</span></p><h2 style=3D"margin-top:0pt= ; margin-bottom:10pt; page-break-inside:auto; page-break-after:auto; line-h= eight:115%"><a id=3D"_heading_h.17jpvwq1s174"></a><span style=3D"font-weigh= t:normal; font-style:italic">2.3.</span><span style=3D"width:18pt; font-wei= ght:normal; font-style:italic; display:inline-block"> </span><span sty= le=3D"font-weight:normal; font-style:italic">Procedimiento</span></h2><p st= yle=3D"margin-bottom:10pt; text-align:justify; line-height:115%; font-size:= 12pt"><span style=3D"font-family:'Times New Roman'">El procedimiento se lle= v=C3=B3 a cabo en tres fases principales:</span></p><h3 style=3D"margin-top= :0pt; margin-left:36pt; margin-bottom:10pt; text-indent:-18pt; text-align:j= ustify; page-break-inside:auto; page-break-after:auto; line-height:115%"><s= pan style=3D"font-family:'Times New Roman'; font-style:italic; color:#00000= 0"><span style=3D"font-family:Symbol; font-style:normal">=EF=82=B7</span></= span><span style=3D"width:8.67pt; font:7pt 'Times New Roman'; display:inlin= e-block">      </span><a id=3D"_heading_h.7v9kqyju= uj2k"></a><span style=3D"font-family:'Times New Roman'; font-style:italic; = color:#000000">Fase 1: Preparaci=C3=B3n y calibraci=C3=B3n</span></h3><p st= yle=3D"margin-bottom:10pt; text-align:justify; line-height:115%; font-size:= 12pt"><span style=3D"font-family:'Times New Roman'">Cada sesi=C3=B3n inici= =C3=B3 con la adecuaci=C3=B3n del entorno f=C3=ADsico y la verificaci=C3=B3= n de la iluminaci=C3=B3n. Los participantes fueron ubicados frente a la c= =C3=A1mara a una distancia aproximada de 50 a 70 cm. Se realiz=C3=B3 la cal= ibraci=C3=B3n inicial del software mediante el reconocimiento autom=C3=A1ti= co del rostro. Posteriormente, se explic=C3=B3 de manera breve el procedimi= ento para evitar sesgos de expectativa.</span></p><h3 style=3D"margin-top:0= pt; margin-left:36pt; margin-bottom:10pt; text-indent:-18pt; text-align:jus= tify; page-break-inside:auto; page-break-after:auto; line-height:115%"><spa= n style=3D"font-family:'Times New Roman'; font-style:italic; color:#000000"= ><span style=3D"font-family:Symbol; font-style:normal">=EF=82=B7</span></sp= an><span style=3D"width:8.67pt; font:7pt 'Times New Roman'; display:inline-= block">      </span><a id=3D"_heading_h.t0t4mfhqgi= lj"></a><span style=3D"font-family:'Times New Roman'; font-style:italic; co= lor:#000000">Fase 2: Exposici=C3=B3n a los est=C3=ADmulos audiovisuales</sp= an></h3><p style=3D"margin-bottom:10pt; text-align:justify; line-height:115= %; font-size:12pt"><span style=3D"font-family:'Times New Roman'">Los estudi= antes visualizaron un =C3=BAnico est=C3=ADmulo audiovisual promocional inte= grado en una sola sesi=C3=B3n. Durante la reproducci=C3=B3n del video, el s= oftware FaceReader registr=C3=B3 en tiempo real las variaciones emocionales= de los participantes a trav=C3=A9s del an=C3=A1lisis de micro expresiones = faciales, capturando indicadores de emociones b=C3=A1sicas, valencia emocio= nal, nivel de activaci=C3=B3n y </span><span style=3D"font-family:'Times Ne= w Roman'; font-style:italic">engagement</span><span style=3D"font-family:'T= imes New Roman'">.</span></p><h3 style=3D"margin-top:0pt; margin-left:36pt;= margin-bottom:10pt; text-indent:-18pt; text-align:justify; page-break-insi= de:auto; page-break-after:auto; line-height:115%"><span style=3D"font-famil= y:'Times New Roman'; font-style:italic; color:#000000"><span style=3D"font-= family:Symbol; font-style:normal">=EF=82=B7</span></span><span style=3D"wid= th:8.67pt; font:7pt 'Times New Roman'; display:inline-block">  &#= xa0;   </span><a id=3D"_heading_h.ssy5k0f10lp7"></a><span style= =3D"font-family:'Times New Roman'; font-style:italic; color:#000000">Fase 3= : Registro y almacenamiento de datos</span></h3><p style=3D"margin-bottom:1= 0pt; text-align:justify; line-height:115%; font-size:12pt"><span style=3D"f= ont-family:'Times New Roman'">Los datos obtenidos a partir del software Fac= eReader fueron exportados en formato CSV, junto con los registros temporale= s generados durante la sesi=C3=B3n, para su posterior an=C3=A1lisis estad= =C3=ADstico. Todos los datos fueron almacenados utilizando c=C3=B3digos alf= anum=C3=A9ricos, con el fin de garantizar la confidencialidad y el anonimat= o de los participantes.</span><a id=3D"_heading_h.fmdno2w4oil"></a></p><p s= tyle=3D"margin-bottom:10pt; text-align:justify; line-height:115%; font-size= :12pt"><span style=3D"font-family:'Times New Roman'; font-style:italic">2.4= .</span><span style=3D"width:18pt; font-family:'Times New Roman'; display:i= nline-block"> </span><span style=3D"font-family:'Times New Roman'; fon= t-style:italic">T=C3=A9cnicas de an=C3=A1lisis de datos</span></p><p style= =3D"margin-bottom:10pt; text-align:justify; line-height:115%; font-size:12p= t"><a id=3D"_heading_h.a99bmqqkhse"></a><span style=3D"font-family:'Times N= ew Roman'">Los datos adquiridos por medio del programa FaceReader fueron an= alizados con el fin de estimar las emociones fundamentales (tristeza, alegr= =C3=ADa, enojo, miedo, asombro, desagrado, desprecio y neutralidad), adem= =C3=A1s de los indicadores avanzados de activaci=C3=B3n (arousal), valencia= emocional y </span><span style=3D"font-family:'Times New Roman'; font-styl= e:italic">engagement</span><span style=3D"font-family:'Times New Roman'">. = Se realiz=C3=B3 un an=C3=A1lisis descriptivo de la respuesta emocional glob= al registrada durante la visualizaci=C3=B3n del est=C3=ADmulo audiovisual i= ntegrado. Los gr=C3=A1ficos fueron generados directamente a partir de FaceR= eader y analizados en SPSS para ser representados estad=C3=ADsticamente, lo= que posibilit=C3=B3 la obtenci=C3=B3n de promedios, desviaciones est=C3=A1= ndar y comparaciones segmentadas. </span></p><p style=3D"margin-bottom:10pt= ; text-align:justify; line-height:115%; font-size:12pt"><span style=3D"font= -family:Times">Esta metodolog=C3=ADa facilit=C3=B3 el reconocimiento de pat= rones emocionales predominantes y sus modificaciones en funci=C3=B3n de la = naturaleza de los est=C3=ADmulos audiovisuales. Este enfoque es consistente= con investigaciones recientes que demuestran que el an=C3=A1lisis automati= zado de expresiones faciales permite identificar patrones emocionales y com= binaciones efectivas con mayor precisi=C3=B3n en el estudio de respuestas e= mocionales ante est=C3=ADmulos audiovisuales (Du et al., 2014).</span></p><= p style=3D"margin-bottom:10pt; text-align:justify; line-height:115%; font-s= ize:12pt"><span style=3D"font-family:'Times New Roman'">En SPSS se procesar= on los datos recolectados, en el que se calcularon la media (medida de tend= encia central), la desviaci=C3=B3n est=C3=A1ndar y la distribuci=C3=B3n de = frecuencias por cada variable emocional y atencional. Despu=C3=A9s, se cons= truyeron gr=C3=A1ficos descriptivos, tales como histogramas y comparaciones= entre emociones negativas y positivas. Se se=C3=B1ala que los resultados p= rovienen del an=C3=A1lisis hecho en SPSS, el cual se menciona como fuente d= e los gr=C3=A1ficos (SPSS; versi=C3=B3n 26). Esta estrategia hizo posible r= esumir y mostrar de manera ordenada y clara las respuestas de los alumnos.<= /span></p><ol start=3D"3" style=3D"margin:0pt; padding-left:0pt"><li class= =3D"ListParagraph" style=3D"margin-left:14pt; margin-bottom:10pt; line-heig= ht:115%; padding-left:4pt; font-weight:bold"><span>Resultados</span><span s= tyle=3D"color:#767171"> </span></li></ol><p style=3D"margin-bottom:10pt; te= xt-align:justify; line-height:115%; font-size:12pt"><span style=3D"font-fam= ily:'Times New Roman'">Se procedi=C3=B3 al an=C3=A1lisis de los datos biom= =C3=A9tricos con base en las cifras promedio de confusi=C3=B3n, atenci=C3= =B3n y emociones fundamentales que cada alumno adquiri=C3=B3 utilizando el = programa FaceReader. Con el objetivo de detallar las reacciones emocionales= generales de los alumnos durante la visualizaci=C3=B3n del est=C3=ADmulo a= udiovisual promocional institucional, se consolidaron y examinaron estad=C3= =ADsticamente los datos en el software SPSS.</span></p><p style=3D"margin-b= ottom:10pt; text-align:justify; line-height:115%; font-size:12pt"><span sty= le=3D"font-family:'Times New Roman'">Los resultados descriptivos revelan qu= e la emoci=C3=B3n neutral present=C3=B3 la media m=C3=A1s alta durante la e= xposici=C3=B3n al est=C3=ADmulo en el grupo de emociones estudiadas, lo cua= l indica una reacci=C3=B3n emocional constante ante el est=C3=ADmulo audiov= isual. Las emociones positivas, como </span><span style=3D"font-family:'Tim= es New Roman'; font-style:italic">happy</span><span style=3D"font-family:'T= imes New Roman'"> y </span><span style=3D"font-family:'Times New Roman'; fo= nt-style:italic">surprised</span><span style=3D"font-family:'Times New Roma= n'">, aparecieron en menor cantidad, mientras que las emociones negativas (= </span><span style=3D"font-family:'Times New Roman'; font-style:italic">sad= , angry, scared y disgusted</span><span style=3D"font-family:'Times New Rom= an'">) tuvieron valores m=C3=A1s bajos.</span></p><p style=3D"margin-bottom= :10pt; text-align:justify; line-height:115%; font-size:12pt"><span style=3D= "font-family:'Times New Roman'">La </span><a href=3D"#fig1" style=3D"text-d= ecoration:none"><span class=3D"Hyperlink" style=3D"font-family:'Times New R= oman'; font-weight:bold; text-decoration:none; color:#000000">Figura 1</spa= n></a><span style=3D"font-family:'Times New Roman'"> muestra estas conclusi= ones, en la que se pueden apreciar los promedios de las emociones b=C3=A1si= cas anotadas en el grupo de estudio.</span></p><p style=3D"margin-bottom:10= pt; text-align:center; line-height:115%; font-size:12pt"><a id=3D"fig1"><sp= an style=3D"font-family:'Times New Roman'; font-weight:bold">Figura 1</span= ></a></p><p style=3D"margin-bottom:10pt; text-align:center; line-height:115= %; font-size:12pt"><span style=3D"font-family:'Times New Roman'; font-style= :italic">Media de indicadores emocionales y atencionales registrados median= te FaceReader</span></p><p style=3D"margin-bottom:0pt; text-align:center; l= ine-height:150%; font-size:10pt"><img src=3D" GgoAAAANSUhEUgAAAh8AAACuCAYAAACWVG8oAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAA= ADsQBlSsOGwAAIABJREFUeJzt3clzHPd99/F3T8++Y7ADxEIs3EVSoRRBCxWVtcSx7CqVk5Prqe= SUiw++pSrH/B+5JCklPqSc8vNELsehHGuzZVOiSIkruAPEDgy22Zfufg7IdMRoISkTMz3w51V2y= Z7haL7N6Z7+zG81HMdxEBEREWkSX6sLeFizs7OsrKxQq9VaXYqIiIj8HtoifDiOw8zMDCsrK1Sr= 1VaXIyIiIr+HtggfIiIisncofIiIiEhTKXyIiIhIUyl8iIiISFP5W/GmjuNQLpfJ5/OEw2EikQh= +v59qtcrW1ha5XI5wOEwymSQWi933us//U0RERLzJMIyvfK4l4aNQKHD58mXOnz/P0aNHOXbsGO= l0mqWlJc6cOcPRo0dZWFigp6eH559/HoB6vc7Gxgbz8/NEIpFWlC0iIiIPKRKJkEwmCQaDX3iuJ= eEjFosxMjJCuVzGsixs28a2bcrlMtvb2/T397O0tESpVPqfQv1+0uk0g4OD97WGiIiISHtpSfgw= DINYLMbg4CAA4XCY2dlZlpaWeOaZZ7h+/TqZTIahoaEvvE5ERETaW0vCB0AikSCRSLj/v6+vj+7= ubuLx+Bf+rMZ4iIiI7B0tCx//m8ZxiIiI/GHQVFsRERFpKoUPERERaSqFDxEREWkqhQ8RERFpKo= UPERERaSqFDxEREWkqhQ8RERFpKoUPERERaSqFDxEREWkqhQ8RERFpKoUPERERaSqFDxEREWkqh= Q8RERFpKoUPERERaSp/qwsQEZE/PDXLoVixKdWcVpfyUHwGhAM+okEDv2m0upy2p/AhIiJN5QBL= W3XevlLkgxtlnDbIH9GQwdP7Q7xyJMZA2o/ix+9H4UNERJrOdqBSc8hX7LYIHw4GlbqDbbe6kr1= BYz5EREQeRhuEpHah8CEiIiJNpfAhIiIiTaXwISIiIk3VkgGn9XqdtbU15ubmMAyDkZER0uk0tV= qNlZUVlpeXSaVS9Pb2kkql3Nc5/z0qyWmH0UkiIvLVHKdNh1A4bVx7cxnGV88Janr4cByH+fl57= ty5w+rqKo7jUCqVGBsbo1qt8tZbbxEIBLBtm6NHj3L69GkALMsin8+ztrZGNBptdtkiIvIYbW45= VMrtM3XEsR3K5TIbG1XClibaPoxQKEQkEiEQCHzhuZa0fFiWhWma97VqWJaFbdtYlsW3v/1tPvv= sM6rVqvu8aZrEYjEymQyxWKwVZYuIyGPgAAVqhEIloNTqch6K4TMIh0Ok0zEyHVrn42EYhvGVrR= 9NDx+GYTA4OIjjOExPTwMwPDxMLpdjbW2NV199lbt37zI8PMzQ0NB9r/X5fO5/RUSkPTmA4fPxN= a3yHmVgGDv3oLYr3WNa0vIRCoUYHx9nfHzcfaxWqzE+Pk4oFOLIkSP3/XmN8RAREdk7PLPC6Zf1= CYmIiMjeo/4LERERaSqFDxEREWkqhQ8RERFpKoUPERERaSqFDxEREWkqhQ8RERFpKoUPERERaSq= FDxEREWkqhQ8RERFpKoUPERERaSqFDxEREWkqhQ8RERFpKoUPERERaSqFDxEREWkqhQ8RERFpKo= UPERERaSqFDxEREWkqhQ8RERFpKoUPERERaSqFDxEREWkqf6sL8BrHgUrdYXGzznbZxrKdVpf0Q= AHTIB7yMdTpx+8zWl2OiIjI12pJ+LAsi62tLZaXlwEYGBggkUjgOA7FYpF79+4Rj8fJZDLEYjH3= dY6z+0HAchw2ixY/+6zAxbkKpZq3w4cBJCI+DvcH+cvnkiTCCh8i0h68/e36Vdqzaq9pevhwHIf= FxUVu3rzJ7OwsjuMwPj7O5OQklUqFn//850SjUSKRCJOTkxw/fhwA27YpFApsbGxQqVR2rb66DR= sFm3zJolS1Kdd37a0eCwPwmxaFYoWNjQ1qIYUPEfE2B9jesqlWrFaX8tAcx6FSqbC1ZRHFQN+0D= xYIBIhEIvj9X4waLWn5qFarmKbJwMDAfY9VKjs30OPHj7O4uMj29rb7vGEYhEIhYrEY0Wh012qr= 21C0LfxmCcOo0Q4p1zAMTL+faDRGTC0fItIGIpU6/kAF2L0fk4+XQSAQIBoNE4uZCh8Pwefz4fN= 9+dDSbxQ+HMehWq1iWRaO4+A4DpZlEQqFCAQCmKb5la81DIO+vj5yuRznzp0D4Pnnn2d9fZ3V1V= W+853vcPnyZbq6uhgZGbnvdX6/n2AwSCgU+iZlPxTTcggGLXxmhXY5uwwMTNNHMBQkFNIYYhHxN= gcIBH2YvlqrS3lohrFzMw0EAoRCgXa5PXjWI4ePcrnM/Pw8//RP/8Tdu3exbZtwOAzAX/3VX3H8= +HGSyeTX/jui0SgnTpzgxIkT7jiOUqnE6OgoyWTS7WppaPwZw2jCx60zSkREvpJuEo/DI/9MLhQ= K3Lhxg88++wyAyclJ9u/fz+3bt5mfn6dQKDzSv88wDAzDIBqNkkqlmhMwREREpGUeueUjkUhw4s= QJXn/9ddLpNMVikevXr3P69GkOHTpEKpXajTpFRERkj3jo8OE4Du+88w4fffQR/f39vPvuu+RyO= bdLxOfz8fTTTzM4OLirA0JFRESkvT1Sy0dvby9jY2NUKhWmpqawrJ1pUo2uk3379u3qYFARERFp= f4805iMUCuH3+1laWuKnP/0pt2/fxrZt1tbW+Jd/+Rfu3r1LtVrdrVpFRERkD3jolg/DMBgbG6O= zs5N0Os1vfvMbJiYm+KM/+iPm5+d5//33qVar1GrtM3VKREREmu+Rul0MwyCRSHDq1Cl+9KMfMT= Mzw/nz5wmHw/zt3/4tJ0+eJJPJ7FatIiIisgc88lRbx3Go1+ssLi7ywQcfcO3aNXw+H5cuXWJ7e= xvbtnejThEREdkjHnmqbT6f5+LFi/z4xz9mdnaWiYkJ7ty5w3/8x38wODhIIpGgt7d3N2oVERGR= PeCRWz4SiQRPPvkkf/3Xf80LL7xAsVjkzp07/OhHP+L06dN0dXXtRp0iIiKyRzzSOh8fffQR777= 7LktLS8RiMQYGBhgeHsYwDJaXl1leXiaRSJBIJHazZhEREWljDxU+GpvHNbbGvXHjBpZl4fP5GB= oa4uTJk4yMjNDb26t1PkRERORrPVT4aOy3MjY2xl/8xV9w+vRpFhYWuHz5MlevXuUnP/kJiUSCH= /7wh5w6dYpgMLirRYuIiEj7eqQBp2+//Tb/8A//wPnz5+no6CCVSpFKpejv7ycajWKapma7iIiI= yNd6pPDx3HPPMTY2RqlUuu/xRsvI8PAwsVjs8VUnIiIie84jrXDa3d1Nd3f3btYjIiIie9wjT7U= VERER+X0ofIiIiEhTKXyIiIhIUyl8iIiISFMpfIiIiEhTKXyIiIhIUz3yrraPg23bFAoF1tfXAe= jq6iISieDz+XAch1wuh2EYhEKh5q+W6jT37UREpJ3oJvE4ND18OI7D8vIy165dY3p6GsdxOH78O= AcOHCCdTpPNZvn7v/97RkdHmZqaYmJiAgDLstje3mZ1dZVCobBr9Vk2rBcdKpWd/WzagW3bVMoV= smtrlLWyvYi0gY0tKJXbZ0Vsx3Yol8qsr1cJ1VtdTXsIhUJEo1ECgcAXnmtJy0exWMQ0TQ4cOAD= sBJJyuczy8jK/+MUvKJVKZLNZstmsGz58Ph/hcJhEIkE0Gt212uo2lLHx+0tAnXZIuYZh4A/4ic= WiJMJGq8sREXmgaM0iEKgA1VaX8nAMg0AwQCwWIp4w0Tftg5mmiWmaX/pcS8JHT08Pq6ur/O53v= wPg1VdfZWVlhXK5zA9+8ANu3rxJtVqlp6fHfY1hGASDQcLhMJFIZNdqq9sOoZqFaVYxjPaIt4Zh= YJom4UiYSFjDeETE2xwgFK7hN9vjOxbAMHZupqFQmEjEr/Dxe2p6+DAMg0QiwdTUFFNTU+7jm5u= bVKtVIpEITzzxxH2vaZfuDxEREXmwlrR8fJl0Ot3qEkRERKQJ1EYvIiIiTaXwISIiIk2l8CEiIi= JNpfAhIiIiTaXwISIiIk2l8CEiIiJNpfAhIiIiTaXwISIiIk2l8CEiIiJNpfAhIiIiTaXwISIiI= k2l8CEiIiJNpfAhIiIiTaXwISIiIk2l8CEiIiJNpfAhIiIiTaXwISIiIk2l8CEiIiJNpfAhIiIi= TaXwISIiIk2l8CEiIiJN5W/Fm9ZqNdbW1pibm8MwDEZGRkin09TrdRYXF1lfXycWi9HT00Mmk3F= f5zjO7hfXhLcQEZF2/bp1dv5jgNHqUtpY08OH4zgsLCxw7949tra2AKhWq+zfv59kMollWfT29n= Lu3DmWlpZ46aWXAKjX62xtbbG0tEQ0Gt21+uo2rBehXALH3rW3eaxs26ZUKrO8VKYQanU1IiJfz= 3FgbRtKpVZX8vBs26FULLG6WsIs7zxmKH18rVAoRDweJxgMfuG5lrR82LaNZVlYloVhGFiWRaVS= oVar4ff7uXHjBr29vezbt899jWmaRKNR0uk0sVhs12qr2w51v00gWAKjTjtkc8NnEAwGSKejJMK= 6GkTE2xygQJ1gsAJUW13OQzEMg2AoQCoVpiNtqtXjIfh8Pvz+L48ZTQ8fhmHQ39+PYRjMzMwAMD= Y2xubmJjdv3iQej1OtVgmHwxifi5WGYRAIBAiHw4TD4V2rr245hKoWplnFMOq79j6Pk4GBafoIh= UOEwxrGIyLe5gDBUA2/2R7fsbDTymGaJsFgkHA4oPDxe2pJy0c4HGZ0dJTR0VH3sa6uLvbv3/+l= XSqNsR5GM9q4dEaJiMhX0k3icWhJ+PgyoZAGK4iIiPwhUBu9iIiINJVnWj5Evsxm0WZuo8Z2yaY= x09qLQ4AbDbGmDwY7/PQk/IQCap4VEfkyCh/iWQ4wt17j/57Pc3Wphm077uNe8rlh0USC8N0TcU= 4f8BEKmC2sSkTEuxQ+xNMcwHLAsh0sj6+7YuBQt42dFpqddYg0NE1E5EtozIeIiIg0lcKHiIiIN= JXCh4iIiDSVwoeIiIg0lcKHiIiINJXCh4iIiDSVwoeIiIg0lcKHiIiINJUWGRPZZZWaw9xGnYXN= OjXL8dwKrZ9nAD4DYiEfk70BUhFfc3aTFpE/KAofIrusWLU5N1PmV9dKO3vUtLqgBwj5YV+Hn//= zbJJE2Iep7CEij5nCxx7lAI4NluO4G7J5nc8An8/AtwdvdrYNdcuh7vGWDwDTMLBs2ua8EZH2o/= CxRxUrNnfWapy9XSZX9vimKP9tOOPniX0hJnqDnr9Bf1PtdlztVq+ItAeFjz3IAap1h6WtOh/PV= FjLWa0u6YEMYHtfiP50gPHeVlcjX6XtWkMMbe4n4kUKH3tdu90sxJMsG7J5i+vLVbJ574dZgHjI= x0inn5GuAAENXBHxFIUPEXkg29lpSfvl1SLXFquebgFpTM7pT/n51qEI/Wm/woeIxyh8iMhDcdg= ZOGvbHm9Q++/ibAf+92gnxwHLdrAdjx/Df2tMfTZ9hhuqbAcKFZv1gkXdAu8PYYagaZCOmsTDvj= 05oFwencKHiOx5Djs38s2SxYc3S9xarVOqev+m7fPBob4Az4xF6EqYGEClbnN5vsL/u1AgW7CwP= T6e3DCgJ2Hy7SdiPDUaJhzYW+nDdpydQO790wnY+Tx8PvC1eP2eloQPy7IoFApsbW0B0NHRQSQS= wbZtcrkc+XyeUChEIpEgEom0okQR2WMcdhZ8u7tW59N7FXJtsOaK34SwH44PhcAxwdi5yVUtyJU= dtks2VhuEj0jAoFr3+t/2o3HYmT7/3vUi5+5WWN623Me9bDjj53sn4gxl/AT8RssGZBuO09y85j= gOi4uL3Llzh8XFRRzHYXh4mP3791Mul3n77bc5ePAgS0tL9PX18dxzzwHw4YcfsrGxgWmaBIPBX= avPdqBYM7mymWS5FKZuezulG0DQtOkKVzjRuUXI3PlCrdR9LBbDXN9KUKybrS7zgQygO1xhNFFg= MF52L+DVUojrm3GylRC2x69qA/D7HCZSOYbjRSJ+GwMo133czsW4m4tRtXye/3LyGw6JYI1jmS0= yoRo+AywHsqUQ01sJsuX2mAqdCNQZSRQZSRQI+HYqLtRMrm8mWCqFqVje313CZ8BgrMhkKk8yWM= cAarbBYjHMtY0kJctsi+siFqgzmcqzL1bC79vpKNqu+Lm1HWc2H22L8yngcxiMFRlPFkgE6wDYj= sGtrRj3ClFy1f/5Le/l4+kI1TjWsUU6VMP0ObsaPpLJJIODg/T19X1hpeSWtHyUSiUsyyKdTmMY= BpVKhWKxSLVaZWtri5GREVZXVykUCu5rnnnmGSzLwm5SG+NrwO8/Se9Bp+Dj+th3830e5jJqxnE= 87kuk0RD/uH35MXwLdun9dkszP4vPv99ufM73ezzX9le9V/POqR36jmquLx7Hafd/7dbf1e5fE7= vF5/NhmuaXbtHQ9JYPgHw+z71797h16xYAhw4dolqtsra2hmEYlEolgsEgQ0NDjI+PN7u8x6JWq= 7G2tka5XP7SwBSPx0mn04RCoRZU9/BKpRLr6+tUKhX+96liGAapVIpEIrGrrVGPQ7lcplqtEggE= CIVCVCoVCoUCtVqNrq4u/H6/p/cwcRyH9fV1AoEA4XDY83/fX8VxHCzLIp/PEwwGiUQi1Go1stk= sgUCAWCzWFl2ttVqNYrHonk/1ep1CoUChUKCrq4tQKITP5+2WlY2NDXK5HLVa7QvP+f1+urq6CI= fDmKa3W07X19cxTZNIJNK21wXsXBu5XI5cLke1WsU0TTKZDJFIxPOfwTfRkpaPeDzOoUOHOHTok= PtYuVxmaGiIeDzuPublm8GD1Go1VldXyeVyWJblfukuLi5y48YNJicnefXVV+np6Wl1qV+rUqm4= x2HbNpcvX2ZxcZFXXnnF/Xy8ftHncjnOnj3L3Nwc3/3ud9nY2OC9995jZWWFffv2EQqFeOaZZ+j= q6mp1qV/JcRzW1ta4dOkSMzMzOI7DqVOnGB8fd28S7XC95HI53nvvPSzL4vDhw0QiEX71q18BUK= 1WGR0d5dSpU3R0dLS40q9WLBa5evUqH3zwAW+88QbBYJBPP/2Uixcvsn//fsLhMMeOHWN0dLTVp= X4lx3H42c9+Ri6X48iRI/edOxsbGywtLTE5OcmJEyfo7OxsYaVfr3FdXL58mbt371Kr1XjqqaeY= mJigu7u7La4L27bZ2trizJkz1Go1EokEsViMcrnMnTt3OH78OEePHiWTyXj+WB5Fy2a7/O+/xHb= 4tfMoIpEITzzxBNvb22SzWTY3N6lWqzzxxBP86Z/+KalUikAg0OoyHyidTnPixAlg50L3+/3E43= FefPFFwPsB0XEc7t27h8/n4+jRo6RSKd555x36+/uZmpoiHA7z5ptvcuTIEU+HD5/Px4EDB5icn= OTs2bP84he/oFKp8J//+Z/k83kGBgb41re+RTqd9vSvpHK5zOXLl/n+979Pb28vt2/fplqt8v3v= f5+FhQWy2Syzs7Nul6wXrayskM/nOXnyJN3d3Vy8eBG/38/3vvc9xsfHefPNN1ldXWVkZMSzxwA= 731FdXV288MIL97XSLC8vc+XKFU+fRw2GYTA5Ocnk5CTnzp3j3//936lUKrz99ttsb2/T39/Pyy= +/TDqdxu/35uTOjY0Nrl+/TjAY5MUXX6S3d2eJZ8dxKBQKvPPOO5w/f56XX365xZU+Xt78NPaAj= Y0NfvnLX7K4uEg6naavr89Ns7dv36azs5P+/n6i0WirS/1a29vbzM3NUSgUsG2bq1evMj8/z0cf= fQRAX18f3d3dng2PhmHQ399PsVhkYWGB7e1tzp07x+nTpzEMg0uXLjE8POzZ+hts22ZmZobp6Wl= u3bpFOBzG7/fz/PPPk06nicViRKNRz98wIpEIp06d4t69e3zyyScUi0UmJiao1+vcvXsX0zQ5fP= iwp2/anZ2dFItFpqen+e1vf8uVK1cYHh4mk8nw61//mlQqRSqVanWZD9Td3c38/DzvvfceL7zwA= qZpsrW1xfXr17l8+TKvvfaa568Lx3GYmZnh+vXr910Xzz77LOl0mng8TjQa9XQXWDAYJJFIMDs7= S7VaxbZtTNPEcRx3RqiXW5a/qZaM+fhDUCqVuHv3LvPz82xubmLbNvF4nM7OTiKRCB0dHW6zoFc= 5jsPGxgY3btxgcXHR7f/1+XzE43EikQg9PT10dHR4euyKZVksLy8zMzPD2toaY2NjJBIJdzBUZ2= cngUDA0zc8y7K4dOkStVqNUChEMBikXq8TDAbp6urydDfF59VqNVZWVrh16xb5fJ5IJEJvb697T= jVuGF7W6JufmZlhZmaGeDxOT08P6XQay7Lo7OwkHA57+oYHO2Pvbt26xZUrV1hdXXWv7cHBQZ56= 6in3uvDycTiOw8WLF6lUKoTDYUKhEI7jMDc3RzQaZWRkhO7ubs+P6apWq8zMzFAsFonH43R0dGA= YBtPT0/T19dHX1+fpe8U3oZaPXdBoLjt37hxDQ0PkcjlKpRJDQ0Pcvn2b559/nqGhoVaX+VDW1t= b49NNPOXXqFNPT08TjcXp7e7l+/Tqvv/46mUym1SV+LcdxmJ2d5c6dO2SzWYLBoDvVOxKJMDY25= vkvJtjpdhkYGKBUKlGv16nX61QqFc6ePcuRI0f44z/+Y88fA8Dm5ib/+q//ylNPPcXk5KQ7Ej4U= Crnr/Xjd6uoqt2/fZm5ujsOHDxMKhVheXubmzZtMTk7S1dXl6Rt2QzabpVKpMDAwwMDAAID7wyg= ajVIqlfD5fJ4+lsb1nUql6OjocGu9fPkyvb29jI2NtbjCB6tUKqysrPDJJ58Qj8cJBoOUy2VyuR= zPP/88fX19nv5x900pfOySxoJpyWSSZDKJ4ziEw2EqlQqW1R4bc8HOcVQqFUqlkvurYm1tjWw2S= 71eb3V5D8Xn81EsFikWi4yNjXHp0iVM0yQQCFAoFL4wi8eLGq1Qn595VK1WsSwLn8/XFsEDdrrB= IpEIN2/eZGNjg2Qyic/nc2e5tEP4aJw7kUiE0dFRotGo2xrSDkG2IRKJsG/fPoLBIKVSibm5OXw= +H5FIhFQq1TbHATA9Pc3ly5fdmq9cucLKygqZTIapqSlisZhnjyeXy3Hv3j0ikQhHjx6ls7OTbD= bLZ5995rbgdHd3t7rMx878u7/7u79rdRF7jWEY+P1+BgYGWF5eplKp4Pf7KRaLHDlyhIGBAc8n2= XK5zOrqKqurq9TrdZaXl6lWq1QqFQzD4Pjx4wwODnp+0KxhGASDQQzDoFwus7S0hGVZ9PT0MDEx= wfj4uGcHogHuFPSrV68SDodZXV1lbm6ObDZLtVrlqaeeYnx83PPnU0O9XieXy1EsFtnc3GR1dZW= lpSWKxSI9PT1tcdMLBAJYlsX8/Dxzc3OUy2VqtRrhcJhDhw6555uXOY7DmTNnWFlZIRAI8M///M= 8MDAxw69Yt1tbW3JmIXj8O2OmSjMVi7riIffv28fTTT/Pyyy9z8uRJQqGQp48jGAySTCapVCpks= 1nm5+fZ3t4mlUpx6NAh0um0p1ufvinvfuu2McdxyGaz/OM//iNHjhwhk8m4fae2bbfFL+16vc72= 9jbT09P85je/YWJiggMHDlAsFrl58yaXLl1icHDQ8wNmHcehXq+ztrZ23wyEhYUFarUa6XSazs5= Oz345LS8vc+vWLQqFAmfPnuXo0aN85zvfIZFIsLKywq9+9StyuRzPPPOMZ48Bdj4Hx3GIxWK88s= or7mP1ep319XV39o6Xj6FhYWGB27dvY5om4XDY/YFhGAaffvophw8fJhaLtbrMr9T4LAYHB7lw4= QLXrl1jamqK3t5ekskk0Wi0LT4H2DmWjz/+mP7+frdF7dSpU5w9exbbthkcHGx1iQ9UqVRYWFjg= ww8/dAecNsL5D37wAw4fPtwWA5gflcLHLmkMoKvVatRqtftWeWuH8BGPxzl48KD7K+7AgQN0dHR= gWRZ9fX1MT097vtWjYWVlhdXVVXw+HyMjI244XFpacm8WXV1dnhxRnkql6O7udru6rly5Qi6XIx= aLuS1T7dCvXSqVWFpa4ubNm9y4cYNkMkkmk8E0TVZWVqhWqxiGgeM4nr/xRSIR6vU658+f5+DBg= 6ysrGDbNkNDQySTSU/POGqs29MYKHvq1Cm2trYwTZPl5WVSqRTpdLrVZT6SoaEhDMNge3ubWq3G= nTt36OrqapuuinA4zOjoKH/+53/u/jjNZrNcunQJy7K+dBG4vUDdLrvAMAxM06SnpwfDMLBt291= M73e/+x2VSoVQKNQWK9elUikmJiYol8vuALWenh5Onz5NIpHw/I3CMAwCgYDbtZLP59ne3iYQCL= grzNbrdZLJpCe7LoLBIJ2dnYyNjdHT00M8HnebYMPhMGNjY+7sHS9/Fn6/n1QqRTQa5be//S1/8= id/wpNPPsno6CgDAwOcP3+ekZER95rxskZXXiQSIRqN0tnZSU9PD11dXYyMjHh6psvW1hY3btyg= Uqnw2WefYZomzz33HCMjI/T393Pp0iXm5uY4ePCg5z+Hhnq9TrVaxefz0dfXh2madHR0uNeL14+= j0cp8584d1tfX2draolQqEY/HGR0dddco8fpxPCq1fOwCx3HY3t7mzJkzjI6OEovF3C6XRt+wl7= +gYGdWwvXr1zl//jzT09PulLVqtcr6+jqWZfGXf/mX7oI4XpZIJDh27BjHjh1rdSmPrBFkG9OaY= 7GY25q2urrKhQsX3LVMvKxxHJ2dnbzxxhssLy+ztLSEYRjUajWeffZZBgYG2uIL1u/3k0wmGRkZ= AXYGZc/Pz3P37l2SyST79+/37DiiRCLB5OQkn332GbZtc+vWLTY3N+nr62NxcZF8Pt92W1o0gne= tVsOyLDY2Njh79iyFQqEtvp9s26ZarbKxsUG9XsdxHIrForueUmdnJydPnmybGW0Py5tXSJszDI= N4PM7U1BSlUsmdMbK1tUUmk3Fv5F4+kdLpNE8//TSpVArbtnnppZfYt28f9XqdGzdu8N4vmKQnA= AAHy0lEQVR777W6xD8IGxsbrK2tUalU3L//9fV11tbWcByHw4cPMzg46Olz6fNqtRpzc3PMz8+T= z+fdL9ve3l4GBgY8vZR3Q+NXaKMbrFwu09HRwfj4OENDQ57svmsIBoP09vby0ksvkUqluHr1Kou= Li6ysrAA7130ymWyb8wng1q1b3Lt3z525Vq/X3Rk77cKyLLLZLLVaDcMwsCyLZDLJ1NQUXV1dbf= eZPAyFj10SDoeZnJwkn89jmiamaZLP57ly5Upb7DfQ2I9meHiYN954g08++cQdEJVOp/mzP/szk= slkq8vc8+LxOMVikWvXrvHWW2/hOA6jo6OcOHGCdDpNNBr1/KDfz4vFYrzwwgvuDtX1ep2trS1+= /etfUy6XqdfrbiuJVy0tLXHjxg1mZ2cZGhrCNE0KhQJzc3OEw2EOHDjg6QGnja7Iubk5EokEr73= 2mnsO+Xw+T4enL5NOp93Q0Rg3dOHCBS5evEgoFGJsbMzTM14aU23D4TDPPvusu99XY1q63+/3dC= v5N6XwsQsaA4b+7d/+jYMHD7K+vk69XmdycpJCodAW63ysrKwwOztLPp93u43Gx8fdm10ikfD0D= WKvCAQCDA4OMjAwwCuvvEKpVKJUKlEsFslms6yvr9Pb29s2g+sqlQq3b99me3vbXSfGcRzGx8cJ= h8Pk83l3/yCvSiaTdHd3s7KygmVZ3Lt3D8Mw2L9/v7tuhtcZhsHExAQLCwt8+umnRCIR92bX29v= rdil5neM43L17F9u2SSQSwM6xNbav6OjooFareXr6czweZ3BwkMXFRW7fvs3CwoIbwCcmJshkMm= 1xTj0qhY9d0hhg2lhAqVwuk8/nmZ+fp1Qqtbq8B+rv7ycYDHLt2jXOnj1LtVplZGTE3aMmlUopf= DRR48bQDotwfZ3GVu2NFTW3trZYWFigs7OTTCbj3kC8LBaLsX//fpLJJPPz8+5eLr29vWQymbb4= ldqYVdTV1UUikWB5eZkLFy4QCoU4fvw4w8PDnr1Zf55hGBw+fJhsNkupVMJxHHw+H8eOHaOrq6s= tWgUbLVHhcJjx8XGWlpY4f/48pVKJVCrlrnq612i2yy4wDIN6vU4+n2dhYYGNjQ1KpRJbW1scPH= jQvYH4/X7PDkwDiEajDA0N8cwzzzA1NcW+ffvcX6T5fJ5EIuHp+sV7stksb775Jj09PVy5coXz5= 8/T3d3Nf/3Xf9Hd3e02OXvZ6uoq165dczeU6+joIJvNMj097e7h5PVp6IZh8P7777tjPd59911e= e+01arUa5XK5rWa7NFoAy+UyPp+PfD5PMBgkk8nQ2dnp6S4X2Bncf+PGDZaWllhcXKRarZLJZEi= lUgSDQVKplKe78b4p3Tl2SSgUYnR0lM7OzvuWIW8MVPP5fESjUU9O7/y8xkVrmibpdLrt1gAQbw= kGg+zfv5+f//znZDIZjhw5Ql9fn7uRWTuwbZvFxUXOnDnjXsdXrlxxN8vL5XJMTEzQ1dXV6lK/1= re+9S0WFhYoFov88Ic/JBAI3PeDoh3WXHEch/fee4/Dhw8zNTWFaZrU63V+8pOfUC6X6evra3WJ= D9TR0cHJkyfdgNHb20sqlXK7VPdiqwdoV1sRaaJqtcr8/DzLy8vMz8+7s3h6e3sZHBz09FiPhlq= tRi6XI5vNfunzoVCITCbj6WNp3LSXl5fv2/fk8uXL2LbNiy++yNGjR4nFYp7uXnUch+npaRYXF6= lUKu4+NR0dHYyMjLTF9O1KpcLa2hpXrlxxZ381xnwcOXIE27YJh8Nt0Sr4KNTyISJNs7W1xU9/+= lNefvllgsEguVyO/fv389Zbb/HSSy9x+PDhVpf4QIFAgEwm4/kdnb+OYRgcPHgQ0zS5du0aMzMz= bhfr5OSk22Lg9Rs37GxBcOfOHTY3N93dnjs6OgiFQu7YIi9rtDiFQiEWFhbI5/NEo1GGh4eJx+P= u5ot7jcKHiDRNJBLhySefZGtri0KhQKVS4cKFC+4AQWmes2fP4jgOJ06cYHFxkVOnTjE7O8v29j= avv/56WwQPgKeeeorjx4/ft5L0+++/T7FYbHVpD6WxoOPs7Cwvvvgi/f39LC0t8cEHH3D16lUOH= DjQNl2Sj0LhQ0SaJhKJcPLkST7++GOq1Sp+v59qtcro6KjWjWmyyclJlpeXmZubA+DixYsMDg62= xV5Bn7ewsOBu/QA7Mw0nJiYYHh5ucWUPJxaLMTQ0xPLyMh9++CGWZWGaJolE4r5B/nuNxnyISNO= srq7y4x//mKmpKQ4cOEAwGGR+fp633367bbpd9opSqcTa2hrLy8sUi0V3jY92maK6VzSWVr9586= Y7OaGxX83Ro0fp6ekhHA63uMrHTy0fItI0juNQLpf5+OOP3W3pV1dXuXv3LqFQiFKpxPj4eFstj= d2uGqvKTk5O0t/fT6FQ4MKFC0SjUV5++WWgPcZ8tLtGK8f4+Li7q+3q6iqffPIJsViMSCSi8CEi= 8vvo7u7mb/7mb772z+iGt/scx2FtbY3bt2+ztLTE2NgY169fZ2ZmhnQ6TTweZ2JiglQq5fk1S9p= duVzmzp07nDlzhmq1iuM4OI6DaZo8++yze3KND1C3i4jIH6SNjQ3y+Ty1Wu0Lz/n9fjo7OwmHw5= 6eaivtS+FDREREmmrvTR4WERERT1P4EBERkab6/7gaNwfovqO6AAAAAElFTkSuQmCC" width= =3D"543" height=3D"174" alt=3D"" /><span style=3D"font-family:'Times New Ro= man'; font-weight:bold">Nota:</span><span style=3D"font-family:'Times New R= oman'"> datos obtenidos de FaceReader y procesados en SPSS versi=C3=B3n 26.= </span></p><p style=3D"margin-bottom:10pt; text-align:justify; line-height:= 115%; font-size:12pt"><span style=3D"font-family:'Times New Roman'">La </sp= an><a href=3D"#fig1" style=3D"text-decoration:none"><span class=3D"Hyperlin= k" style=3D"font-family:'Times New Roman'; font-weight:bold; text-decoratio= n:none; color:#000000">Figura 1</span></a><span style=3D"font-family:'Times= New Roman'"> muestra que se registraron valores elevados del indicador </s= pan><span style=3D"font-family:'Times New Roman'; font-style:italic">attent= ion</span><span style=3D"font-family:'Times New Roman'">, adem=C3=A1s, Neut= ral presenta un alto valor, lo que indica una respuesta emocional constante= , sin reacciones extremas ni alteraciones repentinas en el estado de =C3=A1= nimo. No se observaron incrementos relevantes en emociones negativas (</spa= n><span style=3D"font-family:'Times New Roman'; font-style:italic">sad</spa= n><span style=3D"font-family:'Times New Roman'"> y </span><span style=3D"fo= nt-family:'Times New Roman'; font-style:italic">angry</span><span style=3D"= font-family:'Times New Roman'">). Mientras que los niveles de </span><span = style=3D"font-family:'Times New Roman'; font-style:italic">happy, surprised= , scared, disgusted</span><span style=3D"font-family:'Times New Roman'"> y = confusi=C3=B3n siguen siendo muy bajos, en general, los indicadores emocion= ales reflejaron un comportamiento estable, los niveles de atenci=C3=B3n sup= eraron a los de confusi=C3=B3n en la mayor=C3=ADa de alumnos. </span></p><p= style=3D"margin-bottom:10pt; text-align:justify; line-height:115%; font-si= ze:12pt"><span style=3D"font-family:'Times New Roman'">La comparaci=C3=B3n = entre los niveles de atenci=C3=B3n y confusi=C3=B3n se presenta en la </spa= n><a href=3D"#fig2" style=3D"text-decoration:none"><span class=3D"Hyperlink= " style=3D"font-family:'Times New Roman'; font-weight:bold; text-decoration= :none; color:#000000">Figura 2</span></a><span style=3D"font-family:'Times = New Roman'">, permitiendo visualizar de manera clara la diferencia entre am= bos indicadores.</span></p><p style=3D"margin-bottom:10pt; text-align:cente= r; line-height:115%; font-size:12pt"><a id=3D"fig2"><span style=3D"font-fam= ily:'Times New Roman'; font-weight:bold">Figura 2</span></a></p><p style=3D= "margin-bottom:10pt; text-align:center; line-height:115%; font-size:12pt"><= span style=3D"font-family:'Times New Roman'; font-style:italic">Comparaci= =C3=B3n de los niveles de atenci=C3=B3n y confusi=C3=B3n en los estudiantes= </span></p><p style=3D"margin-bottom:0pt; text-align:justify; line-height:1= 50%; font-size:12pt"><img src=3D" UgAAAfcAAAELCAYAAADEJc9FAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwA= AGYBJREFUeJzt3XtsHPW99/HPzOzOrndt7zqJY5I4HNfGJrhuuIhIFKpSGiVQ0nCtCKVCBdQgLk= 8FpNAKVaWgPkBp/4AgJBAqolIDKEBOQgC1pS20CW0hUCgQ16QnSTG5yvfr3nd+zx852SeBcLCpv= Zv8zvslRZB41/NVlPF7Z/a3M44xxggAAFjDrfQAAABgah21cTfGaP/+/RoaGlIQBJUeBwCAY8ZR= G3dJ6u7u1gcffCDeOQAAYOKO2rgbYxQEAWEHAGCSjtq4AwCAz4a4AwBgGeIOAIBliDsAAJYh7gA= AWIa4AwBgGeIOAIBlQuXeYD6fVxAECoVC8jxPkpTL5ZTP5+U4jsLhsMLhcLnHAgDAGmWNe7FY1M= DAgF5++WUtW7ZMtbW1kqQ9e/bonnvuUTab1S233KJTTz219JwgCBQEgRzHKeeoAAAc9RzHOWIfy= xr3QqGgDRs2aM+ePVq6dGnpz3fu3KmbbrpJkUhEzzzzTCnuQRCop6dHu3btKh3lAwCAA2GfN2/e= EftY1rhHIhGtWLFCL7zwQunPjDHK5/OKxWKKRCIaHh4ufc11XSUSCc2aNYu4AwDwEa575KVzZX/= P/VBBEGh8fFyxWEzvvPOO6uvrNWfOnMMeU1VVpXg8TtwBAJigsq+Wj8fjOuWUU1RTU6MgCPTss8= +qvb1dqVRK27dv17e+9a1yjwQAgFUcU4Hbrh26yR07duhzn/tcaUHAwcUBQRDo9ddfVzQa1cKFC= zlyBwBggipyWv7QlX0tLS2shAcAYApV/CI2hB0AgKlV8bgDAICpRdwBALAMcQcAwDLEHQAAyxB3= AAAsQ9wBALAMcQcAwDLEHQAAyxB3AAAsQ9wBALAMcQcAwDLEHQAAyxB3AAAsQ9wBALAMcQcAwDL= EHQAAyxB3AAAsQ9wBALAMcQcAwDLEHQAAyxB3AAAsQ9wBALAMcQcAwDLEHQAAyxB3AAAsE6r0AE= c7Y6TASEam0qMA08ZzHDlOpacAMFWI+6fIF432DReUyRN32MlzHTXUeqqOuAQesARx/xSZvNHq3= w1p92Ch0qMA0yIadnTL0jotbPTlUXfACrznDgCAZYg7AACWIe4AAFiGuAMAYBniDgCAZYg7AACW= Ie4AAFiGuAMAYBniDgCAZYg7AACWKevlZ4Mg0Pj4uHK5nEKhkKqrq+V5nlKplLLZrBzHUTQaVTQ= aLT3HGHPYf8uNG8bgfwNjjIyp3H4G4LNxPuGS0WWNezab1ebNm/XKK6+oqqpKN954oxoaGrR9+3= Y9//zzMsbo5JNP1vLlyyUd+EGTy+WUTqflupU5yZDJGgVBUJFtA+Xw//ezQB7n8oBjhuM4ikQiR= +xjWeOeTqf12muv6aabbtLAwIB6eno0e/ZsjY6O6vjjj1ckEtHevXtLjzfGqKenR7t27apY3Mdy= UqFYI4kbasBePT29qi0UiDtwDHFdV83NzUf8WtnvCpfL5RQEwX+fBjxwVFwoFDR37lzV1NSou7u= 79FjXdTV//ny1tbXJ87xyjypJGkkH8jv7JXFXONjJcRzNn9+oExt9eS4vYgEblPV1eiQSUUtLi9= 5++2298cYbSiQSGhwclO/7KhQKMsYoFouVcyQAAKxT1iP3WCymyy+/XMPDw/J9X8lkUi+++KKWL= FmisbExOY6j0047rZwjAQBgnbLG3XEc1dTUqKamRtKB99QXL16seDyu6urqco4CAIC1yv6e+6Ec= x1FtbW0lRwAAwDqsjQUAwDLEHQAAyxB3AAAsQ9wBALAMcQcAwDLEHQAAyxB3AAAsQ9wBALAMcQc= AwDLEHQAAyxB3AAAsQ9wBALAMcQcAwDLEHQAAyxB3AAAsQ9wBALAMcQcAwDLEHQAAyxB3AAAsQ9= wBALAMcQcAwDLEHQAAyxB3AAAsQ9wBALAMcQcAwDLEHQAAyxB3AAAsQ9wBALAMcQcAwDLEHQAAy= xB3AAAsQ9wBALAMcQcAwDLEHQAAyxB3AAAsQ9wBALAMcQcAwDLEHQAAy4TKuTFjjLLZrAqFgjzP= UzQaleM4CoJAmUxGkuT7vkKhso4FAIBVylrRXC6n999/Xz/5yU/U1NSkH/3oR0omkxocHNSaNWv= 05ptv6gc/+IE6OjpKzykWiyoUCjLGlHPUQ7ZvKrZtoByMObifFWU4lwccMxzHkeu6chznY18ra9= zT6bTWr1+vu+++WwMDA9q3b58SiYS2bt2qxsZGnXfeeYpEIqXHG2PU3d2tcDgs163MT52xrJQvz= JT08b88wA5GH374oUKjeXn8MweOGa7r6qSTTqp83IMgUDabVU1NjfL5vHK5nCRpdHRUe/fule/7= GhgYUFNTU+k58+fPV2trqzzPK+eoJaMZo9B/DUsKKrJ9YPo5amxsVNvcsDyO3IFjhuM4Rwy7VOa= 4h8NhHXfcceru7lZvb6/a29s1NjamWbNmyfd9NTY2qqurq/R4x3EUDocViUQqFvdsEMh1XBF32M= px9N/7mS/P5dAdsEFZX6dXVVVp+fLl6uzsVD6f15w5c7Rx40a1tbUpCAK9++67uuaaa8o5EgAA1= vm3j9wPXWz2SacHShsLhdTS0qKWlhZJB07Tn3766UokEjrvvPP+3VEAAIA+Q9yDIFA6nVaxWJQx= B1aS5/N5xWIxxePxSX0v13V14oknTnYEAADwP5jUafkgCJRKpbR69WqdfPLJ6ujo0MKFC/W1r31= Ne/funa4ZAQDAJEwq7oVCQYODg3r44Yf14x//WDNmzNC9994rx3Hk+/50zQgAACZhUnE/+IF5z/= MUCoXU3NysHTt2aGRkRIODg9M1IwAAmIRJxT0UCmnmzJm67777tHHjRl1yySVat26dzjrrLN47B= wDgKDHhBXXZbFbpdFqe5+mss87Sl770JQVBoC9/+cuKRqMV+xw6AAA43ITjPjY2pksvvVTXX3+9= 7rzzThWLxdLXksmkfvnLX6q9vX1ahgQAABM34bhHo1H96le/kjFGzz333GGfb6+qqtLs2bOnZUA= AADA5kzotf8UVV6i/v1/j4+PyfV+u66pQKKi6ulpPPfUUR+4AABwFJrygLhaLae3atVq7dq1OOe= UUrVy5Ui+++KLuuOMOhUIh1dTUTOecAABggiYc92g0qvr6es2aNUtvvfWWzjnnHFVXV6u1tVWpV= EpDQ0PTOScAAJigSV1+1vM8xeNxXXnllVq5cqUcx5ExRs3NzTr++OOna0YAADAJk4q767qKx+O6= +eabdf755yuXy6m2tlbNzc2qra2drhkBAMAkTCruxhgVi0UNDQ1p7dq1KhaLOv/885VKpXTmmWc= qFCrr7eEBAMARTPrGMaOjo7r++us1PDysV199VcPDw7r55pvV3d09XTMCAIBJmHTcc7mcdu3apU= WLFskYo6qqKuXzeaXT6emaEQAATMKk4u55nmpra/X9739fDz/8sIaHh3XHHXfooosuUnNz83TNC= AAAJmHCb5IXi0Vls1kFQaBLL71U5557rgqFgnzfV01NjSKRyHTOCQAAJmjCce/r69PSpUvV09Mj= z/Pkum7pFrDJZFJr1qzR5z//+emcFQAATMCklreHQqHSyvgbb7xRjY2NSiaTisfjSiQS0zUjAAC= YhAnHvb6+Xps3b1Zvb6927typO+64Qx9++KFisZgWLVqkBx54QDNmzJjOWQEAwARMakGd67qKRq= Olu8DV1dUpk8loZGREhUJhumYEAACTMOEj9/7+fn33u9/Va6+9pra2Nl1wwQW66qqr1NraqkQio= WQyOZ1zAgCACZpw3IMgUFdXl7LZrLq6urR9+/bSwrpkMqnHH3+cW74CAHAUmHDc6+rq9Mc//vGI= p9/D4bCqq6undDAAAPDZTDjuvu/L9/3pnAUAAEyBSS2oAwAARz/iDgCAZYg7AACWIe4AAFiGuAM= AYBniDgCAZYg7AACWIe4AAFiGuAMAYBniDgCAZYg7AACWIe4AAFiGuAMAYBniDgCAZcoa90KhoG= 3btunee+/V448/rlQqVfpaX1+fnn766cP+DAAATN6E7+c+FVKplJ5//nktWbJE+/fv1549e9Ta2= qpMJqM333xT69ev19KlSxWLxSRJxhgNDQ2pt7dXnueVc9SSsaxRoVisyLaBcjDGaGh4WL0RRx7n= 8oBjhuM4mjFjhlz34ztuWeNeKBTU39+vOXPmKBKJaHx8XMYYffDBB3rllVfU1NSkXC5XzpE+lTG= SI0eSqfQowPQxkpGR5FR6EgBToKxx9zxPsVhMfX19GhoaUn19vbLZrMbHx9XX16eenh49++yzuu= GGGyQdeFWSSCQ0a9asI74yKQc/E8j1BiUVKrJ9YLod2M9qNWumz5E7cAxxHEeOc+QX5GWNezQa1= QUXXKCHHnpIDQ0NuvXWW/Xkk0/qsssu03333af169drxYoVhz3n4PCVirvjcCwD+x3Yxw78AnDs= K2vcfd/XggUL9MADD8jzPIVCIbW1tSkajSoWi+nqq6+uWMQBALBFWePuOI4ikYgikYikAwt5zjj= jDHmeV9GjcwAAbFLWuH+U4zgKhSo6AgAA1uFQGQAAyxB3AAAsQ9wBALAMcQcAwDLEHQAAyxB3AA= AsQ9wBALAMcQcAwDLEHQAAyxB3AAAsQ9wBALAMcQcAwDLEHQAAyxB3AAAsQ9wBALAMcQcAwDLEH= QAAyxB3AAAsQ9wBALAMcQcAwDLEHQAAyxB3AAAsQ9wBALAMcQcAwDLEHQAAyxB3AAAsQ9wBALAM= cQcAwDLEHQAAyxB3AAAsQ9wBALAMcQcAwDLEHQAAyxB3AAAsQ9wBALAMcQcAwDLEHQAAyxB3AAA= sQ9wBALBMqJwby+fzeuONN/Szn/1MTU1Nuuuuu5RIJNTd3a2f//znGhkZ0a233qqFCxeWnhMEgY= IgKOeYhwkCI1OxrQPlEQSBisVA/GMHjh2O45R+fVRZ4z4+Pq7f/va3uv/++zU4OKg9e/aotrZWd= XV1uvvuuzU0NKRHH320FPcgCLR9+3YZY+S6lTnJMJ5zlMvWS/Iqsn1gugWB0Y6dOxX0Z+V9/GcE= gKOU67r6whe+IM/7eJ/KGvdisahsNqtIJCLf95XL5SRJ8XhcqVRKf//733XttdeWHu+6rk444YR= PHL4cRjOB/vNfg1KqWJHtA9PNdRy1NDfrC/PC8lzqDhxLPunAt6xxD4fDOu6447Rt2zb19vbqlF= NOUTqdVl9fn55++mktWbJEM2bMOOw5ruvK87yKxd11j3zKA7CGc8h+RtwBK5T1XHdVVZUuueQSD= QwMqK6uTnPnztULL7ygXC6nxsZG/fOf/9Q//vGPco4EAIB1yn7kPmfOHC1btqx0pHDqqadq3rx5= mjdv3oGBQmUdCQAA65S9pOFwWOFwuPT75uZmua7LqW8AAKZIxQ+TK/VeOgAAtuIiNgAAWIa4AwB= gGeIOAIBliDsAAJYh7gAAWIa4AwBgGeIOAIBliDsAAJYh7gAAWIa4AwBgGeIOAIBliDsAAJYh7g= AAWIa4AwBgGeIOAIBliDsAAJYh7gAAWIa4AwBgGeIOAIBliDsAAJYh7gAAWIa4AwBgGeIOAIBli= DsAAJYh7gAAWIa4AwBgGeIOAIBliDsAAJYh7gAAWIa4AwBgGeIOAIBliDsAAJYh7gAAWIa4AwBg= GeIOAIBliDsAAJYJVXoAAPYpBlK2YBQYI5lKTwNMPdeVfM9RyHMqPcoRlT3uQRAoCAI5jiPP8yR= JxhgVi0U5jiPXdeU4R+dfFoBPZ4yUyQf6vy8MaCQdyBB3WKi2ytX/WZxUY93ReYxc1qmKxaJ279= 6ttWvXqqGhQStWrFA0GtXw8LCefPJJ5fN5XXLJJZo/f37pOUEQqFgslnPMwwRBIGOM+AkFWxlzc= D8LpuQo2xgpVwg0OFbQYIq4w06Foqt0tqhisbIHo590QOwYU75db3R0VA8++KDOOecc9fX1qb29= XSeccII2b96s8fFxJRIJ/fWvf9WqVasUBIH+9re/adOmTZo9e7ZctzLLA9J5R38d/A8NZY/OV2f= AvyvsGZ2e3KuGqrTcKfg5ZYyUKTja1P85pfIuZ+VhpVg40OmJXZpVla/YDK7ravHixaqvr/9Y4M= tarFwup7GxMTU1Nam2tlZjY2Myxmh8fFwLFiyQ7/vasGFDaeiOjg41NzdX9MjdcT1d5PlyXK9iM= wDTyhiZ4okKgsIUnaFy5LiuLgpF5Dis2YWdjAlkigtkipWLu+d5qqqqOuLXyhp313WVTCY1PDys= gYEBzZw5U5Lk+776+vpUXV2tZDJZenxVVZWi0Wg5RwT+l4pVegAAn1HFT8tns1m98847euSRRzR= 37lx973vf07PPPquzzz5bjzzyiNLptG666SYtWLCgXCMBAGCdssbdGKN8Pq9isSjXdeV5nrZs2a= JTTz1VjuPIcRyFQqHSKnoAADB5ZY37RxljVCgUFAqF+PibRYwxSqfT8jxPvu9LOrAa+1CT+chjo= VCQ67oqFosKgkCRSGTKZwYqIQgCZbNZpdNpOY6jeDyucDg84X0jCAKNjY0pHA7L9/3/8cDo0E8e= 8TPXfhVd7eI4zqT+IePYkEqldM8992j16tXK5XIqFAoaHBzUli1bNDIyottuu02ZTGbC32/Dhg0= aHx+XMUajo6PTODlQPrlcThs3btQTTzyh7u5udXV16bbbbtPg4ODHXgwfSbFY1Ntvv61169ZpcH= BwQtscGRmZ0PfGsY/Pd2FKGWP0wQcfyPd97du3Tz09PZoxY4Zuv/12DQwMKB6Pa8eOHfrhD3+ou= +66S2+88YZ+/etf64tf/KKWLVum8fFxvfjii9q2bZuy2axWrVqlxx57TL///e917bXXas+ePfr6= 17+uTCajZ555Rl1dXbr44ovV0dGh9957T8PDw3rppZfU1tamK6+88hNXkgKV9tZbb2loaEgXXni= h4vG4JKm6ulq9vb2qqqpSZ2en1q1bp7a2Nq1YsUJBEGjt2rX617/+pUwmo5UrV+qBBx5QNptVQ0= ODBgcHdemll8p1Xa1bt07Lly/Xgw8+qN7eXp188slavny5Xn31VX3lK19RKBTSzp079dRTTykSi= ejKK69UQ0OD7rzzTiWTSe3Zs0ff/va31d7ernA4XOG/KXwWxB1TKggC/elPf9LFF1+ssbExdXV1= 6ayzztKqVau0detWtbe36/bbb9fNN9+sd999V11dXVq1apU2bdqkl19+Wa2trXr//fe1cuVK7d2= 7V52dnTrnnHP0jW98Q57n6S9/+Yvy+bx+8YtfqK2tTWeffbY2bNigIAi0f/9+9fX16ZZbbtHTTz= +tTCZD3HHU2rp1q7761a+qrq5OodCBH8ULFiyQ4zh67733tHnzZl133XXatm2b1qxZo+XLl6uzs= 1PXXnut8vm8XnrpJV122WVqbGxUMpnUmjVrlMvl5HmeOjs7tWjRItXX12vFihUaHR1VNptVd3d3= 6S2AjRs36vLLL1c+n9czzzyjq6++Wq+++qruv/9++b6vhx56SD/96U+J+zGKuGPKBEGgTCajt99= +W5lMRplMRvl8XmeccYbi8biSyaTq6upUV1cn3/fV2dmpvr4+rV+/XgMDAxofH1dzc7M6Ojo0e/= ZsSdL27dtVVVWlRCJROsUfBIFeeuklXXXVVfJ9XxdddJH+/Oc/Kx6Pa8mSJWpoaFA0Gq3o9RGAT= 3PwwlyHXqDrYEh3796tCy+8UMcdd5xmzZqlhx9+WOeee65aWlpK+0Y+ny/tVwfXoRy8tHc+n1ci= kdDevXv12GOPqaOjQw0NDaXLf6fTaTU1NZUuELZv3z6lUimFw2E1NTWVFj0XCoUy/61gqhB3TJm= DlxdetGiRlixZokKhoPXr16u3t1fhcFjGmNIvSaqpqVFLS4taW1s1MDCgsbExua5b+sTEoWsxDn= 2eJM2cOVPpdFq+75e+v+u6ikQi3J8Ax4SOjg797ne/0xVXXKF4PC5jjHbv3i3pQOT7+vo0b948p= dNp1dbWSjqwEC4UCpXuxXGog/foSKfTCoJANTU1uu666zQyMqItW7aUvvdBuVyu9P8HX1R4nlc6= i8A+dGwj7pgyxhg999xz+uY3v6m5c+eqUCho2bJl2rx5s84991x1dXWpurpatbW12rJli84880w= 9+uijchxHW7du1eLFi0srfg/eWMh1XdXV1WnTpk1asGBBKfw33HCD1q5dq9bWVv3hD3/Qd77zHW= 3fvr10FBQKhSp2yWJgItrb2/Xhhx/qiSee0EknnaTR0VHt2LFD11xzjTo6OrR69Wr19/drx44du= u666xQOh0v7hDHmsN+Hw2Fls1m9/vrrev/99+U4jsbGxvSb3/xG8+fP1/79+9Xa2irXdeW6rmKx= mHp6evTKK68om83qtNNOUywWk+/7pY8lf/QFNo4tFf0oHOxSKBQ0NDSkZDKpUChU+khcJpNRJBJ= RT0+PampqlMlkFA6HVVVVpXQ6rVQqpWg0qrq6OmWzWUkHFhalUilJUjqdLp0ePPi4TCaj/v5+FY= tFVVdXKxqNlk5JxuNx9ff3KxaLKRbjyms4Oh289PbIyIiy2axc11UikVB1dXXpkyGjo6NyXVczZ= 84s3cTK930ZYzQ0NFRaiBcKhTQ6Oqrx8fHSmauDi+wOfiw1FouVTt/HYjGNjo6WLgEej8eVSCTU= 29urGTNmKAgC5fN5hUIh1q0co4g7AACW4bwlAACWIe4AAFiGuAMAYBniDgCAZYg7AACWIe4AAAA= AABzN/h8taQS6z94C2QAAAABJRU5ErkJggg=3D=3D" width=3D"503" height=3D"267" alt= =3D"" /></p><p style=3D"margin-bottom:10pt; text-align:center; line-height:= 115%; font-size:10pt"><span style=3D"font-family:'Times New Roman'; font-we= ight:bold">Nota:</span><span style=3D"font-family:'Times New Roman'"> datos= obtenidos de </span><span style=3D"font-family:'Times New Roman'; font-sty= le:italic">FaceReader</span><span style=3D"font-family:'Times New Roman'"> = y procesados en SPSS versi=C3=B3n 26.