MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01D76819.203EB2D0" Este documento es una página web de un solo archivo, también conocido como "archivo de almacenamiento web". Si está viendo este mensaje, su explorador o editor no admite archivos de almacenamiento web. Descargue un explorador que admita este tipo de archivos. ------=_NextPart_01D76819.203EB2D0 Content-Location: file:///C:/2223D501/04FormatoCienciaDigita_JazminMarisolMedinaRea.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"

 

 

Graphic organizers to empo= wer the teaching-learning process of grammar tenses in higher education<= /b>

 

Organizadores gráficos para empoderar la enseñanza-aprendizaje de los tiempos gramaticale= s en la educación superior   =

 

Jazmín Marisol Medina Rea . [1]

=  

Recibido: 07-05-2021 / Revisado: 18-05-2021 /<= span class=3DSpellE>Aceptado: 11-06-2021/ Publicado<= /span>: 05-07-2021

 =

=  

Abstract.    =                                      = DOI: = = https://doi.org/10.33262/concienciadigital.v4i3.1764

 

The English language is= a mandatory subject in elementary, secondary, and higher education in Ecuador. To become proficient, a broad knowle= dge of grammar is needed because it is considered the backbone of a <= span class=3DSpellE>language. This research aims to implement graphic organizers in the teaching-learning process= of grammar tenses. This inquiry took place at a university of = Riobamba with a target population of 62 A= 2 level students. A quasi-experimental research, was carried out with 31 students that were the experimental group and the same number of students as the = control group. A pre-test was applied to both groups to evaluate their grammar skills. After that, both groups were given a post-test to determine if the graphic organizers implemented made any improvement on <= span class=3DSpellE>the students’ performance= regarding grammar tenses.= The post-test results demonstrated that the competence of the experimental group students has been enhanced after implementing graphic organizers. Furthermore, = students were able to clear up their ideas and to establish better relationships between graphical and cognitive demands. Hence, the research findings showed that graphic organizers will contribute positively to = master grammar patterns.

Keywords: Graphic organizers, teaching, learning, grammar

 

Resumen.

 

El idioma ing= lés es una asignatura obligatoria en la educación primaria, secundaria y superi= or en Ecuador. Para llegar a ser competente, se necesita un amplio conocimient= o de la gramática porque se considera la columna vertebral de un idioma. Esta investigación tiene como objetivo implementar organizadores gráficos en el proceso de enseñanza-aprendizaje de los tiempos gramaticales. Dicha investigación se llevó a cabo en una universidad de Riobamba con una poblac= ión objetivo de 62 estudiantes de nivel A2. Se realizó una investigación cuasi-experimental, con 31 estudiantes que fueron el = grupo experimental y el mismo número de estudiantes como el grupo de control. Se aplicó una prueba previa a ambos grupos para evaluar sus habilidades gramaticales. Posteriormente, a ambos grupos se les realizó una prueba posterior para determinar si los organizadores gráficos implementados mejor= aron el desempeño de los estudiantes con respecto a los tiempos gramaticales. Los resultados de la prueba posterior demostraron que la competencia de los estudiantes del grupo experimental ha mejorado después de implementar organizadores gráficos. Además, los estudiantes pudieron aclarar sus ideas y establecer mejores relaciones entre las demandas gráficas y cognitivas. Por= lo tanto, los hallazgos de la investigación mostraron que los organizadores gráficos contribuirán positivamente a dominar los patrones gramaticales.

 

Palabras claves: Organizadores gráficos, <= span class=3DSpellE>enseñanza, aprendizaje, <= span class=3DSpellE>gramática.

 

<= span lang=3DEN-US style=3D'font-size:12.0pt;line-height:115%;font-family:"Times = New Roman",serif; mso-fareast-font-family:"Times New Roman";mso-ansi-language:EN-US;mso-farea= st-language: EN-US;mso-bidi-language:SI-LK'>Introducción.

According to a recent study on English level proficiency, Ecuador has been ranked 81/100 countries with 46.57 and it is located in the 19/19 position in Latin Ameri= ca. These findings are supported by the EF EPI (2019) which demonstrated that E= cuador has a very low level of language proficiency.

In Ecuador, the English language has not been seen as a priority because we are a Spanish-speaking country, nonetheless, the advancement of the technological= world has required to introduce a new curriculum in which new policies have been = implemented regarding the teaching-learning process of English. Teachers are required to have a B2 level of proficiency to be able to teach in all educational institutions as well as in higher education. Despite all the new policies implemented, there are still weaknesses concerning the heart of a foreign l= anguage. It is vital to cite Foppoli (2018) and his cruc= ial comparison: “without knowledge of grammar, in the same way as a train cannot move without railways, people won't be able to communicate their ideas with= out a good mastery of grammar”.

Universities consider English as a requirement for students to graduate. Riobamba universities are characterized by welcoming students from different provinc= es and therefore different economic strata. Often, students are fluent when speaking although they do not show a good level of accuracy and coherence. = It might happen due to the lack of grammar knowledge. According to Garrido &am= p; Rosado (2012), missformation is the use of the = wrong form or morpheme or structure. Thus, grammar is considered essential in any skill domain to avoid misunderstandings. In addition, Mart (2013) claims th= at “to establish effective communication, learners need grammar skills”. Gramm= ar needs to be seen and taught as the fifth skill of a language for students to master any language.

The majority of higher education students struggle in master tenses (Ali, 2015).  Even though grammar has been given a spe= cial role in early levels, learners are not conscious of rules and patterns (Rah= man & Ali, 2015). Often, students are fluent when speaking however they do = not show a good level of accuracy and coherence. Therefore, the problem arises because of the lack of grammar knowledge they experiment at higher levels. = In fact, various causes are addressing the poor performance of it. Traditional teach= ers supply difficult rules and constraints with several amounts of information = that is hard to concise, process, and understand (Dahbi, 2014). Moreover, the grammatical misunderstandings and the wrong use of patterns make learners produce errors in morpheme and sentence structure (Garrido & Rosado, 2012). From the learners’ perspective, grammar is se= en as a monster that constantly presses them to follow each rule and pattern carefully, if it is not so, they will be punished with low scores. Thus, th= ey feel overwhelmed and argue that grammar knowledge is not necessary to learn= in English since they believe it is bored and not interesting (Mammadova, 2019).

Graphic Organizers

According to (Ellis & Howard, 2005)= graphic organizers are pic= torial devices that illustrate information in different ways of representations. Often, those representations include a set of shapes, lines, and boxes to generate images with structured information. Similarly, Drapeau (1999) as cit= ed in Dahbi (2014) adds “a graphic organizer is a visual= and graphic display that depicts the relationships between facts, terms, and or ideas within a learning task.” (p. 37). Therefore, the use of graphic organizers= helps students consolidate a vast amount of information into comprehensible language within minimum time (Ciascai, 2009).

Ciascai (2009) presen= ts some functions to spell the efficiency of graphic organizers to teach as we= ll as to learn. He states the following: “clarifying knowledge and reasoning”, “strengthening the learning process”, “integrationing<= /span> the new knowledge in the prior knowledge system”, and “identificating the conceptual errors (and missconceptions [sic= ])” (par. 1). As we can see, visual maps can empower and promote students' reasoning and innovative teaching strategies.

Graphic organizers as a teaching-= learning tool helps students to express knowledge, concepts, thoughts, and their associations (Ghanizadeh, Al-Hoorie, & Jahedizadeh, 2020). Most of the t= ime, students are given too much semantic information to process and understand.= One reason may be that teachers provide disorganized information which is deman= ding to comprehend. Based on that assumption, learners argue that grammar is uni= nterested and not necessary to learn in English. For that reason, Ratnakar (2017) highlights the importance of graphic organizers because students can “conve= rt and compress a lot of seemingly disjointed information into a structured, simple-to-read, graphic display. The resulting visual display conveys compl= ex information in a simple-to-understand manner.” (p. 4531)<= /p>

Among several tools to teach grammar, graphic organizers are flexible and differ from traditional grammar teaching. They = are used for different purposes because they can be adapted for any activity teachers or students require to be used. Undoubtedly, students will be able= to keep information organized, recognize relationships regarding concepts, ide= as, and examples (Vargas & Zuñiga, 2018). Just = as (Krasnic, 2011) cited in (Kansızoğlu, 2017) assumes the br= ain represents all that difficult information into graphical organization devic= es, so they can comprehend, find solutions, make decisions, and meet the expected results. <= /o:p>

To implement g= raphic organizers is a process that requires teachers and students’ effort and col= laboration. Hence, to be successful when constructing these visual representations, it = is necessary to cite clear guidelines. According to Vargas & Zuñiga (2018), the role of the teacher is guiding lea= rners by giving instructions of highlighting the most relevant ideas, the input has = to be noticeable through the use of graphic organizers, to establish connectio= ns between previous and new knowledge, and to take advantage of the text in or= der to make it understandable. Thus, teachers must make comprehensible for lear= ners on how to build effective graphic maps in order to represent lots of information into core ideas.

Learners can encounter many benefits when using graphic organizers also known as visual maps. Thinking and creativity are joined together to create meaningful representations of vast amounts of tex= t (Kansızoğlu, 2017). Additionally,= (Delrose, 2011) emphasizes that information is presented in a fluid simple way which helps to overcome cognitive load by categorizing all information sources in just one place. In effect, Dahbi (2014) in his study reports that = graphic organizers help students to learn longer and more efficiently. Therefore, <= span style=3D'color:black;mso-themecolor:text1'>students can remember more main = ideas when they are represented visually than in a simple text (Salazar &a= mp; Galora, 2017).

“The use of this tool brings excitement and enthus= iasm toward learning” Dahbi (2014). Although learners can choose and= use many shapes and ways of representing graphic organizers, there are rules to= consider. Regarding this assumption, (Delrose, 2011) suggests some important aspects to be considered when creating these tools. Firstly, students have to be conscious about coherence. Secondly, the lack = of familiarity with the format of organizers resulting in student’s frustratio= n.  Finally, incoherent sets of graphic organizers could cause confusion a= nd disorganization (Baxendell, 2003; Ellis & Howard, 2005) cit= ed in (Delrose, 2011). Thus, a systematic implementation of these pictorial devices must be considered inside and out= side the classroom.

To sum up, Mercuri (2011) states some clear purposes for teacher= s and students´implementation of graphic organizers. First, graphic organizers support the teaching and learning of grammar because they are powerful and manageable tools. Second, graphic organizers help the stud= ents to sum up, organize, categorize, and meet meaning from texts. Third, graphic organizers enhance the comprehension of grammar by assessing students’ prior knowledge and promoting written and oral participation. Fourth, teachers pl= ay an important role to assess ongoing learning and modeling instruction to encounter students’ needs. In essence, graphic organizers empower the teach= ing learning process of grammar tenses.

Grammar Component

“A legendary monger scares learners of English”. This is how (Baron, 1982, p. 226) cited in (Al-Mekhlafi & Nagaratnam, 2011= ) calls grammar. When students listen to the word “grammar” or when someone corrects them a piece of writing or any speech, they feel uncomfortable. Th= ey think they are making mistakes, so they feel ashamed. Most of the time stud= ents do not participate actively in class when they are asked to because they do= not manage even basic grammatical patterns.

Grammar is the= backbone of a language, it is a system that contains rules, restrictions, and patter= ns. Ratnakar (2017) states that each language has a cycle, it is said; it has evolved through the years. There is a controversial question regarding this skill, = is the learning of grammar necessary to master a language? The answer would probably be no. Just as children learn a language by making sounds, then th= ey produce words and phrases. They do not know the word grammar. However, when they want to learn a second language, the answer is yes because they need to know grammatical patterns to be fluent and accurate.

It is important to emphasize = some challenges teachers and learners of English have to encompass in higher education. Mastering a language is not easy without the knowledge of grammar. In his study, Kelly (2018) presents some mastering lexical aspects and the foc= us on academic writing issues. He states some issues that have to do with the current situation in Ecuador. He argues that teachers are balky to implement some strategies on teaching grammar; the traditional teaching is comfortable for teachers and learners as well.

In addition, Al-Mekhlafi & Naga= ratnam (2011) points out grammar as a “linguistic straitjacket” (p. 71). Th= ey assume that this skill must give students freedom and motivation to be able= to communicate their ideas accurately. Most students have had different teachers and of co= urse they have acquired different schemata regarding structures, lexical words, adjectives, adverbs, and so on. However, Chen & Jones (2012) argue that learners need enough exposure to the grammar otherwise, they will not be able to learn effectively. Thus, it must be seen as a skill that let learners discover ra= ther than keep the knowledge down.

There are dive= rse ideas regarding grammar and its teaching and learning process. According to what students say, grammar is not motivational. Furthermore, Jean & Sim= ard (2011) point out a triangulation among teachers, learners, and grammar instruction. This shape displays they are working almost on the same rail. Despite this, students often accept grammar as essential. However, it is crucial to highlight the idea that grammar instruction does not grab studen= ts’ attention because it is considered not funny. If learning is fun, students attempt to practice it and they remember the grammatical patterns.

Grammar instruction is necessary when learning a n= ew language. It would be better if this skill is learned into an organized and precise way. The use of graphic organizers contributes to the learning proc= ess of English. The idea to be taken is that grammar is an important skill to learn in a second language faster and effective= ly (Varade, 2017). Besides, there is a big range of graph= ic organizers that could help to support mastering tenses. Therefore, this stu= dy explains how the two variables joint together to generate a well-done produ= ct.

Metodologia.

The study foll= owed a quasi-experimental design which is well recognized by researchers around = the world due to its adaptability for every methodological field. According to Thyer (2012), the objective of this design is to compare the results of the group of study (the one that receives a treatment) to one or more groups th= at are given or not an alternative treatment. Similarly, in this research, two groups were chosen to be evaluated and compared; the one called “the experimental group” received a treatment to improve its manageability of the grammatical patterns, and the control group was given a conventional grammar teaching.

In addition, t= his study is considered descriptive because the dependent and independent varia= bles were depicted in the theoretical framework. Nassaji 2015 argues “The goal of descriptive research is to describe a phenomenon a= nd its characteristics” (p. 129). Because of that, the variables stated a clear view of the factors that influenced this study. The author concludes that t= his kind of research focuses essentially on what the phenomenon is rather than = on some other factors such as why or how. It means that the definitions help t= he readers to have a deep knowledge of the study direction. =

This inquiry t= ook place at a university with a target population of 62 A2 level students of different provinces because this university welcomes them from all around t= he country. The participants were males and females distributed in two levels of 31 students by the university administration. Level “K” was the control group = and those in “B” were assigned to be the experimental group. In the beginning, a pre-test containing 20 questions about different grammatical patterns was applied to both groups to evaluate their grammar skills. =

Once the treat= ment started, the experimental group was taught some grammatical patterns through the use of a series of graphic organizers. Consequently, they learned how to build them and also established relationships between their cognition and t= he graphical representations they had over texts. Thus, the students reacted positively to the pictorial devices shown with the grammar subjected to the= ir study. On the other hand, the control group didn’t receive treatment because they were given explanations complemented with examples and worksheets, too. Both processes were carried out two days a week for two months. After apply= ing the intervention plan, the groups were given a post-test to state if the graphic organizers implemented made any improvement on the students’ performance regarding grammar tenses.

The quantitati= ve method was finally used to analyze the numerical data by applying statistic= al procedures to get the results. According to Apuke (2017), the data to be considered quantitative must be based on accurate information of responses, interviews, participants, and so on. Those data a= re validated through the data collection instruments such as surveys to test t= he hypothesis of the research study.

Resultados.

Table 1. Pretest, control group<= /b>

Students

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18

P19

P20

Average

S 1

0

1

1

1

1

1

1

1

1

1

0

1

1

1

0

0

1

0

0

0

13

S 2

1

1

1

0

1

1

1

1

1

0

0

1

1

1

0

1

1

0

0

0

13

S 3

0

1

1

1

0

1

1

0

0

1

0

0

1

1

1

1

1

1

1

0

13

S 4

1

1

1

1

1

1

1

1

1

1

0

1

1

0

0

1

0

1

1

0

15

S 5

0

1

1

0

1

1

1

1

1

1

1

1

1

1

0

1

0

1

1

1

16

S 6

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

18

S 7

1

0

1

0

1

1

1

1

1

1

0

1

1

1

0

1

1

0

1

0

14

S 8

0

1

1

0

1

0

1

0

1

1

1

0

0

1

0

0

1

0

0

0

9

S 9

0

0

1

0

1

0

1

0

0

0

0

0

1

0

1

1

0

0

1

0

7

S 10

1

1

1

1

1

1

1

1

1

1

0

0

1

0

0

1

0

1

1

0

14

S 11

1

1

1

1

0

1

1

1

1

1

0

1

1

0

1

0

1

1

1

0

15

S 12

1

1

0

1

1

1

1

1

1

1

1

1

1

0

0

1

0

0

0

0

13

S 13

1

1

0

1

1

1

1

0

0

1

0

0

0

0

0

1

0

0

1

0

9

S 14

1

1

1

1

1

1

1

1

1

0

0

0

1

1

0

1

1

0

0

0

13

S 15

1

0

1

0

0

1

0

1

1

1

0

0

0

0

0

1

0

0

0

0

7

S 16

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

0

1

1

0

1

17

S 17

1

1

1

0

1

1

1

1

1

0

1

1

1

1

1

1

0

1

1

1

17

S 18

0

1

0

0

1

0

1

1

1

0

1

1

1

0

1

1

0

1

0

1

12

S 19

0

1

1

0

1

0

1

1

1

1

0

1

1

0

1

1

1

1

1

0

14

S 20

1

1

0

0

1

1

0

1

1

1

0

1

1

0

1

1

0

1

1

0

13

S 21

0

1

1

0

1

1

1

1

0

1

1

1

0

1

1

1

1

1

1

0

15

S 22

1

1

0

0

1

1

1

1

1

1

0

1

1

0

1

1

0

0

1

0

13

S 23

0

0

1

0

0

0

1

1

1

1

0

0

0

0

0

1

0

1

1

0

8

S 24

0

0

1

0

0

0

1

1

1

1

1

1

1

0

1

1

0

1

1

1

13

S 25

0

1

0

0

0

1

1

1

1

0

1

0

0

1

1

1

1

1

1

1

13

S 26

1

1

1

0

1

1

0

1

1

1

1

1

1

0

1

1

0

0

0

0

13

S 27

0

0

1

0

1

0

1

1

1

1

1

1

1

1

1

1

0

0

1

0

13

S 28

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

18

S 29

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

19

S 30

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

1

0

0

9

0,57

0,80

0,76

0,37

0,72

0,77

0,90

0,87

0,87

0,77

0,43

0,67

0,77

0,50

0,57

0,83

0,47

0,57

0,67

0,27

13,11

Note: The pretest average of the control group = is 13, 11 over 20.

Source: Pretest control group

Developed by: The author.<= b>

&nbs= p;

&nbs= p;

Table 2. Pretest, experimental group

Note: The pretest average of the experimental group is 13,23 over 20.=

Source: Pretest experimental group

Developed by: The author.<= b>

Students

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18

P19

P20

Average

S 1

1

1

1

0

1

1

1

1

1

1

1

1

1

0

0

1

1

0

1

0

15

S 2

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

1

1

1

0

18

S 3

1

1

1

0

1

0

1

1

1

1

0

0

1

0

1

1

1

1

1

0

14

S 4

1

1

1

0

1

0

1

1

1

0

0

1

1

1

1

1

1

1

1

0

15

S 5

0

0

1

0

1

1

0

1

1

1

1

0

1

0

0

1

0

1

1

0

11

S 6

0

1

1

0

0

1

1

1

1

1

0

0

0

1

0

1

0

1

0

0

10

S 7

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

0

18

S 8

1

1

1

0

1

1

1

1

1

0

0

1

1

0

0

1

1

1

0

0

13

S 9

0

1

0

0

0

1

1

0

0

0

0

0

0

0

1

1

1

0

1

0

7

S 10

0

1

1

1

0

0

0

1

1

1

0

0

1

0

0

0

1

1

1

0

10

S 11

1

1

1

0

1

0

1

1

1

1

0

1

1

0

0

1

0

0

1

0

12

S 12

0

1

1

0

1

0

1

1

1

1

0

1

0

1

1

0

1

0

1

1

13

S 13

1

0

1

0

1

0

1

1

1

1

0

1

1

0

1

1

1

1

0

1

14

S 14

0

1

1

0

0

1

1

1

1

0

0

0

1

1

0

0

0

1

1

0

10

S 15

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

0

0

1

0

16

S 16

1

1

0

0

1

0

1

1

0

1

1

0

1

0

0

1

0

1

0

0

10

S 17

1

1

1

0

1

1

0

1

0

0

1

1

1

1

0

1

0

1

1

1

14

S 18

0

1

1

0

0

1

0

1

1

1

0

1

1

0

1

0

0

1

0

0

10

S 19

1

1

1

0

1

1

0

1

1

1

1

1

1

1

1

1

0

1

1

0

16

S 20

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

19

S 21

1

1

1

0

1

0

1

1

1

1

1

1

1

0

0

1

0

1

1

0

14

S 22

1

1

1

0

1

1

1

1

1

1

0

1

1

1

0

1

0

1

1

1

16

S 23

1

1

1

1

1

1

0

1

0

1

1

1

1

1

1

1

1

1

1

1

18

S 24

0

1

1

0

1

0

1

1

1

1

0

0

1

1

0

1

0

1

1

0

12

S 25

1

1

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

1

0

0

16

S 26

0

1

0

0

1

0

1

1

0

0

0

0

1

1

0

1

0

1

0

1

9

S 27

1

1

1

0

0

0

1

1

1

1

0

0

1

0

1

0

0

1

1

0

11

S 28

0

0

1

0

1

0

1

1

1

0

1

1

1

1

0

1

1

1

1

0

13

S 29

0

1

0

0

1

0

1

1

0

1

0

0

1

0

0

1

0

0

1

1

9

S 30

1

1

1

0

1

1

1

1

1

1

0

1

1

1

1

0

1

0

0

0

14

0,63

0,90

0,87

0,20

0,80

0,57

0,80

0,97

0,80

0,77

0,43

0,60

0,90

0,50

0,50

0,80

0,47

0,73

0,73

0,27

13,23

 

Table 3. Postest, control group<= /b>

Students

P1<= /p>

P2<= /p>

P3<= /p>

P4<= /p>

P5<= /p>

P6<= /p>

P7<= /p>

P8<= /p>

P9<= /p>

P10=

P11=

P12=

P13=

P14=

P15=

P16=

P17=

P18=

P19=

P20=

Average

S 1=

0

1

0

1

0

1

0

0

0

0

0

1

1

1

0

0

0

1

1

1

9

S 2=

0

0

1

1

0

1

1

0

0

0

0

1

1

0

0

0

1

1

0

0

8

S 3=

0

0

1

1

1

0

0

0

1

0

1

0

1

0

0

1

0

1

0

0

8

S 4=

1

1

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

19

S 5=

1

0

0

1

0

0

0

1

1

0

0

0

0

1

0

0

0

0

0

0

5

S 6=

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

0

1

18

S 7=

1

0

1

0

1

0

0

1

1

1

1

0

0

0

1

1

0

0

0

1

10

S 8=

1

1

0

1

1

0

0

1

0

1

1

0

0

1

1

1

0

0

0

1

11

S 9=

1

1

0

1

1

0

0

0

1

1

0

0

0

0

0

1

0

1

1

1

10

S 10

0

1

1

0

0

1

0

1

1

1

1

1

0

1

1

1

0

1

0

1

13

S 11

0

1

0

1

0

1

1

1

1

1

0

0

0

1

0

1

0

1

0

0

10

S 12

1

1

1

1

0

1

0

1

1

0

0

0

1

0

1

1

0

0

0

1

11

S 13

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

17

S 14

1

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

0

17

S 15

1

0

1

0

1

1

0

1

0

1

0

1

0

0

0

1

0

0

1

1

10

S 16

1

1

1

0

0

1

0

1

1

1

1

1

0

1

1

1

1

1

0

0

14

S 17

1

1

1

1

1

1

0

1

1

1

1

1

1

1

1

1

0

1

1

0

17

S 18

0

1

0

1

1

1

1

1

1

1

1

0

0

0

1

1

0

1

1

1

14

S 19

0

1

1

0

1

1

0

1

1

1

1

0

0

1

1

1

0

1

1

0

13

S 20

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

1

0

1

1

0

11

S 21

0

1

0

1

1

1

0

1

0

1

1

1

1

0

0

1

0

1

1

0

12

S 22

0

1

0

1

1

0

1

0

1

1

1

1

0

1

0

1

0

1

1

1

13

S 23

1

1

1

1

0

1

1

1

0

1

1

1

1

1

1

1

1

1

1

1

18

S 24

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

20

S 25

1

0

1

0

1

1

1

1

0

1

1

1

1

1

0

1

1

1

0

1

15

S 26

0

1

0

1

1

1

1

1

1

1

1

0

0

1

1

1

1

1

1

1

16

S 27

1

1

1

1

0

1

1

0

1

1

1

1

0

1

1

1

0

1

1

1

16

S 28

0

0

0

1

1

1

0

1

1

1

1

1

0

1

1

1

1

1

1

1

15

S 29

0

1

0

1

1

0

1

0

1

1

0

1

0

1

0

1

0

1

1

0

11

S 30

1

1

1

1

0

0

0

1

1

0

1

1

1

1

1

1

1

1

1

1

16

0,57

0,77

0,57

0,80

0,67

0,73

0,50

0,77

0,73

0,80

0,70

0,63

0,47

0,70

0,60

0,90

0,33

0,80

0,60

0,60

13,23

&nbs= p;

Note: The postest average of the control group= is 13,23 over 20.

Source: Postest control group =

Developed by: The author

&nbs= p;

Table 4. Postest, experimental group<= /b>

Students

P1<= /p>

P2<= /p>

P3<= /p>

P4<= /p>

P5<= /p>

P6<= /p>

P7<= /p>

P8<= /p>

P9<= /p>

P10=

P11=

P12=

P13=

P14=

P15=

P16=

P17=

P18=

P19=

P20=

Average

S 1=

1

1

1

1

1

1

1

0

1

1

1

0

1

1

0

1

1

1

1

0

16

S 2=

1

0

1

1

1

0

0

0

1

1

0

0

1

1

0

0

0

1

0

1

10

S 3=

1

1

0

1

1

0

0

0

1

1

1

0

0

1

1

1

1

1

1

0

13

S 4=

0

0

0

1

1

1

1

0

1

1

1

0

1

1

0

1

1

1

1

1

14

S 5=

1

1

0

1

0

1

1

0

1

0

0

1

1

1

0

1

0

0

1

1

12

S 6=

0

0

0

1

0

0

0

1

1

0

0

0

0

1

0

0

1

0

1

0

6

S 7=

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

20

S 8=

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

20

S 9=

1

1

1

1

1

0

0

1

1

1

0

1

1

1

0

1

1

1

1

0

15

S 10

0

1

0

1

1

1

1

1

1

0

0

1

0

1

1

1

1

0

0

1

13

S 11

0

1

1

0

0

1

0

0

1

0

1

1

0

0

1

1

1

0

1

0

10

S 12

0

1

1

0

0

0

0

0

0

1

0

1

0

1

0

1

0

1

0

0

7

S 13

0

1

0

0

0

0

1

1

1

1

1

0

0

1

1

0

0

1

1

0

10

S 14

0

1

1

0

1

0

1

0

1

1

1

1

1

0

0

1

1

1

0

0

12

S 15

0

0

0

0

0

1

0

0

0

1

1

1

1

0

1

1

0

1

0

1

9

S 16

0

0

0

1

1

1

1

1

1

1

1

0

1

1

1

1

0

1

1

0

14

S 17

0

0

0

0

0

0

1

1

1

0

0

1

0

1

1

1

0

1

0

0

8

S 18

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

18

S 19

1

1

1

1

1

1

1

1

0

1

1

1

0

1

1

1

0

1

1

0

16

S 20

1

1

0

0

0

1

0

1

1

1

0

0

1

1

1

1

0

0

0

0

10

S 21

0

1

0

1

1

1

0

0

1

1

1

1

1

1

1

1

1

0

0

1

14

S 22

1

1

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

18

S 23

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

20

S 24

1

1

1

1

1

1

1

0

1

1

1

0

1

1

1

1

1

1

1

1

18

S 25

0

0

1

1

0

1

0

1

0

1

0

0

1

1

1

1

1

1

0

1

12

S 26

0

1

0

1

1

1

1

1

1

1

0

1

1

1

1

1

0

0

1

0

14

S 27

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

20

S 28

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

20

S 29

1

1

0

1

1

1

0

0

1

1

1

1

0

1

1

1

1

0

0

1

14

S 30

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

19

0,50

0,77

0,5

0,73

0,70

0,73

0,63

0,60

0,87

0,83

0,67

0,67

0,70

0,90

0,73

0,90

0,67

0,73

0,63

0,57

14,07

Note: The postest a= verage of the experimental group is 14,07 over 20.

Source: Postest experimental group

Developed by: The author

 

With regard to the control group test, the data obtained were analyzed through statistical methods to = get some denominations. The results are presented in table 5.

Table 5. Control group findings=

Denomination

Value

%

Observation

Variance<= /span>

0,2242

22,42

 

Standard deviation

0,4735

47,35

 

Variance<= /span> coefficient

0,4735

47,35

 

Correlati= on coefficientResults

0,0279

2,79

Between pre and post-= test

Correlati= on coefficientMedians

0,1705

17,05

Between the medians

Correlati= on coefficient – Global

0,1399

13,99

Between the post-test= s

Note: The correlation coefficient of the control group between the pre and= the post-test is 2,79 over 100.

Source: Postest control group

Developed = by: The author

&nbs= p;

This suggests that the correlation coefficient is 2,79 and <= span class=3DSpellE>thus the range of mastery of grammar tenses shows a low performance among the pre and post tests. The students didn’t progress as much as required.

 

After examining the postest results of = the experimental group, <= span class=3DSpellE>some statistical denominations were obtained to compare both = groups. The findings are presented in&nb= sp;table 6.=

 

Table 6. Experimental group findings

Denomination

Value

%

Observation

Variance

0,2090

20,90

 

Standard deviation

0,4572

45,72

 

Variance coefficient

0,4572

45,72

 

Correlation coefficient - Re= sults

0,0461

4,61

Between pre and post-= test

Correlation coefficient - Me= dians

0,0491

4,91

Between the medians

Correlation coefficient - Global

0,1399

13,99

Between the post-test= s

Note: The correlation coefficient of the experimental group between the pre and the post-test is 4,61 over 100.

Source: Postest experimental group

Developed by: The author

 

Evidently, the range of the correlation coefficient goes up, being this 4,61. Consequently, the students who were given the treatment enhanced their mastery of grammar tenses obtaining a %1.82 of improving over the control group.

Table 7. Pretests and postests total averages

Total Averages

&nb= sp;

Pre test control g= roup

13,11

Pre test experimental group

13,23

Postest control group<= /span>

13,23

Postest experimental g= roup

14,07

Source: Pretests and postests of the control and experimental groups.

Developed by: The author.<= b>

 

Figure 1. <= /span>Total Average of both gro= ups tests

Developed by: The author

 <= /span>

Being the prete= st and posttest analyzed, the results were placed into a total= averages table. In the final analysis, making a comparison, it is established that the control and experimental group started with a similar average of the test results. On the other hand, there is an improvement i= n both groups after implementing the treatment with the experimental group. <= span class=3DSpellE>However, it is important = to highlight that the posttest average of <= span class=3DSpellE>the experimental group had increased in a range of 0,84 over the postest of the control group.

 

Therefore, it is no= table that the implementation of graphic organizers can help students to improve the knowledge of grammar skills o= ver grammatical teaching with excessive amounts of texts.

 

Conclusiones.

·         The post-test findings demonstrat= ed that the competence of the experimental group had enhanced after implementi= ng graphic organizers. With these tools implemented, the level of the acquisit= ion was higher than using isolated texts or bits of information.

·         Students were able to structure different types of graphic organizers that helped them to clear up their id= eas and to establish better relationships between graphical and cognitive deman= ds.

·         Graphic organizers are effective tools in the process of organizing and constructing knowledge. They reduced= the anxiety and pressure students felt when processing vast amounts of informat= ion. Besides, the grammatical information represented visually could help studen= ts to remember all the patterns, rules, and restrictions easily. To sum up, graphic organizers will contribute positively to master grammar patterns. <= o:p>

 =

Referencias bibliográficas.

Apuke, O. (2017). Quantitative Re= search Methods: A Synopsis Approach. Arabi= an Journal of Business and Management Review, 6(11), 40-47. https://doi.org/10.12816/0040336

Ciascai, L. (2009). Using G= raphic Organizers in Intercultural Education. Acta Didácti= ca Napocensia, 2(1), 10-18. =

Chen, H. & Jones, P. (2012). Understanding metalinguistic development in beginning writers. Journal of Applied Linguistics and Professio= nal Practice, 9 (1), 81-104.

Dahbi, M. (2014). Implementing Graphic Organisers to Teach Grammar to Moroccan Second Year Baccalaureate Students: an Action Research Project. IOSR Journal of Research  and Method in Education, 4(5= ), 37-42. https://bit.ly/3cFrsyB

Delrose, L. (2011). Investigating= the use of graphic organizers for writing. LSU Master's Thesis. 2537. https://bit.ly/37CKxyS

EF EPI. (2019). Índice EF de nivel de inglés Una clasificación de 100 países y regiones en función de su nivel de inglés. EF. https://bit.ly/30MyT1b

EF EPI<= span lang=3DEN-US style=3D'font-size:12.0pt;mso-bidi-font-size:11.0pt;line-heigh= t:115%; font-family:"Times New Roman",serif;mso-ansi-language:EN-US'>, E., & Howard, P. (2005). Graphic organizers: Power tools for teach-ing students with  learning disabilities.  Graphic Organizers and Learning Disabil= ities 1, 1-5.

