Soil Carbon in secondary forest and grass
Main Article Content
Abstract
Introduction: Soil contains the largest reserve of organic carbon in terrestrial ecosystems, and it is the natural resource with the greatest vulnerability to climate change. Objective: To determine to what extent land use change influences carbon sequestration and fractioning in secondary forests and pastures soil. Methodology: This study was conducted in San Miguel de Barranca, Puntarenas, Costa Rica. Elevation at this location range from 150 to 200 m.a.s.l., average annual rainfall of 2043 mm, and rough terrain with 23-55% steep slopes. We investigated three systems, mixed improved pastures with trees (PmA), degraded pastures (Pd), and secondary forest (Bs). Each replication had nine sampling points: three main trial pits (1x1x1m) across the slope and six mini-trial pits (0.5 x0.5 x0.5m) evenly spaced along a 20m transect. Laboratory analysis consisted of soil physical-chemical fractioning with a Flash EA 1112 autoanalyzer. Results: PmA system stored the highest value of organic carbon in the soil (141.79 Mg ha-1) up to 0.8 m deep, followed by Pd (133.22 Mg ha-1) and Bs (85.80 Mg ha-1). Pasture systems displayed 68.2% passive carbon and 65% in secondary forests. Discussion: The carbon storage trend PmA > Pd > Bs is likely due to biophysical and topographical phenomena linked to heavy rainfall. Precipitation could have influenced the carbon cycle in the secondary forest floor to have the lowest value. Conclusions: 50% of the total organic carbon is stored between 0 and 20 cm deep in the soil and, to a considerable extent, in the labile form. Carbon is released due to deforestation or ecological anomalies associated with climate change. Our results show the need to preserve forested areas and restore degraded areas.
Downloads
Article Details
References
Camargo, J.C. (1999). Factores ecológicos y socioeconómicos que influyen en la regeneración natural de Cordia alliodora (Ruiz y Pavon) en sistemas silvopastoriles del trópico húmedo y subhumedo de Costa Rica. [Tesis de maestría, Centro Agronómico Tropical de Investigación y Enseñanza, CATIE].
Cambardella, C.A., & Elliot, E.T. (1992). Particulate soil organic matter changes across a grassland cultivation sequence. Soil Science Society of America Journal 56:777-783
Chinchilla, V.E. (1987). Atlas Cantonal de Costa Rica. 1. ed. San José, C.R. Instituto de Fomento y Asesoría Municipal. 396 p.
De Oliveira Marques, J.D., Luizão, F.J., Teixeira, W.G., Nogueira, E.M., Fearnside, F.M., & Sarrazin, M. (2017). Soil Carbon Stocks under Amazonian Forest: Distribution in the Soil Fractions and Vulnerability to Emission. Scientific Research Publishing. Open Journal of Forestry, 2017, 7, 121-14. https://www.scirp.org/pdf/OJF_2017032815305488.pdf
Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C., & Wisniewski. J. (1994). Carbon pools and flux of global forest ecosystems. Science 263: 185-190. https://www.science.org/doi/pdf/10.1126/science.263.5144.185
Fisher, M. J., Rao, I. M., Ayarza, C. E., Saenz, J. I., Thomas, R. J., & Vera, R. R. (1994). Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature 31:236-238.
Food and Agriculture Organization of the United Nations [FAO]. (2018). Measuring and Modelling Soil Carbon Stocks and Stock Changes in Livestock Production Systems. FAO. http://www.fao.org/3/I9693EN/i9693en.pdf.
Hernández, G., López, D., Moya, F. (2020). Gestión ambiental en el sector ganadero doble propósito de los pequeños productores en Maicao, Colombia. Revista Espacios. Vol. 41 (27), Art. 3.
Lehmann, J., & Kleber, M. (2015). The Contentious Nature of Soil Organic Matter. Nature, 528, 60–68. https://www.nature.com/articles/nature16069
López, A., Schlönvoigt, A., Ibrahim, M., Kleinn, C., Kanninen, M. (1999). Cuantificación del carbono almacenado en el suelo de un sistema silvopastoril en la zona Atlántica de Costa Rica. Agroforestería en las Américas 6, p. 51-53 https://repositorio.catie.ac.cr/handle/11554/5996
Lorenz, K., & Lal, R. (2018). Carbon Sequestration in Agricultural Ecosystems. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-92318-5
MacDiken, K. (1997). A Guide to Monitoring Carbon Storage in Forestry and Agroforestry Projects. Winrock International, 1611 N. Kent St., Suite 600, Arlington, VA 22209, USA. 87 p.
Meléndez, G. (1997). Transformaciones de carbono, nitrógeno y fósforo del suelo, en sistemas agroforestales, cultivos anuales y bosque natural. [Tesis de maestría, Universidad de Costa Rica].