</span></p><p style=3D"margin-bottom:1= 0pt; text-align:justify; line-height:115%; font-size:12pt"><span style=3D"f= ont-family:'Times New Roman'">En los alumnos, la diferencia entre los nivel= es de </span><span style=3D"font-family:'Times New Roman'; font-style:itali= c">confusion</span><span style=3D"font-family:'Times New Roman'"> y </span>= <span style=3D"font-family:'Times New Roman'; font-style:italic">attention<= /span><span style=3D"font-family:'Times New Roman'"> es notable como se obs= erva en la </span><a href=3D"#fig2" style=3D"text-decoration:none"><span cl= ass=3D"Hyperlink" style=3D"font-family:'Times New Roman'; font-weight:bold;= text-decoration:none; color:#000000">Figura 2</span></a><span style=3D"fon= t-family:'Times New Roman'">. La confusi=C3=B3n se mantuvo en niveles bajos= durante la exposici=C3=B3n del est=C3=ADmulo audiovisual institucional int= egrado. Esto evidencia que los participantes mantuvieron un adecuado nivel = de concentraci=C3=B3n, sin presentar ninguna dificultad significativa.</spa= n></p><p style=3D"margin-bottom:10pt; text-align:justify; line-height:115%;= font-size:12pt"><span style=3D"font-family:'Times New Roman'">Con el prop= =C3=B3sito de ahondar en la respuesta general, las emociones se categorizar= on de acuerdo con su valencia. Los hallazgos muestran que los valores de em= ociones positivas fueron ligeramente superiores a los de emociones negativa= s. </span></p><p style=3D"margin-bottom:10pt; text-align:justify; line-heig= ht:115%; font-size:12pt"><span style=3D"font-family:'Times New Roman'">La <= /span><a href=3D"#fig3" style=3D"text-decoration:none"><span class=3D"Hyper= link" style=3D"font-family:'Times New Roman'; font-weight:bold; text-decora= tion:none; color:#000000">Figura 3</span></a><span style=3D"font-family:'Ti= mes New Roman'"> muestra gr=C3=A1ficamente dicha relaci=C3=B3n, la cual evi= dencia que hay m=C3=A1s respuestas emocionales positivas que negativas.</sp= an></p><p style=3D"margin-bottom:10pt; text-align:center; line-height:115%;= font-size:12pt"><a id=3D"fig3"><span style=3D"font-family:'Times New Roman= '; font-weight:bold">Figura 3</span></a></p><p style=3D"margin-bottom:10pt;= text-align:center; line-height:115%; font-size:12pt"><span style=3D"font-f= amily:'Times New Roman'; font-style:italic">Comparaci=C3=B3n entre emocione= s positivas y negativas registradas durante la visualizaci=C3=B3n del est= =C3=ADmulo audiovisual integrado</span></p><p style=3D"margin-bottom:0pt; t= ext-align:center; line-height:150%; font-size:10pt"><img src=3D" iAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAIABJREFUeJzt3XuUVWXh//HP3vtc5z4wzAwwMAKDgIK= UFqFlJF7QLFBjWWEYi9IoTU2jlpXVV8Xs4m1V/sxVrCxENC1dtiCTVmkUqeCgIEI4SAI6CHIZZs= 5tn72f3x/85vzkCxQ0wzkPzPu1ln945nj248x59vs8e+9zjmOMMQIAACXnlnoAAABgHyuj7Pu+U= qmUwjAs9VAAACgaK6Ocz+e1cOFCZbPZUg8FAICisTLKxhiFYShOdwMA+hIrowwAQF9ElAEAsARR= BgDAEkQZAABLEGUAACxBlAEAsARRBgDAEkQZAABLRIq9wXw+r1wupzAMFY1G5TiOstmsXNdVPB5= XJFL0IQEAYIWiFzCTyeihhx7SAw88oKuvvloTJ07UJZdcokQioQULFmj48OGS9n2qV/cnewEAcD= xx3YMfqC56lLPZrDZt2qTFixfrmmuukSTddttt+tCHPqRkMilpX5B939fWrVuVSCSKPUQAAI4a1= 3U1aNCgg4a5JMeK0+m0IpGIdu3apSFDhqitrU0///nP9alPfUqNjY1yHEee56mioqIQagAAjheO= 4xz09qJG2fd9hWFYCHJNTY1qamp03nnnqb29XV1dXYX7ep6nmpoaogwAOK4cKshSkaOcTqe1ePF= ijRkzRjNnztQNN9ygRCKhq6++Wi0tLfqf//mfA/6bfzd4AACOJ0WNcjQa1bhx4zRu3DjNmDGjcK= X1gw8+qEgkcsgT3wAA9AVFjXI8Htd73/veA1a/nucVcxgAAFipqFFmJQwAwKFRSQAALEGUAQCwB= FEGAMASRBkAAEsQZQAALEGUAQCwBN+TeBBGUhgaBXxBFY5xriO5riOXD8YDjglE+SDC0GhbR6B/= bvNLPRSgR5JRR6c0xZWMUWXgWECUDyIIpfXtOf2fP+8p9VCAHqkpczXvkjolY3xqHnAs4JwyAAC= WIMoAAFiCKAMAYAmiDACAJYgyAACWIMoAAFiCKAMAYAmiDACAJYgyAACWIMoAAFiCKAMAYAk++x= rAETGm1CMAeoEj2fg1LUQZwGExRsrmjTbvzCs0RrQZxyrPkRqqIqpMuHIsKzNRBnBYjKSOTKjbF= +9UNk+SceyKuNLXLuin0QNj1q2WiTKAw2aMUS4wyhFlHMOM5ygMSz2Kg+NCLwAALEGUAQCwBFEG= AMASRBkAAEsQZQAALEGUAQCwBFEGAMASRBkAAEsQZQAALEGUAQCwBFEGAMASRBkAAEsQZQAALEG= UAQCwBFEGAMASRBkAAEsQZQAALBEp9gbDMFQYhjLGyHVdeZ6nfD4vx3Hkuq4cxyn2kA7KmFKPAL= AP0wI4uoq+Uk6n03r00Uc1c+ZMLV26VMYYvfbaa5o7d67y+XzhfsYYGWMKES/qP8aI3Q+OB8ao1= +aR+X8vpoHjgTFGphR9+Q/zqOgr5Ww2qzVr1ujee+/VN77xDZ155pl6+umntXbtWoVhKGnfLyuX= y2nDhg1KJBLFHqL80FH7tqikZNG3DfSmMAy0ceNG7UyEPX4sI2lX2pUJKyTZcUQL+G8YY7R5y2Z= FuvIleSa7rqsRI0bI87wDflb0KBtjlEqlFI/HtXXrVr344ovKZrPK5XIKgkCS5DiOYrGYWlpalE= wWP4y5QHpbGWldR9G3DfQm13U1bNgw1VX0/KCYMdL2zkDOip3iSBKOZY4jNTU1aeTAqEpxxtRxn= EOeqi1qlPP5vMIwlOd56uzsVGVlpZYtW6bHHntMQRDorbfe0ogRIwqD7j7nXGyeMXJdVgI49vXm= PAqN5LqGRTKOA45cx5XrebJtV1/Uc8qZTEbLli3TiBEj9LWvfU1Tp07VV77yFT311FMaOnSohgw= ZUszhAABglaKulB3H0eDBg/XRj35Un/3sZxWNRhWJRBSJRPTYY4/JdXmHFgCg7ypqlJPJpN73vv= cdEN9SHKIGAMA2RY0yK2EAAA6NSgIAYAmiDACAJYgyAACWIMoAAFiCKAMAYAmiDACAJYgyAACWI= MoAAFiCKAMAYAmiDACAJYgyAACWIMoAAFiCKAMAYAmiDACAJYgyAACWIMoAAFiCKAMAYAmiDACA= JYgyAACWIMoAAFiCKAMAYAmiDACAJYgyAACWIMoAAFiCKAMAYAmiDACAJYgyAACWIMoAAFiCKAM= AYAmiDACAJYgyAACWIMoAAFiCKAMAYAmiDACAJYgyAACWIMoAAFiCKAMAYAmiDACAJYgyAACWIM= oAAFgiUoqNGmMO+HfHceQ4TimGAwCAFYoe5SAIlMlklM/nlUgk5DiOUqmU4vG44vG4XJfFOwCgb= yp6lDs7O3Xfffeprq5O27dv1+jRo7VlyxalUinNmDFDTU1NkqQwDJXP5+X7frGHqHwgBUFY9O0C= vc2ERkGQl+/3/PlsjJTPh5L5z/cFbGZkFISBfN+XW4IDtI7jyPO8gx4dLnqU8/m8duzYoTlz5mj= OnDm67rrrtG7dOv3mN79REAT73a+trU2JRKLYQ5QfSO3bopLKi75toDcZGW3c+Lp2JXteUmOkXR= lHxlT3wsiAEjLS5s2bFe0MVIqzpo7j6MQTT7QjytK+Q9ie5ymbzcp1XQ0fPlwnn3yycrlc4T7Ra= FQjR45UMpks+vhygdF2Nyv9s6Po2wZ6k+M4GjFihOoqen5aKDTS9r2BnJU7xXIZxzLHkYYOHaqR= A6MlWykf6hqqokY5k8koDENVVlZq9+7dGjZsmH7zm99owoQJ6t+/v+LxeOG+juPIdV15nlfMIUq= SPGPkluIvBfSy3pxHjpE8z0hMDRzzHLnOvnlh266+qFHO5XL6xz/+oWnTpunZZ5/VF77wBVVXV2= vZsmWqr6/XwIEDizkcAACs0uMod7+96XDezhSLxXTKKaeoublZp556auH2T3ziEz0dBgAAx7wjj= nIYhgqCoBDj7iukq6qq/mOYE4mEmpub/7uRAgBwnDuiKAdBoB07duhTn/qU3n77bRlj5LquJk+e= rDvvvFORSEmuGwMA4LhwRJdkZrNZLVq0SO3t7fJ9X1OmTFH//v11wQUX8GlcAAD00BG/TyKXy6m= mpkZXXHGFysrKNHr0aD3++OMHfHQmAAA4MkcU5Wg0qve///3K5XKaNm2aHnnkEf3hD3/Qe9/7Xl= bKAAD00GGfBPZ9X2EYavz48XrkkUdUVlamRx99VJJ04okn8pnVAAD00GFHee/evfrBD36gM844Q= 0uWLNnvZ6eddppmz57NahkAgB447Cin02lFo1HlcrkD4huLxTinDABADx12lKuqqjR16lTl83nN= nDmzEGZjjBobG1klAwDQQ4cd5XfeeUeXXHKJ9u7dq1wup3g8LmOM0um0Zs6cqfvuu4/zygAA9MB= hV7SpqUlr1qzRnXfeqYkTJ+r1119XW1ubpk+frtGjRx/NMQIA0Ccc9ko5EokoFotp165dSqVS6u= rqUhiG2rt3rzZu3Hg0xwgAQJ9wxO9TvvDCCxWLxTRp0iSdddZZ2rFjh+bOncuhawAAeuiIPqw6E= onohBNO0KJFi7Rz505Fo1H169dP/fr1I8oAAPTQEZU0DEP5vq81a9bonnvu0Z49e/TII48on8/z= ligAAHroiFbK+Xxef/7zn3Xdddepo6ND559/vn71q18pDEN96Utfkud5R2ucAAAc9444yv/85z8= 1YMAA5fN5ua6rsWPH6pVXXlEYhkQZAIAeOKIox2IxnXXWWfr+97+vvXv3avbs2Uomk1qyZAlBBg= Cgh44oyp7nady4cVq1apXWrl0rx3E0bNgwDRs2jAu9AADoocOOcnt7u+677z75vi9jjIIgkOM48= jxPp512mqZNm8ZqGQCAHjiiL6T46U9/KmOMRo0apYaGBsXjcXmep4aGBj77GgCAHjrsKFdXV+tH= P/qR7r77bm3btk0dHR2aO3euTj/9dA0aNOhojhEAgD7hsE8E19TUaPr06Vq8eLEWLFigr3zlK/r= JT36i8847T3fcccfRHCMAAH3CER2+XrNmjf70pz9p9erVeuGFF/ShD31Io0aN0qWXXno0xwgAQJ= 9w2FHetm2bPvrRjyoajWrWrFm66KKLlEwmFYlE1NXVdTTHCABAn3DYUfY8T7W1tcrlclq4cKEWL= lxY+NnUqVN1991387YoAAB64LCjPHjwYK1du/agn3EdjUYJMgAAPXRE36cMAACOHpa3AABYgigD= AGAJogwAgCWIMgAAliDKAABYgigDAGAJogwAgCWIMgAAliDKAABYgigDAGAJogwAgCWIMgAAliD= KAABYgigDAGAJogwAgCWK/iXJ6XRazzzzjP70pz9p2rRpGjx4sB544AHV1dVp9uzZKisrK/aQAA= CwQtGjnM1mtWzZMt1www2aN2+eLr74Ys2aNUsvv/yy3nrrLY0YMUKSlM/ntWvXLmUymWIPUbnAq= LMzLPp2gd4WhqF2794tz3d6/lhG2t1lJGN6YWRA6Rhj1LG3Qzt3unJ7PjWOmOM4qqmpkeMcuPGi= RzkIAqVSKVVWVmrLli0688wzlcvl5DiOKisrC/czxiiVSsmUYAeQC6RczhFH93E8SKfTSvXCjic= 0UjotGeP1/MGAEstkMkqlVNIoH0xRoxwEgYwx8jxP2WxWiURC2WxWy5cvV0tLy36DjEQiGjRokJ= LJZDGHKGnfSnlTKiOpo+jbBnqT47hqbByguoqev8A0RoruDeQ470hitYxjl+M4GlA3QIMGRUsS5= e4xHExRo5zL5bRixQoNHjxYt956q8466yz99re/1aOPPqoxY8bo+uuvV0NDQ2HAjuPIdYu/WnVD= c8hfGHAscRz12jwKjeS6ocTUwHGge16UKsqHUvQoV1VV6corr1QQBIrFYvJ9X1OnTpXneSVZFQM= AYIuiRrmiokIf+MAH5Hn//5xUPB4v5hAAALBWUaP87hgDAID9cXkxAACWIMoAAFiCKAMAYAmiDA= CAJYgyAACWIMoAAFiCKAMAYAmiDACAJYgyAACWIMoAAFiCKAMAYAmiDACAJYgyAACWIMoAAFiCK= AMAYAmiDACAJYgyAACWIMoAAFiCKAMAYAmiDACAJYgyAACWIMoAAFiCKAMAYAmiDACAJYgyAACW= IMoAAFiCKAMAYAmiDACAJYgyAACWIMoAAFiCKAMAYAmiDACAJYgyAACWIMoAAFiCKAMAYAmiDAC= AJYgyAACWIMoAAFiCKAMAYAmiDACAJYgyAACWIMoAAFgiUuwNZrNZrV69WqtWrdIZZ5yhkSNHau= 3atTrppJMUjUYPuL8xpthDlDFGJdgscFQYmV6ZR8aIeYHjRve8KNVT2nGcg95e9ChnMhk98cQTu= vLKK3XXXXfpsssu0y233KKHHnpovyjn83m1t7crmUwWe4jyA2nPnqJvFuh1YWi0/e3tCjp74bGM= tDMllWwvBvQSY4x27typdldyD97Go8pxHNXX18t1DzxYXfQo5/N5dXV1qba2Vhs3btTw4cN14YU= XHvBK3nEc1dTUlCzK5bt8SV1F3zbQu4yqq6tVU97zPY+RFESNJF6x4thXVVmp2hpPh1iwHlUHi3= G3okZ532FhI8/zFASBEomEamtrFYvFDljKe56nRCJRkih7eaNolOUAjn2u6yoejyuZ9Hr8WKGR4= n5e+/ZizA8cuxzHUTQaUyIZK8lK+d8p6oVeuVxO69evV11dnebPn6+JEydK2hdgAAD6uqKulFOp= lIIg0FVXXaV8Pq+ysjJJ0ic+8QnF4/FiDgUAAOsUNcoVFRU6/fTTCyvj7kPWiUTikFeiAQDQVxQ= 1ypHIvs397wATZAAAihxl4gsAwKHxiV4AAFiCKAMAYAmiDACAJYgyAACWIMoAAFiCKAMAYAmiDA= CAJYgyAACWIMoAAFiCKAMAYAmiDACAJYgyAACWIMoAAFiCKAMAYAmiDACAJYgyAACWIMoAAFiCK= AMAYAmiDACAJYgyAACWIMoAAFiCKAMAYAmiDACAJYgyAACWIMoAAFiCKAMAYAmiDACAJYgyAACW= IMoAAFiCKAMAYAmiDACAJYgyAACWIMoAAFiCKAMAYAmiDACAJYgyAACWIMoAAFiCKAMAYAmiDAC= AJYgyAACWiBR7g2EYKp/PKwxDRSL7Nu/7viKRiCKRiBzHKfaQAACwQtGjnM1m9etf/1pr1qzRaa= edppNOOkm/+MUvVFFRoW9961uqqamRtC/euVxOnucVe4jyAynv52VMWPRtA70pCIx8P6dstucHx= UIj5XKhTBhIRjK9MD6gFEwo5fO+slkjtwTrQMdx5HneQfvmGGOKOrd27dqlefPmae7cubr++uvV= 0tKiq666Slu2bFFVVZVaWlqUyWT08MMP6y9/+UtJohyEkl82WGHDhKJvG+hNiUiooG2Josr1+LG= MkfJuQkHzFIWGM184drmOkTb/RfH8bpXi4Kzruvrud7+rQYMGHfCzkhy+DoJAlZWV2rNnj1KplG= pra9Xe3q4gCCRJ0WhUl156qS6++OJiD0/Svlcxcj05btF/PUDvCkOZ8KzeOerjOHLkyPGiKsmeD= OgtxsiEk2VMsO/VZpG5rqtYLHbQnxW1Ot2L8srKSmWzWTU0NKixsVFvvPGG/vWvf2ns2LGSJM/z= lEwmlUwmizk8AABKqqiHr/fs2aMnn3xS8XhcTz31lGbMmKGBAwfqnnvuUX19vebOnavKyspiDQc= AAKsUNcpdXV3asGGDTjrpJBljCueL8/l84aS363KuCgDQNxU1yt3njEtx8Rb2yWaz8n1fYbjvHK= PjOIpEIr1yqqD77+u6bkne2ta9/Xdvu/vpzXMOB3Ow+dB9+qynz+HemA/d1+C4rivP82SMKYy1J= 8/p7sfonh+O47AgskRRzymzYyy9l19+Wc8995wqKiok7ZuM0WhUM2bM6PFjG2O0YsUKTZgwoSRR= DsNQbW1tam5u1ne+8x3dfPPNWrduXeFaBeB/W7hwoXzfL1x04ziOBgwYoAsuuKDHj22M0aZNmzR= 8+PD/ej5kMhl9/vOf15133qn6+noZY/SrX/1K06dPV3l5+X8V0jAM9fzzz2vcuHGKRqPavHmzhg= 0b9l+ND72Py4v7mEwmo/PPP18DBw4s3OZ5nrLZrF5++WXt3btXnudp6NChamtrUzKZ1Ac+8AFJ0= iuvvKK3335bY8eOVX19vcIw1Lp16/TWW29p/PjxqqqqUjKZLHxAzNq1a/XOO+/o5JNPVkNDg1pb= WxWNRrV161addNJJampqOmCn4vu+/v73v8sYI8dxNH78eFVXVyufz6u1tVV79+7VKaecotraWu3= cuVMrV65UPB7X+PHjVVZWpmg0qjfeeEN//etf9Yc//EEtLS3K5XL7vVjYtm2bampq1N7ertdee0= 3RaFSnnXZa4YUK+o5sNquPf/zjhc9HkPbNh1wup7a2Nr355puqrKxUfX29NmzYoLq6Oo0fP15hG= Kq1tVWdnZ0aN26c+vXrJ2OMVq1apT179ujUU09VIpFQJBJRGIbyfV+tra1KpVIaN26c6urq9Oyz= z6qsrEzvvPOO3vOe96i+vv6g82Ho0KFasGCBrrrqKkUiEWWzWWWzWcXjca1evVq7d+/WuHHj1L9= /f0nS+vXrtWXLFg0ZMkR1dXWqrq7Wa6+9ps2bN6u6ulonn3yyli5dqk2bNunDH/6wXNfVm2++qX= 79+hXmb1tbm4YMGaIXX3xRnZ2dGj58uE444QRFo9Gi/n36Io5X9DHGGHV0dGjPnj3as2dPIcLpd= Fo33nijampqtGrVKn3zm9/UkCFDtGrVKmUyGS1fvlx//OMf1dzcrGuvvVY7d+7U2rVr9fDDD2vU= qFG66667Cu8v7w7rsmXLNHjwYH31q19VV1eXfvnLX2rp0qUaPny4vvjFL8r3/QPGl8lkdP3112v= 79u0qLy/Xz372M+VyOS1dulTr169XfX29br75ZqVSKd10002qqqpSQ0ODbrrpJmUyGT3zzDMqKy= uT7/saP368fv/73yuTyeiFF17Qjh075Pu+nn76ae3YsUP33XefmpubFQSBbrnllhL8NWCDd8+Hj= o4ORaNRZTIZfetb31JjY6OefPJJ3XrrrRo5cqQWLFigdDqtp556Sps2bVL//v112223KZ1Oa/ny= 5WptbVVdXZ1uu+02ZTIZ/eMf/1Aul9PixYv19ttvq7a2Vj/84Q/l+75uvvlmvf7662poaNC1116= rXO7g7yWvqanRhz/8YW3ZsqVwSFySXnzxRb3yyitqaGjQvHnzlE6ntXHjRi1ZskTNzc2aM2eONm= zYoOXLl2vp0qUaM2aMVq9eraefflrNzc16z3veI2OMnnvuObW3t+vxxx9XLpdTa2ur1q9fr/nz5= ysSiailpUUPPPCAUqlUsf4kfRor5T4mCAJt2bJFnZ2dkqRYLKaqqirl83lNmjRJo0eP1oABA9TS= 0qKmpiaNGTNGqVRK999/v+6++26Vl5fr29/+tjZs2KDW1lZ98YtfVGNjo7773e+qq6tLQRAok8l= o/vz5+sEPfqDq6mpdffXVam9vl+/7mjVrVuG8ne/7isfjB4yvqalJZ599tqLRqFauXKmuri7Nmz= dPixcvViwW05QpUworjtbWVp177rn6/ve/r2w2qyAIlEwmVVtbq8rKSjmOozAMdeGFF6q1tVUnn= niidu3aJdd1NWfOHG3dulUvvfSSVqxYUYo/B0qsez5s375dkhSJRFRbW6t8Pq/LL79cJ5xwgiZN= mqQRI0aooaFBQ4cOVTqd1u23364nn3xSyWRSkyZNUkdHhx555BHdeOONamho0C233KJUKqUgCJT= NZrVw4UL99Kc/LaxU0+m0crmczjnnnMJpPd/3lUgkDhhjJBLRsGHDNH/+fF1++eWF22+88UYtXL= hQyWRS5557rjo6OjR//nzNmTNHQ4YM0R133KFsNquBAweqsbFRmzZt0saNGwsr37q6Okn7Xqg3N= zfrwQcf1Nlnn61nn31Wn/nMZ9TU1KRsNqvVq1fr1VdfVSqVUnV1dRH+Kn0bUe5jYrGYTj31VDU1= NRVuC8NQ6XRaFRUVikajikajSiaTikQihcNpuVxOFRUVisViKi8v144dO5TL5VReXl64ar77lXQ= QBArDUGVlZfI8T9XV1YWPTE0kEsrn8//2HFtlZaUSiYQcx1EsFlM+n1culys8XiwWK5wHX7JkiR= 566CHF43FdccUVB308z/NUX1+v733vexo1apQuuugihWGoX/7ylzrllFP0wQ9+UL/73e968beMY= 0U0GtWpp55aOPTbLZVKqbKysjAfysrK9psP2WxWiURC8Xhc8Xhc+XxeXV1dSiaThfmQyWQk7ZsP= xhjF43F5nqeysrLCO07efS7730kmk/rCF76gJUuWFFbLHR0dWrRoUSHq48aNU0dHhyoqKuS6rho= aGrR161a9+uqreu211zRq1Ch98pOf1NKlSw94/EQioUsuuURvvPGGKisrVVVVpfvvv19DhgxRc3= OzJk6cqCJ/+GOfxeFrHJZJkybpb3/7m/bu3atFixapf//+amlp0TPPPCPf9/XCCy8UJm0kEtGkS= ZO0cuVKZTIZPfbYY6qurj7si122bt2qt956S7t371ZHR4disZimTp2qV155Rbt379bzzz8vx3H0= 5ptvasqUKbrmmmu0aNGi/XYarusqm81K2rfDSyQSmjBhgtrb2zVo0CB1dnZqwoQJuuCCC9TV1cU= OB0fkYx/7mDZs2KDdu3frpZdeUiQS0YQJE7R69WqlUik9//zzhSucI5GITj/9dL3xxhvq7OzUun= XrjvjLdxzHUXl5uRKJhF566SVJ0uWXX64PfvCDmjVrlqqrq1VWVqZzzz1Xy5cvVy6X0/33368gC= PTqq6/qvPPO0+TJk/Xiiy8WrtdIp9P7Xck9cuRI3XvvvRo1apRisZhWrFihqVOnasyYMVq/fj1z= pEiIch/jeZ4uu+wyTZ48WZMnT9Y555yjj3/84/I8T1VVVYWrsbvfEpJIJBSLxfSZz3xGzz33nC6= 77DK9//3vV0tLiz7ykY/o1Vdf1cUXX1w4JF1TU6NEIqFLL71Uzz77rC6//HKdccYZamhoUF1dXe= GtHXV1dYe8Gj8MQ91www266aabdNFFF6m8vFxf/vKXtWDBAn3uc5/TOeeco2QyqYqKCl1zzTWaP= n26br/9dkUiEVVUVCiRSOjTn/60Pve5z+234p8+fbo+9rGPKRqNqrGxUS+88IIuuugiLV++XA0N= DUX+S8AG3SvE7vlw9tln68tf/rIcx1EymZTrukokEopGo3Icp7B6vvbaa/XAAw/oiiuu0Ec+8hH= V1NRo5syZevLJJ/XZz3628FwvLy9XPB7XrFmz9LOf/UxXXnmlzjvvPJWVlamxsbHw+Qz9+/c/6J= XU3fPS8zxFIhFNmTJF1dXVikQimj17tp544glddtllGjhwoMrLy3X++eerra1N06ZN04ABAyRJM= 2bM0I9//GNNnz5diURCNTU1Gjt2rGbPnq0tW7YokUjI8zzV1tZq7NixGj9+vBzH0U033aSZM2fq= 61//uoYMGVL4Vj8cXUX/QgqUVjqd3u9iEUmFCS/te1Xv+34hskEQyHEcOY6jbDYrY4yi0eh+V5W= GYVjYaXU/3rt/FolEFIvFlM1mFYvFZIxREATK5/MHjCWTyejqq6/Wvffeq2QyWdhW97k5SYXb8v= m8fN+XMUaRSKQQedd1C9vu3ul13797fEEQyPf9/f7/ysrKjurvHvbJZDKF50W3d8+H7ueKpP2eQ= 67rKpfLFZ7f0WhUxpjCbYc7H7qvZj7UfOgeS/cLyzAMlc1mC//+7jG4rqs777xTkyZNUmNjo+66= 6y5dd911GjhwYGHOdT/X4/G4MplM4UVy9//vu1f3vu/vd/FZJBI54BoQ9D6ijJIIgkArV67Uv/7= 1r/1ub25uVmdnp84880zefoE+IwxDLV26VHv27Nnv9okTJ2rw4MGH9X7kMAy1c+dOLV++XL7va9= SoUWppaVEsFuPyB5CIAAAAVklEQVR76o8hRBklYYyR7/sHvC0qGo0WXr2zI0FfYYwpXND4brFY7= IjOP3d/D333av1Iz12j9IgyAACW4EIvAAAsQZQBALAEUQYAwBJEGQAAAACAd/u/yEePF9W0JZoA= AAAASUVORK5CYII=3D" width=3D"485" height=3D"286" alt=3D"" /></p><p style=3D= "margin-bottom:10pt; text-align:center; line-height:115%; font-size:10pt"><= span style=3D"font-family:'Times New Roman'; font-weight:bold">Nota:</span>= <span style=3D"font-family:'Times New Roman'"> datos obtenidos de FaceReade= r y procesados en SPSS versi=C3=B3n 26</span></p><p style=3D"margin-bottom:= 10pt; text-align:justify; line-height:115%; font-size:12pt"><span style=3D"= font-family:'Times New Roman'">Para esta comparaci=C3=B3n, las emociones se= agruparon seg=C3=BAn su valencia afectiva, considerando como positivas las= emociones </span><span style=3D"font-family:'Times New Roman'; font-style:= italic">happy</span><span style=3D"font-family:'Times New Roman'"> y </span= ><span style=3D"font-family:'Times New Roman'; font-style:italic">surprised= </span><span style=3D"font-family:'Times New Roman'"> y c=C3=B3mo las emoci= ones negativas </span><span style=3D"font-family:'Times New Roman'; font-st= yle:italic">sad, angry, scared y disgusted</span><span style=3D"font-family= :'Times New Roman'">. A partir de esta categorizaci=C3=B3n, se calcularon p= romedios globales por categor=C3=ADa.</span></p><p style=3D"margin-bottom:1= 0pt; text-align:justify; line-height:115%; font-size:12pt"><span style=3D"f= ont-family:'Times New Roman'">Como se observa en la </span><a href=3D"#fig3= " style=3D"text-decoration:none"><span class=3D"Hyperlink" style=3D"font-fa= mily:'Times New Roman'; font-weight:bold; text-decoration:none; color:#0000= 00">Figura 3</span></a><span style=3D"font-family:'Times New Roman'"> que t= anto la emoci=C3=B3n positiva como la negativa tienen valores bajos y pr=C3= =B3ximos entre s=C3=AD, siendo ligeramente m=C3=A1s alta la primera. No se = observaron reacciones emocionales de alta intensidad, lo que mantuvo un equ= ilibrio afectivo en los alumnos. La respuesta que se observa indica una exp= eriencia emocional de intensidad moderada, sin picos notables, lo cual es c= onsistente con un est=C3=ADmulo que presenta una respuesta emocional de baj= a intensidad, con predominio de estabilidad efectiva.</span></p><p style=3D= "margin-bottom:10pt; text-align:justify; line-height:115%; font-size:12pt">= <span style=3D"font-family:'Times New Roman'">Adem=C3=A1s, se utiliz=C3=B3 = la prueba de normalidad de Shapiro-Wilk, que aplica a las variables emocion= ales y atencionales, para evaluar la distribuci=C3=B3n de los datos. Los ha= llazgos evidenciaron que varias de las variables no siguen una distribuci= =C3=B3n normal como se observa en la </span><a href=3D"#tabla2" style=3D"te= xt-decoration:none"><span class=3D"Hyperlink" style=3D"font-family:'Times N= ew Roman'; font-weight:bold; text-decoration:none; color:#000000">Tabla 2</= span></a><span style=3D"font-family:'Times New Roman'">, siendo com=C3=BAn = en investigaciones que utilizan mediciones psicofisiol=C3=B3gicas. En la </= span><a href=3D"#fig4" style=3D"text-decoration:none"><span class=3D"Hyperl= ink" style=3D"font-family:'Times New Roman'; font-weight:bold; text-decorat= ion:none; color:#000000">Figura 4</span></a><span style=3D"font-family:'Tim= es New Roman'"> se puede observar la distribuci=C3=B3n de la emoci=C3=B3n n= eutral y en la </span><a href=3D"#fig5" style=3D"text-decoration:none"><spa= n class=3D"Hyperlink" style=3D"font-family:'Times New Roman'; font-weight:b= old; text-decoration:none; color:#000000">Figura 5</span></a><span style=3D= "font-family:'Times New Roman'; font-weight:bold"> </span><span style=3D"fo= nt-family:'Times New Roman'">el gr=C3=A1fico Q-Q correspondiente a la varia= ble de atenci=C3=B3n, lo que respalda la pertinencia de un an=C3=A1lisis de= scriptivo para la interpretaci=C3=B3n de los resultados.</span></p><p style= =3D"margin-bottom:10pt; text-align:justify; line-height:115%; font-size:12p= t"><span style=3D"font-family:'Times New Roman'"> </span></p><p style= =3D"margin-bottom:10pt; text-align:center; line-height:115%; font-size:12pt= "><a id=3D"tabla2"><span style=3D"font-family:'Times New Roman'; font-weigh= t:bold">Tabla 2</span></a></p><p style=3D"margin-bottom:10pt; text-align:ce= nter; line-height:115%; font-size:12pt"><span style=3D"font-family:'Times N= ew Roman'; font-style:italic">Prueba de normalidad de Shapiro Wilk</span></= p><table style=3D"width:100%; margin-bottom:0pt; padding:0pt; border-collap= se:collapse"><tr><td rowspan=3D"2" style=3D"width:15.08%; border-top:0.75pt= solid #000000; padding:0pt; vertical-align:bottom"><p style=3D"margin-bott= om:0pt; line-height:normal; font-size:10pt"><span style=3D"font-family:'Tim= es New Roman'"> </span></p></td><td colspan=3D"3" style=3D"border-top:= 0.75pt solid #000000; padding:0pt; vertical-align:bottom"><p style=3D"margi= n-right:3pt; margin-left:3pt; margin-bottom:0pt; text-align:center; line-he= ight:107%; font-size:10pt"><span style=3D"font-family:'Times New Roman'">Ko= lmogorov-Smirnov</span><span style=3D"line-height:107%; font-family:'Times = New Roman'; font-size:6.67pt; vertical-align:super">a</span></p></td><td co= lspan=3D"3" style=3D"border-top:0.75pt solid #000000; padding:0pt; vertical= -align:bottom"><p style=3D"margin-right:3pt; margin-left:3pt; margin-bottom= :0pt; text-align:center; line-height:107%; font-size:10pt"><span style=3D"f= ont-family:'Times New Roman'">Shapiro-Wilk</span></p></td></tr><tr><td styl= e=3D"width:15.86%; border-bottom:0.75pt solid #000000; padding:0pt; vertica= l-align:bottom"><p style=3D"margin-right:3pt; margin-left:3pt; margin-botto= m:0pt; text-align:center; line-height:107%; font-size:10pt"><span style=3D"= font-family:'Times New Roman'">Estad=C3=ADstico</span></p></td><td style=3D= "width:13.3%; border-bottom:0.75pt solid #000000; padding:0pt; vertical-ali= gn:bottom"><p style=3D"margin-right:3pt; margin-left:3pt; margin-bottom:0pt= ; text-align:center; line-height:107%; font-size:10pt"><span style=3D"font-= family:'Times New Roman'">gl</span></p></td><td style=3D"width:13.3%; borde= r-bottom:0.75pt solid #000000; padding:0pt; vertical-align:bottom"><p style= =3D"margin-right:3pt; margin-left:3pt; margin-bottom:0pt; text-align:center= ; line-height:107%; font-size:10pt"><span style=3D"font-family:'Times New R= oman'">Sig.</span></p></td><td style=3D"width:15.88%; border-bottom:0.75pt = solid #000000; padding:0pt; vertical-align:bottom"><p style=3D"margin-right= :3pt; margin-left:3pt; margin-bottom:0pt; text-align:center; line-height:10= 7%; font-size:10pt"><span style=3D"font-family:'Times New Roman'">Estad=C3= =ADstico</span></p></td><td style=3D"width:13.3%; border-bottom:0.75pt soli= d #000000; padding:0pt; vertical-align:bottom"><p style=3D"margin-right:3pt= ; margin-left:3pt; margin-bottom:0pt; text-align:center; line-height:107%; = font-size:10pt"><span style=3D"font-family:'Times New Roman'">gl</span></p>= </td><td style=3D"width:13.28%; border-bottom:0.75pt solid #000000; padding= :0pt; vertical-align:bottom"><p style=3D"margin-right:3pt; margin-left:3pt;= margin-bottom:0pt; text-align:center; line-height:107%; font-size:10pt"><s= pan style=3D"font-family:'Times New Roman'">Sig.</span></p></td></tr><tr><t= d style=3D"width:15.08%; padding:0pt; vertical-align:top"><p style=3D"margi= n-right:3pt; margin-left:3pt; margin-bottom:0pt; line-height:107%; font-siz= e:10pt"><span style=3D"font-family:'Times New Roman'">Attention</span></p><= /td><td style=3D"width:15.86%; border-top:0.75pt solid #000000; padding:0pt= ; vertical-align:top"><p style=3D"margin-right:3pt; margin-left:3pt; margin= -bottom:0pt; text-align:right; line-height:107%; font-size:10pt"><span styl= e=3D"font-family:'Times New Roman'">,139</span></p></td><td style=3D"width:= 13.3%; border-top:0.75pt solid #000000; padding:0pt; vertical-align:top"><p= style=3D"margin-right:3pt; margin-left:3pt; margin-bottom:0pt; text-align:= right; line-height:107%; font-size:10pt"><span style=3D"font-family:'Times = New Roman'">50</span></p></td><td style=3D"width:13.3%; border-top:0.75pt s= olid #000000; padding:0pt; vertical-align:top"><p style=3D"margin-right:3pt= ; margin-left:3pt; margin-bottom:0pt; text-align:right; line-height:107%; f= ont-size:10pt"><span style=3D"font-family:'Times New Roman'">,017</span></p= ></td><td style=3D"width:15.88%; border-top:0.75pt solid #000000; padding:0= pt; vertical-align:top"><p style=3D"margin-right:3pt; margin-left:3pt; marg= in-bottom:0pt; text-align:right; line-height:107%; font-size:10pt"><span st= yle=3D"font-family:'Times New Roman'">,937</span></p></td><td style=3D"widt= h:13.3%; border-top:0.75pt solid #000000; padding:0pt; vertical-align:top">= <p style=3D"margin-right:3pt; margin-left:3pt; margin-bottom:0pt; text-alig= n:right; line-height:107%; font-size:10pt"><span style=3D"font-family:'Time= s New Roman'">50</span></p></td><td style=3D"width:13.28%; border-top:0.75p= t solid #000000; padding:0pt; vertical-align:top"><p style=3D"margin-right:= 3pt; margin-left:3pt; margin-bottom:0pt; text-align:right; line-height:107%= ; font-size:10pt"><span style=3D"font-family:'Times New Roman'">,010</span>= </p></td></tr><tr><td style=3D"width:15.08%; border-bottom:0.75pt solid #00= 0000; padding:0pt; vertical-align:top"><p style=3D"margin-right:3pt; margin= -left:3pt; margin-bottom:0pt; line-height:107%; font-size:10pt"><span style= =3D"font-family:'Times New Roman'">Confusion</span></p></td><td style=3D"wi= dth:15.86%; border-bottom:0.75pt solid #000000; padding:0pt; vertical-align= :top"><p style=3D"margin-right:3pt; margin-left:3pt; margin-bottom:0pt; tex= t-align:right; line-height:107%; font-size:10pt"><span style=3D"font-family= :'Times New Roman'">,322</span></p></td><td style=3D"width:13.3%; border-bo= ttom:0.75pt solid #000000; padding:0pt; vertical-align:top"><p style=3D"mar= gin-right:3pt; margin-left:3pt; margin-bottom:0pt; text-align:right; line-h= eight:107%; font-size:10pt"><span style=3D"font-family:'Times New Roman'">5= 0</span></p></td><td style=3D"width:13.3%; border-bottom:0.75pt solid #0000= 00; padding:0pt; vertical-align:top"><p style=3D"margin-right:3pt; margin-l= eft:3pt; margin-bottom:0pt; text-align:right; line-height:107%; font-size:1= 0pt"><span style=3D"font-family:'Times New Roman'">,000</span></p></td><td = style=3D"width:15.88%; border-bottom:0.75pt solid #000000; padding:0pt; ver= tical-align:top"><p style=3D"margin-right:3pt; margin-left:3pt; margin-bott= om:0pt; text-align:right; line-height:107%; font-size:10pt"><span style=3D"= font-family:'Times New Roman'">,613</span></p></td><td style=3D"width:13.3%= ; border-bottom:0.75pt solid #000000; padding:0pt; vertical-align:top"><p s= tyle=3D"margin-right:3pt; margin-left:3pt; margin-bottom:0pt; text-align:ri= ght; line-height:107%; font-size:10pt"><span style=3D"font-family:'Times Ne= w Roman'">50</span></p></td><td style=3D"width:13.28%; border-bottom:0.75pt= solid #000000; padding:0pt; vertical-align:top"><p style=3D"margin-right:3= pt; margin-left:3pt; margin-bottom:0pt; text-align:right; line-height:107%;= font-size:10pt"><span style=3D"font-family:'Times New Roman'">,000</span><= /p></td></tr></table><p style=3D"margin-bottom:10pt; text-align:justify; li= ne-height:115%; font-size:10pt"><span style=3D"font-family:'Times New Roman= '; font-weight:bold; color:#010205">Nota:</span><span style=3D"font-family:= 'Times New Roman'; color:#010205"> a. Correcci=C3=B3n de significaci=C3=B3n= de Lilliefors. </span><span style=3D"font-family:'Times New Roman'">datos = obtenidos de FaceReader y procesados en SPSS versi=C3=B3n 26</span></p><p s= tyle=3D"margin-bottom:10pt; text-align:justify; line-height:115%; font-size= :12pt"><span style=3D"font-family:'Times New Roman'">Los hallazgos de las p= ruebas de normalidad indican que ni </span><span style=3D"font-family:'Time= s New Roman'; font-style:italic">attention</span><span style=3D"font-family= :'Times New Roman'"> ni </span><span style=3D"font-family:'Times New Roman'= ; font-style:italic">confusion</span><span style=3D"font-family:'Times New = Roman'"> siguen una distribuci=C3=B3n normal, debido a que los valores de s= ignificaci=C3=B3n son inferiores a 0,05 en ambos casos. Esto sugiere que la= s respuestas de los alumnos no se distribuyen uniformemente, sino que prese= ntan concentraciones evidentes en ciertos niveles. En cuanto a la atenci=C3= =B3n, se evidencia que la mayor=C3=ADa de los participantes conserv=C3=B3 n= iveles parecidos de concentraci=C3=B3n, mientras que la confusi=C3=B3n fue = m=C3=ADnima y poco variable; esto sugiere homogeneidad en la respuesta aten= cional del contenido presentado.