Foppoli, J. (2018). Is Grammar Really Important for a Sec= ond Language Learner? - Eslbase.com.

Garrido, C., &= amp; Rosado, C. (2012). Errors in the use of English tenses. Íkala, revista de lenguaje y cultura, 17(3), 285-296= .

Jean, G., & = Simard, D. (2011). Grammar Teaching and Learning in L2: Nece= ssary, but Boring? Foreign Language Annals, 44(3), 467-494. https://= doi.org/10.1111/j.1944-9720.2011.01143.x

Kansızoğlu, H. (2017). The Effect= of Graphic Organizers on Language Teaching and Learning Areas: A Meta-Analysis Study. TED EĞİTİM VE BİLİM, 42(191), 139-164. https://doi.org/10.15390/eb.2017.6777

Kelly, Andrew. (2018). A place for teaching grammar? Analysing challenges in developing grammatical knowledge for ESL and non-traditional students at university. Journal of Language Teaching and Learning. 8. 71-85.

Mammadova, T. (2019). Teaching Grammar to a Grammar-Free Generation (Cambridge Scholar Publi= shing ed.).

Mart, Ç. T. (2013). Teaching grammar in context: Why and how? Theory and Practice in Language Studies, 3(1), 124–129. https://doi.org/10.4304/tpls.3.1.124-129

Nassaji, H. (2015). Qualitative a= nd descriptive research: Data type versus data analysis. Language Teaching Research, 19(2), 129-132. https://doi.org/10.1177/1362168815572747

Paredes, R., <= span class=3DSpellE>Henríquez, E., Zurita, R.= , Pinos, V., Apolinario, O., & Campoverde, M. (2018). New Curriculum in Ecuador. Journal of Chemical Information and Modeling (Vol. 1, p. 75). https://doi.org/1= 0.1017/CBO9781107415324.004

Rahman, M., & Ali, M. (2015b). Problems in Mastering English Tense and Aspect and the Role of the Practitioners. IOSR Journal Of Humanities And Social Science, <= i>20(4), 131-135. https://doi.= org/10.9790/0837-2041131135

Thyer= , B. (2012). Quasi-Experimental Research Designs. Oxford Scholarship, 1-2= 16. https://doi.org/10.1093/acprof:oso/9780195387384.001.0001=

Varade, G. (2017). Make grammar fu= n using graphic organizers. Scholarly Research Journal, 4, 4530-4533.=

Vargas, J., &= ; Zúñiga, R. (2018). Graphic organizers as a teaching strategy for improved comprehension of argumentative texts in English. Actualidades Investigativas = en Educación, = 18(2), 1-22. https://doi.org/10.15517/aie.v18i2.33028

 

 

 

 

 

PARA CITAR EL ARTÍCULO INDEXADO.=

                           

 

Medina Rea, J. M. (2021). Graphic organizers to empower the teaching-learning process= of grammar tenses in higher = education. ConcienciaDigital, 4(3), 54-67. https://doi.org/10.33262/concienciadigital.v4i3.1764

 

 


 

 

 

El artículo que se publica es de exclusiva responsabilidad = de los autores y no necesariamente reflejan el pensamiento de la Revista Ciencia Digital.=

 

El artículo queda en propieda= d de la revista y, por tanto, su publicación parcial y/o total en otro medio tiene que ser= autorizado por el director de la Revista Ciencia Digital.=

 

 

 

 



[1] Pontificia Universidad Católica del Ecuador, Maestría en Pedagogía del Inglés, Ambato, Ecuador, email jazmin.medina@pucesa.edu.ec