Mora, V. (2001). Fijación, Emisión y Balance de gases de efecto invernadero en pasturas en monocultivo y en sistemas silvopastoriles de fincas lecheras intensivas de las zonas altas de Costa Rica. [Tesis de maestría, Centro Agronómico Tropical de Investigación y Enseñanza, CATIE]. https://repositorio.catie.ac.cr/handle/11554/2149
Organización de las Naciones Unidas para la Alimentación [FAO]. (2001) Protección de los recursos naturales en sistemas ganaderos: Los sistemas agroforestales pecuarios en América Latina. Consulta de expertos FAO. EMBRAPA
(18-22 septiembre de 2000. Juiz de Flora, MG, Brasil).
Organización de las Naciones Unidas para la Alimentación [FAO] y Programa de las Naciones Unidas para el Medio Ambiente [PENUMA]. (2020). El estado de los bosques del mundo 2020. Los bosques, la biodiversidad y las personas. Roma. https://doi.org/10.4060/ca8642es
Parton, W.J., Schimel D.S., Cole C.V., & Ojima, D.S. (1987). Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Sci. Soc. Am. J. 51:1173-1179.
Ramos, R. (2003). Fraccionamiento del carbono orgánico del suelo en tres tipos de uso de la tierra en fincas ganaderas de San Miguel de Barranca, Puntarenas-Costa Rica. [Tesis de maestría, Centro Agronómico Tropical de Investigación y Enseñanza, CATIE] https://repositorio.catie.ac.cr/handle/11554/2736
Ramos Veintimilla, R.A., MacFarlane, D., Cooper, L. (2020). The carbon sequestration potential of ‘analog’ forestry in Ecuador: an
alternative strategy for reforestation of degraded pastures. Forestry 2021; 94, 102–114. https://academic.oup.com/forestry/article/94/1/102/5861619
Richter, D., & Markewitz, D. (2001). Understanding Soil Change—Soil Sustainability over Millennia, Centuries, and Decades Cambridge University Press, Cambridge, UK, ISBN 0-521-77171-4. 255 pages.
Rocha, R. (2002). Cambio en el uso del suelo y factores asociados a la degradación de pasturas en la cuenca del Río Bulbul, Matiguas, Nicaragua. [Tesis de maestría, Centro Agronómico Tropical de Investigación y Enseñanza, CATIE] https://repositorio.catie.ac.cr/handle/11554/2736
Rojas-Solano, J., Brenes-Gamboa, S., & Abarca-Monge, S. (2021) Carbono en el suelo: comparación entre un área de pastos y un bosque InterSedes, vol. XXIII, núm. 47, pp. 184-205, 2022. https://www.redalyc.org/journal/666/66671467009/html/#article-ref-4aec85601d9945a16db26335bb6a3bbf
Ruiz, A. (2002). Fijación y almacenamiento de carbono en sistemas silvopastoriles y competitividad económica en Matiguás, Nicaragua. [Tesis de maestría, Centro Agronómico Tropical de Investigación y Enseñanza, CATIE]. https://repositorio.catie.ac.cr/handle/11554/2148
Sánchez, B. M., Flores Villalva, S., Rodríguez Hernández, E., Anaya Escalera, A., & Contreras Contreras, E. (2020). Causas y consecuencias del cambio climático en la producción pecuaria y salud animal. Revisión. Revista Mexicana Ciencias Pecuarias;11(Supl 2):126-145. https://www.scielo.org.mx/pdf/rmcp/v11s2/2448-6698-rmcp-11-s2-126.pdf
Steinfeld, V., Pierre G., Wassenaar, T., Castel, V., Rosales, M., & De Haan, C. (2009). La larga sombra del ganado. problemas ambientales y opciones. FAO. Roma, Italia. https://www.fao.org/3/a0701s/a0701s.pdf
Veldkamp, E. (1993). Soil organic carbon dynamics in pastures established after deforestation in the humid tropics of Costa Rica. Ph. D. Wageningen, Netherlands, Agriculture University of Wageningen. 117 p.
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., Van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, HJ. & Kögel-Knabner, I. (2019). Soil Organic Carbon Storage as A Key Function of Soils - A Review of Drivers and Indicators at Various Scales. Geoderma, 333, 149-162. https://doi.org/10.1016/j.geoderma.2018.07.026.
Wu, X., Fu, D., Duan, C., Huang, G., & Shang, H. (2022). Distributions and Influencing Factors of Soil Organic Carbon Fractions under Different Vegetation Restoration Conditions in a Subtropical Mountainous Area, SW China. Forests 2022, 13, 629. https://www.mdpi.com/1999-4907/13/4/629