</span></p><p style=3D"margin-bottom:10pt; = text-align:center; line-height:115%; font-size:12pt"><a id=3D"fig4"><span s= tyle=3D"font-family:'Times New Roman'; font-weight:bold">Figura 4</span></a= ></p><p style=3D"margin-bottom:10pt; text-align:center; line-height:115%; f= ont-size:12pt"><img src=3D" EAAADeCAYAAAA6q9QSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAIABJR= EFUeJzs3XecVdW5//HPPr3PnKnMUKbQ6wBKkSKIXA0q2OLPmESJYjSJjYhGFAkqJGoSDWpMrLEh= UYmisYEGDOhFUJpSpDmFIkyfOb3tvX9/kLOv3Jt7jcMMM8w875foCxlmr9nnnL2/e61nraXouq4= jhBBCCNHFmNq7AUIIIYQQ7UFCkBBCCCG6JAlBQgghhOiSLO3dACE6i6amJvbs2UP37t3JysrC6X= QCsHv3bgB8Ph+HDh0iNzeXnJwc3G73MX9f13USiQT19fVomkaPHj1O+M/QUpFIhOrqag4dOkQkE= sHlcpGfn09hYSGJRILq6mpMJhP9+vVr8TE0TSMYDHL48OEWf6/y8nJisRgFBQX4fD7MZvP/+rXB= YJCDBw8SCATo378/Ho+HVCpFU1MThw4dolevXuTm5n6r4ycSCQ4fPozL5cLj8RjvkW9y8OBBGho= a6N69Oz6fD6vV+q2OK4T418x33XXXXe3dCCE6g6+++orrrrsOgAEDBuByuQB46aWXeP755znllF= N47bXXOHDgAIMHDwagoaGBQCBAIpHAZDJRUVHBggUL2LVrF8OGDcNisZBIJGhqaqK5uRkAs9mMy= WRC0zQCgQDBYJBoNEowGETTNJLJJE1NTUSjUaLRKMlkEovFQkNDA01NTUQiESwWC6qqEg6Hjf8X= jUZJJBIkk0kaGxtRVdU4Vvrrmpubje/39QCxdu1aHnroIVatWkVFRQWrV69mzZo1eL1eMjIyePL= JJ7FYLJSWltLY2EgoFDLal25HIBDAbDajadox7QqHw6RSKcxmM9XV1dx5553E43HGjBlDPB6nub= mZYDCIoihGe9M0TSMajdLY2Eg4HGb58uU8/fTTTJgwAbfbTTQapbm52TgnZrMZRVEAqKmp4dZbb= +XJJ5+ksLCQ3NxcdF3nww8/5J577mHixIlkZ2cTiURoaGggkUgYbWhqajJe0/Tvw+EwtbW1/Oxn= P6OmpoaCggKsVqvxZ8lkEpPJRDQapampiUAgYJzr9evX86tf/Yrx48fj9Xqx2Wwn5D0tRGcnPUF= CtJL0zfzw4cNUVFQYoaW6uppwOEwkEmH37t2kUin27dvH1q1bWb58OfX19ZSUlHDJJZfw6aefsn= HjRtatW0dlZSVz5szhs88+45VXXiEUCjFy5EguvfRSysrKKC8vZ8mSJXzyySf07NmTI0eO0K9fP= y677DLmzZtHXl4eJpOJqVOn0qtXL55//nm+/PJL/H4/559/PmPGjOHZZ59l/fr19OzZk+rqakaM= GIHdbmf9+vUMGDCA73//+wwZMoSnn36av//978RiMfx+P/PmzWPYsGF4PB4ADh06RFVVFaNHj2b= ChAlkZ2ezc+dO6urqiMViVFVV4fP5KCkp4brrrmPgwIFUVVWh6zoTJkxg8+bNxONxLr74YkaPHs= 3TTz/Npk2bKCgooLa2ltNOO43vfe97OBwO4vE4kUiEYDDIsmXLeP3114nH44wePZorr7ySXr16G= T0lFRUVvP322yxbtgy32228RrFYjF27dvHGG2+wevVqMjMzmTVrFmPGjKFbt27A0QBlMpnIyMjg= 6aefxmq1MmjQIFKplBHgdu/ezVNPPcXWrVvJz8/nu9/9LmeddRYLFy4kmUxy22230b17dx5++GE= +//xzysrK2LhxI3v27GHt2rXMmDGDxx57jGHDhpGTk8OsWbNYunQpGzZsIJFI0LNnT2699VYj1K= qqikzoFaL1SE2QEK1I13VeffVVZs6cycUXX8zFF1/ME088YfTShMNhEokE4XCYN954A6vVyrnnn= suoUaMIh8NcdtllDBw4kAsuuIDnnnuOdevWsWLFCq699lpeffVVNE3jueeeY9++fTz00EM0NDSw= aNEi7rzzTuDocEu6V2jgwIHcf//9XHjhhTQ1NXHKKadw3nnnYbPZeOKJJ2hoaCCVSuH3+7n//vu= ZMWMGO3fu5NRTT2XhwoVUV1ezfv16zGYzbreb8847j3HjxrFu3TrWrVtHJBIxfu6LLrqI2267jX= g8zv33388NN9zAp59+SlFREYlEglgsRiQSIZFIoOs6Y8eO5b777uPw4cNEo1Fuu+02zjnnHJ566= inq6+tJpVJ4PB7uvfde7rvvPhobG3nkkUcIh8MARKNR9u7dyyOPPEIgEMBisfDoo4+yatUqI3wC= rFy5klWrVjF79mz+/Oc/M3jwYFwuF4lEgscff5zly5fjdDppaGjgd7/7HZWVlce8njabjWHDhrF= w4UJWrFjB2rVrjdeysbGRv/zlL7zyyiv4fD7Ky8t59NFHOXToEHV1dYRCIVKpFAChUAiASZMm0b= NnT2bNmsVvf/tb/H4/JpOJiy++mPnz5+P1esnLy+P8889n1KhRrFq1ih07dhCNRtvybStElyU9Q= UK0IpPJxLXXXsvll19OXl4eAA888AAfffTRMV+Xk5PDHXfcwaZNm9i4cSMHDhygqKiIAQMGYDKZ= 0HUdTdOIx+NomkZOTg4mk4m8vDx27dqFoijEYjEyMjJwuVxYrdZjaowURaGkpASfz0c0GmXVqlV= UV1dTVFREQUEBlZWV6LqOxWIhKyuLbt264ff7cblcDBs2DDg67BaLxaipqeGtt94iPz+fXr16Gb= 0/X++RWLNmDRs2bOCSSy5h/vz5bN26lSVLlvCnP/2JW2655Zh22e12Bg0aRE5ODmazmV69epGdn= Y3f7zd6OnRdx+FwYLPZcLlcOJ1OamtrjzmHuq5jt9s588wz6d27txEm08OQAKlUCk3TyMrKQlGU= Y2p4IpEIpaWlTJ48mezsbMxmM4WFhf/jNbXb7YwYMYLLLruMJ598kng8TiwWA46Gzh49ejB9+nT= MZjNOp5OsrCzsdrsxTOZ2u41hRLPZjMViMV5fRVFwOBwUFxfjcrnYt28fy5cvp0+fPnTv3t14Ta= X3R4i2ISFIiFZis9nIzs7G6XQeUy/j8/nw+Xw4HA6ysrJwu90kEglef/11NmzYgKZpeL1eBg4ca= ISBLVu2sHjxYqZMmUJlZSV33HEHZrMZv9/PrFmzKC4u5oc//CH33Xcf11xzDRkZGezfv5+JEydi= t9uNwmyz2YzD4SAnJ4fy8nK2b9+O1Wo1woDdbiczMxOTyYTX68Xn8xn1Jj6fj8zMTFwuF5mZmRw= 4cICDBw9SUlJi1B6lDRo0iDVr1jB37lysViuqqpKVlcWsWbPIyMjA5/ORkZFhHM/pdGK1WsnJyc= HlchlhJzs7G7vdTiKRYOvWrVx99dWoqkpubi633HILfr8fn89HXl4evXv3ZtKkSaxZs4bVq1djt= 9sZPXr0Mef+7LPP5osvvuCOO+7A4/FQV1dHt27d8Hg8XH311Tz88MO8/PLLWCwWpk2bxumnn278= XYvFgtfrNc7PpEmTcLvd3H333eTk5NCtWzfOP/98tm3bxpIlSzCbzUyZMoVp06YxceJEXn75Za6= //np8Ph9HjhyhT58+eDwe41zV1dUxbNgwMjIycDgcRojy+/1UVFRQUVFBcXExiUQCu92O3+/Hbr= cfU/MkhDg+iqwYLUTrSBcwu91u7HY7FsvRZ4z08IzVaiUcDuN0OrHZbOi6TnNzM6qqYrfb8fl8K= Ipi1KxYLBZjRlJ6KMnr9eJ0OolGoyxevJht27YxdOhQ7HY7q1atYvLkyVx55ZXGEJbdbkdRFJLJ= JIFAAMAoirbZbGiahqZpZGZmEgqF0DTNmLEUjUZRFAWv10soFDJ6PxwOh9EL43A4gKM9FfF4/Ji= 2u1wuXC6XUUOj6zpOp9M4BxaLxThfXy/UDgaDPPzwwzQ2NnL33XcbP8fXz4WiKPh8PuOYqVTKON= 7XQ5CmacRiMWMYTdM0o9fMYrEYBeGAEQDTISOZTBKNRo0hw/R5jEajxONxvF4vFouFWCxGKBTCa= rUavVapVMoo/k6HwvT5UlXVGEq02+3G93I4HMYMuHg8fsy5TqVSKIpiBEYJQkK0DglBQpyEUqkU= jY2NrF+/3igwLi4uZty4cUadyckqFAqxbt06UqkUU6dOlZlQQog2c9KHoHS3vMViwWQyGdNbW+L= r4/TpX+L4pWs8ADmvrUzTNICTOvR0ROnzKu/X1pW+xh7vtVqI1nLSXznj8TibN2+moqLCmInRUu= kZH+nF6kTrUFWVUChEbW2tnNdWFggE5P3aylRVJRqNUl9ff0zdkzg+uq4TiUT46quvUFW1vZsjB= NAJQpCqqsYaGsfbqaXrOslkkmQyKTeVVpSuaUhPjxatJ31eRev5+vtVrgOtR9d1VFUlFovJdUB0= GCd9CGpt8uEUJxN5vwohRMtJCBJCCCFElyQhSAghhBBdkoQgIYQQQnRJEoKEEEII0SVJCBJCCCF= ElyR7hwkhhOg0wuEwZrMZu90OHN0oN72HXpqqqiQSCWNTW5vNhtVq/bePkd4mJhKJGPvupTf/NZ= lMxpYscHT9uXA4jKIo2Gw2zGYz0WgUj8djLBngcrmMLVLi8bixCXAikSASiWC1Wo01qzIyMmhub= iaRSBg/Vzwex2Kx4HA4CAQCWK1WbDabsQ2P1WpF13WCwSBWq9XYgy69FU8qlTKOa7fbj9l6prOT= ECSEEKJT0HWdBx98kEmTJlFWVoaqqvzpT39i4sSJ9OvXzwgXjY2NvP/++wwYMIBwOMyQIUNIpVI= 4HA5jH7d4PE5dXR2qquJ2u8nJyTFWuY5Go6xcuZJPP/2UkpISzjnnHHbs2EFTUxPjxo3D4/GwdO= lSgsEgw4YNY9myZQwYMICJEyeyZcsWGhoaOOWUU6ioqKCxsZHS0lLGjRvHoUOH2LRpEzNnziQSi= fDee++xbds2hg8fzsGDB/F4PEycOJEXXngBl8vF5MmT2bp1K8lkksLCQmw2G1VVVdhsNoYMGcLe= vXvZu3cvZ5xxBocPH6a+vp7GxkZOOeUUdu3ahd/vZ+TIkezZs4empiZKS0uZMGEC2dnZ7fkynlA= SgoQQQnQa4XCYTZs2EQ6HOXLkCBs3bmTXrl3k5+fj8/nIzs6mvr6epqYmvF4vR44cIZFIcODAAT= Zv3sxNN91E//79OXLkCO+88w6JRIJRo0aRlZVl9JAkEgmWL1/O0KFDjd6czMxM6uvrOXz4MOvXr= 8fpdHLkyBECgQCTJ0+muroan8/HWWedxZ///Gfq6uqora1l+vTpPPXUU4wdOxaXy0UkEqG2tpa1= a9eSTCYJh8Oceuqp2O12tmzZQlVVFQMHDiQWi1FXV2f0SNXV1ZGXl2f0BNXU1LB9+3Z69+6N2Wz= m9NNPZ+vWrUyfPp3NmzczZMgQnE4n9fX1HDp0iEGDBvHuu+8yfPjwLhWCpCZICCFEp+H1esnIyO= Dtt99m9+7dZGVlEYvF6NWrF2PGjEFRFHr37o3P58NqtRKLxVizZg319fXU1dWhaRpms5msrCzGj= RvHxIkTKS4uNvbni0QiNDc3079/f4YMGWKEjoyMDKxWK5mZmUyYMIHc3FycTid2u51+/fqhKApV= VVV8+eWXnHLKKbhcLsxmM/v27SMzMxObzYbH4zF6o0aNGkVhYSGapvHKK6+QlZVlDNuVlJRQWFi= IxWIhFosxYcIEgsEgNTU1TJ48GYfDgcfjoaysjMGDB5NKpVBVlZqaGnJzc8nPzycSiVBZWYnD4c= BkMlFXV8fgwYON3rKu4qTfQDUUCvHhhx/So0cP+vfvf1w7TqdSKWpqagDIzc39VmPE4n+XTCYJB= oOEw2EKCgqwWKQDsrXU1taSSCQoKCiQTVRbSSqVIhwOEwqFyM7OPqaWRLScpmmEQiGqq6spLi5u= s+trQ0MDoVCIRCKByWQybvIANpsNi8VCKpUiFovhcDgwm81Gbw6A2+3G4/H8y7oYVVU5cOAA5eX= lFBcXo+s6Ho+HnJwco2bHZDJhs9mIx+Ooqmr05rjdbsxmM4lEgkAggN/vJxKJUF1dTW5urtHTlK= 4XMpvNRg9PuuYIjtYENTU1YTKZsNvtaJpGLBbDYrHgdDppbm42wpKiKIRCIcxms/Fzms1mkskk8= XicaDSK2+02fjabzYbT6cRisRjbnKRrhFRVxWQyoaoqqVQKTdOMwJTeFDcdtgDsdjvxeBxN07Ba= rcYQY/r7pPf6TL826Y3QzWYz8XjcqOtK11cpimJswJuueWqNe4ncjYQQQnQa0WiUxx57DF3XURS= F8847j549exo3zGQyadyALRYLiqKgKAput5tAIMAnn3zCgAEDMJvNKIpifE0sFkPTNLZu3crQoU= NZs2YNo0aNwuFwcPjwYeBoL5Tb7TYKnNPBKjMzk6amJnRdJ5FI8N577zFt2jSi0Sj79+/H4/FQW= 1uLyWQy2pNIJKiurubNN9/kBz/4AVar1Wh3MpnE4XBgs9nQdZ1YLGbsyZaXl2cEC13XsVgsLFu2= jJKSEnw+HytXrkRRFMaMGcPhw4fZvXs3paWl5ObmsmbNGvx+P4MHD2bHjh3EYjHOPPNM8vPz+eC= DDzj99NPZvXs3W7ZsITs7m2nTphGJRFixYgUXXnghmzdvpqqqioKCAgYPHsxHH31EOBxm+PDhjB= gxgo8//pgPP/yQKVOmsH79ehwOB6effjrl5eVUVVUxbNgwVFVl3759OBwOpk6ditfr5bnnnmPgw= IHU1dURDAYpLS1l/Pjx5OXlHff7RUKQEEKITiG9CXb37t2ZNGkSdXV1lJeX8/7776OqKtnZ2RQU= FLBjxw5ycnI4++yz2bx5M4WFhezbt49+/fqxd+9e4vE4+/btY9++fZx22mnU19djs9koKipiy5Y= tNDU10dzczMqVK+nbty8ffPAB+fn5DB06lDFjxpCZmclf/vIX6urqMJvNTJ06lb/+9a90794dq9= XK22+/zYABA4jH4+zdu5f33nvPKL5WVZUJEyawadMmdF2nrq6OLVu2UFFRwbZt2xg7dizhcJiRI= 0cyYsQIGhoaWLFiBaFQiLKyMiZMmGDMjAOM3qVAIIDFYsHlchEOh0kkEowdO5b6+noaGhr47LPP= KCwsJBgMEggESCQSOJ1Oo9coHeoqKioYPXo0zc3NhMNh4vE4gUCAaDTK5s2bGT16tBEkx44dy8c= ff8xXX31FdXU10WiUyspK3nzzTUpLS41Ntb/zne8Y571v374MGTKEjz/+mCNHjrBq1SpUVaWioo= KvvvqKSZMm8d5771FWVtYqIUj6z4UQQnQK6Z6bUCjE/v372bNnD1arlUgkQn5+Pr1796a0tNSYm= ZWuv9m6dSuJRIKMjAzMZjOff/45iqIQDAZJJBL4fD7y8vLQNM34/4WFhei6btTonHPOOcTjcWNY= rK6ujtzcXEpLS8nJyWHMmDE0NDRQUFBg1CSlj5MewhozZgzFxcXGz5Kfn4/L5eKTTz7BZDIRjUb= RNI3hw4czYMAAXC4XWVlZTJgwgTPPPJMBAwYYPV7BYJCqqip0Xcfv95OZmUkymaRPnz5kZGSgKA= qbN2+mb9++qKpK79696du3L06nE4fDQVFREd27dycWi+H1esnJycHhcJCVlUU4HKa6uhqbzUZ2d= rZR05STk0MwGMTtdpNIJGhubqawsBCfz8fAgQPp3bs3PXv2pEePHvTp04esrCwAVq1aRW1tLV6v= ly+//JIVK1YYfz569Gi6d++Oz+fDbrdTW1t7zEy/437PtHdNUCqVIpVKoSiKMV4aDAYB8Hg8OJ1= OoysyHA6TSqWMKYxms1lqgk4CUhPUdqQmqPVJTVDbOFE1QfF4nHA4TCwWw2Qy4XK5jB6idA9JMp= kkmUySkZFh1O0AWK1WNE0jmUySSCSMUJW+N6XX+dE0zVibx2Qyoes6drvduI+lg1c8HkdRFFwuF= 6FQyFhHKF1/k16vyGQyYTKZjFqXVCp1zLBduh4mHbrsdvs3rm3U1NREeXk5Q4cONb6Xw+Ew2pG+= DqdSKSwWCxaLhWg0avxM6fPgcrmwWq1GrU8qlSKRSJBKpfD5fMbXps9r+uucTqcR2ux2Oy6Xy7j= ff/3nVhTFaJ/NZsNkMhEOh7Hb7bjdbhwOh3G89Nelg9pJXxMUi8XYs2cPGzZsMNY/qKmpYcWKFW= iaxuDBgznjjDPweDx89tlnfPrpp8ab5/vf/z6ZmZnA0Q9XIpEwxmxbKv0Cpd/g6RdTHJ/0hyaZT= BoFfKJ1pC/m6Qt+Z6brCifiiU1VVeLxJInE0RuhaB3pOpn08MrxXl/TixL+9/d9IBBg586deL1e= /H4/wWCQ3NxccnJy/uX3qa2tZePGjezfv5/TTjuN6upqmpqaGDRoECUlJS3ucXC73UbRMXDMENW= JkJGRwfDhw41wlZbufflXvt7elnA6ncf8/r8/QNhstn+ro8Lv9/+f36c1tevdKF1FP2DAAMrLyw= kEAjQ0NDB58mQyMjJYt24d4XAYl8vF4cOHGTRoEIMGDeKxxx4zkns6HTc1NVFTU3NcPUGqqhIIB= IzU3ZVWzWxL6ZkY6aciOa+tJxAIGDeTdEFlZ9QQ0VlXqfNVs06yjZ9N7GaNPpkJ+mYl0DRVeoRb= SXoWUzgcpqam5rgfhiwWC3l5ece873VdJxwO88orr5CXl0dZWZmxonM4HOa5556jvr4ev9/PZZd= dRmZmJjt27OCDDz6gW7duNDY2UlVVRf/+/Xn55Ze54YYbTtop4535etCa2jUE2Ww2Y5y1srLSqM= KPRqNG12J6Kp3FYiGZTBKNRo0uM8C4qebl5dGrVy8ZDuuAZDis7XSV4TBLU4rAlwGqAgniqbbtD= 3JbdXrlOPD5Nbp3z5XhsFby9eGwnj17tun1tbS0lIyMDP7+978zfvx44Oi9orGxkaamJuPeAtC7= d29mzpxpPIgHg0FjGrmEiM6v3e9Gdrsdv99PXl4e+fn5mEwmli1bRiAQ4JxzzkFRFJ555hkmTZr= E2rVrWbt2LRMmTDhp07kQQoi2oSgKXq+X4uJiTj31VLKzs43iYpfLxbx58/7H30lPWfd6vUydOp= XGxkbeeustzjrrrP8xvCM6n3YPQelx04KCAuDoOObtt99u/Hl6nYI+ffowZMiQ9mqmEEKIk0B2d= jYXX3wxAEVFRd/49b179+bnP/+58fv07CzRNbR7CPomDoeDAQMGtHczhBBCCNHJdN4iAiGEEEKI= /4OEICGEEEJ0SRKChBBCCNElSQgSQgghRJckIUgIIYQQXZKEICGEEEJ0SRKChBBCCNElSQgSQgg= hRJckIUgIIYQQXZKEICGEEEJ0SRKChBBCCNElSQgSQgghRJckIUgIIYQQXZKEICGEEEJ0SRKChB= BCCNElSQgSQgghRJckIUgIIYQQXZKEICGEEEJ0SRKChBBCCNElSQgSQgghRJckIUgIIYQQXZKEI= CGEEEJ0SRKChBBCCNElSQgSQgghRJckIUgIIYQQXZKEICGEEEJ0SZb2bsDXRaNRDhw4wNq1a4lG= o4wdO5YhQ4Zgs9morKxk/fr11NbWUlZWxujRo3G73e3dZCGEEEKcpDpUCAqHw1RWVuJ0OunRowe= bNm2iuLiYzMxMdu7cSU5ODhMnTuT5559n6NChuN1udF0nlUpRV1eHx+PBZrO1+PiqqhIIBIzvaT= abW/Gn67pUVSUajRKLxdB1Xc5rKwoEgkTiKo1RExoKKG17PKsCLquG2aS39aGOUROCaExB19v+q= LquEYvGaG6KcsSiYrVa2/yYXYGu60SjUQKBAIcPHz7u64DVaiUrKwuz2YyinMh3o+hMOlQIAjCZ= TGiahqqqxodEVVVSqRR2ux1FUUgmk8bXK4qCyWTC5/ORk5NzXBcsVVUB0DSN7OxsuVm3klQqRSg= Uwmq1ynltZaqusK8xytufQSCmoeltdyyTAoUZZq6fkonPbcJ2Al/GpFXDZguDogJt+EMCKAp2uw= 2320xWVtZxPViJ/6LrOuFwmFQqRVZWFhbL8d1+TCYTJpNJApA4Lh0qBFmtVvx+PzU1NUSjUXJyc= kilUmzfvp3c3Fx27dpFMBikR48ex1yYTCYTNpsNu91+XBesVCplfDBtNps8AbaSZDJJIpEgmUxi= t9uP++In/ovVasVkSqCjoEObhiAAFBNWmw273YzdcuJuPrZYCrMphoLa5sdSUFBMZixWBZvNhsP= haPNjdgWappFMJrFYLNjtdrm+ig6hQ92NfD4fgwcPpqSkBACXy0UikaC+vp4xY8YwaNAgVFXF4/= Fgt9vbubVCCCGEOJl1qBCkKAoOh+OYJy+bzcaUKVOwWCzS7SmEEEKIVtOhQtC/kh73FUIIIYRoT= ZIuhBBCCNElSQgSQgghRJckIUgIIYQQXZKEICGEEEJ0SRKChBBCCNEldfjZYUKIb6Br6JqKlkqh= qvrR36OD/s+VE5Wjq+oqJvPRX4o8+wghBEgIEuKkoes6yWSSaDRKOBymubmZqv0H+HzPEfZuC9D= c1EgiFkRLJVATMVKJGIoCZpsTq8OL3ZuNw5eHzZWBxe7G4vBgdXgw21yYrY5/BiRZi0sI0XVICB= KiA0skEjQ3N1NdXU1FRQW7d+9m8+bNfPHFFwQCAeKJBPGkTkIzoysWTFYHZqsdxWQB9KM9RGoSL= ZVEV5NomoquayiAYrZidXjxFfQls+cQfAX9cfm74/DmYHG4MZksIKFICNGJSQgSogPRdZ1QKERN= TQ3bt29nw4YNfPzxx5SXl5NIJHC5XOTm5tK/f39KSkrwZ+UQNmfzeaCQpNmLYjm2R0fXjw6L6bq= GpiZIhJuIBWqINdcQrt9PqLaCwOE91O5dj6YmMZmtuLN7kV16Crl9xpJR2B+7L1cCkRCiU5IQJE= Q703WdWCxGXV0dq1at4o033mDLli3U19eTmZlJnz59mDlzJuPGjaNPnz7k5uZit9sxm81U19azt= SrCkd1OAjFQv2EDVXdWT6NeSNc1dFVFTcWJB+sIVn9JfcUmavaso+Ljlyj/8AXs3hyyisroOepC= snsNQcvIOzEnRQghTgAJQUK0A13XUVWVUCjE1q1befzxx1m9ejVqlzcZAAAgAElEQVThcJisrCx= GjhzJzJkzGTVqlBF6/hWz+Z+FzooCig7ftIu8oqCgcPQfM5itmG0ObK4MvPm9KRz6H6ipBLHmGm= r2/Cf7P13O4e1/5+DWd3Fl5lE35j+o6nsDzj69sPq8sqWNEOKkJiFIiBNE13U0TSMSiXDgwAE+/= PBDnnzySQ4ePIjT6WT06NFcfvnlTJgwgZycHGw224lvpKJgttpx5/SkJPtSep56PvFgLYe3r+Lg= 5rf47KM3OfesVxk7ZgxXXXUlY8eOJTc3F6vVitlsPvHtFUKI4yAhSIgTIJFIEAwG2bNnD8uXL2f= FihXU1tbSs2dPrrnmGmbMmMHgwYOx2+0dp3dFUbDYnFiye9F74kyKRl2AWr+HjOr32fzJR9xyyy= 3k5+fz3e9+l7PPPpvi4mK8XukdEkKcPCQECdFGdF1H13Vqa2vZtWsXL730EitXrsRsNjNw4EDmz= p3LuHHjyM/Px+FwdOjp6YrJhN3tp7D7aVx/xn8QqKni44/W8Morr7B48WKWLVvG1KlTueSSS+jd= uzdutxuLRS4vQoiOTa5SQrSBVCpFc3Mze/fu5amnnuI///M/SSQSjBgxgmuuuYZhw4aRl5eHyWT= q0OHnvzMpJux2OwMHDqB/nxLOPfdcPvnkEx577DH++te/8vrrr3P++efz/e9/3+gZOpl+PiFE19= LiEJRKpY6uUxKPo6oqmqYRj8exWq3k5eXhcrlas51CnDQCgQA7duzglVde4bXXXsNms1FWVsbVV= 1/NqFGj8Hq97VPv06oUnE4nPXv2pKCggNNOO40PP/yQJUuWsGTJElasWMH/+3//j4suuoiioqIO= 39MlhOiaWhSCIpEI+/fv57777mPTpk1ommZM2f3e977HNddc09rtFKLDS09zf/bZZ1m6dCnNzc1= G+Jk4cSJ+v7/TDREpioLVaqWwsJALL7yQSZMmsXr1ap566in++Mc/8vLLL/PjH/+Y6dOn06NHDy= meFkJ0KC26IsdiMRoaGti6dSsXX3wxBw8eZOTIkWzbto2KigrC4TBer7e12ypEh6TrOjU1NXzww= Qfcd999HDx4kNLSUubMmcNFF12E1+v951T2ztsToigKdrudbt26cemllzJu3DhefvllnnjiCebP= n88777zD9ddfz5QpU7DZbFI8LYToEFp0JXI4HPj9fnr27MnOnTspKSnhgQce4P3338dms3WCrn4= hvll6kcONGzcya9YsrrvuOg4fPsxNN93EX//6V6688kqj96czB6CvUxQFi8VCSUkJs2fP5t1332= XatGls3bqVq6++mhtuuIHy8nLi8Xh7N1UIIb59T1A4HEbTNAoLC/n973+PyWQilUpxzjnnYLFY6= NatGxkZGW3RViE6jEQiwaFDh3jnnXf4/e9/Tzwe54wzzmDevHn069cPl8vVZYLP/8bhcNCvXz+e= fPJJVq5cycMPP8yyZcvYtm0bN998M1OmTCErK0t6hYQQ7eZbh6Dt27fz/PPPM2PGDB566CFSqdQ= xf15WVsYdd9yB3+9vtUYK0VFomkYoFGLTpk089thjrF69mpKSEq6++mrOP/988vPz27uJHYqiKL= jdbs477zyGDx/OkiVLWLp0KfPmzWPKlCnMnj2bnj174na7u3xoFEKceN86BA0aNIiFCxcSi8WYO= 3cuPp8Pl8uFpmk0NzfTvXt33G53W7RViHYVi8Woqalh2bJlPPfcc4RCIaZOncott9xC//798Xg8= 7d3EDstms1FcXMwtt9zCuHHjeOihh3jvvffYsGEDc+bMYcqUKXTr1k0Kp4UQJ9S37odOT+9taGh= gwYIFvPjii2RkZGCz2bj77rt59dVXiUajbdFWIdpNc3MzW7Zs4YYbbuDBBx/E5XIxd+5cHnnkEc= rKyiQA/RtMJhMul4vJkyfzyCOPcP311xMMBrn77rtZuHAhO3fuJB6Po+vftAGaEEK0jhYNxqdSK= SKRCNXV1fTr14/a2lpqamooKCjgs88+IxaLtXY7hWgXqVSK2tpaXn75Za6//no2btzIWWedxeOP= P84Pf/hDcnJyOt2097ZmsVjo1asXs2bNYunSpQwcOJD333+fa665hnfeeYe6ujo0TWvvZgohuoA= WXb09Hg8lJSXccccdvPnmm7z44otYrVb69+/PFVdcIfVAolOIRCKUl5cbMx+zs7O5/fbbueSSS8= jKysJqtbZ3E09aJpOJjIwMTj31VB555BGeffZZXnzxRX76058ya9YsrrjiCvr27StF00KINtWiE= GSxWMjIyGDy5MmMGDGCeDxuTI3Nzc2V7mxx0gsGg6xdu9YYphk/fjw333wzp59+OjabTYp4W4Gi= KJjNZoqKipg9ezajR4/m9ttv5+mnn+bzzz9n/vz5lJWVYbfb27upQohOqkUhKBQKsXfvXq6++mr= C4TBOp9NYDG7s2LEsWLCgRReuZDLJV199xd/+9je2b9/O9OnTmTJlCna7nV27dvH6669TVVXFpE= mTmDFjhrEgo67rqKpq/GopVVWNTS81TTuu7yX+S3pblfQ57cgBIpVKEY1GefbZZ3n00UcJBoNcd= dVV3HTTTfTo0QOTyfSNQzXaCXwGUFXt6EPHCXrw0NHRNY1UCky03uvo9ng5fdIZLH/9De68804+= +GA1V1wxk9/97reMGTMGVfGdwIero+dT1+Q60JrS1+n0f4+3l09RFOOXEC3VohCUTCZJJBIAPPT= QQ4wfP94YGjCbzS2e4dHQ0MCOHTtwOBzMmDGDfv36AUenJe/bt48xY8Ywc+ZMnnnmGeLxOF6v1/= hAHT58GIvFclxDFJqmEQ6HURSFYDAoXfGtJL2vXDKZJBKJdNjzGo1Gqaqq4tlnn2XDhg3k5+fz4= x//mLPOOot4PE55efn/+fc1HRIqfHLQypGQiVQblrUogMUEvdyBozdqzYaut+151YFkIkllZSVr= mkzsbzYTS7X+DShr/A2UJruz7R8vMfOqq5l+wSVMPmsGwWRfNM0GrRi+/hVd1wkGg9TVRVCSQan= 5aiW6rpNIJAiHw6RSqeOeCWiz2ejRo0eXWoxUtL4WfbptNhsul4ucnByeeOIJNm3ahNPpBKCoqI= izzz67RdPk04EmfYzVq1dz4YUX4na7jQ/Qf589kh6G69GjB/369Tuu1apTqRQ1NTUA5ObmSs1HK= 0kmkwSDQcLhMAUFBR3upqLrOoFAgA0bNvDkk0+ybt06Tj/9dGbPns24ceOwWq3/1kU2peoEYxor= 9zezpyFBPNV2PRcmBRxWhW5e8Lm0f/bE6keTShtROPq5LCnNZ9+OCOXNUZqjbZD0lJ7kjp7JsJz= BfPHu73n37TepOniY0jN+StJRAmYHtOFNT1FMeH0+cvM89O6Ri8PhaLNjdSXpNbaqq6spLi6W66= voEFp0NzKbzWRkZHD55ZcTCoXQdd24URxPTVBGRgZDhw6lqamJHTt2MHLkSDRN491336WkpIRNm= zbxxRdf0LdvX7kwiVaRTCZpamri1Vdf5YknnqCxsZErrriC6667jqKiItkCpl0o2NyZ5A+YiMvf= nco1T/D51k/Y/sUcBpxzM1nFI7G5s+TpXwhx3FpcGO1yucjOzuYf//gH0WiUyy+/nNWrV3Pqqae= 2OOE7nU66d+/OhRdeiK7r2O12kskkBQUF9O/fn379+qFpGg6HQ54ixHGLxWJUVlby8MMP8/bbb5= OVlcV1113HrFmz8Hq9Ha7HqmtRMFsdZHQfwIVXzaXxs7/y5qsvsu21uykefzk9RpyHy1/Ypj1CQ= ojOr0VFBOFwmP3793PPPfegqioHDx6kubmZpqYmHn30UZqamlrcIKvVisfjMRZldLlcjB07Frfb= jdfrJSMjA7vd3mHrSkTHp+s68XicrVu3snDhQpYuXUr//v1ZtGgR1157LZmZmRKAOghFMdGjZxE= /vOqnnHPlL7HZ7Oxb8wxfrHyEUP0B1KRsxCqEaLkW1wS53W569uzJjh07OHLkCC+88AKBQIDzzz= 8fl8vVag1MT6MVojXouk40GmXVqlX85je/obKykilTpnDnnXcycOBAo7ZNdBwmswl3RjYlI89mR= DSDz955hMPb3idcv58h028jo6AfZpu8bkKIb69FIcjhcNC7d28ef/xxKisrCQQCWCwWCgoKKCgo= kHod0SHpuk5tbS1r165l3rx5JBIJLrjgAhYsWEBGRoYMsXZkioLZ5iS371jKLvKzd/WTHNj8Jlu= XzWfI9F+QXToKs1XWExJCfDstCkHBYJDy8nJ++tOfEovFjLV1VFVl/PjxLFq0iNzc3NZuqxAtpu= s6Bw4cYMmSJTzwwAP4fD5uuukmZs6cKSucnyQUQDGZ8RX2Z9C5c7A6fezfuJyty35J3yk/ptepF= 2Ky2lAUGSoXQvx7WhSCXC4XpaWlLF261FgDpqamhsWLF9O3b18ZvhIdhq7rJJNJqqqqePDBB3nr= rbfw+/3cddddTJs2TQLQSUhRTDgzuzHo3Juxe3OoXP8yO9/5PfFgPb1GXYgjIx+TWWq6hBDfrMV= XCl3XSaVSxuq5drsdv9/PF198YSykKER70nWdUChEeXk5d999N1u2bGHAgAHMnz+fkSNHtmgtK9= ExKCYzVqeX3pN+hDu3iD1/f4xd7/2BaKCG3hMvx5NbIkFICPGNWnSVSCQS1NXVMX/+fBKJhDEc5= nA4mDVrFj6fr7XbKcS31tTUxLp16/jVr35FRUUFp512GrfffjsjR47EZDLJOjMnPQWrw0O3gZOx= e7L5/LWFHNr6DpGGgwya9nMyCvtjMltlGr0Q4n/VohBktVrxer386Ec/IiMjg9zcXFRVpba2lt6= 9e0thtGhXqqoSDAZ55513WLx4MYcOHeK73/0uN910E0VFRTJc28lYnV6yiocz5keP8Pnri2g+uJ= PPXruboeffjq9bX6xOL2291YYQ4uTUogrCaDTKoUOHuPvuu1mzZg2ZmZnYbDYWL17ME088cVzrB= AlxPFRVpa6ujmeeeYa77rqLQCDAFVdcwdy5cykqKpIZYJ2UxebEk1/KkBm3k9tvHKGaCjYumUP1= F2tJhOV6JIT411rUE5SuBwoGgwDs37+fUCiEyWTiwIEDpFKpVm2kEP8OTdPYv38/r7zyCosXLyY= nJ4errrqKq666Cq/XKwtsdmpHdxP3devD4HPn4MkrZu/qp9j5zoMkIk30PPV8LHa3zBwTQhyjRS= HI6/XSr18/Hn74YZ599lmWL1+O0+lk8uTJXHHFFWRnZ7d2O4X4RhUVFfzhD3/gxRdfJCsri3vuu= YczzzxTatS6EMVkxukvoHTC5djdWex674/sWvkHos1H6Dt5FlanD8Ukw6FCiKNaFIJMJhNut5uy= sjJuueUWVFUlLy+PRCJBXl6ePHGfBPR//qsNNx3/r2O18XFisRhHjhxhwYIFfPDBB5SWlvK73/2= OESNGyAywLkhRTNhdmRSPvRSz1c6eVU+w7x/PoKkqJeO+hzurR4cNQjpHPy8ngoLUjAvRohAUjU= bZv38/8+fPp7y8HE3TuOGGG3jppZcYP348N954I5mZma3dVtGKglGNyvoktUG1zY9lIYXHlCSv9= XZTMYRCIXbs2MEdd9zB7t27GT16NPPnz2fYsGGy/1dXpiiYLFa6Dz8Xm9vPjrcf5Mu1zxEP1NJ3= ytX4uvVFMZnoSAXTSVWnLqiyryZJQm3bJGRWwG03Mbi7HZet45wDIU60Fk+RD4fDHDhwgMGDB7N= r1y6i0ShZWVkcOXJE1gk6CdQEVVZuj/BpRazNj5Xh0DilUOXcQa17sQ2FQmzYsIHf/OY3bN68me= nTp3PzzTczbNgw6Y0UAFjsLnL7jGX4d+9i2+v3Ur1rLYlIE4PPuwVPbvE/t9roGCEgltTZXZ1ky= ccBAlGtTY9ltyh091vokWXBZZOHBdF1tehO4XQ66datG3PmzMFkMpGZmcl7771HSUkJN954o6zC= K9qUqqqEw2Hef/997rrrLnbv3s1ll13GggULGDx4sAQgcQyLw4O/Vxkjv/dr/L3KaDqwjS2v3En= j/m0ko6H2bp4Qoh216BEglUoRjUZ59913+cEPfkBZWRlWqxWn04nVapWbkGgzmqZRV1fHP/7xDx= YtWoSmaVx22WX8/Oc/x+/3yxR48S+ZrXZ8Bf0YdM5s9q5+isPb/85nr97NoHNuJqf3qH+uJSSE6= GpaFIKSySR1dXXs3LmThx9+mLKyMux2O4qiMGDAAKZOnUpGRkZrt1V0cbqu89VXX/HGG29w3333= 4fP5mDVrFpdffjk5OTmyArT4PykmM76CfgycdhM2dyYHNr3Bjrd+Q59JV9LjlBmYrXaZQi9EF9O= iEORwOCgqKmL27Nnoun7MFgTdunWTp3HR6lRVpaamhqeffprnn38ek8nEnDlzmD59ugQg8W8zma= 24snrQ/z9+hsXuYv+ny/nivT+gphL0GHkeNpdM6BCiK/nWIegf//gHb775Jj/5yU+YNm0aoVAIq= 9VqrA2kKIrckESrSiaTNDQ0cO+99/L666+Tk5PDb37zG8aMGYPH45H3m/hWTGYLdm82/ab+FLs3= h72rn2L73+5H11R6DD8HT05uezdRCHGCfOu+30OHDlFZWUlzczMHDhzg5ptv5sEHH8RkMsmmlKL= VJZNJ9uzZw6233srSpUspKiri3nvvZcqUKXi9Xnm/iRZRFBNWh4deoy5k0LTZmO1OvljxEPvWPE= M0UN32i1sJITqEFq8TVF9fj9PpJBwOEwgE+Oqrr1AUBbfbjcvlkjVaxHHRdZ1kMsn27dtZvHgxf= /vb3zjttNO48847GTVqlBTfi1Zhc2VSMOwsbJ4str/5G/ZvfAObFmRc8Q1oqhRLC9HZfeukkpeX= h6qq3H///QBEIhEaGxuZNWsWAMOGDWPu3LkyTV60mK7rRCIRNm7cyD333MPevXsZNWoUv/71rxk= wYAA2m629myg6EZvTR/6AiQDsWvkIlZve4eVHjzDw9jkUFebicDjauYVCiLbyrUPQ2LFjefHFF1= HVf73SsMvlwul0HnfDRNek6zqNjY3s3LmT2267jZqaGiZNmsQvf/lLevXqhd1ub+8mis5GUTBZb= OT1n4DVlcGe9x5l0/q1/OmPDvyZtzN06FBsNpsMvQrRCX3rEOT1evF6pZtYtI2mpibWrFnDggUL= aGxsZPr06fz85z+nd+/eMgQm2pTZasffYzBDz/8FB/7+AB99/Alz5szhrrvuYty4cRKEhOiE5K4= iOgRVVQmFQrz55pv86le/orGxkWuvvZbbb7+d0tJSCUDihDDbnGQXlHL5jQsZOvwUKisrmTdvHu= vWraO5ubm9myeEaGVyZxHtTtM0GhoaePLJJ1m4cCGhUIgbb7yRn/zkJxQWFmI2d8wdv0XnZLVay= c7J4+ab53D22WdTWVnJtddey8qVK2lsbGzv5gkhWpGEINGudF3nwIEDPPPMM9xzzz1YLBauu+46= rrvuOrKysiQAiXaggKJQXFzEL37xC372s59RW1vLnXfeycsvv0wwGETT2naDUyHEidHh5rFrmkY= 8HufAgQPk5OSQlZWFrus0Nzdz8OBBIpEIBQUF/2Nlal3XjV8tlf67//2/ndIJXwdFP3rIr71Guq= 5TUVHBH/7wB1588UVycnKYP38+5557rlFcfzK9BkfbemLbq3Pi17M54T/nPw93os8sQGFhIddee= y02m43HHnuM+++/nyNHjnD99deTmZnZuiH96AfkxJ5a/cR9xr5+jT7ea3Wa1GiJ49WhQpCu6zQ1= NbF582aWLFnCj370IyZPnkwqlWL9+vXU1dXRp08fXnzxRX784x+TnZ2NruuoqkpTUxM1NTXHNX0= 6lUrR3NxsfLA681pH9Q0a8cSJuYDomk4ikSAQiGM2mzGbzcTjcWpra3nggQf46KOPyM/P5xe/+A= Wnnnoq0WiUWCx2QtrWmlKqTjihE48dvbm0NU3XiccTxPQUmuYAvW1fTx1IqSr1dfVEwjpaGx8vL= RaP0dgYJZE4MedVRycWjREKJaivV7BYLFxyySWkUileeOEFnnjiCXRdZ8aMGRQUFLRaEArFdQKB= o69rW9N1nVQqRV1dHeb4iXkdNU0jGo0SCoWora097uur2WzG7/fLIr3iuHSou3wkEmHv3r1s3bq= VPn36oKoqyWQSXdeJRqN069aNoqIiIpHIMU8RiqLgcDhwu93HFYJUVSWRSKBpGh6Pp1MPxbhjGh= ZzHEi1/cEUMJnM2O12PB4PsViMqqoqFi1axM6dOxk8eDBz585l+PDhJ/W+cykNSOiYLTFQ2v68K= hwN6lbribkJKICi8M/PWQJItvkx4ejNzuWyYTbFQfnXS3O0NpvNis2GcU3xer1ceeWV9O/fn3vv= vZfHH3+curo6Zs2aRZ8+fVqncN8KdnsShTht3h2kHL1uetwu3O4T9DCk6yiKQiQSwe12t0oIEuJ= 4dagQpCgKBQUFnHbaaaxbtw5d1wmHwwSDQXw+HwcPHsTj8ZCdnW18gBRFwWQy4XQ68Xg8x90TFA= 6HgaPrHZ3MN+Rv4ogkMVtUTkQIUpSjT9N2+9HX7Msvv+T+++/n008/ZerUqdx6662MGDHipD/fK= VVHN2tYLEkUVNr6RqYoChazGbPln/v1KW0/lGI2mXG6nFisOiYlxYkYu7FardgddiwWFQWtzY+p= oGAyW7DZTbhcLmOxRI/Hw9SpU8nOzmbu3LmsWLGCpqYmFixYQK9evY57UUU9pmF3xFFMCU7Ez2g= 2H30tPZ4TcxvQNA1d17Hb7bjd7pP+8y46hw4VglwuF7169aJ79+706dMHj8dDKpVi69atnHrqqf= Tr1w9VVfnBD36A2+1u7+aKb0HTNGKxBBs3buShhx6ioqKCc88917iByAVRnAx8Ph+jR4/mj3/8I= 7/85S9Zt24dN9xwA4sWLWLgwIF4PJ72bqIQ4lvokLPDzGYz+fn5uN1u4+krPz+fnj17UlxcTE5O= jtw0TyJHa70aWbVqFfPnz+fQoUN85zvf4d5776WoqEhWgRYnDUVRcDqdDBs2jEWLFjFp0iQ2bdr= E3Llz+eSTT4hGo+3dRCHEt9AhQ9DXmc1mnE6nLJZ3EmturOfDD/7O3XffTTQa5eqrr2bhwoX06N= FD9gETJ5308O7gwYOZN28eP/zhD9mxYwfz589n5cqVpFKpk2pWoxBdWYcaDhOdi65rJEKNfPnhi= xxY/yIui8Kdd97JBRdcQFZWVns3T4jjYrVaKS0tZf78+QC8/vrr3HrrrcTjcc466ywyMzNl1pIQ= HZx0r4g2oalJYoFavnh3MVUfL6V7Xia//vWvueiiiyQAiU4jPU17wYIFXHfddQDceOONLF26lCN= HjkiPkBAdnIQg0erUZIzmQ1/w+WsL2b/pDXLyCpjxw9mcccYZUtAuOh2TyYTf72fmzJncfvvtOB= wO7r//fn7/+9+zf/9+WV1aiA5MQpBoPbqOlorTfOgLvljxEEd2riaraDjDL7qDnkMnYTabZXhAd= Fq5ublccMEF/OlPf6KgoIDXXnuNRYsWcfDgwZNy8U8hugKpCRKtQtc1UvEw9V9+yo63HiAeqiOn= 92iGXXgn/oJCzDKbT3RyiqLg9/s588wzcbvd3HPPPaxcuZLKykruvfdeBg4cKD2hQnQw0hMkjpu= ua8QDtRze/nc+e+0ektFmupdNY8Slv8adU4TZenyLyAlxslAUBbvdztixY/ntb3/LmWeeyaZNm7= jjjjv48MMPCYfDUickRAciIUgct2jjV1R8/BKfL1+EmoxTMu4y+k39Cc7MAkxm69H9FoToQux2u= zGF/kc/+hF79uzhF7/4BUuXLiUYDKKqJ2b7DyHE/02Gw0SLaWqSeLCOXe89yuEdq7HYXAyZfht5= /cdjdcn0YNG12e12iouL+eUvf4nf7+eFF15g0aJFhEIhLr30Urp16ybrnwnRzuQTKFpETcYJ1VS= w6S9zObjlbVz+7oye+QgFQ/8Dm1sCkBBwdIPbzMxMZs+ezaJFi3A6ndx111089NBDVFZWytCYEO= 1MeoLEt5ZK/P/27jy6iuNO9Pi3u+9+r672XUhCC1dilQQCIcRiGWwDg+2AiZ14eY7jiZ3Ms5O8m= Ykzfmf8PLGznnhiJ56MtzgkOBBvJOwYMAKBWMQiViE2SSC079LV3W/3+0NIEzvYxgYJYepz0NFp= JN3qqq6u/nV1V5WbtjN7ObnpJbrqK4lxzCRr3rcJT56IJO5sBeHvhISEcMcddxAeHs5TTz3F8uX= Lqa2t5ZlnniEjI0PMnC4I14kIgoQrpqlBAj4XDUc2cXbHMlyd9aTkLybz1sewRo361ABI0zT8Qe= hxq8jK0M6bIgGyDCa9hF4RPVLCyGC32ykqKmL58uU8++yz7N27l8cff5yf/vSnTJgwAdkgFl8Vh= OEmgiDhiqgBP56eFs6Xv0/N7j8jKwqjC+8nY843MFjCkOVPr0reAFzsVPn9oU7c/qHtLdLJEiFm= mQemhzAqQo8s4iBhhDCbzWRnZ/Pcc8/x8ssvs3r1ar7zne/wL//yL8y85XbQQkA8IROEYSOCIOE= zqUE/vS3nqClbwfny97DFpJE55xHixt2KwWyHK3j/R9U03H6Nxq4gPd6h7QnSKxIRPhmPX+u/oI= ggSBhBZFkmMzOTp556CofDwUsvvcQvfvELqs5eYMIt9+EPmADleu+mINwURBAkfDJNIxj001Fzk= NPbXqfzwlFCE8cybuH/IWzUBPSmkOu9h4JwQ1IUhYSEBB588EFiYmJ48cUXWfb7N0jcc4zowscx= RaSgM5iv924KwpeeCIKEy9I0DV9fB61n93Jy46/xu7qISpvCuIX/jCVylJgAURCukqIohIaGcue= ddxIfH89LL/2azR9u5cKFi4yZ+22iMwvQGcUM04IwlEQQJFyGhquznroDqzn94asoehOpBV8lre= gBTKExSJIYASYI14IkSZjNZgoKCoiOjSPq17/lnTVUkB8AACAASURBVD+v5Ohff0zG7G+QMu0eF= L1RnHOCMEREECR8hBoM4GyppnLDr2g5tQudycaEu/6N2OzZGCyh13v3BOFLyWAwkJicxj3/+DSV= XWEc2bqcyg3/SW/TGcbc+hjmsDgkWbwnJAjXmgiChH6ahs/dQ1d9Jcf++mNcHfVEpOYy/s6nsMW= kifcTBGGISZKM3mQjY84jaKFpnN76CtVlK3B3N5F5y6OEJ09C0Ruv924KwpeKCIIENFXF09PMxc= MbOFPyBmrAT0r+YkYX3U9IzGjE8CpBGCaShKI3Eps1C0t4Iqe2/JaWU7twddSTMethEibdgc5oE= b1CgnCNiCDoZqZpBP0e+touULX5v2g7V46s6Mhe+CTx427FaI9GBECCMPwUvRF7fCaTlvw/zpUu= o+7gGk5seIHuplOkzXgQc3gcik70CgnC1RJB0M1KU/E6O2g7d4jK9S/g7mokJC6TsXd8l9Ckseg= Mliua/0cQhKEhK3pM9igyb3mUsKTxnP7wNWp2raCvra7//0aNQ6c3i/NUEK6CCIJuMpqmoWkarQ= 01HP/wLQ6uegstGCAxZz5pMx4gJCYNSVEQPUCCMBJIGKzhxGTNxByewNntv6P1zF4q3vm/pM/6X= yTlLkRvsiF9xoztgiBcnjhzbiKapuF0Ojl06BA//dnP2X/oKIrOythFTxHtKMJoDRfvGgjCCKQ3= 2QhLHMukxc9Qu/ddave9Q+WGX9FefYAxtz5GSEwask4swioIn5cIgm4SmqbR3NxMaWkpTz/9NO3= dLsJGT2PMHd/FFpWKojOIbnVBGMFknR5jSCTpsx4iYnQulev/k/qKDfQ2ncVx2z8RmzULxWBGEu= exIFwxEQTdBDRNo7Kykpdeeon3338fq9XKQ499H5NjETVOMfePINw4JHRGK5GjJ5P/wAuc3PRrG= o5vpeLPT5OYu5Cs2/4JY0gUsiKadkG4EiPqTNE0jWAwiN/vB0Cn06HT6ZAkiUAgQCAQQNM0FEVB= r9eLO57PEAwGaW9vp6SkhJ/+9Kc0NzczadIknnvuOaxxY9lyBmqcnuu9m4IgfE6yoscckUjO0h8= RmT6Vszt+z/ny9+hpqMIx7ztEpk9FbxSDGwThs4yoIMjr9VJZWcmhQ4eQZRmDwcBdd92F2Wzm8O= HD7Nu3j9DQUNxuN/feey92ux3oD54CgQB+v/+qAqNAIEAwGCQQ1HB7A/iC1ypnn0yWLrVTGqiXF= j2/ahoE/B5qa2r43e/e4E8rVhIaFs4j//g4999/Pymjkqjr1NBU17VI7Yr2R9M0VFVFG4Zl3TW0= wTrh8UkDuzCkJCCoagQCGqo61Kn10wBVU9FUDbRhSvNSuaqqijZMaapBlWAwiKqqw5IeaGiaSjA= QHGxXhkMgoBK8dKN3JSRJRjGYSZ5yF+GjxlO96y0uHt7I0b8+T1LOQkbP+BpGWySyov+7YEjj0r= H0B/D7h+k4qip+v/8jN7pXQ5IkFEURN8PCVRlRQZBOpyM7O5vU1FRqa2upq6sb7P25ePEiDoeD7= OxsXnvtNXw+H/A/F9euri5aWlrQ6/VfOP1gMEhPTw+NPbDqGLgDQ/+ScKRNYmKcSqsTTrVK+K8y= 8FKDfvzuXhpO7qJ84zIu1l/EGOVgytL/gy/NwdpTZka3thNp0fB6ZYZjFJimqfh9flwuL2jDMLe= J1t/gNrV2UNsARxslghpDGgnpFYi1QU6ihscro2nDUa4aXq8PtxZA1cxDnqYGBIIB2lrbcPVJaN= rwrGfl8Xrp7HDh8w1XuYLH7cHp9NDaql1Vm/J59Pmgp+fzl6usM2CPH8PYf/gXYhxFnNr639Tuf= Ye2c+Vk3f6/CU0ah8ES+tH1xy4Fs21tbUjD1BmsaRoejwen00lrayuKcnXtq06nIyoqSgRCwlUZ= UUGQpml0dnZSWVlJV1cX06ZNw2g04nK5UBSF3t5eOjs7MRgMg5VekiRkWSYiIoK4uDgMhi8+QiI= QCKDT6TjT5eFsh45219CfWFlxesYZzHSrfk62enD5vviV2u9x0tt8jnM7/0hL1U70FjuJ+fcxuv= BrBEOiOO820tYmEWE3kmw3YjR5AO+1y8wnkCQZvcGA1aoblsZKkiRkRcIWGkpHe4ATzX34g0PbG= 2Q2SEg6A+ERVowGJ5LkZ6j7nyRJwmQyYjbqkWUZSbpWXYmfkB6gU3TExIRibfcgyR5g6HtnTCYT= EZEmDE2uYSpXMJvN2O0GYmOjMRqHZ1JCp1el3utDlpx83nKVZAWjJYz48bdii06lZvdK6o9s4tC= f/43EnAWkTF2CLSYNWVZAkpAkCZ1OISYmkrjQ4RkRqqoqTqcTVVWJjY296uBSupQPEQAJV2NEBU= HBYJDOzk5qamowm81UVVUxadIkNm/ezJQpU6itreXEiRMUFxdjsVgG/24gEFIU5aruLjRNG/aTa= mDf+9P9Yp+hBQO4e1tpOLKJ2r3v4u6sJzqzkLSiBwhPnoDeHMJAj4+EhCTLg2kOi0uP/PrTG540= JSRkSUaWBhIf+gChP/iSh+09jP7SvA719dKd93ClKstS/9ew5VPq/3fpPLnaHosr1Z9P+YufIpI= 02CuUdfsTRGdO50zJG9QdXE179X5Gz7if2OzZGK3hgG6wvg5X/gYeX12LtloQrpURFQQZDAYyMz= NJTU0FQK/XEwgEmDVrFjExMYwePRpVVdHr9eIEgsFFT3ubznJy00t0N1RhtEUy4a6n+xs7W4SYO= 0QQbjKSrGAKiSJ+/K2EJmZzvnwVdQdXc3TVj4gbewsZs79BdHI2I6z5F4TrYkSdBQMvQ//tIy2D= wcCoUaNEl+fHaGoQZ+t5ave+zfl976FpKokT7yDjlm9ii0pBUobn0ZMgCCPQpV4ha1QKY279R+L= HFXNi/Qs0VZbQUXsYx8x7iVv4EGrQxgi7DAjCsLohar+4mP8PTVXxu3uoO7SWsyVv4OlpxRaTyv= hFPyAiNQ+92X69d1EQhBFCkiT0phDCUyZS+I+vceHAXzlXuozjG16i8/gaZob9iOI5swkNFfOFC= TenGyIIEi6NsHL30l59gHOly2irPojJHsWYuY+TOv1eTCGRYv0gQRAua2A4fWrBUiLTpnBh/1+o= 2fUW3/nOP3Hb3GIee+wxJk2ahMlkEq8aCDcVcdUc4TQ1SMDbR2/zOc5sf5PO8xUE/V5S8r9CauF= 9hMRmoDOYr/duCoJwA5BkHSGx6Yy97ds4Jt9K3+E/smPHDsrKyli4cCGPPPIIaWlp2Gw20QMv3B= REEDRSaRoBbx99HRc5X76Ki4fWIckSESk5ZMz+BvYEBzqDRSx4KgjC5yJJMkarncTEaXztgVyaa= o7xwgsv8Oc//5nS0lLuvfdeli5dSkJCAkajsX/EmiB8SYkgaITRNJWg101fRx0NRzdTf3gj3r4O= wpLGkTbj64QnT8Roi0ISDZMgCF/QwJQOsbGxOJIjyM7OZsOGDaxYsYLXXnuNVatW8dBDDzFv3jy= Sk5Mxm0Vvs/DlJIKgESTgc9N98Sz1RzZSf3gTfk8PIbEZZMz5BrHZszFYw/pXex+2GVoEQfhSuz= Qx5KhRo3j44YcpLi5my5YtvP322/zsZz/j7bffZsmSJSxevJjY2NiPTFQrCF8GIggaAfxeF11NF= zmx9nWqD2/D5+rEEpHEmLmPEZ1ZgMkei6IXwY8gCENDlmXMZjOZmZkkJiZy++23s2XLFpYtW8Yv= f/lLli9fzv3338/dd99NUlLSVc3MLwgjiQiCrhsNNeCn+sw5zm5aw7Z1b9Pd3Ys5KpVxxf9KwsT= b0Ztsl138UBAEYSjIsozNZiM9PZ3k5GTmz5/Phg0bePnll/nJT37CsmXLeOCBB3jwwQeJjIwUwZ= BwwxNB0DDTNI2gz0VvSw3VO/9I04ltqH4X0UkOcu74IVGZhZhCokXgIwjCdSPLMkajkdGjR/Otb= 32Le+65h+XLl7NixQqef/55Xn75Zb75zW+yZMkSHA7HsC0yKwjXmgiChoGmqWjBAAFvH23nyrlw= YDWtZ3ajqSrjcqaxeOm9hGbOobxOxhMQLzwLgjBy6PV6YmNj+f73v8/SpUspKSnhjTfe4OWXX+a= tt97illtu4ZFHHsHhcGCz2dDpxGz1wo1DBEFDRkNTVQJeF56eFppPbqfu0DpcHfXIip748fNIzv= 8KBZMnMGtqIjVtARTFDYGhXSFbEARhkAaq1t9D/ZkkmaRRydz3ta9zx/wF7N69mz/84Q9s2LiJD= Rs2kjc5j6X33MOsWbOIiorG8LHh9ZoG6pWkIwjDSARB15qmEQx48bu66Wk6y4UDf6Wj9hC+vi6M= IZGkTLuHpJwF2KJTUQwWjDYTkiR6fwRBGH7egMbxei+tvUE+X3xiw5pxK0ufnMiUc+fY8NeVlB0= so/zAvxMbHU7RnHlML76T8NgUDJZQJEVBJ0O4IYBJHarcCMLnJ4Kga0S99LjL2VJN27n9NJ3cTm= /jGRS9kdDEbOIn3EZUej6mkCgUo0UEPoIgXHcun0bpKTcHz3tQv0BwomFBVceSdNu/EZp3keZTu= 2iu3M7yP63gnff/ij1mNPETbyM6LZ/I2ATmZFnIjdE+Z8AlCENHBEFXQdM0gn437q4m2s7uo+HY= FnoaqlDVICZ7NKNnfJ3YrJlYo/rvhsRIL0EQRhINDX9Qw+PXCH7hHhoZyWAjJN6BNSqFpNyF9DS= dpblyO81VO2n86wsYzHYSxkzGfusskmaNIzkpAb1evDskXH8iCPoCgn4PXmc7HbWHqTu4hp6GU/= jdPSgGM3FjbyF+wlzscZkYbBEoOqNY2kIQhC89SZJQDGbMBhMmewwRKTmkzXyArvpKLpT/hYuVZ= Sw7sY0Nfwpj6tR87rnnHqZOnUp0dDSyLIuASLguRBB0hYJ+L76+TtrOlVN3aA2dF47h6+vCYAkl= cvRkkqcuISJlEjqT9VLgIyMmNxQE4eYjIckKenMIepMNS8Qo4rLmoLpbCe2p4PTOFXyweTMbNmw= gMjKS4uJili5dSnZ2NtHR0eh04rIkDB9R2y5LA00l6Pfj6qyn7ex+Go9tob36AD5PL0ZrOOEpE0= nMWUCsowijLRJZJyYNEwRB+AhJQlZ0yIoOW6iNmdNT+O7XZmE26tmxvYR169bx7rvv8sc//pGYm= BimT5/OvffeS15eHrGxsej1etFDJAwpEQQBqqoSCARwuVy0trZybP9B9m/dR03lAVyd9WjBAAZr= OPHjbyVm7GwiUnIw22OR9UZxggqCIFwhSZIwGgykp43GMSaTBx98kObmZrZu3cqWLVvYvXs3mzZ= tIiwsjKysLAoLCyksLCQrKwu73Y7RaERRFLGyvXDN3JRBUCAQwOfz4Xa76e3tpaamhtLSUg4dOs= Tp06dp6+zFpyoYQxNIn/kQUen52KJTMYZE9y9gKgIfQRCEqyLLMlarlbS0NB599FHuu+8+mpqaO= HnyJDt37mTbtm288sorvPLKK0RFRZGamkphYSGzZs0iISGBkJAQLBaLWNRVuCpf+iBIVVX8fj9u= t5uenh7a29upqalh165dVFRU0NLSgtvtxmAwEBkZSWFhIXGO6ZzypeM3xqA3hSArOhH4CIIgDBF= ZlrHb7djtdjIzM5k3bx7f+973aGpq4vjx4+zYsYMTJ07w2muv8eqrr2K320lOTuaBBx5gwYIFWK= 3W650F4Qb1pQqCNE0bDHh6e3upr6+nurqaqqoqTp48SXV1NT09PQSDQWw2GykpKRQUFJCTk8OYM= WOIjIzE7/dTcVGlo9ZKu0sEPoIgCMNJkiQsFgsWi4XExERycnK4++676erqoqWlhaqqKo4cOUJn= ZychISFXNtu1IHyCGz4ICgaDOJ1OysvL2bZtG+fOnaOmpob6+np6enrw+XwYDAbi4uLIyckhJyc= Hh8NBUlIS4eHh2Gy2wefMwWCQlpYWFMVzvbMlCIJw05MkCZ1OR1hYGGFhYaSkpJCbm8vdd9+Nqq= ro9XrMZvP13k3hBnbDB0F+v5/m5mZeeeUVurq6MBqNREVFMWXKFCZPnsyYMWOIi4sjLCwMi8WC0= WhEr9eLeSkEQRBuMJIkodfrxar1wjVzwwdBer2e+Ph4fvSjH+FwOIiIiMBqtaLX69HpdMiyLAIe= QRAEQRD+zg0fBCmKgsViISkpiczMTAwGMV+PIAiCIAifTUy2IAiCIAjCTWlE9QSpqorb7aavrw8= Aq9WKyWRClmVcLhcej4dgMIjJZMJqtaIoykf+NhgMon6RpZAvCQaDaJo2rKMN+tNT0TSGZWVljf= 78qcOVYH+i/flT1f6NYVpORNPUYcunRn/Zqqp2aWvoaTD89RUNVVX70x2uNDUNTR3OfPbXGU1VU= S99DQdVVfvPkeE6LbX++qpp2rCk+bdtz7UqV0mSxKsOwlUZUUFQb28vx48fp6qqiri4ODo7O1m0= aBFWq5XDhw9z5swZ0tLSOHr0KA8++CChoaFIkoTJZKK+vh6/339V686oqkpvby/dHRJWLQpNN/Q= Ln+p80HTBS59Lxi7pMQ3xETFK4OnqoCHgR3UaiNANfWegWQqi9vXR3uImhGh0Q5ymIoFZhfraRn= rcCqGKnuAQt5MGCVSnyrnTdWh9ekJlhcAQHksJ0Evg6elC6vNh1aKRFQltCItWAox+OHuqAVeHj= hD0DMcyT/6eLi7W+tBcBkJleUjLFcAoq7i7nNThwtPTOmxrWXkC0NI1POWqk8Hg17hwrp5gn4kw= nTTk9wpGwNXZy0VfJz638yM3sV+EXq8nISEBu91+1Z8l3LwkbQRNstDQ0MCJEycwm82EhYVRVlb= GokWLiIqKYv369YSEhDB27FheffVVnnjiCaKioggEAjidTrxeL6qqXtVdwcBddUDTEUBGG8oryi= WKFESRNFQkgpqMpg3t1VqSNHRSf4+MqskEhyGPEiqKpCKj4dcUtCF/CqshS6CTgmhI+NVhWMxW0= lDQ0MtB/KpCEAmG+FiChk4KABBEd+kiNrRpypKKQQ4SuFR3hrq+AujkIDIaQU0mqEkMdR4lNBQp= iE4KIksMW0+DqoGqyfg0ZRjKVUO+1BaoSATUoQ8iJElDIYhOCiBfgx4cnU6H2WzGbDaLZTSEL2x= E9QQNDH2srq4mLi5u8CVnp9OJwWCgqamJsLAwjMb/WbNrYA4JQRAEQRCEz2NE9QT5/X66urpoam= pC0zRiY2ORJInt27czdepUPB4PgUCA0NBQYmJiMBqN13uXBUEQBEG4QY2oIAgGXtbrf2GusbGRL= Vu2UF5eTnZ2NlOnTuX8+fOUlZUxevRoCgoKaG1tZdu2bSQkJFBYWEhvby9btmwhJiaG6dOn4/P5= +OCDD4iIiKCgoABZltmwYQN2u51p06ZhNptZt24dFouFqVOnEhoaytq1azEYDEyZMoWYmBjWr1+= PqqpMmTKFxMREPvjgA1wuF5MnT2b06NFs3bqVjo4OcnNzcTgcbN++nYaGBiZOnMikSZPYuXMn1d= XVjBs3jry8PPbv309lZSVZWVlMmTKF48ePc+jQITIzM1m0aBGjRo0a8jKuqqqipKSEhQsX0tzcz= Nq1awGYOnUqcXFxbNq0CY/HQ35+PqNGjWLr1q10dXUxefJkMjIyKCkpoampiZycHMaNG8fOnTup= qalh4sSJ5OXlsWfPHk6ePMm4ceOYMmUKhw8fpqKiAofDwbRp0zh16hT79u0jLS2N6dOnc+HCBXb= t2kVSUhIzZsygtbWV7du3Ex0dzcyZM3E6nWzdupWwsDBmzpyJ3+9n8+bN2Gw2ioqKkGWZTZs2YT= KZmDFjBiaTiY0bN6LT6Zg9ezZFRUVDOn1CMBikubmZ1atXU19fz6RJk8jOzubdd9/F6/WSk5NDX= l4e7777Lj09PYwbN45Zs2bx3nvv0draSmZmJvPnz2fVqlVcvHiRlJQUvvKVr7BmzRqqq6uJj49n= 8eLFbNu2jZMnTxIZGcmSJUsoLy+noqICu93OkiVLqKysZN++fZhMJpYsWUJdXR2lpaXodDoWL15= MR0cHW7duRVEUFi1ahNfrZePGjSiKwh133IGiKKxZswZFUSguLsZut/P+++8jyzIzZ84kISGBlS= tXIssyRUVFFBcXYzabh/SR0alTp9iyZQuNjY2MHz+e7Oxsdu/ezZkzZ8jJySE3N5fy8nKOHTvGh= AkTmDZtGhUVFVRUVDBmzBimT59OVVUV+/fvJzk5maKiIs6fP8+ePXuIjY1l1qxZtLS0sHPnTsLC= wpgzZw49PT1s374ds9lMcXExHo+HkpIS9Ho9t9xyC6qqsm3bNiRJYs6cOSiKwrZt2wgGg8yePRu= z2czWrVvxer3MmjWL0NBQtm7dSl9fHzNmzCA2NpaSkhLa29spKCggOTmZnTt3Ul9fT35+PnPnzi= UqKuqalaGmaQQCASoqKjh8+DBf+cpXiIqKQpIkWltbWbduHceOHcPhcFBYWMjRo0epqKggNTWVo= qIizpw5w/79+4mLi2P27NlcvHiRPXv2EB4ezi233EJbWxu7du3CYrFQXFyM0+mktLQURVGYO3cu= Pp+PHTt2oGkat956K5qmsX37dgKBAMXFxej1ekpKSvB4PMyZMwer1UpJSQlOp5OZM2cSGRnJtm3= b6OrqorCwkISEBEpLS2lsbKSgoIC0tDTKysqoqakhPz+f7Oxs9u3bx+nTp5k0aRK5ubkcOHCAys= pKHA4HCxYsICkp6ZqVr3DjGnFB0N9yOp34/X5kWWbLli10dHRQX1/PU089RVlZGceOHaOhoYFnn= 32WI0eOUFpaSltbG//+7//OqVOn2LBhAx6Ph3/913/l/PnzvPPOO+h0Op544gmam5t58803CQsL= 41vf+hZdXV385je/ISUlha9//eu43W5+9atfkZWVxW233YbRaOQ3v/kNWVlZTJ48mZiYGH7729+= SnZ1NSkoKY8aM4bXXXiMrKwubzcbUqVP5wx/+QGZmJl6vl3nz5vH2228TExNDV1cX99xzD6tXr0= ZRFNra2nj00Uf54IMPiI+PZ8aMGUNWpn6/n9bWVt544w18Ph9Llixh27ZtLFq0CEVReOGFF3A4H= IMNz4svvkhWVhbZ2dmkp6fzX//1XzgcDmJiYsjLy+ONN94gIyMDWZYpLi7mrbfeIiUlhc7OThYv= Xsy7776LzWajtbWVb3zjG6xbtw6v10tjYyNPPvkkH374IQ0NDdTV1fGDH/yAAwcOcOzYMWpqanj= mmWc4e/YsJSUlnD9/nmeffZb6+nrWrl1LW1sbP/zhD2lvb2flypX4fD6efPJJ+vr6eP3117FYLH= zzm9/E7/fz+uuv8x//8R9YLJYhK9f29nbKyspobm7GZrMxatQourq6sNvthIaG8sEHH5CcnExYW= Bjx8fGUlpaSmJgIQHp6+uAFpru7m/Hjx3P8+HGsVittbW3k5+dz7ty5wdnRZ8+eTWNjI62trTQ0= NHDHHXfQ1dXFmTNnqKurY/HixXi9Xg4cOEBtbS3333//4EWntbWVr371q2iaxubNm/F4PNx1111= omsbatWvR6/XMnz8fTdN4//33iYiIoLi4GIAVK1aQnJzMjBkzkCSJDz/8kKVLl5KYmDik72Ts3L= mTiooKIiIiaGxsJD4+HoPBwPz583nzzTdJSEjA6XRy7733snLlSiIiIrh48SIPP/ww69evR9M0a= mtrefzxxykrK6O1tZVz587x3e9+d3AgxqlTp3jqqaeoq6tj9+7dnDhxgmeeeYaenh7Wrl1LdXU1= Tz/9NF6vl5UrV9LR0cGTTz6JJEm8/vrrqKrKI488gtls5sUXXyQkJISvfvWrhIeH8+Mf/5ikpCQ= WLFgwOLFreno6BQUFOBwOfv7zn5OamkpGRgbTpk3jpZde4v777yc9Pf2aleHAeb97924qKip49N= FHSU1NRZIkTp48SWlpKffddx9r1qzBarVSU1PDww8/zI4dO/B4PJw5c4Zvf/vbHD58mIsXL1JVV= cX3vvc9ampqOHr0KCdOnOAHP/gBHR0dlJSUcOLECZ5++mmCwSDvvfcetbW1/PM//zN6vZ5ly5bR= 1dXFY489hs1m47e//S2apvHAAw8QGRnJL3/5S0JCQrj77rtJTEzk+eefJz4+nrlz55Kens5zzz1= HcnIyubm55OXl8Ytf/ILExERGjRpFcXExv/71r4mJicFisfAP//AP/P73vycyMhK3282SJUv4y1= /+Mhg8C8KIfZssGAyi0+nw+Xzs3buXlJQUxo4dCzA4vHJgqO613L7azxl4ufrTfv/jP//b7aGMS= VVVxel08s4779DS0kJ7eztr164lGAwOTg/w8bxc7vuVlMmn5fFKPuvjx/mLHPeP52moDNxle71e= zGYzkZGRrF+/np6eno/s28AUDgNlMbB/A59xue3L/f4nbV+u/n3S9kB5/m3P6+W2L1e+f5vuUA4= fH8ijx+MhNjaWMWPG4Ha7/25fP15H/rbcPqn+fdLPP61cr+b7Z7U3l2t/rqWBmfUnT578kR6mz3= M+f9K+flrbcSXt5eXO149/7qdtX24/r+R4CAKM0J6gQCDAkSNHBh+BdHZ2kpCQQG5uLi6Xi8OHD= 2M0GikqKqKnp4f9+/cjyzKzZ8/G7Xazb98+JEkafGyyZ88eAIqKitA0jd27d6NpGoWFhSiKwq5d= u1BVlenTp2M0Gtm5cyfBYJD8/HzsdjtlZWW43W5yc3OJjo5m7969g480Ro0axf79+2lra8PhcJC= RkUFFRQX19fWkpaUxfvx4jh49Sm1tLaNGjSInJ4eqqirOnj1LbGwskydPpqamhqqqKsLDw1myZA= mpqalDUq7d3d28/fbb3HnnnbS0tLB//35yc3Pp7u6mtLSUQCDA5MmTCQsLY/fu3bhcLiZNmkRsb= Czl5eV0dnYyduxYUlJSOHjwIC0tLWRmZuJwOKioqODixYuMHj2aCRMmcOzYMWprawdXgT5z5gyn= T58mOjqaKVOmcOHCBSorKwkNDWXa+CkfUgAAB6hJREFUtGk0Nzdz5MgRLBYLhYWFdHV1cfDgQRR= FYdasWbhcLvbt2zf4WGYgOJYkiRkzZqCqKrt37wb4yHHVNI05c+YwY8aMIXmHTNM0nE4nf/rTn5= g1axY7duygqamJoqIiwsLC2LhxI93d3RQUFJCRkcHmzZtpbm4mLy+PiRMn8uGHH1JXV8e4ceOYP= n0627dv58yZM4wZM4bZs2eze/duKisrSU5OZu7cuYOPM2JjY7n99tupqqqivLycsLAwFixYQF1d= Hbt27cJkMnHnnXfS3t7Ohx9+iE6n46677hp8XCzL8uDjsA8++ACAhQsXArB+/XoAbr/9doxGI2v= XrkVVVebNm0dISAhr1qzB7/ezYMEC8vLyBqequNb8fj8rV65k/Pjx7N+/n/b2drKysoiNjeXgwY= M0NzeTkZFBVlbWYA9FSkoKEydO5Pjx49TU1Ay2Gx+vf3V1dZw4cQK73U5BQQEtLS0cPnwYs9nMj= Bkz6O7u5sCBA4P1z+12s3fv3sH6N9CuDNQ/TdMoKysD/r7+FRQUYDQaKS0tRVVVpk6dis1mo6ys= DK/XS25uLpGRkezdu5fe3l7Gjx/PnDlziIuLu6blqWkajY2NrF27lkWLFhEfH8/mzZtJTExk586= d1NXVkZqaysSJEzlx4sTgY9i8vDzOnj3LqVOniIqKIj8//zPLb6Bd/nj5KYpCUVHRVZVffn4+IS= Ehg+WXk5NDdHQ0e/bsGSy/pKQkysvL6ejowOFwkJ6ezqFDh2hsbCQtLY05c+Zc05424cY1IoMgv= 9/P6dOnMZvN2O12/H4/er0eg8GAJEn09fVhtVrR6XQEg0H6+vqwWCwf2Tabzej1elRVpa+vD6PR= iMFgQNM0+vr60Ov1gxfFvr4+FEXBZDIB4HK5kGX5I9uSJA2uVux2u9E0bfDxysAkjlarFQCv14v= f78dmswHg8/nwer3YbDYkSRrctlqtyLKM3+/H7XYPTg45VPOSdHR0cPLkSaZPn/53d04fz9OV5t= FqtX5qnmw22+C2y+XCZrOhKAqBQOCyx/GzjpvBYPhcx1GSpMGFc4fiQq1pGt3d3Zw7d47U1FR0O= h2qqmI0GlEUBafTCTCYD6fTiaZpGAwGTCYTTqcTVe1fDdtiseB0Ogd7QW02G06nk0AggKIo2Gw2= XC7X4CNim82G2+0e3LZarXi9Xnw+H5IkYbPZBo8LgM1mIxAI4PF4gP7JSAeOPTB4rF0uF8Dg0OO= ByUtNJhOKonxk22KxDNn7QD6fj3379jF27FgMBgMej2ewfvl8vsFz5vPUJ5PJdFXtwqe1A9fynD= EajUPSDvj9fjRNG1yI9MiRI0RHR2O3279Qu6nT6b5weX1Wu3ml5fVZdeBy14aBfArCiAyCBh4vK= Ioi5n+4hgYCn+Ga/O1mMRBMSpIk6us1JNqBoRcIBJAkSUw2KNy0RmQQJAiCIAiCMNTE7ZUgCIIg= CDclEQQJgiAIgnBTEkGQIAiCIAg3JREECYIgCIJwUxLDhAThOggEAoND2/V6PbIso2kaXq8XWZb= R6XSfe0TUwIRzwBWPABz4G7/fj8FgEKOEBEG4qYieIEG4DpqamnjyySf52c9+Rl1dHcFgkEAgwP= Lly3n++efp6ur6XJ+nqiq9vb2sXr2akpKSK/47l8vFgQMH+P73v09zc/PnzYYgCMINTfQECcJ10= NLSwp49e7BarbS3t/PEE0+QmJjI0aNHaW9vp6urC4PBwO7du6mtrSU+Pp6ZM2cCsH//ftxuN/Pn= z8fn83Hw4EFqa2vxer0sW7aMuLg46uvriYyMpKWlZXCZhKlTp3Lu3DmOHj1KIBAgLy+PhIQEGhs= bOXDgAK2trSQkJFzPYhEEQRhWoidIEK4TvV7PokWLsFgs/O53v6Ojo4NAIABAZ2cn//3f/82bb7= 7J+fPnWb16NS+++CLV1dVs3ryZVatW4fP56O7uZvv27axYsQKDwTA4425sbCwbN25k+fLlVFZWY= rVa2bZtG6+++ipNTU00Nzfzk5/8hH379l3nUhAEQbh+RE+QIFwner2e0aNHk5qaSllZGT/84Q/x= +XzIskxPTw+rVq2ip6eHyspKbDYbHR0dzJs3D6/XO7gEwcACoz6fj4yMDGJiYsjIyGDGjBmsW7e= OyMhI7rzzTjIyMgbX2NuyZQsej4dAIEBHR4fo/REE4aYlgiBBuI4URSEzM5OYmBgaGhpYuXIlky= dPxmAwUFBQQE1NDfn5+XR3dw+uw2QwGKiuruYvf/kL58+fH1xIVqfTIUkSdXV1nD59mkAggNFox= GazDT5aq6uro7i4mN7eXvbu3UsgELjmK5YLgiDcKJRnn3322eu9E4Jws3G5XGiaxuTJk0lISCAi= IoLc3FxCQkLIyckhPz+fOXPmIEkSDQ0NxMfH89BDD5GUlERaWhpms5kTJ04QHh5OVlYWDoeD6dO= nExMTg9vtxul0Eh0dzbhx48jOzsZms5GQkIDdbqexsZH09HSmTZuG3W4nISEBq9XKlClTCA8Pv9= 5FIwiCMGzE2mGCIAiCINyUxIvRgiAIgiDclEQQJAiCIAjCTUkEQYIgCIIg3JREECQIgiAIwk1JB= EGCIAiCINyURBAkCIIgCMJN6f8DkfdhxU4EGEMAAAAASUVORK5CYII=3D" width=3D"577" he= ight=3D"222" alt=3D"" style=3D"margin-right:9pt; margin-left:9pt; float:lef= t; position:relative" /><span style=3D"font-family:'Times New Roman'; font-= style:italic">Histograma de la emoci=C3=B3n neutral</span></p><p style=3D"m= argin-bottom:10pt; text-align:center; line-height:115%; font-size:10pt"><sp= an style=3D"font-family:'Times New Roman'; font-weight:bold">Nota:</span><s= pan style=3D"font-family:'Times New Roman'"> datos obtenidos de FaceReader = y procesados en SPSS versi=C3=B3n 26</span></p><p style=3D"margin-bottom:10= pt; text-align:justify; line-height:115%; font-size:12pt"><span style=3D"fo= nt-family:'Times New Roman'">La mayor=C3=ADa de los valores de neutral se a= grupan en rangos altos y medios, seg=C3=BAn lo que el histograma indica, lo= que demuestra que este estado se encontr=C3=B3 presente en los alumnos de = manera continua, aunque la distribuci=C3=B3n no es totalmente uniforme, pre= senta un patr=C3=B3n evidente de estabilidad emocional sin extremos notable= s. Los resultados, en t=C3=A9rminos generales, indican que los participante= s mantuvieron una actitud equilibrada durante la actividad, sin experimenta= r reacciones bruscas en su estado de =C3=A1nimo, sin registrar variaciones = abruptas en los indicadores emocionales.