------=_NextPart_01D76819.203EB2D0 Content-Location: file:///C:/2223D501/04FormatoCienciaDigita_JazminMarisolMedinaRea_archivos/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml Wul13JournalArticle{85036D1D-B423-4696-A9F8-74A5479186CA}The= effect of polymer surfactant on the rheological properties of nanoemulsion= s.Colloid and Polymer Science 2013 709–716291Wulff-Pérez MiguelMartín-RodriguezAntonioGálvez-RuizMaría J.de Vicente<= b:First>Juan6Zam15J= ournalArticle{FB40766B-903F-463C-A57E-3F34CA9E5021}<= /b:Guid>Composite chitosan/Agarose ferrogels for potential applica= tions in magnetic hyperethermiaGels.201569-801Zamora MoraVa= nessaSoaresPaula I= .P.EcheverriaCoro<= /b:First>Hernández RebecaMijangosCarmen7Bha10JournalArticle{3EC2A2EA-5A35-480A-9A1D-C11383B455BF}S= upermacroprous chitosan-agarose-gelatin cryogels. in vitro characterization= and in vivo assesment for cartilage tissue engineering.Journal of the Royal Society Interface20101-15BhatSmuritaTri= pathiAnujKumarAshok= 8Rui04Report{289ADC54-049A-4459-B615-36603B0D1B08}Desarrollo de un Sistema de liberación de fármacos basado= en nanopartículas magnéticas recubiertas con Polietilénglicol para el t= ratamiento de diferentes enfermedades.2004Universidad Autónoma de Madrid. Departamento de Física Aplicada.MadridRuiz EstradaGladys Amalia<= /b:NameList>9Cor11JournalArticle{2CE82786-F4F8-40AE-B743-82C4554E5E89}Hidrogeles nanoes= tructurados termosensibles sintetizados mediante polimerización en microem= ulsión inversa.Revista Mexicana de Ingeniería Qu= ímica.2011513-520103CortésJ. A.<= b:Last>PuigJ. E.Mo= rales J. A.MendizÃ= ¡balE.10MarcadorDePosic= ión1JournalArticle{819DA773-9= 47B-4BC2-855C-003DB219D8AF}Enhanced spinnability of narbo= n nanotube fibers by surfactant additionFiberes an= d Polymers2014762-766154Song JunyoungKingSoyo ungYoon SoraCho<= /b:Last>DaehwanJeongYoungjin= 11Bos15JournalArticle{8726F6AC-1312-4A0D-94FD-908B65= 1CD5BC}Functionalized microfibers for field-responsive ma= terials and biological applications.2015BossisGeorgesMarinsJéssica A.KuzhirPavel= VolkovaOlgaZubarevAndrey<= /b:NameList>Journal of Intelligent Mat= erial Systems and Structures1-912Lin12Jo= urnalArticle{CABBB6F0-E9CB-4C6D-BB4E-88B488FEA5A4}Microfluidic synthesis of microfibers for magnetic-responsi= ve controlled drug release and cell culture.PLoS O= NE20121-873LinYung-ShengHu= angKeng-ShiangYang= Chih-HuiWangChih-YuYangYuh-ShyrongHsuHsiang-ChenLiaoYu= -JuTsaiChia-Wen13Tar05JournalArticle<= /b:SourceType>{8A89917D-A7C1-4E7C-9FB6-ED9C063087E3}Advances in magnetic nanoparticles for biotechnology applications.Journal of Magnetism and Magnetic Materials200528-34290TartajP.MoralesM. P.González-CarreñoT.Veintemillas-VerdaguerS.= SernaC. J.14= Gar03JournalArticle{9B65BBFA-A814-4A04-9249-A6A47D160DAB}SÃ= ­ntesis y propiedades de ferrofluidos de magnetita2003Superficies y Vacío.28-31161García-CerdaL.A.Rodríguez-FernándezO.S.Betancourt-GalindoR.Saldívar-GuerreroR.Torres-TorresM.A.15Dia11JournalArticle{7FD6F7BB-B6BD-4D3D-AC43-1AF5FDBD6366}A biotechnological perspective on the application of iron oxide magnetic c= olloids modified with polysaccharides.2011DiasA.M.G.C.<= /b:First>HussainA.= MarcosA.SRoqueA.C.A.142–155Bi= otechnology Advances 29 29= 16Lew11Journ= alArticle{69BACEF5-DDAD-42EE-BC36-71ACEA6223A9}Biohybrid carbon nanotube/agarose fibers for neural tissue eng= ineering.2011Advanced Functional = Materials2624-263221LewitusDan Y.BranchJonat= han R.SmithKaren L= .CallegariGerardo<= /b:First>KohnJoachimNeimarkAlexander V.17Est10JournalArticle{AD2B1400-8746-4FD6-8914-4CA8F67548A7}H= idrogeles poliméricos potencialmente aplicables en Agricultura.<= b:Year>2010Revista Iberoamericana de Polímeros76-87122Estrada GuerreroRodolfo F.Lemus Torres<= /b:Last>DafneMendoza Anaya<= /b:Last>DemetrioRodriguez L= ugoVentura18Ald16JournalArticle{D12368F2-04FB-475B-B3= C1-20843943EEEC}Facile synthesis of magnetic agarose micr= ofibers by directed selfassemblyPolymer201661-6493AldanaSam= uelVeredaFernando<= /b:First>Hidalgo-AlvarezRoqu= ede VicenteJuan19Rat17JournalArticle<= /b:SourceType>{0CF0D0DB-FAE2-4A91-840F-9B1CDBAE27A6}Make grammar fun using graphic organizers Schol= arly Research Journal's2017 4531<= /b:Pages>9RatnakarGauri20Li= l09JournalArticle{884C868C-C8F= 1-4FC7-8FCC-71129AFD825E}Using graphic organizers in inte= rcultural2009CiascaiLilianaActa Didactica Napocensia1Edw05JournalArticle{98B12520-AC31-46B1-862= 6-053F546FFA40}E= llisEdwinHowardPam<= b:Title>Graphic Organizers: Power Tools for Teaching Students200521Man= 14JournalArticle{514D32CE-9D15= -49CD-995A-2BD7081087F0}= DahbiManarImplementing Graphic Organisers to Teach Grammar = to Moroccan Second Year Baccalaureate Students: an Action Research Project<= /b:Title>IOSR Journal of Research & Method in Education = 20143722Sal17JournalArt= icle{E59C4F42-C81A-4F2E-8E2D-EB89966501DE}<= b:Title>Graphic organizers as a reading strategy2017Salazar MyrianGaloraN= elly= Revista Publicando23Gha20BookSection= {102778E0-6A91-4A3D-AEF3-86D40CF69738}Second Language Lea= rning and Teaching2020GhanizadehA<= b:Person>Al-HoorieA.HJahedizadehS= 2Var18JournalArticle{C82A42D9-= 5A4E-497E-B44A-5D448BF7C18B}Graphic organizers as a teach= ing strategy for improved comprehension of argumentative texts in EnglishActualidades Investigativas en Educación20186,7VargasJoséZuñigaRandolph24Lau11JournalArticle{= 9AC238BE-5B00-4A89-99C4-AB0C1CAC8817}DelroseLauraInvestigating the use of graphic o= rganizers for writingLSU Digital Commons20114<= b:Tag>TheJournalArticle{C9A940= 42-BEF9-4CE8-9C9E-CC64B2F638C1}The Use of Graphic Organiz= ers to Enhance Thinking Skills in the Learning of Economics25Mer10JournalArticle{4412CD81-24EF-48A7-940F-FEA028FDE8DA= }Using Graphic Organizers as a Tool for the Development o= f Scientific LanguageGist Education and Learning R= esearch Journal2010MercuriSandra26Has17JournalArticle= {05E4EF60-873F-4A4B-AD40-AD1B288536C4}= KansızoÄŸluHasan= The Effect of Graphi= c Organizers on Language Teaching and Learning Areas: A Meta-Analysis Study= Education and Science2017<= /b:Year>3Abd11= JournalArticle{A1489D8F-5D75-4707-89D5= -2C6B0C1BA1B0}Al= -MekhlafiAbduNagar= atnam Ramani= Difficulties in teaching and learning grammar in an efl= contextInternational Journal of Instruction20115 ------=_NextPart_01D76819.203EB2D0 Content-Location: file:///C:/2223D501/04FormatoCienciaDigita_JazminMarisolMedinaRea_archivos/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01D76819.203EB2D0 Content-Location: file:///C:/2223D501/04FormatoCienciaDigita_JazminMarisolMedinaRea_archivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQAC Thl/wwYAAFEaAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZz48bNRS+I/E/WHNP82smP1bN Vskk6UJ326pJi3r0Jk7GXc84mnF2G1WVUHtEQkIUxIFK3DggoFIrcSl/zUIRFIl/gWfPZGInDtuu elih7l4ynu89f37P/p49vnzlfsjQMYkTyqOWU75UchCJRnxMo2nLuT3sFxoOSgSOxpjxiLScBUmc K7sffnAZ74iAhASBfZTs4JYTCDHbKRaTETTj5BKfkQjeTXgcYgGP8bQ4jvEJ+A1ZsVIq1YohppGD IhyC2yHYoDFBNyYTOiLO7tJ9j0EfkUhkw4jFA+mcZDYadnxUlohkkfgsRseYtRzoacxPhuS+cBDD iYAXLaek/pzi7uUi3smMmNhiq9n11V9mlxmMjyqqz3h6mHfqup5ba+f+FYCJTVyv3qv1ark/BcCj EYw05aL79DrNTtfLsBoo/Wnx3a13q2UDr/mvbnBue/LfwCtQ6t/dwPf7PkTRwCtQivc28K5br/iu gVegFF/bwNdL7a5bN/AKFDAaHW2gS16t6i9Hm0MmnO1Z4U3P7dcrmfMVCmZDPrtkFxMeiW1zLcT3 eNwHgAQyLGiExGJGJngE89jHjB7GFO3TaSBkN3iHYO192jRKNppkjygZxXQmWs7HMwwrY+X1n5c/ /vPyOTp99OL00S+njx+fPvo5dWRY7eFoqlu9/v6Lv59+iv56/t3rJ1/Z8YmO//2nz3779Us7EBbR is6rr5/98eLZq28+//OHJxZ4O8aHOnxIQ5Kg6+QE3eIhDExFxWRODuO3sxgGmOoW7Wia4AjLXiz+ eyIw0NcXmGELrkPMCN6JQURswKvzewbhQRDPBbV4vBaEBvCAc9bhsTUK12RfWpiH82hq7zye67hb GB/b+vZxZOS3N5+BelKbSz8gBs2bDEcCT0lEBJLv+BEhltHdpdSI6wEdxTzhE4HuUtTB1BqSIT00 ZtPKaI+GkJeFjSDk24jNwR3U4cw26i45NpGwKjCzkB8SZoTxKp4LHNpcDnHI9IDvYxHYSA4W8UjH 9RIBmZ4SxlFvTJLEZnMjhvFqSb8GAmJP+wFbhCYyFvTI5nMfc64ju/zID3A4s2EHNAp07EfJEUxR jG5yYYMfcHOFyGfIA462pvsOJUa6z1aD26CdOqXVBJFv5rEll1cJN+bvYMEmmCipAWk3FDuk0Zny nfbw7oQbpPLVt08tvC+qZLdjal0ze2tCvQ23Ls8+j8f04qtzF8+jmwQWxGaJei/O78XZ+d+L87b1 /O4leaXCINByM5hut9XmO9y6955QxgZiwch+orbfCdSecR8apZ06eZL8LDYL4KdcydCBgZvGWNmg mItPqAgGAZ7B1r3sSCfTJHM9TdCMJ3BkVM1W3xLP5uEBH6dHznJZHi9T8UiwWLWXvLwdjgsiRdfq q2NU7l6xnarj7pKAtH0bElpnJomqhUR92SiDpA7XEDQLCTWyd8KiaWHRkO6XqdpgAdTyrMDmCMGW quV4LpiAEZyZMCNjmac01cvsqmS+y0xvC6YxA0rwZSObAatMNyXXrcOTo0un2htk2iChTTeThIqM qmFJgOGrivogkqUwWxAbUV7ReNtcN1cpNejJUGSx0GjUG/8VjPPmGuzWtYFFulKwCJ20nFrVgykz wrOWM4GjO/wMZzB3ErmpxWwKX8BGIk4X/HmUZRYnoouTIA24Ep1UDUIqSIwYDVuOHH4+G1ikNERx K1dAEC4suSbIykUjB0k3k0wmEzISetq1Fhnp9BEUPl0F1rfK/PxgacnnkO5BMD5Bh2we38Iwxbx6 WQZwTBP4vlNOozmm8EkyF7LV/FsrTJns6t8E1RxK2zGbBTirKLqYp3Al5Tkd9ZTHQHvKxgwB1UKS FcLDqSywelCNappXjZTD1qp7tpGMnCaaq5ppqIqsmnYxNXpYloG1WJ6vyGusliGGcqlX+FS61yW3 udS6tX1CXiUg4Hn8LFX3DQqCRm3VmUFNMt6UYanZWatZO5YDPIPamxQJTfVrS7drcctrhLU7aDxX 5Qe79VkLTZPlvlJFWt1e6NcL/PAeiEcXPuTOmUhUKuHyIMawIRqoapnKBiyR+yJbGvALzWPach6U vLbrVzy/UGp4vYJbdUuFhteuFtqeVy33vHKp26k8hMIigrDspTcnffjYxBbZ/Ylq37hDCZff0y6N eFjk6m6kqIirO5RyxbhDSe9D0FBekTiIgug8qFX6zWqzUys0q+1+we12GoWmX+sUujW/3u13fa/R 7D900LECu+2q79Z6jUKt7PsFt1aS9BvNQt2tVNpuvd3oue2H2TYGRp7KRxYLCK/itfsvAAAA//8D AFBLAwQUAAYACAAAACEADdGQn7YAAAAbAQAAJwAAAHRoZW1lL3RoZW1lL19yZWxzL3RoZW1lTWFu YWdlci54bWwucmVsc4SPTQrCMBSE94J3CG9v07oQkSbdiNCt1AOE5DUNNj8kUeztDa4sCC6HYb6Z abuXnckTYzLeMWiqGgg66ZVxmsFtuOyOQFIWTonZO2SwYIKObzftFWeRSyhNJiRSKC4xmHIOJ0qT nNCKVPmArjijj1bkIqOmQci70Ej3dX2g8ZsBfMUkvWIQe9UAGZZQmv+z/TgaiWcvHxZd/lFBc9mF BSiixszgI5uqTATKW7q6xN8AAAD//wMAUEsBAi0AFAAGAAgAAAAhAOneD7//AAAAHAIAABMAAAAA AAAAAAAAAAAAAAAAAFtDb250ZW50X1R5cGVzXS54bWxQSwECLQAUAAYACAAAACEApdan58AAAAA2 AQAACwAAAAAAAAAAAAAAAAAwAQAAX3JlbHMvLnJlbHNQSwECLQAUAAYACAAAACEAa3mWFoMAAACK AAAAHAAAAAAAAAAAAAAAAAAZAgAAdGhlbWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbFBLAQItABQA BgAIAAAAIQACThl/wwYAAFEaAAAWAAAAAAAAAAAAAAAAANYCAAB0aGVtZS90aGVtZS90aGVtZTEu eG1sUEsBAi0AFAAGAAgAAAAhAA3RkJ+2AAAAGwEAACcAAAAAAAAAAAAAAAAAzQkAAHRoZW1lL3Ro ZW1lL19yZWxzL3RoZW1lTWFuYWdlci54bWwucmVsc1BLBQYAAAAABQAFAF0BAADICgAAAAA= ------=_NextPart_01D76819.203EB2D0 Content-Location: file:///C:/2223D501/04FormatoCienciaDigita_JazminMarisolMedinaRea_archivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01D76819.203EB2D0 Content-Location: file:///C:/2223D501/04FormatoCienciaDigita_JazminMarisolMedinaRea_archivos/image001.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAHgAAAAqCAYAAAEPJa+4AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAFxEAABcRAcom8z8AABbISURBVGhD7ZsFlBXH0oA3CSS4S4AQXIIHWByC BXd4uDtBggRJcJfFLbi7w7LALvaQuLufuAtxT/qfr+bWbN/ZWYGf985LTuqcunemu9q7y7om4vXX Xzdp06W9Jozg5+T5U0Zhzea15mDModCbMfuO7Zf/p556ypz6d6zJnz+/eeONN0xERIRbeOXKleau u+6SBKBSlcomJiZGno+fiTE5cuQwmTNn9vIVpHCmTJnMli1bzKlTp8zjjz8uraVKlUqIeea/VKlS 8rw/+oCZPHmyORJ7jPQIE3fpjBDceOON5tCJw/Lcrl0707FjR3m+8847zf333y/PPkyQkHLUmbsW jNAxATfffLOMq1atWl7tZcuXMz/99JM5f/68jFdByp389ymZ+j179gjxjPkzJVMrXLFihSldurTp 0aOHad2+tXnttdck74SzvBH2mgJH46LN5t1bzAMPPCCTt/foPjNgwADTq18vb+bB0HOEqVGrhunf v7+XATZo0MB7rlmzpvfcp08f79lB7+HqkVmjCyAT0qVnV5MuXTpTo3ZNE33muJcHRp8+7hWs36iB DEnzxj4w1stjHjX9yKmjXnrlqpFeGa9hMoKAdOa0Wctm8r5+/XqP9vPPP3d26VFZCNLmzp0r6QDv g4cP8Z7t/5izJ9yGY86dMG+99ZYpWLCgZPihd//ezihizTvvvCPvdkV2p/nX59UbHzTHz8aYs2fP mkuXLiUsky59OpmaAgULmO+//14ybYCQCqC5nujU6/YS7De4vzlw/KA55mxP1nvDtg1enuLChQsT pIEjR470zsYNN9zgpcMfvvrqKxkE7EvTI9hIejT/W1i5cqSJ4MAx5+BRh53lvjW3yZI1q1m5fpWX rjh01DCvxzBgTaecpteuWztst0+YEs/12Eukbdm9Nb7hDBkzCONWuHLlihBrJYWKFJL01q1by//h w4edtYqVpYHFAEw1QDnK1KpTS95/+OEH+X/22Wdlfb2G125Zay5evCiZfmAGqGT8+PHyTqVFihSR Z9ava89uZtCgQZKuAKM8djraNG3a1HzxxRfmjz/+MF27dpU86LyGtRD/YPbs2U3ZsmW9NDba7t27 5R3p07NnT3kmr/Zdtb3nkiVLyj+AzJw6daq3seLi4uSf/AQNlyhRQv71HeCZEWsaMlIBxkwDzz// vPn44489GhUZ+s5/ixYt5Dlq+cL4hrPnyC6JnOOPPvpInvft2yf/2jBrzfPgwYNN0aJFhSuRDu48 uEvyJk2aJP+HTx4JK9O7d2+ZwX916Sjp0vDpy2eEJULgB6buaNyxsIN/TejMiv3OhnTac9f1xLmT 8l++fHlTv359eabHiC6ladu2rfds40033eQ9582bNyxPxVzVqlXD0h2Mf4m9ECfTBOOHTbJr7XzW cdmyZTIbdnratGnNe++9J+nwezuPtY2MjDSrV68OS3cw7OW/h6lvTi1njk2WGMKZ0PygY0aCaBLD E+dPmjMPnTWnL5+VGT10MpjORpbdLXPGxF50VyGIzkZErZaJu3g6sMzuw44sgWfzoicDhKXWrBOv 7rBs7KvatWuHzRZ8xWbLimzijJkyimrMtrABBZayeuIU6fCteW41GTJk8LaLQq9evaTMAV97KEgF ChUQnvbmm2+GqF0YOnSolNlxYKdXRk6xPWBOc9HiRYUQDpscFC9eXGhZfe2EshIbGIAtfoBKlSoJ l6dM6FSLavz111+bKVOmyHvu3LnD6oLzN2/dQsocc7iLnVehQgV5V0QbBmDuNR3tcV+0b8AMNlfu XHIgbTh58qT55ptvQm/GPP300+by5cuhN2POnTsnDUQ7g6bjRYoWESVLAftGO0GnbCCNLV+hYgVz 9OhRSYO3Kj3IoG0gDVncsHFDs2rVKkl76aWXJP3PP/+Ud0xC3hV4RnkIG7Com04GxABCoFixYvKs YFdiA+loocw82obKaoUgi2/nzp2mYOGCMkmzomabnDlzhnLc+rAiAQbx3XffmerVq0t6jpw5ZHGW r1lh0qVNJzS///675E2fPl00ZZ4LFXKVlueee86kSZNGjlDYgBEYEG7YsEEIH330UXnXM0cHb7nl FjkvjRs3ljQFnqfOnioD5rxs3LFR0tgNwPLly01UVJQ8A+Q1bdFUeABlwO37dkj6xUvBShAyCL7C BGkZylPm+PHjIapwyJgxo2M1lvWObIIzvHLdSqngmWeeCRVJHqDPkiWLV4eNcNsVTp0dOnUwrdq1 NtPmTJeJ3Xc0nM5GdtqDm9aYDp3/ZVq2bWmmzJoq9QTRKsJD1m5Z5/CErk6ZVmbyzClyVPx0MmA6 rLj70B4hRLvnfdOmTaFhhQNbjG0CzSpH8Yar2/X8j2PCxBhm1OFqrFprZ2UQFaSnSp3KlC5b2ixa sVg0E2beFl9+5FigIi9atMi8//77plGjRmb48OGBtKAyTJ5hlpzf1KlTx7uJApD86Oho4TeVK1c2 S5Ys8epIBAMTPcxfIL/p0qOLGTdxnBl4zyBTpVqVQLogBGAiM2bM8N79NDayszBCu3XrJtwfLRnx 8vPPPwfSgwwYgDl17tzZTJw4UfgM4i2IPoJZ4Rz/3ZHJFHG15/Be2bqJIewcFw+MASU7iCYxxM1z +tIZUfdQ+6gniM5GysRdOu2Vod0gOhvpY1gZ57j5aWgbNToCzuXnZiCMKGpZlKlYuaLJlDmTwTGT 77Z84huxNasgRDTRiWLFi4VtJ+pYsmppmGixy+BvKVWmVFgZRCH9QPYGlaEv5e8sH1aGLT1z3sww 9ZVBs9IJBkwlW/du8wpjMmG3tWnTxuTLl89Lb9WulcyaXVbLz1k0V2jmz58v50vhkUcekXRcI3TA LoMrjDyUBxvwWJAO72D17TIbtrvyfty4cSFqF15++WVJL3FHCZlE6AMHTCXY6BBnzZrV/PLLL6Eq wmHWrFlCg0fEv9qqF3/77bchapdR2V4VlIiBQwd6ZdRP9MEHH4QojKivhw4dMj/++KO8w8E7d+/s lVFRCFNUeOWVV8L6jPbWpHkToQ8c8EEnkUqqVKkSKpI44MiEtmr1qp7GRKXZsmczW7duDVG50K9f v9BTPFD25AXXP5X/9vzi/sNo1jwQq17FDEAaOjHtsfVHjRol6Rg6WgYsXLiwpAO8MzkJBgxD4ryw hVMKOGSocO8R1/xCqefdBu2EPx3ZjtKiKi1bl10VRKuQL28+5zwvFPNTaZDV6OoVK1aUd4A8de5h sEyaMSnhgPcc2SuE9hbhjsi2jABudtRHBlAGxqYr7O8s74o2NGzYUGS7OvkBtXJs/PLLLyUPYKcM uGegKEZaBsAdp/4+ALdanTp15Hn06NGmY9eOCQfcb3C/sErQkHgvU6aM/Ou2oSL+dftxqcI7Z9nu vILaqWxPNd8A/D7T5swI6/yJE+65RJm444475GqMd87vww8/bJo1a2ZGjh3p7QqFF154QTQ5BfI6 dOggz927dzf9hwxIOOBqNavLlgY4+HaFAI3TCT+g1kHLNlNG8uuvv4Zyjfn0008lDaPeBtIOnjgk Xgue0YwA9UHaXo/NmzdLGrjr0G5xLXL03n33XclHeeKdHaLllWnCGzbt2hw8YNVl8S1TyAa2Tbly 5UJv8cBtJ7QMmHqYTVw7CjhgyefyUmHOnDniAlI5OXr8aNGEFJo3by5lQMQhcODAAVEc4OiUmTZ3 unB7hRo1XDcniwY/AI4cOSIDVoUnbMB9BrjXdAoIb7bW3XffLenKldU+Vu45bJh7JYF2Qz04+nLm yun51PE6ox8rL2Cw0LMboAcZBEpNYldca9askTIqU0GcgRgyHL0gwH6nDAMVev+A2SoQqEscwGLZ v9+95AaQibhsbHnJVqJh25jHpmXHUB9nHuOhU6dO8s71ClYWMl/pQbZ2vYb1hIbVogw3FryrZ9Vf hq3donULoWFbc2w4s7zTLxQVLZNgwMxyamdV4XApBWUyeAbtjoBMAHWOmXCfON76Duxrtu/fIeLP T6tIGbYfV7CU4YZ5y56tYSsbhDBMXEst2rQwPfr0NJt2bpYJsmm8ASP44XrMFhkMAFUyOdAtjgtF 6whEvXfQ/5TgtZRRTKQMhgW6vNNnlzngHIOJzF7onjG/t9AG7qGhQXXj7C5YGiXvfxGMf+nRt6ds q8274l2rcD3kH7EHiCVNb9aquWw/9Xb6ES9jly5dxPupXBdNinc/rSL3MvyrrEcqJOUhUZw5c6ZJ nz69PDdp0iRBvg/DE7r16i7bG9/WDMfEKl6yhLB/2HvWbFlFgWegcjai3SMQhHgs+Qf4R3HQ58QQ 5WH79u0So4No4zlXrlzCOIPoQRWhMFj+YaxMtE3jw4SJmbNklnsYDj7nE+YD4+DgY5eiwLdq2ypB ORsRQ3BaFAjekYl2tEoQcom9dOlSkaOsNpfepFerVi0BrSLik4n57bffxJfdt2/f5CY2MNHDuvXr mqH3DhXO2aFzB5MrdP2RHKKHY65p46iiuHP9dDYqrf2PmPTfadnIyhKp9Nlnnwk9ugN2t3pVAzAw 8e+LhKB179NdtjAyD7n8l8W/ev+vBzpzgJ+yW+/uEl4YkSZdGslQlTOlqEoRMh1+xgZBweHGA6Qh 6BDT0IjO7zB1fz1Xi2iKouc4+gX8c+GKReYeh8VwX9CkhXubyi3sxOmTpD9osX6lK6XIGBFWqCdL Vi81I8aMMG3at5FrseaOVO7UrZMoeOu3rRfp7Amvq0Rpx+knwpGbqVHjRpk2Hdx2CM9r37G9sFBu oFAqmVPKBNUFspasaZq0DhtDu0zJAjOxEvrhNDBpxmSJ5AxkCYkgvJOgxgVLF8iC057fFEgKoWVR 8W2WcZRZrTdbtmyi1hAIu3jxYrNgwQJxSXDdrjRoET369JAFYLGSapc87Dg2R6R1x5IhfQa5KBo7 dqxcHNHOkCFDEsTMtOvYTtqwzZYgJA9zCSukVt14GYSaRzzOfffdJ+MBR4wYIaqYHfTXqFljqSfI pNIFFsshuQWmMAuyaOViCcDQBkD0Pi59udTh8scPGMJPPvmkBIoVKFAgrGzJUiXFqcxkJjcRbKpV G1Z7N3poL/6ADhxfSxwDHfPND2vXrhXthLL1764vp23/8fATQDtwoo07NnuKBlFbjC2lgNdQ9dsq 1asK1wq6PTh86ojY4gULufFOOAEeeuihUC3JQ2xsrBgxlC1esrjZf+yAOAe0/hQtMANmh3FiUDOp DMQhh1f/WgF9Gp+x1oc/etfB3WE3CjaeuhBrevd3PTHo1B9++GGopnDARat1osIGAZuRfBwQGEfq XgLhDsNHu0YKixQ0RvxquLm0HUUNy1TAJ086XIuNqWY3yIZ+YNpEycfvoPaFAhv13nvvlUXHgQEN xhaeV3yDNuA91j7MXTRP1os2UrTATCwyRivgBPrDrf4/8Oqrrwp71fpHjh0lk2z3Ae8tbmvyiY7C NvADLnRYMuwSKxJ2hhXLqQ0CdXMVcE4PDlPkORxi5nz35ogJZWK1X2xGbBF9v/322yWgFwcrTtEn nnjCfPLJJ6Ha4+HMGff7Ci5hOK2cZBZ66YPLhNWyiWwvGaAxuiAhNLjZaQtXvKYjeuybJKJcqQ/W vnHHJtm0yS4wi4ss0UqZwP8UqD8URInRRUaJQL5UinRlqX2nYIPtrbaRONXEAPc/NITXsLhsJGKR SeNDDwWiW+w6QewvDFX6DRLhmxhonJNcGzjjQtQRokMaRrMCG5cbMm0DLqF2n8Lp06e9fFyUNqjL Euc4H6QkucAc8zkLXWcVqDHONmDk+q14draGxAG4OuzPa0DuWQjWsoFoMg3uTp8hvbBO+sLJ4r9I MdcXZIf12aAff/jRH01nAxda0IyfNF60V5QvwgBJ01BAAA8lyo5dbxAyrgkTJiTQC/TkcRHGDSNt ETpImj8GE4ATJBalz3UK3IWy+K9t0M3B5RlemSQXmF3WqGkjKQDyQYoNGgMJG8OlArBIBG/Cyt5+ +20zZswYoYF17NixQ2j4BICvbqDh0ssGBqvtDR05THah25dYcRKSjvaaGCCbNKwRRKlLDPgCCGWN /nNNi2XAmLv3ck8BfVSgz8SXEkJJHhOsShf3Zpw8PDHz5s0L0ytATjf+OJ652oUb0Q4mHWlo5DYQ BKhl/XkAEU2av27dulCqC3Ar0rFujjsKZKILDFvExqpaw/WVMWm2nGByCFskz753tgH5QDwnNJyU lABaIfRgd8dAZyJYYOQWQYG4ysnjtAYBk2wvsH1f5wc1n7CV2UC0o9wCuUwe3l4bWGRxGoTqpy3u KFhEFt9PT2iZ3jJjl+vXP8wv3KJcBdfEJJTbBlxw3GNqO2j+qv2DtOvXtpU9Ey6j13TJnmBlIyCN 2qDfWWBb2toqMoWvivBPDhw40KOxWR40rVq1kkBEG1CItL0hI+7xTrBMfowz+Y7igFlFPgvkl09s Qi0PwkH8ALfRfE6RTrqiTn5kVdf2RXOFG/mBxSPGD0WOBUIs2bESjBftmTrw7PvbAZHHDRu7ugen XC91bUDEMb/4Ygm49AMLrb5fwnV1s4JJLjBKx4y5bkAkqPECNjAIZVuKaMS2fKVjyEGbhg75A7YA PR0oMOu3bQgzX0BMNmzXletWmTx58wgtO52PWDWK3Q/Y5QRP6zfKIF4hNFm0Z7t+ux3Gv2HHRvkc kjKIGTTzF198MVRzOMCm0Zjtm/s69erIGEDqDGoHmxvtukw5N44ERPxpYLkfEBeYVPqVM0hADR5E 7G27nSQXGGTXtWzjansgisZ/CthA2s6gYYM89hyEDILBoAhOmHx/gjBDP7LpcC2u27pednhS7j0b aQdnBJuKoPSKkRXNTanivwTzIyEbjZs1ETcjcwfLD1pYP0LDvHOisWP5Ik0VqSBM55hWcNfFq5bI eBBhQe0ku8AgHW3bIf6zNwJ3NLjmegAaqv3J3MChg8Q8s/uQHLJgLDiyh7JMFP1mk3AS/WO6VqQd HDFeO079LsaKznK92gGlHWdj6TjsdvycLTEMW2DkRbuO7UXp4LYXVXt21GyRR5wUPh9WFyGIeWTL nKuFxx57LIy9E5KKaQTLgn1iM9IH+vIPXhuylqxpSBdwJ9qPxAyxW/HZspuII+ZTNZtGvxP1238K yCdMIuKL/TK7cNEicuvEbmVnckr4BNym+QevCwYmesg32HyOilzR26SxE8dJrEcQfWKIshJZNdKR NXM9b4sr52IkaDuoTGKomj3hE7gLietAmULpAtRTdfDgQXn3K3spQUIfiQ+hfnXso2jpF3pYCgAa PaEZmFI4IOw6UorY7SiFuB0xM1EctU2CeYErV66EcdKrwMDEBMhV38adm+R7ZQLlOXEsNjKCE0je sjXL5aRzR4sTYdvebSIjkSEY+iLLnHfqWLAsyhQpFn6qU4p4ewjRxokSFxcni8DNFnl8YQuw6PiJ 2Vj+8ilBtHQ8SxcuXJD66tatK859Ng0uSMC2jbWM/Z5S5BYMgBNyPaiePepjYVFy+fqBcfvLpgAD E5NE5CafPvIBHouGC06VHBQRkIWHtaMc7Dq0Rz6iadyssbgjg+q8GsSUIAhK3/G2cYL0nfhcxEMS cTvJIpPLCeaeGUe+xuFzWXHbbbfJ87Jly4QWWQc3IZrMX09yiKLJwmqorQZaT5s2TTxW9AGdR21h PHr+OpLBwMT/acQ/jm3KNR1Yr54bY6wIq+QSgIWx068G8SD179/fY/cgzo2WLePNxwYNG4ibEk+W RsxdC9IWrl4CCagLt2eePHnMyJEjw27c8B7id86UKVNY+STRNlX+wb8X5s2b1/wfwqTu9MTyProA AAAASUVORK5CYIJ= ------=_NextPart_01D76819.203EB2D0 Content-Location: file:///C:/2223D501/04FormatoCienciaDigita_JazminMarisolMedinaRea_archivos/image002.