</span></p><p style=3D"margin-botto= m:10pt; text-align:justify; line-height:115%; font-size:12pt"><span style= =3D"font-family:'Times New Roman'"> </span></p><p style=3D"margin-bott= om:10pt; text-align:center; line-height:115%; font-size:12pt"><a id=3D"fig5= "><span style=3D"font-family:'Times New Roman'; font-weight:bold">Figura 5<= /span></a></p><p style=3D"margin-bottom:10pt; text-align:center; line-heigh= t:115%; font-size:12pt"><span style=3D"font-family:'Times New Roman'; font-= style:italic">Gr=C3=A1fico de Q-Q de la variable Atenci=C3=B3n</span></p><p= style=3D"margin-bottom:0pt; line-height:107%; font-size:12pt"><img src=3D"=  VQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAIABJREFUeJzs3Xl4VPXd///n7PtMJglZ= CRASiKIUEBUUFSEIyI2gCK5oobJVoRUVvBTtrdgF9VaxFe1XqaIWFaosQqmggCIhhNVaVtkJIUA= m22SSWc85vz+4Z356i1VSYxJ4P67Lq7ZNJp+ZM+ec1/ks749O0zQNIYQQQogWSqfT6fTN3QghhB= BCiO8jgUUIIYQQLZ4EFiGEEEK0eBJYhBBCCNHiSWARQgghRIsngUUIIYQQLZ6xuRsgREumaRqKo= qAoCpqmYTAYMBqN6HS67/yd+M/q9Xp0Oh2qqhKLxdA0DZ1Oh06nw2Qy/dvX+CHi7VJVFb1ej9Fo= RK8/8zNIvA0/5GebS/wzMhgM39m2+Pv9dz9zpt+JxWIAmEwm9Ho9mqahqmrieGialvjbjaEoCgB= 6vZ5oNIper8dgMPzHx1gI8f+TwCLEd1AUhYaGBnw+HzU1NSiKgtVqJTs7G6fTiclk+tbvqKqK3+= +nvr6elJQUjEYjPp+PkydPoigKZrMZvV5Pp06dMJvNjWqXpmnEYjEqKiqorKwkEolgsVjIzMzE5= XJ963XD4TB+v5/y8nKi0SgWi4U2bdqQkpLSom6qFRUV1NTU0L59e2w22xnbVVtby/Hjx8nNzcVm= s31vaFFVldraWg4dOoROp6OgoAC73U40GqWiogKHw4HVaiUUClFTU0NOTs5Zh5ZoNEplZSUmk4m= kpCQOHTqEy+UiNTW10cdYCPFtEliEOANVVamvr2fevHm8+uqrhMNhNE0jGo0ycuRIZsyYgcPhIB= KJoNPpMJvN6HQ6QqEQc+fOJSMjg6FDh6JpGhMmTGDz5s1YLBYuvPBCysrK2LhxY+JpPBqNYjAYM= JvNGI1GVFUlHA6jKAoGgwGTyfSNcBS/2f7yl79k9+7dif/92muv5fe//z0pKSmJG7miKFRWVvLw= ww9TXFyMXq9HVVUuv/xyXnzxRbxeL0ajMRGCwuHwNz4Hi8WSaFO8rXq9HpPJ9I22xnuUDAYD0Wg= UINF7odfricViifdiMBiIRCJEo9FEr4bFYmH9+vU88cQTfPrpp1it1kTPh6IohEIhAA4fPswtt9= xCUVHRN9qt0+mwWCzfCmDhcJgVK1YwdepUTCYTy5cvp0uXLtTV1dGvXz+eeuopevXqxRNPPIHf7= 2fu3Lm4XC40TSMSiSQ+A71ej6IohMPhxOvHe8qqqqr4r//6L/77v/+ba665hnvvvZd+/foxdepU= DAbDGY9lKBRCVdVET49er08c/5YSIIVoaSSwCHEG0WiU/fv38/LLLzNjxgxuvPFGANauXcs///l= PIpEIS5cuZcGCBXTt2pX09HRuu+02/vrXv/LZZ5/hdrtJS0sjGo3y+eef4/F46NatGyNGjGDx4s= UoisKpU6d46623+PTTT8nOzubhhx+mbdu21NbW8uabb1JUVMQFF1zAuHHjyM/PTwwxNTQ08Oyzz= +J0Olm1ahVZWVns3buXcePG8eGHH3LHHXdgs9kACIVCvPXWW5SXl7N69WoyMzM5ePAgjzzyCH/+= 85956KGHMBqNRCIRdu7cyYwZMxgxYgQrV67EZrPxwAMPUFBQQCgU4h//+Afz588nKyuLyZMnk5u= by8mTJ5k6dSoDBw5k//79DB8+nGeffZYBAwZQXFzMlVdeycUXX8y8efPIyclh8uTJZGVlsXr1au= bNm0cgEOCqq65i4sSJqKr6reMQDoc5dOgQ//M//0NDQwO9e/cmEomgaRr19fWsWrWK9957j7y8P= KZMmUJWVtY3ejX8fj9vvvkmN998M+vWraOkpISsrCzmz59PaWkpv/3tb3G73Rw6dAhFURgzZgxz= 5sxJHHubzcbUqVNp3749S5YsYfHixfTu3ZuSkhJyc3O57777mDNnDkePHuXJJ59kyJAhZGZmkpq= aSiQSobKykpdffpmdO3fSs2dP7r77btq3b8/TTz9NaWkp2dnZbNmyhQsuuIDJkyfTtm3bM/bcCS= Fk0q0QZ6QoChUVFdTX1zNw4EAMBgOhUIhLL72USZMmodfrOXbsGJs3byYpKYkuXbrw/vvvs3DhQ= goLCzEYDDz22GMkJyeTmppKz549ufHGG6mtrWXLli3U1dXx8ssvs2TJEm666SaOHDnCyy+/TGVl= JS+88AJ///vfKSws5MCBA9x///1UVlYmbuixWIwVK1bQp08f0tLSMJvN5Ofn07ZtW0pKSohGo6i= qiqqqRCIRNmzYQOfOnWnXrh0mk4msrCy6devG3//+98Tci/jQSUlJCWvXrqVfv35UV1czfvx4Ki= srWbhwIc888ww33HADAOPHj2fTpk0EAgE2b97Mv/71L6688krq6+vZvHkzBw4coFOnTrzwwgu88= sorXHjhhXz44Ye8++671NTUMGvWLNq1a0evXr2YPXs2W7ZsSfRofF1NTQ2PP/44R48epU+fPixb= tiwxR2jJkiXMmjWLgoICjh07xh/+8Af8fn/idzVNo6ioCJ/Px80338yDDz7IqlWrCIVC9OjRA6f= TyaBBg7jrrru44IILaN++PXfccQd79uzh/vvvJzs7G7vdzhNPPMGpU6coLS3ls88+o6qqimuvvZ= aSkhJmzJjBFVdcgcfjYcCAAfTv359du3Zx9OhRqqqq+M1vfsPmzZspLCykqKiImTNnUl9fz969e= 1m3bh3BYJDBgwezePFiXn31VYLB4E/w7RaidZIeFiHOID6UAacDQlVVFYWFhVRXV2M0GvnHP/6B= wWDA6/Xyy1/+EqfTSV5eHhUVFXz22Wds374du91ORkYGHo+HTp06cf3117No0aLEcMOKFSu45ZZ= bGDduHOPGjUOn01FeXs7y5ct5+umn6d+/PwMGDGDEiBFUV1eTlJSUGPIwGAyoqkooFEoMucSHmH= w+Hy+++CJ1dXV07do1cRMMh8OJIZz473ydXq/H4XDw29/+lrS0NFJSUpg2bRqhUIgPPviAa6+9l= vHjxzN06FCGDh3KP//5TwoLC7HZbEybNo22bduybt06HA4HM2bMQFEUFi5cyMyZM2nTpg1Lly4l= EAhgt9u55557+Pjjj/nkk08IhUKJYaX/KxwO889//pNly5bRrl07LrvsMu688040TWPdunWUl5f= z+uuvYzabSU5OTvxe/H2uWbOGioqKRNDZsGED//rXv7jkkkswm81ceeWVXHHFFRQVFeH3+xk2bB= jz58/n5MmT/PWvf03MSwEwGAykp6czffp0rFYrBw8eZMeOHfTq1Qur1crVV19N7969E9+bUCjEx= o0bWbx4caLt48aNIxgMoqoqXbp04aGHHsLj8bBkyRLq6urO+BkIIU6TwCLEGcR7IpKSknj33XcZ= OnQoS5cuZc+ePUydOjUxPKPX67FYLEQiEd5++20++OADfvOb33DJJZfw3nvvJW5A8fkc8X+P3wj= Lyso4cuQIX375JW3atKF9+/akpqaydetW8vLy2LFjBxaLBbvdnrgRWq1Wbr75ZlasWEFubi5Lli= yhbdu27N27l3vvvZeUlBT8fj+RSARFUSgsLGT58uWUlJTw9ttvk5uby+rVqxk+fPi3hh90Ol1iM= mt8hVM8DJSXl3P06FF27dqFqqqkpKQkfifevq+vgoqvwvn66ymKQlVVFb///e+56667uPHGG5kw= YcJ33qjNZjMej4eioiJ0Oh3bt28nFAqh0+lISUmhoKCAmTNnoigKtbW1GI2nL2mqqlJRUcHWrVv= p06cPcDpw5OXlMX/+fPLy8tDpdNTV1SUCRCQSwe/3Y7PZ8Hq9PPfcc7jdbsrLyxOfU3yuydc/n/= h/NjQ0UFdXl+gJs1gsJCUlUVRUBMCXX36J0+nEarUmVmrFVy3F5+sIIb6bBBYhzsBgMJCfn8/jj= z/On/70J15//XUAvF4v48ePJz09HYvFgsvlSkw27dy5M0ajkSeeeAKPx0Nqaio+nw+3243FYsFk= MmG1WnG73bhcLp544gkeeughBg8ejNfr5bHHHqN79+7MmDGDxx9/nHfffRen08no0aPJyMhIrF6= xWq1MmzaN++67j2nTphGJRHC5XFitVgYPHozNZuMPf/hDYhl1IBDgyJEjTJo0iUgkQnFxMR6Ph1= tuuSURouI3YpfLlbiJWiwW3G43TqeTJ598knvvvZdBgwZhtVq5/PLLGTJkCD6fL7Ey6euvEZ8QG= 19NZTKZsNlsiffeqVMn3n77bcxmM926daOyshK73Y7dbk+EDoCkpCTGjh3Lc889xwsvvJB4fbPZ= zD333MP27duZNGkSZrOZqVOnYrVagdOBZenSpXTs2JFnn32WNm3aALBixQpmz55NaWkp3bt3Z9a= sWRw/fpysrCw2bdrEjBkzmD59OhdffDEPPvggmqYxatQo+vXrl/g8DAZDYqKw2+3G4XDQoUMHnn= jiCSZNmoTdbsdqteL1ernnnnuYM2cOzzzzDElJSTzwwAM4HA5cLhcNDQ2JHjOHw4HNZmv0smohz= gc6TWK9EGcUX4ESCAQIBoNomobNZsPpdKLX6wkGgzQ0NNCmTRt0Oh2RSITa2lqi0Wjixmk0GgmF= QombWDgcJhAIkJqaiqqqiSf8+M3cYDAkegvC4TBmszkReL4uvoqpvr4+sVx66dKleL1ebrzxxm/= c+OKrW2praxOrcjZs2EBlZSVjx45NDC/F2x9fORQKhfD7/YmelHgPgslkwuVyYbFYiMVi1NTUkJ= SUhMlkSiyh9nq9aJpGbW0tHo8HvV6P3+/HYDDgdrvx+/00NDSg1+sTnxWcHn7zeDyJHo346qTq6= mo0TcNoNKIoCikpKeh0usRnoNfr8Xq9ibClqio1NTWJYa7464VCIerr6xOrcQKBADabDaPRSCAQ= wGg04na7iUajiSEaj8eD2Wz+xrGL/+1QKITX6038u9lsJhqNYrPZsNvtiblB8aXn8c+tqqoKnU6= Hy+XCYDAklkU7nU4JLUKcgU6n00lgEeIcEF/+Gx+m+ndLY+NF0uIF2GQZrRCipZPAIoQQQogWT6= fT6Vr0HJZ46fH4JL6m/DvA9z6Zipbt6+XWW1rZeXF24uf91ycri9Yn3vMnPXmtW7xXFmjWc7JFX= 9VjsRjbtm1j165dTf53SktLz1i4SrQeqqpy7Ngx6uvrm7sp4j+gaRrV1dWcPHlSVs60ctFolJ07= dyYeCkXrpGkae/fu/c7yAz+VFt3D8vU6E00pPrlStF7xJ4D4Bn+idVNVNVEgTrReX9/iQLRe8W1= Jmvt8bNE9LEIIIYQQIIFFCCGEEK2ABBYhhBBCtHgSWIQQQgjR4klgEUIIIUSLJ4FFCCGEEC2eBB= YhhBBCtHgSWIQQQgjR4klgEUIIIUSLJ4FFCCGEEC2eBBYhhBBCtHgSWIQQQgjR4klgEUIIIUSLJ= 4FFCCGEEC2eBBYhhBBCtHgSWIQQQgjR4klgEUIIIUSLJ4FFCCGEEC2eBBYhhBBCtHgSWIQQQgjR= 4klgEUIIIUSLJ4FFCCGEEC2eBBYhhBBCtHgSWIQQQgjR4klgEUIIIUSLJ4FFCCGEEC2eBBYhhBB= CtHgSWIQQQgjR4klgEUIIIUSLJ4FFCCGEEC2eBBYhhBBCtHgSWIQQQgjR4hmbuwFCCCFEa6eqKr= FYjGg0il6vx2g0YjKZmrtZ5xQJLEIIIcR/QFVV6uvrWbFiBfv37yfJk8TQG4aSkZGB2WxGp9M1d= xPPCS1iSEjTNKLRKJFIBEVRmrs5QgghxA8WiUSYM2cO7//tfSpOVbBp0yYeffRRfD4fmqY1d/PO= Gc3ewxLvRjt27Bg+n4/U1FRycnK+1ZXWlAdd07Rv/CNan68fOzmOrZuqqnJOngP+7zE8l49jMBh= k3bp15HXMw2QykZKSwomTJygtLSU9Pb3V97D8lMfy331WLSKwRCIRFixYwIgRI1i4cCETJ04kKS= kJ+GbvS1OJxWIoikI0GpUenlZMURRisRixWKxJvy+iaWmaljiOck62bvHjF41GUVW1uZvTZAwGA= 126dKH8eDnp6ekE6gNUV1eTnp5+TnyHVVVNXF8jkQh6fdMMzsTn/nxXaNFpLST2qqpKdXU1a9eu= ZdCgQbhcLoLBIBs2bKC+vp6uXbs22d+ORqPU1taSkpLS6pPw+UxVVaqqqnA4HNhstuZujmgkTdM= IBAIoioLb7W6yi6NoerFYjLKyMtq2bYvBYGju5jSpSCTCnj17+Oc//0lmZiY9e/YkKSnpnLinqK= rKiRMnSE1NxWQyNdl7MpvNZGRknPG7otPpdM3ewxJ/mqqsrOSzzz6jZ8+euFyuxP9vMBjIyMggN= ze3ydoQCoU4duwY7du3P+dPqnOVpmmJp5jU1FQ8Hk8zt0g0lqqqVFRUEI1GyczMlHOyFQuHw9TU= 1NChQweMxma/3TS5goIChg8f3tzN+NEpikJ9fT05OTlYrdZme4ho9kcXRVGoq6vjoYceoqioiMW= LF1NfX9/czRJCNBOdTndOPJUKIX5czR55DQYDHo+H1157LfHfz4ckLoQQQogfrtmTgU6nw2AwyJ= wDIYQQrYKqqoTDYY4fP04sFiM1NRWXy4XZbG7upp3Tmj2wCCGEEK2J3+/n6aefZtu2bTidTlKSU= 3h0xqPk5OSg1+tlSLOJNPscFiGEEKI12bJlCxWnKrioy0XkdsglHA7zt7/97T8upxBfPBAIBKir= qyMcDv9ILT43SA+LEEIIcRbiE8PjtWV0eh2xWKzRPSvxIaZAIMAXX3zBe++9R1JSEg8++CCZmZn= SY/O/JLAIIYQQZ6FHjx58+eWXbCjagN6gp0OHDtx5551ntW9QvMp7MBikrKyMZcuW8fHHH7Njxw= 5isRi5ubn84he/IDMzs4nfTeshgUUIIYT4mnhl1/jOywaD4RvbxXi9XiZPnsyYMWNQVRW73Y7Zb= P7e+iTxIZ9QKERVVRVbtmxh2bJlrFy5knA4jNls5pJLLmHw4MEMGzaMjIyMpn6rrYoEFiGEEOJ/= qapKQ0MDW7duZe+evSR5k+jVqxeZmZmJVUA6nQ6TyYTX6/1Brxkva9/Q0MCBAwf46KOPmD9/Pid= OnACgbdu2DBgwgDFjxpCfn4/VapWCiWcggUUIIYT4X5FIhFdeeYWSkhJy2ubg9/tZsGABzz//PO= 3atfvBQz7x3pRIJEJNTQ0lJSX8z//8Dzt37kRRFJxOJz169GD69On07t0bh8PxrU1/xTdJYBFCC= CH+VzQaZe3ateTn5Sd6UWKxGKWlpbRr1+57fz8+nBQMBtmzZw8vvPAC69evp7KyEr1eT7t27Zgy= ZQpDhgwhIyMDi8XyE7yrc4MEFiGEEOJ/WSwWbhh6A2vXriUzM5Oa2hqisej37menaRrRaBSfz8f= cuXNZsmQJX331FZFIhNTUVMaPH8+oUaPo0aMHNptNNvVsBAksQgghzkvxXYiLioqorq6mT58+dO= jQgTFjx5CXn8eBAwdwOBwUFhaSkZFxxuGgWCyGz+fjs88+Y+HChXz++efU19djs9no378/t956K= 1dffTXp6ekYjUYpLPcfkMAihBDivFRbW8vvfvc7amtrsVltvPfue0ybPo1rrrmGAQMG0K9fP3Q6= HXq9/hs9IvHlyF9++SUrV65k0aJFHD16FL1eT15eHkOGDGHEiBF06tQJi8WCwWCQHpUfgQQWIYQ= Q56WdO3cSDAZpk9oGk8lE165d+eKLLxKTYL8eMuLF3UpLS9mwYQPz589n69ataJpGamoqhYWFjB= 07lj59+iSWOctKnx+XBBYhhBDnhPg8koaGBkKhEDabDZvN9p2bErZr1476+nocdgeaplFTU0Png= s6Jn9c0LbHK5/Dhw7zyyit8/PHHhEIhzGYzHTt2ZOTIkdx+++14vV5sNhtGo1GGfJqIBBYhhBDn= hFAoxObNm3lx9ouYLWbsdjuPP/44WVlZZwwtmZmZTJkyhTlz5lBXV8fw4cMZMWIEBoMBv99PRUU= F77//Pn/961+pqKggGo3idDq55ZZb+MUvfkH79u1xu90/qGic+M9JYBFCCHFO2Lt3L7NnzyY7Kx= uz2UxtbS3//d//zYsvvojJZPpWz4fJZOKKK67g0ksvJRqNJpYjb968mbfffpvi4mL8fj9ms5meP= XsyevRoevbsSVZWFjabTYZ8fmISWIQQQpwT4uEivjmh1Wql+kQ1iqKc8edVVU0MIR08eJBly5ax= Zs0a9u7di6qqZGRkcNttt1FYWMgll1yCy+XCYDDIkE8zkcAihBDinJCens6hQ4eorq7Gm+Tl5Km= TjBs3DrvdnggZmqYRi8UIh8OcOnWKdevWsXz5coqKigiFQjidTq6++moGDx7M9ddfT2pqKhaLRU= JKCyCBRQghRKsWDyEfffQRXS/uik6no6GhIVGp1mAwJPbzCQQC7N+/n0WLFrFgwQJqamoA6NChA= wMHDmT06NHk5eV9I+SIlkECixBCiFYrvty4vLyc48ePY7FYsNvteL1eVE3l1KlT1NfXEwgEWLdu= HS+99BJ79uwhHA7jdru56qqrmDZtGj169MDhcMi8lBZMAosQQohWKxgM8uKLL7Jt2zYMegNbt26= loKAAnV6H0+mkTZs2TJgwgXXr1uH3+zEYDGRnZzN16lSGDBlCWlqaDPm0EhJYhBBCtFqBQIDi4m= IuuOAC9Do9aWlp7Nm7B4/Hw/bt21m2bBmxWIykpCTGjBnD6NGj6dq1Ky6XC0CCSisigUUIIUSrF= IvFKC8v58SJE2RnZVN2vIy9e/ZSeqwURVGw2+1cc8013HHHHfTt25e0tDRMJpPs59NKSWARQgjR= IiiKgqIo6HS6791/R1EUyo+X8+ijj3Lq1CneevstYrEYJpOJ/Px8hg4dyrBhw7jooouwWq2JjQd= F6yWBRQghRLPSNI2Kigo+++wz9uzZg91u5/rrr6dDhw7Y7fbEzymKQjgc5vjx46xfv5758+dTUl= JCMBjE4XCQmZGJ0+XkrbfeIj8/P7HxoPSmnBsksAghhGhW0WiUN954gwP7D+B2u6mqrGLWrFnMm= jULm81GNBqlurqa/fv3M3fuXFatWkUoFMJisZCTk4PH46GgoAB/rZ+rr7mazp07Y7VaJaicYySw= CCGEaDaaphEKhSgtLU3MLwGo9FXi8/mIRCJ88MEHvPXWW5w6dYpYLIbD4WD48OHcfffdtGvXDkV= R8Pl8JCcnk5ycLGHlHCWBRQghxE8uXuwtFAqxbt06tm3dhsPpoGPHjtRU11BTW8OUKVM4duwYNT= U1mM1mLr74Yu655x569OhBdnZ2Ym4KQNu2bSWknOMksAghhPhJaZqG3+9n+fLl7Nixg+LiYnLa5= XDyxEkWLVpEIBBAr9djtVrJycnhjjvuYODAgVx88cU4nU5MJtO3XlPCyrlPAosQQogmp6pqokdF= VVWWLVvGh0s/xO6w4/P52LlzJ8FgEACn00nfvn256aab6N+/PykpKbLKRzQ+sGiahqZpiV0w4zO= xJeUKIYT4Ok3TCAQCrFy5ko9XfUwkEqHCV8Hhw4c5evQo4XAYo9FIQUEBl1xyCZMnT6ZTp07Y7X= YJKSKhUYFF0zTC4TC1tbWcPHkSTdPweDxkZmYmtvYWQgghNE0jEolQVFTEa6+9hqZpfPHFF9TW1= qJpGhaLhezsbLp06cIf//hHcnNzJaSIM2pUYInFYuzbt48RI0ZQX18PgNVq5fbbb+eJJ5444/ii= EEKI80d8CKihoYHPP/+cqVOncvjwYSKRCAaDAYfDwT333EPnzp1xOBwUFhbSpk0bCSviO511YFF= VFb/fz7PPPsvFF1/Mm2++iclkYs2aNcyYMYOJEyeSk5MjvSxCCHEeivfAnzhxgldeeYUFCxZw6t= QpotEoBoOBjh07kpWZhdPpZOzYsXTp0iVxv5D7hvh3zjqw6HQ6TCYTJpOJEydOsG/fPpKTk9m8e= TNGo1F6V4QQ4jyjaRrRaJTKyko+/PBDPvzwQzZu3EggEADAZrPRvVt38vPzCYfDHCs7xshRI8nL= y5MeFfGDNSqwOBwOnnzySZ5++ml+/vOfE4lEyMnJYcaMGbRp00ZSshBCnAfiPe6bNm1i2bJlrFy= 5kvLycgAcDgcpKSl4PB569+rNV/u+oux4GYqicOWVV3LDDTdgsVia+R2I1uSsAkssFiMYDBKLxT= CbzUyfPp1f//rXAFgslsR23UIIIc5NqqoSDAY5cuQI69ev5/XXX2ffvn2oqorH4+Gaa64hNzeXk= o0lXHzxxZRsKgGg28+6UVdXh8lsYvr06Xi9XuldEWflrAJLKBRixowZrFmzJrGW3mw2J7oDU1NT= Wbp0KRkZGdLLIoQQ5whVVYlGo/j9fnbu3Mm8efNYvXo1dXV1WCwWcnNzGTp0KIMGDeKll16ipKS= E9h3a4/F46HdtP0o2laDT6Rg0aBD3338/Ho8nUaFWiB/qrL4xJpOJadOmMW7cOIqLi3n55Zd55p= lnyMzM5NlnnyUSiWA2m5uqrUIIIX4i8Tpb9fX1VFVV8cEHH/D6669TWVmJqqrYbDauv/56Jk+eT= DAYZOnSpTz//PMYDUYu6XEJn6//HKvVisvpIi0tjQceeIDevXtLbRXRaGcVWCwWC23btsXlcjFr= 1izy8vK49NJL0el0TJo0iXvvvTdRqVAIIUTroygKoVCIQCDAtm3beO211/jXv/5FdXU1BoOBHj1= 6MGbMGHr06EFycjI7duxgzpw5pKeno2ka1dXVpKSm0LdvX0pLS/HX+pk1axb5+fnYbDbpfReN1q= g+ObPZTGFhIbNnz2batGnYbDZ27NhBly5dcDqdP3YbhRBCNKH4kE9DQwN79+5l6dKlrFmzhgMHD= qDT6UhNTeW+++6jsLAwsZ9PNBpl3rx5LFy4kMyMTGxWGzltc/jyyy/ZsWMHSUlJ5ObmMmDAADp1= 6oTNZmvutylauUatErLZbIwYMYKOHTuyatUqFEXh5ptvZtSoUTidTknQQgjRwsV3Sw6Hw1RUVLB= mzRpWrFhBcXExoVAIl8tFv34RFvjBAAAgAElEQVT9GDFiBP379ycpKQmz2ZwoCLd7924++OADcn= Nz2b9vPzabDaPRiE6vY9qD0+jZsycWi4WvvvpK5quIH0WjvkWqqqKqKoFAgB49eqDT6YjFYnzww= QfcfvvtJCcnS2gRQogWRtO0RG9KfX09O3fuZOnSpSxevJjKykr0ej0XXngh/fv3Z/To0bRv3x6z= 2Yxer0dRFKqrqyktLSUSifDnP/+ZQCCAy+UiPz+fffv2YXfYee655+jcuTNWq5VIJIJer5f7gfh= RnHVg0TSN+vp6ZsyYwfvvv4+maVitVux2O4MHD8ZqtTZFO4UQQjRSfAJtvALtmjVrePHFFyktLU= VVVbxeL0OHDmXKlClcdNFF2O12DAZD4nej0Sj79u3j/vvvx+V0UReow+fzJYqG2u12qmuqeezxx= 7jwwgtl8YVoEo0KLNFolJqaGnr27MkVV1xBWVkZt99+Ow899BBVVVXY7famaKsQQoizEB/2CQaD= 7Ny5k6eeeoqSkhLq6+sxGo3k5+fz6KOP0r9//0RdFJ1Oh6ZpiX+i0Sg7duzggQce4IKCC3C73Si= KwobiDZhNZgouKaCmpoa0tDSuvPJKGf4RTaZRc1isVivdunXj7bff5r777uO1115j/fr1eDweSd= ZCCNHM4jsk79u3j1dffZVVq1Zx6NAhDAZDYgLtbbfdRvv27bFard8YtlFVlfr6eoqKivD7/YRCI= d6Z/w6xWAx/nT+xsCI1JZWrr7ma5ORk2rVrx6WXXorL5ZLhH9FkGhVYzGYzv/jFL7j66qvJy8tj= 2bJlHD16lM6dO0tpfiGEaCaRSISamhoWLVrE4sWL2b59Ow0NDTidTm699VZGjBhB79698Xq9mEy= mxLU6FoslioEePXqUp556CovZgtVq5V87/kVWVhYdO3Zk71d72b9vP263m1GjRjH6rtGYzWYMBg= M6nU6u/aJJNWpIKBQK8eSTTxKNRvnjH/9ImzZt+NnPfoZer5eCQEII8ROKxWIEAgG2bNnC4sWLW= bVqFSdPnsRgMNC9e/dEBdrc3NxEuPj6ddrn8/Hmm2+yefNmAILBIC6Xi/T0dPR6Pbkdctm1excG= g4GszCzsNjsTJk6gf//+2O12CSniJ9OowUZFUcjLy+P//b//x/PPP09qaip6vZ6kpCQGDRok3YJ= CCNGENE2joaGBQ4cOsW7dOubPn8+ePXvQNI2MjAxuvfVWRo0aRc+ePbHb7YmgcqbX2bRpE19++S= XZWdnodDr27N3D4cOHcbvcmM1mwpEwY8eOpaCggLq6Oi699FIyMzOxWq1ynRc/qUYFFovFgt/vp= 6CggM2bNye+tG63m/79+8uXWAghfmSaphEOh6mqqmLv3r385S9/Yc2aNUQiESwWCwUFBYwePZph= w4bh8XiwWq2n66L8m+uxoihUVFSgqiqapp2us2W1kV6QTmVlJWaLmUGDBnHLLbfgcrnQNE2Gf0S= zafQcll/96ldUV1fT0NCA2+0GwOl0kpSUdNaNUFWVcDiMpmkYjcZvjK0KIcT56uurfKqqqvjb3/= 7GG2+8QUVFBQAul4tbb72VsWPH0rZtWywWC3A6iEQiEXQ63Xeu2omXqFi5ciXFxcVcUHABJrOJg= wcOMnnyZG67/TYMBgNmsxmTySTD/aLZNXpZ844dO5g2bRonTpzgpptu4quvvqJz58789re/xeVy= /eDXi+9bsWzZMj755BP69OnDHXfckTjx4vUDYrHY2Tb1rNoQ/xuapjXZ3xFNJ14QS1XVJv++iKb= 19XP+fD0n4w9x9fX1FBcX89prr7F79278fj96vZ4uXbowceJELr30UtLT0xP1r/Z9tY/ZL84mGo= 0C8Mgjj5CTk5O4nn6dpmmsX7+e8vJysjKzSElJQdVUMjMz6dW7FzabLTGMFD+3ztbXr62i9Yofx= /ixbKrwqtPp/m2hwUYNCYVCIV577TWMRiMZGRlEo1Huu+8+Hn30UWpra8+qPH/86WH//v08/PDD= rFu3jvr6+sTyaE3TOH78OAcOHGhMU3+QSCRCfX09qqrKU0Qrpqoqfr+fhoYGKWDYisWf/DVNIxg= MnjfnZLwCbTAY5MiRI6xbt47i4mKOHDmCqqpkZGQwcOBA+vTpwwUXXIDD4UBVVU6cOJGY0/LHP/= 4Rm9WGy+mivr6e559/nrFjx5KcnHzGvxkIBHC73VjMFioqKqgL1HHZZZcRi8U4fPjwf/ye4g+kB= w8ePOMcGtE6qKpKQ0MDhw8fbtIRELPZTPv27X/cwGI0Grnsssv44osvCIVC7N69m9LSUjp27HjW= RePiT8R6vR6Xy4XFYvlGGtfpdIkldU0lHA5TVlZGhw4dzpuL47lIURSOHj1KSkpKYphStD6apuH= z+YhEImRmZp7T5+TXK9CePHmSoqIiPvroI4qKiojFYtjtdgYMGMANN9xA3759SU5OxmQyAacfHO= NLkQ0GA0ePHuXEiRN0yu+E0WhMVJ9t27YtGRkZZ/z72dnZNDQ0sHbtWkxmE11/1pX77ruPzMzMH= yVgRCIR/H4/HTt2lMDSiqmqSigUokOHDomtGprC982NatQcFofDwd13381FF13EO++8QyQSoWPH= jkyaNAmv13tW6Uuv1yeW2YVCIWKx2DfGXHU6HQaDIXGSNgVFUTAYDBiNRjmpWqn4hMH4cWzK74t= oWvG5bKqqnrPnpKIoRKNR6urq2LVrF0uXLuXDDz/E5/Oh1+vp3Lkz119/PaNHjyYzMxObzZaoQK= soCg0NDbz33nssXboURVHIz8vHk+TB7/dz8OBBvF4vFRUVXNLzEhwOx3eeDyaTidGjR3PrrbcSi= 8WwWCw/6nyVeJgyGo1SAbcVi98j4/fi5nqIaPQ3yGq1UlBQwKRJk9A0DbfbjdfrPevXMZlM2Gw2= kpOTmT59Ov369ZMdn4UQ55x42IhGoxw7doxly5bx+uuvc/ToURRFITU1lQEDBjB58uTEcuT/G9b= C4TA7duzgnXfeYf++/XTu1BmDwYDP56OyqhK3y016evrpCrXhED169PjeXm+TySQBX7QKjZp0Gw= 6H+eSTT5g0aRKKogCnv/Q33HADzz33HDab7Qe/nl6vx+FwMGHCBCZMmHC2zRFCiBYtHlTq6+vZt= GkTTz/9NFu2bCEUCmEymcjLy+ORRx7huuuuw+VyfWd4UFWVHTt28NRTT+FyuhJhRqfTYbaYyczK= ZNiwYcydOxdFUXjssce48sorzzjhVojWqNG7Nb/zzjv06tWLefPmYTKZWL9+PQ8++CCnTp2iXbt= 20kMihDivqapKJBLh+PHjvPTSSyxfvpyysjIURaFNmzb8+te/ZtSoUeTm5n5rP5//S9M0qquree= aZZ7BYLKSnp7N161aOHTuG1+vF4XQwffp0cnJyuPXWWxNDpFIvRZxLGl2HpU+fPrz77rscOHAAj= 8fD2rVradeuHaqqJlYKyZilEOJ8Eq+b4vP5+Oijj3j33XfZsmULkUgEh8PB8OHDufPOO+nRo0di= Au33BZWGhgbeeOMNPvnkEyp9lUSjUZI8SeR3yufIkSOMGz+OgQMH4nK5/u1rCdHaNSpRaJpGcXE= xR48eZeTIkYmdQXU6HYMGDcLtdrN69Wo8Hs+P3V4hhGhx4vv5bNiwgeXLl7N69erEfj7dunVj6N= ChDB48mPbt22OxWL61n8+Z1NfXs3XrVpYvX87BgwexWW2oqkqHDh04fOQwlZWV9O3bl+uuuw6Px= yNBRZzzGtXDYrPZmD17dqJGQjysmM3mRFVEh8PRFO0VQogWIV5jZN++faxfv56FCxeyc+dOVPV0= 8bVbbrmFESNGcPnll2Oz2c64n098SXMsFsNkMiWWjMZiMebPn8+KFSuoqamhc+fO2G12wuEwR44= eISsri27dujF16lTcbreEFXFeaNQcFlVVKSsr46mnnmLy5Mm88847bNy4kXvuuYdJkyZJ0S4hRK= sVr6x7phAQX3Tg8/nYs2cP8+bNS+znY7fb6datG3fddVei1+Pf7ecTCoXYtWsXf/rTnygvL6dr1= 65MmjSJdu3aEQ6H2bZtG+3bt8ftdrNt2zYKCgpwuV3o9DqeffZZ2rRp841qtEKc6xo1JBQMBnn+= +efx+XzU1NTw+eefM2XKFObOncvIkSPJzs6WxC+EaDXiW45UVlZSVlaG1WolPT0dr9eb6PGor6/= H5/Px9ttvM3/+fAKBAIqi4Ha7GTVqFL/85S9JS0tL1D35viGfsmNl/OlPf8Lj9uBN8lJdXc1zzz= 3HM888g16vx263o6ka3iQvPbr3oLKqkmnTptGpUyeSkpISmxAKcb5o9KzY+O6er776Kj179sRis= ZyXe34IIVqveFBpaGjgiy++YM5Lc0hLSyMWixGJRpg5cyYAn376KW+++SZ79+4lGAxisVjo27cv= d911F927dyclJSUxN+WHCoaCid4Xg8GAxWzhxIkTqKqK1Wpl4sSJzJ49m4MHD5LTNoeZM2eSl5d= 3VmUjhDiXNCqwWK1WJkyYwMMPP8ypU6eYNm0azz//PDfddBPJycmS+oUQLVJ8SBtO14AKBoOsWr= WK1atXc+DAAdpmt03slXLw0EHuu+8+Dhw4wMmTJwFo164dd955J3379qVTp044nc5Gr8zJzs6mU= 6dObNy4EW+Sl7q6On5xzy8SwadTp0688MILRKPR04HmLAOREOeaRk26tVqt9OjRg0WLFhGLxXC5= XLz55puYzWZJ/0KIFidevK2iooIjR47gdDpp164da9asYd4b80jPSEdTNUqPlSY2H6yoqECn05G= amsqIESMYMmQI11xzDU6n80fZAC4pKYkpU6YwcOBAysvLad++PR06dEgUeotfa2VOoBCnNaqHJR= aLcfz4cV5++WVWrFjBkCFDOH78OEOHDuW2226TyopCiBYlFotx8OBBnnjiCdBOT3ht36E9NpsNq= 83KqVOnOFZ2jAMHDqBpGjabjZ49e3LTTTcxdOhQsrOzsVqtP2rvcXzFZffu3enevfuP9rpCnKsa= tUooEAgwa9Ysdu3ahdvtRtM0br75Zv7whz9QWFgok26FEC1CvGelvLycxx57DG+SF5fLRSwWY+/= evSiKwsaNGwmHw+h0OrxeL4MHD+aBBx6gY8eO2Gy2c3q3aCFak0b1sOh0OoxGI7FYjGg0Sk1NDc= XFxU267bQQQvxQ8bkq0WiU6upqHnnkEY4dO4amalRVVVG8sZiKigpUVcVut3PhhRcyefJkhg8fj= sfjwWw2N/dbEEL8H42aw+JyuXjyySdZvHgxL774Ip999hmdO3fm1VdfJSMjQ3pXhBDNRlGUxGKA= hoYGTp48SV1dHZFwhO3btxOLxTAajaSlpTFx4kRuueUWsrOzE70pcv0SomVqVA+LXq8nPT2d8eP= HM3bs2NMvZDT+oHLTQgjxY4rXSCkrK0v0jrz77ruoikqlr5JDhw5x6tQpNE3DYDCQlZXF3XffzZ= QpU/B4PN+7n48QomVodB0Wg8GAwWCQrlMhRLOJRCJs2rSJl156CYPBQKAuQHpGOl988QW7d+0mE= o0A4PF4mDhxIklJSeTl5dG/f388Ho88YAnRipxVYInFYgSDQRRFOWOROLPZjNVqlVoBQogfRSQS= wefz8cX2L9DQ6N69OxkZGYkHpUAgwHvvvQcaHCs9xt6v9uL3+9Hr9VitVpJTksnOzqZfv35MmzY= Ni8WC0Wj8znL5QoiW66wCSygU4rHHHuPTTz9NFF/6Oq/Xy9/+9jfS0tLkYiCEaJT4hNlYLEZ5eT= kzZszA4/agKAovv/wyTz31FD/72c84deoUJSUlFBcXs2vXLlRVRa/X4/V6efDBBxkxYgQ1NTWkp= KSQlJSUKPImhGidziqwGI1GHn74Ye6//34ikQjRaBRFUYDTE92cTid2u71JGiqEOLcpikIgEKCs= rIx9+/bh9XpZt24dJqMJl8uFoijkdshl0aJFLF++nIULF1JZWYmqqqSlpZGcnExSUhL33nsvgwc= PxuFw0L59e3Q6nTxACXEOOKvAYrVaycrKIhKJcPLkSX71q19RU1ODXq9H0zQcDgd/+ctfcDqdTd= VeIcQ5IL4XGZAYQq6pqWHmzJlUV1fjdrkpLy8nOSWZiooKnE4npaWlbNu+Db/fj8lkwmKx0KtXL= 375y19SUFCQ2DDQ7Xb/6EXehBDNr1GF44LBII899hgHDhzAbDbjcrkoKCjA5/NhMpmaop1CiHNA= vDbKsWPH2Lt3L2lpaXTu3BmHw8HBgwcJ1AVISU5Br9eTmprKx598jMlkYmPJRmKxGGazmS5dunD= rrbdy7bXXkpeXh8PhwGhs9PoBIUQr0aizXFVVFEWhTZs23H777fz973+nf//+/P73v6e+vp6kpK= Qfu51CiHNAJBLho48+4p133sFutxMKhshum80jjzyC1WrFX+cnEolQXl7OgQMH8FX60Ol0eDweB= g8ezLBhw+jVqxder1cmzgpxnmlUYLHZbNx88828/PLL5OTkUFNTw0MPPZTYGEwIIb5OVVUikQjH= jh3j6aefpnev3phMJhRF4ciRI2zZsoXa2loikQgrVqxAVVUcDge9evVi6NChjBgxgrS0NKmmLcR= 5rNG7NQ8aNIj+/fsD8N577yU28nI6nfLUI4T4hqqqKv785z/z6dpP8fv9+Hw+klOSqa2pZeeOnf= z85z8nEAig0+nIysri8ssv56677qJPnz44HA4JKUKIxvWwRKNRjhw5ws9//nPKysoSk+fS09NZv= nw5WVlZElqEOI98vS7Tmc79VatW8dXer7j44ovp1KkTaz9dS2lpKdFoFFVVcTqdXH755UybNo0r= r7ySYDBILBbDbrdLWBFCAI2cdFtXV8fMmTNxOBwsWrQIu92e6HlJTU2VsCLEeULTNCKRCBs3bmT= OnDlEo1Huv/9+Lr/8cmw2W+JnNE2jqrqKbdu3ceTIEUKhECaTiY4dOzJp0iSGDh1KVlYWFosFnU= 6X2D1ZCCHiGj2HZciQIbz++uuYTKZESLFarfI0JMR5RFVVli1bxoIFC8jOykav1/PM08/w6/t/T= e/evfH5fLz//vssWLCA3bt3o6oqFouF6667jl//+td0796dpKQkjEZjYj8fTdMkrAghvqVRgUVR= FGpqajhw4AAjR47EYDCg0+lITU3lgw8+kB2bhTjHaJqGoigEg0FCoRA2mw2r1QrArl27SGuTllh= a7HA4mDt3Ln/5y1/YtGkTlZWVmM1mrrzySm666SZ69+5Nfn4+NpstEVSEEOL7NDqwbNq0ia5du/= LKK69gsVgAsFgsOBwOCStCnGOCwSCffvopf/nLX0ADk9nE2LFjufbaa7n22mt57rnn0FSNyspKd= u/ZTTgcxmw2k5mZyZgxY7jxxhvp1q0bdrs9sdJHrhNCiLPRqMCiaRq9e/dmzpw5rFy5kjZt2qDT= 6XC5XFx++eVSPE6Ic0x9fT0LFywkp20OBoOBaDTK66+/TkZGBocOHaKyspJt27ah0+nwer1cdtl= l3H777QwYMICkpKTEpoMSUoQQjdWowGIwGNixYwdWq5U333wz0aWblJTE3LlzpZdFiFZI0zRisR= h1dXWEQiHMZjMejycx1KM36BOTbP1+P19++SXXXXcdsVgMo9FI27ZtGTp0KBMmTCAtLQ2Hw4HZb= JZrgRDiR9GowKLT6WjTpg2FhYVMnz49MSRkMpnkAiVEKxQPK59//jkvvfQSbrebYDDIr371K7p1= 64aqqlx11VXMnDmTSDhCoD4AnJ6Af8UVVzBlyhQuuugiUlJSZPK9EKJJNCqwxGIxMjIyWLBgAWV= lZaSlpSVWCRmNxsRmZkKI1kHTNKqqqnj99dfJaZuDXq/H4XDw4IMP8sgjj7B48WKKi4s5deoUVq= uVDh06cNdddzFgwADy8vKw2+2yn48Qokk1ekiouLiYQ4cOMXLkyMQEupSUFFklJEQzUhQFRVFQV= RWDwYDBYPhBvR3xWinxXZQDgQD7D+xn31f7uPvuu9HpdCQnJ3PnnXcybNgwevfujcfjwWw2/wTv= SgghGlma32az8cc//pGGhgZisdjpFzIacTgcUppfiGYS35dn9erV1NbU0q59OwYPHozT6fzO0BI= PKfGKsx6Ph8VLFlNTU4OiKNhsNi677DKuv/56brrpJrKzszGZTDLkI4T4yTWqh0Wv1xOLxViyZA= lz5swhFApx2WWX8fjjj9OlS5cfu41CiO+hqiqVlZU8+OCDtEltg91uZ0PxBsrKypg4cSJ2u/0bP= x8PKuFwmEOHDrFy5Urmzp3L0aNHAcjOzmbgwIHce++9tGvXDqvVKkO9Qohm1ajS/IFAgN/85jds= 3LiRP//5z2RmZvLcc88xfvx4lixZkpjTIoT4aaiqyp49e7BZbbhcLgwGAzltcygvLycYDH4jsMR= iMaqrq1m/fj3PPPMMO3fuJBwOY7fb6dOnD5MmTaJv3754PB4JKUKIFqNRgSUajVJdXU1+fj6XXX= YZOp2On//850yYMIFQKNQU7RRC/Bt6vZ6LLrqIhoYGamtrcTqdHDx0kIEDB2K32xO9KXv27GH27= NmsXr0an8+H0WgkLS2N++67j5EjR5KWliaF3YQQLVKj5rA4nU7Gjh3Lvffey5AhQ7BYLJSXl9O7= d+9EETkhxH9G0zRCoRD79u2jqKiI/Px8evfufcZ5Ynq9nqSkJF6a8xIlJSVUVFQwbPgwfvazn3H= y5Enef/993n//ffbv308kEsHlcnHPPfdw22230blzZzweT2Juipy/QoiWqFGBxWw206dPH/7xj3= 9QUlJCJBIhPT2dvn37JnZoFUL8Z0KhEG+88QarP1lNeno66z9fz0cffcTjjz9OUlLSt37eYDCQk= ZHBoEGDqKmpYe3atcydO5eioiJqa2sxGo1cccUVDBkyhGuvvZacnBwsFssPXkkkhBDN6awCS319= PatWreLw4cOJ5ZOKogDg8/koLy/nlltuwe12y1OaEP+h2tpaSkpKaNu2LRaLBbPZzJEjRygtLf1= GYIlPoG1oaGDXrl189NFH/OMf/+Crr75Cr9eTm5vLqFGjGDlyJJ07d8Zms2E2m2V+ihCiVTmrwK= LT6SgtLeXLL7/8xiqD8vJyDh06RIcOHRg+fHhTtVWI84rdbsfldFFTU0NycjLBYJBYLEZycjJwe= qJtKBSirKyM7du3M2/ePLZv3040GsXpdHLVVVcxcuRICgsL8Xg82Gw2GfIRQrRaZxVYLBYL48eP= T2wzX1NTw5YtW3j66ae57rrr+O1vf0tycrJcEIX4Edjtdp6c+STz589n5cqV5Ofn86c//Qm3243= P5+Po0aO8/fbbLF26FL/fj06nIysri2HDhjF69GjS09Ox2+2YTCY5J4UQrd5Z97AYDAYCgQDbtm= 3jd7/7HVlZWbz//vtkZmYmnuCEaClisRjhcJhYLIbBYEjUE2kNN3Cj0YjX62XChAncddddRKNRQ= qEQ8+bN44033qC8vJxIJILZbKawsJBJkyZRUFCA1+vFYrHIuSiEOKecVWAJh8MUFRXx+9//nkgk= wq9+9St69OiBw+Ggrq6OaDSKw+HAZDI1VXuF+EHiQ5b79u3jlVdeIRqNEgwGGTNmDFdccUViw86= WTFEUwuEwDQ0NbNq0ib/+9a9s3bqViooKAAoKChgzZgy9e/cmLy8Pm80m81KEEOessw4s8+fPZ8= +ePRiNRh599NFvPMWlpqbKXkKiRYgvCZ49ezZo4HA4MBqMvPHGG3Tq1Ins7OzmbuIZqaqa6BU6e= PAgixYt4pNPPmH37t0oioLb7ebOO+9k8ODBXH755YnlyHK+CSHOdWcVWBwOB7NnzyYWi6Fp2rf+= f4vFgs1mk4unaHbxAod1dXWkpKScHgbS61BrT++b05J8fT8fn8/Hhg0bWLhwIevWrSMYDGI2m7n= kkksYMWIE//Vf/0V6ejpWq7W5my2EED+pswosJpMJj8fTVG0R4kej1+txOByMGDGCd999F7vdTp= 2/jj5X9UmssmlumqahKAqRSIQ9e/awZMkS3nvvPcrKylBVlQ4dOlBYWMi4ceMoKCiQeSlCiPNao= zY/FKKl0+l0mEwmhg0bxoABA6irq8Nut+N2uzEam/9rrygKPp+Pzz//nFmzZrF7926i0Sgul4se= PXrw2GOPccUVV5weymoB7RVCiOYmV0JxTvv/2rvzIKmqu//j79t79yzAyLAohGXYC0R2cWZECIg= 4MsriglGxMEQrikmUUjFG5QmiMTEpqWiVRYwIogwIojAghQqIFRS0LNCAsjMwyDIMs/Xe997fH/= 66A0/i8hiH7mE+ryrKgnGmD5w+tz/33HO+x+Px4Ha7yc3NBUjrDIVpmkQiEfbv38+TTz7Jxo0bq= a2tBaBdu3bcfffdTJgwgbZt26ZmU/R4VUTkawosct4zDCNtH/zJtTSVlZW88sorrF69mt27d2Oa= JllZWUyZMoWpU6fqPB8Rke+Q9sCSrJa7ceNGtm3bxqBBg7jyyiu1NVqatFgsRn19Pe+//z7Lli1= jy5Yt1NTU4Ha7GTp0KFOmTOHyyy8nPz8fn8+Hy+VSSBER+RZpDyxA6kI9depUysvLaWhoSJ2VYl= kWVVVVVFZWNtrrx+Nx6urqOHr0qBY1fk/xeJzq6urUdttevXrRtm3btK63sCyLuro6LMuioaHhn= L/+mY98tmzZwqpVq6ioqMA0TfLz8yktLaWkpITevXunKtDW1dVRV1d3ztuayWzbpq6uDtM0sW1b= Y7IJSyQShMNhjh49qhpBTZhlWQSDQY4dO4bH42m0myu3203r1q2/ccyn7dMlWRTLtm3cbjejRo3= i9OnTtGnT5t/+Qfx+P9nZ2Y3WllgsRkNDA9nZ2bo4fg+WZXHo0CH+8Ic/kJubi8Nw8OqrrzJjxg= wKCwvTNlNgmiZ1dXUEAoFGfb+cKTlDePz4cbZu3crq1av58MMPSSQS5OTkUFhYyIQJExg+fDg5O= Tl4vV4tov0OyUwYV9gAABgeSURBVMdoyTORNCabrng8jtPpJDs7W4GlCbMsC5fLRVZWFh6Pp9HG= 5He9R9J25bQsiz/96U8cOHCARx55hHg8zttvv831119/VhVSh8OR2t3RWCKRCLW1teTk5GhQfQ/= xeJzt27fjdrtp2aIltm3Tu1dvvvzyS6666qq0fcCYpsnp06fJyspq1PeLbdvEYjFqa2uprKxk4c= KFvPnmmwSDQQzDoG3btkycOJGbb76Z/Pz81E4fPfL5fmzbJhqNEovFNCabuGg0itvtJicnR0G9C= TNNE4/HQ3Z2Nj6fr1Gv8d92nUzbO8jhcDBz5kxM08SyLG6++WZM0+Qf//gHL7/88r+9uRvzYp/8= 2elcnNmUOBwO+vTpw+uvv06b/DYA1NTW0D+vf9r+Dc8sZNgYbbBtO1WBtrq6mrVr1/L3v/+dioo= KYrEYPp+P4uJi7r33Xnr16kVubq7qpvwXkn2oMdm0qR/PD/+7H9PVl2kLLE6nk0AgkPogePXVV1= OPhzweT7qaJd+D0+mke/fu3HvvvaxatYpIJEJJSQmjRo067z6gk498QqEQ27ZtY+HChXz88cecO= nUKwzDo0qUL06dPp6ioiA4dOpCVlaUZARGRRpD2ObpkgS9V0G06DMOgRYsWjBw5ksLCQuDreifn= ywf1mef5HDp0iGXLlvHee++xa9cuYrEYF154IVOnTmX8+PEMHDgwFVJ0Byki0njSHlikaTIMA5f= Ldd48l06e55NIJKiqquL9999n+fLlbN68mWAwiN/vp7CwkGuuuYZx48aRn5/fqKvlRUTkbOfHp4= 3ID5Q8zycYDLJz505WrVrF4sWLOXXqFLZt07VrV6666ipuv/12unbtis/nU0gREUkDBRZptkzT5= NixY7z77rv89a9/5fPPPycWi9GqVSuuuOIK7rrrLkaMGIHf79cjHxGRNFNgkWbFNE1CoRDbt2/n= 8ccfZ8eOHTQ0NOB0Ornooou47777KC0tpVWrVjrPR0QkgyiwyHnvzOJuL7zwAuXl5Rw5coRYLEa= LFi2YPn06N9xwAz179kzVi1BQERHJLAoscl5KVks9ffo069evZ+XKlWzZsoWGhobUeT633HILQ4= YM4cILL9R5PiIiGU6BRc4riUSCmpoaPvnkE8rLy9m4cSMVFRVYlkWHDh245ZZbKC0tpVevXqky0= ypqJSKS+RRYpMlLnkt1+PBh3nrrLVavXs0XX3xBLBajZcuWXHbZZUyaNImf/vSntGjRAp/Pp0W0= IiJNjAKLNEnJ83zq6+vZu3cvZWVlrFy5krq6OlwuF+3bt6e0tJSf/exn5Ofnk52djdvtVkgREWm= iFFikyUge4xCJRKivr6esrIyFCxdy/PhxIpEIHo+Hyy67jHvvvZd+/frRsmXLRj1ZVEREzh0FFs= loyQq08XichoYGtm7dysKFC9m2bRunT5/G4XDQq1cvpk+fzuDBgzFNkw4dOpCXl5fupouIyI9Ig= UUy0pmnIx85coSysjLWrVvHnj17iMfjtGrVip///OdcffXV9OvXL3UW1aFDh86bM41ERORfFFgk= Y5x5nk9NTQ0bNmygvLycd999l5qaGnJycigsLKS0tJSSkhJatWqVWpeSLLEvIiLnJwUWSbtkUAm= Hw3z22WesXr2axYsXc/LkSQzDoKCggKlTp3LrrbfSuXNn/H6/Fs+KiDQzCiySVvF4nOPHj7Nhww= b+/Oc/s3fvXqLRKHl5eVx55ZX86le/YuDAgWRnZ6teiohIM6bAIuecZVmEQiF27tzJ3Llz+eCDD= wiFQrjdbjp16sTMmTO5+uqryc7OxuPxqGaKiIgosMi5YVkWkUiEyspKXnjhBdatW8eRI0ewLIvs= 7Gxuv/12pkyZQufOncnOztZ5PiIichYFFmk0yfN8qqurWbt2LStWrGD79u3U1NQQCAQYPXo0111= 3HcXFxeTl5eH1enWej4iI/EcKLPKjSu7Wqa+v55NPPmHdunWUl5dz/PhxDMOga9eu3HrrrVxzzT= X07NmTQCCg4m4iIvKdFFjkR5GsQHv48GE2bNjAm2++yY4dO4jFYuTm5jJmzBiuvfZaRowYQYsWL= fB6vVqbIiIi35sCi/xgyQq01dXV7Nmzh/nz57Nx40aCwSBut5uOHTty3XXXMXnyZNq1a0cgENB5= PiIi8oMosMj/SbICbTgcprq6mldffZXXXnuNEydOEI/H8Xq9lJSUcM8999C5c+fUbIpCioiI/Dc= UWOR7MU2TWCxGKBRi8+bN/O1vf2Pnzp1UV1fjcDjo0qULM2bMYNiwYfzkJz/B5/OpRL6IiPxoFF= jkG1mWhWmaRCIR9uzZQ1lZGevXr+fAgQNYlkXr1q2ZPn06V199Nf379ycnJwe3253uZouIyHlIg= UXOcubpyDU1Naxfv57ly5ezZcsWGhoacLlcFBcXM3nyZEaNGkW7du20LkVERBqdAosA/woqwWCQ= zz//nBUrVlBWVsbJkydxOp10796dMWPGMG3aNDp16oTP59NWZBEROWcUWIR4PM7Ro0fZtGkT8+b= N44svviCRSJCXl0dJSQkzZsxgwIABZGVlaSuyiIikhQJLM2WaJqFQiO3btzN37ly2bdtGMBjE5X= LRoUMHHnzwQUpKSlLrUhRUREQknRRYmqFoNMratWt59NFHOXLkCKZpkpeXx7Rp07jxxhvp1KkTW= VlZqaAiIiKSbgoszZBhGHTs2JF4PM7YsWOZOHEigwYNok2bNjrPR0REMpICSzPkcrno06cPq1at= onXr1vh8Pp3nIyIiGU2BpRlyOBz4/X4KCgo0kyIiIk2CbqmbMYUVERFpKhRYREREJOMpsIiIiEj= GU2ARERGRjKfAIiIiIhlPgUVEREQyngKLiIiIZDwFFhEREcl4CiwiIiKS8RRYREREJOMpsIiIiE= jGU2ARERGRjKfAIiIiIhlPgUVEREQyngKLiIiIZDwFFhEREcl4GRVYbNvGtu10N0NEREQyTMYEF= suyqKys5J///Ge6myIiaZS8cdHNS9Om/pMfmyvdDQAwTZMTJ04we/ZsOnfuTN++fc/6ejweJxqN= NtrrR6NREokE0WgUh8OBYRiN9lrSOGzbxrIsEokEsVisUd8v0rgsyyIej6fGpNPpTHeT5AewbZt= 4PI5pmkSjUUzTTHeT5AcyTTPVj0CjjUnDMHC73d/4GZz2wGJZFrFYjPXr13P77bfzwQcfnPV10z= SpqqriwIEDjdaGWCxGQ0MDlmXhcGTMpJP8HyTvyGtrawmHw5w6dSrdTZIfyLZtgsEglmURDoc1J= pso27YxTZNQKMTBgwcVPJswy7JoaGjg8OHDuFyuRhuTHo+HTp06feN7JS2BxbZtotEojz76KLt3= 7+bRRx/lueeeIx6Pk5WVxT333ENWVhbwdZLr0KED3bt3b7T2RKNRjhw5QpcuXXRxbMJM06SiooI= LLriA3NzcdDdHfiDbtqmqqiIajXLhhRdqTDZhsViMYDBIt27dcLnSfn8sP1ByYqFr1654vd5GG5= OGYXzrE460vIOS0z6PP/54alZj3bp1nDx5kpUrV+Lz+c76/x0OR6Omc4fDkfqlu4CmKTnDYhiG+= rGJs2071Yfqy6btzOuq+rFpO7Mv03UTkbbI63Q6CQQCqd8HAgG8Xi8zZszQG1tERETOklFzdH6/= P91NEBERkQykh8MiIiKS8RRYREREJOMpsIiIiEjGU2ARERGRjKfAwtklpFVOWiS9VJr//JDsP/X= l+SPdfZlRu4T+E9u2CYfDNDQ0NNprRCIRQqEQDQ0N2lLdRCVL84dCIYLBoPqxCbNtm1AolKpArb= 5smmzbJhaLEQ6HCQaDKhzXhCUrFgeDQUzTbNTCcT6f7xvHvGFncPRNJBJ89dVXbN68Gbfb3WivY= 1kW8N1V9iSznZn+VR21adOYPD8ky/M7nU71YxN25rW1Mcekz+dj2LBhtG7d+t+u4YZhGBkdWJL/= SMmLl4iIiJyfkmHoP91wZnxgERERETEMw9C8uYiIiGS8ZrcKKnmi74oVK/D5fEyaNIk2bdqkjs9= eunQptm0zceJE8vPz091c+Qa2bXPixAnKysqwbZurrrqK7t27Y5om5eXl7NixA9M06du3L9ddd1= 2jroGS/45t21RWVvL666/jdrspKSnhJz/5CZZlsX//ftasWYPX62XSpElccMEFWoSboWzbpq6uj= kWLFhGLxRg7diw9e/bE5XJRVVXFypUrcTqdTJgwgZycHPVjBrMsi2AwyOrVq5kwYQI+ny+1GH7J= kiXU1NRwxRVXcPHFF+Nyuc7Z+qRmNcNi2zaRSISysjKGDRtG7969efvttzFNk3A4zDPPPEOPHj0= YNGgQlZWV6W6ufAvbttmwYQP9+vWjqKiI559/HsuyMAyDUaNGMXXqVFq3bk2PHj202C/DWZbFK6= +8wqWXXkq/fv1YsWIFtm0Tj8d5+umnKS4upn///rz33nskEol0N1e+QSKR4MMPP6RHjx4UFhYyf= /58IpEItm2zaNEiBg8eTFFREc899xzxeDzdzZVvUVNTw+LFi1m5ciWRSAT4epzu2LGDdu3aMWLE= CBYsWEA4HD6na0yb3QxLNBrlxIkTFBQUALBlyxZM0yQajbJp0yZycnI4ffo0t956a5pbKt/Gtm2= OHz/O6NGjcTgcfPnll9i2jdvtxufzUVdXR5cuXejRo4fu5DKcbdscOnSI7t27A7B8+fLU7pKSkh= Kef/55TNPknnvu0QL8DGZZFqdOnaKoqAi3201FRQWxWIxAIECbNm3Ys2cPAJ999pmCZ4bLzs5m8= uTJrF+/PjXmbNumurqazp07k5eXx7Fjx4hEIvj9/nN2jW12gcXhcBAIBFJ1XQKBAJZlYds2rVq1= 4sYbbyQYDPLpp5/Sp0+fNLdWvo3P56O2thaPx0NOTg6WZWFZFuFwmA0bNjB+/HjcbrdmWJqA7Ox= s6uvrgbPH5NKlS3nsscewLIuPPvqIvn37prml8m28Xi/19fX4fD6ysrKArx/DFxcXE4vF+Oqrr2= jbtq3GZIbzeDzk5ubi8XgwDCO1W9ftdhMMBvH7/QQCgXNePqJZBRbDMPB6vZSUlDBz5kxcLhdz5= swhHo+zZMkSnnrqKZ588kkMw2DWrFnpbq58C8MwGD58OLNmzcI0TX75y1+SSCR45JFHeOihh9i1= axd33XWXZleaAMMwmDBhAjNnzsQwDO6//37i8TgvvfQS999/P3PmzCErK4tZs2apvk4GczqdDBw= 4kFmzZhEKhfjNb36Dx+NhxowZ3HHHHcybN4/27dtz//33a01ZE5As4uZyuTBNk9mzZzNt2jTmzJ= lDVVUVd955J36//5yOyWa3rTm5jiUWi2EYBllZWdTW1vLpp59SXFxMKBTC6/Xi8Xj0YZfhYrFY6= vmqx+MhHo+zZs0aSkpKcLlceL1e3ck1Acn1Kv+7L7dt28bgwYNTfej3+1UtNcMlK6Im78ZdLhcL= FixgypQpGIaBZVlkZWXhcDg0NjNc8rPS4/FgmiarVq1i9OjRqa87nU6ysrLOWT+qDsv/l0gkMAx= DAaWJM00T4BsLD0nTob48P9i2TSKRwOl0qh+bsDMLuKYrbCqwiIiISMZT4TgRERFpEhRYREREJO= MpsIiIiEjGU2ARERGRjKfAIiIiIhlPgUVEREQyngKLSDOTSCSIxWKpWidA6uyeaDR61p+f+fVEI= kEkEvlRz/P5rtdNlzPbpfOLRDKDAotIM9PQ0MAtt9xCRUVFKiTEYjE2bdrE1KlTUxVnzxSPx3nt= tdcYM2YMsVjsR2uLaZrs2rWLsWPHEgwGf7Sf+99KJBK88cYbjBkzhnA4nO7miAjN7CwhEfk6nHT= s2JGHH36YF198EZ/PR319PXPnzuWGG24gGo1iGAbRaBT4+kC7eDxOdXU1+/btIxKJ4HK5iEajxG= IxnE4nXq83deZIOBzGtm08Hg9erzdVQTo5sxONRnE4HPh8PizLoq6ujv3793Ps2DFs28YwjNTBa= slZnUQikTpuwe12Y9t2qgS8y+XC5/OlSoknEgkcDgculyt1grfT6SQcDuNyuXA4HKlDMuHrowA8= Hk/q7xSNRgmHwxw/fpx9+/YRDAbxer1ntT15fIeqt4qcOxptIs1Mbm4uY8eO5eOPP2bHjh2Ew2H= Wrl1LTU0NxcXFnDx5kjvuuIOhQ4cyYMAAbrvtNqqqqlLfb5omX3zxBZMmTWLo0KFcfvnlzJkzh+= rqajZv3syAAQMYO3Ysv/71r1Ohx7IsKioquOGGG1Lf8/DDD1NXV4dt28RiMW666SaGDx/OmDFj2= LhxI6FQiOeee47i4mIGDRrEyJEjWbRoEZFIhK1btzJmzBiGDBlCaWkpu3fvpra2lqKiIsaOHcu1= 117L9u3bGTduHIcPHyYYDDJu3Dhefvlljh07xsyZMxk2bBgDBw5k4sSJ7Ny5k5qaGu6++26Ki4s= ZOXIk8+fPT5UkP3jwINdffz1Dhw5lxIgR/O53v6Ouri5dXSjSLGmGRaSZ8Xq9DBgwgL59+1JeXk= 7Lli0pLy+nsLCQTp06sX//foqLixkxYgS7du3izTff5MSJE6nvj0Qi/Pa3v+Wiiy7i2Wef5ZNPP= uHpp59m6NChOJ1OamtrmTdvHgMHDsTj8aS+56GHHiInJ4fy8nK2b9/O73//e4YMGULHjh0xTZMH= HniAvn378tJLL/HYY4+xePFiNm/ejMfj4b777iMWi+H3+6mtreXBBx/E6XTSv39/du/ezV/+8hc= effRR6uvrmTx5MrfddhuBQICCggJefPFFiouLqaiooH///sTjcfr27cvFF1/M3r17WbZsGbt27a= KmpoZ33nmHZ599loKCAubNm0d5eTmRSIRZs2bRsmVL1qxZw6effsoTTzxBcXExpaWl6epGkWZHM= ywizUzylPL77ruPNWvWsHLlSg4ePMgvfvELPB4Ptm3zxhtvsHz5ck6ePPlvC22j0ShfffUVPXr0= oKCggOLiYizL4vTp0zgcDgKBAAMHDqR9+/ap05Wj0SiVlZV06dKFbt26cdlll2EYBlVVValHQIM= HD6ZLly4MGTKEY8eO4Xa7U8Fg6dKlLFiwgH379mHbNgcOHMDv95OTk0NRURG9e/cGvg5jyRCUl5= dHcXExb7zxBkuXLqVXr1706NEDn8/Hu+++S1lZGRUVFYTDYeLxOA0NDQBccskldOnShQEDBuBwO= IjFYhw9epSuXbtSUFBAYWEhhmFw6tSpc995Is2YAotIM+T1eunTpw/t27fnj3/8I0VFRXTu3Bmn= 08nevXs5fPgwo0ePJj8/P7WGJcnj8TBu3DiWL1/OkiVLmD17Nnl5eXTt2hX41wnLZ57o6vF4KC0= t5e2332bJkiU88cQTBAIBevfujW3bBINB/ud//odly5Yxf/58xo0bh23bzJkzh507dzJ9+nQuuu= giPvroIxKJBNdccw2GYTBo0CAOHjxIKBTCMIyzfjkcDoqKinC73axdu5aZM2fi8/moqqri888/Z= 9SoUXTq1IlAIIBlWXTo0IGsrCyeeeYZli1bxqJFi7AsC4/Hw/jx4ykvL2fJkiXMmTOH7Oxsevbs= ec77TaQ5cz7++OOPp7sRInJuGYaB2+3GMAzq6uqYNm0aBQUFOBwOWrVqhWVZrF27loKCAoqKijh= 06BCtW7fmyJEjTJ06lQEDBuB0Olm0aBG5ubnMnTuXbt26UVNTw44dO7jpppsIBAKp13O5XPTu3Z= tAIMBLL72Ez+fjqaeeonfv3oRCIbZu3crll1/OW2+9xcUXX8wDDzxAXl4ew4cPTz2W6tatG08++= SRt2rTh0ksvpaKigvXr1zNy5EjuvPNOXC4XmzZtYvTo0XTs2BEAn88HgN/vZ9q0aQQCgdTMzPLl= y8nPz+f6669n3759jB8/nksuuYR33nmHvXv3MmjQIEKhELfddhsDBw7E5/OxYMECAoEATzzxBH3= 69Ek98hKRxjV79uzZhm3bdrobIiLnXnJXTXKnjdfrBf61mye5A8gwjNR/4/E4gUAgtVD2zF1CTq= cT0zSJxWL4fL7U46CkM39ucqeNy+VK7dhJ7hAyDAO/35/aJRSNRs/aJZTc/RMOhzFN86y2J392M= qhYlkUsFiORSKR+ZvLPotHoWX8/j8dDPB4nFoth23ZqB5Df70/97DPb7vF4zppFEpHGYxiGocAi= IiIiGc0wDENrWERERCTjKbCIiIhIxlNgERERkYynwCIiIiIZT4FFREREMp4Ci4iIiGQ8BRYRERH= JeP8Pe0ypFJirTdUAAAAASUVORK5CYII=3D" width=3D"556" height=3D"273" alt=3D"" = /></p><p style=3D"margin-bottom:10pt; text-align:center; line-height:115%; = font-size:10pt"><span style=3D"font-family:'Times New Roman'; font-weight:b= old">Nota:</span><span style=3D"font-family:'Times New Roman'"> datos obten= idos de FaceReader y procesados en SPSS versi=C3=B3n 26</span></p><p style= =3D"margin-bottom:10pt; text-align:justify; line-height:115%; font-size:12p= t"><span style=3D"font-family:'Times New Roman'">La </span><a href=3D"#fig5= " style=3D"text-decoration:none"><span class=3D"Hyperlink" style=3D"font-fa= mily:'Times New Roman'; font-weight:bold; text-decoration:none; color:#0000= 00">Figura 5</span></a><span style=3D"font-family:'Times New Roman'"> revel= a que la mayor parte de los valores de </span><span style=3D"font-family:'T= imes New Roman'; font-style:italic">attention</span><span style=3D"font-fam= ily:'Times New Roman'"> se aproximan a la l=C3=ADnea de referencia, lo cual= se=C3=B1ala una conducta bastante constante en las respuestas de los alumn= os. A pesar de que se notan peque=C3=B1as separaciones en ciertos aspectos,= el patr=C3=B3n es, en l=C3=ADneas generales, constante y demuestra que </s= pan><span style=3D"font-family:'Times New Roman'; font-style:italic">attent= ion</span><span style=3D"font-family:'Times New Roman'"> se mantuvo constan= te entre los que participaron, sin mostrar diferencias significativas ni re= spuestas inusuales que cambien el conjunto de los resultados.</span></p><p = style=3D"margin-bottom:10pt; text-align:justify; line-height:115%; font-siz= e:12pt"><span style=3D"font-family:'Times New Roman'">Los hallazgos indican= una predominancia de respuestas emocionales neutrales, acompa=C3=B1adas de= niveles de atenci=C3=B3n y bajos niveles de confusi=C3=B3n.</span></p><ol = start=3D"4" style=3D"margin:0pt; padding-left:0pt"><li class=3D"ListParagra= ph" style=3D"margin-left:14pt; margin-bottom:10pt; line-height:115%; paddin= g-left:4pt; font-weight:bold"><span>Discusi=C3=B3n </span></li></ol><p styl= e=3D"margin-bottom:10pt; text-align:justify; line-height:115%; font-size:12= pt"><span style=3D"font-family:'Times New Roman'">Los resultados obtenidos = del presente estudio permiten comprender con mayor claridad la forma en que= los alumnos del primer semestre responden emocionalmente ante un est=C3=AD= mulo audiovisual promocional de car=C3=A1cter institucional. El an=C3=A1lis= is biom=C3=A9trico llevado a cabo con FaceReader y procesado estad=C3=ADsti= camente por medio de SPSS mostr=C3=B3 que las respuestas emocionales neutra= s eran las m=C3=A1s frecuentes, junto con un nivel bajo de emociones negati= vas y una atenci=C3=B3n elevada durante la exposici=C3=B3n al est=C3=ADmulo= audiovisual. Este patr=C3=B3n indica que el est=C3=ADmulo integrado gener= =C3=B3 respuestas emocionales estables.</span></p><p style=3D"margin-bottom= :10pt; text-align:justify; line-height:115%; font-size:12pt"><span style=3D= "font-family:'Times New Roman'">Lo que se indic=C3=B3 en estudios anteriore= s acerca de los contenidos institucionales concuerda con la prevalencia de = la emoci=C3=B3n neutral, ya que se not=C3=B3 este tipo de est=C3=ADmulos ti= ende a producir respuestas emocionales moderadas, en particular cuando su p= rop=C3=B3sito principal es informar o posicionar una imagen corporativa m= =C3=A1s que inducir reacciones emocionales fuertes. En este contexto, los r= esultados de la investigaci=C3=B3n avalan la idea de que no se debe entende= r la neutralidad emocional como una carencia de efectividad, sino como una = reacci=C3=B3n previsible en contextos de comunicaci=C3=B3n formal.</span></= p><p style=3D"margin-bottom:10pt; text-align:justify; line-height:115%; fon= t-size:12pt"><span style=3D"font-family:'Times New Roman'">Por otra parte, = la escasa presencia de emociones positivas como la felicidad y la tristeza = moderada indican que se registr=C3=B3 una respuesta emocional de baja activ= aci=C3=B3n. Este resultado podr=C3=ADa estar vinculado con el car=C3=A1cter= del mensaje promocional, que tiene como objetivo comunicar informaci=C3=B3= n institucional y crear reconocimiento, en lugar de generar entusiasmo inme= diato. El hecho de que las emociones negativas como el miedo, el enojo y el= desagrado est=C3=A9n poco activadas demuestra que el est=C3=ADmulo audiovi= sual no produjo percepciones negativas, lo cual es un resultado favorable d= esde la perspectiva comunicacional. </span></p><p style=3D"margin-bottom:10= pt; text-align:justify; line-height:115%; font-size:12pt"><span style=3D"fo= nt-family:'Times New Roman'">Durante la visualizaci=C3=B3n del est=C3=ADmul= o audiovisual integrado, se observ=C3=B3 un alto grado de atenci=C3=B3n, lo= cual es un hallazgo importante del estudio. Este hallazgo se=C3=B1ala que,= a pesar de que las reacciones emocionales intensas fueron escasas. Este co= mportamiento avala la noci=C3=B3n de que el enfoque no se basa =C3=BAnicame= nte en la activaci=C3=B3n emocional, sino tambi=C3=A9n en la precisi=C3=B3n= del mensaje, la organizaci=C3=B3n del contenido y los componentes visuales= usados. Adem=C3=A1s, los valores de la variable confusi=C3=B3n son pr=C3= =A1cticamente nulos, lo que indica que los mensajes fueron entendidos sin p= roblemas, lo cual respalda el adecuado desempe=C3=B1o atencional del est=C3= =ADmulo.</span></p><p style=3D"margin-bottom:10pt; text-align:justify; line= -height:115%; font-size:12pt"><span style=3D"font-family:'Times New Roman'"= >En general, los registros emocionales inconscientes obtenidos por FaceRead= er corroboran la relevancia del enfoque cuantitativo empleado en la investi= gaci=C3=B3n, al permitir la medici=C3=B3n objetiva de las respuestas emocio= nales ante el est=C3=ADmulo audiovisual integrado; adem=C3=A1s el uso de he= rramientas biom=C3=A9tricas no invasivas permiti=C3=B3 una aproximaci=C3=B3= n precisa al an=C3=A1lisis de las reacciones emocionales involuntarias de l= os participantes, aportando a la evaluaci=C3=B3n del comportamiento de los = estudiantes frente a contenido audiovisual</span><span style=3D"font-family= :'Times New Roman'">  </span><span style=3D"font-family:'Times New Rom= an'">institucional.</span></p><ol start=3D"5" style=3D"margin:0pt; padding-= left:0pt"><li class=3D"ListParagraph" style=3D"margin-left:14pt; margin-bot= tom:10pt; line-height:115%; padding-left:4pt; font-weight:bold"><span>Concl= usiones</span></li></ol><ul style=3D"margin:0pt; padding-left:0pt"><li clas= s=3D"ListParagraph" style=3D"margin-left:32.33pt; line-height:115%; padding= -left:3.67pt; font-family:serif"><span style=3D"font-family:'Times New Roma= n'; background-color:#ffffff">El empleo del software FaceReader y el proces= o estad=C3=ADstico con SPSS permiti=C3=B3 identificar y describir de manera= objetiva las respuestas emocionales involuntarias de los estudiantes al ve= r el est=C3=ADmulo audiovisual promocional institucional, contribuyendo as= =C3=AD a la base de evidencia necesaria para el an=C3=A1lisis de la comunic= aci=C3=B3n audiovisual en contextos universitarios. </span></li><li class= =3D"ListParagraph" style=3D"margin-left:32.33pt; line-height:115%; padding-= left:3.67pt; font-family:serif"><span style=3D"font-family:'Times New Roman= '; background-color:#ffffff">En relaci=C3=B3n con el Objetivo Espec=C3=ADfi= co 1,</span><span style=3D"font-family:'Times New Roman'; background-color:= #ffffff">  </span><span style=3D"font-family:'Times New Roman'; backgr= ound-color:#ffffff">se identific=C3=B3 una tendencia emocional general con = bajos niveles de emociones negativas y una ligera presencia de respuestas d= e valencia positiva, lo que indica un tipo de respuesta emocional estable a= l est=C3=ADmulo, sugiri=C3=B3 que la emocionalidad estaba marcada por la ne= utralidad afectiva. </span></li><li class=3D"ListParagraph" style=3D"margin= -left:32.33pt; line-height:115%; padding-left:3.67pt; font-family:serif"><s= pan style=3D"font-family:'Times New Roman'; background-color:#ffffff">Respe= cto al Objetivo Espec=C3=ADfico 2, los indicadores de intensidad emocional = , tanto de activaci=C3=B3n como de valencia, evidenciaron una respuesta de = baja intensidad, sin picos significativos de activaci=C3=B3n, mostrando coh= erencia con el contenido institucional dirigido a informar y posicionar a l= a instituci=C3=B3n. </span></li><li class=3D"ListParagraph" style=3D"margin= -left:32.33pt; margin-bottom:10pt; line-height:115%; padding-left:3.67pt; f= ont-family:serif"><span style=3D"font-family:'Times New Roman'; background-= color:#ffffff">Finalmente, en funci=C3=B3n del Objetivo Espec=C3=ADfico 3, = se observaron patrones expresivos recurrentes, definidos por altos niveles = de atenci=C3=B3n y bajos niveles de confusi=C3=B3n, as=C3=AD como un compor= tamiento emocional mayormente estable, lo que indica una estabilidad de las= respuestas no verbales del grupo al est=C3=ADmulo promocional.</span></li>= </ul><ol start=3D"6" style=3D"margin:0pt; padding-left:0pt"><li style=3D"ma= rgin-left:16.55pt; margin-bottom:10pt; text-align:justify; line-height:115%= ; padding-left:4.75pt; font-family:'Times New Roman'; font-weight:bold"><sp= an style=3D"line-height:115%; font-size:12pt">Conflicto de intereses</span>= </li></ol><p style=3D"margin-bottom:10pt; text-align:justify; line-height:1= 15%; font-size:12pt"><span style=3D"font-family:'Times New Roman'">Los auto= res declaran que no existe conflicto de intereses en relaci=C3=B3n con el a= rt=C3=ADculo presentado.</span></p><ol start=3D"7" style=3D"margin:0pt; pad= ding-left:0pt"><li style=3D"margin-left:17.3pt; margin-bottom:10pt; text-al= ign:justify; line-height:115%; padding-left:4pt; font-family:'Times New Rom= an'; font-size:12pt; font-weight:bold"><span>Declaraci=C3=B3n de contribuci= =C3=B3n de los autores</span></li></ol><p style=3D"margin-bottom:10pt; text= -align:justify; line-height:115%; font-size:12pt"><span style=3D"font-famil= y:'Times New Roman'">Todos autores contribuyeron significativamente en la e= laboraci=C3=B3n del art=C3=ADculo.</span></p><ol start=3D"8" style=3D"margi= n:0pt; padding-left:0pt"><li style=3D"margin-left:17.3pt; margin-bottom:10p= t; text-align:justify; line-height:115%; padding-left:4pt; font-family:'Tim= es New Roman'; font-size:12pt; font-weight:bold"><span>Costos de financiami= ento </span></li></ol><p style=3D"margin-bottom:10pt; text-align:justify; l= ine-height:115%; font-size:12pt"><span style=3D"font-family:'Times New Roma= n'">La presente investigaci=C3=B3n fue financiada en su totalidad con fondo= s propios de los autores.</span></p><ol start=3D"9" style=3D"margin:0pt; pa= dding-left:0pt"><li style=3D"margin-left:17.3pt; margin-bottom:10pt; text-a= lign:justify; line-height:115%; padding-left:4pt; font-family:'Times New Ro= man'; font-size:12pt; font-weight:bold"><span>Referencias bibliogr=C3=A1fic= as</span></li></ol><p style=3D"margin-left:36pt; margin-bottom:10pt; text-i= ndent:-36pt; line-height:115%; font-size:12pt"><span style=3D"font-family:'= Times New Roman'">Andrade-Zotamba, K. S., Peralta-Guanuche, A. L., & Mo= scoso-Parra, A. E. (2021). Engagement de la publicidad emocional en tiempos= de pandemia. Caso Movistar Ecuador</span><span style=3D"font-family:'Times= New Roman'; font-style:italic">.</span><span style=3D"font-family:'Times N= ew Roman'"> </span><span style=3D"font-family:'Times New Roman'; font-style= :italic">593 Digital Publisher CEIT, </span><span style=3D"font-family:'Tim= es New Roman'">6(3), 368=E2=80=93381. </span><a href=3D"https://doi.org/10.= 33386/593dp.2021.3.590" style=3D"text-decoration:none"><span style=3D"font-= family:'Times New Roman'; text-decoration:underline; color:#000000">https:/= /doi.org/10.33386/593dp.2021.3.590</span></a></p><p style=3D"margin-left:36= pt; margin-bottom:10pt; text-indent:-36pt; line-height:115%; font-size:12pt= "><span style=3D"font-family:'Times New Roman'">Babbie, E. (2013). </span><= span style=3D"font-family:'Times New Roman'; font-style:italic">The practic= e of social research </span><span style=3D"font-family:'Times New Roman'">(= 13th ed.). Cengage Learning. </span><a href=3D"http://old-eclass.uop.gr/mod= ules/document/file.php/SEP187/BI%CE%92%CE%9B%CE%99%CE%91%20%CE%9C%CE%95%CE%= 98%CE%9F%CE%94%CE%9F%CE%9B%CE%9F%CE%93%CE%99%CE%91%CE%A3/Babbie_The_Practic= e_of_Social_Research.pdf" style=3D"text-decoration:none"><span style=3D"fon= t-family:'Times New Roman'; text-decoration:underline; color:#000000">http:= //old-eclass.uop.gr/modules/document/file.php/SEP187/BI%CE%92%CE%9B%CE%99%C= E%91%20%CE%9C%CE%95%CE%98%CE%9F%CE%94%CE%9F%CE%9B%CE%9F%CE%93%CE%99%CE%91%C= E%A3/Babbie_The_Practice_of_Social_Research.pdf</span></a></p><p style=3D"m= argin-left:36pt; margin-bottom:10pt; text-indent:-36pt; line-height:115%; f= ont-size:12pt"><span style=3D"font-family:'Times New Roman'">Baraybar-Fern= =C3=A1ndez, A., Ba=C3=B1os-Gonz=C3=A1lez, M., & Rajas-Fern=C3=A1ndez, M= . (2023). Relaci=C3=B3n entre emociones y recuerdo en campa=C3=B1as publici= tarias de servicio p=C3=BAblico: Una aproximaci=C3=B3n desde la neurocienci= a. </span><span style=3D"font-family:'Times New Roman'; font-style:italic">= Revista Latina de Comunicaci=C3=B3n Social</span><span style=3D"font-family= :'Times New Roman'">, 81, 1=E2=80=9333. </span><a href=3D"https://doi.org/1= 0.4185/RLCS-2023-1936" style=3D"text-decoration:none"><span style=3D"font-f= amily:'Times New Roman'; text-decoration:underline; color:#000000">https://= doi.org/10.4185/RLCS-2023-1936</span></a></p><p style=3D"margin-left:36pt; = margin-bottom:10pt; text-indent:-36pt; line-height:115%; font-size:12pt"><s= pan style=3D"font-family:'Times New Roman'">Baraybar-Fern=C3=A1ndez, A., Ba= =C3=B1os-Gonz=C3=A1lez, M., Barquero-P=C3=A9rez, =C3=93., Goya-Esteban, R.,= & de-la-Morena-G=C3=B3mez, A. (2017). Evaluaci=C3=B3n de las respuesta= s emocionales a la publicidad televisiva desde el neuromarketing. </span><s= pan style=3D"font-family:'Times New Roman'; font-style:italic">Comunicar, 2= 5</span><span style=3D"font-family:'Times New Roman'">(52), 19=E2=80=9328. = </span><a href=3D"https://www.redalyc.org/articulo.oa?id=3D15852692006" sty= le=3D"text-decoration:none"><span style=3D"font-family:'Times New Roman'; t= ext-decoration:underline; color:#000000">https://www.redalyc.org/articulo.o= a?id=3D15852692006</span></a></p><p style=3D"margin-left:36pt; margin-botto= m:10pt; text-indent:-36pt; line-height:115%; font-size:12pt"><span style=3D= "font-family:'Times New Roman'">Benavides Polo, C., & Gonz=C3=A1lez Loy= ola, P. (2025). Afecto y memoria: el efecto de la publicidad emocional sobr= e la recordaci=C3=B3n de marca. </span><span style=3D"font-family:'Times Ne= w Roman'; font-style:italic">Revista E-Gesti=C3=B3n, 18</span><span style= =3D"font-family:'Times New Roman'">, 87-109. Universidad de Cuenca. </span>= <a href=3D"http://scielo.senescyt.gob.ec/pdf/egestion/n18/2661-6513-egestio= n-18-87.pdf" style=3D"text-decoration:none"><span style=3D"font-family:'Tim= es New Roman'; text-decoration:underline; color:#000000">http://scielo.sene= scyt.gob.ec/pdf/egestion/n18/2661-6513-egestion-18-87.pdf</span></a></p><p = style=3D"margin-left:36pt; margin-bottom:10pt; text-indent:-36pt; line-heig= ht:115%; font-size:12pt"><span style=3D"font-family:'Times New Roman'">Boho= rquez Camacho, L. D., Lichters, M., & Amor, P. J. (2025). </span><span = style=3D"font-family:'Times New Roman'; font-style:italic">Automated emotio= n recognition in marketing research: A systematic literature review of curr= ent image and video-based methods</span><span style=3D"font-family:'Times N= ew Roman'">. Otto-von-Guericke University Magdeburg.</span><a href=3D"https= ://www.fww.ovgu.de/fww_media/femm/femm_2025/2025_02.pdf?utm_source=3Dchatgp= t.com" style=3D"text-decoration:none"><span style=3D"font-family:'Times New= Roman'; color:#000000"> </span></a><a href=3D"https://www.fww.ovgu.de= /fww_media/femm/femm_2025/2025_02.pdf?utm_source=3Dchatgpt.com" style=3D"te= xt-decoration:none"><span style=3D"font-family:'Times New Roman'; text-deco= ration:underline; color:#000000">https://www.fww.ovgu.de/fww_media/femm/fem= m_2025/2025_02.pdf</span></a><a href=3D"https://www.fww.ovgu.de/fww_media/f= emm/femm_2025/2025_02.pdf?utm_source=3Dchatgpt.com" style=3D"text-decoratio= n:none"><span style=3D"font-family:'Times New Roman'; color:#000000"> = </span></a><a href=3D"https://www.fww.ovgu.de/fww_media/femm/femm_2025/2025= _02.pdf?utm_source=3Dchatgpt.com" style=3D"text-decoration:none"><span styl= e=3D"font-family:'Times New Roman'; text-decoration:underline; color:#00000= 0">fww</span></a></p><p style=3D"margin-left:36pt; margin-bottom:10pt; text= -indent:-36pt; line-height:115%; font-size:12pt"><span style=3D"font-family= :'Times New Roman'">Castro-Anal=C3=BAiza, J. C., & Pazmi=C3=B1o-Chimban= a, V. M. (2023). La publicidad digital como estimulante de respuestas emoci= onales b=C3=A1sicas en la audiencia</span><span style=3D"font-family:'Times= New Roman'; font-style:italic">. </span><span style=3D"font-family:'Times = New Roman'">I</span><span style=3D"font-family:'Times New Roman'; font-styl= e:italic">NNOVA Research Journal</span><span style=3D"font-family:'Times Ne= w Roman'">, 8(2), 107-128. </span><a href=3D"https://doi.org/10.33890/innov= a.v8.n2.2023.2237" style=3D"text-decoration:none"><span style=3D"font-famil= y:'Times New Roman'; text-decoration:underline; color:#000000">https://doi.= org/10.33890/innova.v8.n2.2023.2237</span></a></p><p style=3D"margin-left:3= 6pt; margin-bottom:10pt; text-indent:-36pt; line-height:115%; font-size:12p= t"><span style=3D"font-family:'Times New Roman'">Cevallos Collaguazo, S. M.= , & Tinoco Egas, R. M. (2025). Respuestas emocionales y perceptuales a = la publicidad con inteligencia artificial frente a formatos tradicionales. = </span><span style=3D"font-family:'Times New Roman'; font-style:italic">Cie= ncia Latina Revista Cient=C3=ADfica Multidisciplinar</span><span style=3D"f= ont-family:'Times New Roman'">, </span><span style=3D"font-family:'Times Ne= w Roman'; font-style:italic">9</span><span style=3D"font-family:'Times New = Roman'">(4), 5441-5459. </span><a href=3D"https://doi.org/10.37811/cl_rcm.v= 9i4.19166" style=3D"text-decoration:none"><span style=3D"font-family:'Times= New Roman'; text-decoration:underline; color:#000000">https://doi.org/10.3= 7811/cl_rcm.v9i4.19166</span></a></p><p style=3D"margin-left:36pt; margin-b= ottom:10pt; text-indent:-36pt; line-height:115%; font-size:12pt"><span styl= e=3D"font-family:'Times New Roman'">Creswell, J. W., & Creswell, J. D. = (2017). </span><span style=3D"font-family:'Times New Roman'; font-style:ita= lic">Research design: Qualitative, quantitative, and mixed methods approach= es </span><span style=3D"font-family:'Times New Roman'">(5th ed.). SAGE Pub= lications. </span><a href=3D"https://books.google.com.ec/books?id=3D335ZDwA= AQBAJ" style=3D"text-decoration:none"><span style=3D"font-family:'Times New= Roman'; text-decoration:underline; color:#000000">https://books.google.com= .ec/books?id=3D335ZDwAAQBAJ</span></a></p><p style=3D"margin-left:36pt; mar= gin-bottom:10pt; text-indent:-36pt; line-height:115%; font-size:12pt"><span= style=3D"font-family:'Times New Roman'">Du, S., Tao, Y., & Martinez, A= . M. (2014). Compound facial expressions of emotion. </span><span style=3D"= font-family:'Times New Roman'; font-style:italic">Proceedings of the Nation= al Academy of Sciences of the United States of America, 111</span><span sty= le=3D"font-family:'Times New Roman'">(15), E1454=E2=80=93E1462. </span><a h= ref=3D"https://doi.org/10.1073/pnas.1322355111" style=3D"text-decoration:no= ne"><span style=3D"font-family:'Times New Roman'; text-decoration:underline= ; color:#000000">https://doi.org/10.1073/pnas.1322355111</span></a></p><p s= tyle=3D"margin-left:36pt; margin-bottom:10pt; text-indent:-36pt; line-heigh= t:115%; font-size:12pt"><span style=3D"font-family:'Times New Roman'">Hern= =C3=A1ndez Sampieri, R., Fern=C3=A1ndez Collado, C., & Baptista Lucio, = M. P. (2014). </span><span style=3D"font-family:'Times New Roman'; font-sty= le:italic">Metodolog=C3=ADa de la investigaci=C3=B3n </span><span style=3D"= font-family:'Times New Roman'">(6.=C2=AA ed.). McGraw-Hill Education. </spa= n><a href=3D"https://apiperiodico.jalisco.gob.mx/api/sites/periodicooficial= .jalisco.gob.mx/files/metodologia_de_la_investigacion_-_roberto_hernandez_s= ampieri.pdf" style=3D"text-decoration:none"><span style=3D"font-family:'Tim= es New Roman'; text-decoration:underline; color:#000000">https://apiperiodi= co.jalisco.gob.mx/api/sites/periodicooficial.jalisco.gob.mx/files/metodolog= ia_de_la_investigacion_-_roberto_hernandez_sampieri.pdf</span></a></p><p st= yle=3D"margin-left:36pt; margin-bottom:10pt; text-indent:-36pt; line-height= :115%; font-size:12pt"><span style=3D"font-family:'Times New Roman'">Karimu= lla Basha, S. Md., Stanley, S., Sirsali, S. V., & Pathak, R. (2025). Em= otional resonance in marketing: Analyzing the effectiveness of emotional ap= peals in advertising among Generation Z. </span><span style=3D"font-family:= 'Times New Roman'; font-style:italic">International Journal of Environmenta= l Sciences</span><span style=3D"font-family:'Times New Roman'">, 11(9s), 16= =E2=80=9343. </span><a href=3D"https://doi.org/10.64252/v50agp52" style=3D"= text-decoration:none"><span style=3D"font-family:'Times New Roman'; text-de= coration:underline; color:#000000">https://doi.org/10.64252/v50agp52</span>= </a></p><p style=3D"margin-left:36pt; margin-bottom:10pt; text-indent:-36pt= ; line-height:115%; font-size:12pt"><span style=3D"font-family:'Times New R= oman'">Lewinski, P., den Uyl, T. M., & Butler, C. (2014). Automated fac= ial coding: validation of basic emotions and FACS AUs in FaceReader. </span= ><span style=3D"font-family:'Times New Roman'; font-style:italic">Journal o= f Neuroscience, Psychology, and Economics, 7</span><span style=3D"font-fami= ly:'Times New Roman'">(4), 227=E2=80=93236. </span><a href=3D"https://psycn= et.apa.org/doi/10.1037/npe0000028" style=3D"text-decoration:none"><span sty= le=3D"font-family:'Times New Roman'; color:#000000">https://doi.org/10.1037= /npe0000028</span></a><span style=3D"font-family:'Times New Roman'"> </span= ></p><p style=3D"margin-left:36pt; margin-bottom:10pt; text-indent:-36pt; l= ine-height:115%; font-size:12pt"><span style=3D"font-family:'Times New Roma= n'">Mu=C3=B1oz-Pico, H. P., & Viteri-Mancero, F. V. (2022). Del ver al = compartir: el rol de las emociones en la propagaci=C3=B3n de contenidos sob= re cambio clim=C3=A1tico en YouTube. </span><span style=3D"font-family:'Tim= es New Roman'; font-style:italic">Palabra Clave</span><span style=3D"font-f= amily:'Times New Roman'">, 25(2), e2526. </span><a href=3D"https://doi.org/= 10.5294/pacla.2022.25.2.6" style=3D"text-decoration:none"><span style=3D"fo= nt-family:'Times New Roman'; text-decoration:underline; color:#000000">http= s://doi.org/10.5294/pacla.2022.25.2.6</span></a></p><p style=3D"margin-left= :36pt; margin-bottom:10pt; text-indent:-36pt; line-height:115%; font-size:1= 2pt"><span style=3D"font-family:'Times New Roman'">Ram=C3=ADrez-Brice=C3=B1= o, M. D. (2016). </span><span style=3D"font-family:'Times New Roman'; font-= style:italic">An=C3=A1lisis de la eficacia de los videos de las campa=C3=B1= as publicitarias Mayoral y N=C3=ADcoli</span><span style=3D"font-family:'Ti= mes New Roman'"> [Tesis de maestr=C3=ADa, Universidad Internacional de La R= ioja, Bogot=C3=A1, Colombia]. </span><a href=3D"https://reunir.unir.net/bit= stream/handle/123456789/4833/RAMIREZ%20BRICE%C3%91O%2C%20MARIAM%20DAISY.pdf= ?sequence=3D1&isAllowed=3Dy" style=3D"text-decoration:none"><span style= =3D"font-family:'Times New Roman'; text-decoration:underline; color:#000000= ">https://reunir.unir.net/bitstream/handle/123456789/4833/RAMIREZ%20BRICE%C= 3%91O%2C%20MARIAM%20DAISY.pdf?sequence=3D1&isAllowed=3Dy</span></a></p>= <p style=3D"margin-left:36pt; margin-bottom:10pt; text-indent:-36pt; line-h= eight:115%; font-size:12pt"><span style=3D"font-family:'Times New Roman'">R= odas, Jairo A., & Montoya-Restrepo, Luz A. (2019). Medici=C3=B3n y An= =C3=A1lisis de Anuncios Publicitarios en Televisi=C3=B3n con base en las He= rramientas Seguidor-de-Visi=C3=B3n y Lector-de-Rostro (EyeTracking y FaceRe= ader). </span><span style=3D"font-family:'Times New Roman'; font-style:ital= ic">Informaci=C3=B3n Tecnol=C3=B3gica</span><span style=3D"font-family:'Tim= es New Roman'">, </span><span style=3D"font-family:'Times New Roman'; font-= style:italic">30</span><span style=3D"font-family:'Times New Roman'">(2), 3= -10. </span><a href=3D"https://dx.doi.org/10.4067/S0718-07642019000200003" = style=3D"text-decoration:none"><span style=3D"font-family:'Times New Roman'= ; text-decoration:underline; color:#000000">https://dx.doi.org/10.4067/S071= 8-07642019000200003</span></a><span style=3D"font-family:'Times New Roman';= text-decoration:underline"> </span></p><p style=3D"margin-left:36pt; margi= n-bottom:10pt; text-indent:-36pt; line-height:115%; font-size:12pt"><img sr= c=3D" BAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2w= BDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBA= QEBAQEBAQEBAQH/wAARCABVAKIDASIAAhEBAxEB/8QAHwAAAgICAgMBAAAAAAAAAAAACQoACAYH= AQIDBAsF/8QATxAAAAYBAwIDAgoECAoLAAAAAQIDBAUGBwAIEQkSEyExFHEKFSJBUWF3gbG2Mjc= 4ORYXGBkjdpG1JTZSV3OSocHR8CQ1QkZmeIKXstXh/8QAHQEAAQMFAQAAAAAAAAAAAAAAAAMGCA= ECBAcJBf/EAEMRAAIBAgQDBQIKBgoDAAAAAAECAwQRAAUSIQYxQQcTUWFxIpEIFDY3doGhsbTBI= zJykrXRFRckJTNCUmJ1s4Lh8P/aAAwDAQACEQMRAD8AfnYy0bJoJuo980etlSgdJw0coOUFCGDk= pyKoqHIchg8wMUwgIeYCIa8j0wGZuBIoAGBI5wMUQMIdoCbkPX6OOQ9OefL1182/G+ccyYefkks= XZRvVCclOkcwVmyysW0XBE/emV3HoOPYXiRDefhOmq6Q+gpiAiAvk7EMmXPMWzjDGScgyoTlytN= PdO52X9mbtDyDltJyscRyqg1TRbkWUbM0fGFFJMp1AOp2FE4hrcnaj2N5n2aU1DX1GbUWbZfmNa= 9DC0UEtPOsqxd9+kimMilDGG9oE3II087ae7O+1ui7QZ6/L0yqpyutoqIVbl50ngkRmEf6N0VHU= hyBY77jcc8KvSPVj3u4Nzhk6HjcoFu9Sg8m3uPZVTIMSwn2Kca1s0k2bMUpUiLSxtkWrdFNJoml= Mgk3ImQhUjJl7BPR04uqnG727JLYtsONnNHyXX6orbHbuLkE5WpS0UwkYuKfKtzOARlIt4DuXZG= RYrpv0ToCsqEgUUgIonxuB/Xzmj7Vsifm2V0W7oBlAu8m+CH+Yeyhz9Y3GhCH+wB/s1IjtO7MuC= T2YVvEkGR0lDnWXZJQ1UVbQKaNpZQKSJjUxwFIZzICWZmj1Fmve4BGiuz3j7i5eP6HIpc6q6vKs= wzqqppaKtf41FHG1RUgfF2mDSw6ABYLJp2tYC4LkhPT1Afd83kAcD9Ycca9CWlGcJGPpeRcIM46= MaOH8g8cqAi3aMWaKjh26XVN8kiTdBM6qhzCBSkKYwiAAI695MBAvn85jD93OqMdTO5PqHsO3PT= 8aqog+Ni6chEF0jdiiP8JgSrqqpDgICU6aMmoYolHkBABDj1CCUYDBLC2vSSB0L2J9xJ9cTVBJ5= 7H+W2FZ98fWt3I5jyTaK5t0vExhvDUXJvIqtu6oCTC7W9o2XUbo2KTsRkDysUMn2i6ZRUMrHiya= rItnir1dPxjVlj8xdXaYYtZOJue/qTjXyKbhnIRp85PWTxuqUDpLtXbZuqguioQwGTVRUOQ5RAx= TCAgOs46K2GqzmPffQUbfHM5eGx/AWPIxYt6imu0dTEEi2awSiqChTkUCPlpJrJpEMUQ8dmkBuS= 8gL75EU0wECF4AfmDyAPcAeQB9QeWsyRlitGqD2eu+9wp+/wD+5YrhY/pvZQ37w+1bfhdMrrbiZ= 3K9Oo7Sbwk0zNB36elXNhY1q2PCNqrB3Jmo4mTLyLeOI7j4tuuLlQrdJVMTGIUbbdInczvn3A2H= N7XeHWLTXWFXh6UvRhsWJX2MyOnkm9sKc4DZV7DxnxsZFBlGCdJMyvsZVCnMUvtBREim+Cy2Cjb= PtzNzqEzIV21VnCmQ5yvz0W4M2kYiXjKzIOmEgyXL8pFy0cJprIqAA9qhCm4EQAdAq6Gm7vM2SD= 7trNuFzFcr9XMZ0WkWVBa4TKsmlX2Kat1eTztn4/BURWZxiArjz8sG6Yc/J40gTdHbQSb81BJFy= tgABbffw6+eDDP3iEH0OQfLn9IPTjnn19OPP3aneT/LL/rB/wAdJFZN6nnUQ3y57d4+2mP7jU4e= Rk5ElFx5jJKMZTq0FHmMBZi02l6CZk1jt+HUk5cScdCMDKlRJ2lKVRSzOBsKddyOzXiaRyk7zWO= NmWRKi6vhZPM+LZCPGpITrI8+D6OZXx09etBjCuQXatWrhddLuIiiocxSjeYCouzxqbX0swDWIB= F723seXTBhtzvIPoco/wDqD/jqCcgeYnKAeY+Zg9ADkR9fmABEfq0kTv23fb3Y3qD5swthfOmWo= 9srlCPqNDo1bsSrNqV3Jx0IhHREW2OKTdEHT94JU/EUIiKi3eKgFN3DrPK2aesxtRSrd8zJdtwt= GhnUum0iZO3yMdPVh7KJpGdkjH5Cqy8QZRw3SVVKxkgTM5QSWMkQ5UlBJUU7EITJGC6qwXULnUA= dvft4+m+DD4fcUQ5AQEPp5Dj+301x3kHng5R49flB5enr5+XqH9ofToIGOOrKiHTGdbycgQUe7y= PX3rnGStXZHFhG3DKyaybOKMyAxjqM4qSarpWaVQQ8VWPjm0sg1E5myJjAGq28Dq9b27jY5HCls= y/PGilAcyELiJkzrVSq7d4dUzNkq7KRk0SESAdNoWWlXMi5TSMoJ1jFOfSaxMw1GyrexLbAEWv7= r7+hwYeVt7x4yq9hfRX9JKsoOXdxiaaXtKij9vHuFWhE24AYy5zOCJlKkUpjKCPhgUe7jQAOmHu= 56i+ctzktSt1VRuMDi1pj+0zDB9PYSksesT2RhM15tEolsDqDjUV1lGTyRORh7QczkpDLFIbwBM= XXfTmr/VUq2Y8gTG8BXOTfF7fAuSTRLi+2KNlIZG9pKQDivqt0GMo9WTlE2aEwdouKIEImVwBjh= 3gBtC9FDdpuWzdvSsdKy5m3IWQak1xJepdvA2eecSMajKMbDU2zJ6RuoAFBw3QduUklPUhFlA54= MOhl0JLYq5VQbqdQ5qeY93vvgw3B3k/yy/6wf8dcCoQOBE5AAfIOTAHIgAiIByPn5AI+4B0pNnz= CnXZk84ZckcVu81Fxq/yRc3dBLGZoxdGxxagvPv1K6DCPfXxq8YtPikzQW7V02broJCQiqKZwEo= UuyZuR6xGw640+azxdspV486dd1CxeQZus5CpdpQjjojIxi7iEkbBFiqQi6JXjRvKR8wg2ckXRO= 38RJYbhCSAQ8ZJAOnUNQvbmOYtffBh6319NTQI6T12tusrTKjKWqLlIe0SVYgH9kiGR012cXPPI= po4mI5ouoYh1mzGQUcNkFTlKdRJIhzFAREAmrO7k/wBD/un+WDCdRvQfcP4afg6YP7v7bwP/AIG= k/wAwT4f7w0g+b0H3D+Gn4emF+7828f1HkvzFO6nL8K3fhXhcePET/wAPnxC34Om3Eue/7siYH/= xq6cj7zhHvcD+vnNH2rZE/NsrouHQE/bHvn2E2T830XQj9wP6+c0fatkT82yui4dAT9se+fYTZP= zfRdbB7TPmTzz6OUX/bR4ZfAHzrZF9Iqj8RVYciJ+iH3/iOqZ9Q/Hj/ACpsm3KUqJbqu5aQxZZH= 8U0QTFVZ1IwDUZ9m2STL8o6i68aRJMoeZjnKX5+dXMJ+iH3/AIjrouim4SUQWIRRJUhk1CHKByH= IcokOUxTfJEDFEQEDAICAiAh565qxmyoRzAUj6gMdBsfPk6TW5GpbYN6WPrtkKSRg6NY4+boNon= HfyW0G2sjYgR8m+OACKDBrNtI34xc9va1ZmXcHECJG0+gwzbh2UaIP4/KePHjJ0kmu1doXStqIO= EVSgdNVFQskJVEzlMAlMURAQHSwu+noI5El8mWXJGz93WXlStsm9m3mKbFJkgH9WlJBZR0+bVWV= dECJe15VyoodhHSDmPdRCJk2SSr5BMFEx9F6IXUjIXtLieGKAB5FLk+jgHuAAnQANZZEcx1NKqG= wve+/IbeYF+nutgw3LvsuNVtWxrd+FZscHYAZYAyaV2eElo+VI3MtUJUyRVjMHLgEhOBTdgKdom= 7TdvPabhWLpRNZV7td6qrWEIspJrbaY0jZNuBhXU/wbkUyxEwJ8oTGQBUAAvmPpwPPAkf2LdOnd= rhXaBv7xLkqjMIy8Z2xwNcxtHJXCuSyErKHq1sjARcP2Mk5aRhPbJRkmKr5VBPsVMcDCVM3Gy+j= F0+twu1SS3ItdyNEi4KByhVqXBRKKFkgLEnLJRzm1FnGjlGFkHotkjM5huTlwJAXKsqmAD2GAbV= 0qjjUGGoEb8wNJHUHmT4bmx6YMLM7Jahu5vGVZOt7MZ6Vg8quaq9Xekgr7XMfTElWGr+PPINGkj= Y5eFRkE0nYsHbmMZulHJk0QeGbnQaKqonb2tbcet3XdxGHZ3OFmye5xDFXyDe5DbyudqJPRy1XQ= cgeTSew0fcnr2SQOj8k7Ru0cKKgIEBM3prTe4noU7qcW5gkb9svtLSaqa0w6l6ikhdDUPItFB6o= qp8UGknSrFo+bsSKmaM5dhLpu3TUOx8yRUAyyuTYC2Q9Z+s5uxLYMk3bKDnH0JkOoSt1bO9xbaY= aOKyxm2TmbSdRJbasaSbKMU1yrMASWFykJkPCVE3aZeSVXBKtHYgD2lBOwAI3NxuPDl5HBioW4E= Cj1znPAB2ju8xePAh9MnTRHnn1HkfMfPkeR5HnkTifCEyELsdrwlKUB/jspocgHmAfEdqHyH5vM= OeQ4HnVN8udMreDa+qatuchcexTjDxtxFEvxLAa5VhF2Nag3tbWkXgwq0knKgdFOOdCVv7J7QqJ= C+GiPeUNFK6wm2HMm7La3C4ywhW2tmt7XJtcsy7B5NRUEkSJjYqebOlgeTDlm2Mciz9sUqIKeKY= DGMBOCDpF3XvIiCLKqAkb2KqBy9R4YMLEzDeRU6KNOcNgVFg33tS4yZidwph41CdpshW48gDxu8= hBNwHcYAAe4wBo4nwdubpq2069wMe6jgucdlyae2dkRVEJMWL+FhSwTxyjyDgzJRFu4btVhKKQq= tXKZRAyamsy2U9NOzn6ceSdoG7CuEqctdL3ZLBHLwsxET72vODIQbmrWqNeRq7pl7dHS0cKp2Rl= v+lNSOGLkQbPVOQ1THRL6k2FrjKkwnLRk/GKqKt2dzoeTUqC5lozvMZv8axUnIQci0X7AKZZl4j= 5s3cckSePCEBwe4OsiNGzBPaLhjsCTba23W/kOZNsGHPMj9o4+u3AB8qpWMAEPrhnvA8/8jpLLo= PTDaub2sj2B+Y3sUFt8ytMOxTATKA1jJypPXHYHA8n8JA3aHA8m4Djz0SHpv7Keo7h/Nd6sG5h1= aHtBmcF5DqcW2mMvMrqzUuM05rgwpfihKwSPgKC2aSYEkDokI2KJ0zLpeOBtYt0oemVup21bobf= fM948ioPHllxHfKQo6bW+tTh3LuyytdUSZqM4eSduyJuWDJ93rmSBNMSgUxwOoQBTsixyrqDOVA= WxuDexI+r157eODA5w3qdTzf9uQtNW255BvEa8cHnZqs43olthqHB1ynxDlNuQV5CTfwzN44RRX= Zg8eyUks9ePHBhSACCVFPRW/DEXUkxvV6O/wB8crdJSryE9IM6SNoydVb8ilOEYpqyAtWsDZJte= OVMyAoKLLot01SFAgHOYvGrr5L6Ke/zCebLHZNqcuSSrS8lKrU27VTJDbHtuZQEmudYkNOpvJKH= eJvG6agNHgMXDuMeAkDgpx8QiSGAZB6VvWDy0zYR+UW9iyGxi3Kj2OZ3PO1fsjVg8WT8JVyyQlr= S6TarqpABFFESEOoX5JzCAFAqylLKQUGwBtYHkBvvt05jc/YYBuAcBwHoHkGpouf8xz1Gv80EB/= 