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAArkAAAFxCAMAAABA00DCAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAGMUExURdnZ2dra2tra2tnZ2VlZWVxcXF5eXmBgYGNjY2RkZGhoaGlpaWtra2xsbG5u bnNzc3Z2dnh4eHl5eXp6en5+foGBgYKCgoODg4WFhYaGhoeHh4iIiImJiYqKiouLi4yMjI2NjY6O jo+Pj5CQkJGRkZKSkpOTk5SUlJaWlpeXl5iYmJmZmZqampubm52dnZ6enp+fn6CgoKGhoaKioqOj o6Wlpaampqenp6mpqaqqqqurq6ysrK6urrGxsbKysrOzs7W1tba2tre3t7i4uLm5ubq6uru7u7y8 vL29vb6+vr+/v8DAwMHBwcLCwsPDw8TExMXFxcbGxsfHx8jIyMnJycrKysvLy8zMzM3Nzc7Ozs/P z9DQ0NXV1dbW1tfX19jY2NnZ2dra2tvb29zc3N3d3d/f3+Dg4OLi4uPj4+Xl5ebm5ufn5+jo6Onp 6erq6uvr6+zs7O3t7e7u7u/v7/Dw8PHx8fLy8vPz8/T09PX19fb29vf39/j4+Pn5+fr6+vv7+/z8 /P39/f7+/v///zfvH/MAAAAEdFJOU4efx9+nhZkZAAAACXBIWXMAABcRAAAXEQHKJvM/AAAcR0lE QVR4Xu2cj38VVXqHbRtZKFWKa5cKkgQBq0GxK7S4Zt2uXcxasK3YLq2SZVErbVTAhU1IQhKS3H+8 c875zp0zc+e9L/ecM9c5ed/n85HMnbxz5jtnnsyc+XF97rk7ipIff6biKnlSmDtQlNxQc5U8UXOV PFFzlTxRc5U8UXOVPFFzlTxRc5U8UXOVPFFzlTxRc5U8UXOVPFFzlTxRc5U8UXOVSHY2dzE1VdRc JY7dpVevrm7hwxRRc5U4dn/zs7kz79zbxMepoeYqcewsLa3dnjs39/vNfcyZDmquEsfO0id7gyd3 z5+d+8/1PcybBmquEsfO0vWd4sfWw1/Mv/7QzZoKaq4Sx87Va8bcweDp6r/9yU5MBzVXiePptU+f YnJvmiNdNVeJY3+nFHe6qLlKNFubG2vrm9v4NCXUXCWSvQdvvHL67Jm/fef+NG8tSDR35dbS8iNM k6wsL29g0nG38bmN2kJfLq9gytJs75kYSQGWr3+4/CWmSZZvLtYjdMPe5/OnT/529fbp2bNf6Dg3 AS/P1DiK2R+ewIx57NTWup0XzfR5O+04Xny+iWmC+kLnaw08OlQ2vWiKwK36nGMX3YyS0RSG++ft 7IL5ZcwabXPw6FKxxoIXP3Sfu2Pz/Y/Wn+wOBk/Wb1xaxbxpcGDNLXdviZ356BQ+FRz6wM5qrbvh pr0jsym7jmmC+kLGpkPDA+aHxacTdspfn2vQn7PgbjA5RlMUfOCMdCy6eaNt3j+MjzMz7LE5krWL X2Hq2ws/YGoaHFhzj2HHgUNm3nK1Pw3zVN1g3n1wbluewdz6Qitm+oabHgzMkX7JTvmWuYO4P2fm op3lGE0xeFQ/RRx3c0fa3DGnCFAemLtic/Hq2pNimLC5fuPnesxNQDFEXF62R60bZuqumWf35/zS 3ZWbl8yUdamtbgPHtZfNBwdvbnMh8ydRnuk3zC/csdM0dMWsqcAdYMs5C6ZophqZtqQY2JpDl27c fbR8c+HwzItu7kibN02ZiXtrvvNj7v5XZ+de/d3q8qunZq9P8/7Ywb5Cu2/24H18GFw3ny656ZtG i3Lw26izhVfqs3hzmwuZ4cJhnPzN79xgoaWh4Rybb3iYbkuxbD4eL+XeWLziJkbaNIvZM0rxl+mP Pzph/0/vvTJ/9szJuTtTvbEryNydo9X+dDu3vJxpmmtGw/a8jHFkAW9ucyE7XMAKzOWaGyyMM3fH /DVVqxxNsWOO40dHVRxp0yzavLLrkJ3N9fWNJ0/waUoIMveW+TC8erdilRfedXPNjYATgw+KWccw 5xnMHV3IaOaGrVZJXGiNMXdg/rSG9wJaUtgtaEkx0ubFYsahrocJI2xN9csRgsxdKqaH4wM36MXQ oWGuKVxy8+yw18CaO7qQGS649RnjMFgYZ+6XxUR1QdWSwtyhwNC2xkibpnDm0GLAHeQItn958urq 9O7oCjLXjA+8qx1zRi3HDnVzzY2A4ghpTtQYSD6DuaML2aO6FdEcAjFYsA0dO2GYh1hl0zfNIRd3 CwpaUph2hsMdj5E27cCoGGZfwoF+Otx89bU3f5iauoLMNTeZvP1uLtNLT2p1j4ppc4Q0J+rhEY4z t20hM1yw0hmPSodMQwCHV2/OzNHhQb6twaHF5SILdnZLm7fM+KTg0JXOL9BKdvd3n2ysfDO1J8CC zDUHMexqA2muccUcIe3McrDImdu2kBkuGOnMKKAcLIw199BCdYxsa9BU2mN3eV8arY62Obhbzjsx rSHD7//P/Du9Fx2FmTsUyF3vt44WzJHNGmQmyicDRoRx5rYtZIcLK26YMlzWNDS/aMHhsPLuaOld QVuDZtIOzcsHDZ659TYLruMZi/9soxOerK8VPPz10qN1fW8hFSPmVsNI+7HtCs1MH7M39c1Rubyk Y8xtX8i4s2h/VM+BRxsyc64sW9EODQcLrQ2aP7ZTbpK5R2y56QQvt78j1i+c/btz586dfeXkubf0 OxGpqJlrrm/KRwO4iCkvm/w6c5r2wG00xtz2hcxw4bhtfOgbYW4xx75fM/zLam3QzBxuAW/uYMeo zr0oFMva2x9/93hz/dGHH+kxNx01c81tpmo32gek5dnZr8NJtsS7CBpjbvtCdrhw3/hWLUqa6xKV +VobtBXlDd9nMNc9QO74bbH9lbfeuLM1GHz8yVRfz5VkrvWoPPjt1MYOXp2t8sAxbry5xELWP/Ne ZTVYGGOuHb0iX3uD9jxxCNvzLOYOjLkdH3MHg83ls69/u/7xJ8Pz2VQQZK4d2eI9wg07PdynXp05 w5cXNfY1AVc03lxiITdcKP6rBgvjzLXPD9xIl2jQPkQ77BYfZ+6LuFIzNTNTuLnw+LPXL75/bbrf R5NkrlVg5tj5xcVT9rZSdbnm1RkLhpf45hjnnv+b2e5m/4nhA+QKYqHhodPTypTiPsBitUZbYM/t 7qKRatAOXGeOF5uwYIo9c/02i805dH5x+aa5uKu9atYZ+6v//Non0/0f40ky1x3UhrxcvVBY1Zl7 r9VlnH3+bz8ZOcDobSZqoXK46g0W/IbwKs3QXHuL2daSDW6YJ38Vnrklpk37UiU4XG1+pzzdHOad DqLMHayYO6IOfCXCUdWZe6/V44rqRF3eQS0YNZdayJ31a4MFv6ERc+2LC+aCim5wcN1/Ox5vkY20 6Q7Nhhen/t7NtPDNzUHhyTLuzJ84cao2zltaOFGcZo/PL1YH3IKq7oNiODC8qToYFPPd6OCWHShY RkcL9YXu/E1V9OiUWcJ7wOA3hPlXiiksvVBMmjt1VArDxgfn7SD96KkPym0YbXP5vBliHD5RG/1W dLOn97cS3l1gIx5sc38UxEZ88G7C76GxEdXc5AiLuL+58dg8/l1b+/qNhGNqNqKamxxhETcuzp1z vDanx1waYVp0RMqIe59dWHm8bvifhQeYlwA2opqbHGkRV9/5bzfx/ZtqLo00LbohbcQ776/Zn9+9 +0f7MwlsRDU3OfIibrl3xPSu2DjkadEFByGimpscjZgCNqKamxyNmAI2opqbHI2YAjaimpscjZgC NqKamxyNmAI2opqbHI2YAjaimpscjZgCNqKamxyNmAI2opqbHI2YAjaimpscjZgCNqKamxwhEf9h LCgKh42o5iZHSEQoSoCicNiIam5yhESEogQoCoeNqOYmR0hEKEqAonDYiGpucoREhKIEKAqHjajm JkdIRChKgKJw2IhqbnKERISiBCgKh42o5iZHSEQoSoCicNiIam5yhESEogQoCoeNqOYmR0hEKEqA onDYiGpucoREhKIEKAqHjajmJkdIRChKgKJw2IhqbnKERISiBCgKh42o5iZHSEQoSoCicNiIam5y hESEogQoCoeNqOYmR0hEKEqAonDYiGpucoREhKIEKAqHjajmJkdIRChKgKJw2IhqbnKERISiBCgK h42o5iZHSEQoSoCicNiIam5yhESEogQoCoeNqOYmR0hEKEqAonDYiGpucoREhKIEKAqHjajmJkdI RChKgKJw2IhqbnKERISiBCgKh42o5iZHSEQoSoCicNiIam5yhESEogQoCoeNqOYmR0hEKEqAonDY iGpucoREhKIEKAqHjajmJkdIRChKgKJw2IhqbnKERISiBCgKh42o5iZHSEQoSoCicNiIam5yhESE ogQoCoeNqOYmR0hEKEqAonDYiGpucoREhKIEKAqHjajmJkdIRChKgKJw2IhqbnKERISiBCgKh42o 5iZHSEQoSoCicNiIam5yhESEogQoCoeNqOYmR0hEKEqAonDYiGpucoREhKIEKAqHjajmJkdIRChK gKJw2IhqbnKERISiBCgKh42o5iZHSEQoSoCicNiIam5yhESEogQoCoeNqOYmR0hEKEqAonDYiGpu coREhKIEKAqHjajmJkdIRChKgKJw2IhqbnKERISiBCgKh42o5iZHSEQoSoCicNiIam5yhESEogQo CoeNqOYmR0hEKEqAonDYiGpucoREhKIEKAqHjajmJkdIRChKgKJw2IhqbnKERISiBCgKh42o5iZH SEQoSoCicNiIam5yhESEogQoCoeNqOYmR0hEKEqAonDYiGpucoREhKIEKAqHjajmJkdIRChKgKJw 2IhqbnKERISiBCgKh42o5iZHSEQoSoCicNiIam5yhESEogQoCoeNqOYmR0hEKEqAonDYiGpucoRE hKIEKAqHjajmJkdIRChKgKJw2IhqbnKERISiBCgKh42o5iZHSEQoSoCicNiIam5yhESEogQoCoeN qOYmR0hEKEqAonDYiGru4Onm5i4mkyAkIhQlQFE4bETZ5m5tbu4/vXp69rfbmJECIRGhKAGKwmEj ijZ3dWF+9r/+cPbXv5r7l6eYlQAhEaEoAYrCYSNKNvfp1ZP/9I9zb3++s/vZz1cxLwFCIkJRAhSF w0aUbO7jC797uv3vZx4MBt9eKP5JhZCIUJQAReGwESWbu/b214PByptGi7d6am6PI0JRAhSFw0aU bO7m4kfbg3vv/nGw9x99HS30OCIUJUBROGxEyebu33nr4WB/a2/w5FfXe3qF1uOIUJQAReGwESWb O9jb3HMT2/vuZxKERISiBCgKh40o2tyKnYReCIkIRQlQFA4bUba5OxsbT8zP74qRZDKERISiBCgK h40o2tyNX5yef21lp7hwX+jpvYUeR4SiBCgKh40o2dynS69e+dfTZxY3+3tXrMcRoSgBisJhI0o2 9/GFz7b2nnzz+t8//L6v5vY4IhQlQFE4bETJ5q4tfGF+/PDGuS/6am6PI0JRAhSFw0aUbK69zV+w +t4rp3p6hdbjiFCUAEXhsBElm7v/h7ce2onHV867iSQIiQhFCVAUDhtRsrnVbf7d4uI9GUIiQlEC FIXDRpyCuebhZTI6ybi/s6MRJwWKEqAoHDbiFMx9cKm3t/nB9i9PfvQY0/EIiQhFCVAUDhuxM3P3 NzfXHV+/cR/zEtCJFns3T55Z+CHV01UhEaEoAYrCYSN2Zu7GO3PnHK/N/YB5CehEi8H+k42Vb1Kd jYVEhKIEKAqHjdiZuXs3FlYerxm+7u2jVcfTTXsVtNvjY24fI0JRAhSFw0bsbpy79s7nbuL7/pqr 3/0NB4oSoCgcNmKHV2h3frFmf/b3RSz97m8EUJQAReGwETs0d4C7Yb29K6bf/Y0BihKgKBw2Ypfm dkHKjPrd3xigKAGKwmEjTsHc3h5z9bu/MUBRAhSFw0acgrm9fRKh3/2NAYoSoCgcNmJn5mbwJEK/ +xsDFCVAUThsxM7MzeFJRPXF2pT/p0QhEaEoAYrCYSN2Zm4+TyJSIyQiFCVAUThsxO7GuTk8iSjp /+ts/YsIRQlQFA4bscMrtP4/iRjS/9fZ+hcRihKgKBw2Yofmlk8iBgkvLZJmzOEisr8RoSgBisJh I3ZpLtje7umpOIOLyB5HhKIEKAqHjdi9uf19bTuDi8geR4SiBCgKh43Yvbk9fm07g4vI/kaEogQo CoeNOIXRQo9f287gIrK3EaEoAYrCYSN2bW7PX9vGRWSf74r1NSIUJUBROGzEDs3N4LXtThASEYoS oCgcNmJ35mbw2nY3CIkIRQlQFA4bsTNzM3htuyOERISiBCgKh43YmbkZvLbdEUIiQlECFIXDRuzM 3Axe2+4IIRGhKAGKwmEjdmZuBq9td4SQiFCUAEXhsBE7MzeD17Y7QkhEKEqAonDYiJ2Zm8Nr290g JCIUJUBROGzE7sztBiFadEyKiFCUAEXhsBGnYG4Gr20nRUhEKEqAonDYiFMwN4PXtpMiJCIUJUBR OGzE7q7QevtONPqWAEURyIh4cM3t7zvR6FsCFEUgI+LBNbe/70SjbwlQFIGMiAfX3P6+E42+JUBR BDIiHmBze/tONPqWAEURyIh4kM3t6zvR6FsCFEUgI+KBNrcLZGiBLAQoiiDFnkYYAhSFw0ZUcxug KAIZEdXcCZGhBbIQoCiCFHsaYQhQFA4bUc1tgKIIZERUcydEhhbIQoCiCFLsaYQhQFE4bEQ1twGK IpARUc2dEBlaIAsBiiJIsacRhgBF4bAR1dwGKIpARkQ1d0JkaIEsBCiKIMWeRhgCFIXDRlRzG6Ao AhkR1dwJkaEFshCgKIIUexphCFAUDhsxtbkIToCiCGRogSwEKIoggz3NRlRzG6AoAhkR1dwJkaEF shCgKIIM9jQbUc1tgKIIZERUcydEhhbIQoCiCDLY02xENbcBiiKQEVHNnRAZWiALAYoiyGBPsxHV 3AYoikBGRDV3QmRogSwEKIoggz3NRlRzG6AoAhkR1dwJkaEFshCgKIIM9jQbUc1tgKIIZERUcydE hhbIQoCiCDLY02xENbcBiiKQEVHNnRAZWiALAYoiyGBPsxHV3AYoikBGRDV3QmRogSwEKIoggz3N RlRzG6AoAhkR1dwJkaEFshCgKIIM9jQbUc1tgKIIZERUcydEhhbIQoCiCDLY02xENbcBiiKQEVHN nRAZWiALAYoiyGBPsxHV3AYoikBGRDV3QmRogSwEKIoggz3NRlRzG6AoAhkR1dwJkaEFshCgKIIM 9jQbUc1tgKIIZERUcydEhhbIQoCiCDLY02xENbcBiiKQEVHNnRAZWiALAYoiyGBPsxHV3AYoikBG RDV3QmRogSwEKIoggz3NRlRzG6AoAhkR1dwJkaEFshCgKIIM9jQbUc1tgKIIZERUcydEhhbIQoCi CDLY02xENbcBiiKQEVHNnRAZWiALAYoiyGBPsxHV3AYoikBGRDV3QmRogSwEKIoggz3NRlRzG6Ao AhkR1dwJkaEFshCgKIIM9jQbUc1tgKIIZERUcydEhhbIQoCiCDLY02xENbcBiiKQEVHNnRAZWiAL AYoiyGBPsxHV3AYoikBGRDV3QmRogSwEKIoggz3NRlRzG6AoAhkR1dwJkaEFshCgKIIM9jQbUc1t gKIIZERUcydEhhbIQoCiCDLY02xENbcBiiKQEVHNnRAZWiALAYoiyGBPsxHV3AYoikBGRDV3QmRo gSwEKIoggz3NRlRzG6AoAhkR1dwJkaEFshCgKIIM9jQbUc1tgKIIZERUcydEhhbIQoCiCDLY02xE NbcBiiKQEVHNnRAZWiALAYoiyGBPsxHV3AYoikBGRDV3QmRogSwEKIoggz3NRlRzG6AoAhkR1dwJ kaEFshCgKIIM9jQbUc1tgKIIZERUcydEhhbIQoCiCDLY02xENbcBiiKQEVHNnRAZWiALAYoiyGBP sxHV3AYoikBGxJ6Zqyi9AVZS+Oaqukp/gJMkNXMVJRvUXCVP1FwlT9RcJU/UXCVP1FwlT9RcJU/U XCVP1FwlT9RcJU/UXCVP1FwlT9RcJU/UXCVP1FwlT4LMvTZTMO+mL5vp973pmU/dh8H2C/bjzE9W iw/er3ZnMa9WkJocMtZCuvWX62kP0JKw24A9jhhm7ktbRZzin4LLxY97R5wWZrrO5XKbq1/tzhaT t8uPw4LU5JCxFtL9vPz8V+YDEYBI2F3AHkcMNndw222ATYq4VeqSlg26d6Q84Bk66/QcMo6GLHa3 XRkRgEjYXcAeRww3995fhlmx/YK/EZ11eg4Z/ZDbL7hzwjWcgFsDEAm7C9jjiEmOubcxbnwmK4qR kzfg6azTc8johyyPUIjcHoBI2F3AHkcMNvfeEZfFjMjdlrjpajRvqDbI+9W9I9UmddbpOWT0Qza0 aA9AJOwuYI8jhplr0pXX6i9t2aE4pu3PimqDar+6d6TzTs8hox+yqUVrACJhdwF7HDF8tABM0snO xIayE7rr9Bwy+iHrg0jLaAAiYXcBexwxibm42uyVFTlkHAk5vHC3/IhaVPQ2YhJzy7/CRuqClg2y d/guj5xlUpNDxlpIO5jcnXUrJQIQCbsL2OOIaczFbX47Oi8Hl5Zqg6pfmZHTsIHOOj2HjLWQxcm4 WGm5qvYARMLuAvY4YpC5ivKjo+YqeaLmKnmi5ip5ouYqeaLmKnmi5ip5ouYqeaLmKnnSZq55DOI/ Eimf8F2zc91j69HvHg0fS/mLVM8CLfeOVL+jF3KPbcrH4+ZJzDBOA9uGfZXGvVAzfHO0WqQqqa0R z3SGr5DuzrrfVOXe1ja+SOW9IVXfvDqmqTK3mR5uXt+60TbR114kGTUXXzayCWpfPDKbUoQpu2KY 2626/J5XfZF6KDcXzxPphRpdXnxyvx+lat6+xVi+he8v4iXw11j2+TF8vv38T+1EVd7YWu/x5bWT L9h9WGu8CTbJNtrYvL51Y9V673pxDKPmeu+woc3hxv/1z4rPRJeX668vUgt1DV3qoBca7XLvldAa XvOmM8vo/iJeSW2NZeO/sZ93Z9+bbfZ5fWurPt+d/bT84DXeJKNu9FrvWy+OYcTc8iVMQ+OFzGsv /e+RT6sUrV3eWMQPVS1ooRdq6XJ8oayJ3/zlnzwoo/uLeCXeGqs+N5tkiu+M9Hl9a6s+v/dXq7ex c/3118mpG/3W+9WL4xgxd/jGZUE5XQ58XtoqVkJ0Od7cbizih/JbLqAXauny9oNFrfliGFV+8hfx Srw1Vn2+YVdzeX53tM9rW1v1efGLbZzo/PXXyakb/db71YvjmNDcYk5blxfjbvRJYxE/lP2VKXWL 0QvZLqt1efmFsib2SqD81bXhhYq/iFfirbHq8y2z0qIPyz4flje2drixprCcS/d5uUmG0c3zG/7x u7Ha5oJe9eI4JjS3OJs8bOny6ntejUVGurwAi9ELmfV4XW56oezNBvXmX8bZp7aIV+Kt0etzc44t frQdLfytHW6sDYmxpr/+Ojl1Y731PvXiOCYb55o/wvdau7w8gTQW8UOV16xVlxMLNbrca6KJ3/zl l9bK6P4iXom3Rq/Pi7WaoV1rn3tbW22s2aHYpf766+TUjX7r/erFcYyYW2vHTdc2/trzPx2ufThR /KIsqi9SC1X+iVW/al/IHTPKUdCYLvebNwuVV91j+ny4RvfDdezbxa5u7XNva8uNhR6uzmu8if8r N12uunfd6LXet14cw6i5uCloW6598cilKIbwWHu9y8u/9PoitVC7s7ZPvC5vX8idjMpFx3S517zt y7JDx/T58ChWVe7Omi1q7/Nqa8uNdT7gh9d4k4y6sWq9d704hlFzTYbhgL1Ypzd4t2twT0UM9S6v bod7i9iTAnqy4Lb5iJz0Qm6x+lrbcecc04Q7UOAsVuvzYUltjV6fu/4r+3xY3tjacmPRze6g0di8 Gvl0o7fNvetFmhZzFSUD1FwlT9RcJU/UXCVP1FwlT9RcJU/UXCVP1FwlT9RcJU/UXCVPRJib+oub MulZL0owN/U3DmXSt14UYG751p7DvuuBFz7cj/q7UbVPeKVJ6WEvHnxzy04EXp/zb2ITX9wUSP96 8eCb63+vpsB0N17jG//tF/NJj7kl/etFIeaaawjXl2YKPcn2uX1TWzH0rxflHHPxUnNxtIj9xqFE +teLB9/cDr64KZD+9eLBN7e8Kvb6vOxXM131sjtoPMsXNyXSu14UYG76L25KpHe9KMDc4jhgRlvo Q9uncd84FErPelGEucoBRM1V8kTNVfJEzVXyRM1V8kTNVfJEzVXyRM1V8kTNVfJEzVXyRM1V8kTN VfJEzVXyRM1V8kTNVfJEzVXyRM1V8kTNVfJEzVXyRM1V8kTNVfLEmqsoGfLcn2NCUTLizl/8Pyzp /vfJKc+EAAAAAElFTkSuQmCC ------=_NextPart_01D76819.203EB2D0 Content-Location: file:///C:/2223D501/04FormatoCienciaDigita_JazminMarisolMedinaRea_archivos/image003.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCADEAXMDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKb 5hNG/wBBQA6g9OlNycZAp1G4Hjf7e3xq8Z/s6/sqeLPjN8Pxa/2todvBLZreQ+ZGS1xGhDDIyCrH vXwp8Lf+DhzX7YR23xp+ANvcLnEl54b1Axtj1Ec24Z/4GK+v/wDgrcuf+CfPxF/68Lb/ANK4a/BX Z6Gv1ngPhvJ88yeq8XTvJTsndppWXY/L+Nc+zTJ80prCzsnG7WjT1fc/eD4Cf8FZv2Jvj0kFtpvx PXw/qU2B/ZXiiP7LIG9N+TE34Oa+kLDU7DUrWO/069iuIZlDxTQyBldfUEdRX8x5jB7169+zv+3b +1F+y5dxf8Kr+KV8mnxyBpNC1CQ3FlJzyPKc4XPqu0+9dWbeFseVzy+r/wBuy/Rr9UcuW+I9RWjj qf8A29H/ACf+Z/QwrfNUleCf8E7/ANrzVP20f2foPi1rfhOLR76HUptPvLe3m3xySRhCZEzyAd/3 TnGOpr3uvyTFYWtgcTPD1VaUXZ+qP1LC4mjjMPGtSd4yV0FFFFc50BQTgZNFcL+0h8ePCf7NXwU8 RfGrxtMFsdB09p/L3YaeT7scS/7TuVUfWgDmf2vP23v2fv2LvBH/AAlvxm8U+XcTKx0vQ7FRJe6g w/hjjyMD1diFHc1+bfxh/wCDjX43a1ezWvwP+C+h6HZ7sQ3WuSSXlyR6kKURfphvrXwz+0n+0Z8T P2qvjBqnxj+KmsNc6hqUxMNupPk2UGSY7eIH7qIDgDqepySSeFAxXRGnHqB9qf8AD/X/AIKEkk/8 JB4TUdl/4RlOPb71H/D/AG/4KE/9B/wn/wCEwn/xVfFW45wRS1XLHsB9qf8AD/T/AIKFE/8AIweE /wDwmU/+Lr9AP+CNn7bXx3/bb+HXjPxN8c77TJ7rQ9at7axOmacLdRG8RY7gCdxyK/Cuv13/AODb Nz/wpr4lHH/MzWf/AKTtUTjHl0QH0J+03/wV7/ZT/ZJ+L998E/inY+KX1nT7eGW4bTNJjmh2yoHX DGVecHnisD4T/wDBcL9jP4z/ABN0L4UeELHxguqeItUhsLBrvRY0jEsjBV3ETEgZ6nBr83/+C5p3 f8FF/FQP/QK03/0lSvI/+CfBC/tw/Csf9T1p3P8A22Wl7OPLcD+kSiiisQCiiigAooooAKKKKACi iigAooooAKKKKACiiigDm/i58TPD3wX+F/iD4ueMEuG0nw1o9xqWoi0iDymGGMyPtUkZbC8DIya+ O/8AiIQ/YRzxpvjj/wAEEX/x+voT/goYx/4YU+MAI/5pzrH/AKSSV/N+AnXHNaU4xkrsD+j/APY8 /bd+Dn7cnhHVvG/wXg1iOz0bUlsbxdYslgfzTGHG0B2yMEd+teyjgYr84f8Ag28JX9nP4gEf9DpH /wCkkdfo8OlRJcrAKKKKQBRRRQAUUUUAfhV4A/4LJ/t9eBGjE/xWt9cijxmHXtJimDD0LKFf8mz7 19H/AAf/AODhy/XybP48fAeJm4E2oeGL0qp9xDNnH08w1+ZtNfd0C5+tf05jODOG8dfnw6T7x938 j+dMLxXn+Da5K7fk9fzP6Dv2YP2/P2Zv2t4Ps/wm8fxvqqR759B1BTBeRjuQjffA/vIWFe15yARX 4H/8EnHmi/4KD/Dfyn2Z1K6DbW+8PsU/FfvegwM1+HcYZBh+Hc1WHoSbi48yvutdj9j4TzzEZ7lr rVopSTtofOX/AAVt/wCUfPxE/wCvC2/9K4a/Bav3p/4K2/8AKPn4if8AXhbf+lcNfgtX6X4Wf8ie t/18/RHwHiP/AMjal/g/VhTZAMZJp1NfpX6cfnR+zn/BBBf+MKLg/wDU5Xv/AKBDX29XxH/wQS/5 MluP+xxvP/RcNfblfyzxR/yUWK/xs/o/hn/kQ4f/AAoKKKK8E90K/Mv/AIOPvjTc6L8N/AnwF0y/ 2/25qNxquqQq2CYrcKkQPsXkYj3j9q/TSvxE/wCDhHxZPr37dFn4eeUmPRPBdlDGvYeZJNMf/Q/0 FaU9ZAfCwAHIFfSH/BMX9hC5/bs+Pv8Awi2t31zZeE9BhS98TXlqv7xo92Ft0Y8B5CCM87QGODgC vm9unSv2q/4N6fhjp3hr9jXUviKloovvE3iy48242/MYbdEijX6BjKf+BVrN2iB9OfC79hP9kH4P 6FH4e8C/s9eFoIVUK01xpMdxNL/tPJIGZz7k11X/AAzf+z5/0Q/wn/4T9v8A/EV2g4GKK57sDi/+ Gb/2fP8Aoh/hP/wn7f8A+Ira8KfD/wAC+Abaa28D+DtM0eO4cPPHpdhHAsjAYBYIBk49a2qKVwPj D9sD/gol/wAE+/2ffjtqXww+Pvwlk1bxLZ2tvJdXn/CKwXW5HjDIPMc5OFIHtXMfBL/gqN/wTK+J fxg8N/D/AOHHwUey17WNYgtNIuj4Lt4vKuHYBG3rymDj5h0r4P8A+C5//KRjxT/2CdN/9JUryH/g nz/yfF8Kf+x50/8A9HLWyj7twP6RAcjIrN8V+LPDXgrRZvEni7xDZ6Xp9qhe4vtQukhhiX1Z3IAH 40njDxXoHgfwrqXjLxTqUdnpuk2Ml3f3UxwsUMalmY/QCv5//wDgop/wUW+Jf7cvxOuv+JrdWPgX Trth4b8Oq5VCg4E8wHDysOec7c4HvnCLmB+rPxO/4Lef8E/PhrqsmiwfE+88RTRPteTw7pMk8Ofa Vtqt9VJHvXI/8RB37C//AD4+MP8AwSr/APF1+IKsMbR2pdy5xmtvZRA/b3/iIN/YX/58PGH/AIJV /wDjlfT3wU/ag+HXx6/Z/h/aS8Epfr4fmsrm6jW6twk3lwFt/wAuTz8hxzzX80pI6A1+63/BMUhf +CQ2n8f8yvrf/oVxUSpqIGI3/BwX+w1HK0TWPjDKsQf+JKv/AMXR/wARB37DH/QP8Yf+CVf/AIuv xIu/+PqT/ro386jzVeziB+3f/EQd+wx/0D/GH/glX/4uur+E3/Bb/wDYH+KviKLwvP8AEHUPDdxc OEgm8SaY1vblj0BlG5U+rYHvX4M5B4pvDGn7OIH9Tmj6vpeu6XBrOjalBeWtzGJLe6tphJHKp6Mr Dgg+oq1mvx7/AOCDX7d/ivwv8UY/2OfiDrc95oGupJJ4VNxMW/s+7UF2hXPRJFDHaMAMOBya/Vr4 2/F7wf8AAf4U678XvHt20Ok6Bp8l3eMuNzBRwi+rMcKB3JrGUXGVgLvxA+JXgD4V+HpvFvxI8aaZ oWl24zNf6reJBEvtuYgZ9upr5U8e/wDBdX/gn94I1STSdP8AHesa+0TENPouhyvC30d9ufw4r8if 22P24fjF+278ULnxr4/1aaDSIZ3GgeHY7gm306Ak7QBgBpMY3ORlj6DAHi4YDjmtI0u4H7fD/g4N /YX/AOfDxh/4JV/+OUf8RB37C4/5cPGH/glX/wCOV+IYYHiin7OIH9K2sftBfCrW/wBk2f8Aac1z TLi68F3Xgk+ILmzuLNXkl09rbzyjRE4LGM4Kk47V8Xr/AMFfv+CSfUfACT/wg7WvWp9v/DisAj/m 29e3/UIFfg+ODwtTTipAf0UfsHftQfs0ftReB9c8U/sx+CW0TTNN1ZbXUIG0WOy8yfyg4bbHw3yk DJp37Zf/AAUO+BX7C9zoNt8Z7fWXbxCk7WP9l2Im/wBUUDbssMffGK+Xf+DbvH/DOXxAz/0Osf8A 6SR15/8A8HKjg6v8KR/076p/6FBU8v7ywHuZ/wCDg79hcf8ALh4w/wDBKv8A8XSf8RB/7C//AD4e MP8AwSr/APF1+IucdaNw9a19lED9wtM/4OA/2Dr+7S3u5PFlnG3DTy6DuVfrtcn9K+nP2f8A9q39 n/8Aah0A+IPgZ8UtN16JFBuLe3l23Fv7SQuA6fiAPSv5oAwbpXY/Ab48/Ev9mv4paX8XPhR4hm0/ VNMmD/u5CI7iPPzQyrnDxsOCp4/EA1LpLoB/TmpyuaK8w/Zq/ah8DftEfAfwv8atMuYrOPxBpSXE lm8uTBKCUljz32yKy59qKxtID+deg9aKD1r+xD+Uz6G/4JPjP/BQX4bH/qJXX/pHPX74p92vwP8A +CTv/KQT4bf9hK6/9I56/fBPu1+B+KH/ACPqf+Bfmz9q8Of+RRP/ABfoj5x/4K2/8o+fiJ/14W3/ AKVw1+C1fvT/AMFbf+UfPxE/68Lb/wBK4a/BavrvCz/kT1v+vn6I+a8R/wDkbUv8H6sKa/SnU1+l fpx+dH7Pf8EE/wDkyW4/7HG8/wDRcNfblfEf/BBP/kyW4/7HG8/9Fw19uV/LPFH/ACUWK/xy/M/p Dhn/AJEOH/woKKKK8E9wK/CP/gvCsi/8FEdc8zv4f00r9PJP/wBev3cr8Uf+DiDwTcaB+2jovjDy WEOveC7Zll28GSKaaJl+oUL/AN9CtKXxAfBLdK/eL/ghXJC//BOnwyIiMrrGprJ/vfaW/pivwdbn tX7Kf8G7Pxj0nxH+zJ4j+DEl6v8AaXhnxI92sG7k2tyilWA9pI5M+mRWlT4QP0QooB4ornAKKKKA PwZ/4Ln/APKRjxT/ANgnTf8A0lSvIf8Agnz/AMnx/Cn/ALHjT/8A0etevf8ABc//AJSMeKf+wTpv /pKleQ/8E+f+T4/hT/2PGn/+j1ro/wCXYH66f8F1vjPffCr9hTUvDuk3HlXXjLVrfSNynB8k5llx 9Vj2n2Y1+FKKB0NfsB/wcjzTj4FfDu3GfLbxdMzf7wtXx/M1+QNFP4QP0n/4It/sWfsuax4Uk/aZ /ag8QeEb65nvGh8L+G/EGp2/l26ocNcywyNhmLZCBhgBc4yQR+mNt4m/Y9s4lt7XxJ8NY441xHHH eaeqqPQAHgV/NQJHUbVkYfQ0vnS95pKHTcne4H9LD+MP2Re3in4b/wDgdYf41qfEeLw8vwD8SP4V SzGnyeFb6S0OnhPJdGt3IZNnykHOcjrX8yLyy9RM9f0UfAE5/wCCZ/hfd1/4Uzb/APprFZyhy21A /nbu/wDj6k/66N/Ov0U/4N+vgX8FvjX4h+JUHxh+E3hzxSlhZ6e1iviDRYLwW5ZptxTzVbaTgZxj OK/Ou7/4+pP+ujfzr9Pv+Dav/kZvir/146Z/6HNWtTSDA/QLUv2AP2H9T0+bT7n9kr4drHMhV2g8 I2kTgEdQ6RhlPuCCPWvwz/4KW/s7+Dv2XP2zvF3wj+Hcbx6FbyQXWl28khdreOaFJPKyeSFZmAzz gDr1r+iw9K/BT/guL/ykX8Wf9g3Tf/SVKyp35gPL/wDgnHdXFn+3j8KJ7aRlb/hNrJdy+jSbSPyN fpP/AMHFXxk1Twn+zn4T+D2k3jRf8JZ4gebUArf6y2tUDbD7GSSM/wDAK/NX/gnb/wAn1/Cf/seL D/0aK+2P+DlKec+LfhTAD+6Gn6o2P9rfB/StJfxEB+YGCDxX6j/8Ec/+CTvwi+Kfwltf2oP2l/DK a5HrE7nwz4duXYW628bFTPMoI8ws4bCn5dqgnOePy3c4Oc1/SB/wTxs9Osf2GPhLBpqKsbeAdMch f77W6M3/AI8WoqXsBci/YJ/YjhjWKP8AZG+G+1Rj5vBdkT+Zjp3/AAwd+xL2/ZG+G3/hFWP/AMar 