7k0T/7zU0uJUsLuL2HX0/mPfgwOM3oPuH8NPw9ML935t4/qPJfmKd0g8b0H3D+Gn4emF+7828f1= HkvzFO6mp8Kz5LcL/SJ/wCHz4hb8HT5S53/AMG/4umwj3uB/Xzmj7Vsifm2V0XDoCftj3z7CbJ+= b6LoR+4H9fOaPtWyJ+bZXRcOgJ+2PfPsJsn5voutg9pnzJ559HKL/to8MvgD51si+kVR+IqsORE= /RD7/AMR1211J+iH3/iOu2uaifqL+yv3DHQbFJc89RHaLtlvf8WubctMqTcxhmFgLDL1+0yShoi= TVdIsXntEPDP2YFXOyclBP2jxSikPeQoCUTaW/nlunN824mL++n34A/wBlZEf9g6W6+EDft7kD6= MKY+APq/wAJ2zW5cOfB97tmLDmNMuR+46rwyeSMf1S+NYJ1RZZ0eNJaYFlNoxi7xGbTBczUHhWy= rhNEoKdhlCELyBQyRDEERmYr3ihreWwP5/Z54MM14G327TNzEkaDwxnCmW+xlIqqFXBw7hbOuig= kZZddlAWBrFysi3QSKY7hxHtHSKAAPjHJqxtwvdJx7Eknr7b6zSoNR2kwTmLZOxlejDvnCayqDM= j6WctGxnSybddRJuCoqqERVMQggQwh85jcPt9zh0/9xSdMsUmMDkClOYi30y81B28bNpGPFczmG= sMC+ORs+STFdqs0XQXIVRB21dtFyqlTMJ2dN0t6x1v56UmBMh5nzZXdvLSy3env566ztbmbFFr3= 2sRl1rcvCNYquAo+RNLv0JWTZqj2pNmzfwlQ5OUBteFU02b2HAJK3JBNriwH3XwYPpUL1SsgxZ5= yh2+s3WFI6VZHl6pOxlhiyvUCkMs0M/iXLtqDlEqiZlUBV8VMqiYnIUDlEcq0J/o645xlifaW/r= GK83wWf6v/ABp26TPfK9XZussSyTqPrxHcGaPnyJPRcRyaDdU6/aCJyPEwKIiQw6sRlHqN7IMM2= V5Tci7kMdQtojVztZSDYv3lmkIl2mACozlkKqymjRb1PkPFZP8A2d0nyHiIl50lov7I1NblswJ9= Rs3v5jBi7GtcXPMWJccPGsfkLJ+P6K+fIGdMmdxuNfrLp42IfwzuGiE1IMlHKBFP6MyqJTplOAk= EwGAQ1SQerx05Q5D+U/UuQ+mv3wvPuMeqFKP18D5eo+g6GJ1lMMbcM9ZLwjccmbw6Xt/Kri5Veq= xljot0tKlpgZSWNKN55mrX25iMm5gclRFs8Ik5Exe4SF8wAEQ1Kp1pq2Bs5va3kT+R688GGF7hl= nH9HxnOZinrNGkxrXaw4ucnbo5Q0zFFq7RmMgtNNFogr00kyFiAOUFI4rr2lMSmQBQDF50xtw3s= bbd2j20sMBZGa31xS0IxzZSNoewRXxajMnepxpzDORccC/tKke7KANxVEnhCKnYBidw09024LbZ= gfpfs9vEtm2AlrPetlrau4gcpw1iZlyewToTWBhZyJQNGLEjEJ1VJFdu2mHLRVArghVh4ATaEH0= Kd2u3jaxZdw7rPuTIrHLe5Q1ARrasmwnH5ZNWGd2hWSTTCEi5MyQtU5BmY4uCpFN4xQTMYfLSgi= BVnN9S7DnY2seW3ien54MOq6mqjZC33bTcVUPGuTsg5kg6zRMvsV5PG9heRdlXbWpg2bMna7lk3= Ywjp8gmm2kWSpvbmrQwA4IXt7hEoaVL1eenIYwFDdDUAERAOTQF7IUOR45Ex6qUCgHziYQAA8xE= A0mEJOoKx8wCR4dNsGCPqnBJM6g+hCiYfcHmI/cHI/dqjuIuo/s9ztktnh/FeXmNpyK/NKlbV1K= u2xgqqMIksvJcO5OFZMSi2SQUMbvcl7+0QT7xENWTx3mLF2bKQS9YjvlYyJUZBNyi2n6pLNJePB= 0ilyuzcqNlDnZv2wnIV0weEQetjmAi6CZuQBKDo7AH86LUg48gWyyIe/wCKJfSkaCTvAbjQp8iG= BA/PyODD2QeYB7tTXBfQPcH4amk8GPmHm9B9w/hp+Hphfu/NvH9R5L8xTukHjeg+4fw0/F0wOB6= f23gOf+48mA/fYZ3/AJDU6PhWfJbhf6RP/D58Qt+Dp8ps76f3G/4umwj1uB/Xzmj7Vsifm2V0XD= oCftj3z7CbJ+b6LoSG4EQ/j4zT9q2Qfd/jZLfPotvQFOBd5N55+fBVkEB+YeLfRQHz+oRAB+jkP= p1sHtLsexTPBcfJujbmOQeka/Mbadx5b4ZPADD+tbJNxtxJUjmN7VFTc/by/nhyQn6Iff8AiOu2= vEkYvaPmH6RvnD3/AIeevLrmon6qDroU26j2RfbyJsfPHQdTqF//AHywjt8IH/b3L9imP/7ytmm= 5Nj4B/I22sBwHH8n3EIccfMFDguA+7Sjnwgb9vgv2K4//ALytmr6YB6/+33EGBMRYpl8JZklZ7G= +L6XR5B9HK0okTIydXrUdCuHLJVxYyOSsXTlkdRI6rYqxUDlMZED/I1mNG7wwaVvpUoR6WIP138= +V977Vxpz4SPHxSWZ9usigmiWYc44s7V8chSgsdg0sSB44qogAGFMirqQBEDCIAJlO3jkdVutTh= 4r0FaCm5MoKLfeSoixAwmEpWoxF2WMVPkeAILpRwcShwUDiI8ciI6o/vq3i3PftuCNkx/WTwDL2= CPpuPqKydKy7qKhUHLlZqzM8TaojIzElIPHDl0sgxQTOssRskmRugQwGg374Bl9tfRH25YwsjQG= Vqa5co9htTUU/DWaWC2w2SLG/j3XHkZzF/GCUYsYe4RUaGApuwpebzZFhjb/ELBhbcgEeW4IIPM= eh54Ma523bgrVtw6F+U7VRZVeCuFt3AWXG8BMM1DIPotW1MKsWTfMF0xIs3fN4FnLGZOUVCLNHH= Y5SEFEimCrnTA6Vqu/8AiMgZJveRZeiY+qliTqjV1Cx7SWsdmti0ehNyoePKKC2aM4plIRKrhdR= F0u+XkuwoIezqrL7mxniiwZV6C2RxrTFzJyOO9y8xkpZizTFVwrEwLGsx04uVMvJjpR8TNPJJyA= FHsbs1VBMXtAqnv9Gjqf4R2dUbI2GM/nn4GsWK5myFV7hCQD6yINpN9CRcFMwczHRBXEskCiUDG= O4t40YPEe871F6ZqAt1FqMxVZNOz6135tbSOXPb3bGx8zFD+p7sqqexDO9ZxJTLnYrvFTeN4q7L= SdlbRzR8i9kZ6wxJ2iaUYmm3FsmlDIqkMYoqCosryPHbxdPrrFKE1snECgAjtcroCIAACIAdpwA= j9AfN9Gq79ZDddhTd/uSp+R8E2J/ZanD4mham+fSNem62unNsrNa5Nw3KxnmTB2omVpKsjlcJom= QOZQ5CnEyRwCxPXX/652Tf+V2u/wDzaaqAzGEliDc3HM7BdyPP8jgxfHdBsTxznvplYO3K2W0Wy= Jtu37YXWJCsQsOMUWCl1YzH8dPIpzRXbFw9Mmd0n4SvsjlA3gDwUSn5MIoOkt088W7+5zNEdky2= 3SqJ41jqa8iFaapEJqPD2JxYUHZX3xpHPgMVEsUiKApAmICor393JeGSbAydyHRCXaskFHDk3T5= YqJoplMY5xb4cauTgUoByIgmicwgHnwHqHrpf3oi73dvuzy85ySz/AGp7SYjIldp5YGwErlgsUe= D2tP51V2xeIViNmJJus5SmUVGigsTNRBu4Iu4RUBIiqQLNA5tqINgAN+ngD925vvgwc/e9sP2ah= tk2+0Tcfn6axJjHbZGu6tT7U+ma1GytlVkY2MZi0dIPot0aYlxawJXKMfXo4zpUAdKFbHITggNs= g7VOjAnTLMtj3f8A3JS7N4WRc1hCaptndQ7ybbtVVY9lIJNsXMFDN3rkhGp1SPUQRBbxxE/hgGs= l6+OYCZgy3tqtFOn387hOzYEaXjH732WUjouRdWO1TqUtLIRsq2Yu0X68ZHQSTgrxmg7RbptU1U= 0+8e/EKrhrofOsURUrZN0ebEMpK0lF5IQi1dtyCCVzGIFZWMMDPEr6ORakmBFqmKMw4bg3Ao+2m= LysN0aMEVtUoNxdVNgLkAi2k8ut+fhywYzv4Pbk+0QG6LIuJmcsuvR7xi6cn5KJ7jixGwVN7Fli= ZpBE/BUHQsZOSZKqEKBnDZVAixjCgmBdK9HX96JU/wDTZb/umX1k/QOIinvslCtzd7cMOZF8Aw9= 3Io+1wXhCYDFKIG8Pt7g7S+fIiUphMUMY6Ov70Sp/6bLf90zGlXGg1DC51KnPzAJJIAvuLHYeuD= D2JfQPcH4amoX0D3B+GprAwY+YcYfIQAflCAgAfWIeXu+/TtfTK3QbdIzZhgnH0vm/GENdoarPI= 6ZrUtcoKNmY12rOTCxUHLB89brEVFFUixSCXuEhiiPADq4xOn/smTIBA2qYDNwHHJ8YVM5h95zx= Zzj7xMI69B9079kD8gpq7VsGJgbyMZpj2vMVA4AQASrMWLdYDAPAAYFCmL6lEB1JDtN7ZOGe0zL= cuyutyfP8pTL65q6OppnyysZpDTtCEkglkiUpZyx0uWBsLEC2I7cAdkvFXAOY1eY0+ZZDmRq6Q0= ckMozCnshkjlLJIkblW1IBc8geQNiAWZJ6GznK9wvF+xlu5xtPK2+zWK0oxDqqnBq1POyzuUBie= Yg7jOnVTQ9q9nF0nFCZQC+KDcvPYFf4zpK9TTa1Z0skYJsNSlbPFlOijIYsv3xfKOGBlCLKtHsf= dI2rISLB0dBA68UoL9BcyZAOgr2EMDEn82BslRXB1FYTZVt0UREjiqXHINWVRN/2ToGgLTH+GJQ= 7gKQoAQvPIF5AOMqj9kdUq6hFsdZn3L48UTSMmihFZxtlriEufQ38HMoGv9cW7O0oE9oilewvIE= 7QEQHzqftw4hp6X+jmz5M3ysQRUhoOJOE8vmp3pY40iWB3y6taYroUAloWIIubgEjNn7G8omqjW= jJGy+ueZ6hq3IuJK6KoiqHcytNGlfRrGCZGJtHUqQpO1xbAxcJdVbcFhV5H0LqKbeb1QCJnRYpZ= sgadJpQqgFBJH2mzwzdN1GKl7vEWdzNTklkVB7CNq0nwcwHIxnlbHmXqvG3PGlygLtV5RIqzOYr= 8g2kGhgOXuBFUUDmO2dJ89qzVwRJwioBk1UiHKYNaTWw9nuNZKxiecK5laFWKKTyJzniWuybl62= EvYZsWcxo6xxHtTqE/ozunlPmwDuE3spuDEPpyA2asa9Z3l5xVDobWsnGMDl5J4dnRn8R3fw+Cg= zu2L5eNrcRIlcD8tyswgoSfRARMwuKLsPFNrjPKvhbOnkq6Sgg4cr5CXZMrmqKjIpnJuf7DWrHX= ZcSTZfizVcIPsiNFuwf2SU3FGSgU9TVzZ/RJYK2ZQwU+cQodIstdS6qSu0KCwWdaeRgukyvIVxh= u7TpL7ad6GWBzJlmcyqxtIVuJqxUKdY4KJiQi4deQXZiLSQq8u4F13yLgFlfaxIoUE+1MnaIjWQ= fg8WxvgeLRuAAeB4EbvUxAB+bkP4B6MXSLNcewsLkaFZRtkRJ4XxvXV3L2oz/hcFO8i1HgEkYhZ= cf6ZWElyncMhOdq1kppFqeRU2xplHvIyYy4YLazIdSH9lhs1rC5ttexw+opBKgcKy35qwswPUEd= PTpywL3bV0g9le2K2ML5VqJKXS7RDgjuDs+S5v8AhQ7gnaZQFJ3ERqbKNgGjxBQPEbvwiTP2yo+= I3dJCGrK7wdoGMN6uKWOH8sPbYwqzG3RNySXp0oxipgZSHYS8e0IZ5JRkwgLQyUy5Msl7J4hzkS= EqpAKIGtbqat1Ne9zcdb77YUxSjb/tkwXsE28W6hQEpYVsSxC1uyHan9+dNLC7QZuolqNjO5+KY= Zgm4jU42JKb2JOOWWMALByuKhEygRyvi34PtlC0vbU1znLY0cSa6rp/FY3eW6MgFXK5xVUWbQ83= RbC0iyiYw8NYoGTNMvySNSj5g0Vk+gReVceXfGs66fsoS+1SeqEu8ilW6Mo1jrDGOYp44jlXTV6= 1TeJN3Sh253LRygVUCCq3VIAkMDMvwcjZoAeeVtynP0ltOMyh/YOKB8/r93kHGlE0bl3ZTcWIF/= f4+/BhYnePQNrETneHoexy23XKFAfQdcYfHVo7nL+Wv0xIvUV46D4r1dcOGKbdeGakKeKAykgZ4= VBwumUBI5luH6V2Bt4UThiQzdM5IYT2LcXQVDYlo8/DQzNVBqzaHdHdoydcmVVVwdpnAhyKogCX= BDJGMAnHE9snRU2b7YshxeUYZHIOTLhXnRH9WeZUsEJLx9ZkUy9qcnGQtbq1VjV5BEeFGrmXQlD= MVykdMQbOkk1il147ScAAAAF4AADgA4DjgA+YA+YPo0SS+0ojL2QbMebGwBv53Fxy574Maox/ie= o49w7VcHM0HExR6lQovG7RnYzNpFxJ1eJgka8RtNHRatWr47yNSFF+YrRFFyKig+zpEP4RRGWjo= BbELHPycwzUy/UW0k9cPCwNau8cEJHi4UMp7PHpzlXmX6DVMwiCKC0i6FMggQFOAKAWZ6ku4S7Y= mxvU6Vh6clWeV8l3aAiFW1LiVbPkqHxeg5VdZEuNRrTRlJrOH0LEoFRSdqsFUmyjzvbh7cVAxPy= mu5uXwo3YRR2VpvlZtNIeZOobTINinIu+03F1AqTRfItqy7L3iKGYj3C1iUasK7EvSSsnJTEsCC= ryOYEULG+1T8PZpLl1JmMLRD49LVpS0hLLPIlGYQ87atMaRt3rmMs3trTzWP6t21UcU5bT5lV5d= IXU0MVM1TUgF4UlqhKY4gIwzuVKIjlVJV5owRa+M5yd01dquYcA4w285Brs1N13DUC2r2PLb8cF= Y5Br7Rq2RaHVRsDBki2XUepN24yDVzFrRTk6SKpo4qhEhTpOHwejYxyPNqz/AOfmABdqr5eY+X+= IXP1eYiPlqsqWfc2WKHyizdZ0yNjiwZduUWZSAZJVBzVadH31jI5AyI4XmLBDSlpiBwlgyMhRl0= KzJVZBjZ5mKT9pGSdO1HRAWW86yUTEzO+V9var9F1txVzWCvZKXj218maVZqsQMdrV9zUKrBwMT= ZbdPzFTOLSXRsh3TSRcN1JBF/HyKUf6WYcHZpQdwI6qGrkqJhEkcaVCDW0cD276VFiIaSVoUKF0= aSCUagLHHmZfx1l1aJ2lgmpY6eETySs0Ug7sySrfukYyCyRrI4YAhZkP+VsZptP6S22fZtlI+Xc= TTmVH9lVrUvVTt7jZYKUiRjZk7U7w4No+rRDgHJRZJeCp7WBCAJ+5M/Idv523PpGbYNsOc4/cDj= yeyw7vMcewmQaWazQEhACNlQctX/eyZ1WMdn7COTi27X4eGcCifxQAQHHoXqHR5bRk6faNbPa4c= zq0SkLWZaRq8FVqfjLC0HHxuQciR1ibRSspJsLJfnsjWIRrIDJjMz8M4RiXTCMTWWLnm3/MM9ul= 3KMMh+DOUalYuw5GQw0RzJmVF3ljIrGt3C5MZYrIrdq+Vx1XXNShVju25RazU1IIJIt1yOkS+fL= w5nFNTVNVWR/F6anpe8ldmBbvQAFpljJ13eUiISaQqG7Nfkc+HizLKuakpqKQ1FRVzrEkYUqO6L= XepLn2QscYZjHcuxsBa+xQS/ol9wfhqa4KHBSh5eRQDy9PT5ueB4+jU03AWsPZH71/Drbf18vS7= ov5H6xbw5+HPf0Phjtqampq7FcTU1NTRgxNde3gREB9fpDn/eGpqaoQDzAPqAfvwY6CiUfXj15D= y/8A3zH6/f8ATry6mpoAA5bDw3sPQchfrYC/XB1v42+zE1NTU1XBiampqaMGJrg3oPuH8NTU0YM= BM3KwUBB9Q+ru7UzkrhCZjwSlWV4NGek6upXEqFc21oOkylolRRw8gLWsimxtVaVQQZTTEzhnJL= vWDpdke58Ftcwrmyk1+xXqpi4NLU+0VZvHRM3Y4Fgxx9cJtGwhRjtoaYYtn0RCvWUY4iwXbkTYv= 49F7FtYwO1snNTT0zupqKfJ+GauCeaGpOWLF3sUjxsI4ameCMLpICFYgF1qA7WDMxYXxr/Jaann= zziekngimp1zR5RFLGsgLyU9NIxJcFmXXuEZiibhFUbY/dHYhthM8Veq45Scqr/wuB0R3P2h0g9= JemjRpaU3yK82cjwkoLJu8UBwCngyJTyDbwXiqqx9gK7XMPLY6h8XOq+6eVGCmICwMW7ucsDmTP= MVdZstCPX8+vKqTkkdkRk0aJkfyLhMWLdFiJBaJJoEmppsyZtmkrI0uY1sjQyI8RkqZn7t1tpZN= TnSQWY7cySTck4dqZPlUSyLFl9JEsq93IscEaB0Yi6sFUAg+eNaOdhG15eOaxP8Xijdi1rUhUhS= ZWm4Mxe1t/MoWIIeUUbT6akqzjppo3kIYkiZyeHcJmPHnbiqt37uxTgjGuGUp0uPYEIQLNNP7DM= iZ/LSajmUlHSr6QVItLyMgq3Qcv3Dh8ZogdNuDt06cAn4rhUxpqaJ8zzKqiMNTX1s8JFjFNUzSR= n2tW6u5W+oA3tfYdAMKQZVllLKs9PQUcMyX0yxU8SSC4INnVQ24J69cbl1NTU1g4z8f//Z" wid= th=3D"162" height=3D"85" alt=3D"editorial1.png" style=3D"margin-right:9pt; = margin-left:9pt; float:right; position:relative" /><span style=3D"font-fami= ly:'Times New Roman'">St=C3=B6ckli, S., Schulte-Mecklenbeck, M., Borer, S.,= & Samson, A. C. (2017). Facial expression analysis with AFFDEX and FAC= ET: a validation study. </span><span style=3D"font-family:'Times New Roman'= ; font-style:italic">Behavior Research Methods</span><span style=3D"font-fa= mily:'Times New Roman'">, </span><span style=3D"font-family:'Times New Roma= n'; font-style:italic">50</span><span style=3D"font-family:'Times New Roman= '">(4), 1446=E2=80=931460. </span><a href=3D"https://doi.org/10.3758/s13428= -017-0996-1" style=3D"text-decoration:none"><span style=3D"font-family:'Tim= es New Roman'; text-decoration:underline; color:#000000">https://doi.org/10= .3758/s13428-017-0996-1</span></a></p><p style=3D"margin-bottom:10pt; line-= height:115%; font-size:12pt"><span style=3D"font-family:'Times New Roman'">=  </span></p><p style=3D"margin-bottom:10pt; line-height:115%; font-siz= e:12pt"><span style=3D"font-family:'Times New Roman'"> </span></p><p s= tyle=3D"margin-bottom:10pt; line-height:115%; font-size:12pt"><span style= =3D"font-family:'Times New Roman'"> </span></p><p style=3D"margin-bott= om:10pt; line-height:115%; font-size:12pt"><span style=3D"font-family:'Time= s New Roman'"> </span></p><p style=3D"margin-bottom:10pt; line-height:= 115%; font-size:12pt"><span style=3D"font-family:'Times New Roman'"> <= /span></p><p style=3D"margin-bottom:10pt; line-height:115%; font-size:12pt"= ><span style=3D"font-family:'Times New Roman'"> </span></p><p style=3D= "margin-bottom:10pt; line-height:115%; font-size:12pt"><span style=3D"font-= family:'Times New Roman'"> </span></p><p style=3D"margin-bottom:10pt; = line-height:115%; font-size:12pt"><span style=3D"font-family:'Times New Rom= an'"> </span></p><p style=3D"margin-bottom:10pt; line-height:115%; fon= t-size:12pt"><span style=3D"font-family:'Times New Roman'"> </span></p= ><p style=3D"margin-bottom:10pt; line-height:115%; font-size:12pt"><span st= yle=3D"font-family:'Times New Roman'"> </span></p><p style=3D"margin-b= ottom:10pt; line-height:115%; font-size:12pt"><span style=3D"font-family:'T= imes New Roman'"> </span></p><p style=3D"margin-bottom:10pt; line-heig= ht:115%; font-size:12pt"><span style=3D"font-family:'Times New Roman'"> = 0;</span></p><p style=3D"margin-bottom:10pt; line-height:115%; font-size:12= pt"><span style=3D"font-family:'Times New Roman'"> </span></p><p style= =3D"margin-bottom:10pt; line-height:115%; font-size:12pt"><span style=3D"fo= nt-family:'Times New Roman'"> </span></p><p style=3D"margin-top:6pt; m= argin-bottom:12pt; text-align:justify; line-height:108%; font-size:12pt"><s= pan style=3D"font-family:'Times New Roman'">El art=C3=ADculo que se publica= es de exclusiva responsabilidad de los autores y no necesariamente refleja= n el pensamiento de la </span><span style=3D"font-family:'Times New Roman';= font-weight:bold">Revista Visionario Digital.</span></p><p style=3D"margin= -left:36pt; text-indent:-36pt; line-height:normal"><span> </span></p><= p><span style=3D"height:0pt; display:block; position:absolute; z-index:-3">= <img src=3D" 9eQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAIABJREFUeJztfXl8VNXZ= /3POvbMvyUz2jYRAQIiCsqm4AWIRxbUSq1hbtErVQoFWFKVl+qp1oy8tuAAu9Wfr8ibaVlFZXEB= Qdg1bgJCQfd8ms8/ce895fn9MAtkmmcmCWvl+Pjcw955z7nPvPc85z3m2Q25/Ye+X5S2+KwkAAA= T/Dj4Q1CLlI0w07fWFl9eEKjVr9Y4kt4fnO7wsgQwSKQgAIgEw6VQQrRd9BVXO/1w6MsY5LFr4r= LqV7t51rKbprpjZss1G+ODcEUhubi5t/zF37lxOCMEeaUOkeXl5pK0cEjJoNJzDWQJ5NPfo/W9+= XfkiJUQkg9VruwARIdWq+/qF6wzTJ02aJIei5Zrnv553vNr5GiFEPbgEBBkp+F8EzgGAAOpVQrP= FoN41KsnwfrRau238uPPrFkwioegLC88++6wpKsp6E5eZBQCAqcn2hQsWHOlaLjc3V3A4HLfJfh= aPlCClpLaw8NjnR48exczMTHnDhg0+OEN2r5g7d67a7XZrZVkmiqJ4tm/frgzkGYYS06ZN04qiq= AEA+L7TGg7E/Crne3o1ecwvQ/pQ3AABAQgoVpO4vhfmAdu2bcLHX8oPIII6yMeDyMwk2BoiAgEC= QnB+IAGFx9Y6/Dc2uf3XWgyqE1X2vc//7+bKT5Zem9bS31u1trZqjx4t/KkiyzcjAkRbLO/n5uL= tOTmEdSy3a9fB+Ib6qlWImAqEBOLj495pbLTfodeZCIBwymazrbDZbFI491QUuFwlqO8TqUbtUj= xPA8CB/tI/1LBYYm9mCruVIxCn0/0YABR91zQNBDTdoHalWPSfICDH8Aa8yIAAOjUtSzYK23orV= ldhuaC21TcuOAsOzUxICOl+AIDMUN3gkMZ9W9G6ZmN+6Yb0xZuT+nsPjUbjsFiitjPGvYwp4HI6= ZlVWvpTcsQwiEoej4epAIGCVZRkAuSMlJbVAr9PeoNPpbtWotJcBgBjuPfUaXYbeYLxBq9ffqtN= p+k372YBeZ8jW6fQ367S6m7Vaddx3Tc9AIW5YMFGZbNu+QRTonYxh1GD2XUQERMBJaeadlIu9ju= rflNrvZghGkQ7VOqxnBJkoOEUhoqWowXOLwlGzPK/guT/fNvarUOuXULDZbNKyZcu2iiK9X5b52= EAgYCwvLboZANa2l1m3bl0cJcJCQRC0jDE0GA1bY2LMGzOGp1vcbq8QGxtbYTLpwhYlM0ZkHuac= rUaGKqfbXdz1+o4dO5JcLpcpKSnJPmHChMZInmewkZ6RvgMRKSKSlpaGqq7X9+/fn2m32wWVSmW= fPn1603dBYyQQAQhy2FhFUTygAFxNBpGDEBAogaYGl//ltx+9yrdhQc/lNh6sTPn1G0d/RXu+fH= aBhAoUZn+QX5NV71RuAoDCSJsYM2ZMqcPh3tdqd4zhnBOn0/k76MBARUWl2U6nKwMAKSJ6jUbzX= 1pbW7XFxaeucDqcqtbW1iOJibFCbm4ur6qoWb579+4ZktyZnxARXG5PzbZtW+8qLi5KlCXpMsa4= zuF0fAQAMG3aNPHKK6dfUVtb+8grr/x9BKWCgTG5dcWKlQWZmekr77nnnmMHDhzQ/+tfHz5XVHh= irMI7SJgcwBwV7TWaov8WF2f60mazSf9je+q1A98cGN55nUwgPiEWEhLinnnyySe37tixI+6dt3= KfrKmtyWovQQlAfGJSc1JS3FMrV648dMftd2UEJOlKjkAcDsfbAADbtm0TN2/+7JLGxqZH1r38y= oWMMUGSlMZFi5bslyTfk+vWrSuL9BucLYgAAE/Mm+N6+7N9X20vbJkOAIPWjxEBxqWbi64aHV3Z= 20i++O3CmRyJUYxssB90EEKC6yQkgsPLsj49Wr/mxr/uufvDxZfUR9LO/Pnz/ffd9+DfGGfXEKA= pDqdr2Nq1L928cOGD/0FEsuS3v7uLUhLHGIJGq9kaHW04TAi5TBDEKZRQtSgIDADoofwjCwtPFq= 0EIIJKpep0D0QElUosBgAgCPGCIEwmhBjUgjraZrPRhobm2YUnivIQuYpzThERKKVJJwuLRpeXV= 05+6qmnblUUpVik9CJBVF+KigKIGFwvUgJerxfdbvc1lKbcBwD/UKmFySqV+vx2/mn/UvYWB7Ta= HRNXrVq1nBDykVqtmqBSqSYCIcEOAARamlvQ5/VlP/LII7cAJWmiKEzhHAmlYM7NzRXefTdvbkt= z61oAtLQNKgCEJNbU1GYjx3Fz5877ZV7eW8chTKXK2QQFALguiwQKGz15AqVliINHo1pFvXYfe3= nZ9WNDdsA1nxSZKfCHBQKAQ6ZGDx+EkHalA6UUrw5wblv2wQlTpO20tjYeiY+PqyAEUBQFcvjw4= btyc3OF3/zm98Nqa+suYowRRMbnzLn+DZvN1qa+RgKEEEQgVqtVrKquvg0ARLVa7RkxcuTmrFGj= 3m8/Ro0e/f6YMWO3AAAABSCEEiBABAGJ3++PsrfYX+dc0XDkraNGZ7136dRLn4+KNu/mnFO/z5e= c/+2R+0pKStRAggAAMjxz+FejR416Pyk58VNCwEcIUbe2tPzJZrMRIPSFUVlZZ+4/atT7RqN5c5= v8ayo4WngPISQeCSGEUCIKIomOjt6kUqnKEZF6fd7RJ0+WTaaABODMQnfv3vwsj9v7JCKPEQSBj= 8wa+V5sXOzdMTHWTYDACSGT09JS1vz5zy9YB+sbDyZOzzY/vTS9yqCl2zlHNjg8hBCtU1WNS4s6= CBB6aqn1SD8NKJgB0NZ5vwdoVy4whQsnqlw37DhUM9aGGNHMnJeXx6Kjo9cgoBeAgMftvbK5uXk= MgDwLCB0LAGAymXfPm/ezD3qqzxijQpu6V1aUarfb80Rx8YkVxcWlK4qLS1fY7Y0Pp6cnL+upbm= bmyIWBgBQLQECk9JWiohPzfv/7xctSU5Nmms0mRASVKIozyovLT2teCSGg16uf+vPTT8ydOPHCp= fHxcXUAAFSgcQUFBcRqjfqn3dH0cGXb/YuLS1fExJj+YjQYAACIojBTeXm5vr09USVCxvC0Xwui= OA8INCGHJkUJ+DvSSSml9fW1aYFAIBURYdTorJ1+v/Xudete/Ecg4L2XcywFAKirqxtnt5dHR/L= +zxZOd4pHrxnhIAC5AiWtA54pEYEABAxqcYufmbstatth23hA/59vaqdxRE04ay9EBEoARNr3IV= AAAgic8zZlRoTPRIIDJeOYkhStX132xkFzZA0AuFytn4iiqhgAQJIkQ1lJxbyAP3CToshqRPQZj= IY/harrcDgkSulHhJAA52xUXV3tV5zTAs7kAuRKgaPVs7uqqmZBbm6usWvdPXt26SmloFKpIDMz= U8rOzlYAAGw2mzcqOrqMEIBAwC+eqqhQdb8zgNFoBErPjBczZ86k9fXNj7e2uvcEkBUglws4kws= qymu2eDxeAABgnIF8ep0W/JYqlQovmH75kcunXT7nkksvufGqqy7f0fE+JpNFPWXKpDkAICIi7N= v3zctRUc4AAIBOpwtER0XXAQCIohAXCKAuzNd+VtFJVZoVZywsqHFV+mUeM5BGMfinWSHs7TfmD= /eHKldaR8b4ZTadABHDkd5ECq4xKcYvTVpVa6/lEUBWOFTZfdDglKJVApniV3gMIgqRzHKEEOCI= cLDCMX5EnDYJAFrDrgwAa9eudS5Z8rt/VVZUjyeEaGrr6u9gjEcTQggVhD0ej2N/b/XPP/+8dfv= 352vUatUNhBBTmzULZEmx+ny+xKrK6seLYsp2dK1nMJnA0eoBRAS/3w9q7Rke8/v8Svuz6XThac= pra2vTik6WPMAUZhEEwafXm1qAgEIJVXk87mTGeI8LZ5/PB7Z773UBwN72c3f+bN7p64QwlGW5B= RGREAJGnU63fft2CgDc4QCgJAAAAJyhn1KFdW3/+4BOb/DCFHNNtcP/Zb1TGosI/fcGIMApheMJ= KlVByDKIpOr5r69nCGHbAgIKP5Eea/j1jVPTXH2VbWlugU3FAPRYuU7Ua4cbNPRXJQ3un/llboi= IiQBAklHv8IFt7tzcO/PyciL6kFFRpterCCwGAIvf708HACCUSOedN+rjurpqT291Fy9eXL9kyZ= InNJqo1ykFbft5JgfmFBWXPK1Wq41JSfG3HTkCnWb5pISUjTWVdY8oigKyokyzWq3JAFA1d+4vE= 51ORxYigk6v944cOdLd3NT3mHDixAkrU8BCCOVajWbrsPRhz0iS4h42LDH1YP6RTS0t9kheyWm4= XC6prKzka7VazSRJEkxRhl9b46Le27ZtG1u69NHkivLmTEooKIpS5ff7nf26yRCjEwPZcrKl8x/= 77HWF4x0UID7SNUlQTEJADn69ij774SOXu0OVffxfx4dt8cq3KYxrBdr78iKoQSKB26ck7/nrvP= E16yKzzTgBsWHhW3uPBST1+6VNvtc5YiIh4S1pgu8AocnluybnV6O1eXnQa6fvCpvNVr1ihe2bE= 8cLZ7aLxlqtrkySfB9s2LAhpBvLqFGjTMuXP36ktKQUADqbbhDBRCkBWZZ9+fmHNgFAVsfrVVVl= h0xmY5Hb5cmqr2+42OPx7F22bLm/5FSJRpIIEAI+vV67NSsrq765qddJEAAAJkyYoBzMP6LIsiJ= 4vN4ZhScKxyNyXlZaouK8/+57jDF0u+EQZ/xLAHKN2+WdqNVoCh577I+8prpKT6kQTwjhokDf1O= l0/fYOGUp060UPXJNUYlDRsjYdZMTgQEAUqO/Rn2R/C70spj4/0ji+wSENC49JERSm2Ftc3mchQ= sMmAAAQgmvvusQ5Xd6+JTbKOF9h6ETEiB5RZsxyrEy+LeJ7A+CECeOWQNt6jHOOBr327eTk5Ero= 8H4UBdqvAyIHjUZDkWOmorBMRVE6HYwpcZxzjI2NOXz99bMKOGdtdRGYAvDSSy95GCM36fTaAs6= 52ul0JZeWlGUiQgpjXAECb9TV1fzBarUGOCK01++I4PkgPV6v96jb43mKMcY55yZJkjJkWckMBA= JpsiwD5xxYW31kPNge65mxOCBwjqfv9/e/r22acsmEp0xGfT5jTPD5/Rmnik9lMsYSCSEQGxezJ= Tk18e+rV6/29ePdDzm6CcEPTc92/3z9/g+3HWuaCASESBsknINGKz79i5mpzaHKLMktsO4/2fJL= haM5PMcDguclm3fOPy9Q/2akBHVAUF1s2zzZtv3/qlu991GgYSvOESkcrnVeDAD/L9L73nrrrUe= XL3v8l4IoDGfIWqkf8hYtWhToWCYuzlLJWNaTLodHsMREl4ui6NbpDX+Kjorq3iClMGxYxsmMjO= QPrr32Ws9jj9kOIrI/I6La5fIWbv1iE7755isnXn311Wvr6hpvOH78RIKz1QnJyYkw6rzzvlar6= Y5FixYFli5dqh02LPlVCrBV4RyGDRt2CgAgOjq6aURG5t/MxqgYvV4rPf6H5SwnJ+eJhISUj2Kt= 1jmSIncbeUW12GS1WiszMjPWR0WZU0S1AFarpZvYNXLkqG1cUSSGSHw+V9UXX2zFpUuXfjlv3sJ= p51+QcktxcVlGS0srGZaaCpddMbUiLs763nXXXfe9FN8AQjidPfdxQeLftlYUEUKMQZtIeN0MEY= Fx7vvpJakTXrhz3IkQZcjlT2wbW+OQPpIZZAAQCDkJYbt3HkoTh0dN/+C3U3eFRUgfeGdfddqj7= x45xjgYwxVTg46ocHjFXbGTFvTiFHsOPy70uBBYdn123fmppk8YYkQabUSAGINmS714IqSHbU7e= MZVBo75RZpgK7Sa1UO1BsOMmmNSFORNSjodPSe+4Y0pKZWas4d88IimVgFYlZB0t1gwbLDrO4Ye= PkCtpReJPaYTwlQiICBzBPzzR8EZeTmhNlb/CZ66w+2/BoB9en+0SAMiMN7w274r0/ql6QiAtVv= umWozENorglRRdRYMjue+y5/BjQcgeZJVjTmhU9JtIxmirQajSspStvZWptrtGegLKOBKmYGjQq= uw/mRz/bgRkhIWiGvnbgIyl4RpYCQAwRBiTZJkx2LScww8XIS1pebZs6bYX93ywp6h1Yt/NIHBE= btRr3sxbkuqHpaFLUhV5hHPQ0DC0BxwRTBr6xn2XZEbkzBkOJGj2p1qNjhp7oFcxsh0IBCgQOFT= h6Gb574o1a9ZoSktrUjwet2EgNF500YWYlXV+48yZkTmz/lBx//2LhlEGZi7wTl8kPj7Bm5YWX7= FgwYKzvvbMzc0VSkpKUkpKqrppcwwGQ+9BWy5JepUgPISACaEX20E3Gb1akDnBN3pTM59qcV8w4= 8mdN4azcA+2KYJENc/0WbgfmGo9jxVJdSer7b4LIUxlIyEAx2r7tOGCLMvxjtaWt91u94T++/ch= fLVzJ+z6+uuGRb9ZfMpojn5RrU7/0GabH9Kz44cOl6vlWabwW0gHIx0igiXKfIRzPhsAGs42TeX= l5VqXy7/O3tI8k3a1V6LSOwOZUWyNM6v21zulOb11BA4AiVHqraKFh1ynICKZ/McvfyYzoJQG3d= x7AyKASSdsodAS0hg7EKzdma/oLLqdFp2YE0550qZNabAH+igJIMsCAQABEXv0NQsHiAiSJAEAp= NTW+VOwtvYKtbpk/7133/vr8ZPGH+uqBm/HM88895+qquobOn0vBDAYDPlanWpquGHiA8UvfnHv= ZSajcQfpImkIgmi/5prpU6+//vqT3Spx3v7OOjEQAoqBQOA78TT2ePQEwC0goqqruM+xj9if7Is= C8o0TkjdSSgKh1HEIBNQC9Qd8bNX2h6aH7OwvbS9LcEvKA5QQIH2EHCEAiAJIJq3w0g0wZ0hG3L= lz50J6tBZo2DMEASQELHpqwDA9swfiXN4ecn7mNyWSJE1pdXs+9Xr8T//zn5/06Nza1NhC6+saa= F1th6OuntY31J/VeMXq8mpSW1vXmY7aBup2u2O0Wu330rO6P+j1pdqmT1f2nnR8YtQIlZyHsNwj= gFYUvjXpdKd6a+s/e2tmugKSJSy/A0RQi8JR4JA/iOmmusGiF8MOocC2aKWrxsbfuLuqSjNUNHV= F1xwOlJKYw4eP/qak+OBim83W7fu1P06bMzmcSdDy3cT7dqSjLdTqvwp9vtWLx4otmXH69wkhrB= v7IIJAUYo3az6NGRUVMtbelltgdPilh8J9fYSAkmRRb0sYpRramHga/gdtLydSolULEej3uyBUa= EX7+Y5HNxrauEOWZdXRgiMLZRkmdW8HoH1deqYdhKCgfTahtNHTmRZJUnxer7dvOfgHgj4ZyHbD= JG+NS3pPEEh910/a9mkqBAKbcueODakhya9pya51BM4jfVlO4bTFv0YlCB9kH7t0SF+0LAMAhtu= xgnTXtQYKIClpQNogQsCtKHK53x8oaT9kSSoRqNCs0WpOM0pvTMQ5xjQ3N67euHGjvuN1URRApV= KBSt3hUInQNSR8qKHVajvT0HYIIlUIId/L0IT+IKyAEGusvtTlkfYzBjd1voI81qwpvDg96mSon= Adzc1FQ6vcuBiDGvqSloDEWIdGsLZqSoT9hyxk68S0vLw8SE40gUALh+ONh23Cx51TrN5NI/5Mv= InKu1xmfZxh4paHB06kjXXbx+HiVQZtSVlYW63Z5ltnt9nGU0m5iZttv0tJsH3P48LHLAODT9mv= JKakrqSC82LG8KAIYDFEOn8911pIYpg1PK7BY4q7tel6r1fpLSkp+0LngOiIsBnr2kinOJ9nubw= 5WuGYxhlqA4OxDKXXGGMR3n5k3LqT2TXDlJ+w4aR8nUCIKYfRUtUCdqRbN20/nDG36pYVXGMUiy= Tz+cGXfaul2BNME8wGNnogATS2N5R9//GFt12tbt/67AQAKEBFycvLeJfS9ZYj4Z4Cew90R0XSq= qPhWm832eXtehUWLHsiHniXTs5qQ4+WXX7YDQCijeti0hGvottlsYmsr9Gmj64jo6Ci46qoL/dO= nT++3oiosBpo0ichXr9rzPgeYh4ijgRDgAICMN88YGffVpyHqISK59W9779ap6HCF9/0iEDhQQa= idPDruyw8jeIj+IKCJF9RMmhTJKggRYWSiCfqOoOkDvbMgtjEL27hx2yt5ef+4yevxXgzQnYkII= SKh9OKEhOFJAFANAPDoo4+tLC0pu7SjdpEDgNloOpWSlvhbm83WbRbKzc0Vtm/frps8efJF+fmH= M2NjY3Jqa+oEhYU/YXGOPpVKtW7duhe2AADMnj17rNlk+d+uWk5CqX3OtNkL71xwR/MfH/ufGSe= KTjysyApwAJAVNp501XsDQFVVVXpJScm7t94897RIL6hESE/P2DxjxhUvX3fddYHy8vKrpQDbHI= ndrdWugoqK4yUPP/zo0aSk5FedzpbPV65c6YskF2DY2S9/khVdWdng/NbLyAgAECkQOTvV8MryW= 8aUhapz54ZvYo5Vu66SGWrDeS6BUCkxSp/H9o0sDZeu/sIOoDpW7TaE+74JQUAOkJ1q8g2YgcLE= nDnTmjdv/ugPPq//Y4DONqX2juJwtGr27t11eh2kyGwiY3xWR9kXAUDhSn5BQfc17/r166MOHjw= 6we32P7J16xdXKrKiq6mugaCXfCS+kNwlUuGj9t8+n2zV6ZRZQpfARZ1e49In6J9AhOaVKyGZUm= GWICIIIQYyQgjIshJFCJ0miGfKiIIAIiWVTU1NIgAEAoEASBIHGkagZPusFghIAICZToczs7y8Y= lpcXNw769atewYRK8JN9B+2bvORm85zWfWqDQDBiExC0H1+knVjqPK5uSgwJl3OkE0KamD7NpwS= QtwzRlm3DaXquh3RGjFVEMiIcO1Awfg7hPJG7+dDTNppEELQ4ag/CsC7iXvtUKs1SYmJseNO12n= r+ITSMwcJqrGzszvXXbJkibW0tHJ56amSD3xe3yymMF1QVS5A+9or3AOAdnLoEEEM0tKRDkpBo1= GbTCbTaVGr57Y6vYMOBz19BBOP9U8Z2rVNSikgR3NzU/O9JafKnvrTn1aHbaeKyDgwLgmOGjSCG= wAgLkrzRYV6bMisnZtdhfp6hzw7oIClz5EMATgi6lV0RyE4dkdCU3/R6lZmuf0sgucnoFeLYNRq= z2q62djYWJ/RZCwPdT0gBUhhYeGZ5+jxVXc/uWbNGrNAVItLS0oeUBgzfV9Sin2XYIyJlRVVswA= 8M7Zt2xaWdBYRA21YML1pfIr5n4QAz4o1/iMvp2d1JCISl6spudklXYNhOpoRghBr1ryalzP1rI= Tunmpw3hdpl1EYL5s6KiHk/kZDgZtuugnGjbsg5GIaOQefL/JXVlRUNL6yuvp+zrGbRwO2hXMzx= kBRFGAKA6YE/68oSrfw7/5CAAEEKgRnPIGejv/qSgsAAKUUBKHjIXRKvcU5b2UK26coSq+HrCj7= VCqxllLayd7WPoAwzmNcDvcDmzZtCiuNVthroHaUu1yrBUpmxvPGzaHK5OTl0UpHwoUuHwsr5wE= CBzUVK0cks893RkpQP/Dg3/f98t8Hm0Z1lc97AyJCkkVbt/z6YRGlthooRo4cGSgqOlWEiFf0dF= 2r1ZomTpo4/Y9/fPyjqVPDG3wWLlxoDviVBznDuI7fp0NnZSajsWjchRccHT16tKQSz4yBTc3Ni= Vu3fHaJ0+nSd2s4AhBC0Gazva/Vi9t8vvZu6F/HFDYbuvjCpaenFSoMf9bYaD89+2t1AGq14C4p= KfEBAJjN5m8b/A2zwlHa6fRJmtTUmBuOHzuxinOMQsTTIh0iQm1tzciYuGgtAPSpoo2YgZ6ZKjR= XaUav+PnUtJBGTnfdMINApeUyR6Ev1XVbIB4kWNQvvTH/qiH3NE6+f6N+a4FjBSV9pALqgPbA3E= q7+9V+JTUZANLS0nw3XndLnkqrvidEEYEritrlcoX9PIoixgYCvhkA2M0XgxAip6SmvJmRkbp04= cKHunWg559ffSUi/h8ADIiBAIKJHgHA2/779tvv9PZUjlAhkJGWUPvXvz4fMqxjw4YNMkSWt++1= ZcsevbLkVNldXRfoKrV6mF6vH5oZaPr06QoAhJx9AAAcTmapd/rHh7VARwCNSvQtvTXzlZw/REp= N+MjNReGliu2WxkZ5vd2vDO8rlVZnBF2WHr0+6/BDfxsyEnuEzWajx4+f1Chyz7pvxrnU6nSUpK= amhmXctdlsVJJ4VmNDrb4H6QCNBsNxlYr8btGiRc5FixZ1q79q1V8RgA7JIEKhu8NRe5rlcGGz2= USfT2vweqvVsiz3WrW5ufUTRJzXkYGCWj8Z7PbwAqAjZqBwEJDl5/wSD9vCH60Vc3Oy+78rXG+w= 2ZB+qvvasNH+zVivB9Y6Amw8CTcpXDuNiBBn0lbnfVWTPxQ09obx48ebzcaoxbt27+3xOnIu19c= 01I4dOzZcAy9tamrKopR2MzoioqRS0fXPPvusYyA0f1e4//7fxcp++Wqns2m5z+sbriiKql086w= mco9BTX0BECHdZOegM9POXv47fX+qdHcy/37f4BgDuYVb9a/kAcP/6A6rYGM0Yf4AMKLUwAIDbr= 8DRGgd5y/VZtNoPV+9s8NysMEiKNIU9IoIoUEix6J74aMnFDGwDpSwy7NhxiLqcPc4WAADAOZc9= fo87XP+y7du3g05jBEOX/NcAAIioZGSO7DGb0vcdv/rVr1I9npY1LqdyiyzLXUJBQn/xnq5F0kE= GnYE8En3QGVAM4YhviAhJUeoiB1EfAQAwWHSmE1XODaXNvuEDpYMhgiegEL+Maj9AFEeAYBh5BM= bBNq9mq1FdwzV009le/wAAOBwVWq87kBaqE2g0WsgYlgr/jqDNUDo0xpi8ZcsX3QPdvud47bXXT= Af257/Y6m+eEwybCN8IPFD1/aAy0M/fPGTYeah+DiF9Zyxs87oOpFk178TpmGc7AHCFq/wM0xtd= UvygRI4QOB0w1y+bGwIAIV6rXvXcCGYZ1KxA4cBms9Hk5NQ7P//si/hQoogUCNQ63I5uu4D3ihB= zFaVUuOaay2O3b9/UbevF7wqIfe/cK8v8uqajZEE2AAAIfklEQVSm5lmEAO1JqwgQmlF6E/HCwa= AyEPFKM/2SMk4Uw1v4mfSqZr/CP96woGuiwl6SLZ4ltHmGc6Na3KUmqvfXLsr6DmJYrMZvDhy8r= 01W76kAavU6e3p6ekTrR2OUocdOIwiCilLVFAA42D96hwh9cNDu3XtHQpe+3G7jEUUBtDodCLS7= OZIxBh6PZ0BMNGgMZLMhzav4/FaB0j7ZJ5jBFFErCh8OHxZTMVg0DAaC8WgcAAho1bRxeJz2L5u= WXTKoI3I4i5X169erThWXvdXc3DSqWzILOD26Mp1Knf/www+HnWxj2rRpoNHo4PCho8BYN0rEY0= cLsm02Gz2za953D4Up4AmR0t9ms4lSQJlfXFzSjUMY44UWq+U3t912sz2qhxTJe/d+O3Xnlzv+S= sJxoAuBQWMg+4jDWS0HpOuCQ2UfDAQIJp3ov3iE+auXcrKHJGlIv9A25SMCUIE4VJQuutT7+dYt= g3wbrVZtefDBpWndr/ihpcUHEyeef+fBg0eWNTY0WXsbGRHRzin7eyT3ttlsyl133bVZllkDId1= 24BA9Xt+thYWFr9lstmM9eW6fbRBCoKG+QfT5XCH7qsfb3XyEiGCOMh/zesV9s2bN6jG39tKlDy= cEQ/W/YxEuF1F45o9fzKaEGMLKNkooaAS6zyHLnw3G/QcLHVxJmm+akPjRnRdlfDY1+5pBHYkpp= VStVq92ueyru94cOQfkCuzdsw/68oZGRExITCibP//nxa+++mpENIwZM8ZTXl5d1dLc0m0LG0EQ= UhUZ3y8pKVv5i1/cdyg21sygw1ZRbrczlaMyJOGtokoNCussKRNCwB/wpwpectf8+Qs2Wq1GDgC= gVqshISHBrtPpWgIBxQltK9aO9ZwOR0pUNBm9atVal6aHLBa1tQ0DzjI7KAy0642DaS0e+X5KiC= 4cBlIJxD8mybh9dPWmIQ2aCxdBsS0oM5v1YqNbUn6blqH5aGp2VPjRdmGCEAKMsZ7Ep9OgPcjrp= 2ltc4tQqVR2o9F836RJkyK22ciy3KxTa16jVDgPkZ9WkZ8JJYeRXo9/g0rNnM3NyDtKOC3NXOvz= +XvYMmLgSE5J9pSWlHLo4spDCTUH/PLTlCq/bWnhnACAKIqg0xne0el0K1taWt/mnI8jhHRaKwq= CMFGSpI0VZaeUnhxPJFnRRWoT7IoBMxAikpvW7LuWEEgBDE91rTCskhX+f9+lnI2d/wABcFpNql= 2Xjopf27LxxJZHLj/vexW331GjxIE7jSbD7yZOvOBof9qy2WzS73//+/e0Os1Mv89/c3CHxQ52k= +CWHAZFVgyKrJyZCbE9tH1oNoR2OJzvco63EwJid6ZGoig8ye0KSvyiKILX643W6XRk3Ngxu77a= s0dSZEUXDIs5XU+QJSmhti50Ytee1peRYMC5jhZs+CampsUzW+J9h9MGOwGRVYR8VHH8cMjNh4c= aQQ0NBwQOIiWetBhd/uwLEx5LT4v++fq7x22KdBvHs4XgTn3UKQh0ESH8rZxekvj3hVWrVjVcdN= EFT0ZFRR1CRKWTF3QHW0onRonQxhIpOJf2ANBGgNAJVc4cbQQBQFxS3IHo6Og1HDlD4J08rPuOY= xoYBsxAJa3+kQ6/MhE5UN6WFKTj0TVNEwHuG5du+eibDT3nOeYIwDgHheMgHRwUxkFWOMiMAyBC= olkDVCCbJg+Pfm7KcOusBCOfkaxXv7JxwaQmGKTcAcH1VD/rdnlvnHOglILJbNg7Zux5tyMq77Q= 5T/Z84/BOQkpKyiEtE38SHW1+hVLCO+5oHjJ8IsyHUqBn/UMgILk8np51ahs2bHDIimeOJEt1Pa= X56nycqZeTkyNpteKfrNHRz2nUGuj6HIgQ8dE3goUGJMLNzc0VYnzGWHeA/7vZ5e2kStVpiPqiY= VHnJ5rFKaIgWtvPS5Jy+PX7Jn4Bv+3eXs1JajdaxYeuGhOX3f1q/6EVKYyIN0J2ktp3oLLpLTXT= uWw52e7KDmX+M5g3BACmKKAo3VPphYe2aoTI0VEmPjJr5El3q/M3GSMz9vSVYJ0xhrKsYOfRFYE= rChZ02fK5bQZrBIAHly9f/gcAYbXD4ZhbV1snABCxTWLo1E4wYpWSvkQfWVaAMYa8Uy4MBETw1d= e39uh1DQDwwQcfHFmx4okrHY6WlxvqGy6TJFmklHRbFHLOgDHOLBYLAgCsXr3ah4iPr127/p/19= bW/Y0z5qcvl0oTL8B0hCiKIqnavk0ZArqCiKNh5uYTAFPZflyjye4EDBw7oXS7XOEniFnEAQ1Ri= YmJ+dnZ2XSR1du7cM1GSPPEdzykKgCBg69VXX703nFj/Q4cOpdrtrgsY6247LiurHLt7994VTof= jdNhzm7eASxTJknffffs1AIDNmzdbOScXazSdXwBjzFlaWrovnJ0WcnNzhTFjxoxCxIyu1xBRkm= X52KRJk0KGuw8Gtm3bJmq12nFOpzNB7PIxBSFUJodzOIcegIjkkUcen1FbU/duIOCP7XAeKKWuu= HjLkhdeeOG175LGs40hCWc4hx8GbDYbbW5uVsXExIQ1kM6fP19rMlkuCwT8ph4ue+Li4r43PnRn= C+cY6EeM4uLiLJMhamlDfXOfdh1JlsDj8Wk8bv8UAKLp5LQJiIyzioaGhgNDSvD3EOcY6EeMlhZ= nQsCv3CgIYmLfpREICMFdKrp4PFNC5axRWYfHj89uffHFF3tp478P5xjoR4xghh2EMHMIAkAnw+= bpf41GQ5Ms+5YOxC71Q8U5BjqHiNHOPJxztFii7edfMH724sUPDrrb0w8B5xjoRwydSoUAxIuIP= Xor94x22xB6tVr1q1Mvm7bhnnvuqOyr1n8rzjHQjxgTL75YKikp/UtDQ0PY+6ZSCnD+mDFgtph3= 5efnF95zzx0/OrGtI/4/mgnDjXXgzQYAAAAASUVORK5CYII=3D" width=3D"208" height=3D= "58" alt=3D"" style=3D"margin-top:26.8pt; margin-left:233.4pt; position:abs= olute" /></span><img src=3D" AAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQE= BAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQ= EBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCABVAKIDASIAAhEBAxEB/8QAHwAAAgICA= gMBAAAAAAAAAAAACQoACAYHAQIDBAsF/8QATxAAAAYBAwIDAgoECAoLAAAAAQIDBAUGBwAIEQkS= EyExFHEKFSJBUWF3gbG2Mjc4ORYXGBkjdpG1JTZSV3OSocHR8CQ1QkZmeIKXstXh/8QAHQEAAQM= FAQAAAAAAAAAAAAAAAAMGCAECBAcJBf/EAEMRAAIBAgQDBQIKBgoDAAAAAAECAwQRAAUSIQYxQQ= cTUWFxIpEIFDY3doGhsbTBIzJykrXRFRckJTNCUmJ1s4Lh8P/aAAwDAQACEQMRAD8AfnYy0bJoJ= uo980etlSgdJw0coOUFCGDkpyKoqHIchg8wMUwgIeYCIa8j0wGZuBIoAGBI5wMUQMIdoCbkPX6O= OQ9OefL1182/G+ccyYefkksXZRvVCclOkcwVmyysW0XBE/emV3HoOPYXiRDefhOmq6Q+gpiAiAv= k7EMmXPMWzjDGScgyoTlytNPdO52X9mbtDyDltJyscRyqg1TRbkWUbM0fGFFJMp1AOp2FE4hrcn= aj2N5n2aU1DX1GbUWbZfmNa9DC0UEtPOsqxd9+kimMilDGG9oE3II087ae7O+1ui7QZ6/L0yqpy= utoqIVbl50ngkRmEf6N0VHUhyBY77jcc8KvSPVj3u4Nzhk6HjcoFu9Sg8m3uPZVTIMSwn2Kca1s= 0k2bMUpUiLSxtkWrdFNJomlMgk3ImQhUjJl7BPR04uqnG727JLYtsONnNHyXX6orbHbuLkE5WpS= 0UwkYuKfKtzOARlIt4DuXZGRYrpv0ToCsqEgUUgIonxuB/Xzmj7Vsifm2V0W7oBlAu8m+CH+Yey= hz9Y3GhCH+wB/s1IjtO7MuCT2YVvEkGR0lDnWXZJQ1UVbQKaNpZQKSJjUxwFIZzICWZmj1Fmve4= BGiuz3j7i5eP6HIpc6q6vKswzqqppaKtf41FHG1RUgfF2mDSw6ABYLJp2tYC4LkhPT1Afd83kAc= D9Ycca9CWlGcJGPpeRcIM46MaOH8g8cqAi3aMWaKjh26XVN8kiTdBM6qhzCBSkKYwiAAI695MBA= vn85jD93OqMdTO5PqHsO3PT8aqog+Ni6chEF0jdiiP8JgSrqqpDgICU6aMmoYolHkBABDj1CCUY= DBLC2vSSB0L2J9xJ9cTVBJ57H+W2FZ98fWt3I5jyTaK5t0vExhvDUXJvIqtu6oCTC7W9o2XUbo2= KTsRkDysUMn2i6ZRUMrHiyarItnir1dPxjVlj8xdXaYYtZOJue/qTjXyKbhnIRp85PWTxuqUDpL= tXbZuqguioQwGTVRUOQ5RAxTCAgOs46K2GqzmPffQUbfHM5eGx/AWPIxYt6imu0dTEEi2awSiqC= hTkUCPlpJrJpEMUQ8dmkBuS8gL75EU0wECF4AfmDyAPcAeQB9QeWsyRlitGqD2eu+9wp+/wD+5Y= rhY/pvZQ37w+1bfhdMrrbiZ3K9Oo7Sbwk0zNB36elXNhY1q2PCNqrB3Jmo4mTLyLeOI7j4tuuLl= QrdJVMTGIUbbdInczvn3A2HN7XeHWLTXWFXh6UvRhsWJX2MyOnkm9sKc4DZV7DxnxsZFBlGCdJM= yvsZVCnMUvtBREim+Cy2CjbPtzNzqEzIV21VnCmQ5yvz0W4M2kYiXjKzIOmEgyXL8pFy0cJprIq= AA9qhCm4EQAdAq6Gm7vM2SD7trNuFzFcr9XMZ0WkWVBa4TKsmlX2Kat1eTztn4/BURWZxiArjz8= sG6Yc/J40gTdHbQSb81BJFytgABbffw6+eDDP3iEH0OQfLn9IPTjnn19OPP3aneT/LL/rB/wAdJ= FZN6nnUQ3y57d4+2mP7jU4eRk5ElFx5jJKMZTq0FHmMBZi02l6CZk1jt+HUk5cScdCMDKlRJ2lK= VRSzOBsKddyOzXiaRyk7zWONmWRKi6vhZPM+LZCPGpITrI8+D6OZXx09etBjCuQXatWrhddLuIi= iocxSjeYCouzxqbX0swDWIBF723seXTBhtzvIPoco/wDqD/jqCcgeYnKAeY+Zg9ADkR9fmABEfq= 0kTv23fb3Y3qD5swthfOmWo9srlCPqNDo1bsSrNqV3Jx0IhHREW2OKTdEHT94JU/EUIiKi3eKgF= N3DrPK2aesxtRSrd8zJdtwtGhnUum0iZO3yMdPVh7KJpGdkjH5Cqy8QZRw3SVVKxkgTM5QSWMkQ= 5UlBJUU7EITJGC6qwXULnUAdvft4+m+DD4fcUQ5AQEPp5Dj+301x3kHng5R49flB5enr5+XqH9o= fToIGOOrKiHTGdbycgQUe7yPX3rnGStXZHFhG3DKyaybOKMyAxjqM4qSarpWaVQQ8VWPjm0sg1E= 5myJjAGq28Dq9b27jY5HClsy/PGilAcyELiJkzrVSq7d4dUzNkq7KRk0SESAdNoWWlXMi5TSMoJ= 1jFOfSaxMw1GyrexLbAEWv7r7+hwYeVt7x4yq9hfRX9JKsoOXdxiaaXtKij9vHuFWhE24AYy5zO= CJlKkUpjKCPhgUe7jQAOmHu56i+ctzktSt1VRuMDi1pj+0zDB9PYSksesT2RhM15tEolsDqDjUV= 1lGTyRORh7QczkpDLFIbwBMXXfTmr/VUq2Y8gTG8BXOTfF7fAuSTRLi+2KNlIZG9pKQDivqt0GM= o9WTlE2aEwdouKIEImVwBjh3gBtC9FDdpuWzdvSsdKy5m3IWQak1xJepdvA2eecSMajKMbDU2zJ= 6RuoAFBw3QduUklPUhFlA54MOhl0JLYq5VQbqdQ5qeY93vvgw3B3k/yy/6wf8dcCoQOBE5AAfIO= TAHIgAiIByPn5AI+4B0pNnzCnXZk84ZckcVu81Fxq/yRc3dBLGZoxdGxxagvPv1K6DCPfXxq8Yt= PikzQW7V02broJCQiqKZwEoUuyZuR6xGw640+azxdspV486dd1CxeQZus5CpdpQjjojIxi7iEkb= BFiqQi6JXjRvKR8wg2ckXRO38RJYbhCSAQ8ZJAOnUNQvbmOYtffBh6319NTQI6T12tusrTKjKWq= LlIe0SVYgH9kiGR012cXPPIpo4mI5ouoYh1mzGQUcNkFTlKdRJIhzFAREAmrO7k/wBD/un+WDCd= RvQfcP4afg6YP7v7bwP/AIGk/wAwT4f7w0g+b0H3D+Gn4emF+7828f1HkvzFO6nL8K3fhXhcePE= T/wAPnxC34Om3Eue/7siYH/xq6cj7zhHvcD+vnNH2rZE/NsrouHQE/bHvn2E2T830XQj9wP6+c0= fatkT82yui4dAT9se+fYTZPzfRdbB7TPmTzz6OUX/bR4ZfAHzrZF9Iqj8RVYciJ+iH3/iOqZ9Q/= Hj/ACpsm3KUqJbqu5aQxZZH8U0QTFVZ1IwDUZ9m2STL8o6i68aRJMoeZjnKX5+dXMJ+iH3/AIjr= ouim4SUQWIRRJUhk1CHKByHIcokOUxTfJEDFEQEDAICAiAh565qxmyoRzAUj6gMdBsfPk6TW5Gp= bYN6WPrtkKSRg6NY4+boNonHfyW0G2sjYgR8m+OACKDBrNtI34xc9va1ZmXcHECJG0+gwzbh2Ua= IP4/KePHjJ0kmu1doXStqIOEVSgdNVFQskJVEzlMAlMURAQHSwu+noI5El8mWXJGz93WXlStsm9= m3mKbFJkgH9WlJBZR0+bVWVdECJe15VyoodhHSDmPdRCJk2SSr5BMFEx9F6IXUjIXtLieGKAB5F= Lk+jgHuAAnQANZZEcx1NKqGwve+/IbeYF+nutgw3LvsuNVtWxrd+FZscHYAZYAyaV2eElo+VI3M= tUJUyRVjMHLgEhOBTdgKdom7TdvPabhWLpRNZV7td6qrWEIspJrbaY0jZNuBhXU/wbkUyxEwJ8o= TGQBUAAvmPpwPPAkf2LdOndrhXaBv7xLkqjMIy8Z2xwNcxtHJXCuSyErKHq1sjARcP2Mk5aRhPb= JRkmKr5VBPsVMcDCVM3Gy+jF0+twu1SS3ItdyNEi4KByhVqXBRKKFkgLEnLJRzm1FnGjlGFkHot= kjM5huTlwJAXKsqmAD2GAbV0qjjUGGoEb8wNJHUHmT4bmx6YMLM7Jahu5vGVZOt7MZ6Vg8quaq9= Xekgr7XMfTElWGr+PPINGkjY5eFRkE0nYsHbmMZulHJk0QeGbnQaKqonb2tbcet3XdxGHZ3OFmy= e5xDFXyDe5DbyudqJPRy1XQcgeTSew0fcnr2SQOj8k7Ru0cKKgIEBM3prTe4noU7qcW5gkb9svt= LSaqa0w6l6ikhdDUPItFB6oqp8UGknSrFo+bsSKmaM5dhLpu3TUOx8yRUAyyuTYC2Q9Z+s5uxLY= Mk3bKDnH0JkOoSt1bO9xbaYaOKyxm2TmbSdRJbasaSbKMU1yrMASWFykJkPCVE3aZeSVXBKtHYg= D2lBOwAI3NxuPDl5HBioW4ECj1znPAB2ju8xePAh9MnTRHnn1HkfMfPkeR5HnkTifCEyELsdrwl= KUB/jspocgHmAfEdqHyH5vMOeQ4HnVN8udMreDa+qatuchcexTjDxtxFEvxLAa5VhF2Nag3tbWk= Xgwq0knKgdFOOdCVv7J7QqJC+GiPeUNFK6wm2HMm7La3C4ywhW2tmt7XJtcsy7B5NRUEkSJjYqe= bOlgeTDlm2Mciz9sUqIKeKYDGMBOCDpF3XvIiCLKqAkb2KqBy9R4YMLEzDeRU6KNOcNgVFg33tS= 4yZidwph41CdpshW48gDxu8hBNwHcYAAe4wBo4nwdubpq2069wMe6jgucdlyae2dkRVEJMWL+Fh= SwTxyjyDgzJRFu4btVhKKQqtXKZRAyamsy2U9NOzn6ceSdoG7CuEqctdL3ZLBHLwsxET72vODIQ= bmrWqNeRq7pl7dHS0cKp2Rlv+lNSOGLkQbPVOQ1THRL6k2FrjKkwnLRk/GKqKt2dzoeTUqC5loz= vMZv8axUnIQci0X7AKZZl4j5s3cckSePCEBwe4OsiNGzBPaLhjsCTba23W/kOZNsGHPMj9o4+u3= AB8qpWMAEPrhnvA8/8jpLLoPTDaub2sj2B+Y3sUFt8ytMOxTATKA1jJypPXHYHA8n8JA3aHA8m4= Djz0SHpv7Keo7h/Nd6sG5h1aHtBmcF5DqcW2mMvMrqzUuM05rgwpfihKwSPgKC2aSYEkDokI2KJ= 0zLpeOBtYt0oemVup21bobffM948ioPHllxHfKQo6bW+tTh3LuyytdUSZqM4eSduyJuWDJ93rmS= BNMSgUxwOoQBTsixyrqDOVAWxuDexI+r157eODA5w3qdTzf9uQtNW255BvEa8cHnZqs43olthqH= B1ynxDlNuQV5CTfwzN44RRXZg8eyUks9ePHBhSACCVFPRW/DEXUkxvV6O/wB8crdJSryE9IM6SN= oydVb8ilOEYpqyAtWsDZJteOVMyAoKLLot01SFAgHOYvGrr5L6Ke/zCebLHZNqcuSSrS8lKrU27= VTJDbHtuZQEmudYkNOpvJKHeJvG6agNHgMXDuMeAkDgpx8QiSGAZB6VvWDy0zYR+UW9iyGxi3Kj= 2OZ3PO1fsjVg8WT8JVyyQlrS6TarqpABFFESEOoX5JzCAFAqylLKQUGwBtYHkBvvt05jc/YYBuA= cBwHoHkGpouf8xz1Gv80EB/7k0T/7zU0uJUsLuL2HX0/mPfgwOM3oPuH8NPw9ML935t4/qPJfmK= d0g8b0H3D+Gn4emF+7828f1HkvzFO6mp8Kz5LcL/SJ/wCHz4hb8HT5S53/AMG/4umwj3uB/Xzmj= 7Vsifm2V0XDoCftj3z7CbJ+b6LoR+4H9fOaPtWyJ+bZXRcOgJ+2PfPsJsn5voutg9pnzJ559HKL= /to8MvgD51si+kVR+IqsORE/RD7/AMR1211J+iH3/iOu2uaifqL+yv3DHQbFJc89RHaLtlvf8Wu= bctMqTcxhmFgLDL1+0yShoiTVdIsXntEPDP2YFXOyclBP2jxSikPeQoCUTaW/nlunN824mL++n3= 4A/wBlZEf9g6W6+EDft7kD6MKY+APq/wAJ2zW5cOfB97tmLDmNMuR+46rwyeSMf1S+NYJ1RZZ0e= NJaYFlNoxi7xGbTBczUHhWyrhNEoKdhlCELyBQyRDEERmYr3ihreWwP5/Z54MM14G327TNzEkaD= wxnCmW+xlIqqFXBw7hbOuigkZZddlAWBrFysi3QSKY7hxHtHSKAAPjHJqxtwvdJx7Eknr7b6zSo= NR2kwTmLZOxlejDvnCayqDMj6WctGxnSybddRJuCoqqERVMQggQwh85jcPt9zh0/9xSdMsUmMDk= ClOYi30y81B28bNpGPFczmGsMC+ORs+STFdqs0XQXIVRB21dtFyqlTMJ2dN0t6x1v56UmBMh5nz= ZXdvLSy3env566ztbmbFFr32sRl1rcvCNYquAo+RNLv0JWTZqj2pNmzfwlQ5OUBteFU02b2HAJK= 3JBNriwH3XwYPpUL1SsgxZ5yh2+s3WFI6VZHl6pOxlhiyvUCkMs0M/iXLtqDlEqiZlUBV8VMqiY= nIUDlEcq0J/o645xlifaW/rGK83wWf6v/ABp26TPfK9XZussSyTqPrxHcGaPnyJPRcRyaDdU6/a= CJyPEwKIiQw6sRlHqN7IMM2V5Tci7kMdQtojVztZSDYv3lmkIl2mACozlkKqymjRb1PkPFZP8A2= d0nyHiIl50lov7I1NblswJ9Rs3v5jBi7GtcXPMWJccPGsfkLJ+P6K+fIGdMmdxuNfrLp42Ifwzu= GiE1IMlHKBFP6MyqJTplOAkEwGAQ1SQerx05Q5D+U/UuQ+mv3wvPuMeqFKP18D5eo+g6GJ1lMMb= cM9ZLwjccmbw6Xt/Kri5Veqxljot0tKlpgZSWNKN55mrX25iMm5gclRFs8Ik5Exe4SF8wAEQ1Kp= 1pq2Bs5va3kT+R688GGF7hlnH9HxnOZinrNGkxrXaw4ucnbo5Q0zFFq7RmMgtNNFogr00kyFiAO= UFI4rr2lMSmQBQDF50xtw3sbbd2j20sMBZGa31xS0IxzZSNoewRXxajMnepxpzDORccC/tKke7K= ANxVEnhCKnYBidw09024LbZgfpfs9vEtm2AlrPetlrau4gcpw1iZlyewToTWBhZyJQNGLEjEJ1V= JFdu2mHLRVArghVh4ATaEH0Kd2u3jaxZdw7rPuTIrHLe5Q1ARrasmwnH5ZNWGd2hWSTTCEi5MyQ= tU5BmY4uCpFN4xQTMYfLSgiBVnN9S7DnY2seW3ien54MOq6mqjZC33bTcVUPGuTsg5kg6zRMvsV= 5PG9heRdlXbWpg2bMna7lk3Ywjp8gmm2kWSpvbmrQwA4IXt7hEoaVL1eenIYwFDdDUAERAOTQF7= IUOR45Ex6qUCgHziYQAA8xEA0mEJOoKx8wCR4dNsGCPqnBJM6g+hCiYfcHmI/cHI/dqjuIuo/s9= ztktnh/FeXmNpyK/NKlbV1Ku2xgqqMIksvJcO5OFZMSi2SQUMbvcl7+0QT7xENWTx3mLF2bKQS9= YjvlYyJUZBNyi2n6pLNJePB0ilyuzcqNlDnZv2wnIV0weEQetjmAi6CZuQBKDo7AH86LUg48gWy= yIe/wCKJfSkaCTvAbjQp8iGBA/PyODD2QeYB7tTXBfQPcH4amk8GPmHm9B9w/hp+Hphfu/NvH9R= 5L8xTukHjeg+4fw0/F0wOB6f23gOf+48mA/fYZ3/AJDU6PhWfJbhf6RP/D58Qt+Dp8ps76f3G/4= umwj1uB/Xzmj7Vsifm2V0XDoCftj3z7CbJ+b6LoSG4EQ/j4zT9q2Qfd/jZLfPotvQFOBd5N55+f= BVkEB+YeLfRQHz+oRAB+jkPp1sHtLsexTPBcfJujbmOQeka/Mbadx5b4ZPADD+tbJNxtxJUjmN7= VFTc/by/nhyQn6Iff8AiOu2vEkYvaPmH6RvnD3/AIeevLrmon6qDroU26j2RfbyJsfPHQdTqF//= AHywjt8IH/b3L9imP/7ytmm5Nj4B/I22sBwHH8n3EIccfMFDguA+7Sjnwgb9vgv2K4//ALytmr6= YB6/+33EGBMRYpl8JZklZ7G+L6XR5B9HK0okTIydXrUdCuHLJVxYyOSsXTlkdRI6rYqxUDlMZED= /I1mNG7wwaVvpUoR6WIP138+V977Vxpz4SPHxSWZ9usigmiWYc44s7V8chSgsdg0sSB44qogAGF= MirqQBEDCIAJlO3jkdVutTh4r0FaCm5MoKLfeSoixAwmEpWoxF2WMVPkeAILpRwcShwUDiI8ciI= 6o/vq3i3PftuCNkx/WTwDL2CPpuPqKydKy7qKhUHLlZqzM8TaojIzElIPHDl0sgxQTOssRskmRu= gQwGg374Bl9tfRH25YwsjQGVqa5co9htTUU/DWaWC2w2SLG/j3XHkZzF/GCUYsYe4RUaGApuwpe= bzZFhjb/ELBhbcgEeW4IIPMeh54Ma523bgrVtw6F+U7VRZVeCuFt3AWXG8BMM1DIPotW1MKsWTf= MF0xIs3fN4FnLGZOUVCLNHHY5SEFEimCrnTA6Vqu/8AiMgZJveRZeiY+qliTqjV1Cx7SWsdmti0= ehNyoePKKC2aM4plIRKrhdRF0u+XkuwoIezqrL7mxniiwZV6C2RxrTFzJyOO9y8xkpZizTFVwrE= wLGsx04uVMvJjpR8TNPJJyAFHsbs1VBMXtAqnv9Gjqf4R2dUbI2GM/nn4GsWK5myFV7hCQD6yIN= pN9CRcFMwczHRBXEskCiUDGO4t40YPEe871F6ZqAt1FqMxVZNOz6135tbSOXPb3bGx8zFD+p7sq= qexDO9ZxJTLnYrvFTeN4q7LSdlbRzR8i9kZ6wxJ2iaUYmm3FsmlDIqkMYoqCosryPHbxdPrrFKE= 1snECgAjtcroCIAACIAdpwAj9AfN9Gq79ZDddhTd/uSp+R8E2J/ZanD4mham+fSNem62unNsrNa= 5Nw3KxnmTB2omVpKsjlcJomQOZQ5CnEyRwCxPXX/652Tf+V2u/wDzaaqAzGEliDc3HM7BdyPP8j= gxfHdBsTxznvplYO3K2W0WyJtu37YXWJCsQsOMUWCl1YzH8dPIpzRXbFw9Mmd0n4SvsjlA3gDwU= Sn5MIoOkt088W7+5zNEdky23SqJ41jqa8iFaapEJqPD2JxYUHZX3xpHPgMVEsUiKApAmICor393= JeGSbAydyHRCXaskFHDk3T5YqJoplMY5xb4cauTgUoByIgmicwgHnwHqHrpf3oi73dvuzy85ySz= /AGp7SYjIldp5YGwErlgsUeD2tP51V2xeIViNmJJus5SmUVGigsTNRBu4Iu4RUBIiqQLNA5tqIN= gAN+ngD925vvgwc/e9sP2ahtk2+0Tcfn6axJjHbZGu6tT7U+ma1GytlVkY2MZi0dIPot0aYlxaw= JXKMfXo4zpUAdKFbHITggNsg7VOjAnTLMtj3f8A3JS7N4WRc1hCaptndQ7ybbtVVY9lIJNsXMFD= N3rkhGp1SPUQRBbxxE/hgGsl6+OYCZgy3tqtFOn387hOzYEaXjH732WUjouRdWO1TqUtLIRsq2Y= u0X68ZHQSTgrxmg7RbptU1U0+8e/EKrhrofOsURUrZN0ebEMpK0lF5IQi1dtyCCVzGIFZWMMDPE= r6ORakmBFqmKMw4bg3Ao+2mLysN0aMEVtUoNxdVNgLkAi2k8ut+fhywYzv4Pbk+0QG6LIuJmcsu= vR7xi6cn5KJ7jixGwVN7FliZpBE/BUHQsZOSZKqEKBnDZVAixjCgmBdK9HX96JU/wDTZb/umX1k= /QOIinvslCtzd7cMOZF8Aw93Io+1wXhCYDFKIG8Pt7g7S+fIiUphMUMY6Ov70Sp/6bLf90zGlXG= g1DC51KnPzAJJIAvuLHYeuDD2JfQPcH4amoX0D3B+GprAwY+YcYfIQAflCAgAfWIeXu+/TtfTK3= QbdIzZhgnH0vm/GENdoarPI6ZrUtcoKNmY12rOTCxUHLB89brEVFFUixSCXuEhiiPADq4xOn/sm= TIBA2qYDNwHHJ8YVM5h95zxZzj7xMI69B9079kD8gpq7VsGJgbyMZpj2vMVA4AQASrMWLdYDAPA= AYFCmL6lEB1JDtN7ZOGe0zLcuyutyfP8pTL65q6OppnyysZpDTtCEkglkiUpZyx0uWBsLEC2I7c= AdkvFXAOY1eY0+ZZDmRq6Q0ckMozCnshkjlLJIkblW1IBc8geQNiAWZJ6GznK9wvF+xlu5xtPK2= +zWK0oxDqqnBq1POyzuUBieYg7jOnVTQ9q9nF0nFCZQC+KDcvPYFf4zpK9TTa1Z0skYJsNSlbPF= lOijIYsv3xfKOGBlCLKtHsfdI2rISLB0dBA68UoL9BcyZAOgr2EMDEn82BslRXB1FYTZVt0UREj= iqXHINWVRN/2ToGgLTH+GJQ7gKQoAQvPIF5AOMqj9kdUq6hFsdZn3L48UTSMmihFZxtlriEufQ3= 8HMoGv9cW7O0oE9oilewvIE7QEQHzqftw4hp6X+jmz5M3ysQRUhoOJOE8vmp3pY40iWB3y6taYr= oUAloWIIubgEjNn7G8omqjWjJGy+ueZ6hq3IuJK6KoiqHcytNGlfRrGCZGJtHUqQpO1xbAxcJdV= bcFhV5H0LqKbeb1QCJnRYpZsgadJpQqgFBJH2mzwzdN1GKl7vEWdzNTklkVB7CNq0nwcwHIxnlb= HmXqvG3PGlygLtV5RIqzOYr8g2kGhgOXuBFUUDmO2dJ89qzVwRJwioBk1UiHKYNaTWw9nuNZKxi= ecK5laFWKKTyJzniWuybl62EvYZsWcxo6xxHtTqE/ozunlPmwDuE3spuDEPpyA2asa9Z3l5xVDo= bWsnGMDl5J4dnRn8R3fw+Cgzu2L5eNrcRIlcD8tyswgoSfRARMwuKLsPFNrjPKvhbOnkq6Sgg4c= r5CXZMrmqKjIpnJuf7DWrHXZcSTZfizVcIPsiNFuwf2SU3FGSgU9TVzZ/RJYK2ZQwU+cQodIstd= S6qSu0KCwWdaeRgukyvIVxhu7TpL7ad6GWBzJlmcyqxtIVuJqxUKdY4KJiQi4deQXZiLSQq8u4F= 13yLgFlfaxIoUE+1MnaIjWQfg8WxvgeLRuAAeB4EbvUxAB+bkP4B6MXSLNcewsLkaFZRtkRJ4Xx= vXV3L2oz/hcFO8i1HgEkYhZcf6ZWElyncMhOdq1kppFqeRU2xplHvIyYy4YLazIdSH9lhs1rC5t= texw+opBKgcKy35qwswPUEdPTpywL3bV0g9le2K2ML5VqJKXS7RDgjuDs+S5v8AhQ7gnaZQFJ3E= RqbKNgGjxBQPEbvwiTP2yo+I3dJCGrK7wdoGMN6uKWOH8sPbYwqzG3RNySXp0oxipgZSHYS8e0I= Z5JRkwgLQyUy5Msl7J4hzkSEqpAKIGtbqat1Ne9zcdb77YUxSjb/tkwXsE28W6hQEpYVsSxC1uy= Han9+dNLC7QZuolqNjO5+KYZgm4jU42JKb2JOOWWMALByuKhEygRyvi34PtlC0vbU1znLY0cSa6= rp/FY3eW6MgFXK5xVUWbQ83RbC0iyiYw8NYoGTNMvySNSj5g0Vk+gReVceXfGs66fsoS+1SeqEu= 8ilW6Mo1jrDGOYp44jlXTV61TeJN3Sh253LRygVUCCq3VIAkMDMvwcjZoAeeVtynP0ltOMyh/YO= KB8/r93kHGlE0bl3ZTcWIF/f4+/BhYnePQNrETneHoexy23XKFAfQdcYfHVo7nL+Wv0xIvUV46D= 4r1dcOGKbdeGakKeKAykgZ4VBwumUBI5luH6V2Bt4UThiQzdM5IYT2LcXQVDYlo8/DQzNVBqzaH= dHdoydcmVVVwdpnAhyKogCXBDJGMAnHE9snRU2b7YshxeUYZHIOTLhXnRH9WeZUsEJLx9ZkUy9q= cnGQtbq1VjV5BEeFGrmXQlDMVykdMQbOkk1il147ScAAAAF4AADgA4DjgA+YA+YPo0SS+0ojL2Q= bMebGwBv53Fxy574Maox/ieo49w7VcHM0HExR6lQovG7RnYzNpFxJ1eJgka8RtNHRatWr47yNSF= F+YrRFFyKig+zpEP4RRGWjoBbELHPycwzUy/UW0k9cPCwNau8cEJHi4UMp7PHpzlXmX6DVMwiCK= C0i6FMggQFOAKAWZ6ku4S7YmxvU6Vh6clWeV8l3aAiFW1LiVbPkqHxeg5VdZEuNRrTRlJrOH0LE= oFRSdqsFUmyjzvbh7cVAxPymu5uXwo3YRR2VpvlZtNIeZOobTINinIu+03F1AqTRfItqy7L3iKG= Yj3C1iUasK7EvSSsnJTEsCCryOYEULG+1T8PZpLl1JmMLRD49LVpS0hLLPIlGYQ87atMaRt3rmM= s3trTzWP6t21UcU5bT5lV5dIXU0MVM1TUgF4UlqhKY4gIwzuVKIjlVJV5owRa+M5yd01dquYcA4= w285Brs1N13DUC2r2PLb8cFY5Br7Rq2RaHVRsDBki2XUepN24yDVzFrRTk6SKpo4qhEhTpOHwej= YxyPNqz/AOfmABdqr5eY+X+IXP1eYiPlqsqWfc2WKHyizdZ0yNjiwZduUWZSAZJVBzVadH31jI5= AyI4XmLBDSlpiBwlgyMhRl0KzJVZBjZ5mKT9pGSdO1HRAWW86yUTEzO+V9var9F1txVzWCvZKXj= 218maVZqsQMdrV9zUKrBwMTZbdPzFTOLSXRsh3TSRcN1JBF/HyKUf6WYcHZpQdwI6qGrkqJhEkc= aVCDW0cD276VFiIaSVoUKF0aSCUagLHHmZfx1l1aJ2lgmpY6eETySs0Ug7sySrfukYyCyRrI4YA= hZkP+VsZptP6S22fZtlI+XcTTmVH9lVrUvVTt7jZYKUiRjZk7U7w4No+rRDgHJRZJeCp7WBCAJ+= 5M/Idv523PpGbYNsOc4/cDjyeyw7vMcewmQaWazQEhACNlQctX/eyZ1WMdn7COTi27X4eGcCifx= QAQHHoXqHR5bRk6faNbPa4czq0SkLWZaRq8FVqfjLC0HHxuQciR1ibRSspJsLJfnsjWIRrIDJjM= z8M4RiXTCMTWWLnm3/MM9ul3KMMh+DOUalYuw5GQw0RzJmVF3ljIrGt3C5MZYrIrdq+Vx1XXNSh= Vju25RazU1IIJIt1yOkS+fLw5nFNTVNVWR/F6anpe8ldmBbvQAFpljJ13eUiISaQqG7Nfkc+Hiz= LKuakpqKQ1FRVzrEkYUqO6LXepLn2QscYZjHcuxsBa+xQS/ol9wfhqa4KHBSh5eRQDy9PT5ueB4= +jU03AWsPZH71/Drbf18vS7ov5H6xbw5+HPf0Phjtqampq7FcTU1NTRgxNde3gREB9fpDn/eGpq= aoQDzAPqAfvwY6CiUfXj15Dy/8A3zH6/f8ATry6mpoAA5bDw3sPQchfrYC/XB1v42+zE1NTU1XB= iampqaMGJrg3oPuH8NTU0YMBM3KwUBB9Q+ru7UzkrhCZjwSlWV4NGek6upXEqFc21oOkylolRRw= 8gLWsimxtVaVQQZTTEzhnJLvWDpdke58Ftcwrmyk1+xXqpi4NLU+0VZvHRM3Y4Fgxx9cJtGwhRj= toaYYtn0RCvWUY4iwXbkTYv49F7FtYwO1snNTT0zupqKfJ+GauCeaGpOWLF3sUjxsI4ameCMLpI= CFYgF1qA7WDMxYXxr/Jaannzziekngimp1zR5RFLGsgLyU9NIxJcFmXXuEZiibhFUbY/dHYhthM= 8Veq45Scqr/wuB0R3P2h0g9JemjRpaU3yK82cjwkoLJu8UBwCngyJTyDbwXiqqx9gK7XMPLY6h8= XOq+6eVGCmICwMW7ucsDmTPMVdZstCPX8+vKqTkkdkRk0aJkfyLhMWLdFiJBaJJoEmppsyZtmkr= I0uY1sjQyI8RkqZn7t1tpZNTnSQWY7cySTck4dqZPlUSyLFl9JEsq93IscEaB0Yi6sFUAg+eNaO= dhG15eOaxP8Xijdi1rUhUhSZWm4Mxe1t/MoWIIeUUbT6akqzjppo3kIYkiZyeHcJmPHnbiqt37u= xTgjGuGUp0uPYEIQLNNP7DMiZ/LSajmUlHSr6QVItLyMgq3Qcv3Dh8ZogdNuDt06cAn4rhUxpqa= J8zzKqiMNTX1s8JFjFNUzSRn2tW6u5W+oA3tfYdAMKQZVllLKs9PQUcMyX0yxU8SSC4INnVQ24J= 69cbl1NTU1g4z8f//Z" width=3D"162" height=3D"85" alt=3D"editorial1.png" styl= e=3D"margin-right:9pt; margin-left:9pt; float:left; position:relative" /></= p><p><span> </span></p><p><span> </span></p><p><span> </span= ></p><p><span> </span></p><p style=3D"margin-top:6pt; margin-bottom:12= pt; text-align:justify; line-height:115%; font-size:12pt"><span style=3D"fo= nt-family:'Times New Roman'">El art=C3=ADculo queda en propiedad de la revi= sta y, por tanto, su publicaci=C3=B3n parcial y/o total en otro medio tiene= que ser autorizado por el director de la </span><span style=3D"font-family= :'Times New Roman'; font-weight:bold">Revista Visionario Digital.</span></p= ><p style=3D"margin-top:6pt; margin-bottom:12pt; text-align:justify; line-h= eight:115%; font-size:12pt"><span style=3D"font-family:'Times New Roman'">&= #xa0;</span></p><p><span style=3D"height:0pt; display:block; position:absol= ute; z-index:-1"><img src=3D" ANEAAAAwCAYAAACPIp/IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAIAB= JREFUeJztnWd4VEeWsN97b+ekbrVyjggJSSCRRXbCAZxzTjvjybsT/E3YnfEET0679s5+s/bYYw= 8eBwwGYzA55yAhhBCSkJAQSt2K3ercfe/+kMjZgO0Z9P7Q83T3rTqn6tapcOpUSVAURWGYYYb5x= IiftQLDDPOPzrARDTPMZTJsRMMMc5moTv6gePsJNez5rHQ5J1JyHlJ08metxjDDnJVTjCjcXk/v= b+//rHQ5J5Ynf4d+1hOftRrDDHNWhqdzwwxzmagu/Mgw/7iE6DnSQEN7kPicbJLtRqRPTbaMv6+= dww1NdPYHkLUmktNySE+0oVMJl5m3lyN79tAQTmbCxCyMV0TfT841ZUQRVzO7t+7iQLMDT0hBZb= CTO3YGk4oSMf5TjslemstX887KXqY98zixdiP6jt3MX74Xacy93Dnaini57fmsKPg6atm49D2Wb= K2nxyuDWkds6b1889FZpMfoLzP/Xna+9wrvuG8ge9iIPj0CLdv44IMP+XhDPV5rPDnmCM0tbazZ= Ws6+6+/j0QfGE/tPZ0gRPP3dtB114vIFkAG5u5o1H32Izjib24uvkhFFejhUsZIPVjZgHD2de4q= S0ChBAsYUzNorUckhetuOcqS/m8AVyO1yuTaMyFPHqoXv8e5aD5PufpwpJXmkGWS6nG1UL/0Tb7= z9KuqUDL46Lfaz1vSqI6TO4AvfykFKtSNdlVEICPTS3tJIj2EEN918H3eW2hBRkGUFQfin66muD= SPqqtrKhh31RE97jjvm3MgIuxYRSMsZSW5ShANf/RnrF67ilmkPk+3tpqFyO5WeWPIzzDgPlHOo= 04s2pZQZkwtJtmo5ue0Fe+rZsHI9TR4Vxtgsxk2Zwgi7CgjQcbCcnVW9JI8egbG3kcqDLbiCBnJ= mzmZqtg312YaBS5Tvd9Swce1mmt0SuqhkiqZNpTjReE6PkeB20NBYj8VWShEgAEokRG/jDtZura= E3rMGWms/4iWNJjwJHzU52lLcRPXEKJdkJGIaE91UuYeHufvJve5TJCSep39XC3rXvs3p3M66+A= XaunI/gmU5ZiY3WTVtoNo7mhgkZmHVuyhcsoFIoYc6NNmpXbqSmR8YUl8XY6VMYYTupaUb6aNi9= g90Hj+Iiivwp2YTk00umEBxwUrtzPXsa+hGikikonURxVjRaEeis4uPNlcgZZaT27qX8SA/J05/= mxpzLN+prwIhcHKpppLU/jukTR5Bk057UwASMyWVcV2RgV80uqtoeJlvTTfPOJby2rguLxYAoRw= j7vbgDH7Ny63185ytzKEgwIwKubS/z3T9tpNOrwZ6sxd28hNVby7n36ee4dUSIjro9rHh/EwNL9= QjBMLIUoK97AFZvp/VHL/JwvunM6ZT3EuX/9wbaBsCWaCfc0c5H6zYz+56nePiGLHRnq47WPXz0= wRLijHdw/Qg9guxn/4IX+c8F1fQoJqLtIu6PlrJiyw08+PB9jHE1sWf9B/T740iKjSczSgD62DL= /Td4uz+UHj56avb/fQdW2jVTUu/CE+inf1IXflM7IkUEq1y1lk83CpNFpmHV9lH/4Lu94dlG53E= 1nH0hqDz29KnbUtvHEvzxEiQ3wN7H67Xm899FO2iQbsVofq1dKeFs8KNZjUiO42st55zcvsbY1i= NpgQvL38dHy7dz+2MPcOWMk5s79rFu2gHrvSqSBLjzA+KQnh43o4ujF2duPW59MptWE4bQ6EwUt= o/JTCVa003IUyIwQ8rnpDpiYOOsJHrg+F4PoZf/7f+LVFfOYt3EMz88dSbS8gd/9cgG1CY/y+5/= cTJw+TMeBdfz1PxexYkkuo/5tKuGgnwFHK95xD/PUA7MpTtQSal7Mj3/6AW/P38kD/z4L8fQ5lR= Ih5HOdXf7yIfm3jyQ6uIZf/2IBVeob+dnvHyfXIOFt3c+Kv77M0kXvk5D+DW7NPUt1hHwMDLgxB= gfjjsOti/jT69sZKPkiL365DKsqROueNbz75nJWrk8n4/Y04qPV7NpVhXNmERlRVgRvOZvLHfhz= H2ei9tTso1JHcf9Xv4tx/ht81JTDXY89yox8GzZLHeu9A7i1IWRZASL43S5cHU1o7v4lP58Wizr= YQcWK1/if1VvYNqaMkptSObJ9HSuWb0coe5zvzykjw6Tgb1zIv//oCB1DodNhr5vyeX9g2VEbt/= 7bt7ktXUfw6HYWvPU2S5dvJjsjjbJwAO+AmzZXEl/45r8yc4Qds/3K+Cr/+SaoZ+DHFwgS0hgxq= 9Rn7TU0GhWKEiYcPvGdLTWHognTyE1LISUll+vvn01RooryrZV4PH66VixiXYfIzCcepSgzmcSE= NIqLpzBnkoWWxmrq2oYyMuZQNm0Sk0qySElOIXNiEVkGiV5HN+cLoLel5p4m/6ZT5a9ewoZONbd= 8+1+ZkpVCUkIi2WPGMuPOWRgb97F7+z48F1E7TR8vpiaUwA2P387IlCQSE9IpmTiRGWUJuNrb6A= yNpjQ/G2trBfucXQwo4Nmykb0egQm3XMfpfjZJo8MWF4/dokOjtxCTkEpCtAntObprVdz1PHJPM= ZmpyaRkZZJVmEWUz4u7fwA4SnXNAeqD+dxYNp6xI1JISk4lq+wWpiRqEQQAGZ9vB0vXdGMuvJX7= JmSQnJRIxtipTJ5YjKqljiOtnRx7tTmzH2P2hNFkp6cTZ7oyi8JrYCQSEQQBQZGRFQUFuJiqEyU= JSVINPSugThxBblwUm1s7cIXD1FYcJKhI1C/+Ed//cChRxE9vexdhtYu+PrABiBp0GjXqYyOOJC= EhoChnTOrPkK86RX7eoPy2DtyhY/JHMGaS4fhLFCQrsQkljLCuwelsx0n2BctZU92IoLqRnDzN8= XqR7AXc+tXfM1sRkCQJf2EuSavL2VXpZHZBAgc378erm8q9s846Ybw01IYTHjtBQJAkBBQUFOhx= 4HA4kZMmEm+PQXtcQQ2aY92/IhNq2EtNvxe5dgW/+sGm41kPdB7G2R9Fn8eDzzD4ndZgRqO6srt= ll25EggCiCkEQUCIhECVMt30DKb0Iz6JfEW6puaIKXj42YqIsGAc6aPF58cMpvaeiKDQ1t6NS24= m2nycbQY9eq0Ly9NMXiRBRFGCA1qoquk+xSgH7yCiMmitcDEGPXjcov1c+Jl8Y6o2PISIIKiTCB= IOBi3L/KmfLRxAQJdXxaYqhpISitLW8u6uCnht62LZ/AOPkGxmn+jQmMgoIF+r4FORIkP62Wqr6= Tm3SKksWJr3meFmuhkPyko1IjE7C/PCLSNZ43H/7HnJ/J8a7v4sS8iP3O3C/+fxVUPNyiCEjLYE= YcS2VDU5mFqSh1594+ZFgBzsqHegt0yjIBnqHflCO/Rmq9nAH7d1eQjEppKjVOC1GIJ6n3nidR2= NP9GyKIqMoAqLYz+59l6G2MtQbnyLfQygmhVS1GofVjEg/3c4IHJOv+PB4WujwmrHa4rADzguIs= VnNKIofn1fhuOtNDuH3evArGgwGAxopnwljMlg5r4LNKw+xy2Nk+uzRiFdnp/YEJjNmsxlVs4dA= MHhSbQzWzDFEixWrKZash3/OH58tPtGoFRlZAUEUEcq3XjU1L7krETV61BnFqHPGIxosyCE/kc7= DyP1O5J62C2fwGZA5dhxFeSYqPlzB7qpGugZ8hIJ+3L2dNK56mUUtNrJvmE3pSV2Kz92Ls7OdgU= CIkH8A5/Zd7He4SSnMR6fXkT+hlGhNHUv/XoGj308oHCLg7aGl8QD7D7bhi1yezmeXP0BKYT5an= Y4xs2aSoKtj6d/34nT7CYWCeLuaqN29hSZdKjkFI4m5CDljZ5ShDVWyZkkTvd4goaCf/rpN/O2n= X+Frv5lPhRNAIrekkBSrg0Xv7aRLO47rCrRXKdrhJDTJZKdnYOutpry2lla3n1DQR7+jmU73UAU= LIpr4Ekbbg7RuW8GWjn58wTAhv4fuw7VU1zXh8Ia5mse3L3tNpHj6cb/7Q6TYDPzbF574QVIj6k= 0gqSESRvEPoISDpyYWBMSoOESDFUUeesbrQgn6LletU0ko4767mnC8sZD/+UUz226cxcxMFfXbP= mbpZgdJE+7g6fsKT4kr8zZXsmrRGyi9paTLh1n10SqOisU8eX0WUUYJ3cyn+JfpB3nto//gh4Gn= uXu8FV9rFeuW7UQZcxfPpMy+LJWPyae3lDT5MKuWnCpfNfZBnr1+N68s+zE/5TFuG2XEWbOOpSu= d5N/8GDPHxwM9F5Sjm/Ekjy6p5f23f8J/Be+hLNpHzY41bD2awHWPjSV/aA9Iyh3L+MylVNQ7SL= x1KnkazVWZGp2KifwJk5hcWcUHb/0Fn6ONCRkR9i37mJ1uP7IRQERvLOS+p6az/5Ut/PnFEO23l= GHzH2L7xo3UixN4+pkHL6pD+aRcuhHJpy2IRRF19jgEoxVVSj7BfieiORp17gTUmSWI5mhkTz/h= 1oOED1cQdjRDJIRotKLKKEY/4S5U2aXIPjeRtjpCjXsI1mwh4myGK3b9g0jc5Af5usXO/EUbqdm= /kQWVCpLayti77+aJJ+eSYzo1hS0ji6x4Mw3rFrPLLyNZi7n/6ce4PicenQiQzF0v/AzTq6+ztH= otCxpkRI2JlGkPcNs9cym2BKhLyKCoVE1ajPmkiraRXTKOSdZEROHczdCWkU1WvJlD6xaz0y8j2= Yq5/9nHuD73mPxYbvv33xD12n/z/t61LDwgI+lslN7zJHfedRPZOgA1tqQcRpfGkGQbCj61ZVAy= diLWBDWCAJI6i/u+/12k199h27aPeF8W0FkzmfPUHG6bNQrLcY3SKcqLw7w7wMyZuWi151mcS0Z= iUgsoktKwG459aSG1YAxjTDHo1CJgIK1kEpPEtJPWqGpMtnRGj5XJTBh8IZrUMu5+0AuLV7O3ch= WLqnRYM+/gsZExbOnKwAgIGiPp132FH6gW8PbKvWz48G0UQY05bSZPzbmNqQUxSA3JFIwZTyDVx= PlU/yQIJ19UEmrYTc9Pbj5vAlV8Ftbn30eKSaPvV3cTrNuO7YVVSLYkBhb+Av/W99CX3Y/htq+j= BH0o7h4Ekw3JGo9n6X/hXfs6KAqGG57FcNMXEM0xRHpaUQJeRLMdRBHvqlfxLvnD8ZHrSp8nCvt= ceAIKGlMU+tO7EWcNK/7yM15qLuSL3/h/3Jzhxx+UUev1aNXSWXtfJeTD5Qkiao2Yz8jwEnHWsO= IvP+Wl5mKe+8bzzL5I+W5vCElnxPhJW4giEw548YRAZzhLQws7WPmH/+B/DxXz/Z88wZh406e7P= yIH8Xr8yGojBq10zqmkHAkR8HoIizr0eh2fhu/jiru4JWsimuIbQVHwrX+TUM1mxJg01DnjCdbt= QAl40ZXegvG2ryNoDfh3fUiwai2ypw9VagHqrFIijqYLuoAvB5XeQtRFBRKLqHUG1Bfw5ApqPVH= Wy41Mvjz5losr0HkyEVHpTESdLsvrpLGpiab6bSzZ4yLz1omkm/Wf/gajqMFgvrDLU5TU6M3WCz= 53JflkLu5z/zjo6xcFBI0OKTadUGMFwQMbCe5bjRIJgxxBN/VBBI2eYP0uBt76AZG+DgCC1RuQY= tOJOJogEj6PnKuIpMFoTyTZH41Ze+HHr4Z8gz2JFL8N02ch/3SctWz48F2W7nAQnX8dD8zIxqz/= 9E4l/SNwxUeiSF8H/orlGBNy0E95AHV6EaGGPQRrtxE8uBXF70GVkA2SCv/ORccNCEDxDxBuqb7= SKl0apjhyZz7Ikx4zmZ9FULcpjhEzH+QJj5msz0NQuSWZwok3YcrTkl0yjoIUG5qr71H4h+LSjU= itOT4aySH/aT8qKF4XgV1LkN3daEZOQZMzHt3Uh9AUXYdv7V/xb194wl8Q9F6e9lcDjZn43HHEX= 6vyT8eWyfhZmYz/rPX4HHPeqa1oS0SVnIegPXF2UErMRRiapEccTWdJJCH73AT2LMOz5A+45n0P= 37q/Iugt6Cbfi2CKJuI4DHIYTdH1p6YVRFCpL7tQwwzzaXLOkUiMisMw8zHU+dMIlH9MqH4noj0= Fw43PIhithFqqUTx9Z6ST7Cnopj00OCLtXUm4aR+iyYa29BYEnRFBkgjsXIwmbzLaousw3vFt/J= veJtLfiTpzDLrJ9xFqLMe/4wM4fV9pmGE+h5zTiJSA9/j6RXXb11C8/aDWI1rjIBLGs/i3KJEwg= nQiC0EQkeIz0M94BEHSoJ/2EErQj6A3I9mT8W+dj+zpw79nGeoRE9FPewTD7OfQjZuLEg4g6i0I= ejOKtx9BlK7qLvPnDjlIe2c9H7XCpFGjKLoCzj5Pz1GWt7tITchgwokNm2GuMOcxIg/eDfOIdLW= gm/IA6pzxIAiEG/fiXf7fBKvWgiKjKArhowdRXF3ILgfhw5UMzH8R/fRHUGeMRpBURLpa8K17E9= +GN5FdXSBHGJj/M8LN+9FOvgdNznhkr4tQ3Tb8W+cTrNmMcsZ665MywKqdG/lj1SEaT3P4TZvyF= f638HPiaZJDOJwNzK8VsGVfvBFFQn0sWLOInx9xEVAENFobswom8u2xuWhdnaxpbGe8Pv7aMaJg= L+urt/BqWxSPTJrGLecLKr5CnNuxoCgo3n785R8TqF6PoBry0UfCyH4PREJDn0O43/gOiAIE/Si= hIIHtCwlWLB8M+RGASAQlFBgM5xna/5Hd3fg2zsO/fQGoNIMGGQ5CwDcYHX7FkHF7XfTrsvjmmF= GURJ1Yc1ltn6fjVAqyHMYTFghdwhC8fe08vtUUww9vv4M5Zpna5n38bucmfitp+aYtgj8cJiRfQ= 2O62kReWilfsomM+JS2iy7snYuEULyh806tFJ/r1M/h4JlxcmdLFwqghD6d+1pUOgt58YmMtZ+0= +TLkZQwGulm7by9rOqGooJA5GfFEi+B3O9nT7UEle6hocZGeX0BusI064ikIN/HaviaE5LF8aUw= qpoEjvL/nAHtV8dyfX8DEWP1gmI3sp6G1nkW1HYStmTw4Kp00vRqBXjbsacWUZedgRTm9KZOYMq= RW2O+i8nAnLl0sYxOtGABHRwPb+iRK0pNJ0auHPEIOljX1kJB7J08n2ZCAhPQ8Olpb+UtHC3tNg= x1G0ONk9e59bHAbmJBXyA0JJo4Fskf87Xywu4pNfjO3jypmRqIRVcTH4Q4HR/0R+gbaOSokMdWu= 4khQYrTGy0cHq6gTc3iqrJCioUM+ciRIe1sdC+taOKJN4v78EZTa9We95y7kbuXjyn2849Jx76i= xzE23MKipgt/nYnfdftY6g+RkF3JTWiwxkofqhnY8ei3tzTXsNxVxs9TBYWMO96abB9MF+qlobE= Oxp5Aa8eMJawfvYZBkfH0dLKnex2aPnhn5o7klKQqDdMzD3Me6qgqWd4qMyy/izoxotABKkKOdh= 1lS3US7OpbZhXmMsxlPnGk6CemFF1544dgHubcN34Z5l9g8rz7aMbNRZ475hKkD1DTVs91rZmZ6= Emn6wbWWIgiIgkCgv5JHX3uLl7rAjIsV+3ex2AGj01PQdFbzm03L+EH5Ieo9KnKy0+jbv5xvb97= Kux0BJDHI1v1r+WF1I5sqaziITHvrAd483I0pdgQlRjdLt63k21sP0BgKUde0m1/VBijLTCJZd5= hv/m0JP62qZHNQx0h7Inm0saxTYFJGLO11m3jpSJDMpHQyNX18sHUVf+6K4rrUeOKPXztlxN28j= XmdEcZlZJKiERC0ZopyRvP4iDRsrlZWH6rgz/WtNHpCdDoP8lL5Yey52RQbtQj9e5jzynt8ENCh= 9rfwRvleKsV0brH7WLF3HV9ct42lzm5UlgzS+2r42fbV/PpAO35Emlt28oMtTeSNLqZA8LN7x3v= MXluPS2dE6ani5f2thEwpTLbrTr3YpWMLc95dyVK/SLTSxdvb1vBeIJtHMs34eo/yyop3eP5QP5= FQL0v2V1Ee1FOUKPPh5rV8b+NWFvQFsFrSmDGwlZu39DBn3AgSCHG0fSvfWdtIdHo6A01b+GODl= 6y0DDRNm3luxRoW94VRhR3M27mV1UoGc5LMaCJH+Oarr/ALp4hB7uKDfXtYPRDNzek6KvZv5N9W= b2dXQMDVVctLlc0YYpMoiDKcsU92DZxsHcTnPsLifQLVhqEiWzN5bmQs69etZFPUNNY/OoORQpC= 6IxX8aH0Nbx3M4VsWQJ3I126awbdGpWIVYHkViInTWTV3HMk6Fe6D7zNqWSult3+N3+YIHG2r48= V1Gylva+MGz1H+3uTlprI5fDkvEaOvhq/O38q8o6UUmQAEZs78BgtLDBAeoGL/kLJGO/nJyZj3O= jngcDEtdIRt3VBQGIPdcOorm3PDPTyz9GOemPcyifYs7hs1mrtyk0jVDU2/1Ql8aeaQ/sEDfOmt= tWw/GuKRaA+vLFpGefrd1M8dgSroZlflKn7YsI9teaMAFWPypvGdWVOYaRJorjwEhpH8/9mzuDX= Oglo+xDMvzeO3u7q5q0xNJ3E8f/Ncns00Eehu5H+27mCP4yhHcqNIP0nfffUN1FqKWDa3jByTnk= D1h9xac4j9QQvhui383ZfBb+67hTmmEHv2b+b3Dc3s7swCBAqK7+T3U0YywiiCy8mknVt4q+UWi= hJCHKk7ijN6JNfFQ03LkLBAKx81HUWdMYPXJ42mxCjQuGch99bVcmRsDD2r5vOKdgoVj00jVfZR= fXgzP9pZxbIjOoJtPRizJvGT6WMZq+rkr2t3cKjbT18iZ0SSXDNGFAl6aXF1EwkOTTCkRBTFyfo= OH/mFRYwUATQkGeMZa65md78TpwXQmUjR6bGe1PtEGy1oxcHRQG0wYBZ0JJoHP4uIiIKCrHhpcv= fiDARQtzTwVv8RwIdX8NHvUhhcpugpiD/bgl/HyOgERmrbqOnpoNznoFm08bDdhP20N6aKyuXnD= 6bzpSPV/Lmyive3L+Hd/Wl8cfp13Mqg/qnH9Ndq0IshWgZkZKWJDQ6ZREsvr+/cAYRxuiMYIj6c= bgAtsWYjsSffQ6AzkihJg1MvMYfbU9S83XkUtbqYWaPHUdXZwtu7fUSCPezv9zMQHWTgtJLlp2V= S0nCQ5zcKPJibQ3HydBbmRREV6uP9ji66w7EcOLCDNmCgv4/usJZAyA9oSLcZ0auHRmHLGJ5NXc= NP9zfzPbuGlW0eigpHkkuY42er+/o50q9gyzMRZxwsR9boW1meB1Hafl5s82A1Bfl45w5Aps/jR= ZTCdMtRjEmyo+w9yP9uVpiblcKUcbN5yKLHeJb56TVjROaYkXx92kSmx5zcjTgQBbBoT7jCVKKI= Qa1GQLgi52UUOYwr6KXDN1jVGWkF5CTquNBFoKZoO4UxWj5wNDIv3IfelssIk5lTQjAjAxx0ejD= b4knLKOHF9GK+03WIl9dvYvGBWrLPe8WCgqKIhEJuOnxDyqhiuX5EEnk6uPChXBmrVockC4SCLj= 7e9D4/dsRx98hMxhn0mFUirrOk0qVM4q+3JbOguopF5av5z34fI0vu4neFekAmFAnS5fPgB9BEU= ZaewKgoLY4zctJyR1EOz2+oZFOBke2BBL6ca+OUs7yCgKDSYBZVJ+pNEJGkE1EGcthPh2/oTYtm= JmXHUGozMyG1jF9aGllcW8erm8s5SjJfnzadB9JsmE57d9eMEZ0dK0UxOua3HKCxqJRMTZgOVzf= 7vQqJKRaicF9G3irsOgM2o5WxuWP5cl48FjFIs7MPwaJFfSHHoCaG0vgElrfu5cNeMw9NtZNsOu= 11BZp4ceFqdGWP8OvCGGwqEZ3WQIJZixwM4AqcL+rZSl6UQJMln6/PTCdRkhnwuTjqFUnVes9uR= CEfjlCEsAJCoIOP272kplvxh7vY0OpnfOmNvFBiwN1Ry55Dh2g9I4MILa2NVERs3Dt1Ls+oFA5t= fI3Ju3fw8OjriY2ykuSPZ+7EmdxgVhP0umj1K0SZ+lh3FnXM+aXMXbuEv5VH4U6YyAwTcPLOiMF= InCZCeV8/7f4IMVpwtFTzqsPM0yVx5Fl1QBLPTB1Hjk7AFxig1RUkSuOmrs1BlzaF524s5lv+en= 68dDWLG3uYEWcj57TJwzVuRBpmjxnPWxv28OM9EjebA9S1NtBqyOSr6Qlo+89sBhePmtyEdGY0t= 7G8fi+qYDJpKjcbD/UzbfI07rxghLZEVmwsGRpYobdTYo8m7vSphCGHB/Mr+c2+tbws55OrVejp= bWdDj0jJqFTy9J0sOWf+STw6roC1u9fw68rxlOkjtPV20ipn8K8lUWdP4utkad0BersHnQcfhjP= 4wqgUVFInGVYtHzbt4S2tBaejibVdXmzx8uAZzuMdhoKj8yB/rA3TOCqbZK2As0cmIyGZDK0eU2= 4ehW01/GXrHrrSTAx0tdMsxjJn1Dn0EbN4OEfg9lofX5o7gjO2hExxTM2Mo6LmMPMrwlRbYN/Ba= upiJvIcJuaWlvLaut38aLeGO+wiPS4njQNmHhidxqHGSt5z6ZiUmUqy7KAxYibPpuf0fgyuCe+c= QiAYRmOKYWx8NHbNqUOAzpZCsc7PQUc71T0DyJZU7ikaw81xWpRICL+kZ0RMHOlD1/cEgl4kSzJ= lsWY0ooASCdCrmBmfkU6WFiJyhBAC6bEpjEmMJ8NiRPD1UO10Uu8KEJeUzx1pMUSrZPq8EiMzs8= jTAYpCOBImrLFRmpxAshoklZ+adicRcxZzctNIOcO/qiInNYO0cC+7nZ0ccPbQqWgZk13MI3kZJ= Aph/JKe3Nhj+kdw+yAxPoPxNi2JiankCQNUOjqp7XHjUUczM3ckpWaRQETAZImh0B6FGejvrGdB= v0C+FOFwTye1QSPTCqfx5VwLRlFPmkWFs9fBvm4XstZCYVIqhfGJFNutRB2vcpHkWDvWYD8VnR3= s6+7DbUzh0XETmGnWYNJHk2uGjt5O9nX34MDE+IwsJscaiAQhzp5AgdXAiXtmBOL1Eh51MvcWpZ= IkAYpMICKjNsZQkpBIsd2CVfBx0NHGvh43UnQeXxs7ggy9Cr09hVJxpWY6AAABqUlEQVRdmPqud= g5099GNgfHZo5iRZCPFbET0dlPR6aDeHSEhaRSPj0wmw6A6I+D0kk+2fhZ8Gv8pT5bD+EMKGu3Z= L3i8zNwJBMPIogqtSryIA20KoXCQjvYD/GF3I5bscXylMP28/7VClsP4ghEkjXbo+PjFo8ghBoK= g15277M2VS3moTssfr5tMiUUiKGoxnnJ7q0JEjhAcqsMLxYFEwgHcYRGz7sxnZTlCIBxBkNTort= Ct++FwEL8iolepzrjIX1HCeAMRVFrtqftAiow/FCIiqNCppHP+A4BrfDp3AlFUYbhqh+BEtJpLu= Igu5KLycDWv7j1MnzmdW5PiiL6AYYiiCqPuk71OQVRjvsDpWVGUMKhUiIKAWq3jzFh7AUlUob/I= OpRUWqznUFcUJfSaK3zBokqD6Ry/CcI56k4Q0WkuXKBhI/o8IqqxmuyU5VlITUhhXPTZd/4/TaJ= TCvmWRSLjit9K+Y/PKdM5eaCHYPWGz1Kfs6LOHIMUl/lZqzHMMGflFCMaZphhLp3PUxjzMMP8Qz= JsRMMMc5kMG9Eww1wmw0Y0zDCXyf8B7AGpCIbJUUAAAAAASUVORK5CYII=3D" width=3D"209"= height=3D"48" alt=3D"" style=3D"margin-top:13.3pt; margin-left:272.7pt; po= sition:absolute" /></span><span style=3D"height:0pt; display:block; positio= n:absolute; z-index:7"><img src=3D" QEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEB= AQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQE= BAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCABbAMQDASIAAhEBAxEB/8QAHw= ABAAICAQUBAAAAAAAAAAAAAAkKBwgGAQMEBQsC/8QAOhAAAAYDAAEBBgQDBQkBAAAAAgMEBQYHA= AEICREKEhMUITEVQVGRFheBGCIyOncjJzM5YbG3uPDR/8QAHAEBAAICAwEAAAAAAAAAAAAAAAUG= AwcBBAgJ/8QALBEAAgICAgICAQMDBQEAAAAAAQIDBAAFBhESIQcTMRQVIghBUUJhcZHh8P/aAAw= DAQACEQMRAD8Av8YxjGMYxjGMYzGdwS2dwavX6T1rWDjckzbQo9s9ctMojENXyEShcnTKQESSYr= EEdbdokhp7gMbgqLCcBKJOT7yg0oAoaeaPOKx3r5KZD4vJzyjaNG39DY2+SGWLn+fVxNIs16aYg= yTYlEBfDF68C85yY5A2mkGIzjCiDTRkqRANKMAFjJ4sYxjGMY9da++/TOGz+exisohIJ1MXELVG= oy2nursvEERnwEqcO9i9wovQjDTR79AFFgDvZhggA19RfTDYsQVIJrVqWOCtXikmnnlYJFDDEhe= SSR26VERFLMzEAAfnMsEE1maGtXiknsWJUhghiUvLNLIwSOONFBZ3diFVVBLEgAd5zL11+uM0Zo= DyEc69DydNCY09uUcmTorWJo1G5okTsjlKwoEShzVnRzQVaghyEQ2pFTgYiAcFwChTKVekgkyc8= 0vebOjpt1q+Qa+Da6a7BsdfZ8/ot1n84ZPrdo38W9e1dWUggEEex7Gd/caXbcf2E+p3dCzrNlW8= Pvp24zFNH9iLIhZT36dGVlIJBB9HGMYyUyLxjIPvKV5jZH4pmhHYdw8VWnYVGP0sIhcduGubIrp= Q17kStvWOTe1SKNOwkMija1yTNjqY3iUJlrapC3HAC56UiCm3KZzBejT07zpSHRLCyOMbZLuq6F= Wi0x93PSqXVlbpswIZAjbHFQi3tGctRELi06k1NvZAzixiK3sG9b2xmdcYztGGhL+/56+n11r8/= t9fT7/ljH/3QHZ/z6A9n/gZ3cZ4/wAwDf21vf09fpvW/wA/t98/YDQjFsOvy1re/rrfp6//AH9P= 64/HX+/4/wAf9/jOOwf/AEEd99ddd9dg9jojsHsdfnO7jGMZzjGMYxjGMYxjGMYxjGMYxjKJPOH= +dH6i/wBN3/8A9Zqky9tlEnnD/Oj9Rf6bv/8A6zVJjGXtfXX66/fWPe1+uv31/wDuVRL47H6Ovz= 2gyHeN+bw7oyG8aQ6BnuH+52Ry2s0VrSpzr5JOCLLsmwogJlkS2p2FWetg5MXYJW0ojpMhLPdzH= E0Shk3gnz5dD2p4Y7a4fvvla17dba1tOVziDXnz5KrZn8/r2dxyPkxlaY5syWwX+Vq4PKttT46I= yZHEz21QnXFtDhso4xOpCsYybPyCeS2M809OcDccQeQtSy8es+mK4jMhYC9IXFXFqN06D1MXt2T= G6PE1nyg8KSMRw0YCVRuznlyQGBGziHknFqVxGbbgEnrmXpxqo5LGc5ndCSTfhH6JP9PdOIM+vw= zyDAgOJHvQtBMLB7wRB3sO/n9+RHiOmKV9od8VzBW0ju9Mb0071pYVkWBI7rsCU2ytkjtYD8ylu= 7VYr48LZGwK0LM3oEbfpqVpym0KcIURZIQhCG0Z3XRMe5O5nsa72bq7txvlEeFHE8L/ABrqSxZG= zqJhIZK1R+PNLgxva1W3ObSvcHIolxSKSRGDRfH2nUJjdANBHbdqqarZNegFqktC41usVVxYrJX= kaeAqxCkSxBo+mIH8vz+O5HUJbk22rjo2DUuvsqCU7allaraa3CK9hWQFwYJSkgK++1zjNCeHeW= Vh2TAOhJd0OjktV0o9SKTVRVrDCVzFIVkkkEfc4oicbGmK+VPBLoljUfenZMhamFmaUrirVAXK9= kAJ+RNnk9dfrr98pW3JcnUibw+9jdhJOrek43dtOFMC2uXtitaQImxIjcpMwNJ4HVgGYc2u21BJ= 67ZJysjZqfR4TCRBEHW9+28ONaeTPy2cO1TafU3kA6FpKi2zc8jkQU89TBsjXQHQjmhnslJeZ5a= VuL2p6dmBjjSzW4DGIkxIkmlzfGxuLiYXo5ONVWfjm1x+7w3S2uL6wafRyRWBS14Cj9P9VuxDOG= 8ZZvJmsJKxYyuzAhj130LL8jVeQ0eZ7ypyrandb2Caut7ZEsf1LPTrzQsvlHEAgrywqAkaIpUhV= HXu556639t63/XHvB/XX76ykzV3R3XHiA83lbePW2uw7f6/5E6SrYU0jbh0U9jmljVmatb5krQr= C5YoEJcJQ0OsHcEDgBKNGwu7I7BWDYUbokKPL9d4yOgLZ9oh7a66sG6L5vCp+MeaxRRoq3lah7T= mtNIJeXM3GWpGGSWXLq/eWGWPasDdEFbu7kFPBITHl6So24xuaGwxGvu+UnN7Pa+gFj8PMhHsIR= jL6IpLZe961vYBCVSIGxB9f8ItgGMHva+vujFr7b3kvviSGAXi/wDH/sIgi1/ZFoUPrret69QVx= Hwi16/qEWt63+m9b1vKhftRHPV+8Rcds9fwS6rRufh2+7biaM6FX9Pn21Z7z1bkISPEliqeurGl= ChZMnOvJ3HSZQmcY9LnaQGsjmwJDm9wKAuEWPNdo+VW2aP458JHjI5SmzdVN89gc88sN85v5YBs= VqKKrGXpIzECnRhQO5ZrXuTOwQyBxC6OWgksjUy7ElBpe6JXBtYy8v66/XX76yGvzVul5OXOsEq= zmtqn7vcNmW3GUzOXW/wCJEyFAzxZM4SJydtujYanGzIErgnZE6tzWK0aEj5ssKhQDRmtC4PbPI= 8Uh3O70p5w8i1+xnqiFRZY/RK5Z/wBgye2UE7mzC2HLkzdZtUT+aPtQOkWljinAid2pkgrJtoSq= xCjxiHafRZ0NDN1R1t5h/FpcfW3EN1Xvz95CecpAmZ7gqCsrbkwqxnB0MYQmuyCBQlxPWNLFuwo= 2WZKI+lQkJ138YNK9gMXOJa0S9R1rtb9ZVnq/a8IsRmNpYuvsRWI8ihPYDEAgHo9E99H8ZZOH8h= HE+T6Tkp1lPcNpL0ewj1mw8jRtzwK7V0uIoJkrpP8AXLLCOvuSMxeaB/NZK6yR+f5holZDHBtol= 0lQ25OmYptO5MwLbOZUfwRgESq/CRnw55dgg2UEpe+lqzwnB2avNXDGIQdf+D+regfHncN0RDyl= KbOibFbhzVJova0xTP1gRkU1bDTEC5sa5BEiZK1gbXdnVEqS0rbstK0/gwCTEaTR4QB9B4uvL1U= tmeKGY2PZ8wvmcdWtb20892BUQbZm0luefdCSlKsj1ZNtLHOLxuQwkVtGkjdyzGQTcjh7oglik0= 4tJGDFe5RucPGzJZLz6Jq72uG3uhrAssiQv0vr6WWzNJNU1Y6luxqWaAQ5mdHM7byoqdMcS1sti= PZiqUObyiPkQVSPShMjSxDaSaI15qezvPZqIUgW9OJ68oI6KToiRE+fruRSHUgH+XXWbXqfMum2= MPIdJyj444XU49zCzWk3dzhWnXR8l15gsQTw2dLctT7GohryQLKdfJWSnaYyo5gMzSjfWlOyeYe= i1v4VSd4V7YjzpAa6GsLC+pjJAnbiBEgOWqY+p+XeU6YgxQSUccehKAUYYWAzYBjCHNndfXWt/r= rKtfiGoCtuL+/+u6KsOYNhNvtrcxsVKoHLQkyqZVc5nHy1Y9tao4stKpdDmwMQ05NRBwlhRiJxG= UUcmSnHAtHgNAL3da3v13r0/wCn01+v23/9r7529PdnvUlltJDFaWaeKeGFiyxPDIYypLMzKx6D= eJPoMOuwezTfljiWg4XzCTU8W2O12/HLGo0u30+23FVKs+xqbjXQX0nriKOGKxVX7/pWxHGPKaO= aNgrxMo7uMYyVzW2MYxjGMYxjGMYxjGMoq80lB37aB1qMwG9iT1U/Gl+vr6hHvnCmQ6FrX572Wa= LQfvreh/T1y73PGaTyCJvLPDJcOCSZcnCU0y0tjbZINjUaNLHtWFjeBBbXHfwgjK+Ar38P/ae/6= bEDWQaRPwarIZ5Bpx5NGXtGyQdQWFHzozInA+patPhI2w+Hx2DjCjiQiNEpjtMUWaQhN+cM9FYD= lOw72dsOmM0LhXdXSHmP8q3SPDlG3rLOOuQ+PW5/S2nMKbMaG3pC9HhgmhUJWJo5Yjo1uCqso8d= ITj9lmx1IcvIamz4yxSevf0xTNB/7WXyZXPJabiSNRS9emrdkkuc7deXxH0b0VP7xWtyBuDAkSF= 2YkEycVKKM6cVSlamWqWhGi05iSFEm++FAAJdiGa+zjTOJdcyHuHibyIWfyFf9iaXqrYcWaoYdN= YlM3qRKUq+Yr0kRPkcfaGpplLujIf1sUdE8mZ0z57ytu+SKAlTpsg9WeznQDtHnZXCejes7jtbq= lxn8dnyvsGZxyKOEjRFxpnkDI31zF6zaz2KKw6pQkSRychQyNuKAZ8iMLfF7suUEkgLYyLjyv70= H2jTwRCFvQQhi1L+ot/TX1tGTh1r1/Xe961rX33veta9d71rNwvai+oVkQI8e/IceUDA6Xz0o0W= LKiyB+gzYjVQiELU2HFh3oYyXaXS9AvL1v1Ds+Mh/uiF7uw7N9Z+CCyet7D5e6PlveMginXHJam= JBq214dQMSQQQhthbulkTOBxq9bOF69c8GyFON0cHJXYClqPCoObSo4nQGiL1+O2PA3P+87v5v6= Ou/uZ9MtTndcmC1JIxQ0WYa5VMZDilehomKMhnSuRsbuseE41y96fJrMiTffKTompuSpgkmxu5g= mtafbVayh7FnWX68CEhQ801WWKJSzdKoZ3ALMQACSSMlNJYgp7rUW7LFK1Xaa+zYdVLMkMFuGWV= lUAliqIxAAJJHQB76yJLuO4Kpqzwxdoc/PsrQJbRtGIxkEChCYtQufHduhDjHXeUyM5KiJO22R1= qLLLTLH5z2kbNOri1tQFJji5JE5syfstX/JK5J3+f4jev8A56sfPPuDwgOdrc+XRzyV0iwsDRf0= XbYhY1hOlAJZbaGmNpf0MjRNkTkgLVjSGNM2nRvIUqmX8Gc29Wfr5oYAqQgHrZzxs+Oq3fG5zdH= eVoz1FHLQqiBMU+Jr8b7z/uNy5llc1lDpMCpA/vqC43JBI2ZoeHtz2OOFMbIe4IxpiP4gRbTCNO= o3w/x/b8W+OOM6HfQfptvQr2xehEkcwSWfYW7HqWJ5I3DLKHBDf6vYBPWXb5f5Dp+VfI/KN/oJz= Y0+xtVHoytDPAzQw6ylWPlFYiikQh4XBBToEHpm/JrGecZqfH32knhJkjCLblJXjmP8LjzcHetC= Xvi9F0CkaUYfe3oPqqXmpyNe8LQfUf8Ae3rX1zjPsSAtsky8j0SeQibZQlBQglbGrAIhxTfhTlb= za6aOSj0E0raFwOKRqdDCHZSgYSx60Lfpk1HZPinXrevqj8tfQnejXGrA5UZ42zxZJH+Uli6FLy= 0Ly+AYW5RCGa35BNpU+vLvNFDehaoyuE6Oyo5AjbkY1G/Q3Es08YaTmbtSuereSe1lXI/YHXqlb= G5TH1PJM5e+UOi5O+I3ueqmN3gCiWbJq+VK2WNLZI6MC6zNuf4yzuT+2Io+qcFScey81rmGfbUH= 9rS+Ojn2OHrkxbw9dbx9wb24agoCxWhY6ss8tyWJ0wt/GPTITnZtLVHFh2BONclCYLQlJXvV+v5= NR518qvgC/n1FmGX0feXHvCrEQxTpqQvUKkCRJDHCHrY6va3ck9rcE4pSYhMUI1RRpOz3VMI0vf= xA6Hat649npmvkciDw69691yyz72+baCKvlcCqRrglQ0NEylxa+VR6uadDOV4HF1nJiVtIkM2mM= peX0SNtSJUpZAAb3mZLH8DccvPlqkeY7vv0t8O5NisGZeSL1rWn01Y3nTD3BCWxMjfVErNsmYt8= tRu5DM1DeY9pmjqU5wbkLukVI3FChPTMZIwn8WPjWS6LCn4J5BL+Fv1Bv+ztU4xa+/3EOKCFv19= d/wCLe/8AtnHK0mHj95Xb+rUdQwWmedYbzubHF/ST5XtdRWtYMlfFkSMk7c2u7jFmxtQySVMsYX= IjVjZ8NU5tn8RszaAvax1LS74Iw89eVEiJoqzf+9aHUMaVqKZFVzMvIrolvpwRkp9Jdu2gO9+PV= UopcpJ1o017Mgrkzlr/AFWBixgd7T7jF6roCpOT53zRz1ZHUR1Xc+rps7X61/zGpENrxm8Og25Y= hUP0z6znAbIYX6ZyAiZOaayWEKhuY4MU6HIUzk27bYayEE4pp4a8ZlnlSGMFQZJGCICzBVBY+h2= SACSB2fZGSeo0u2391dbpNdc2uweGxPHRoQPZuTRVYXsWGgrxgyzNDBHJM6RKz/XG7BSFOV6+sq= Y6j8ZvXlee0A1DzQxV/wAxW3fbnKXvmx2LNcpPXsJmJIWlJKZ+hUkjRQCR3o1uUslcfAxFC3Ub9= I0EYXiCapE2qfoJcr9RVF2TQFa9G0bJ0MpruzY6kfWtUlNANS1rBg+G7xt5IAIQkEhjbmBUyPjc= drRyRzRqCha2HQBi1l6LJorrnkKV0Y+dO85OzHZEGJik7m7olhcvhr01LEQCX1ejh+7HbCmVUrG= ETixqCpYoVxZwLSLEypQrRFGardcjwJR4mxS/k7xldqyfvidWe9/xOCihVFGnqvYY5t6BSCQSZo= sxpsJM2xxcc3aTmO6JvOfky5U1tgXAlAcEw83BY2FOtH9k08fR9LGrq0srHoCOKNSWkkYkBUQFi= T6/zk3ouB8t5JfOu12jvh4+3vWrleSjrtTXjI++7t9hcWGpraVZe3sWLksUcaqfMg9A7C9l8sW1= 3v5eJa38+PxkKbKQjdVN1lXQiPPJIgD83tg3YshCe3KEyldL/hKNJGxrTqCjNKkaja09GlSHmgt= iRFkVx6NMDI4vThJF7Q0NrcskLtpKFzfFSJESmPd3EKIhMkAucTSxrFQUpBKcJ5xmiSSwegdV0P= DHy13tQfQd7z3puunBgil6x4b9JJC8S+IOzovshFIzHZEsUtLM/OTgES5K/wAl+MeJMWSSPZRI9= 61sAQ2U9a9Na1+mta/bInj1ZVit7B69mta2VuexPFYDxlB5skISJgqqDCFLMB2xPRJUADaXz7vZ= P3Hifx9S3vHOScZ+POKabU6Xbcekq3IrlifX1ZtvNY2MTSyyv+5LPFFV+yOCtBDCVrpNJK79cYx= lizz/AIxjGMYxjGMYxjGMYxjGMYxjGMYzXXrnoZi5N5jvXpWTNK5/ZKSrOVWGtYW00Cde+bjrYe= sSsyRSaEZSU51WgToAKzgDKS/MfMGgGWWIO9is4Ba1Xwe7K1ndQ2WwpZRX1lRR8hUzjq3ZukrzG= 5G3ntbs3mjIMKPJ+YRqTQAPTmlKE5mwHkGlmlgHpjI6591J19TlX6sp/qWuLSZpHzDYd1IJAwvi= eoIPV1jxGKNkrj1bWZLLDmzu26i00TOp6BusXZ8eTt7hHHDbu0pEbolPbY2OtfI70PJuYe7ILBp= lH4nPa04Ag3UzNZ7JV8xjKtCnny6WRSawZkRymTGo3Ewg5rTHQi2Y8tdGjaVYoUJ0TgsSJXLcwl= rcAQK9Of3fme27OtmXVYvrINXoG8t4ZGByaW4gpAmb5HtyYmJCY9SttStSFMjXv4HJvCVpd8RqG= Y5rjDsQyXxNVFPQXAbZVy3tYLtfnORPL1sPr67wZGvkdZtalasjBaBNHoIytEWdIyqXqFSNTGWx= rJdFhhqyRJ3hSoUmnMZh66OoLlp3+Q9bSHdMu4ieVrA6EBPVUIkc1dTp5WjbHiYawN1Ex2wnWyG= 6OhaHxepltu/NuTC1riU6cKmPL3JKVr0Ft3x/aEiXg/6OXsZcZHbHRsNtJwYEpw1pDOdJOOb+fl= rcmUGBLNUkJDFBpJBpgAmmFgAIwOh7Fm1sm8aMElk8a7GdLzvoqRm0AZy/YA2x5hDWltGkxuenU= MSkRSODlmx5QBQNUXqS16fDpTtOvVg/GtGDKNJ9w2eOqCM0H5Lr1utazi41xhIWqQ06mUEwRSaA= 1iryS1a0N8jN3Dy/xZuSQ+VuyYYNBTKlS4ZTgoVmGg93bGatM3kwsAnnPmbtiUMMLJoHpPoCO1I= RBmtmkH8fQeIWPPZHXdcTZTLjZQoaX91Lc2hmcpfHyYW1kFN7+pTNjiJSw6NetUZb5Pe/JBy1z5= 17WjHy5GK27XvNvoGiYrMY3ZzzLalV2LKJdEKYsayZE0zhO0ThJIXSKptzKKsMVjZ0UTShuWIXO= RiYXNC4SgpPHTVUJgMLgjY/TOT1DRtoPXQFP0TIFMa1CY/YxK6VSqNoBPJbCmla6JRiWSp0eowx= PMhWImZZ+GbGYoRsjamTVmOOuzeJa/buZon0fEfIuxVjTPQzrOYwyT2io+VwvQ/S8xlr62nqWKx= Ym2r5M9V1Xs5mEoR1huTzGUMMX04BePl/mEiJQ3sZM5XHlAvA7i2p+67QjFZJa5k3RjDQM6r6Jt= 8nUv7W2qbpO53drHZJkvkYEqsZU6RKJgnih8LKF/CCgDLt1MeSduJ8XXn8umHSDpxvpmWCe1DVD= 6zgciSijhbec4t8tUOkqUmITDXFSQS2o3iKyDQlioJDgdpQkZjdoFJYPQNgvfjsoONQoMPNk0vF= ztH72UdUI6SXq4+bX7RYRMtW2mYaU5DZAyscJS2GpUT4iIqpCezkuwQJQ6/h4GmbdErtq9VfSnV= t5XKoUbUoZZO3UMc3vfqEmIsYgMETIBr8tFx9rb/XevTQzNmGemtjFlJ5zeFbVx11KGW3YA+tx5= Awxr5OxUdHoMVH5Hsgd+x37L/ol4Q3Jvkva72dbEdDi2geX9TA/wBTx7PZ2Y69JYpOiVc14bzP0= D0iqCCHOY9STGMD+dTNlSsqiHtyQJzsUtd3hXMDURitK36dDJaWclJQuZSlYQFNtrYEjH8QwrTg= xOJQRFmTC+Dm0afrjteIR1lE5KXi4mCXxXTjL25CnXRTSFtA9s0ba3BIrNSuqiRLW48Sx1JTNhp= xbc1IwIEolSwkyNTlCrTLTjfWiQgkJp8P5ZlthphbAIWyRwydV09KzA+5oQ/e/CkjiHewgELYdi= CAO9izXCGS2QVrMYpP4e9/hcrhchZ5NHXFCNSWoROzMuIXoFIRCJK0IADyC/iA3vejS9iLFrYRC= 1vXNK2+ts63YyKjj7DIG8AGRI5VSVUI6HtR1/IN0SfH2Tn0U5nxPV8/0PyNwCrbuUbba1NexOws= SwT29pqI7WqtbCOdpj4x3ZFeQo6NKsXjIXVVQfVJIL1oGt63r13r6i1r7/b8/TW/6fTes8nNBvH= z3NXncVFMc9ja1K3zdnSImmz4WYeUFzi8rLICBUIKcI9mGsTuaUeuYXHQdFqUYvhD0WrTqiCN+N= b9da3+utb/AHze8FiG3BFZruskEyBo3UggqQPXr+6/gj8ggg++8+Gu80W04zudloN3Sn1+21VuW= peqWFZZIpomKH89go4AeJ1JSSNldCyMGPXGMZlyKxjGMYxjGMYxjGMYxjGMYxjGMYxjGMYxjGMY= xjGMYzjUzjCKbRCVQxyOWJ26Wxx7jLgoblJiJwIQvrapa1ZyFYSIJyRYWnVGDTKShBMIOCA0G9C= DreResnj2t9w5wg3FNpXrXMs5cgzVAoetSx+knCLWzYVaVs5NK+PweVyg6zXuFtonVMwtTTMpDF= 4E2uLwhAuNZCosvXfNkSz4++MZCT5tOuBc/wDKa6nYKqV/zc6ATqoPHmplKPPdkEG2WWnm74WUl= AYcQVttUFR1MZoOjDFT16pNC2kPEVTWbuJOuXKASK0k/OtskV/FWdRIHyUucOd2dtTMyQHxVbin= 27J0R7imTEe8pPMbSFISkwDFBmwEFjM19LxTEYuteiZCtjrIrfEycKRO8qWtGodSEoRjMClJXmk= iVFJ9GmGGaJLNCV8QWx+57297zznFrQuCJY2q0ZCpEvSnJFaQ8oBydQlUliIPTnEj0IBhJxQxlm= FjDsAwCEEWvTeVLc8WG8uG1avSRRxwmOtXgjXwQkAlpHdmL+T+28VU+IADD+3qn4f/AKm3+FuJp= x7jfB9de2F7bfunIt7tdlOz7D+aRxVKlKpWrNWgq0U+iv8AddtkTyT2SgaYxikH4EKrJs6yOvG1= ek+aa3LliTwNaEYRbKEKwHJMgCnM933R6Ecnalvw9B3oe/hD2EQd69c8nxB+LZv6psCYWXfcN0d= Qlau7zEimXayQNhlhzhKYciUoSlSJ0TLimOM63825qUapOM1zEhbihiAWvCCyPw/47YzxTcvVMs= hKkgcBu55hjlBmQWh7XxBsbCZCre42cPQQlmtxL2+j2zDLF8TTUUlTqNDUEGnmyIQWv4bWkeRxS= Cx1sjEfQmrT07W0pwpUoVLktUOTiqEAH/FVLl6pSsWKTdjPUqTzTjjBmDELfT1nFIzX1Y2KRudd= LsC8BHmlhpLBFdm76/gioJPAgh/JQwHR8rP8j/1SXJ978oz8AsW6sHyDr+CwUdwkslW7o4NXo2/= eVgCFJItnNPcOvM8ZX6BDYmibzFVk1Fonxvcf80TYNiUXVRldS35E9rPcWqc2MpIXtyjYRGo3Nr= c5ataXVN74AHFkuKFSUSoLLUFAAcWAet6ta9Na1+mta/bXpnXGXOCvBVT6q8McEfZYRxIqICx7J= CqAAST2eh7OeQ9xvN1yG6djv9vs93sDEkJvba/a2Nswxd/XEbNyWaYxx+TeCF/FPJvEDs9sYxmb= IvGMYxjGMYxjGMYxjGMYxjGMYxjGMYxjGMYxjGMYxjGMYxjGMYxjGMYxjGMYxjGMYxjGMYxjP//= Z" width=3D"196" height=3D"91" alt=3D"logo_catalogo3b.jpg" style=3D"margin-= top:2.7pt; margin-left:-9.75pt; position:absolute" /></span><span