1iiue7A8P/bp8NaB4Q/4J7/FPwx4W0e103TdO+F+qW2n6fY26xQ20KWTqkaIoCqqgABQAABgV/OV k4yK/pD/AOChf/Jifxg/7JzrH/pJJX83fb862p7AfsV/wbef8m5fED/sdo//AEkjr9DNZ8K+GvEB R/EHh+xvvKz5f2y0SXZn03A4r88/+Dbz/k3L4gf9jtH/AOkkdY//AAW2/wCCm/xB+D2vD9k74AeJ W0vU5rFZvFeuWcmLm3SQZS2iYf6pinzMw+YAqARk1Mo3qWQH31rlx+zb4XufsniV/A+nS/8APO+a zhb8mwao/wDCYfsiHr4p+HH/AIHWH+NfzW6p4g17XLyTUdd1u8vLiRt0k93cvI7n1JYkk1X86TvK 1V7LzA/Yv/gst8A/2Nfib+zBrHxe+Hmr+CbPxr4X8q4tLjw/fWiTX8JlVJIJFibMvytuXIJBXjjI P44Ab+TTmlcjaXbH+0aBjtWkVyqwHtnwh/bk+LXwf+Hmn/Dnw1rs0Njp3neRGshwPMmeU9/VzRXi eB6UVQHWUHrRQetf1wfymfQ//BJ3/lIJ8Nv+wldf+kc9fvgn3a/A/wD4JO/8pBPht/2Err/0jnr9 8E+7X4H4of8AI+p/4F+bP2rw5/5FNT/F+iPnH/grb/yj5+In/Xhbf+lcNfgtX70/8Fbf+UfPxE/6 8Lb/ANK4a/BavrvCz/kT1v8Ar5+iPmvEf/kbUv8AB+rCmv0p1NfpX6cfnR+z3/BBP/kyW4/7HG8/ 9Fw19uV8R/8ABBP/AJMluP8Ascbz/wBFw19uV/LPFH/JRYr/ABy/M/pDhn/kQ4f/AAoKKKK8E9wK /On/AIOJ/gTqHjX9n/wv8ctGsGmk8G6xJb6k0a8x2l0EG8+wljjHtvr9Fq5/4p/DPwp8Yfh5rXwx 8b6et1pOu6fJaX0LAco64yPQjqD2IFVF2kB/L0G5xivY/wBh39svx5+w98crX4u+DrKO/tZIfsuu 6PNIVS+tSclMj7rgjcrc4YDIIJBsft0fsQfFD9h74w3fgTxfYzXOh3FxI/hnxCsJEOoW275TnoJF UgMmSQfUEE+KAbutdGkkB+9Pw2/4Lff8E/vHOgQ6rrPxOuvDt00YM2na1pcqyRNjldyBlbnuDzXS f8Pg/wDgnZ/0cbp//gFcf/G6/nxC85Ap2AeoqfZRA/oM/wCHwf8AwTs/6ON0/wD8Arj/AON16n+z 1+1d8Bv2qdK1DXPgR4+t9etdKuEgv5reF08qRl3BTvUdhX80HToK/Xj/AINsUx8GviVn/oZbP/0Q 1ZzpqMbgfIv/AAXP/wCUjHin/sE6b/6SpXkP/BPn/k+P4U/9jxp//o9a9e/4Lnf8pF/FR/6hWm/+ kqV5D/wT5/5Pj+FP/Y8af/6PWtvsAfqt/wAHBPwt1Dxv+xXZ+N9Otmkbwn4qt7u62j7sMqPAWPtu kT86/EhW3DgV/Tz8cvhF4Z+PPwi8RfB3xgjNpviLSZrG5ZR80e9cCRf9pWww91FfzlftT/sx/E39 kf4x6p8H/idpUkdxaTMbC+8krFqFsSfLniJ6qw+uDkHpUU5aWA+1f+CPv7MH/BOn9sj4e33gH4z/ AA2af4iaHO80+PEl5b/2hZMw2SpGkyr8hO1sDj5T3zX2sv8AwRB/4Jstx/wo28/8KrUf/j9fg74b 8SeIfCWsW/iTwpr15puoWzb7a+sLloZYjjqrqQR+HrXqUP7fn7bNvEsMP7VPjoKi4UHxHOf5tTlG Td0wP2Qb/gh9/wAE2s/8kOvP/Cq1H/4/Xu3ivwR4a+Gf7M2q/DrwbYNa6Tofgi4sdNt2maQxQRWj Ii7mJZsKBySSe9fz9n/goJ+2+Bx+1V45/wDChm/+Kr9jf2A/HvjX4o/8Errfxx8RfFV9rWsXnhjW vtWpajcGWaXb56jcx5OAAKzlGUdwPwWu/wDj6k/66N/Ov0+/4Nq/+Rm+Kv8A146Z/wChzV+YN3/x 9Sf9dG/nX6ff8G1f/IzfFX/rx0z/ANDmrSp8DA/WI9K/BT/guL/ykX8Wf9g3Tf8A0lSv3rPSvwU/ 4Li/8pF/FvH/ADDdN/8ASVKzpfEB5Z/wTt/5Pr+E/wD2PFh/6NFfoV/wcifDu/1H4XfDr4q2tqzQ aXrV1p15Iq52efEHQn0GYWH1Ir89f+Cduf8Ahuv4Ukj/AJniw/8ARor97v2x/wBmrQP2sv2cvEnw M1qWOFtWs86feSKWFrdId0UnHOAwGcc4JqpPlmmB/NXgMK/bT/gh/wDtt/D34sfs1aP+zlrviG3t fGPguBrWLT7iYK17YqxMcsWT8+1TsYDkbQehr8cfjH8HfiJ8A/iRqnwp+KXhybS9a0i4MV3bzLw3 o6N/GjDkMOCDXPWN7eaZdx6hpt5Nb3ELbopoJCjI3qCOQa0kudAf1OrKhH3hS70/vD86/mJT4+fH ONQsfxo8WAKMAf8ACQ3PH/j9L/w0B8dz/wA1p8Wf+FFc/wDxdZexfcD+hL/goU2f2FPjAP8AqnOs f+kklfzft90H2r959Zv9Q1j/AIIeTavq1/NdXVz+zp5tzc3EpeSWRtIBLMx5JJ6k8mvwYYZAA7Cq orcD9iP+Dbz/AJNy+IH/AGO0f/pJHX5r/wDBQjxRq3i/9uP4ra1rEzSTf8J1qNspbtHDO0Ma/gka j8K/Sj/g28/5Ny+IH/Y7R/8ApJHXxV/wWi/Zv1r4E/tv+IvE40+RdF8cTnW9LuvL+RpJAPtCZ6bh LvP0YGlH+IwPPv8AgnD+zl4B/as/a88M/Bb4najc2+i6gLiW8Wzm8uScRQtIIlb+EsV6jnGcc1+v UH/BDz/gm0kSqfgletgY3N4s1Dn3/wBfX4P6Dr+u+FdZtvEfhjWrrTtQs5RJa31jcNFLC46MrKQQ fpXqcf8AwUA/bcijWJP2qvHW1RgZ8RT/APxVVKMpdQP0r/4KCf8ABJf9hT4G/sc+PPiz8M/hJdWO vaHo4n026k8RX0wik81FzseUq3BPBBFfjmhzk5r07xn+2d+1j8RPDN54L8dftEeLtW0nUIvLvtOv 9alkhnTIO1lY4IyBXmYGKqMXHcAoooqgOsoPWig9a/rg/lM+h/8Agk7/AMpBPht/2Err/wBI56/f BPu1+B//AASd/wCUgnw2/wCwldf+kc9fvgn3a/A/FD/kfU/8C/Nn7V4c/wDIpqf4v0R84/8ABW3/ AJR8/ET/AK8Lb/0rhr8Fq/en/grb/wAo+fiJ/wBeFt/6Vw1+C1fXeFn/ACJ63/Xz9EfNeI//ACNq X+D9WFNfpTqa/Sv04/Oj9nv+CCf/ACZLcf8AY43n/ouGvtyviP8A4IJ/8mS3H/Y43n/ouGvtyv5Z 4o/5KLFf45fmf0hwz/yIcP8A4UFFFFeCe4FFFFAHJfGT4HfCb4/eDJvh98YvAWn+INJuOWtNQgDb Gx99G+8jjsykEetfBHxc/wCDcj4KeItUn1L4O/GjWvDsUjFo9N1K1S9ji/2Q+VbA9yx9zX6SUVSl KOwH5Ln/AINrvHIb5P2oNK29t2gSf/HKB/wbYeOif+Tn9J/8J+T/AOLr9aKKftJdwPyX/wCIa/x5 nj9qLSf/AAn5P/i6+xv+CY//AAT513/gn74K8UeE9Y+Itr4ibxBqkN3HNa2LQCEJGU2kMxznOa+o qKTlKWjA/Pv9vP8A4IreK/2yv2lNW+PWm/HLT9Dh1KztYV0640l5mTyoljzuDAHOM9K439nX/ggJ 4z+Bnx48JfGO7/aH03UI/DOvW2ovZR6JIjTiJw2wMXOCcehr9NqKOeVrABG4YNeZ/tMfsjfAP9rf wh/whnxw8AW+rRRq32G+X93dWTH+OGUfMh9uQe4NemUVPoB+X/xD/wCDbXwhd38lx8LP2jb+yt2b MdtrWkLMyD03xsuf++a5cf8ABtf46/6Of0n/AMEEv/xdfrRRV+0kB+S7f8G13jo/83P6T/4IJf8A 4uvvj9lv9kvU/wBnb9je3/ZbvfF8OpXFvpV9Z/2tDalEY3BkIbYSTxv9e1e4UUnKT3A/JeT/AINs vHU0zy/8NPaUu5s4/sGXj/yJX1V/wTE/4Jk+IP8Agn1qvi3UNY+Kdp4jHiWC1jjW109oPJ8ppDk7 mOc7/wBK+vqKHOTVmAjZ28V+fX7eH/BFPxZ+2P8AtKav8edN+Oen6JDqlraxLp9xpMkrJ5UQTO4O Ac4z0r9BqKUZOOwH5l/s3/8ABAjxl8B/j54R+Mt3+0NpuoReGdet9QksY9FkRp1jcNsDFzgnHpX6 aMoYYNFFOUnLcDxn9rP9g79m/wDbN8PLpPxm8CxzX8Ee3T/EFi3k31n7LIPvL/sOGXvjIBr4Z8bf 8G2Glzag8vw6/aYuILZmzHDrGhiR0HoWjcZ/75FfqZRRGUogfkuf+Da3x12/ah0n/wAEEv8A8co/ 4hr/AB3/ANHQaR/4IJf/AIuv1oop+0l3A8Vk/ZW1N/2B/wDhjP8A4S2H7V/wrMeFf7c+zny94s/s 3n7M5xn5tuc18Ar/AMG2HjvqP2oNJ/8ABDL/APF1+tFFJSlHYD5l/wCCZn7A2tfsBfDbxF4B1j4h W/iJ9c1xdQS5tbFoViAhWPYQzHJ+XOa9K/al/ZJ+C/7Yfw4m+Gnxp8LLeW+7zLC/hOy6sJsf6yKT qp9RyGHBBr1Cipu73A/Kvxf/AMG2G/VJJPAP7TRjs2b93Fq+h7pFHoWjcA/XArLH/Btf46xz+1Bp P/hPyf8AxdfrRRV+0kB+S/8AxDY+Ov8Ao57Sf/Cfk/8Ai6P+IbHx1/0c9pP/AIT8n/xdfrRRR7SX cD8l/wDiGx8df9HPaT/4T8n/AMXRX60UUe0l3A/mHoPWig9a/sE/lM+h/wDgk7/ykE+G3/YSuv8A 0jnr98E+7X4H/wDBJ3/lIJ8Nv+wldf8ApHPX74J92vwPxQ/5H1P/AAL82ftXhz/yKan+L9EfOP8A wVt/5R8/ET/rwtv/AErhr8Fq/en/AIK2/wDKPn4if9eFt/6Vw1+C1fXeFn/Inrf9fP0R814j/wDI 2pf4P1YU1+lOpr9K/Tj86P2e/wCCCf8AyZLcf9jjef8AouGvtyviP/ggn/yZLcf9jjef+i4a+3K/ lnij/kosV/jl+Z/SHDP/ACIcP/hQUUUV4J7gUE8UUEZGKAMXxR8QvA3gcQv428a6To63G4WzapqE dv5pXG7bvYbsZGcdM+9ZP/DQfwH/AOi2+Ef/AAo7b/4uvzn/AODlkY8P/CEf9Pmtf+gWdflH+NaR p8yuB/Tp/wANB/Af/otvhH/wo7b/AOLo/wCGg/gP/wBFt8I/+FHbf/F1/MXj3ox71Xsl3A/p4svj t8FNRuVtNP8AjD4WnmY4WOHxBbMzewAfJrqIbiO4jWeCVXjYZV1YEMPXNfyvqXV9ytjHQ169+zf+ 3l+1X+ynqcN18JPi3qkGnxS+ZJ4fvrprjT5uckNA52jPdl2t70ez7MD+kagnHWvmf/gnD/wUe+Hf 7efgGaS3s10bxho0aDX9AeTOM9J4T1aInjnlTwexP0wCGGaxa5dGAA56UEgdTX4p/tTf8Fjv28fh h+0p46+HXg/4k6fb6Vofiq+stPhfQoHZIY5mVAWK5JwOpr1L/glP/wAFP/2wv2pP2ytH+EPxi8dW WoaHeaTfzz20OjwwsXigZ0O5QDwRVezkB+rQOelFIuQvIpakAooooAKKKKAAkDrRXg//AAUn+NXx C/Z2/Y08YfGD4W6nHZ65pMNu1lcTW6yqpe4jQ/K3B+VjX5Hj/guR/wAFFAP+Sp6Z0/6F23/+Jqow lLYD96KbK4jjLlgoXkk9q+UP+CPH7UHxk/a6/ZY1L4ofG7XbfUdYt/Gl3p8U9vZpAogjtrV1XamB kNK/Pv7V9T64M6Lef9esn/oJpWs7AcuP2hPgTnDfGzwkP97xFbf/ABdanhj4nfDzxvdSWfgrx9ou sTQoHmh0zVIrhkXONxCMSBnua/l9vAftcxz/AMtW/nX6Of8ABt2D/wAL8+IH/Yqw/wDpQKuVO0bg fsJnPSiiiswCiiigAooooAKyfFfjnwd4Gtkv/Gni3TdIt5ZPLhm1O+jt0d8Z2guRk4BOOta1fnP/ AMHIQA/Zl8B4/wCh7/8AbK4qormdgPudv2hfgOoz/wALs8I/+FHbf/F10+jazpev6dDq+i6nb3lr cJvt7q0mWSOVf7yspII9wa/ljIOOtf0Yf8EyBj9gP4Uc/wDMn239aqUOUD3aiiiswP5h6D1ooPWv 7EP5TPof/gk7/wApBPht/wBhK6/9I56/fBPu1+B//BJ3/lIJ8Nv+wldf+kc9fvgn3a/A/FD/AJH1 P/AvzZ+1eHP/ACKan+L9EfOP/BW3/lHz8RP+vC2/9K4a/Bav3p/4K2/8o+fiJ/14W3/pXDX4LV9d 4Wf8iet/18/RHzXiP/yNqX+D9WFNfpTqa/Sv04/Oj9nv+CCf/Jktx/2ON5/6Lhr7cr4j/wCCCf8A yZLcf9jjef8AouGvtyv5Z4o/5KLFf45fmf0hwz/yIcP/AIUFFFFeCe4FFFFAH5cf8HLf/IB+EP8A 1+61/wCgWdflFX6u/wDBy3/yAfhD/wBfutf+gWdflF1rop/w0B9Hfsw/8EsP2tP2uvhinxd+Dmj6 HNo0l9NaK+oa0sEnmRkBvlIPHIr0R/8Aggf/AMFCkGf+Ec8K/wDhTJ/8TX3v/wAEBVX/AIYBteP+ Zs1I/wDjyV9tkA9RUyqS5gP5w/2lv+Ce37Xf7JdqNY+M3wivLXSWcKuuafIl3Z5PADSxEiMk9A+0 ntXi5B6E1/UZ458E+FviN4U1DwL420S31HSdWtHtr+xuow0c0bjBBB/yK/nH/bZ/Z4uv2Wf2pPGH wQkD/ZtI1Mtpkjnl7OUCWBj6/u3X8RVU582gEX7Gn7SviP8AZG/aM8OfG3QLibydPvFj1i1iYj7V YuQJoj65Xp/tBT2r+kXwt4h0nxb4csfFOg3S3FjqVnHdWc6HKyRyKGVh9QRX8tL9M1/Qh/wSM+Jz /FT/AIJ8fDvVbq58y60zTZNJuiWzhraZ4kz7+WIz+NTVXUD8/f2nv+CJ37c/xW/aN8b/ABK8I6D4 bfS9e8UX1/p7XHiBEcwyzM6ll2/KcEcV6d/wS3/4JRftd/smftgaP8Zvi/o2gw6HZ6XfW80lhraz yb5YGRMIF5GTz6V4/wDtTf8ABZH9vD4X/tJeOvh14P8AiNpsGl6H4qvrHT4ZNBgdkhjmZUBYrliA BzXqH/BKn/gqJ+2F+1J+2Ro3wh+MfjixvtDvNKv55re30eGFi8UBdDuUZ6iiXPygfq0DkZoppbbH 1r4q/bx/4LTfBX9kTXrz4XeA9F/4TbxnaLturS3uxFZ2EmPuzSgNlh3jUZHQlTWSTewH2vRX4Y+L f+C+v7fviS/kudG1XwvocLNlLXT9BDBB6bpndj+dY/8Aw/L/AOCimP8AkqOlf+E7bf8AxNX7KQH7 zUV+DI/4Ll/8FFf+ioaX/wCE7bf/ABNdJ8HP+C1X/BQDxd8YPCnhHXfiVpsljqviWxs7yNfD8ALR S3CI4BC8fKx5o9nID9UP+CjHwL8f/tMfsfeLvgt8Lra1l1zWYbdbGO8uRDGdlxG5y5HHyqa/J8f8 EDv+ChXQ+HPCv/hTJ/8AE1+rX/BSP42/EL9nT9jbxh8YfhZqcdnrmkQ27WNzNbrKqF7iNDlW4Pys a/JD/h+X/wAFFQcf8LR0r/wnbf8A+Jp0+e2gH6f/APBIn9lH4v8A7Gv7MGo/Cj412Wnw6tc+MrrU o006+FwnkSW9rGvzADndE/Hpj1r6d1tx/Yt4R/z6yf8AoJr5Y/4I+ftS/GP9rn9lXUvin8b9cg1D WLbxnd6fHcW9kkCiCO2tXVdqDBO6V+ff2r84vir/AMFq/wBv/RPiD4k8Kab8SdMWzs9ZvLSCNtBt yREszoozt6hQKSjKUgPi67/4+pP+ujfzr9Hf+DbsgfHv4gEn/mVIf/SgV+bxdpHaRjyzZNenfsu/ tjfHf9jnxJqXir4FeIrbT7zVrRbW8kubFJw0YbcBhwcc962lG8bAf0rfSgHNfgyv/Bcv/gokXVW+ KGl7SwB/4p23/wDia/Zn9pX4j+Kvhx+yn4u+KXhS8SHWNJ8IXF/ZTyQhlWZYd4O08EZ7GudxlED0 2ivwZ/4fmf8ABRX/AKKhpf8A4Ttt/wDE0f8AD8z/AIKK/wDRUNL/APCdtv8ACq9nID95qK/Bj/h+ b/wUUBBPxP0rr/0Ltt/hXqv7O/8AwcQ/tC+GPEdvZftG+BtF8TaHI224utHtTZ30P+2vzGOTHdSq k9mFHs5AfslX5z/8HIf/ACbN4D/7Hr/2yuK+5vgL8dvht+0h8L9L+L/wo8RR6lourQ74ZFOGicHD RSL1R1PBU8j8q+Gf+DkP/k2bwH/2PX/tlcVMfiA/HM9K/ov/AOCZP/Jgfwo/7E+2/rX86B6V/Rf/ AMEyf+TA/hR/2J9t/Wtq3woD3WiiiucD+Yeg9aKD1r+xD+Uz6H/4JO/8pBPht/2Err/0jnr98E+7 X4H/APBJ3/lIJ8Nv+wldf+kc9fvgn3a/A/FD/kfU/wDAvzZ+1eHP/Ipqf4v0R84/8Fbf+UfPxE/6 8Lb/ANK4a/Bav3p/4K2/8o+fiJ/14W3/AKVw1+C1fXeFn/Inrf8AXz9EfNeI/wDyNqX+D9WFNfpT qa/Sv04/Oj9nv+CCf/Jktx/2ON5/6Lhr7cr4j/4IJ/8AJktx/wBjjef+i4a+3K/lnij/AJKLFf45 fmf0hwz/AMiHD/4UFFFFeCe4FFFFAH5cf8HLf/IB+EP/AF+61/6BZ1+UVfq7/wAHLf8AyAfhD/1+ 61/6BZ1+UVdFP+GgP3K/4IC/8mAWv/Y2aj/6ElfbVfEv/BAX/kwC1/7GzUf/AEJK+2qxl8Q5bhX4 n/8ABw74btdL/bV0fX7eIK2qeB7Vp8D7zRzzpuPvt2j6KK/bCvxW/wCDiTW7a+/bM0DRYn3SWHgW 3Mw/ul7icgfkM/jVU/iEfAg+90r9sf8Ag3o1We9/Yk1LS3fK2fja8CfN03RQtj86/E4HBzX7W/8A BvDps9n+xRq2osPluvG92U99sMIrSp8IH5Tftz/8nmfFD/setU/9KXr3L/gg/wD8pGfDv/YA1X/0 lavDf25/+TzPih/2PWqf+lL17n/wQe/5SMeHc/8AQA1X/wBJWofw/ID9O/8AgrX+1/e/sgfsl6l4 h8K3Bj8TeJLhdI8OyK2DBJIrGSf/AIBGGI/2yn1H8/8Ad3d5e3UmoajcyTzTSF5ppnLO7E5LEnkk nqf/ANdfp1/wcm+OLiXxz8M/hok7eTb6Te6lJH2LSSLGCfoIz+Z9a/MNs4xRTVo3A7b4Gfs5/HH9 pTxK3hD4H/DXU/EV5Goa4FjDmOBT0aSQ4RB/vEfoa93X/gid/wAFIXXePgNH+PiSw/8Aj1frb/wS 4/Zv8Ofs4/sZ+D9D0/S4YtT1rSodX126WMeZcXNwgk+ZupCqVUA9AtfROAEwKmVWXQD+Zb9ob9m3 4xfsr+PF+Gnxw8LLo+tNZx3a2q3kU/7lyQrbomZex4zmq/7ORz+0R4DP/U56X/6VxV9Z/wDBwQoH 7dcJ/wCpNsf/AEOWvkz9nHj9ofwHj/oc9L/9K4q0Um4gfuh/wWZ/5RyfEP8A697T/wBK4q/n97D6 V/QF/wAFmf8AlHJ8Q/8Ar3tP/SuKv5/e34VNH4QP2y/4N4QW/YT1pR3+JGof+kdjXyD8UP8AghF+ 3Pr/AI78ReL7AeEPsd9q95eQ79fIby3ldxkeXwcH86+v/wDg3d/5MX1n/spOof8ApHY19y62oGjX XH/LvJ/6Caz5nGbsB/LOyNG7I3VWxXr37IP7EXxr/bd8U6t4Q+Co0n7Xo1it3ef2tfGBfLZ9g2na 2TmvJbvi6kH/AE0b+dfo5/wbdru+PfxBz/0KkH/pQK2lK0bgefp/wb9/t87ldk8G4DA/8jEf/jVf r5+0Z8MfE3xP/Ze8WfCLwz9n/tbWfCc+nWfnzbY/OeHYNzYOBnvivSO2KjuJ4rZDNMyqirl3ZgAB 65rnlKUgPw/H/Bv1+31j7vgz/wAKI/8Axqj/AIh+v2+v7ng3/wAKI/8AxqvvD9oz/gur+xv8CfEl 54M8OPqnjbUrCZorlvD0aC0SRTgr9odgGweMoGHvXkn/ABEofCYk7P2YPEJHY/2/B/8AG605qnQD 5K+JX/BDX9vr4b+E7zxg/hHRNaisYWmns9D1kTXBQDJKoyqXOB0XJPYGvj+eOW3ke2niZJEYrIjD BUjqD6V+uT/8HJfwmY/N+y/4g5/6j0H/AMar8t/jv488O/FH41eLPiR4T8OvpOm694gu9Qs9LkkD G1jmlaQRZAAON2OAOlVGU+qA+7f+DeP9o/WvC/xy139mfU7xm0nxJpkmpafEzcQ3kG3dtHbfETnH XyxXuv8Awcg8fsy+Ax/1Pf8A7Z3FfD//AARSmlh/4KOeBTG5G6PUFb6fY5a+4P8Ag5CGP2ZfAY/6 nr/2yuKmStUuB+OZ6V/Rf/wTJ/5MD+FH/Yn239a/nQPSv6L/APgmT/yYH8KP+xPtv61Vb4UB7rRR RXOB/MPQetFB61/Yh/KZ9D/8Enf+Ugnw2/7CV1/6Rz1++Cfdr8D/APgk7/ykE+G3/YSuv/SOev3w T7tfgfih/wAj6n/gX5s/avDn/kU1P8X6I+cf+Ctv/KPn4if9eFt/6Vw1+C1fvT/wVt/5R8/ET/rw tv8A0rhr8Fs19d4Wf8iet/18/RHzXiP/AMjal/g/VhTX6U6mueOlfpx+dH7Pf8EE/wDkyW4/7HG8 /wDRcNfblfEP/BBKQH9iS4YD/mcrz/0XDX26HBGa/lnij/kosV/jZ/R/DP8AyIcP/hQtFAORnFFe Ce6FFFFAH5cf8HLf/IB+EP8A1+61/wCgWdflFX6u/wDBy3/yAfhD/wBfutf+gWdflFXRT+BAfuV/ wQEI/wCGALXn/mbNR/8AQkr7aJA6mvwU/Yy/4LBfGr9in4MR/BTwL8NvDeqWMepT3outUafzd0pG V+RgMDHpXrDf8HHf7TrDA+CngvP+9df/ABys3TlzAfsPrWr6foOm3Gt6tfR29paQNNc3E0gVIo1B LMxPAAAzX85//BQj9oyP9qn9r3xl8Y7CfzNNur8Wuit2NnAoiiI/3lTd9W967f8Aa1/4K4ftdftd +F5vAHinXrHw/wCHbni80bw7btCt0v8AdldmZ3X/AGchfavmDOBzWlOPLqwA9M5r+gL/AII3fDNv hp/wTz8BW9zbGO41q3uNXuAVxnz53aM/9+hFX4b/ALM3wG8UftN/HXw38EfCSN9p13Uo4Zp1XP2a DOZZj7IgZvw96/pU8BeD9G+HvgjR/Anh23EVho2mw2VnGP4Y4kCKPyFTWlsgP5xf25/+TzPih/2P Wqf+lL17p/wQe/5SL+Hf+wDqv/pK1eF/tz/8nmfFD/setU/9KXr3T/gg9/ykX8O/9gHVf/SVqp/D 8gPVf+DkTS7mH9of4f6yUPkzeD5YlbtuW6ckfky1+cQbYyvj7rZr9jP+Din4G6p4x/Z+8LfHDRdO eb/hEdae21Ro1yYrW6VQHb/ZEqRrn1kFfjkWyNmKKesUB/TL+yp4q0nxr+zR4B8U6JcpJa3vg/Tn jZOn/HsgI/AgivQO1fi//wAEvv8Agsxpn7Kfw+g/Z/8A2hfDmoal4XspnbQ9a0sCS4sFY7jC8TEb 4wckFTlc4wRjH2gP+C9n/BPLZz4s8TdP+hZl/wAaxlGVwPhH/g4LGP264QP+hNsf/Qpa+S/2cf8A k4fwH/2Oel/+lcVe2/8ABWn9qn4R/tf/ALUcfxV+C+oXlxpC+HbazMl9ZNA/mozlhtPb5hzXiX7O P/Jw/gP/ALHPS/8A0rirePwgfuh/wWZ/5RyfEP8A697T/wBK4q/n97fhX9AX/BZn/lHJ8Q/+ve0/ 9K4q/n97fhSpfCwP2z/4N3f+TF9Z/wCyk6h/6R2Nfc+t4/sa7z/z7Sf+gmvhj/g3d/5MX1n/ALKT qH/pHY191anA91p1xbRj5pIWVfqQRWMvjA/lmu/+PqT/AK6N/Ov0c/4Nuz/xf34gf9ipB/6Uivzl 1CCa21C4t542V45nV1bqGDEEV9Sf8Eiv23vAX7Ev7RV94h+Kltdf8I74i0n+z769s4vMezYSCRJS nVlyCDjkZyAcYreS90D9+q+I/wDgu5+094n/AGf/ANky18HeBtWex1Xx5qjaY11C22SOzRN8+09i 2UTPo57mu+g/4LHf8E6Z0Vl/aJs1LAfK2m3QP0/1dfK//BypbXeoeDPg94gs9zWK32sRySfw75I7 Jk/NY3P4VhFe8rgflB1+duT1zXd+Af2Xf2l/iroS+KPhn+z5428QaazFE1HRfC91cwOwOCBJHGVJ B6gGuFI445r9wv2Uf+Cv37AGj/s8+D/DOv8AxNXwvfaT4etLG80e60qYeRLFEqNtMaFSpIJBB5z2 NdEpSjsB+SY/YS/baH3v2RPiX/4Q99/8arzPxH4a8Q+DtfvPCvi3QbzS9U0+4aC/07ULdoZreRT8 yOjAMrA9QRkV+/w/4LE/8E6f+jjLL/wW3X/xuvxG/ba8feFPil+1z8RfiL4F1Vb7R9a8W3l3pl4q MomheQlXAYAjI9RUxlKW6A9b/wCCK3/KRrwJ/u3/AP6Ry19xf8HIf/Js3gP/ALHr/wBsrivh3/gi t/yka8Cf7t//AOkctfcX/ByH/wAmzeA/+x6/9srilL+IgPxzPSv6L/8AgmT/AMmB/Cj/ALE+2/rX 86B6V/Rf/wAEyf8AkwP4Uf8AYn239adX4UB7rRRRXOB/MPQetFI2euK/sQ/lM+h/+CTpP/DwX4bD /qJXX/pFPX74p92vwO/4JPnP/BQj4bH/AKiV1/6RT1+925duM1+B+KH/ACPqf+Bfmz9q8Of+RTU/ xP8AJHzn/wAFbv8AlHx8Rf8AsH23/pXDX4Lmv6LP2tfgCv7UH7PniL4Gv4kbSRr1vHF/aCw+b5Oy VJM7cjP3Mde9fntrf/Buv42SMnw3+0lpszfwi80WSMf+Ou1ehwBxLk+TZfUo4upyyc7rRvSyXRHD xxkObZpmFOrhafMlGz1Xdvqz83Ac9Ka+AwOK+4vGf/BAv9sTQI2m8K+J/COtqq52R6hLBI30Dx4/ UV4z43/4Jd/t5+AjI+rfs461dRx5zNpLRXikDv8AuXY/oDX6dh+KOH8Tb2eJh83b8z87r8O55h0/ aUJL0Tf5XPpb/gkL/wAFL/gH+zb8NZf2e/jU17pH2rXJr218QiHzLQeYqLskC/MmNv3sEc84r9TP Anj/AMF/Enw/B4q8A+KbHWNNuF3Q3un3Cyxv+Kmv5uvF/wAM/iF8P7trDxz4E1jR7hfvRapp0kLL +DgV0/wD/at/aA/Zm11dc+CfxMv9HbzQ89irCS1uMdpIXBRh26Z9CK+M4g4BwucVZ4zAVUpyd2m7 xb8n0v8AcfW5HxvisppxwuMpXhHRNaSS9Ha9j+jlN235qWvz2/ZC/wCC7fwv+I8tv4P/AGntGj8I 6m6hRr1lvfTpX/2wcvDn33KO5Ffevhrxb4b8Z6Hb+JfCevWmpafeRiS1vrGdZIpVI+8rKSCK/IM0 ybMsnrezxdNx7Po/R7H6nlucZdm1HnwtRS8uq9UalFRhwxzTh9zivLPU3Py6/wCDlv8A5APwh/6/ da/9As6/KKv6bPi9+zh8D/2gksIfjb8LtI8TJpbSHT11a1EotzJt3lc9N21c/wC6K4n/AIdtfsH/ APRq3g3/AMFK1pCooxsB/OTRjNf0bf8ADtr9g/8A6NW8G/8AgpWj/h21+wf/ANGreDf/AAUrV+1i B/OQSR0rsPgx+z78av2h/E0fg/4M/DnVPEF87hWWxtiY4s93kOFQepYgV/QbYf8ABO39hzTLgXFl +yv4LVlOVZtFjb9GBr1Dwf4C8F/D7TF0TwN4R03R7NPu2ul2KQRj/gKACk6vYD5T/wCCV3/BMDQv 2G/Cs/jfx9NZ6t8QdatVS+vIFDR6ZCeTbQsevON78bioxwBn7EA2jAowPSg7u1Yybk7gfzX/ALc/ /J5nxQ/7HrVP/Sl69z/4IP8A/KRfw7/2AdV/9JWr9evEf7AH7GHjLxDeeK/Ff7NXhO+1LUbp7i+v rjS1aSeVzuZ2PcknJNafw0/Yv/ZY+DPi6Hx38KPgR4d0HWIInjh1LTdPWOVEcbWUEdiODWjnpYDs viT8OPCPxY8Bat8NvHWlJfaTrVjJa39tIOHjcYP0I6g9iAa/CL9vn/glN8ev2PfF+oa14c8OX/iX wE0hk03xFY25la3jJOI7lV5jdem7G1uoPUD9+QcJ8w+tNnht7uBraeFZEkUq0brkMPQj0qYy5QP5 XtpP3qXHGK/pO8X/ALD/AOyH491CTVfF/wCzb4NvbqVt0lxJoMIdz6kqASaxj/wTe/YOC/8AJqvg 3p/0CVrT20ewH85QGDkV2X7OP/Jw/gP/ALHPS/8A0rir3T/gsP4V+CHw9/bX1T4ffATwzpOkaXo2 j2kF9Y6NGqwpdlS8gOP4gGUH0PHY14/+yD4bvPGX7WXw08M6fEWlvPHekphRnC/a4izfgoJ/CtdH G4H7ef8ABZj/AJRzfEIf9O9p/wClcNfz+544r+ob4g/DbwR8WPCd14D+JHhe01rR77aLzTb+LfDM FYMNy98EA15f/wAO2/2D+/7K3g3/AMFK1hGfLGwHz5/wbu/8mL6z/wBlJ1D/ANI7Gvu+TO3Irl/h R8Fvhb8CPDcng74PeAtN8O6TLeNdyWGl24jjaZlVWkIH8RCKM+iiuqqJO7uB/P3/AMFW/wBi7x3+ yt+074i1weGp18H+KNWm1Hw7qkUX7j98xke3yOFdGLDacfLgjivl4LlQ/rX9SHjDwV4S8faLJ4b8 b+F9P1jT5hiax1KzSaJ/qrgivKrz/gnV+w3qM7XN5+yx4LLN126LGv6KAK1jU01A/nHgUecg/wBo fzr+gz/gol+xmf21/wBkA/DjRZo4fEGmww6n4Zml4X7VHFjyieyyKWTPYkHtXTn/AIJufsIqMp+y t4Nz/wBgla9rtreO3iWGONVWNQsaj+EAYxUyqc1gP5efiL8NvH3wj8YXnw/+JnhO+0XWLCVo7qwv 7cxuhB64PUehHBHIzWKBjmv6c/id+z/8E/jRGsPxZ+E/h/xEI/8AVtq2lxTMn0Zhkfga4L/h25+w iTk/sreDfw0lar2yA/nJIB4IpAgByBX9G/8Aw7c/YQ/6NX8Hf+ClaP8Ah23+wf8A9GreDf8AwUrR 7RAfjn/wRW/5SNeBP92//wDSOWvuL/g5D/5Nm8B/9j1/7ZXFfYfw+/Yj/ZO+Efi218e/DL4AeGtF 1iz3C11LT9PWOaLcpVsMOmVJH0NdH8XvgL8IPj5o1r4e+M3w50vxJZWN19ptbXVbYSJFNtK7wD0O 0sPxqXP3rgfzGnpX9F//AATJ/wCTA/hR/wBifbf1qY/8E2v2EO37K3g3/wAFK16z4J8GeGfh54Ws fBPgrQrfS9J023EGn6faR7Y4Ix0VR2AolPmA1qKKKzA/mJEUxOFib/vk1INL1VhldNuCPaFv8K/p mtdI0mzXZaabbwr/AHY4Qv8AKrH2W2xlYF/75r9el4r1ebTCr/wL/wC1PyuPhnHriP8AyX/gn82f wm+I3xL+BHxG0v4tfDuWSx1vRZml0+7ksxII2ZGQ/K4IOVZhyO9fV3g//gvH+3B4cVU8Qab4S15V +81/okkTH8YJEAP4Gv2cNpbsPmgX/vmq114e0O+XF/o9tN/12t1b+Yrycdx1lubTUsZl8ZtaX5ne 3a9j0MHwXmeWrlwuNcV2tpf7z8vPC3/BxN4xhCp45/Zs0+b+/JpeuSR5+iyRt/6FXpnhH/g4S/Z0 1Jo4/F3wh8VaWzH55LcwXCL7/fVv0r7c1X4JfBzXwU134UeG7xW5YXWhwSZ/76Q1zOr/ALF37JGt Bl1D9mnwO27q0fhm2Qn8VQV49TNOEKz1wMo+cZv9dD1qeW8VUdsZGX+KH6o8p8Df8Fkf2BfGyp53 xffR5G4EesaXPFz9QrL+teteDf2vf2W/iHtHg/4+eE75pMBY01yFWOe21mBz7YzXH63/AMEyP2Ed eBF3+zV4djZurWtu0R/8dYVxPiL/AIItfsB68jCH4W3mms3/AC00/Wp1YfTczfyrikuFK3wOrD1U ZL80zsi+KKa95U5+jlH/ADPpjV9A8F+ONJ+xa9pGm6tYzDPl3MCTxsPXDAivDPit/wAErP2GPi6k smrfA6w0y5lB/wBM0CRrOQH1xGdufqprzqw/4IyfD7wA7XHwC/ab+J3gl2bcsWma6DCW/wBpNq7v xNadl+yj/wAFLvhq+fh/+3rYeI4V5W18Z+Fw272LozN+tOj7HCyUsFj+V+anD8romt7TER5cZguZ eTjL87M+f/jR/wAG8tuxmvvgB8cmUdYdO8U2YbHoPOhA/wDRdeJeFPCf/BUz/glz4gbVtJ8Kapce G7ebzLy3t86hpNymeSyoSYsj+LCEetfoXY/F7/gpX8NIVT4lfsw+FfHVvH/rL/wL4m+yzEepguwN xPopFbnhn/goP8M5Ln+yPjN8N/Gnw7u84f8A4Svw7KtqT3xcxb4se7Fa+go8TZ/7F0cXGGKpdU2m /vXvJ+qPDqcP5LKsquFlPD1Fta6X46W+ZxP7FX/BXf4AftSCHwh4vmj8F+LpCqf2VqlyPIu3/wCm EpwDz/C2G9M9a+tkl3rwd1fMXxg/4J//ALCH7bGkT+M9J0bShf3mWXxN4Nuo45PMP8beXlHPruBJ 71xfgbQ/27/2AIl07Wbu4+Nnwzt8JG1r8uvaTEOhCOT56hcfKGJ4/hFfPYzCZTjpOeBbpz6059/7 sv0dj3sJi81waUcalUh0qQ/9uj09UfahcdqcDkZrjfgz8c/hn8ePDCeLfhp4ljvrf7txCymO4tJO 8c0TAPE47qwBrsgc9K+eqU505uM1Zrue/TqQqRUou6YUUUVJYUUUUAFFFFABRRRQBleOrie08E6x dW0rRyR6XcPHIpwVYRsQQfUGv5yLv9uL9saO8mjj/ab8bKqzMAP+Ein6Z/3q/pA8R6U2u+Hr7Q1m 8s3lnLB5m3O3ehXOO+M1+V8v/BtbrNxO8x/aytvmcnH/AAiTcf8AkxWlNxW4HwX/AMNy/tkf9HO+ Nv8Awop//iqbP+29+2FcwtBP+0z42ZXGGX/hIp+f/Hq+9f8AiGl1j/o7G2/8JJv/AJJoP/BtNrAG R+1lbf8AhIt/8k1pzUwPy8v7+/1O+m1PUryW5ubiRpLi4mkLPK5OSzMeSSe5r76/4IJfsf8AiL4n ftB/8NQeINLaPw34LEi6dcSr8t3qLoVVU9fLQlmPYslfQnwT/wCDc/4J+Etfh1v42/GbVvFkEMm9 dL0/T10+GT2dt8jkf7pWv0E+HPw18C/CfwbY/D74ceF7PR9F0uHyrHT7GERxxrnPQdSSSSepJJOS amVRWsgN5elFFFYgDHAzimeZtHzClY4Jr5g/4Ks/tg+If2Qv2am1/wAESCPxF4h1BdM0e6ZQwtWK M7zYPUqiHH+0RXXgcFXzHGQw1H4ptJHLjsZRwGFniKvwxV2fTn2uMPsLLn03U9JQ4yPyr4C/4J0/ sP8Ah7xz8FrX9rz9pbx1r2ueMvFdjJe2ms3WvTxyaVaEkqUdXBDcbic4AOAMZz7P/wAE5P2rbz4+ fAzXNY8aa+t03g/xJeaTJ4juCI01C1iO6K5YnADGMjd7jPeu3HZT9WdX2M+dU2oydrau607q6t+h w4PNvrEabqw5PaJuKbu7LXXtoz6Vkk2rkCuT+Hfx0+FPxY1XXND+HXjmw1e88N6i1jr1taSZeyuA SCjggY5VhkcEqeeDXm3x2/bo+Bngb9n7xn8VfBPxO0XWrjw7pbmKHT75JM3LkxwrweQZMDIyODX5 2/sn/Cn9rmH4deHovgz8UdH8I+KPi5rb+IdT1fUtWWHUL21gm8uOOKM581f3txOQeHBxnsezLeH5 YzBVK9afs7NKPNom7NyvpeyWpy5hn0cLjKdGjH2l027au2yt0u2frR49+Knw/wDhZoqeIfiR4w0/ Q7GS6S3jvNSulhjaVz8qBm4yewrchvYbiFZ4ZFZHUGORTwwPQ1+T/wC234a/as+M37S3gn/gnlrf 7R0fji4uLmDUtSvo/C8dkNPbDkyS7JD5gSHc+Mr1UdTX2zpXhPxdob6X8JPix+29Zx3UKQxw6P4d 0210q6njVlEaZeSWQAjauVIJzweazx2SU8HhaNT2qcppysk/hvaL2vrrvYrB51UxWKqw9k1GDUbt rWXVb20+Z9FrJkZYUGT5ScV4Dc/t0eGPDX7X2s/steOPDf8AYlnpHhdNXTxdqmopFb3AIQsoVgOB uxuDHlSMV03xj+N/hTWP2Zdf+I/ws+NHhqxju9Lmt9D8VXl8psYbxgUjLOuekhA7kHseleXLL8VG UFKLSlaztp7221/8z0o5hhZQk4yTcb3XXTc9XSXf0FO3e1eHfsq3njv4D/spaNqn7XXxr03UtUhi kuNS8RXV8nkLG7lok844EgCEfN3zx0Fdlo37Tv7P3iCfSrbRvjBoFxJrl01tpKR6khN3MoUtGgzy wDLx/tD1qamDrQqSjBcyTauk7O3mXRxlGdOLm1FtJ2bV1c2Piv8AGb4a/A/wt/wm3xX8XWmh6SLi OA316xCCRzhV4B6mug0zUrTVrGLUrC5SaCeNZIZY2DK6sMggjsRX54f8Fbtfvf2nf2lPhd+wF4Kv WkN1q0eq+IlhY/uchlXdj+5D5r/8DFfoR4Z0Sx8M6BZ+HdMi2W9jax29uv8AdRFCgfkK68bl8cHl 9CtKT56l3btG9k/nr8jmweYTxeOr0or3KdlfvK12vloX6KKK8o9QMD0ooooAKPwoooAKMZ6iiigA wPSjA9KKKADA9KCAeCKKKAGhAOg/Oo7qytLqMw3VvHIrcMkihgR+NTUEZ6ijbYLJ7nF2XwD+Euke Lv8AhO/Dngey0jWGb/SNQ0dTaSXI/uzeVtEy+zhgO1dcsI8vB/WpdvuaTbjvTlKc9ZO/qTGnCHwq x5v4x/Z08Map4tf4oeA5m8L+LzCI31zSo1X7YoORHdRfduU/3vmH8LKa6rwlq/ieWH+yvGelx2+o RRjzJLUlre4H99CeRz1RuRn+IfMd/bxgmkMeWzn9KqVWpOPLPWxEaMISvHT8hU+6KWgcDFFQahRR RQAUUUUAFFFFABRgelFFABRRRQAUUUUAFBOOtFB6c0ARTywwq0k7hVVdzMewr8uf+CgfxvuP+CoP xP0/9i/9lX4enWpvDOtveXvi64uvLtY2RGikI4I8obsbzyxxtB4J+6v299b8V6B+xx8StX8EGVdT i8I3n2d4c70BTDsMcghCxz2xXwB/wRw+Hni7x1+yl8WrL4C+O7Lw78RdQ1W2tIdZu4yz2dn5YYMu PmUsTKA3YgHqOPtOGaFLB4Krm8rc9OUYxveycvtStq0l0PjeJK1TF4ynlSXu1IuUrWu0vsq+l2e2 fsC/A/8A4Kj/AAe8a6J8NfjV4o8LN8M9Dsms5tJe4guZHtwrBFi8tQ4OccuQNvBBrM/4KdateeI/ ih8Of+Cc/wACba18O2/jzU0vfFUOjW6W6valyPmCAZGI5JG9fLHWvUL79k3wt+y98GdL+IFj411y 6+JFjdWQk8ST6/dSPrN/LNGjwNE7lXik3MBGV4HIwQTXQ/tK/sN+Ifij+0p4L/a4+EXxGtfD3jHw pbNZv/a2mm7tbq1ZZVwVV0IYCeXHODu7YzRDNMLLOPrlXlStK3LHli5pe7JpN9Xe/wCASy3FQyv6 rT5m7xveV2oNq8U9Omlj5S/bx+CHwi8fftLfCv8AYA/Z98Kw2M1jplsvjLULVmH2fS4XeVIpTnBY AzzFiMlpUJPOBnaH448BfF3/AIKCat8fLK5jt/hL+zj4b+zaTJb/ACW7PbxvHBDF675txAGcqg9Q a+mtG/4JmX+i/tKap8covjZd3Fv4o8Pix8YLcWA+3XspYGYxShtsCSgKpCqSq5VSM5GZ8Pv+CUNl 4Q+E3jb4LX/xJgm0LW9R1C98OwWmlmJrWedCkUty28+eYV+VFAVV5bkkbfQp51lcMLGk6rdoct7O 95v94/W2i8vuPPqZLmU8RKoqaV5X6WtBfu16X1fmfMXwK+NWofCf4afFT/gq18U4lm8W+OdQuNJ+ HOnzHJQs20suf+WcYCL/ALsBHVhnuPhp8PfH/wAGv2XfAPxo8R/C6D4ieNvi58QNP1Xxh/aEMl3q P2ASfaY0t0WRXZ40TzMA7Vb7w2jj2s/8Er9P8W/shL+zv8T/AIgw3OsWOiw6foGraXYGO10wRSiU OkLMSzyyLumckF84G0ACvUf2Z/2XvHPw6tdB1r45fEe38Ua34X0UaR4d/s+xNtZ2NqFClxGWJad1 VQ0hxwNqgDOefH55l06M5U2m+e1tdYRjaEVtZJ6vbXU6cHk+YQqQjUVly3vppJu82+76LfQ+cf8A gpp4svPB/wAAfE3xj8f/AA7t7fxV48az8L+BdI1KKG5u9LtNrvK3y7lSZy0jHYTt/dgkla+ffjB4 N8aeHvgv8I/+CUPw6Am8SeIryLXfHUiy5W0lmYyLbt2CxoS757xqe9foT+2f+yBrX7TurfD/AMUe GvGVlpGo+BPEh1KBdU003dtOrBQQ0QZdzqURlycdQetcRc/8E0Y7X9pe2+OXhr4pTWtvdeGZdL8S edal9Qu5ZZA81xFPuAhkkGULBTsViExwVWV53l+FwNOM370eadtWlJLlgvRK703e4sxybHYjGTlB aPljfS/K3eb9W9PJbHzufs/7d/7ePhn9kjS7iS6+E/wZ02MalbNMfK1aW2VIyzgH5laQhB1yiseN 2Bi+Lbf4XfGv/gqBda94H0uz0H4c/BuRtb8X6xDuW3kvIFUSSdSAS0UUSqoGRCSB1r6h0r/gnBrn wt/aV8Q/GT9nj4tw+FdF8aaWll4k0n+yvOnt1G3c9nIWCxu23IZ1bazE4PAGD4L/AOCSWl+FPD/x K+HEvxUk/wCEV8bXUt1Y2NvZn7TFMYysX2iYsTPHEzF1QbdzHLE9K6IZ1ldN3hUaXs1GKs95P95J 6WctXbp5mMsnzOpG0qd3zuUndaqK9xLrbRXPKP8AgnjLqXjX4q+Nv+Cg3ivw59q8RfELxQ2hfDjT 7zJYwlh5soxkhI4YwrOOiwuO/P6TW+duW698V4d+xx+yHdfs2+B9E0Lxl4xt/EGqaDo50zS57Ww+ z29lbGTzHEaEsfMkbDPITlsAYAGK9ziGK+UzzHUsfmEp0/hWkf8ACtEvkvxbPp8jwVTBYFRqK0nq /V6u/wA9vKw6iiivHPZCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigCvfWFlqNrNY39rHNDNGY5YpF3K6kYIIPUEV+TP7dHg4f8Evv jXD8XP2OvEuqeHbjXpmTUNHmmSfT2Q5bYIimdoPQFjt7Yoor7bgf95j50Z6wlF3T1T9Vs/mfG8Zf u8LTqx0kpKzW69Huj7W/YxtdQ/aE8N6L+0H8ZvEN7r2tWsW7S7W58tLLTpGXDSwwxoo8wgkeY+5g CQCAa+lIlVo8kUUV8/nkY08znCKslslsvRdD3snblgYzlq3u+r9WP2L/AHaTy0/u0UV5CPUDy0DD C0BV447UUUuwC7VznFII0HRaKKYA6KB92kCqzciiigGOCKOi0oAHQUUUwCiiigD/2Q== ------=_NextPart_01D76819.203EB2D0 Content-Location: file:///C:/2223D501/04FormatoCienciaDigita_JazminMarisolMedinaRea_archivos/image004.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCADeAfwDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKMj1oAKKKKACiiigAoooo AKKKKACiiigAoqh4o8U+G/BPh+88V+L9dtNM0zT7dp76/vp1iigjUZLMzEAACvz8/aU/4OG/gN8O 9VuPDX7PXw8vvHE8DlDrN3ObGwYjj5NymWQZzztQdwTTUXLYD9EqK/GPVP8Ag47/AGvZrpn0T4Of Dq3gJOyO7s76Z1HoWW6QH8qr/wDERt+2r/0Sv4X/APgn1H/5OqvZzA/aSivxb/4iNv21f+iV/C// AME+o/8AydWv8Pf+Dhb9snxZ4+0PwtqPww+GiW+p6xbWk7w6TqAdUklVGKk3pAOCcZB+lHs5gfsb RVPxBr+k+FtAvfFGvXXkWOnWcl1eT7Gby4o1Lu2FBJwoJwASe1fMX/D7D/gmd/0ch/5aWrf/ACLU 2bA+qaK8o/Zq/be/Zi/a+m1aD9nj4lf8JA+hrE2qD+yLu18kSbth/wBIij3Z2N93OMc16vSAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorhf2hP2k/gv+yv4DX4mfHfxj/YeiNex2gvfs Fxc/vnDFV2QRu/IU84xx1rxD/h9h/wAEzv8Ao5A/+Ejq3/yLTSbA+qaK5X4LfGz4Z/tDfDnT/i18 IPEf9reH9UDmxv8A7JLB5uxyjfJMquMMpHKjpXVUgCiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiiigAoorM8Z+MvC/w+8L33jTxprttpmlabbNcX19dyhI4Y1GSxJ/l36U4xlJpR V2xSlGEXKTskHjLxh4X8AeFr/wAaeM9dttN0rTLZri+vruUJHDGoyWJP+T0rm/gH+0F8JP2mPAEH xN+Dfi+HV9KmlaJnVCkkMq9UkRgGjYdcEcggjIINfjv/AMFN/wDgpx4o/bF8US/Dv4c3Nzpvw606 5P2W1yySavIrcXM4/u8ApGfu9Tz08q/Ym/bX+Kn7E/xSi8b+CrprvSLt0TxB4ellIg1CEE/98yKC Sj44PqCQf07D+GmOrZK8ROXLXeqh0t2b/mf3LZ+X5xifELB0s3VGMb0NnLz7r+6vvZ/QpRXA/s3f tI/C39qn4WWHxY+E2urdWN3GBc2znE9jPgFoJV/hdScehGCCQQa76vzStRq4erKlVi4yi7NPdM/Q 6NaliKaqU3eLV011QUUUVmahRRRQAUUUUAFIzBVLE4A70teAf8FP/j9dfs3/ALEHjrx9pN79n1S6 0w6Vo8qthkubs+Srr/tIGZx/uUWuB+XH/BZD/go/4i/ag+Ld98CPhn4hkh+Hnha+a3ZbaQqus3sZ 2vPJg/PGrBljHTAL/wAQx8Qgd6Vmd2LuxJJySTyTWt4A8C+Kvif440j4ceB9Ke+1jXdRhsdNs4+s s0rhFXPYZPJPAHJ6V1RSirDaMiiv3J/ZD/4Id/sn/BbwVY3nxx8J2/j3xZLCr6lcaqWaxgkPJjhg BClR03PuLdeMhR70v/BPf9hVQFH7H/w34HfwdZn/ANp1HtYiP5vK6b4K/wDJY/CX/YzWH/pRHX9D 3/Dvj9hX/oz/AOG3/hG2f/xupbD9gf8AYi0q+h1PTf2Svh3b3NtKstvPD4QtFeN1IKspEeQQQCD7 Ue1iB1X7QYz8A/G3r/wiOo4/8BZK/mMyexr+pXxR/wAI9/wjeof8JatsdK+xS/2kLxQYTb7D5m8H grtznPGM18k/aP8AghkeukfADP8A2CtO/wDiKiEuUasfNH/BtVzrPxXz/wA+ul/+hXFfq5XjP7KM n7CL3Gs/8MZ2fw+ilCQ/26fA9pbxErlvK87yVGRnfjPvXs1RJ3dxBRSM6ICzsAAMkk8CvP8Axv8A tYfsxfDa7fTvHn7QPg7SbmM4ktL3xFbpMn1TfuH5UgPQaK8b/wCHhv7Dg/5uq8Ef+D2L/Gk/4eG/ sN/9HVeCf/B7F/jTswPZaKx/AXxA8E/FHwlaePPh14osta0a/VzZanp04lhnCuyNtYcHDKyn3U15 1qn7fX7FmiancaNq/wC074Ntru0neG6t5tbjV4pEYqyMM8EEEEe1KzA9dorxv/h4b+w5/wBHVeCP /B7F/jR/w8N/Yc/6Oq8Ef+D2L/GnZgeyUV5R4f8A26v2NfFOoppGg/tPeCLi5kOI4v8AhIoFLH0G 5gCfavVLe5t7uFbm1nSSNxlJI2DKw9QR1pWaAfRRRQAUVn+IvFfhjwfpr6z4u8RWGl2cQzJdajeJ BGo9SzkAV5nqf7e/7FWj3LWl/wDtS+BVdTghPEcDj81YihJsD1yivG/+Hhv7Dn/R1Xgj/wAHsX+N aPhD9t39kX4geJrLwX4I/aK8Jarq2pTiGw06y1iN5Z5D0VVByT7U7MD5r/4ODgP+GEICOv8Awm1h /wCi56/ELJ9TX9MH7TT/ALMSfDpG/azt/Cknhb+0Itq+MbeGS0+04by+JQV343YPXrXz95//AAQx /wCgR8AP/BVp3/xFXCdkPQ3f+CLgH/DuXwDx2vv/AEsmr6orjfgIfgY3wu01v2cIfD8fg/8Aef2S nhiGNLIfOd/lrGAo+fdnA65pnxY/aO+BHwJns7b4yfFnQ/DUmoo7WKaxfrCZ1TAYru64yM/WoerE drRXjX/Dw79hs/8AN1Xgn/wexf40v/Dw39hz/o6rwR/4PYv8aLMD2SivILL/AIKA/sSahcraWv7V Hgcu5wobxDCo/NmAFeneGfF/hTxrpSa74O8S6fq1jKMxXmmXiTxOPZ0JB/A0mmgNGiiigAooooAK KKKACiiigAooooAKKKQnHagAYkdPWjOODXgv7YH/AAUZ/Zv/AGNbA2nj/wAR/wBo+IZIt9n4W0ki S7kz0L87YV/2nIz2B6V+av7QX/Bc39rn4o389l8LP7P8B6SzEQpp8QuLwrn+KeUYz/uotfUZLwdn meRVSjDlh/NLRfLq/krHzWb8V5Nk8nCrPmn/ACx1fz6L5s/aQsAMikDqOC2T9K/nU1v9s39rjxHe tqGtftN+PJ5WOcnxXdgL9FEgC/QAV13wr/4Kdfty/CO/ju9E/aH1/UoUYE2XiS6OowsPTE+4gf7p FfU1PCvNY0rwrwcu3vL8bP8AI+ch4lZa6lpUZKPfR/h/wT9/Xfahbk4B6CvxO/4Kv/8ABQz4n/tI fE3Uvgfpun6n4a8G+GtSe3fRbuNobi/uI3I865Q4IGRlIz93qeTx9afsWf8ABcz4a/FvUrT4eftN aRa+ENauWWO3162kY6bcuegfdlrYk92LLzywruP+CmP/AATK8I/tl+E2+LXwmjs7H4gWdmHtbuPa sOtwgZWGZhxux9yXtwDlcY8/h6hT4T4his6oNX0jJ7Rf8y6Nee8Tsz6tU4nyJvKa17ayitG12fVP y2Z+J3fpQAB0FX/FfhXxJ4F8T3/gzxjoV1puqaZcvb31jeRFJIJVOGVgfTFUK/oKM4zipRd09mj8 PacXZ7o9j/Yp/bV+Kf7E/wAVIvHfga7e60q6dY/EPh+aYiDUIQT1H8Mi5JV+qk9wSD+6v7Nn7S3w r/aq+Fdh8WPhNrq3dldKFurVziexnwC8Eq/wupP0IwQSCDX844AHSvYv2LP20/ip+xP8UovHPgG7 a50u6dU8Q+HpZSINRhBPUfwyKCdr4ypPcEg/B8ZcG0s+ovE4ZcuIivlJdn59n8npt9pwnxXVySqs PX1oN/OLfVeXdfNH9C340V59+zP+0x8K/wBq74WWXxX+FGtpc2dyoW7tHYCexnwN0Eq/wsp/AjBB IINeggg9K/nytRq4arKlVi4yi7NPdM/c6NalXpKpTleL1TXVBRRRWZqFFFFABX5zf8HH/jS40z9n LwL4EhnITVvF8l1NGD94W9swB/Oav0Zr8sv+DlyWRbP4QQDOx5dbZueMgWWP5mqh8aA/Kivur/g3 3+Dth8Q/20bz4gavZrND4L8MzXlruAOy7mdYI259EaUj3we1fCtfqH/wbT2Vs/if4taiyjzo7HSY 0P8Ass90T+qit6jtED9YRwKKKK5gCiiigDj/ANoT/kgnjfP/AEKOpf8ApLJX8xdf06ftC/8AJA/G /wD2KOpf+kslfzF1tSH0P1I/4Nqf+Qz8V/8Ar10v/wBCuK/UL4ieP/CHwq8Dar8R/H2txabo2i2M l3qV9MfliiRck+pPYAckkAcmvy+/4Nqf+Qz8V/8Ar10v/wBCuK7r/g4s/aF1Pwh8GvCX7O2hag0L eLNRl1DWRE5BktLUKEibH8LSyK3uYR71MlepYGfHP7fv/BXn4/ftb+J77wx8PvEWoeEPAEcrR2Wj 6ZdNDcX8Y48y7kQgvu6+WDsXjhiNx+QmyzF2JJJ5JPWg5xwK/TT/AIJaf8EV/Afxq+Fdh+0V+1fH qEthraGbw54XtblrcSW+cLc3Dr8+HwSqKV+XDEndgbXjBCPzLyPWjGeBX9A0f/BG3/gnGiBP+Gcb M4HU6rd5/wDRtL/w5v8A+Ccf/Rt9l/4Nbv8A+O1HtY9h3G/8EZgP+HaXwwA5/wBF1L/063lfhZ+0 V/ycF46/7HLU/wD0rlr+k34QfCH4efAb4c6b8JvhT4dTSfD+kLIun6fHK7iESSvK/wAzkscvIx5P ev5sf2if+TgfHX/Y5an/AOlctTT3YI46ivpr/gk9+yj8KP2yP2o5fhF8ZI9RbSF8NXV8o0y88iQT RvEF+bB4w7cYr9LP+Ifz9gH/AJ9vGP8A4Uf/ANrrRzjF2Yj8OeD+VfXn/BMz/gqT8UP2PPiJpvgj x74nvdX+GmoXKw6npV3M0p0pWIX7TbZyU28Fox8rDPG7BHSf8FdP+CWfgz9hbT9A+KXwe8T6ne+F td1E6dPY6zIkk9ld+W0q7ZFVd6MiPwVypTknIr4fHFP3ZxA/qesL+y1Sxh1PTbpJ7e4iWSCaJtyy IwyrAjqCCCDXy1/wVE/4KU+Hv2C/h7baZ4bs7bVvHviCFjoOk3DExW0QOGu5wCDsBBCrkF2BAOFY jtP+CZvi7UvGX7Anws8Qa5cGSceEoIJZXbJYQ5iDEnuRGCa/D7/gop+0Fqn7TP7Yvjb4l3l+81km ry6doaF8rDY27mOJV9AQC5x/E7HvWEI3kBxfx0/aS+Of7SviuXxl8bviXqmv3cjlokvLlvItwSfk iiHyRKMnhQB+dcOMdq3vhd8M/Gnxl+ImjfCv4d6O9/revX6WmnWiHG+Rj1J7KBkkngAEnpX66/BL /g3a/Zp0Lwfbf8L28feJNf8AEEkQa9bR7tLOzicjlY1KM7AHI3M3PXaK3coxA/Gyvev+CXn/ACkG +E3/AGN8H/oLV+pv/EP7+wF/z7+Mv/Cj/wDtddP8Ff8Agiz+xf8AAT4raF8ZPAcHigaz4dv1vNON 5rnmReYucbl2DcOemah1ItWA47/g4Ox/wwdBgf8AM72H/ouevxCr9vf+Dg7j9g6D/sd7D/0XPX4h U6Xwj6H7+f8ABFv/AJRyeAfpfZ/8DJq+Q/8Ag5Vx/wAJb8KR/wBQ/VP/AEO3r69/4It/8o5PAP8A u33/AKWS16p+0V+xb+zV+1hd6Xe/H34aQ+IJdGjlTTWmu5ovJWQqXA8t1zkqvX0rK/LMR/NcDjtS 7v8AZH5V/QN/w5w/4Jx/9G32X/g1u/8A47Qf+CN//BOM/wDNuFl/4Nbv/wCO1oqysO5/PxxnNek/ s0ftafHb9knx5b+Pfgr45u9OeOYNe6Y0rNZ36DrHPDnbICOM9R1BB5r9VP24v+CHH7L+sfBHXPF/ 7Nfha68L+K9E02a9sba31CWa21Dy0LmB0lZtrMFIVlIwxGcjivxiqouM0Fz+kz9in9q7wf8Atm/s 9aJ8cPCcYt5LtDb6zpu/cbC+QASwk9wCQVJxlWU969Yr8pP+Da74j6l/a/xQ+EtzdO1n9m0/VrOE t8scgaWGY49WBhH/AAAV+rdYSXLKwgoooqQCiiigAooooAKKKMgdTQAhYKMk1+fH/BTv/gsDY/By 4v8A4B/sw6nb3nilVaHWvEqESQ6S2cNFF2knHc8qh45bIWX/AILCf8FNbj4IafcfsyfAfX9nizUL b/ioNZtJfm0iB/8AlkhHSdx36opB6sCPyKeSaaVpp5C7sxLsxyWPck1+r8D8DxxsI5hmEfc3hF/a /vPy7Lr6H5hxjxjLCzlgMDL3tpSXTyXn3fT1LfiLxF4h8X65d+JfFWuXepajezNNeX99O0s08hOS 7OxJYn1NUwMDAJ/GjIPIr1H9lv8AY5+PH7X/AIv/AOEV+DfhB7mOFgNR1i5Pl2dip5zLKRgHGcKM sewNfs1fEYXAYd1KslCEd76JI/JqFDE4zEKFKLnOXa7Z5fn2pMEnPHFfr98A/wDggP8As7eD9Mgv vjz4u1bxfqhUGe1spjY2StjlQEJlcA/xF1z/AHR0rt/iL/wQ8/YX8ZaHJZ+GPCuseGb7ZiC/0vWZ ZNrdsxzl1YfkfevhaviXw5TxHs0pyX8yjp+LT/A+0peH2f1KHPLlT/lb1/Kx+JQDAkqv5195f8Es v+Cr+r/ATULL4CftDa5PeeCbiRYdI1i5kaSTQ2PAQk5LW54GP+WfUcZFeM/t2f8ABNX41fsQ6suq 6q/9v+EbqbZYeJ7KAqisTxHOmSYXPbJKnsTyB85gjIevosTh8l4uym11OnLaS3i+66prs0eBh6+b 8L5nezhUjuns1+q/4c/a/wD4KUf8E2PBP7bXglPjD8HHsLfx1b2Cy6ff2zJ9n16DaGWKV14JK/6u XnGQD8vT8YfF3hLxN8P/ABPe+C/G2h3Omarpty9vf2N5EUkglU4ZWB9/z/Gvtv8A4JWf8FVNT/Z5 1C0+Afx91ia68DXMwj0rVJ3LyaE5PA7k25OMr/B1HGRX2L/wUk/4Jt+Bv23PAq/GH4QyWFv47trE S6bqUDL5GuwbdyRSuvBJX/Vy5OM4OVPHwuV5pmHBOYLK80fNh5fw59v+B3X2fQ+yzLLcFxdgXmWW q1dfHDv3+fZ9fU/E+kwd2QcVpeL/AAh4o8AeJr/wZ410O50zVdMuntr+xvIikkMqnDKwPv8Ah/Os 6v1eE4zipRd09j80lCUXaSs0ewfsX/tofFP9in4pxePfAV29zplyyR+IPD80xFvqMAPQjosi5JR8 ZUnuCQf3W/Zn/aZ+FX7Vvwssfit8J9bW5tLhAt5ZuwE9jPjLQTL/AAsD+BHIyCDX85B3Z+U16/8A sZftm/Fb9iz4pw+Pfh/fNPp1wypr+gTSkW+owA/dYdA4ydj4ypPcEg/CcY8G0s+pPE4ZKNeK+Ul2 fn2fy22+z4U4sqZJV+r17ui3/wCAvuvLuvmj+hoGivOv2Y/2nPhZ+1h8KrL4r/CrWlntrhQt9ZSM BPYXGPmglX+Fh69GGCMg16LkZxX8+VqNbD1ZUqsXGUXZp7pn7pQr0sRSjVpyTi1dNdQooorM1Cvz J/4OUfDklx8Nfhf4tVSVtNc1C0Yjt5sMTj/0TX6bV8c/8F0fg7dfFT9gXWtb021Mt34P1a11tNq5 byULRTfgI5mY/wC4KqGk0B+ENfo3/wAG3vjuy0r9oTx58PLi42y6x4Viu7dCcbzb3ADfkJ/51+cg IPQ16r+xL+0tqf7Iv7TXhb46WEDzW2l32zV7SM4a5sZBsnjH+1sYle24LXRNXjYZ/SfRXOfCj4sf Dz42+AdN+Jnwu8VWmsaLqtuJrS9s5QwIPVWHVXB4ZTgggggEV0dcogooooA4/wDaF/5IH43/AOxR 1L/0lkr+Yuv6dP2hf+SB+N/+xR1L/wBJZK/mLrakPofqT/wbU/8AIZ+K/wD166X/AOhXFea/8HFe vXGo/tkeHNFdj5WneA7cIueMvc3Dk/U8D8BXpX/BtT/yGfiv/wBeul/+hXFef/8ABxp4VuNM/ay8 JeKxC3kar4HSNZCODJDdTBlH0V4z/wACp/8AL0GfntjPBr6k8P8A/BZb/goR4X0Ky8NaD8aLW1sd PtY7aztofDViEiiRQqIB5PAAAH4V8t9Oa/QT4Xf8G/3xR+L/AMOtE+KHgr9pnwhc6Tr+mQ31hMLC 55jkUMAevIzgjsQRVycVuI8q/wCH2n/BR/8A6LrD/wCE5Y//ABmg/wDBbT/go+Bn/hesP/hOWP8A 8Zr3T/iG2+Pf/RxXhH/wX3X+FJ/xDbfHrv8AtFeEv/Bfdf4VF6Y9D9SP2Y/GHiH4h/s6+BvHvi2+ Fzqms+FLC81C4Eap5k0kCO7bVAAySTgACv5xv2if+TgfHX/Y5an/AOlctf0jfAb4e6h8Jfgp4T+F 2q6hFd3Ph7w9aadPdQKQkrwxKhZQeQCVyM+tfzc/tE/8nA+Ov+xy1P8A9K5amnuOO59af8G+f/J+ c3/Ykah/6Mgr9v6/ED/g3z/5Pzm/7EjUP/RkFft/Sq/ESfnz/wAHHf8AyZ14P/7KZb/+m+/r8Ya/ Z7/g47/5M68H/wDZTLf/ANN9/X4w1dPSBSP3/wD+CcuuS+GP+CU/gvxJBjfp/ga8uUz6o07D+Vfg CzvKxlkcszHLMxySfWv6BP8Agmnocfif/glx4E8NyuVXUPBlzbFgOm951/rX8/8AfWF3pd7Npt/A Yp7eZopo26q6nDA/QgiinuxLc+5f+DfDwFpXiv8Abku/E2o26SS+GvBl5e2RdQdkskkNvuHodkzj Pua/bqvwu/4IMfF3Rfhl+3fa+H9dvY7ePxh4eu9It5ZWwpnylxGmT3YwbR6kgdTX7o5FZ1L8wPcK KKKgR8M/8HB3/Jh8H/Y72H/ouevxBr9vf+Dg7/kw+D/sdrD/ANFz1+IVdFL4QP39/wCCLf8Ayjk8 A/7t9/6WS1a/4KPf8FMPhx+wH4UtbOTSl8QeNNahZ9F8OpceWqxg7TcTuASkYOQABlyCBjDMtT/g i5/yjk8A/wC7ff8ApZLX49/8FNfjHrPxv/bm+I3ifVL1poNP8SXOkaWpfKx2lpI0EYX0B2F8erms 1FSm7geo+Nf+C73/AAUM8U6tLfaJ470Pw/bMxMVhpfh2B0jHYbpxI5Pvn8Kxf+H2f/BR/HPx2g/8 Jyx/+M14h+zD+zV8S/2tvjLpnwP+FFtbNqupLJIZ72by4baGNC8ksjAEhQB2BJJAHJr7hi/4Nt/j +0atN+0R4QVio3KthdEA+mcc1o/ZrcZ4Re/8Fqf+CjGoWc1hd/HGF4p4mjkX/hHbEZUjBH+q9DXy qWd3Z3HLEk4Hev0b1X/g3G+O2k6Xc6pN+0P4TZLaB5XVdPuckKpJA49q/OaeIwTvAWBKOVJHscVU XHoGh+jf/Btuf+MiviGP+pKi/wDSuOv2Hr8eP+Dbf/k4v4h/9iVF/wClcdfsPWFT42IKKKKgAooo oAKKKKADpXi37fX7V2k/sd/s36z8V5vKm1Z1Fl4csZG/4+b2QEJx3VQGkb/ZQ+or2n6V+QP/AAX8 +O934u/aJ0H4E2F239neFNEW6u4g3BvbkknI9oVix/vtX0nCWTxzvPaWHn8C96X+Ff5uy+Z89xRm ryfJqleD99+7H1en4b/I+FPFnirxF468UX/jPxhq81/qep3clzf3ly5Z5pXYszsfUk1Q9cDJ60Dp Xof7K37OfjD9qz47aF8EvBiFJdUuN17fFCyWdqg3SzN7KoOBkZJC9SK/pmrWw+CwzqTajCCu+ySX 6H8806dfF1404JynN/Ntnpn/AATu/wCCeXjv9uLx+Li4afSfBGkzL/b+uiLJY9fs8OeGlYYyeQgO 454Dft78Gfgr8MfgF4Asfhr8JvCVto+kWEYWOC3QbpGxgySN1kc92bJNM+BXwQ+H/wCzt8LtJ+Ef wz0dLPSdJtVjjAUb5nwN00h/ikY8lj3rr6/m3irinF8R4t6uNGPwx/V92/w6H9AcN8N4bIsKrpSq y+KX6Lsgooor5Q+nMbx/4A8G/FHwfqHgH4geHbbVdH1S2aC+sLyMOkqH2PQg4II5BAIwRX4lf8FK P+CaHjT9i3xZL4x8FxXOrfD3U7lv7M1EqWfTmY5FtcEdD0CucB/rkV+51Y/j7wJ4R+JvhG/8B+PP D9tqmkapbNBfWN3GGjlQ9iD0PcEcggEcivpuGeJ8bw5i+aD5qcvij0fmuzXf5M+c4i4cwmf4Xlnp Uj8Muq8vQ/md6gHGCa+6v+CWH/BVbVP2dNUsvgH8etWlu/AtzKI9M1Ody76E7cAdy1uTjK/wckcZ FcF/wUs/4JoeMP2L/GEnjTwZFdar8PNVuj/Z2obC0mmOx4tbgj0zhZDgP9civmLwv4Y8ReNvElp4 R8KaJc6jqepXCQWNjaRF5ZpGOFVVHJJJr98rwyTi7JeaTUqUle+zi+/k11/yPxHDyzjhjN+VJxqJ 2t0kv1UunX5o/aP/AIKQf8E2vAf7cngVPi98IZ7C28cQaeJtM1O2ZTb65Bt3JFK68HI+5LzjODlT x+L/AIx8IeKfh94pv/BHjXQLrTNW0y6e3v7C8iKSQyKcFSD9Px61+8P/AATP/Zs+Ln7Lv7M+m/D7 4x+PZ9V1GVvtMelO4eLRUYD/AESN+S4B5PO0MSFGOW4H/gqb/wAE0vD/AO1v4JuPij8NNLgtPiJo 1qWt5I0CjWYVGfs0v+3gHY56H5TwePzLhbi+GR495XiKvtMOpWhPtrp/26/w3Wh+h8ScLTzfBrMq FPkr2TlDv/wV+PXU/Eug5A4FTalpmo6LqVxo+r2Uttd2szQ3VvOhV4pFJDIwPIIIIIPpUNft6aau j8haez0PZ/2Hf20/iN+xR8YLfx54VuJbvRbt0i8S6AZiIr63B546LIoJKPjg56gkH96Pgz8X/A3x 3+GmkfFj4cayl9pGs2iz20ynlM/ejcfwupyrKeQQRX82GBjGK+6v+CJH7bt58GPi+v7Nnj7WT/wj HjS6VdKM8nyWGpnhNueizcIf9oIfWvzXxA4Wp5jg3mGGj+9pq8v70V+q3Xlp2PvuCOI54DFrA15f u5vS/wBmT/R/mfsdRSL0H0pa/BT9uCsvxt4Q0D4g+DdW8B+KrBbrTNa02ex1G2ccSwSxtG6n6qxF alFAH8137Zv7LXjP9jv9oLXfgt4vtpjFaXLS6LqDxkJf2LkmGZT0OV4YAnawYdq8sr+i/wDbt/YC +Dv7eHw5Twr4+jOna3pyu3h7xNaQhriwkYcgjI8yJiBujJGcZBUgEfjl+0l/wR+/bg/Z21e58r4V XvjHRY3P2bW/CFu94JE7M0CAyxHHUFcDn5iOa6ITT3A8W+DX7TX7Qn7PV3JefBL4x+IPDXnNung0 zUnSGY9i8WSjn3ZTivVE/wCCt3/BRVRg/tQ62ff7Pb//ABqvD774X/EvS7hrTU/h5rttKhw8VxpM yMp9CCuRUH/CA+O/+hK1f/wWy/8AxNV7lxnvH/D2/wD4KK/9HQa3/wCA9t/8are+Ff8AwVb/AOCg uu/E/wAOaJq37S+szWt5r1nBcwtb2+JI3nRWU4j7gkV80/8ACA+O/wDoStX/APBbL/8AE10vwZ8C eOIvjB4Ull8G6qqr4lsSzNp0oAH2hOT8tL3AP6Of2hOfgF43/wCxR1L/ANJZK/mLr+nX4/xyTfAf xpBDGzu/hLUVVVGSSbaTAxX80H/CA+O/+hK1f/wWy/8AxNRSaQdD9M/+Dan/AJDPxX/69dL/APQr ivZf+C/f7L2rfGH9mLTfjR4R0x7nUvh7fyT30cUe5jpkyhZ2GOfkdIXP+yHPavJf+Db3QNd0PWPi odb0S8s/MttL8v7VbPHuw1xnG4DNfqTqem6frOnz6TqtjDc2tzE0Vzb3EYdJY2GGVlPDAgkEHrmp k7VLoD+WLqK+1f8AgnD/AMFjvHX7FHhX/hT3xD8HTeLvBSTNLpsEN8IbvSmdtziIsCrxkknyztwz Ehhkg+r/ALf/APwQa+IWgeJ7/wCJ37F9pHrGiXUjTT+DJZxHdWBOSVt3c7Zo/RSQ65AG7Ga+BfGf 7O3x++HWpPpHjz4J+LNHuUbBi1Hw/cRE+43IAw9xkVpeM0Fz9Yk/4OOv2WyoL/Bjxsp7j/RTj/yJ S/8AERx+yz/0Rrxr+Vt/8cr8gP8AhAfHf/Qlat/4LZf/AIml/wCEA8d/9CVq3/gtl/8AiaXJAD+k 39lv9obwx+1Z8B/D/wAfvBuj3thpniGOd7W01Hb50YiuJYG3bSRy0RIwehFfzmftE/8AJwPjr/sc tT/9K5a/dr/gjrY3umf8E3PhnZalZy28yWupb4Z4yjrnVLs8g8jg5r8Ov2hfAvjaf4++OJofB2qu j+MNTZGXTpSGBupMEHbyKmnuwW59P/8ABvn/AMn5zf8AYkah/wCjIK/b+vxO/wCCAvhbxPo37dUt 