style=3D"= height:0pt; display:block; position:absolute; z-index:-2"><img src=3D"data:= image/jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBA= QEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEB= AQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQE= BAQH/wAARCAA3AKUDASIAAhEBAxEB/8QAHgAAAAYDAQEAAAAAAAAAAAAAAAYHCAkKAwQFCwL/xA= BLEAABBAIBAgMEBQUHFQEAAAAEAgMFBgEHCAARCRITFBUhMQoWF0FhIlFxgZEjMjg5d7HwGBkaJ= CYoM0ZVWHZ4hpShp7W2wdHh8f/EABwBAAICAwEBAAAAAAAAAAAAAAMEAgUBBgcACP/EAC8RAAIC= AgEEAQMCBgIDAAAAAAECAxEEEgUABhMhIhQxQRUyI0JRYXGBByQzkfD/2gAMAwEAAhEDEQA/AMf= ATwt9jc8qpc7xAbGq+u61UJ4esqfmYs+cPk5Z2PbknUMhhEiYYFGFfHyp94ju649lDbfZtaupBv= 7HH2ZnGf75qkZx27d80Kc/D4Zz7/xnH49/2Z+GOnc/R3O/9TFubOPn9sqPz9/jUIT8339Nb5Lc1= /FiqPI7d1U1DVNjzGt65sWxQ1NejNCE2GPxACGuNxuRJdisv4kGlM+XKClPvqITjC/Orv5s/QWd= 3H3fmd083w/E8rx2BBxxV41zYoEj8bJANVleGaR5A8hbViRqDWoHXI8XjOAg4TjeQz8DMypsu1c= 4zzM+4ZiGMcboEQKFACgCvwT1Dtzm4SXHg1tqI1Xb7hAXZdgqAN1hpyAENAbdijZSXhssHAHZcW= Ic0fCG4y0yUWy4Mod5L+FOuMsyH8ffAd2zvDTevdvF7vpNLZ2LWYu2RledrMxOEhREyKg6M9tPZ= kI9jJjgTrTpDDLS22Fqy1h97y+fMY3K/fPIbf208z/JgmSzsWsQwVRzEy1YbqBsBFhkFybEa7BJ= BAeEcUTLGGrUUx7Q7kvvlXpYaQi6Zqa3zuv/AAt6LdquWgCxVHh3D2SCNWy0SkSWh9ZtSABChiE= LZfSyWy0tTLza23MJ8riM4UrHVl3Vzvc3CcL274c7DPK52SuPl5MEEcmNIzKCjxq8YXUmRW2RBY= HxsE2lwfG8LyfJ8rvjz/p+Pj+bHhkd0mj1Kq4kIId3BVqVn/36rqCi0fR1N7x8aUVUt86zsUkyz= 6osbLQNirjZj2Mq8zGZBp2bSP5vycIdWK4nKs/lpQn8rMEm0tTXzS2wbXq3ZUAZV7xS5Z+GsEKa= lCljktYQ4y+OQytwY6PPEcHPjJIR14KSjiRTg33hiGnFWavCN8R/lNyd5Ly+q9122Ot9Xe1zP2E= L2atQsMVGy0MdE+g/kqJGFUod8Ysodxl5K0KdcZcSpKkdssu8f2vxcTzQqcsAIyOZZ9GVOSmnmk= IQs84G0XOEHLIynGFOvpio2PDw4vOV4HDHa/etoxjPAc93ND3NJ213FNiZTyYRy4p8RAgRlplFh= ImZJIxIGDxhkdVIOrdR5bi+Fm4VeZ4ePIhCZQxnimkLlgToRqzOVKya0d6otYJApLtAeDLufkFx= gB5KwGzqNDtT0FZrDVKOfHyxEjKiVwuWj8jnTDGUiRRckZDFNipSMey004M8Q62pbjTUbXH3RVm= 5G7o13pGnnxsdYtjTzcIBITCnG42PQgMqSOkDPRS4+toGNBNKywwhb5CmcDs/ujqcdXa/DEx38M= fSHfHwzrrYPw/RcLznt+rvj+nfqqR4UuO3iHcYMY+WLpPY/ZRbf1nhu6OXyo++2yJYXbgmyv06o= I18QhXkCiyageUA40JtySaP9T1jP4Xj8du1ViiZRyq4v1h3Zt2lbE3KbbBCPK1aix6Arrb58+Gn= sPgUxreTs9+rWwYLY7tgAAkIKOOiSYyXrrMUSWGcAcQTlbJI0s06EWw+vzezlIIZHVhn1ybwO4C= XznjerhUahca/RgKLXgrBYJ6fDMksYRKSOY2NBAjAXWXSiSHWinVuOEDsDsjK9RanHWW12IvHf0= fuLdtD46Aaf1hd9mHQFu2CbOCUiuSliIihDYWtMCEyDcYOQoVkl1h5thx7ypdW04lGc5TnGEh8B= /jxvfSWxuQZ+4NQbD1mFPUimBwhd2q0vXWJUoOwS75YwDskKwgl4Zl5px5tpSlNNuNqVjGF47Kw= 955z9iScs/I4f62nkRVvFWWxyC44b6QMCCuOxKnx18dvYNlh+3Mde648CPEyP0o6OWJmKkHGWRh= 9Qf5RLSD5WLC+z7Nebl5xWuXDvelm0bdpqIsUlBhQkuDYIRDzUdNQ1gjWZAAxoUnOSwXked8MsQ= jzKaLEe9FwgZTJLzZ/Zs574yrOP0J7/f2+ffH4/rx1M746KEOeIBPYzj4L1tq9Cs5+9Ko0rGcZ/= D/5jqVHnj4bHDvXfA7Zu2NeakjaVsSp0WpWmKs0fN2Z95JjkvW25IZ4SRmSwXW5MM80VaVjZy04= 8l5vKFtIzi7g7yTC4/tWTko5Zczn0x0EuOkYjWdzjo8joXQqGfIU6xK2tkqpoL1VydvPPm86mE6= Rw8TJKwjmaQu0S+YqganJOsRXZyCfuPY9Rg8avB8rfKrSyd26v5ZwLkEIiQaskBJ6uPZslSmokR= BsjBTQjF0fYSY0O40QISO+4DIjvsEikrbWrCGIcJuIj/NDfDej4m+sUV8ys2WyxtikK25NsEN11= QruRCo0eZAcEWWEQ4+l5sspLT7SR8ocS9l9qZnwCp6QVSuaFYW6QuLaqVanWmMqVkZk4iJugTzi= EZ/IS86yMxhecfFSWkYznPlx2Z74FP8AD9rP8l2zP+mA9Jy8xzOKO+lbkDOeFgxpuNkbHxVaP6j= GlySJRHEEmZfghLr7CkhV2Nsrx/Gzt2s8eL4l5OZ4s1BJKwk8c8WOShZ2KA/NhRDWba/XTuMfRw= rz/nRVTH441nK4/mt/f9nUKtM4wt2/l4JxUavWAFH7ZlNTiXpdbcIazIAyhkMNKvV1Ewh1Ahhwr= eFs4lluijvKe87ymsMr9GLHzx+nH8/VEfSf8bxVf9cqWx/zAk8/+OqHsru7n+Yi7ifOyxK2BxD5= OKVx8eMRTKspWQ6RDYjxgAMStbCjsbte4+3+K42TiFxMYoMvOSKe5ZWLRhol1BL/ABvyEkj2TRv= 0On8v/RyLwOy+8vlHVspYbcdcxjWcrnOEoQpau2MW3v37YV8MfH4/D8IYuKPFtrlNyRhOPUXfE1= B2yvWtmCtkhW3ZNh5Vaj5GXb9thx5gVYeZGOjiFqw3IlJDIyhjzvpVl5PolymcewSf4hF9v93cz= 36oxeER3/rk+mO3+Utn/q/uCuH3/d+nr3avd/cHJcP3XmZeYss/F8es+EwxsdFjlMea4bRYwr+4= UADhlFGh76zznA8XiclwMEGMUhzc14clWlmkLxhsdaBaQldRK9a0f89Irzt4UV7hHeIjV7+74/a= ewi4xienYSGpZUCFV4U/1kxa5GULsElh2UklMLdZimRfO2DhJpL7KCAkFsO9nV92cdvu+H585+7= H446lW8XRGA/Er3U/aBin4ZyX1ea6wjOMPl1pGvqWkhsHK1tJ/dWmDRmVeo2hL6FpUtvLa1JsXa= V4z+EHyyqbEjpvW2nbgK0KC6ZFw5k5A3GF8iEpbZn4JUnFWWNf7oyh5w0VLJy8LebILQvDy9kk7= wk4Tg+Dz+Ux+Q5U8nhRZk2diwY6wQyzRwy+OUKYY42PnCxgi2CNszMDrUL2+vKcryWJhTYmCuDk= tjxY+RJIXkVHZGkjsu7gFPmAaUvYNAdUcV5yhakd8d09u+M4z375+Pyx3+7t9/wCjodOq5w0Wqa= z5dcgKBRodiv0+pbEloauwojhLg8bGC4ZSOM24U8+Q7hGM57uPPuurznKlrUrPfoddCwsiLMxMX= LU6LlY8GQqSFVdRNHHIFYXVgNRI9H7g0OtWyMeSCeeAlWME0sJYGgzRSGNiA1GiQSL/AB/urLX0= dz+DHuXt8/tlR/2jB47fd+3H/wCG7d/jsao0duDZGn5jQmxZuS1tcJmoGTMZZauwDJkQ5Khlmjj= low+yORlOVNtPd1pTnGF5+fRJ+jtFDL42bqDS+0oprcLLzo+HE5fbZeqUOll1bWM+ZLbq214QpW= MJVlC0pV+QrHTjdseCTxL3Ns++7Zt1n3i1ZdiWeTtc0NC2uphRA0hLPKIJYjRn6EYUwGlasei2S= aY8lOMeZ9ee6s/OPLnttO9u5T3MmS2L5EGOMUyiUT6YwG/hkjOhiLfclSa9WRfW+O/WD2zwy8K0= KThW8on1CtFbjUbhhatQNC7B/INVT+d3KCL5hclbjvSEpz9GibCBWosGCNMGPk8M16CCh/bZUsN= loV0wtQyncpYSpDLKmWPWdy1lxV2TiW3VHuBWgWb2mHVS3uOFFatSbBkdMEuAdpICJVEwopSRsR= qgsvYMyQrDOB8uZdz5PN1UH8U3hxrHhNyArWuNUz1rmaxZdZxF2W1cjYuSl4qQKn7HBkBJOiouG= afDdbg2TWMPgpfZUS616zzKGs4tB1mRAz4QUWd7WPkRPCNtrJKXm/Qw6jVqh1Nqc8+UpcQT3YUh= SsZw9jLefysZT1fd7nBze3ezBxXmj46TMihwmkLeaOHxLBEx3NmRNbFkFtT7r5dVPbX1WNzfcRz= /AByZkeK82Sqm0kkLCZgtUNW2FgCvZBAuunaVnS/GTjpF2Ta1D1TQNdsRlVkD56zUelj+9HauEw= mWOQ0mvAky0iKpsNsrAMewS4WtllTTDzmGsdUofEx5dw3M3lDN7JqIZwev61X4rX1DVKMZElJOB= gypKQfnZAPK3MhOzM3MSxogi8pIGi1x7JiEGIIbROh4KPiEo2hUBuI+45th2/UmMWjVM7KPY9W4= UQRlCc1Q1ZLivbbDU28LSBlOEqPq+B2cjqfgjCjo1fGh4L17jFt2J3BrVoGL1nvKTlyHKiwpLX1= RvQuEnzo8WNhKEorcygrEpHjsd0RJeZCNQlgBMYymHZmMvCd5ZnHc6ciXl5Mcx8ZmyyPJDPCVEj= FN7cPNjqvjLsAgWSFgshsz7jmble3YMzihCmAsyyZ2PGixyxyAgICqgCkmYh1C7G45C39LCfhh/= wAWPo/GPu11sL4/7X3nGP5uqpHhTfxh/GD/AE0nvx/xFt/VqrwyZEAfwvdOHPmitCR2ttkuHkLf= bSyGgO23pZSynfNlLGB28Kcf9TOMtpxlS8Jx1VM8K0wcTxCeLzxT7I7Dl5lB0uvOobby+bTbQII= z5l5Tj1SSyWBh0d/O8+62yhOVuJTk/bwPi/5Sv8tn/wCzry/oevZ/sB6sEgAjoXLUG7FNiguExY= GwBtx9mwR6BBs/gC+rc3iCeIFB8Bq/rWfnNazGyW9jzNhhxxYixg11cSuvAxpq33njYyTSUgpMm= ltCG0s5aUznKsrwrtgm+H14mtf58WjZFbg9Szet1a7gIOdfLl7WBYkyiJyRMj2xmWQoaMUModQa= 3VuOOOpWlaEpT3wrOI8/pGJQqaHxbCU+z7Y5b9nFJFy4nBChWIWpNOEYZ75XlpDr7TanMJ8uFuI= R5sqV2wiH0dIsVvbPJQRb7KCiNdUl4cZTiMPvsi2aVQS6y1nOFuNsKKFQ+tKcpaU+zheU+ojza9= F21xD/APHsvcH0sp5RDKVyBPkaaDkxAD4BJ4SoiFWU/Nn376uJua5BO8I+JE6/QsU2j8cZvbB8p= Ak08mxkBP7vf7R01Xx1MqTz7sGU5zhSdaaxynOPn5sRZmcdvl8e+MZx+PSVbA3V4p29tekahuYe= /wC30KxCxIj9YY1fIDjTAceQGZFjKdi6uKQ+OgkMF5LaSMtrUy16mFI8yOlU8b15uY8RCwRsUpM= ke1SNURLgYWfaiUyr8R7QzHKYZ87ntjrEgG6gfCcvKbJYVhHZ1He6BUiRhqtWR33x2X2K9CsPMq= eawtp1mMEbcQtPmxlKkuJVheO37/Gfn2x1seb3DD29272bNJw+Hyk8mAHx3y/34jQLjMskJEbuu= 5dTspWigIINEUeNxD8vznciLyGThRrl6P8AT/tmEkkto4JVSFWNh7s/M+qrqFnwmuFWyOKnGfdF= t3BDuVjYG4Ikg1NTKcbckq9VICtS2IdqbQypSQ5eQKlZAwiMUpb8eP7I0Z6BmSBWIY/Ap/h+1n+= S7Zn68+6wvl8erntzdGMqNqFHIYdfKrk4Oy0262ta3n4opppttCFeZbi1qSlKMZ7qVny4+KsYz5= 3nG/kdtPiDtpnamsUQwV7hYudrCx7ZDOyoQ7Es0kOVYLjFEx7iDGfR8qMreQth5CvMjKsZTgHac= uf3Thd9u5iGfy0OKiKxMcEZMOVDEqk7ssUaKqbMWo+2s9G5+PE4LK7WC7nEwJZHZhTSOFfFldz7= VSzOzE+wD6r8jr0dcf0/N/w+P6eqIupV+7fF6r2DfIPkfmjJMO4WpKENZXsSQbTjOc/DGcrVhKc= Z+/OMZ7fPqQXg34wXMjfHK7UOp79jXUrSb5Y8wthDhqO7GGx8aqOOfelApIaVdfFzHrZbKddN9q= Eww26h1KcOYcQ0rxXeNuzeMHMmx8haRHSQ9BvlzC2xS73Es+2gV29kmMSszEypCUPjx8mNamiZK= PGMTgc2MNEQxl1TRLLce0+Dy+3+W5bgOUmxoMrm+Cl+haKbyRu28kOhJVCJPk766gssZ0DWB0Tn= uUx+XwMHlsGKaSHi+UQ5CugWRVCJIXAtlMZIChrraiaAJ6upzT7Y8RLku57NMxpry8/DHZCBHVq= z2VlOO+E4V884xj7/AId89Ud/BwBVMeI9qkpvKsIAH2fMK7Y+GWvqbYBcJV2TlPxUejOFZzjHmx= hPmx8MZOt98c7mnfdaz+uCgNP13NkrxVak7nWKrZgbkkORCdAPKAJNu8jDR8iSM64lBgsI2oRxf= qhJHeQhxLtvAY4pXYHYtm5UXeFKrtSBqZlP165NNqBIs0jYXQ35aZjhiktvORIEaGkVuTwlIxZE= j6Yb5GRy/Rxg8Fm9n9r91y8vJixPyWLHh4UUcwlaWQrPEa1UbFmybUD2FBdgNQDHK5XG7h53gBg= LMyYc7ZOQ7xlFiQGBiWs/YeFgxB/c6Km3uplecPhl6I5v4GsFpelqLtOLjUxcNsqtNjkGZBZWS6= JF2KGKygGwRQ5JLj7bSno+SZwtxoOWFbdcSqqRy24MclvDUuVRu6ruIuGmJw0PXu1tcTcjBSLh8= c02coKViluMS0DJLD8pDwiX5SJebQ60zKG+RxCJO+dPjA8vuOnLvb2pKHH6yaolJlocCth2ikyE= idIBEVyHkXpJ+VHsEY6Wk00wtbDouWRm2MNsJQt1lx1yJbmD4jnILm7XqdV9wB69j4akzZtgiGa= RXZSFcekjgsR7jp78nYZ1byGhsONsstegnzPrW56isN5RZdlcX3jhpx8eRPh5PbWVjiWTFnlTIk= hx8mBpYvErJtHbum8Gxi9v8QbPSfcuf27kHLaGPJi5rGkaOOaJGhWSaKVY28jA6tsquRJQk+KlX= H5ZTsq/Wrat8s2xLxJqmLfbJD3rYZfLLAy5OScZaafNdZGbaHQ8Rlr1XvRabQp1S1pQjCvLgdEx= /OMPOd84x8vn+jPQ66+gEaJHGoSONVjjRVAVEQBURRXpVUBQPwKHXPmZ3ZnZ3LOxZiTZLEgkm/d= kizf56cxxrh7pOPXxmn7NuWunYWBgp0tNUmB4fM62dfqfSMCkvm2+nR6Hg13FEkLgo9z2nAroDK= G3SmnUKtmb2whlgjPJTda2ydYU/YzOUzM9hal2nZ9b1w5Erwq8N4S2DixJmmT891FYEWAsETLmC= kIjx8RcpE6+1unGRg78rrqyS8qDI0SAvi7FH0RA9+ZrwkfMxMq4K8ZJ1wAlp0FCMrMBDwTh0dvO= EqndxtjQEI/F2S6hLdpoWpLGkMzXMENOL+0Msu7jVyWlCo5mWLhqzKHESj1blyCYAmVSxhEYnAE= c4xr2YA2fMrvind8bVWiQzIj+GKy308pfeQ6hPIVUMGJ+x6tsb3iIV8wbWTZhIwRj8mqvNGPiil= mI+RIH9SeutvDQ0nWZi22XY+1bfbA6lI0mqzkrLxDspdB5m7TWyx6uG6LIWg4RUOTUdZTN0EP+s= KkqAloCLwK0WYQ6GehdA3UWJa1tKcgrfE1562k0huuNPEfUuWf+0yIp+QK/HO3QJuUkXwJlV4di= nogMdiMiZlRhjLozTr3GzG8gLoEVLi3+FtMDIbnktMWL3zS4FyLBfIlHNlBWuVgyIIsdFaClyLb= OR77YuFUtfvsQLIANqKCkEpYN3AczbrwDaoeUd412gmcFkJOBrqpuQkbbeEiSk82OfEFO2j2adU= FIyQ847K4ghzR3GGhhVqwpEHKlhSFs7CSWEqC3hUrG7ARYyeM4q+J3yCVN7uY5gwY+MB22OOjtI= uJk/wAVSQCzjZKaSdi6yuJESECT5LQMQU0G+OnWdD3V6wbPKo8lPNEaZpEfsFU7FsNZebdVCR1k= yKmYq03MRkQ4PDrnZIKSbmiUPsQim/KOeTkQbq3mo2+3a0jto2PbN12HBi1QaQYbnHj50mqXY6c= i406nTqJSylKghpKNKxYa9YRWyx7KGG6NgIWRjZcOIM019qtDGrd5TdKsiDLgqbdatIQGuaSRE4= Mn4aLiZinzUK3CtRsdM1yD2OqSlalKBEASolpRa0MKVam5MrjT9dmQYrdMEbtcEKM12YBqu1RMN= RRomHsw1TnpUSokFsRDQTRJT89BlOe+TRS5xpklsiQOJyQUy21553mhnOVilUeBWaOCWRivwhyo= t/CSGkkZGBPtJZHhcEAkhMESpJEsUyFo5XeJpUiGzESQMqlwCEj3UhlYMqh1bYdG+o6nuWaRoaL= jt4X2uVTkLdafRX6uKg8eBZTfbNO1CfLBADt6I6xNV56MAenRJMeCWYNY4pCMu4yRltNGdJMwTV= qn4+6TgMvr2ShnGXY1qp4daLOpVsvAJocvGbCdQp4PNSywv3G/KSQ/tjRKh2jAyY7CwwIO4Ithg= WF2OK8BqKr8fNiwo8dqeuzbUAxK1mR25VbK+H7oI9Mmgsz0oVZ7Mcgw8vBp7RLkiChkdaJbSd2L= C0WjP2GUgX4TYao67xwsJruqQ8M6qECeZjnY2ww0AIDJKjCLFPw1hgR3m0xs4mSamY9514cp0cD= 5b5JjTMxFE8otFQqzJKfOAV+mS3OISpMhIDW2wpkGWWBYVZoZmMUY0LEsEdVSFmAWQ6IJrICgV9= qJF9LRLaAtmytoStGt2373ayqxVGLLHTU0iPt5DUMTtSsa4kXFCfaNJrhRwff2LCcG8Y1KNjxBb= D0XjDghLxDpmqiakHq25wm47LR1bN88eRYaugMIiEGXsK70knKmI65x1ulYlbdGXYFvpgBwVJIa= jcvYk2Gmie6HP7vem9XnFXuo1Ve/8paVaQKBTofNcl2L1XZsdMuZD1UEqNkkyVf1vdD5OEXgxuB= JrvqukNNKjs7a17XAlhata7dW69L1SjbBtpgudPa+OVERlUv1lthcGAYPCNIlYudsAkzbQEMu4h= HMHhpbaWEUn0xb5ojERzcSipHjjVm28aZEc5RFxyjf9pBKQAKMJUgmVbMEx92kXHyA+17SEhlBa= F4R5DOGAOPYJJUkN61KOeiPd9HTkOJZr/sm62CRPg24s+wzSGUWEqxEWWbxH0WSrE8dPtu2CFs9= ZGVaBbGZ7AyNHJDGYYJcLYzkuW6hrgNbQmxojYdnmAbIbPNQ7JmI+KcWFF3WxVgIgkFN0On2HD4= 6FZl1ZbhH44MkpyIXJuvjpKJOMaDutzYVd0izdQ7EKXrkAaoRpkXHWWFntf2yKxvWs1uFrM2A8k= 6VmTp1k6tVxxhMkHb5JERGujPqTjOeSiNlXaLj6hN26uNOWqa2xH0IIvXUBX5mw5rdokLNOMuzA= 9eBnK2xbLoqQj4KEeIUlNkZehpAOGj2WXsHWWVDAJ8nDdQwyCdTr9C8DuoWN4G8ZZoZZmqUIkaF= PfjLkOqMXEWNkIzK8RFmxliSMjeRZTv6kEa2LLMbIZuinrfWy77EVg2U2tK1Jy0SWzYlBUoyW9X= IgigUca4jFzMq1OIMYiJVRPu6RMai3lwjKFSKWZJKVDoxlaMiIIKcMvljt1Zka3ZKFWbTF/UyPk= To2XupN9HkHMee4B+2iwjlHddZcRlDkuzKNrbSOltKnuxX4u2V36jauMvFfgZWyMQEpGwRlChp3= IkVyHgYOFKefsBUSUY/ISFCnoaYeDcfUxHxTy0R0kFOjqFXkZkd1h1/cMuHbgLBE6rlqHDTZVhr= kFNzJEfRpYyhU2chSLDDypkcLR37DExKVCmjvxaLVCjrW437PlkjmdHZoMqCFH8eiFfHsr5QSAo= 5gKMssUhjAbyIZVXSwSSNPEVjE2PLIyCQvsS4BjxzI6ePz2jK6eS6jOhZXHpQN688Z2NRkU9Vu2= EdHrmLU5VrBJVqLiZJEA8JfNoUORJjhW7eDYpcRt7WxEkKUuHigTBZFwFwseSDbFMRbblbktf3a= X17I2OemC646MDYFHtujjtTbbaHJIeLbckTG5ONFWrKY6XVkRMq12MYHZFcYddUO5bN2lSZCjxa= rdATxQFOqsxETMpr+lFyccLaDXNlIALnJqAkJiUcHsk8TPnGyJpKjZtxw53LmRh3EdLamvLx7+d= J2VZQ1N6717TMPT7tSDA97wS5LFYoYsEsMMJvYwslFNDHQtsMMJbOqYTqHpFWIdkDrOOciOXHfM= mxp/Ik5jCx00jeZI4XjT6cFTGziMgMCXkjKBiSX9KInWaPFglj0ki3DG0CFCZQ582oHw3vT2EcX= q3re2ZxniNYPXgqZuksZAUK0RtTljo+vwRckafOy9hj4U0COCuRg44Tw1QtRZQ01IxcuIRHAgqj= 3GpkU9rHe9FzeuKTcZ8jYcw+uk2+ZpimBRH2YCSMibSqvitR0kidycw/JxTa7CMIZBittjiyAbh= CShk4fMEQ1e7xPn3ELZMbYS9yXbZ8HPMK1pCnxdmP05V6vsVibcpD0X7gfkZhmxxOIZLEOwePMP= S7TzmWii1nb0TVtuXiOtNWZ2IxIRbGwW6RscSWpQOLUInZFnipeUt1lYMjlTss5CbGyLGTxxEg/= K1iXWwmFO93y7mVq+fJAh82fjSCF42yfLCyqVLxwsAr47EOMlMmIMWBkUxkGMp7OsEFStFiyK0i= FYSJF9OY90dir+wY3hmZAf4ZSS90pgn+vtMVDZ0tp6Mc2PaWJXcGwIvWwhBVSAMHi5p0miBypDh= RVzFcIjgCrm/kRx9IWShIhb7vsajGm2u5C8V1Hise23BsaVd1aZstYMe7R5WN/cNvV3Vw8M1aG7= +xWvOQ1YW5x0smTHyy8PmH9Bx4hsrorCS9q1ZE6plMXeFg5itpRuHWEU3Q6/Mnx7s9ZRY5iUmJI= qKIQXLliV1mzx0XOuS8aJHgRPpPiFPtsNLKqm7mqFhuurw7AA8FQaDYIucAI0tXTzCaBHbdEkJk= sGtm102VnaoDZYkS8nT4jRhEZXovJK2mIyPJYYJLkZkb7RchFFBY0EkbatFHlTKQrDGCBRHLiRf= FdS6NUmoLNGKPHksSYbtP6DkFdg7Qxn5J5dgWdZpRdlUI/JHUfJyW2TS2W3FLbafcbbcU3htbqE= KUlLi28ZcS2pWMYVlGFKwnOcp8yu3fodZ5yUNmpqVmZF1DshLHEyR7rQ7AbThhr7hJK2hBG2BBW= 1POrU2MKwwOwjKWmGm2kIQkdbWuuq2Beq2bsE0tm/V2ff2H59ffqjaizEegSaFEUCfQqvVX9vxR= /tfdqV0laSTMExTEcSqcq9jqZjckw++3iKs8Y9EymWcMEjKQXkIh5A7ylLSyteXMtLXhOcHpjel= jydIvydeps6BK0+q0s2Cl4uRdinQ6S1GtVeWaULLiSgk7F4ihf7eDkhmzGXDwTxi46TkAyh0Ok8= qCBh5Ggid2eBSzL7Ozp8vRHyUqhU/YFF9GqLWO0moVZZEXZhqrAD9hs0QRbAkH1RBIrrPBchNk1= wCSi4wuMbFnpGakrFhQTis2B2enqfY5FiQwgptthhw2kQw7WYxuPIZjXZWPQR7NLHId+4/kJsGJ= jpiFjvdQcFYSNhE2CCYxMJhpx7Y8fHxsu7Kx+ZlTB64oOLB+rSyUOrhSGEGNKdMyp9Q6HUJMbET= 5DExy0rSs7GP2TFI8aWQRYCoK2uj7WvVFWSbWEeeUCvQDCl2FNqKobBRf9euIZum7Fw0jWVrjWK= xMNa+TK15gZ7EaaXrSGj69W5Ts6W8UFJqhI4WPliYwkFMo151kNerhtxvBMbds05jZvtokEhW17= EPabMsYM1vLEuPLyE3hyIws9xIjDp0oat1h9JiMJcS21htKE+UdDpgYuKixuuPDs4hcnQA7GTHb= b41sQ0UTBm2O0akk0bC8koH/AJHOokHs3Y8UxIP9mtgwFCneqJsGL7fLS5g722v009qRitaQ5Qx= cdLqGWHqeCYrFSQptmdZyvCYZhsSVady6NKpSpRTCsuu+cp2PaFgslXr9NeChI2Brxz0oyFDhvh= tHTRERCwJEwawst4ZEiXFV2KYOejmAGz32HJA5siRJfKcHQ6XEMEckZSCJTshBCm1IVEUr8vRVA= EB/CiuotJI+6tLIQA6e2/lMisR/tmLGvRYk/fo4SHIi9yrFbEkxICSCplpTaqlHntzhYdcdxCxE= IRCxDL864gSuGD1+EKKi2/8ACnxjBGCEJU+0/ot77vjpEWRMZibGuE1nIaij/fgpb626RIEzT/u= 18sQ8OQLejh58yJiTCS3no+Gajo0fKRowFLA6HQ5IMURkjFxxpvqNWoEgFiPnYLbtsQRexv7nqb= zTGSO5pDvptbfceSMAf4X0V/IKr7oV0Vydkz0na122dEhp8v3aHCpj5IR/EWLERMGLW4KOAYBKC= Jjx6/DR8eHCKCMYIARHiKbey4hS1HIzkRsWTIMPlFQsnOO2W92yMsBketcxW5nZXnVcnoEhsttl= pEg+tZwbUgPIJhJVbkzBZjpZ8g14dDpyTFxTqDjQHTH+BMa2ikMhRarVGQ6sB7ZQASfd5SSUlv4= 0ntpJGpq2cKJdm9WTuAQfutAqVIBGgnd9nyTWZQyIqsnZKmxTAI20yMWUROORNBcjs1eJKdxJNh= KZjBYeJikHDhDTLsJGjQzkoqOUQORvB8h9gR8dY4cRMOxB27F7VaIBDUtiEniL+kfEidKRfvhQh= Z8I4GATVTFt5fgzY4A5lbpgrJCR0Ohvi4pCA40LBmYaspKgAqwpSaFMxKj7KaIArqe8qk1NKPgW= NMBbEhWJpRe6gBv69E617IlLexDtnw1bEIhQIOMRIAAmJPOBrsQJCxIxzpkga3llgQRGXWw2Q2y= n3FvFIeUlnLJuJ31bimlxr8VV3KoRWFVJ6lZBkcVv3Rm3v35tAbfvX3rFPD3Ap+bEciJSPwIt4k= BlCYo04EodDqZxsYtDGceIqBI6WpuNlEWpSiNSDIxB+4IFECwYIXDy1LJbeMMbALBhLYalAIOtG= x72YmyQRrx+7rFGNxgwddprAUVPbEsAcc1GSbACStnVuKqVnFy0NNMLTH/V+CiY6OYZcacDSEl/= 13iXiXnvur76vFHsEXaaaPXqxOQ8sPKiFRkeWpt1DVdbqxcVICmyBYspFTMch92dbkGSTJc+QPN= MMcdf7JHQ6GuJiNLLE2NCyOpVwy7bqRI5V7JDKXd2IIPyZiKJJMvLMoRxNIGVl1Nj0VjQKw9emU= AAH70Bd11wjNqzMrX4SvzcHWJxVbhRatBzUnHlqnI+riTb08xBIKEkRB3WWzCzxmJAgR2ZEijn4= kKSGAbDYFM+OQVxauxexRYSngW5+aftI0uDFyLJEVaSp8uwuT8c6uYdfafWWcYw7FPPEV0gIhQx= UO8lDWWx0OvTY+MmwGNDQkKVqQtSMhf4qyj5kAsKokD11gSSgqfLJZK/zex4/SUau1BNEkkWffS= GqXlasuLxhSnPirP44+fzx/6x+bodDodOByKr1VV7Pqqr8/2H/rpIk39yfQNk+7IB/wDv8df/2Q= =3D=3D" width=3D"165" height=3D"55" alt=3D"Ingreso de Textos y Contextos a = ERIH Plus (European Reference Index for the Humanities and Social Sciences= ) | Textos y Contextos" style=3D"margin-top:10.3pt; margin-left:140.6pt; po= sition:absolute" /></span><span> </span></p><p style=3D"margin-bottom:= 0pt; text-align:right; line-height:normal; font-size:12pt"><span style=3D"f= ont-family:Tahoma"> </span></p><p style=3D"margin-bottom:0pt; text-ali= gn:right; line-height:normal; font-size:12pt"><span style=3D"font-family:Ta= homa"> </span></p><p style=3D"line-height:108%; font-size:12pt"><span = style=3D"font-family:'Times New Roman'"> </span></p><p style=3D"line-h= eight:108%; font-size:12pt"><span style=3D"font-family:'Times New Roman'">&= #xa0;</span></p><p style=3D"line-height:108%; font-size:12pt"><span style= =3D"font-family:'Times New Roman'"> </span></p><p style=3D"text-align:= justify; line-height:108%; font-size:12pt"><span style=3D"font-family:'Time= s New Roman'; font-weight:bold"> </span></p><p style=3D"line-height:15= 0%; font-size:12pt"><span style=3D"font-family:'Times New Roman'"> </s= pan></p><p style=3D"line-height:150%; font-size:12pt"><span style=3D"font-f= amily:'Times New Roman'"> </span></p><p style=3D"line-height:150%; fon= t-size:12pt"><span style=3D"font-family:'Times New Roman'"> </span></p= ><div style=3D"clear:both"><p style=3D"margin-bottom:0pt; text-align:justif= y; line-height:normal; font-size:12pt"><span style=3D"height:0pt; text-alig= n:left; display:block; position:absolute; z-index:-65531"><img src=3D"data:= image/png;base64,iVBORw0KGgoAAAANSUhEUgAAAuYAAAACCAYAAAAU0xnuAAAABHNCSVQICA= gIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAACRJREFUWIXtzjEBAAAIA6Ctf2h9beADCWiSC= QAA8KHfAQAA4FhSMQECHc0ENAAAAABJRU5ErkJggg=3D=3D" width=3D"742" height=3D"2"= alt=3D"" style=3D"margin-top:-40.38pt; margin-left:-65.3pt; position:absol= ute" /></span><span style=3D"height:0pt; text-align:left; display:block; po= sition:absolute; z-index:-65530"><img src=3D" GgoAAAANSUhEUgAAAE0AAAAcCAYAAAAk2zLiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAA= ADsQBlSsOGwAAE1VJREFUaIHtmVl4VFW2x3/7nFNThspMCIEQQgIIBBRkaIYWkEFQQbG9Aa+EQR= lUtBlaBZtPbMBuVGznDuA1eMMgiHyIAsokqJhIEpFJgiaoCVAhQAKVpFJVp6rOvg+VFAkCfr7f9= XJS+5y19lr/vaa9InRdl2fPnSVgGAgBCBAIgiQbH42/hQDZuEbz7wAhkciggGYkpQzKRSDl1fei= mTwZZG8Simwp4dptAVAQIVktXrXY/homrm4i5NUPZUszmtlD0CYpMQIGHVLTUFQFUVl5Vs54bBa= j77kbiXH9PRotESL4bDJdIhv/aHy2xOu3JJsZKiUGEmkYgEBTlOsbLq41vEkvgTQkhiExBCiKQA= jRUg3RwoiW/FIBKQlII2iPAEUoIV4hQAqJlBJFKOzdtZd/Lv0X6ekd0epdDbRvn0pCQsJvQWsyL= iDRdR8ejwevruP3+1EUBU1TCQ8Lw2Q2Y9JUhPI7qEmQUqDrOpcvX+ZKrZP6ujqEULDb7URHR2G3= R2Exm2h0ebhGJ8Mw8Pv9XL7sxFlbS63TiTQk9ig7UfYo7NFRWK3WRl3kb0ATQhAIGNTUXKHW6aS= 2rg5d1wmz2bBHRRETE43NZkPTtNDeAkFax478/PMvQdCQEiHUkMDmYEkJXreO48w5Thw/TllZGZ= cuVuNqcGExW7BH2WnXLpnumZl0SO9AdEw0iqqFTqr5wSJBGgaXLl6ioKCAY98fxe/3Y7XaMAwDt= 7uBSHsE/fr/iR639iAqOhpFDXqPbIxNw5A4rzg5duQYBQcLqK+vJ8wWhqIqeL1eFEWh5209GTBo= EHHxsaA0BkAoQiQet4cffzjFvr1fcOnSJWw2GyaTCY/bQ0AGyEjvyB1D7qBtSjuESQt6umwC30A= IgQZNYSFC+afxNc4rTvbt3sPX+7/C4/EQGxtL69atiYiIQNd1ampqKCr8jvxvCkhNS+X+v4ynU5= fOKKoIRmzQxxEyKPtSVTW5772H1+Nl3LhxDB8+HLPZjKqqOJ1OtmzZwhd79lFaVsp94+8jJj4WT= VwN25qaGj7Zuo1fT5czcMAAsrKyiIuLw2QycfHiRQ4cOMC2bds4efwkUx6ZQuvk1qFYNQBXvZuv= 93/Jns9307dvX555+hnatm1LWFgYNTU1HD9+nLVr17LynVU8PHkSnbp2QTGrhHJSE1KlpaXyzXf= e5s9D/9wYnsE4djrreG/V//DD8ROktk9l4sSJjBs3jpiYGCwWC4Zh0NDQwKlTp8j5z384ePAgiq= Yw5dFp9O7TO5hjaAIM6l31vPbKv5GG5P333ycjI4P6+noWL15Mp06dmDNnDnV1dRz8+iB/X/R3O= qSnMv7B8YSFhwPgdrvZ+tFWyk6VsWTJEoYOHUpERATV1dXk5+dzzz334PF4KC0tZcb0GXh0L/MX= zCM8IhwhBD6fj2++/IatH21l/vy/kZ09ifDwcOrq6vD7/URERGAymbhw4QILFy7km/xvmP3UbDq= kp4GAwoJDDPvzMEaNGsXVY5QilAK8bg/vv7uGI4eP0L9vPz7avJk5c+bQpUsXkpKSiIuLIyEhgZ= SUFIYOHcp7ubm88MI/EIZg1TsrKTlxEimbPDZYVQ8cOEB5eTm5ublkZmYSFhaGy+Xi4MGDfPHFF= 0gpiYqKYsTIEcyfN48jh4/gqDgXShOOsw6++uIrxowZw6BBg4iMjOTixYts2LCBV155hcLCQqSU= dO/endw1uVyoqmLXZ7tCKafKUcWnH3/K1KmPMGvWLGw2G+vXr2f8+PGMGjWKRx55hIMHD9KmTRt= WrFhB+5T27Ph0B676ekLGNLpbi5IlEcgA7PlsD8WFRfTs0YN169eTnpGBzWZDUZRQjmnKMyaTiZ= iYGGbOmsmKf7+K1+Nldc5qrtQ4g+egQIO7ge0ff8rMGTPp2bMnqqricrm4ePEi06dPJysri+LiY= gDMZjNjx42jR2YPPt32KboeIBCQfPLxJ9TX17Nq1SomTZrE3r17GTFiBEuWLMHhcDBr1ixOnTqF= pmnccsstPProo+z+bDcetxfDkBQVFRNlt/P4YzOxWMxs376dOXPmcP78edq0acOhQ4eYMGEChw8= fJjExkeeff56ff/4ZxzlHs8i8FrTGYlV1vort23dgt9vZvHkz8fHxSCnx+/34/X4Mw2hWKCSBQA= DDMFAUhQkTJvDEE09QU13D3l27wB/ACARwOBzofp2p06aiqsGic+bMGbKzs5k/fz5Tp05l/Pjxj= TlVYLfbGTJkKJWVVcF9AwEqfiln4cKFLFu2jIqKCrKysigtLWXatGns2bOHrVu30rNnz6BRisLE= iRPxeLw4Kh24GlycPv0zw4ePIMoehdfrJScnh9jYWDZs2MDOnTvZuHEjAAsWLACgY8eOxMXFcfb= cWQSisQflWk+TSAH5Bfk0uN089de/0rZtWwKBABcuXKC4uJjCwkLOnDlDIBDA6/VSVlZGfn4+x4= 8fx+l0IoTg6aefJioqikMFh6i94kQIcDe40RSN1PapwV6q0VsNwwiB33QYTUanp6ej6zqGESAQ8= KP7fPTt25eZM2eyf/9+Xn31VQYNGsQHH3xAVlYWu3fvpqysjLq6OqSUdO7cGSkldbV1eHWdWqeT= rt26opk0fD4fFouFzMxMkpOTAejUqRNWq5WjR4+i6zoWixnNpOF2e5BG86Zdol3FTOLTdX48WYK= mKGRPmoRhGDgcDubOnUtJSQkmk4nExERWr15NcXExS5cuDXnH6NGjWbRoEfHx8QwcOJADX+6n8k= IV9viYxv4s6JUQrKpmsxm73Y6qqkgpadOmTTNVgiAKRaAIJdh0ChHqDxMSEpgyZQqjR4+mqKiIv= Lw8Fi1aRKtWrRg7diwPPvgg7dq1I3ibUEIHFQgEEEIQHh7OsmXL8Pv9xMXFoSgKgUAglHIg2N40= XUNa3nNky/B01dfjdDppm9yW+Ph4fD4fb7/9Nvn5+Tz22GO88cYbJCUl0dDQwMKFC/F4PLzxxhv= Mnj2buLi4kKjBgwej6zoXL14ECVHRURiGwQ8//BDyrNatWzN79mzCw8NRVZV33303lLQNw6CkpA= Sr1YqiKKiaSkREOCdOnGiKCWpra1m/fj3R0dFkZ2djsVgwmUzs2rWLyZMnM2vWLBRFCVX7mNhYi= oqK8Hp1hBCsXLmSxYsXU1JSQk1NDcXFxbjdbgYMGIDZbMbj8eDxeIiMjEQRollwimaehsTtbsDt= 9tAmLRlFUfD7/RQXF2O32xk2bBhdunShV69e6LpORUUFY8aMYfDgwfTv3z/kPYqi0K1bNwIBg7r= aOpCSVq1aEREZwepVq8nMzMRisRAREUFycjImkwm3202PHj1CYXuh6gL79++nXbt2mE0mpIDUDm= l8/vnnZGdn07p1a2pqatixYwd5eXl4vV7S09NZtmwZ8fHxbN68mddff51IeyQJreIxmU107tyJg= we+5sKFKlI7pNKvXz+2b9/OlClTyMjIoKioiLi4OJ577jl8Ph9HjhzB5WogJaV9s6ZfAUSTpwVx= VFUFVVHweDyhMLJYLOi6jtfrJRAIcPr0aXw+H6qqUl9fj8/no7a2lsrKSnRdR0qJy+VCCIHJpKE= gsNos/OW/HuDDjz7ks88+a1FMmvZp+u1yudi48QNKy0q5Z9xYVE1FUQT3jr2HijMVrM3Lw+Vykd= y2LWvXruWFF14gLS2NdevW0a9fP9LT0+nVuzd+I8C9943FYjGjKoLb+/YmgGTJkqW43W6ysrJYs= mQJcXFxlJWVMXToUHJzc+nduzdnz57lH0v+QcdOHUlsnRi6mzaRFopNICwsnPCIcBwOB36/H5PJ= RHZ2Nk888QRz584lPT2dffv28eabbzJkyBAKCwuZMWMGVVVVNDQ08PHHH2M2mzl06BCaphEdFR2= aEvTt15cTR08wZ84chBCMGjWK5ORkHnroIbxeLwB1dXWsW7eO1994nTvuHEpim0QQEkVAq6RERt= w1kpyVOVhtVqZNe4SkpCSGDRtGamoqbdq0wev1snvvHubNncutvXoxZOiQoD8ogpj4WCb890RWv= ZPDU0/9leXLl5Odnc2ECRMIBAKoqorVauXHH39k+vTp6F6d+8ePx2y1tJiCAKhPPjX7hcKiQlI7= pKJpKke++56ff/mFMWPGkJKSQlpaGsnJyRQUFIT6oaysLEaPHk1paSnHjh0jMjKS1157jZSUFAC= WLl3K5SuXGX33aKKjo4Nep6jcdlsvTpedJicnh6LiIrp3z2T48OH06dOH4uJipj/6KB9u+ZAhw4= dw1913YbaaG71QoKoKySltkTLAqpWr2bFjB4mJrbFYrZhMZo4dO86zCxbw1ltv0alzJ2bNmolm1= lBU0TTCID4hgXZt2/H+mvfZsGEDYRHhREZGovt8nHM4ePnll5g3bz6BQIAFC54hPiEWoQQnJ+fO= nqND+/akp2cgSkt/lG++8zaDhw1BSoPi/EOsfHslQ+8cxsaNGzGbzQD4fL7GkDM1qzBGKFQ1TcM= wDAoLCxl25zDS0juy4O8LsIVZr6ZQqeDz6hQVFbF71x4c5xyoioJEYhgB0jMyuPveu0nvnIFmNj= Wb7V1Nw37dR+mPP7Hzk52UlpaimTSQAsMwSEpK4s6Rw+nTpy8WixlDbWpjBFIYSAmqVDh/ppKtW= z/m5A8n8fl9KELB5/MRlxBH//79GDliJBH2CALCQApQpeBQ/iGG3TGEUaNGB8NTSok0JBJBl65d= SUpOYteuXXz00Uc88MADWCwWzGZzs4TY6KaqGmpWDcPg/PnzzJ8/H03TuPveuzFbbc2GkMEsYLK= Y+dPAAfS87VauOJ24PR6EENhsVqJjYjGbtcZ7K82mg1eBM5lMdOvendQOHalz1eNucGMYBrYwG/= aISGw2K6oSvGQr8mrVE6HppqR12ySmPzaD2ro66uvq8fl9aKpKTEwM0VH2IB5IBKA0zWGbtSOal= JJ6Vz0Xqqowm0zYbGFMmpLNv1e8xtPPPE1iYiL9+/cnIiIiOJBTlFBv1iTI7/fz66+/MnfuXL77= 7jsGDh5It27dqL1yhYDfj9I0Gmu8qjV1PlaTBavJEsLFXVePR8rrDx6vIYmCWWiYwiIbv5d43W6= 8bncI5OaNQospb7NhaERYGE1TDL+uc+nipav8zfo0V50r5DSipKREDhw0kMjISFRVZex94+jVpw= /FRUWsz8vDZg3jiccf54EHHiA5ORmLxdKin3I6nRw6dIjly//F90e+55auXZn6yDQCRoB3V79L7= WXnzSy/Pv3uBPgm736P94/u2/htfX09eXl5jBo1KuhpNdU11FTXAPDhps0kp6TQ9099sdmsrFvz= v7z88sts2bKFQYMGkZmZSUJCAi6Xi4qKCvLz8zl8+DDOOieDh/yZcfffj81q4/01ayg58QM+3d9= CB5PJFGqEGxoaQusul4uwsDAMw8Dlct3QXovFgtVqxeVyYbPZCAQC6LpObGwsQghqamrw+Xw35A= +mAhuJiYk4nU6uXLmCqqpERkZSW1uL3++/IW8TadcuVJ2vJOed/zB3/lx69uxB4tN/Y9+efRQUF= FByqgSTZkLTNKSU+Hw+JMEr0EOTH6ZTl05YLVY2rF3Pt998+xvAAKKjo9m0aRPnzp3D5/ORl5fH= pEmTePLJJ8nJyWHx4sWcPn36hgp37NiRF198kXnz5nHnnXdy6dIlLBYLDz/8MIFAgNzcXHbu3Hl= T41esWIHf7yc2NpZFixZht9t56aWXeOqppygrK2uRv64leT3QAv4A5b/8wovLlvL444+TkZHBxO= yHGDN2DOccDsrLy6msrETTNDp37kJKSgrxcXFYrWF4vR7ezVlN/jf56I2917WkaRpms5ktW7Ywf= vx4ysvLsVgs5ObmcvbsWc6cOXNDhQFsNhtpaWksW7aMU6dOoSgK9913HwsWLKChoYHExESU5v+k= uQ4NGjSIDRs2sH37djweD5MmTeL48eNMmDCBF1988aagieuBFgTOz/lz5/nnsn8xYtRIRt41gvh= WccQlJtDjtlsbiwBIaWAYwQRc9O23bNq4icrKyptu2gRceHg4drsdTdNYsmQJhYWFdOnSJXSpv6= HSQvDTTz+hqioDBgxg27ZtREZGUl1djdvtDo2ybkSKovDkk08ycOBAnnvuOdasWUNmZibl5eWMG= TOG5cuXt5i4XFf/665KQEo8DQ3s2PYJB7/8ioyMDDqmdyQxMZGIyAh8uk519WXOnDnDqZISKs85= 0HX9ppsBodlcq1atQgBVVFRQXV3N+fPnfxc0v9+Py+XirbfeYtOmTbhcLrZv387zzz+PEIJvv/2= WI0eO3DCvqarKs88+y65duygtLaVz587U1NRw9OhRMjIyuP322ykoKLipDuLkyZOya9euv2usEA= JFVdBUDZPJhGEY6Lr+m5HK71F4eDj9+/dHURQcDgenT5/G7/czePBgvvzyy9895bi4OGJjYzl79= iyZmZk4HA5cLhc9evRASsmJEye4fPnyDXVSFIX27dtzyy23UF1dzZUrV/D5fJSXl5Oeno7X6+XX= X3+9Lu/OnTsZOXIkory8XE6ePPmmija/UF9v/Xrvbiarqc/7I7zXNtbN6Y/Ia95fNpfbXMaN+Fe= sWBGaDv8//UH6Pw/h65aldWKXAAAAAElFTkSuQmCC" width=3D"77" height=3D"28" alt= =3D"" style=3D"margin-top:-31.25pt; margin-left:365.7pt; position:absolute"= /></span><span style=3D"height:0pt; text-align:left; display:block; positi= on:absolute; z-index:-65532"><img src=3D" AAANSUhEUgAAAVcAAAA1CAYAAAD1eqj9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQ= BlSsOGwAAEq9JREFUeJztnXmcFsWZx7/Vb/dwjByCCkFExHijMQqrcs2QjauJEVRk0WhE5iWGrM= ZjPaJrTHB3ozG72UQTL+IMrEcU8YwHiUeYd0DEI1E8F8VFURFXEeXQgbe7n/2jumd6eqrfeQcGB= qG+n4+f9+iqp5566qmq7nqZn2CxWCwWi8VisVgsFovFYrFYLBaLxWKxWCwWi8VisVgslq3MEYCk= /pvdqR51HhOBf+xsJ0owF7i1jHLTgVVAty3qzebxfXSu7drZjiTwgEnAfcAioBo4rDMdSrAt+9Z= RbEpOKOBsYD/Dtb9Hx+q/gNxme7eJXAiMQTvaAzi2sxwBHODaTmr7O+gYdDZZMRgK5Muovw9Q24= 72rmPr97sneqHY0uNdrv0K4Cbg34CBQBfgRODkreyHiS3t27ZCnBPlkgO+BdSj45tkH/RN4m7AD= 4DhHeDfJvFT9ICNAPqUKDcAOGWreLR12t8a/enINk4EDimj3CmUtwh3JiOBczrbiQQ/AK6h5Sbj= AYdvhs2OGvst4du2SHtyogI4F/g74F8N16+K7AGMRy/CW51K4EP07fj9qWs/A9YAtwGDgTeickc= BNwBzgFnohTnJsVG94ehH1OFAP+CXkY08ehdfgE6Y7sDVwJHACuDoNtrfH/3okOVDuq3N6c8/RH= VORu+EtwHHGfo3GPgd8Br68YZUGyMzfPou0EDzkcxNqRj0A64H7gZ+gp5UpfpO5Mc0dHyvpXlXT= 9cbij4+iO+ATH2I6Qf8KioDerKPi+oPBy4Afpso35aP50RxSPZ1QNTG/6AnRNxuOm7HZrSbrp/O= pyyfukR9HkRrysllk+19aR77SQk/THmf1c+2fIPWY3Z8FJsjo7jk0YvwPPRdb1vXTTbjOJhinpx= TadJ9yrIRc07kF5TOn27oR/390Ed5307Z6Q48DbjR5/PRT+ZbndHoCe5E75NcgZ7MMZehO3QbOk= D7A7/OsPsw+syjC3oB/xl6gYnPNbtEdnaLyldFr/9N85mLqf3BQNcSPpja2tz+PIFeSCqBO9GTO= Nm/vtHnw4Fe6MnTNdHGARk+HQD8AZ2Ex6EXrGQMegD3os/Fh6AnYqm+E11/Db1wxvX7lqh3Izqm= pfpA1PcZ0bVKdHIrdBJXRzauT/jQVkz/ENmJ+9oLvbmPAvoDp5M9lqZ2TfWTsSzl097os7ks2sr= lLNtxvib9MOV9qZwt5VvWmNUCJ0X2rgBOQG/MA6J6pa5n2cwa6/ScijH1KctGTJwTbeXPJPR8Ab= 14D0hdHwr8e/ReAY8bymwS6bOHthgJLAZCYH7q2o3ouzrQ5xtfRS8IdwHPAXsATxlsDkTv2C8CG= 9C35KcBk4FP0T/MbEAH+ivoQfwbOrDdgY9KtP82egfM8sHU1ub0Z2DU5h/RMaqI6ib7dxxwM/DX= qMzG6Pu4jYMyfFoBrAVeAiYAt6RicDLwe+AZ9HHA0230HXRi3Q68AnwOrIvaNNXrgl603ynRhxi= Fzq3PIlvPAntGn19FT8qFUdm2fOyFvtsh0dfj0XcqC4CVUR+yxtLUrql+MpalfBL0cZjpR49yct= lkO5mvST9MeV8qZ0v5ZhqzysjnAnpsG4EHI79WRPEqdT0rD7LGOjmnkpj6lGUDmnNifUY8k/RHb= wACXIz+zSjJTsCb0fuD0U/mKww+tpv2LK47o3fkN9C30IPQj5MKOBX4Ar3LDIicbEDvJm+jJ/FE= 4AWD3YPRdxGros+DgEuB89A7Ufz4sRJ9iL0BvcgcgB50r0T78VlTlg9ZbW1qfw5FJ18f9C59U1Q= 22b9+ke2+6POfGeiBj9sYnOHTF+iFdThQg06IZAwOQy98Y9BJ/1IbfQcYBjwa+XIB+jghyKh3AP= Bk5GtWH2IORm++/dA/FiymeZw/Qp/XPx+VbcvHoegJMyrR10HRayX6Tr0b2WNpatdUPxnLUj69j= b7bPx89J3ZCn+UNo7xcNtlO5mvSD2id91n9bMs305gdht5YVgFjgTuAvdBHJV4Z10vlcjrm6TmV= xNSnrHyB5pzonxHPJNei16j9gX+m9eL6MXpR7gNcgj7i6BDKXVz3BT4BvonenYroiVxEB/lm4AN= 0Z1ejH082AMvQu1W8k/Yw2D4c/SgdMxd9+HwPOlCvR99/BvwfevcEHZDPgd4l2u+J3vmyfDC1Vb= EZ/TkC/Tj+EHo3f9zQvwfRO+j96Ee4+J+yxW0syOj/QHQC3BjZODARg0r0HevN6LvPDegFo1TfA= f6C/oFyDrAEeCT63lTv61EbpfoQEx8H5NBjsFMUh9j+wTTnXls+7gksR9/NxX19FLgcvXktR0/a= rLwxtWuqn4xlKZ9C9D/nGYSe8HPQj+3PU14um2wn8zXpB7TO+6x+tuWbacyOQm+YfdB3jCvQc31= jFO+2rmflQTrmXWg9p5KY+pSVL9CcEysz4mniEPQTVMwE9I3KUvTi+xjwAKWPfCydhIM+B9oS7I= 5Ovm7oM6Zj0I9QW4PzaT437dpGWYvFYulQhqAfx+Jf+jua7uhftl9EPz7+lOwduqO5Gn0HdOBWa= s9isVgsFovFYrFYLBaLxWLZkRhB818HTepkXzqKcgUgOksMo1wBlvYIWWyLQigWyw7PBei/X27v= HyB0NB0l4lGOAERHiGFsqr/lCrC0R8giWXZbEUOxWHZ4rkf/06AstqTAyZawXY4ARGeKYZQrwNI= eIYttTQjFYtnhqaT5jsckrDCYloIpJjGGpLDFuQYbMeWKWwymfOEIk8BDUgDCRCkxDFPbJvGWkZ= QnChJjEmCJvzcJdkD5QhbJskmxEpMQiqnNcoVQSNnP8mln4Eoslh2c0TTf8WQJK8QCFFkCE0lhi= /aKeaTFLfalfOGILJuxAEQWWWIYpcRLTOIt5YiCgFmABUoLdiT70R4hFCK/hmAWMilXUCNLCCW2= P7AMnyyW7Yr2npuOQE8sMAsrJAUoTGIMaWGL9oh5mMQtjqR84QiTzaQARBZZYhhZohUm8ZY1lCc= KAmYBFjLiGdMeIYtk2TiOI2gtZJLVZrlCKCTsD2vDJ4tlu6M9i2sftHjDa9Fnk7BCUoCilBjDqh= I2oHxxi69QvnCEyWZSACKLtzGLYRye0bZJvGV/yhMFAbMACxnxjGmPkEWybBzHwbQWMslqs1whF= BL2yxHwsVi2K8pdXIejF8Rj0I/mYBZWSApQZIkxJIUt2iPmYRK3eILyhCOcDJtJAYhYyCFNlhjG= 9Rltm8RbyhUFAbMAC5QW7GiPkEWybOxXgdZCJlltliuEQsL+Wxk+DUH/WGixWCwl2ZLiLRaLxbJ= DsqXFWywWi8VisVgsFovFYrFYLBaLxWKxWCyl8GrqX3Tz9XPbLlk+uSn1pzJdnPi1I22n8WoKs5= m4sFvbJXdccjUN93v5gjDx1QrYRmI2uf5UN19Y5eULtZ3qRwla5O90cdx84RGmFPZoVS7fcJxbU= /+ely/cRc2CHsb6lu2Gsge06HQ9xvS9m59/rOl9ea0rxXQVNr12MEl/inVVk5gz4otS5Xd4lMwB= eTH+uC3ELOcq5UtuRGf60CaJ/M29O38cQt9WZaYu6udI+Cs/lGHAPFcF55nqW7YfNm+3PHNefyX= B5FbvyyE/76tOIG82vXY07fVnR2dLjcPmsC36lCbp4/fmD1Ki1qHkg3SxXLDxaFHqIWaNXVls7H= Inwg9b1bdsV7jtreDV1P8IxYUiuakQTkMxwa2pHw1qUdN7xU4K9Qgi6wU1XpBpQV3VA25N4TF/b= cU45oz4Iheq4cXBVbNz7xQmFQdXzWa6OO67DVcinAU855M71cN/VlAfolhFyN/8dWN+4fYoXA1q= ssB9wdox5zBHBeTnDfVQ94uwiyjuDGqr/8l1nN8lfLtdKX6MsAzFXiHq1CDkJVeFfxWc04O1ox9= oZfcgJO0Pg0aud5cXpqPU2SBv+JKbRt3oxW6+8AzQKKHMUg5XC05eSXggqIsEmaaUurTU9WBQ1Y= Npux7B7aJ4T4XMFcVliHOmH7iveF7xIYEnVejcU5w5+pmmgZkujsHGXS3i5/f+jeet/r0oNV7pv= /kH1BHF2jHPxuPhvVvQiVFT+IVS/LiYq6xkwOGNrWKxduTn6Zh5PQovtvJ55pg/c8bC3Vv4vW7U= 863i3e3p/um+xT6x/Kl9ELp4+cIsETlGxJmmlMxQit1CZFyAvO7iLBFhSlBXdWsiV182+mPINep= GrW2R6GmfHX99OscAmnycLk5uecPRfl1VrZuvPzs9b5QTDlGo9wC448g15Osr+d7iyly4Wte3bH= e0685VofoVHfVwCD8SFZzkO13OFpGH/brqgS3ei3uEQL+iqrhUOeF4pZjBRBy/rvropsdMB1cfC= ejX3LuFCQC+W7mXglVu6B9adLpWK6S3v7H3Gf7Mqp/nehTGCWqJ3zXcW8Gubq/CNwCoHftKsbZ6= H19V7K1ETWC6OC38qau6VITnim7lUGB2sMfou5k55jU/lAOCujH3muya/MktL4wXxS7+Gm+giPO= fngruYbo4fhAeo4SdA+UuVAHHK5ErfNw/Ipyo4LttXTfZLYbdj1bQvyhqLio3RSk5Kef5o0PFNX= 5t1cUtFlYgw8bYZPyoWLeLKHbxi10HCVwqIhcWa8c822I8IuKYARhjYYhZ0en6zbTPAGm/jfE29= S3hkyjpW8xVnqdCxiknvNmvC3cXkSeCjbnFiPehhGpycmEFyPTH0J90rrfyx5BjSR9z78w/PnDD= BzMnjyCI2pD43AVvrZOOu2X7oV2LqyAfckvVsiCQNx1U91JllfA+tSM+Kd4ydpESVlJZ3/w37lM= LezlK3mx6BRTqEEL1BDOGfV6sq5rsz6qeDyCKD7jta+u1TXWgo7jF2+CsVYoJhCoSkRaVm9Iw3p= WNtyvFbrzaQtS6BaHibpYvOJiJC7uxfrcVWXZN/iilDid0FjJnxBdB3Zh7RVR33n26d+TnaupGL= SmG3f4XxTrqRi3xVe5tIhnCUteNdp2NvQRWMqvqTV/UMqBrEAT1KuSHbr7wCDXzv9Yi3lk2EvGj= duQ7CH/yvMbnFHKKH8pfWoxH1liaYpExFmmfAdJ+m+q26lvKJ4VawYxhnxVnVT+nRL3Pad26g/o= PtyI4Pyf+dwLHfdTN11/m5Qvi5QvC1IZMf0z9SddtHWtDjiXz15GLvcD5yMsXRKFO8ByWU7NgQO= y/iLNMkD0ByC/so1Af4QS7lIq75ctNu48FAHA8QQLFxkCoUDszXRzeWtj8fvlTCBzAGc/0xd04U= FT4ObOqP42r54SjimuqZ+d6NkwqrqmeDSChWuKocBpnPf8iM4Z9ZmpWcixVwvnFjb1vaVowAG9K= w/dFqf18cS7yVLgv/Ze6fJrwLXFnEHy2y8Nuz48v8Xf1f8MNB32RZTc3peH0tD+ieFmp8BymLno= cf0NPlCyn9qjVnFnfa5PiGPfLZFe5nyJ+y4Kzxq70odqtqT/KVeF1PlS1y0Z+YR8o9inWVg1Jmo= 3HI9M/w9gYx2Lqon5GAym/xeEG0zi2KCPc3OSTKgYizkBOW9TT67pxf0FWc8eRa3zkcTffcLly5= CNqR3zia8Gcq5vazfDH1B+/trpl3ZQ/akrDHekcy33eHDe/tmpUXM/N19/vh+pcZo5aEX8XwJ89= xRWc1XCd5xdPEmRWTlTJuFu+3JS9uHrS+CdQh7r5hishuAzwqPALSqRX7t2G3wbdKs9XflG/J3c= dyIee2/gYClUUZwqIcmsKj/mhHI/gMkcF1BT0KxCs63u30+Pj0a6/7i1q6p/1lZzrSeMDoHq4+f= pL/NrqXwZO5X3463/tVqx+n3z9636gzmJW1cuho95XEl7lKt4H9Xxu/YpJQbfKO2N/VL5hnUKGu= 8G6e/05w76lptSvwu/RvOAa7Jr8CZaG97pDnENdaXyFHEt9x50KSlyn8IiCEW6+4RpF4wnAvm5N= w8/Bn6yU2j3n8IKCwVnXwzCsVzgLkna90BDvmnnLXJy1wCWCXMQZz/R1vcYZfm3VBJNvXtj4ZDJ= +5CoC/OIUL1+4HECEhb5b+W389S5zVKDbkkPdHh/PI9+woClm63Yd3yoWhph50nhr2udcvlAI4A= VX+Ebsd+Ds1Hocc7jJMohqyg1qxy5VNQ1z3a4blonIQl950f+FQYlQuNkJMN79mXI2ly8UgjV9b= 0/3h9qxS1tUzhe+nvRHHOeTdI4BNPloIjE+zBzzUZiv/4kbyEso5vni5nMSnFiyvuVLTebjcxov= X5At6YjFsqNRrK0qe/5Zvnx0/OBOfLXC6/nxBgBB/iV63LJsA7j5+ccqwqsE2QfUCyjnp/4to+s= 7269NwcsXzkNkWpHcKdSNXtzZ/lgsFovFYrFYLBaLxWKxWCwWi8VisVgsFovFYrFYLBaLxWKxWC= wWi8VisVh2UP4fiQMAZDpWS54AAAAASUVORK5CYII=3D" width=3D"343" height=3D"53" a= lt=3D"" usemap=3D"#awmap1" style=3D"margin-top:-39.5pt; margin-left:97.95pt= ; border-style:none; position:absolute" /><map name=3D"awmap1"><area shape= =3D"rect" href=3D"http://creativecommons.org/licenses/by-nc-sa/4.0/" alt=3D= "" coords=3D"10,33,224,45" /></map></span><span style=3D"letter-spacing:3pt= ; color:#ffffff">          = 0;       </span><span style=3D"letter-spacing= :3pt; color:#ffffff">Renovaci=C3=B3n </span><span style=3D"letter-spacing:3= pt; color:#ffffff">   </span><span style=3D"width:111.07pt; lette= r-spacing:3pt; display:inline-block"> </span><span style=3D"letter-spa= cing:3pt; color:#ffffff">  </span><span style=3D"letter-spacing:3pt; c= olor:#ffffff"> </span><span style=3D"width:57.97pt; letter-spacing:3pt= ; display:inline-block"> </span><span style=3D"letter-spacing:3pt; col= or:#ffffff">   </span><span style=3D"letter-spacing:3pt; color:#f= fffff">  </span><span style=3D"letter-spacing:3pt; color:#ffffff"> = 0;  </span><span style=3D"letter-spacing:3pt; color:#ffffff">P=C3=A1gi= na</span><span style=3D"color:#ffffff"> 1 | 42</span></p><p class=3D"Footer= "><span> </span></p></div></div><br style=3D"clear:both; mso-break-typ= e:section-break" /><div class=3D"Section_2"><p style=3D"margin-bottom:0pt; = line-height:normal; font-size:12pt"><span style=3D"font-family:Corsiva; fon= t-weight:bold; color:#333399"> </span></p><p style=3D"margin-bottom:0p= t; line-height:normal; font-size:12pt"><span style=3D"font-family:'Pinyon S= cript'"> </span></p><p style=3D"margin-bottom:0pt; text-align:right; l= ine-height:normal; font-size:12pt"><span style=3D"font-family:Tahoma"> = ;</span></p><p style=3D"margin-bottom:0pt; text-align:right; line-height:no= rmal; font-size:12pt"><span style=3D"font-family:Tahoma"> </span></p><= p style=3D"margin-bottom:0pt; text-align:right; line-height:normal; font-si= ze:12pt"><span style=3D"font-family:Tahoma"> </span></p><p style=3D"ma= rgin-bottom:0pt; text-align:right; line-height:normal; font-size:12pt"><spa= n style=3D"font-family:Tahoma"> </span></p></div></body></html>