5q/hy/tYv+EKv1825tHjXPmQcZYAZr9saVT4hH58/wDBx3/yZ14P/wCymW//AKb7+vxhr9pv+Dij R9W1v9kHwha6NpVzdyL8SbdmjtoGkYL/AGffDJCg8cjn3r8cP+EA8df9CVq//gtl/wDiaun8BSP6 A/8Agk2M/wDBO34WD/qAN/6Plr8e/wDgrN+zBq37MP7aHifTxpzx6F4pu5Nd8O3AjIjeG4dmeIHp mOXemOuNpP3hX7E/8EprO707/gnv8L7HULWSCaPQGEkMyFWU+fLwQeRW3+3H+w38Jv26vhQ3w7+I itZahZu03h/xDbQh59NnIwSASN6NgBoyQGAHIIBGcZcs2Sfzn6JreseGtZtPEXh/U57K/sbhJ7O8 tpSkkMqEMrqw5VgQCCK/Rv4I/wDBxx8WPBvhC28P/Gz4C2HjDULaJYzren68dNknwMbpI/IlUue5 XaM9q+cv2lf+CSX7bX7N2s3Ec/wl1DxZo0bE2+veEbR72OSPnDPFGDJEcDkMuB6kc14FdfDX4jWM zW954B1uGRThkl0qZSD9CtbNQlqxn6f/APETDpHf9ja4/wDC/X/5Bru/2Yv+C+emftI/H/wp8Cof 2W5tHbxRqyWK6m3jNZxbbgTv8v7Im/p03D61+QH/AAgPjv8A6ErV/wDwWy//ABNe7f8ABMfwZ4w0 /wDb9+FN7feFNThhj8WwNJLLYSKqja3JJGAKhxp2A/TH/g4NOf2Dbc/9TtYf+i56/EKv3E/4L+aX qes/sMQWmkabcXUv/CaWDeVbQs7Y2T84UE4r8Uf+EB8d/wDQlav/AOC2X/4mnSaUdQP3m/4IugH/ AIJx+AQf7t7/AOlktfiz+3T4H1L4b/tlfE/wfqsDxvb+ONSeHzBgvBJcPLE//Ao3Rvxr9rP+CNNh e6Z/wTu8B2OpWctvMgvd8M8ZRl/0uXqDyK8V/wCCxv8AwSk8U/tO6rH+0l+zrYQz+L7ayW317QC6 xnV4U/1csTMQvnIuVIP31CgEFQGmMkp6iPzN/YI/a6v/ANiP9pHS/jrb+FV1u1gtJ7LU9M+0eS81 vMuG2PtbaysFYZGDtwcZyP0th/4OO/2XXiVpvgt41RyMsmbU4P18zmvyZ8Y/AT45fD7WZfD/AI6+ DvijSL2FsSW2oaFcRNnPUbkGR7jg1k/8IB47HH/CFat/4LZf/iauUYSd2B+umvf8HFP7Luq6HeaV F8HfGqtc2kkSsRbYBZSM/wCs96/He5lWe7lnQcPIWGfc5rT/AOEB8d/9CVq//gtl/wDiaX/hAfHf /Qlav/4LZf8A4mnHljsB+g3/AAbb/wDJxfxD/wCxKi/9K46/YevyF/4Ny/DfiLRP2hfiBPrOgXto j+DIlR7q0eMMftcfALAZr9eqxqfGwCiiioAKKKKACiiigAPTmvwO/wCCr1/e6h/wUF+JUl8xzHq0 MUYY9EW1hC4/Dn8a/fH61+K3/BdT4NX/AMPf2zX+IKWjDT/Gmi297FcBflNxEPIljz/eAjjb6SCv 0bwwr06XEMoS3lBpeqaf5I+B8RaVSeRRnHaM039zX5s+MB0r9Tv+Deb4L6ZF4K8cftBXlsj3lzqi aDYysvzRRxRxzygHtuMsWf8AcFfljwev6V+rH/BvP8ZNEufhj41+ANxdompWWuDXbaFm+aaCaGKB yo7hWgTPp5g9a/R/EJ4hcL1fZ9483pf/ADsfAcDew/1jp+07St620/C5+j6kj5T1xS0g55pa/nI/ fEFFFFAwoIB60UUAY/jvwH4Q+JfhDUPAnjvw9bappOqWzQX1hdx745UbqCD37gjkEAjBFfPn7HP/ AAS3+AH7HXxC1v4leGTPrWq313J/YdxqkYZtGtG/5YRnJ3PyQZThiuBgc7vps57GkCkdTk967KOY 47DYaph6VRqE/iSejscdbAYPEYiFepTTnD4XbVXDYoOQMfShun8qWiuKx2H4/wD/AAXd/ZLsvhZ8 XtM/aL8GaYsGm+Nnki1mOGPCRalGATIfQyod3u0bnvXwNnLEelfuN/wWw8F6f4r/AOCf/ibU7iFT caFqOn39m5HKN9pSJj/3xK9fhyBjiv6N8Pcyq5jw7FVXd024X8kk19yaR+Bcc5fTwGfSdPRTSlb1 un+KuLUun397pGoQatply8NzbSrLbzRnDRupyrAjoQQDUVFfbtKSs9j5C7Tut0f0N/sKftBJ+07+ yt4P+Ls0yNfXmmC31gKfu3sJMU3HbLoWA9GFeu1+dH/BvD8SLjV/hN4/+FNzckromt2moWsZP3Vu o3Rsf8Ct8n/er9F/xr+V+JMvjlee4jDR+GMnb0eq/Bn9J8P46WY5NRry3cdfVaP8UFFFFeIeyFGB RRQAx7eCXHmQo2Om5c0n2Kz/AOfSL/v2KkooAj+xWf8Az6Rf9+xQLO0ByLWP/vgVJRQAjKGBVhkH rUYsrMDAtIv+/YqWigBscEMWfKiVc9dq4p1FFABgUjIjja6gg9QRmlooAi+xWf8Az6Rf9+xR9is/ +fSL/v2KlooAakUcahI41UDoFGBTTZ2hOTax/wDfAqSigBiW1tG2+O3RT6qoFPoooAbJDFKMSxqw ByAwzTfsVn/z6Rf9+xUlFACKiIAqIAB0AFLRRQAYHpTHt7eQ5kgRv95QafRQBH9is/8An0i/79ih bS1RgyW0YI6EIOKkooAa8MUo2yxqwHZhkU37FZ/8+kX/AH7FSUUAIkcca7I0CgdABilwDzRRQA14 YpRtljVh6MM037FZ/wDPpF/37FSUUAR/YrP/AJ9Iv+/Yo+xWf/PpF/37FSUUAMjt4Im3RQopPUqo FPoooAKKKKACiiigAoorE+I3xE8FfCfwVqPxD+IfiK20rRtLtzNfX13IFSNR/Mk4AA5JIAyTVQhO pJRirt7Imcowi5Sdki34m8V+GfBmjS+IvF3iCy0uwgKia91C6SGFCzBV3O5AGSQBk8kivn7/AIKc fsZ2/wC2h+zlcaF4diiPivQXbUfC07EDfIFw9uW/uyKMegYIe1fl5/wUg/4KT+Nf21/GTeG/DM11 pHgDSrk/2RpG7a96wJAurjHVjn5UyQg9SST9B/8ABJ//AIKyy6C2nfsyftReIy1gWW38LeLL6Uf6 NwAlrcMf4OySE5BIU8YI/RocFcQZJgaWbUX++g+ZwW6X6vfmXbufAT4uyTOMbUyyqv3U1yqfRv8A TybPzg1jR9W8O6rc6Fr2mzWV7ZXDwXdpcxFJIZUJVkZTypBBBB6V2P7OH7QnxB/Zd+MOkfGb4bXo i1DSpsvBIT5V3AwxJBIO6spI9jgjBANfqR/wVZ/4JXWf7RFjc/tF/s+6XDF41gt9+r6RBwmuxqPv r2FwB0P8YAB5wT+Qeo2F/pN/NpWq2UtvcW8jRT286FHidTgqynkEEEEGv1fI87y7ivLHZK7VpwfS +69H0f6n5nnGT4/hrMFd6J3hNdbbPya6r9D+hn9j39sH4Vftk/CuD4k/DrUFjuECx61os0gNxp1x gExuO6nna+MMB6ggeshga/nO/ZY/am+Kv7IXxTtPij8K9YKSREJqOmzMTb6hbk/NDKvcdweqnBGC K/db9jv9sT4V/tm/Cu3+I3w4vlhuYgsWuaHNKDcabcYyUcDqp52v0YD1BA/F+MOD6/D9d1qN5UJP R9Y+T/R9T9a4V4ro55R9jV92tHdd/Nfquh65RRketFfEH2YUUUUAFFFFABRRTWbnAoA+QP8AguL8 QrHwd+wfq3huadVufE+tWNhapnk7ZhcOfpthI/4EK/Ece1feH/BeH9p62+Knx+0z4C+GtRWbTPAc LnUWicFX1GYKXU46mNFVfZmcV8Hjk5r+jvD7LqmX8Nwc1aVRufydkvvST+Z+A8cY+OP4gmobQSj6 21f4toWiiivtj5E/Rf8A4N1rmdPi98SLJWPlP4cs3cerLcOB+jN+dfrDX5if8G6XgudI/ih8Q5os Ru2madbPjqQJ5ZB+sX51+ndfzbx/UhU4rr8vTlXz5Ufv/A0JQ4ao83Xmf3yYUUUV8afWnCftL/Hn w9+zF8DvEHx28WaRd32neHbVZ7q0sNvnSK0ix4XcQM5cHk9q+KP+Ijv9l7/oivjf8rX/AOO19Bf8 FdOP+Cc/xRP/AFBYf/SqGv5661pwUlqB+yf/ABEd/svf9EV8b/la/wDx2j/iI7/Ze/6Ir43/ACtf /jtfjZRWns4gfsn/AMRHf7L3/RFfG/5Wv/x2ut+Hn/BwJ+wr4xv4tN8TweLvDDSEA3Oq6KksCn3a 3kkYfUqBX4f0EGl7KIH9P3wo+M/wo+OfhSLxv8H/AIhaT4j0qXgXmk3qzKjf3XAOUYd1YAjuK6av 5pf2Wv2s/jV+x/8AEy1+Jnwc8VTWkscijUNMlctaajCCC0M0fRlI43feXOVINf0E/seftVeA/wBs j4EaP8bvAZ8lL1DFqemvIGk0+8TiWB8eh5B43Kyt3rKUHED026u7Wxt3vL25jhiiUtJLK4VUUdSS eAPesf8A4Wd8Nv8AooWh/wDg2h/+Krh/24yV/Y1+KbqSCPAGrYIP/TrJX82gurjHNxL/AN/D/jTh DnQH9SOjeJvDfiJZG8P+ILK/ERAlNndJLsJ6Z2k4zg1er8wv+DamWSXwd8XDJKzY1PRsbmJx+7vK /T2okrOwBRRRSAKKKKACgnHWiigDFl+JPw7glaCfx7oqOjFXR9UhBUjgggtwan0rxp4O126+w6H4 s0y8m2lvJtL+ORsDqcKScV/NF+0Nc3I+P3jkC5k48Yan0c/8/UlfWf8Awb73FxJ+3fKkk7sP+ELv zhmJ/jhrR0/dvcdj9va+d/28/wDgo58L/wBgJfDbfEfwVrer/wDCSm5Fp/Y/lfu/J8vdu8xl6+YM Y9DX0RX5X/8AByv/AKr4Tf72rf8AttUxSk7CO+P/AAcefsvZx/wpXxv+Vr/8dr76+HvjGx+IngLR fH2mW0sNtrelW9/bwzY3ok0ayKrY4yAwziv5cj94V/TX+y9/ybX8P/8AsStL/wDSWOqqRUdgO6oo orMAooooAKKKKACvLf2xP2qvB/7GXwQvfjr468P6hqen2V7b20lppmzzWaaQIpG8gYBPPNepV8a/ 8F5P+Udmv/8AYf0v/wBKVpxV2gW55x/xEd/svf8ARFfG/wCVr/8AHa+wv2P/ANqXwj+2R8DdP+PP gfQNQ03TdRurmCG01PZ5ymGVo2J2EjkqSOelfzVV+8P/AAQk/wCUcPhb/sNat/6WyVpOEYrQD7Do oorIAooooAKKKKAMX4h/EDwh8K/BepfEPx9rkOm6NpNq1xqF9cNhIox39ySQABySQBya/EH/AIKQ /wDBSTxr+2z43bw54clutK+H+k3JbSNHYhXvHGQLm4x1cg/KmSEHuST+5XiPw9ovivQ7rw14j0m3 vtPvoGgvLO7iDxzRsMMrKeCCO1fjJ/wVF/4Jca1+ylrc/wAYfg5p8998PL2bMsSlpJdCkYn93IeS YScBZCeCdrc4Lfo3hxVyOnmrWL/jP+G38Pmv8Xb8NT8/4/pZxUy5fVv4S+NLfy/7d7/jofF4GBya UOytlcj6UnC/K2cj1pelfv8A0PxJNvY/Sb/gk7/wVlPhttP/AGYv2n/En/EvysHhbxVeyf8AHoMA La3DH/ln2SQ5K5CnjBHrf/BVP/glXp37QmnXf7Qn7PGkQW/jaCHzdW0m3GE12Mc71xwLgDof4wAD zg1+PrHBBA/Gv0j/AOCTn/BWT/hE3039mH9pzxITpjstv4V8UX0g/wBD4wlrcOf+WfZZDypOD8uC v5hxFw5jcnxrzrJdJLWcFs11aXZ9V81qfoeQ59hM1wv9kZu7xekJvRrsm+/Z/J6H5xahYX2kX82l anYzW1xbStFPBPGUeJ1OCrKeQQeCDXoH7Ln7UfxW/ZG+Ktp8VPhZrBjliYLf2EpzBfwE/NDKvcHs eqnBBBFfp/8A8FUf+CVml/tD6XeftBfs+6RBb+N4IfN1TSrf5Y9djHO5ccC4A6Ho44PODX5JeHvh 3458V+Orb4aaB4UvrnxBc3v2OHR47ZvPM+4qYymMggg5B6YOelfTZRnmU8VZTKU0rWtUhLp3+XZ/ qfO5rk2acN5nFQbve8JR6+Xr5fof0B/sc/tjfCn9s34VQfEX4c3wiuowseuaHPKpuNNuMco4HVTz tfow9CCB69XyX/wS9/4Jw6f+xT4Ll8YeM7wXvjzX7RU1Z4Jz5FjFkMLaMcByCAWcjkjjA6/Wlfzt nFLLqOZ1YYCblST91v8ArVdn1P3nJ6mPq5dTnjYqNRrVL+tH3XQKKKK8w9MKKKKACvA/+CiX7Z3h z9jD4B33i97qGTxLqsb2fhTTXcbprkjmUr3jiBDt/wABXqwr0X9oT9oD4a/sz/C3Uvi58U9cWz0z ToiVRWHm3Up+5DEpI3ux4A/E4AJr8Ff2zP2uPiH+2Z8aLz4qeN5WhtkZodB0hHzHp1oGJWNfVj1Z +rMc9MAfbcFcL1M+xyrVY/uIP3n/ADP+Vfr2Xqj43i/iWlkmDdKm71prRdl/M/07s8z8Qa/rPivX r3xR4j1GW71DUbuS5vruZsvNM7Fndj3JYkn61Uoor+jYxUYqK2R+DNuTu3dsKQnPAx+dKcY5r079 jT9nTWf2qP2j/DHwa0qFzb39+surzopP2ewjIeeQ46fICBnqzKO9Y4nE0sHhp16jtGKbfolcuhRq 4mvGjTV5SaS+bsfr5/wRm+CM/wAHP2HtB1DVLMxah4tuJdbuQwwfLlwsH4eSiN/wM19XVT0DQtK8 M6HZeHNDs0t7OwtI7a0gjGFjiRQqqPYAAVcr+T8yxs8xzCrip7zk3972+SP6by7Bwy/A08NHaEUv u/zCiiiuI7T5v/4K6/8AKOb4o/8AYFi/9Koa/nrr+hT/AIK6/wDKOb4o/wDYFi/9Koa/nrrelsPo fUH/AASf/Yz+GH7cP7Qur/Cr4r6pq1pp9j4Um1KGTR50jkMqXEEYBLqw24kbt1xX6Gf8Q7v7F3/Q 7eOf/BnB/wDGa+T/APg3T/5PS8R/9k8uv/Sy0r9qKmpKSloI/PPxZ/wbmfsqalpMsPhL4t+NNLvS h8m5nkt7mMN23J5alh7Bl+tfm1+3X+wL8ZP2DviHB4U+IRh1LR9TDPoHiSxjYW98q43KQ3+rlXI3 Ic9QQSDmv6Ma+Z/+CuP7PmlftBfsMeM7ObT0l1Pwxp76/ospX545rVGd1U/7cXmpjvuHpSjUknqB /PnX6Df8G9v7St/4A/aU1X9nbWNQYaP430x57GF2+VNRthuUgHpuh80HHUon4fnzXqP7Efj+4+Fv 7X/w18eW8rILDxpp5nKHBaF51jlX/gUbuv41tNXjYa1P6M/ir8PNF+Lvw1174WeJJ54tP8RaPcad eyWrhZFimjMbFSQQGwxwSK+J/wDiHe/Yuxj/AITbxz/4M4P/AIzX1V+2jqWo6N+yH8TdX0e/mtbu 28C6pLbXVtKUkidbWQqysuCpB5BHSv53/wDhpb9o3/ov/jb/AMKq8/8AjlYwjJ7MR+/H7Ef/AAT8 +Dn7BmneIdL+EWs63eR+JZ7aW+OtXMchQwLIE2bEXH+tbOc9q92r82f+DdX4jfEL4h+EvirN4/8A Hes649rqOkC1fWNUmujCGju9wQyMducDOOuB6V+kGpalp+j6fPqurX0Nra20TS3FxcSBEiRRlmZj wAACST0qZJqWoE1JmvyZ/by/4L7eMp/El98Nv2KFt7HTrSVopfHF9ZpNNdsMgtbQyAokeejurFuu 1e/wn4w/ba/a/wDHuoPqfir9pnxxcSucts8SXEKf98Ruqj8BVKnJgf0p0V/Mj/w0t+0b/wBF/wDG 3/hVXn/xyj/hpb9o3/ov/jb/AMKq8/8AjlP2T7gf03UhbI6V/Ml/w0t+0b/0X/xt/wCFVef/AByv 6Pf2eLu71H4AeBr/AFC6knnn8H6ZJPNM5Z5Ha1jLMxPJJJJJPXNRODigPknxh/wQF/Y88b+LtV8a ar4y8apdavqU97crDqUARZJZGkYKDDwMscV6F+yD/wAEl/2dP2K/iyfjD8LvEnia61N9MlsTFq17 FJF5chUscLGpz8o71+MXx8/aL/aDsPjr41sbH47eMoYIfFupRwwxeJ7tUjQXUgCqBJgADAAFfU3/ AAQe+MXxc8d/tvS6J43+KfiPWbIeDr6QWmq65cXEW8PDhtsjkZGTzjvVuM+W9xn7NggnANflh/wc sHEPwm/3tW/9tq1v+Dib4mfEb4eTfC8eAPH+t6H9qXUzc/2Pqs1t5202+N3lsN2MnGemTX5YeMPi X8RviF5H/Cf+P9b1z7Lu+zf2xqs1z5W7GdvmMducDOOuBThB7iMM4yDX9NX7L3/Jtfw//wCxL0v/ ANJY6/mVIz3rsrH9oj9oDTLKHTdN+OnjG3t7eNY4IIPE92iRoowFVRJgADgAVc48wH9OZOBmivx0 /wCCBPxf+LPjz9sXWNI8c/FDxFrVongm6kS11bW57mNXE8ADBZHIBwTz15r6Z/4OCfHfjfwB+yh4 X1XwJ4x1XRLqXx1FFLc6TqEttI6fZLk7S0bAkZAOOnArDlfNygfeVFfzIj9pb9o3H/Jf/G3/AIVV 5/8AHKP+Glv2jf8Aov8A42/8Kq8/+OVfsn3A/puo71/Mkn7TP7SEbiSP9oLxurA5DDxXeAj/AMiV 7T+zT/wV+/ba/Z08Q2s1x8Vb3xfoSSL9s0DxVMbpZk7hZnzLE3oVbGcZDdKPZMD+gSvjX/gvJ/yj s1//ALD+l/8ApSte9fsgftYfDX9sz4I6d8avhpM6Q3JMOpabOwM2nXageZBJjuMgg/xKVbvXgv8A wXk/5R2a/wD9h/S//SlaiKamhrc/CWv3h/4ISf8AKOLwt/2GtW/9LZa/B6v3h/4ISf8AKOLwt/2G tW/9LZa2q/CI+w6KKK5wCiiigAooooAMc5qj4h8O6H4q0S68OeI9JgvrC+gaG8s7qIPHNGwwysp4 IINXqDntQm07rcUopppo/Fr/AIKjf8Etda/ZV1m4+Mvwa06e++Hd7NmeAbpJdCkY8JIeSYSSArk5 BO1ucFvisE5xke1f02a/4f0bxTo914e8RaXBe2F7A0N3Z3MYeOaNhhlZTwQRX40f8FSf+CWus/ss azc/Gb4L6bPffD28m3XMC7pJdCkZv9W/cwkkBZCcgna3Yt+48EcbrHKOX5hL95tGT+15P+9+frv+ N8YcHvBSljsFH3N5R7ea8vLp6HxX25HWkdVOCR0OQfSgcYUZo65BFfqmqPzbRqzP0h/4JQ/8FZX8 ISab+zN+054iZ9JcrbeF/FF4+TZHGFtrhj1i7K5yVyAflwV/RXQP2X/gDoXxtvv2k9C+HenR+LtW slgudZiTl15y6rnarsCAzgbmAAJNfzkj5en86/RH/glz/wAFff8AhVlvY/s9ftS61PN4djKweH/F MuXfTFxhYbg9WhGMB+SmcHK/d/JOMuC68faY/KrpyX7yEdLp7tJb+ceu6P07hPi2k3DBZnZ2fuSe tn2bf4PofrOFAOfelqpomu6N4k0m217w/qkF7ZXkKy2l3ayiSOZGGQyspIYEdxVvNfirTi7M/X01 JXQUUUhZRxmgYprgv2iv2kfhT+y58Nrz4ofF7xFHY2FspWCFcGe8mx8sMKZy7n06DkkgAkeP/tu/ 8FTf2ff2PtPuvDkWpR+J/GgQrb+G9LnVvIk7G6kBxCvty5/u9x+N37UP7WXxp/a7+IUvxB+MHiRr l1LLpumQZS00+InPlwx9h0yxyzY5Jr7rhfgfHZ5NVq6dOh36y8o/57drnxXEnGODyeLo0Gp1uy2j 6+flv6HU/t1/t4/E79t/4ltrviOaTT/DmnSOvh3w9FJmK0jJ++/9+VgBub2wMCvDB0pMelLjHAr+ gcHgsLl+Fjh8PHlhFWSX9avu+p+IYrF4nHYiVevLmlLd/p6IKCcDNFBz2rpOZsQHJGRkHtX7Nf8A BFX9iKb9n34NS/HP4g6T5XivxtbxvbwzJiSw0370aYP3WkyJG9gg7Gvj/wD4I/8A/BOy4/aT+IUX x2+KWjEeBvDd6r2sFwpA1i9Q7hGo/iiQgF/U4XnLY/ZyGFIYxHGoVVUBVUYAHtX434j8Txmv7Kwz 86jX3qP6v7u5+rcAcOzi/wC08Qv8C/OX+X3jx060UdKK/Hz9XCiiigD5v/4K6/8AKOb4o/8AYFi/ 9Koa/nrr+hT/AIK6/wDKOb4o/wDYFi/9Koa/nrrelsPoffv/AAbp/wDJ6XiP/snd1/6WWdftPX4s f8G6f/J6XiP/ALJ3df8ApZZ1+09RU+MQVg/FPTIta+GPiPR50DJdaFdwurDghoXU/wA63q5b44+I rPwl8F/FvijUJxHDp3hm+uZZGPCqlu7E/pULcD+Ye6i8m7lhHRJGUfgcVo+Br6XTPG2j6lC2Ht9V t5EI7FZVIP6VmzSGaZ5j1dy2M+prY+G2lya38RdA0aEZe71q1hXju0yr/Wutgf0X/tpStP8AsRfE yd+r/DnU2P1Nm9fzbV/SX+2vB9l/Yn+J1t/zz+HeqL+VnIK/m0rKlsB+sv8AwbS/8ib8Xf8AsJ6N /wCi7yu7/wCDgX9qrV/hL+z5o/wA8Iam9tqPj+6l/taWJsN/ZcAHmR8dPMkeJSe6q471wn/BtL/y Jvxd/wCwno3/AKLvK8J/4OF/F13rn7cGneGpZP3OieCbOKJB0BklmlJ+p3D8hU2vVGfCBOBnFfSn 7D3/AAS0/aQ/botJ/FXghdP0HwtbXBgl8Sa6ZBFNIMbkgRFLTMM8/dUdC2eK+bYYJbqZLWBCzyOF RR3JOAK/pu/Z1+EHh74BfAzwr8HfC1tHHZ+H9FgtVMS4EkgUGST6u5Zye5Y1U5cq0B3PzEX/AINr PiZgbv2pNCzjn/inZv8A45XzD/wUS/4Ju+I/+CfF14YtfEHxQsfEh8TJctEbPTng8jySgOdzNnO/ 9K/oNr8pf+Dlb/kK/Cn/AK99U/8AQoKmE5OQj8ta/pv/AGbP+TdfAP8A2Jel/wDpJFX8yFf03/s2 f8m6+Af+xL0v/wBJIqdbZD6H84H7Q/8AyX/xz/2OOp/+lclfWv8Awb6f8n4S/wDYl3//AKHDXyV+ 0P8A8l/8c/8AY46n/wClclfWv/Bvp/yfhL/2Jd//AOhw1cv4YH6Sf8FD/wDgmt4W/wCCg7+GG8Sf FC/8Of8ACMi58n7DYJP5/neXndvYYx5Y6etflh/wVI/4Jq+Fv+CfEfg5/DXxR1DxIfE5vBML7T0g 8jyfKxt2sc58w/lX71V+V/8Awcr/AOq+E3+9q3/ttWVOUr2EflUSQcCv1S+FH/BvD8NPiP8AC/w5 8Qbj9pLXbWTXNDtL+S2TQ4WWJpoVkKAl+QN2M+1flafvCv6a/wBl7/k2v4f/APYlaX/6Sx1pUbWw Hzr+wR/wSH8GfsH/ABhvPi94d+MuqeIJrvRZdOayvdLjhVVd433hlYnI8vGPevTf+CgP7DHh/wDb 5+FOl/CvxH4+vPD0Oma6mpLd2VmkzOyxSR7CGIAGJCc+1e71y3xk+NHwy+AHw81D4qfFzxZbaNoe mRhrm9uW6knCoqjl3Y4AUAkk1jeTd+oH56/8Q1vwtHA/ag1//wAEEH/xyj/iGu+F3/R0Gv8A/ggg /wDjlRfFL/g5I+H2l65LZ/Bz9nPVNYsY3Kpfa9q6WTTAfxCONJSoPbJz0yB0rlf+IlnxX/0aRp// AIWEn/yNV/vQIvjp/wAG4+teGPAF/wCI/gV8e5dd1qyt2mh0PWtIW3W82jJRJkdtrkD5Qy4JwCQD kfmNeWd5p13Lp+oWzwTwSNHNDIuGR1JBUjsQQRX6en/g5Z8VkY/4ZI0//wALB/8A5Gr84Pi/48h+ KfxY8T/E230GPSo/EXiC81NNMhl8xLQTzPKIQ2BuC7tucDOM4FXDn+0B93f8G6vxq1rwz+0j4m+B k167aX4n8OtfR27N8qXdqy4dR2JjkcHHUKM/dFfZX/BeT/lHZr//AGH9L/8ASla/Ob/ghS7p/wAF G/Cyo2A2j6qG9x9jkP8ASv0Z/wCC8n/KOzX/APsP6X/6UrUS0qoD8Ja/eH/ghJ/yji8Lf9hrVv8A 0tlr8Hq/eH/ghJ/yji8Lf9hrVv8A0tlq6vwgfYdFFFc4BRRRQAUUUUAFFFFAAelUtd0LSPEuj3Ph /XdLgvLK9haG8tLmIPHNGwwysp4II4wau0UJtO63E0pKzPxe/wCCpf8AwS01f9lrV7n41fBbTZ7z 4fXk+66tUy8mhys3COepgJICuTkE7W7FvifJxljX9Nut6Ho/iTSbrQtf02G8sb2Bobu0uYw8c0bA hlZTwQQcYr8bP+Cpf/BLHVf2XdUufjb8EdNnvPh9eTbryzBLyaFIzcK3cwEkBXOSPut2J/b+COOF jVHL8wl+82jJ/a8n/e8+vrv+N8YcHvBuWOwMfc3lFfZ815eXT0PibrxSEelAJJ5HHY0tfq2x+b6N HuH7Kv8AwUP/AGn/ANkGdLH4Z+Nzc6H5m+bw3rCG4s3J6lVyGjJ7lGXPfNfb3w6/4OJvCEtjHH8W f2d9SguQoEk3h7VI5UY+oSbYR9Nxr8saK+azPhHh/N6jqV6C5n1jeLfrbf5n0GXcT55lcOSjWfL2 dmvx/Q/Vzxn/AMHEvwptrF/+Fe/s8+Iby5Kny/7Z1GC3QH38vzCa+T/2kf8Agsd+2P8AtB2lx4f0 3xHbeC9FuAVksfC6tHNIno9wxMh99pQH07V8p0Vjl/BXDeXVFUp0FKS6ybl+en4GmO4t4gzCHJUr NLtFJflr+I6ee4up2ubiZpJHYtJJIxLMTySSfem0UV9VsrHzgUE460Uh+XLdfagTdlcOD368V9If 8E6P+Ce/jX9t34jq91Hcaf4I0i4RvEWthcFu/wBmgJGGlYd+iA5PYGx/wT0/4JufEr9trxbHrGox z6L4F0+4A1jX2TBnxyYLbIw8h6E9EByecKf26+EHwg+H3wJ+H2m/C/4X+HYdL0bSoBFbW0I6nu7n q7seWY8kkmvzjjTjWllNOWDwUr13o30h/wDbdl069j73hLhCpmlRYvFxtRWye8vl27lz4d/Dzwd8 KvBOl/DzwFoMGm6Ro9mltYWVuuFjjUYHuSepJ5JJJ5NbdFFfgcpSnJyk7t7n7dCEacVGKskFFFFI oKKKKAPm/wD4K6/8o5vij/2BYv8A0qhr+euv6FP+Cuv/ACjm+KP/AGBYv/SqGv5663pbD6H37/wb p/8AJ6XiP/snl1/6WWdftPX8437CX7bPjD9g/wCLN/8AFvwV4M03XLq/0KTTHtdUlkSNEeWKQuDG Qc5iA/E19a/8RJH7QX/RvHg7/wADbr/4qpnFuWgWZ+wlfF//AAXE/ar0X4D/ALH2p/C7T9VQeJPi HG2lWdmjjzFsj/x9TEdQmz91nuZR7kfG/ir/AIONv2qdU0mWy8K/B3wTpVzIhVb2Rbq4aP8A2lUy quf94Ee1fEXxv+PPxa/aP+IN18UPjT40utc1q7AVrm4ICxxj7scaKAsaDsqgD8STRGm76hY5Cvav +CcvwxuPi9+3H8MvBcdt5sR8WWt5eLjj7PbN9okz6ZSMj6mvFa/UD/g3Z/ZU1C68UeIv2vfE+nMt na2r6J4YaReJZnKtczL/ALqqsef+mjjtWs3aIj9EP25M/wDDGfxUz/0IGrf+kklfzX1/Sh+3L/yZ n8VP+xA1b/0lkr+a+opbAfrL/wAG0v8AyJvxd/7Cejf+i7yvnj/g4D0i6sP2+31GaMiO+8HadJCS PvBTKhP5qR+FfQ//AAbS/wDIm/F3/sJ6N/6LvKp/8HIHwD1G7sfAn7S+l2TSQWfmeH9YlQE+WHLT 2xPoN3njPqwHcUk7VR9T8rdMv20rU7bU0QM1vOkoU9yrA4/Sv6ivBfiHSPFvhDSvFOgXYnsdS06C 6s5gfvxSRqyn8QRX8t2Mjmv0p/4Ji/8ABbPwj8Bvhbp/7PX7U2m6nNpeiR+T4e8TaZbid4LfOVgn jyGKrkhXTJ24UrxmnUi2tAaZ+vdflL/wcrf8hb4U/wDXvqn84K+oB/wXI/4JzEf8lc1Ef9y3d/8A xFfAv/BbH9t79nX9sm98A3HwD8XXGqroUV8upefps1v5ZkMWzHmKN2drdPSogmpCPg+v6b/2bP8A k3XwD/2Jel/+kkVfzIV/Tf8As2f8m6+Af+xL0v8A9JIqqtsh9D+cD9of/kv/AI5/7HHU/wD0rkr6 1/4N9P8Ak/CX/sS7/wD9Dhr5K/aH/wCS/wDjn/scdT/9K5K+tf8Ag30/5Pwl/wCxLv8A/wBDhq5f wwP2/r8r/wDg5X/1Xwm/3tW/9tq/VCvy1/4OWbKcaT8JdS2nyzc6tFn/AGttqcflWNP4hH5SHrk1 /TX+y9j/AIZr+H+D/wAyXpf/AKSx1/Mrj3r9tP8Agnz/AMFfv2P9U/Zs8J+AfjJ8U7Xwj4n8OaJb 6ZqNtrUUiRXBgjWMTRSqpQqwUHaSGBJGCBk6VU2gPvCvxh/4ODf2ldf8c/tKaf8As46dqLroXg3T Ibm7tkf5ZtRuFLl2A67YTGoz0LP61+qPwe/bM/ZZ/aB8Ty+DPgr8cdA8SarDaNcy2Ol3e+RYVIBc jHQFgPxr8S/+CzmkalpH/BRz4hHUY2UXctlcW4bvG1nCAR7cGopr3tQPmLTtO1DV9Qg0nSbGa6ur qZYra2gjLySyMcKqqOWJJAAHJNfQuj/8Elf+Ci+u6bFqtj+yxrqxToGjW6u7SCTB9UlmV1PsQDXn /wCxt8WPCnwK/an8B/F/xzZyz6P4f8SW93qMcMe9xErYZgvcrndj2r919I/4Kp/8E9NX0+LU4P2r PC8STKGWO7nkhkUejI6BlPsRWkpSi9EB+OJ/4I//APBSIf8ANreq/wDg3sP/AJIr5+8aeDvEvw88 Yar4B8Z6S9hrGiajNYarYyOrNb3ELmOSMlSQSrKRkEjjgmv6GP8Ah6D/AME+j0/az8Hf+DE//E1+ Df7Ynirw945/a1+J/jXwjq8OoaVq/wAQdYvdNv7Zsx3NvLeyvHIp7qysCD6GiEpSeoHvP/BCv/lI 54U/7BGq/wDpHJX6Nf8ABeT/AJR2a/8A9h/S/wD0pWvzl/4IV/8AKRzwp/2CNV/9I5K/Rr/gvJ/y js1//sP6X/6UrUT/AIqA/CWv3h/4ISf8o4vC3/Ya1b/0tlr8Hq/eH/ghJ/yji8Lf9hrVv/S2Wrq/ CB9h0UUVzgFFFFABRRRQAUUUUAFFFFABgHqKp65ouleItKudB13TYLyyvYGhu7W4jDxzRsCGVlPB BHGKuUYGc0Xad0JpSVmfjz/wU0/4JE+JPgRe6h8cf2cNHuNT8EuWn1LRIQZLjRMnJKjrJbjseWQd cgbq+DASecZ5/Kv6d3jSRDHIu5SMEHuK+Fv25v8Agij8KvjzdXfxH/Z6u7bwd4onLST6cY8aZfyE 5JKqCYHJ/iQFT3XvX6/wr4iqnCOEzV7aKpv/AOBf/Jff3PyriXgOU5vE5at9XD/5Hp8vuPxyor0j 9oP9kX9on9l7XH0b4z/DLUdKj8wrBqXlebZ3HoY5kyjZ9MgjuAa83OfT8a/X8PicPi6Sq0ZqUXs0 7r8D8ur0K+GqOnWi4yXRqzCijI6ZpMmtrGLdhaKVI5ZWCRLkngADJJ9hX0X+zF/wSx/a+/aent9R 0b4fy+HdBmILeIPEyNbQlD3jQjzJeOm1cepFceNzDA5bRdXFVFCPm/6udWEwWMx9X2eHpub8l/Vv mfOaRyzSrAkZZnbEaqOWPpivvr/gnr/wRe8b/GC5sfix+1LY3WgeFzsmsvDxzFfamvUeYOsER46/ OQeNvDV9p/sXf8Elv2cv2TJbbxdqVofF/i+EK667rEKmO1kA628PKx+zHc/ow6V9VBFHQd6/IeJf EmpXjLD5VeKejm93/hXT1evZI/UeHfD+NFqvmT5mtoLb/t59fTbvcy/BXgrwp8O/C1l4K8EeH7XS 9J023WCxsLOIJHDGowFAH+TWrRRX5NKUpycpO7Z+oRjGEVGKskFFFFIoKKKKACiiigD5v/4K6kf8 O5/iiM/8wWL/ANKoa/ns3MOM1/UN8S/hn4E+MXgfUPht8TPDcGr6HqsQj1DTrnOydAwYA7SD1UHr 2rxT/h05/wAE7v8Ao1nw9/31P/8AHK0hNRQ7n88m5vWjcf8AIr+hv/h05/wTu/6NZ8Pf99T/APxy j/h05/wTu/6NZ8Pf99T/APxyr9sgufzx5J4oGT0HWv6HB/wSd/4J3Kc/8Ms+Hj9WnP8A7Urr/h7+ wj+xt8Kb6PVfAH7NHg3TruE5jvE0SJ5lPqHcFs/jR7VCPxi/YE/4JM/H79snxHYeJPE2h3vhX4fi VZL3xHfwGOS7izylojjMjEdHI2DqSeh/dT4TfCrwN8Efhxo/wo+G2hx6domh2S22n2kfOxRkkk92 ZiWZjyWYnvXQqqooVRgDoBS1lKbkwPK/25P+TNPimP8AqQNW/wDSWSv5r6/qT8X+EvDvj3wrqPgn xfpcd9pWrWUlpqNlLnZPBIpV0OOcFSR+NeEf8Onf+Cd//RrPh7/vqf8A+OVUJqKGfJH/AAbS/wDI m/F3/sJ6N/6LvK/RL46fBXwF+0T8J9b+DXxM0v7Xo2u2Zt7pFOHjPVZEP8LowDKexArL+A37K/7P 37MNtqdn8Bvhhp/hqLWJIn1NLAvi4aMMELbmPQO3T1r0Gpk7yuI/nk/bn/4Jq/tA/sR+Lbo+IdAu NZ8HvOf7K8YafblreSMn5VmxnyJR0KtgE/dJFfOzKuelf1P3dnZ6hbSWd9axzwyoUlilQMrqRggg 8EEdq8c8a/8ABOr9hn4g3r6l4p/Za8GzXMrFpLiDR0t3Y+5i2k1oqtlqgP5w6K/oc/4dOf8ABO7/ AKNZ8Pf99T//AByvze/4Ltfs4/s0fszeMfh94S+Afw20zw5c6jpt7d6tDp7OWlQSRpEzbmPGRIB9 Gqo1IydhnwJX9N/7Nn/JuvgH/sS9L/8ASSKv5kO+K/p5+BOkXfh/4I+DtBv4yk9j4V0+3nRhgq6W 0asPzBqa2yDofzb/ALQzEfH7xyAf+Zx1P/0rkr60/wCDfUk/t4Sk/wDQl3//AKHDX6ga3/wS1/YC 8R6zd+Idb/Zm0G5vb+6kuLy4kabdLK7FnY4k6liT+NdL8Fv2FP2Sv2dvGJ8f/Bb4JaV4f1g2r2xv 7Jpd/lOQWT5nIwdo/Kk6icbBc9ar5K/4LK/sgeJf2tf2TJYvh7pjXnifwjqC6vpFlGPnvECMk8C+ rGNiwHdo1HevrWggHqKzTs7iP5X7u0vNPu5bDULSSCeCQpNDMhV42BwVYHkEEYwajwD1Ff0qfFX9 ir9kv436xL4i+K/7PPhTW9Sm/wBdqV3pEf2h/rKoDn864c/8Enf+Cd5OT+yz4e59GnH/ALUrb2qA /Nn/AIN3f+T1taH/AFIl1/6UW9fRX/Bd/wD4J8eNfjLZ6f8AtX/Bnw5Nqmq6HposfFOlWUe6eezV 2aO4jQcu0ZdgwGTsIPRK+zfgj+w7+yj+zh4rl8cfBH4LaV4e1aeza1lvbJpN7QsysU+ZiMEqp/Cv V6zc/f5kB/K4VeNikikMOoI6UBj2Ir+kr4ofsI/sc/GfV5fEPxM/Zw8KapqNw26fUH0pI55Gzklp I9rMfqa5D/h05/wTuxj/AIZZ8Pf99T//ABytPbAfzxnnrShiOBX9Df8Aw6c/4J3f9Gs+Hv8Avqf/ AOOUf8OnP+Cd3/RrPh7/AL6n/wDjlHtUB+Uf/BCwk/8ABRzwqT/0CNV/9I5K/Rr/AILxn/jXZr5H /Qf0v/0pWvaPhD+wB+x38BfHNt8SvhD8CNI0LXbSOSO21K0aXzI1kUo4G5yOVJHSu5+MXwU+Fvx/ 8ETfDf4w+DrXXdDuJo5ptOvC2x3jbcjHaQeCM9azlK81ID+YXcx71+8H/BCQj/h3F4W5/wCY1q3/ AKWy13f/AA6c/wCCd3/RrPh7/vqf/wCOV7D8H/gx8MPgF4Ft/hp8H/B9toWhWksklvptoW8uN5GL uRuJPLEnr3qpzUkB09FFFZAFFFFABRRRQAUUUUAFFFFABRRRQAUmDnmlooAqazoejeI9Nm0fxBpd vfWlwmye1u4VkjkX0ZWBBH1r56+Kf/BJf9g/4r3Et9qXwRtdIupiS9z4cuJLLJPfZGfLz77a+kKK 68Jj8dgJ82Gqyg/7ra/I5MTgcFjI2r04y9UmfC+o/wDBvz+xfe3BmtPHfxEs0Jz5MGs2bKP++7Rj +ta/hT/gg7+wx4duEn1VvGOubCD5eqa8iqcevkRR19o0V60uLOJJx5Xip29TzY8McPxlzLDR+48p +D/7D37JnwGlivPhZ8B/D+nXcONmoPZ+fcg+vnS7nH4GvVQoAxilorxK+IxGKnz1puT7ttv8T16O HoYeHLSgorskl+QgBB7YpaKKxtY2CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA Cub+MfiPVfB3wj8U+LtDlVL3SvDt7d2bugZVljgd1JB4Iyo4rpK5z4v+GdU8a/CfxP4O0QRm81bw 9e2doJX2p5ssDouT2GWGTQB+Iw/4Lzf8FFMf8j14f/8ACXt/8KX/AIfzf8FFP+h68P8A/hL2/wDh Wl/xD/8A/BQD/nx8Hf8AhSf/AGul/wCIf/8A4KAf8+Xg7/wpP/tddH7odjLb/gvH/wAFFXUqPHug L7/8Itb/AOFfNPx4/aB+Lv7S/wAQ7j4p/GzxnPres3EaxG4lRUWKJc7Y0RQFRBk8ADkk9STX1V/x D/8A/BQE/wDLn4OH/cyf/a66r4Yf8G637V/iHWI0+KXxH8JeHNODjz5LO4lvpyv+wgRVJ+rj8aE6 a2A+af8AgnZ+yzrP7Xf7V/hf4ZW2mvNpFvepqHiefblINPhZWk3H/b+WMerSD3r+jNVCjA6V41+x d+wr8Df2Gvh6/gv4S6ZLNeXpV9a8Qajta81GQDjeygBUGTtRQFXJ6kkn2aspy5mIKKKKgAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//Z ------=_NextPart_01D76819.203EB2D0 Content-Location: file:///C:/2223D501/04FormatoCienciaDigita_JazminMarisolMedinaRea_archivos/image005.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCAGhAh0DASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAoorx7xl/wUN/YD+HPiu/8CfEP9uH4QaBrmlXLW2q aNrfxK0q0u7OZfvRywyzq8bjurAEUAew0V4Uf+Cof/BNAf8AOQ/4Gf8Ah2tG/wDkmt/4aft3fsQf Gjxhb/D34Oftj/Cvxbr94rtaaF4Z+IWm395OEUsxSGCdnYBQScDgAk0AerUUAg9KKACiiigAoooo AKKKKACiiigAoopryIgJY4wMmgB1FRx3VtNzFOjDOMqwNPBB6Uk09g6i0UUUwCiiigAooooAKKKK ACiivIfHX/BQX9gr4X+Lr/wB8S/22/hF4d17S5vJ1PRNc+JGl2l3ZyYB2Swyzq8bYIOGAPIoA9eo rwv/AIeh/wDBM/8A6SIfAz/w7Wjf/JNbPw8/b7/YT+LvjKx+HXwn/bT+E3ijxDqbsmm6F4d+I2mX t5dsqM7COGGdnchFZjtBwFJ6CgD1uikVgwyKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr4Z+O3/BuV/wSg/aS +MfiX48/F74EanqXibxbrE+p65fL4svohNcysWdgiyBVGTwAAAMV9zUUAfy4/wDB0l/wSs/Yx/4J oal8Hm/ZF8AX2gp4xi1k63Fd61PeLIbY2nlbfOYlMec+cdcj0ryL/g1gw3/Ban4Zgj/mG610/wCw dPX3R/wfFf8AH/8As6/9cfEv89Pr4X/4NXv+U1Xwy/7Butf+m6egD+upQAPxpaB0/GigAooooAKK KKACiiigAornfAfxe+FvxSvNa0/4b/ELR9dn8Oao+m6/DpWoRztp14n3reYISY5B3VsGuioAbIxR dwx171+ZX/BQj9vT4j+J/iDqXw4+HniKew0XTrmS1SPT5ijXbKQrSSMpyRuBwOmK/TO5QSQNG2cM CDivxW/am+Ffin4PftCa/Z+ILKR1g1CV03g4eNm3I4PcEEGvyrxVx2YYbLaFKjJxhOTUmtL2Xuxv 2er87H6x4TYHLsVmlerXipVIRTinra796ST6rReV2S/Bb9pz4/fCnxLFruneNtRglEgbynuGaKUd SroxIYH0xX6HfsKf8FLvhP8Atk+LPEnwVht30T4g+DIIbjXfDt0c/aLORU8u+tmH34WZgpH3kYhW 6qT+X+m+I/8AhLL0SR2xRI+CeleU/wDBLX4y6x43/wCDjjQpfhFetPp1v4c1DRNfmtiGjntIbOR5 t56bVnEeD/ejXFcPhLLHOhiPaXULqy6J+X6noeL8MBHEYf2SXPZ3el2vP06ep/RhRRRX7Gfi4UUU UAFFFFABRRRQAV8zftM/8Ecf+CZP7XV9rPiH46fsa+C9S17Xpmm1TxTZaWLLVp5iu3zWvLfZK7AY +8xHAyDivpmigD+NT/guv/wS+sP+CVX7ct38EfB+q3uoeDfEGjx6/wCC7rUWDTpZSSSRtBIygBni kidN2ASApI5rV/4Nr+f+C3PwGXpnWdVH/lFv6/QL/g+D8OWMXj79n3xikarcy6Rr9nK4Xl41lsnQ E56As/H+2a/Pz/g2t/5TefAX/sNar/6Zb+gD+xZBgEZ70tIvf60tABRRRQAUUUUAFFeZ/tj/ABWm +B37Lnj34sWt2YLjQvCl7c2kwbBWcREREe+8rj3xX5h/sW/8HD3jrwp9m8Dftk+G38QWW4IPGGjR JFeRDpma3UBJR6lNh9mNceIx+GwtWMKrtfr0+Z9dkXA/EHEuV1sdl1NTVJpON7Sel3yp6OytdXvq rJn7EUVwfwE/aU+B/wC0x4Nj8efA/wCJWm+IdNcDzHs5f3kDEA7JY2w8Tc/dYA13BuIcH94OldcZ RnHmi7o+Wr0K+FrSpVouM4uzTVmn2aeqJKK+MP24f+C1H7M37JYvPB3g28Tx34zhBT+xtIu8W1pJ j/l4uQGVcd0Tc3GDt614d/wSL/4KufG39rb9rzxP8Nv2gfEVsLfXtEN14R0qyt1it7GW3fLwJgbm LxOzFnZifJ9wBxSzHCRxEaKleT002Xqz6/D8AcUV8grZxKjyUaceb3tJSV1dxja9ktbuysnZs/UC iiiu4+LCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig D+fz/g+K/wCP/wDZ1/64+Jf56fXwv/wavf8AKar4Zf8AYN1r/wBN09fdH/B8V/x//s6/9cfEv89P r4X/AODV7/lNV8Mv+wbrX/punoA/rrHT8aKB0/GigAooyD3pCwHU0ALRSb19aXIxmgAryv8AbY/a o8FfsVfsreOv2oPiBPGuneDfD8995TyBTczhdsECk/xSStGg93r1GWaKKMyyyBVUZZmOAB65r+a3 /g6w/wCC0fhb9qLxhF/wT5/Zl8Yx6h4L8Kap9o8e63p8weDWNViJEdtG6EiSGA5JPIaXGP8AVgkA +xP+DNzx94o+K37N3x9+J/jXUPter+IvjM2papc9PMuJrKKSRsdssx47V+yNfil/wZIf8mV/GP8A 7KjB/wCm2Cv2toACAeory79pT9lP4a/tKeFrjSfEtilrqwtXj0vXYYszWjnoSMgSoDjKNwQTjBOa 9RJA60h2g8gflXNi8HhMfh3QxNNTg91JJp/JnThMZi8BiI18NUcJx2cW0180fhr+1B/wRQ/4LeeL NVu/h18K/il8Ih4WvZWi/t3Q7m5025kgbALTLKsrxHBOVhZuhwxr7G/4Ijf8ELPBX/BKzSdW+Jvj zxpa+L/ip4lsxZ6prdjAyWenWhZJGtLXf87BpFVnlYKX2J8q4wf0E+U8cUKVI+XH4UsHgsJl+HVD DQUILZIrG47GZjiHXxM3Ob3bFooorqOQKKMj1pNwPQ0ALRRRQAUUdKQyIOrUALRSb1PO6gMCcA0A fz+f8HxH/H9+zz/1x8Q/zsa/Oz/g2t/5TefAX/sNar/6Zb+v0T/4PiP+P79nn/rj4h/nY1+c3/Bt 5f2+m/8ABbP4C3NyxCnX9RiXAzlpNJvUUf8AfTCgD+xxe/1paRRgf40pIHJNABRSb19aN6+tAC0U Ag9DSPnacUAfEf8AwcAfE9PAn/BPvUvCUdwEn8X6/Y6cq7sFo0lF0+P+/Cg+xr8HMHoxz6n1r9l/ +C5fwm+PP7YfxU+Fv7LH7P3gq61e4tLe/wBZ1ycAraWQkMcFu88p+WPiO4wDy27gGof2Wv8Ag3N+ DPhPT7bxB+1L47v/ABRqgAaTRdCnNrp6HrtMhXzZfTIMY9q+WzHB4rH5g1TWkUld7dz+m/D7i3hn gbgWlLHVf3taU6nJFc07X5VddLqKacmlqfkt8IPjX8WPgJ4wh8e/B34gap4f1eD7l3pt0Yy4yDsc fdkUkDKsCD3Fe/ftE/8ABY79uH9pH4dW3wu8TeP7bRtPW18rVpPDNqbOXVefvTOrEgEcFI9iHJyu Div20+HH/BPX9iH4WWyW/g/9lPwNE0Ywl3e+HYLu4/7/AE6u/wD49XX6p+zP+zjrNkLDVv2fvBF3 AkZRILnwpZyIF9ArR4x7VpTyXGU6bgq1k91rb9Dz8x8YeEcdmNPFVMp9pOHwzk4cy/B/LXR6rU/l 2JYks5+Ynk46++a9D/ZM+N+ofs3/ALSngn422EzBfD3iK2ubxFbHm228LPH/AMCiZ1z/ALVfux8a P+COH/BPz402syXXwCsPDV1KDtvvB2NOeM+qpGPK/NCPavzx/bS/4N+fjh8GNPvPHP7NHiN/HeiW ytJLo9xGI9WhjGT8qqNlxgf3drHjCHtwVsoxuEfPD3rdt/uPu8p8WOC+KKUsDiW6LqJxtUSUWpKz Skm0t/tcp+0vh3xBpvinRLPxFotyk9nf2sdxazoeJI3UMrD2IINXq/n2+DP/AAWa/wCCgf7NOh6f 8MLXxXp97p/h22j0+30jxRoKyPbxwqEWJmXy5RtChcFsjFfQXw9/4OXfjBY+XD8Vf2cPD2oD/lrP oGp3FofwSYy/+hV7dLPcFNLnun6f5XPxbMfBTjPCzk8NGFaPTlmk2umkuXX0bP2Hor8+fg7/AMHE X7LPxL1/TfB/iH4T+OdF1PVb2K1tlt7a3vYTLI4RV3LKr8sQOENfoHbsXTJz1/ir0qGJoYlN05Xs fnmdcO53w7WjSzKhKlKV7XtrbezTaY+iiitzxQooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKAP5/P+D4r/j//AGdf+uPiX+en18L/APBq9/ymq+GX/YN1r/03T190f8Hx X/H/APs6/wDXHxL/AD0+vhf/AINXv+U1Xwy/7Butf+m6egD+usdPxrmPi/8AGT4ZfAP4b6x8XvjH 4z0/w74Z0G0a51fWdTuBHBbRrjlie5JACjJYkAAkgHpx0/Gv5s/+Dw//AIKO+L/H/wC01Yf8E5/B esy2fhjwHaWuqeL7eCTA1LVbqBJ4Elx1WG3kjZR03TsTyowAfRfxA/4OXf23f29f2kJ/2XP+CIn7 JFt4j8rcx8Z+MIGJMIbabtomeOKzgyRhp3LNkDap4r3nw1+zB/wdJeI9CHiLxZ/wUT+Cnh7UZIxI dBtvBQuoo2xnZ5ot+eeM818of8GbP7b37MmieH/Ff7CV74Ni0T4m67qc+v2XiEnd/wAJDaRxIv2X J5R7cB3VM7WV3YfMGz++yLtQL6CgD8H/ANpv/guH/wAF2P8Agjr8U9N8Jf8ABRb9nT4efEPwvqsr DSPFHh1JbGHU0UDcsNzFlYpRuBMc0G7HQY+av0Q/4Jsf8FyP2RP+CnPwo1vxH8F/7RsfG3hjRpb/ AF74a6iq/wBpoqITut8fLcxswCB05DEBgpIzW/4OJP2fPCv7Qn/BID4yaVr2lxS3fhnw7/wkmh3L KN9td2MiThkPGC0ayRnn7srV/Jf+xv8AtWfE39in9pjwf+0z8I9cmstZ8K6zFdqsL4W6gDYmtnHR o5IyyMp4IagD9e/+Cp//AAUr/wCC/v7demap8HvgJ+wN8VfhP8N75XgubbSfDN4+r6rbkMClzdBB 5aMD80cQUdizjOfxR+J/wz+Inwc8fal8NPix4N1Hw/4i0mZY9U0bVrZobm1dkVwro3KkqynB7EV/ d98L/HWj/FL4b+HviZoBBsfEWh2mp2RHeKeFZU/8dcV/Hl/wcOAf8Ppfj+Mf8zhD/wCkNtQB9P8A /BvH/wAFPf2zP2Dv2e/Hngf9mf8A4JjeJ/jtpuueMo7/AFDXNB1i4tk02cWkcYt2EVlcAsVUPksv DdO9ffGof8HJ/wDwVE0qc2t9/wAG9fxHSQAEqPEOot+o0Yisf/gyRO79iv4xbuf+Lowdf+wbBX7W bV9KAPxtvv8Ag5J/4Kiadoj+I7//AIN7/iJFZRx+Y8zeI9QO1fXaNHz+ldf8K/8Ag5E+IvxX+GWj fECP9kjTdDn1KBpLnTLzxVLcNbsHK+WW+zRnIKnOQOvQY5/WKYZTg8g8V+AX7aHjbwf8RP2tPiP4 t8BQxLpc/jG/jgaBQEkaKZopJBj+/Ijv/wACr43jXNcflOX06mEnyycrPRPSzfVM+34FyjLs4zGr SxkOeKhdK7Wt0ujR9h2H/BfL416lBeyeG/2Ml8V3trYyT23h7w3rEzX1+64xFCDE2WJI4x615v8A Fv8A4Oh/2jfgH4Tn8d/Gj/git8WvC+i2237Tq+tai9vbRbmCLukazCrliAMkZJFc3/wSe0UH9qDw 94hdOf7Zht4zj2Zm/wDZa+u/+Dk7SrPU/wDgi78aRdpkW+l2M8eOzpf25Brm4FzvH51hsRLFT5nC fKnZL7MX0S7m/H2SZdkmMw8MJDkU4cz1b+1JdW+x+fL/APB8RpJnKQf8E67kpuwhf4kqCR6kfYTj 86/WT9pr/gqV+yh+xb+yr4e/ao/am8bxeGrLxNoNvf6PoMBNzf6hNLBHKba2iUBpmXzFUvhUXILF Qc1/ErCT5oJbHua/UT/gnD/wTt/bQ/4OMv2jIvjH+0x8S9U074Y+BtO0/RNR8SC2wqW1tAkcWl6b GfkEhRAzvyEMhd9zOA33Z8CfQP7UX/B6p+0H4g8Q3Olfsefss+GtA0dJCLbVPGtzNf304zw/lQNF FF/ukyfWvH/DP/B4/wD8FUND1yK+8R+Dvhhq9rG377T5vDc0Ik55G+O4DDj0r+hL9lP/AIJb/sE/ sZeBbXwD8Bv2XPCemwwQhJ9SvtLS9v7tsDc81zOHkckjJy2OwAAArwf/AIKpf8G+/wCw5/wUG+Eu rP4U+Emg+AviXb2ckvhvxn4Z0xbQm4AJWK6ih2x3ETtgMWBdc7lYHIIBxX/BIX/g5d/Zc/4KWeIb H4FfEbw0fhn8UruMDT9Bvb7z7DWnCsWWzuSq/vAFz5UgVjnCl8Gv0uRtwzjFfwTavp/j34IfFO60 Wa5utF8SeE9dkgeS1mKS2V7bTFSVdTkMrpwR6V/ZD/wSA/b+tv21f+CXngf9r74l61bW2o2+h3Nv 45vHIRIbvT2eK5ncDhQyxefjHSQYoA9m/bF/bL/Z9/YR+BWr/tEftKeOYdC8OaSoXeyl57y4ZSY7 a3jHMsz7SFUehJIUEj8Bf2tf+DxL9tP4xePH8DfsGfArR/COmXF19m0i51ixbV9Zv2Y7VxEpEUbN xiMLIQf4jXxX/wAFxf8Agrf8Q/8Agqn+1bf+Io9TubX4beFLyex+Hfh/ftRbYOR9tlUcNPOAGYnJ VdqA4XJ/Uv8A4M7/APgmp8NIfg9q/wDwUl+JHh221PxTqOt3GjeBJLmLcNJtYVC3NxGDwJZXcpux lVjOD85oA8V8N/tIf8HmPiDSk+LOm+DPHT6Uief/AGZd+BNEhMideLd4VuCMdhzXqX7B/wDwdufG T4f/ABot/wBnH/grf8B4/Dci3iWWoeMdK0mewutJlZgu+90+TJMYzuZ4tpVeQj5r97UACgAYx0zX yD/wWA/4JFfAP/gqf+znqvg7xR4asNP+IWm6fLL4D8bR24W5sL1UcxRSuuGltXY7XiYkYbcMMoIA Pyn/AOD1Pxn4V+I2gfsz+PfAviC01bRdZ0vXL3StUsJxLBd28gsGSSN14ZWUggjsa/Or/g3f/wCU 0nwA/wCxvm/9IbmvD/2jPiN+0r4a8NWH7DXx/wBRuli+DfibWLPTtF1AbpdHuZZI0u7ZWPPl+Zb7 gvQFmI+9XuH/AAbv/wDKaT4Af9jfN/6Q3NAH9llfMf8AwUl/4K1/sb/8EuPh/F4q/aS8cOdZ1GJ3 8O+DdGQT6nqhGRlI8gRxbhgyyFUB4yT8p3P+CnH7fHw+/wCCbH7HHiz9qbx6i3UulWvkeHdHMm1t U1OUFbe2B7Atyx7IjHtX8immeI/2kP8AgsX/AMFHvD9j8WPHV1qvjL4s+N7TTp9Ql+aPT7eafBWK MEBIYIi5WNcAKh7mgD9fPBf/AAc4f8Fav+Cg3xNu/h5/wTC/4JwaPe29u+GuNUkn1GW3Q52vcXAe 2tbbIB+VifZjXrHiP9sD/g7f/Z/0H/haPxL/AGEPhj4y0e1h83UtD8PXFtc3cSDO4COzvjKxwP8A lmJB7Gv1I/ZB/ZG+BX7EXwH0T9nf9nzwTa6LoGiWyRgRRjzrybYA9zO/WWZyMs7ZJ+mK9NkQOpXH XrQB+XX/AATZ/wCDpT9kX9sXx9afs/ftIeDrz4L/ABHurv7Fb6fr12ZdNurwME+zrclEMEpYkBJk QZG3cWwD9bf8FIf2yf2jP2Ovhjonjf8AZs/Yf8R/HS+1LVmtdT0XwzqBgk06ARlhcMRDLuUthcYH Jr8zf+DuT/glF8Mdd+BLf8FL/g34Pi0zxj4e1O2tviCbKPYmq6dKTEl3Io48+KUxKXxlkc5J2LXM /wDBr1/wXu8VfEDXtI/4Jr/tk+MZtRv3gMPwt8YajNullWNP+QVcORl22qTFIxydvlkk7KAO+/aA /wCDpv8Aah/ZRt7XXP2kP+CK/jTwRDqc/wBns73xF4se2S5kVd/lrI+n4YhSTtz3Nef+H/8Ag9sl 8T65ZeGPD/8AwTZu7u/1C6jtrK2h+JKlppZGCoi/6D1LEAfWv1W/4K1f8E+/Cf8AwUu/Yf8AF37M utrBDq9zbC/8IanKP+PDVoPmt5M9lY5if/Ylbviv4ufiJ8PfH/wX+Jer/Df4gaDeaN4i8N6tNZap Y3CGOW1uYZCrqfQhl6j6igD+rH9n7/gtJ/wUj+MHxt8KfDHxp/wQv+JXhLRdd121s9X8VX+vu8Gk W0kqrJdupslDLGpLkbhkL1FfpSrbk3AfhX59f8G5P/BUKx/4KOfsIaZpXjvxBHP8SvhrFBoPjOKZ x516iRKLbUccZEyDDH/nrFJ6jP6BzTQQwNLNKqxqpLMzYAHuaAPyV+MX/Bw//wAFFv2fPh5qHxa+ Nv8AwQc+IHhnwzpMXmanrmreM/LtrZSQAXf7DgZJAHuQK5L4A/8AB0P+2F+1f4Zu/G37N/8AwRP8 c+NdIsbz7Jd6j4f8XPcQxT7QxjLrp+N21lOPcV4N/wAFMv2qPjV/wcU/8FC9H/4JY/sKeIJI/g14 R1X7V428Z2wL2l68JAm1CQjG63hO6KBM4llbfyCpX9x/2QP2T/gz+xJ+zt4Z/Zo+A/hmPTPDvhqw WCEYzJdy9ZbmZv45ZXy7N6tgYAAAB+cfxD/Y8+JX/BXf9mnWv2sfEn7EWrfs+fGTStYntbXwrrl3 vPie0jijdZJWMUIV2Z3RJCucxYYkEFfyw1rRNX8N6xdeH9f02ezvrK4eC8tbmMpJDIhKsjA8gggg g+lf1aSoCuNmeeRivx6/4OFv2HrHwN4u079sr4e6MIbLxDcCx8ZxwphUvQo8i5/7aKrK3T5o1JyW r5vOsvhyPEU1qt/8z+hvBvj/ABMMZHIcfPmhL+E3vFpX5L/ytfD2ei0at8w/8EfPg4fjP/wUI+H+ mT2nnWmg6g2vXi44AtAZUz/21Edf0R24Ij5HU561+Rn/AAbQ/CBLrxj8Rvj1fwDFlp1todhI3Yyv 5836RQ8+5r9dhgj5cfhXXkVL2eC5n9pt/ofL+Nma/X+M3h09KEIx+b99/wDpSXyCiiivZPyEKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+fz/g+K/4/wD9nX/rj4l/ np9fC/8Awavf8pqvhl/2Dda/9N09fdH/AAfFf8f/AOzr/wBcfEv89Pr4h/4NS9MbU/8AgtT8Owsu wwaFrs3TO7bps3FAH9cI6fjX86P/AAdA/wDBEn9sv4p/tw6n+3F+yr8DNe+IOheN9LsV8Rad4SsH vr/T7+0tYrTJtYgZHjeGGEhkVsMH3Y4z/RavSsP4kfEX4ffCDwNqnxM+J/i/TdA0DRrR7rVdY1a6 WG3tYVGWd3YgAf570AfgN/wa8/8ABEL9sP4J/tej9t39rn4Pav4A0rwvot1b+GNE8SW5ttQ1C9uE 8oyG3Yb44o4jJy4UszLgEAkf0KryAfavxE/bq/4PLfgV8ONZvvAf7BPwMufiBfQSNCnivxYz2WmS ScgNDBGfPnTOMbjCTzjjBPz34V/4LWf8HTX7Wdr/AMJL+z5+ytdWukXg3Wlz4e+D0os3U8jyri+M gcYxyHP1oA/ab/gs7qFrpf8AwSi/aCvb2TbEnwr1fcwGetuwH6mv4nl4YfWv2a/bo+OP/B03r37D 3xGX9tT4byaZ8KbzQlg8a3F/oOk280Vo80a/L5TeYMuUU7RnDEV+Mp+/x69qAP7if+CY97dal/wT c/Z81K9l3zXHwR8JyzORyzto9qSfzNfyi/8ABw7/AMppfj//ANjhD/6Q21f1bf8ABLn/AJRnfs6/ 9kL8I/8ApltK/lJ/4OHf+U0vx/8A+xwh/wDSG2oA/X//AIMj/wDkyv4x/wDZUYP/AE2wV+1tfil/ wZH/APJlfxj/AOyowf8Aptgr9raAPM/2zvjxpn7L/wCyZ8R/2hdWkQR+DvBmo6pGsjYEk0Vu7RR5 /wBqQIv1av5uP2Rtf1bxX+zn4X8Ua/ePcX2pWkt1e3Ehy0ksk8jux9yxJ/Gv1I/4O5v2nv8AhR// AASquPhRpWp+VqnxS8WWWioivtY2UJN3ct7j9zFGR6TV+WH7CdlNq37M3gHTLYnfcaesS/VpnFfn niO0sppN/wA//tsj9J8MU3nFZLrD/wBuifo9/wAE09Kj8O/Ff4emcbXu9dSZwe5ckL+m2vpf/g5A /wCULnxwProVp/6XW9eEfsjWUWn/ALQfgLT4UxHDr9miD0AYAfyr3b/g49/5QufHH/sB2v8A6X29 eF4PVZV8rxc31q3++MT2PGOkqObYSK6UrfdJn8dSEBhmv7f/APgl18Fvhn8BP+Cevwd+H3wo8KW2 kaUPh9pV89vbpzLc3VrHcTzOeru8srsWPJJ9q/h/XqPrX91X7DX/ACZR8H/+yW+H/wD02wV+wH48 epUjjPHr60tIfvCgD+Ib/gq7YWmlf8FNfj1YWUWyGL4s66EQHoPtstfph/wTx+OXiX4Rf8GlH7S2 oaPqskM9146vNDsWViDGmoR6ZbzgEcjMUkv4nNfmp/wVv/5SgfH/AP7K3rv/AKWy19z/ALMl3a2v /BpF8eEuZdpm+ONrHEP7zZ0w4/IGgD8kicPk9jzX9bP/AAahalLqP/BGHwNHJGqi18R63CpUfeAv XbJ9/m/Sv5JSMHGK/rS/4NMv+UMvhD/sbNc/9KzQB+lVIy7hilooA/kx/wCDsf4O+HvhT/wWG8T6 x4dtYoV8Y+F9K128SLvcvE0Ejkdixg3H1znvXkP/AAbwf8ppPgB/2N83/pDc173/AMHf7P8A8Pgb wbjgfDrRce3yy14J/wAG8P8Aymi+AHOP+Kumwf8AtxuaAPvL/g9O/a61TxV+0X8OP2K9H1Bv7L8J +H28Sa1bJJ8sl9eM8UO4d2SGJiPQXB/vV8B/8EDvi78B/gH/AMFVfhj8Z/2kviHpnhXwp4cnvry7 1vVy3kQSiymWLO0E5LsoHHU12v8Awc6eL9Q8Xf8ABa74xTXkjlbCTSdPgVm4WOHS7VMD0BILfVj6 1U/4N4P+Ce37Pn/BS39vq6/Z4/aVttVm8NWvw/1HWfL0XUTazvcQz2saDzADhf37EjHOBQB/SKv/ AAcDf8EaAOf+Cgngb/vu5/8AjNL/AMRA/wDwRn/6SCeBv++7n/4zXg1j/wAGiP8AwRwtblZ7jwN4 9uUXOYZvHU4VuO+xQ35GtD/iEo/4Iuf9Eb8Yf+HAvv8A4ugCp/wU4/4LJ/8ABH39pb/gnh8bPgZ4 c/bj8E6tq/iP4Y6zbaBpkbXBa41IWcj2armLG77QsOPfFfys/D34geK/hV4/0b4k+AtYl07WvD+q wahpN/bSbXguIZBJG4Psyg1/V9pf/BqJ/wAEXdMjaP8A4UL4inJOd1z45v2I+h8wVZP/AAaqf8EX M7h+zrrOc/8AQ6X/AP8AHaAPsf8AYr+Pa/tW/si/Db9pA2iW7+N/BWm6zNBGPljkngSR1UegYtj8 K/FL/g70/wCCTAja3/4KgfA7wuW3GHTfirZ2cP3cAJbamQo7/LDI3r5R/vGv3P8AgD8C/hv+zN8G /DvwC+D+iPpvhfwnpcen6FYSXLzGC3TO1C7ks2M9Sav/ABX+FngL42fDTX/hF8TvDdtq3h7xNpM+ m61pt1GGS5t5kKOhB9icHscHtQB/Gn/wRv8A+CkHir/gmB+3F4c+PtrLcz+GLxhpPj3SIm4vNJld fMIUkAyRFVlTOPmjxkBjX7V/8HFn/BaRbr4V+Hf+Ce//AATt8TN4q8e/GjTLR7/U/Csnnz2uk3oU wWsPlnP2i7RwPVYmJ4Lgj8RP+Cuv/BOrxz/wTD/bW8S/s5eIEnn0N5DqXgfV5U/5CWjyyOIJCcAF 12tE+OA8bdsV7t/wbK/tG/ssfAP/AIKjeF/EH7V+j280msWD6P4K8T6pOrQeH9VkAjhlcPwN6Zt1 k/5ZmQdBkgA/oR/4Ib/8EnfB3/BKv9kay8DX8NpffEXxPHHqHxE8QW+GE11glLSNuvkQK2xf7zb3 43YH2qoIGCaFCAZTHPpS0AFeO/t8fA6w/aK/ZF8f/Ca8tRNJqPh2aSwXbkpdwDz4GX3Ekafy717F TXijkzvXORgg96ipBVIOL2asdOCxdbAYyniaTtKnJSXrF3X5H82f7C37dvxh/YN+LEXjbwJeSXej 3Mix+JvDM8pEF/CD83HRJVGdsgGVxzkZFfv9+yl+1p8If2wPhHZ/F34P60Lm1nAS/sJXAudOuMAt bzKCdrrkexBBGQa/mt+KulWmhfFLxHoliCILPXryCAHqESd1H44Ar0H9i39tH4wfsQ/Fy3+Jnwu1 Ey2shWPXNAuJW+y6nb5GY3UdGH8L4yp6cEg/GZbmc8DP2c9YX+7zR/X3iF4cYTjLB/X8GlDFpXT2 U1bSMvPtLps7rb+mEHIB9aK85/ZX/aJ8PftVfA3w98dPCmi6lptlrtp5qWOqWxjliYEqw5GHXcDh 1+Vhgg16NX2kZRnFSi7pn8f4nDV8HiJ0K0eWcG4tPo07NfeFFFFUYBRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQB/P5/wfFf8f/7Ov/XHxL/PT6+Lf+DTL/lNZ4E/7FfxD/6b Zq+2P+D4ywuEX9nLVGUeVJ/wk8SHPO5f7NJ4+jCvif8A4NMv+U1ngT/sV/EP/ptmoA/rRubqCzhe 4uZVSONC8jscBVAySfav5JP+C+n/AAW9+LP/AAUp/aA1n4S/Dbxjcab8EfDOrPb+G9GspCi628RC nULroZSzAtGh+WNCMDcWY/0u/wDBVzxX4o8Ef8E1fjp4p8F+b/adp8LtZNqYThlLWrqzA9iFZjn2 r+IhGYuMevpQB/RP/wAGsX/BET4D33wA0X/gpN+0r4KtfEvibX72eT4faNq9uJbPSbSGXy1vvLbK yXDvHIVLAhEwQNzZH7nxQrEAqAAAYAAwAK+Mv+Der4leDviZ/wAEdfgdqHg26hePS/Cp0m/jibPk 3dtNJFMh9DuUn/gQPevs9jgcHmgD4r/4OKRn/giz8fDn/mVbb/04WtfxsgENg+tf1K/8Hdv7aHhz 4Qf8E7V/ZA0bUY7jxf8AGPWrS3h0yBt06abZXUN1NMEHIDSxQRA9/MYDpx/LW3Eh7c96AP7hP+CX P/KM79nX/shfhH/0y2lfyk/8HDv/ACml+P8A/wBjhD/6Q21f1af8Euz/AMazf2dsMMj4F+EuM/8A UGtK/lP/AODiazubP/gtT8forqFkZvFdtIA3919PtWU/irA/jQB+vf8AwZH/APJlfxj/AOyowf8A ptgr9rT0r8Sf+DI7WbCT9kn40+HY5P8ASbf4jWdzKvoklgiqfzif8q/bbI9RQB/NF/wei/tNHx5+ 2t8Pv2XtH1EvZeAfBZ1HU4VbhdQv5WOCPVbeCAg/9NTWZ/wSu0T+2fgx8PpWQslnozzycccO4X/x 5h+VfDn/AAWz+ON1+0P/AMFXvjv8Rpbgy28fxF1DSdOYtkG1sJDZQkegZIA2P9o1+iP/AASH0Zo/ 2SPDfiCQAeZpiQRE+gkdm/Ur+Vflni3W9hw3GXVzt98Wj9W8IaXtuJJxe3Jf7pRZ92/srHH7SHgj /sZLX/0MV7R/wcfanpyf8EbvjZo0l/Ct3P4eglhtmlAkeNNQtQ7hc5KqXQEgYBdc9RXyyn7Q/g39 k5h+0t4+trq40fwQDrF/bWChpp44AXMaAkDc2MDPAzntXxh8VvE//BQ3/god+yr+1H/wWD/al0Q+ Hvhnqnwfk8HfC3w7M5RY7aXxDpV2GtY8DfGotWEly2DLI425CYXzPBZf8IuJf/Txf+ko9Hxr/wCR 3hv+vb/9KZ+Mw6j61/dT+w1/yZR8H/8Aslvh/wD9NsFfwrD7341/dT+w1/yZR8H/APslvh//ANNs Ffsx+MHqVIfvClpD94UAfxF/8Fb/APlKB8f/APsreu/+lstfZPwb/tI/8Gl/xY/s9XK/8NH2P2nY M4j8qyzn2ztr42/4K3f8pP8A4/8A/ZWtd/8AS2Wv2F/4N8v2QNN/by/4N3fjz+yreukdz4q8c6pH o1zJ0t9RjsbGa0kPsJ448+q7h3oA/n0YYbGfxr+tH/g0yx/w5l8HkH/ma9c/9KzX8o/xF+H/AIw+ FPxA1r4Z+P8AQp9M1zw9q0+navp9yhWS2uYZGjkjYeoZSK/pq/4Mzfi9a+M/+Cafin4Vm4X7T4L+ Jd2jQ7huEN3bwTo+MdC3mge6GgD9eKKKbI4VN/mKoHVj0AoA/lG/4O7tVF5/wWP1uzEJQ2XgPQoi 277+YGfPt9/H4V4b/wAG8RA/4LRfADP/AEN83/pDc1Y/4OGf2pvDX7XX/BWz4rfETwTexXei6NqU XhzS76AgpdJp8YtnlUjhlaVJCrd12nvUH/BvAAf+C0nwAz/0N03/AKQ3NAHo/wDwdT/DW/8Ah/8A 8FpfiNqE9r5dt4l0jRNXsX248xH0+GF2/wC/0Ewz/s16P/wZvXNvb/8ABXDUIpplVp/hDrKQgnl2 +1WDYHvtVj+FfXv/AAeifsMav4k8J/D79vzwVoMlwugI3hjxpLChJhtpJDLZTv6IJWmjJ7GVPWvz X/4NrP2itE/Zt/4LCfC3W/E+ora6d4nnuvDNxNLIFTffQNDACT/038nHvigD+wmikRiwyR+dLQAV Q8SeKfDfg7Q7vxP4s16y0zTbCBpr7UNQukggt4x1d5HIVFHck4q+SB1NfkD/AMHRf7a3ibxN4Y8I f8Eev2YZG1X4mfG3V7KPXbKwkzJZ6WbgeXE+PuefKoJzjEULk8MDQB+t/hnxR4b8aaJb+JvCGv2W qabdpvtNQ066SeCZckbkkQlWGQeQT0rg/wBr39rD4N/sS/s8eKP2lvjt4hXTvDvhfTXubkrzLcyY xHbwr1eWR8Iq+rdgCaofsgfs/eCf2Hf2P/A/7O2i6jBBpHw/8JQWVzqEzCONjFHuuLly2NoZzJIS f7xz3r8Vv2jvHHxZ/wCDpD/gpRB+y58C9c1DS/2Wvg7qS3PifxJbqVTVZQxR7hTxummAeK3Uk7I9 8xHLLQB4r8LP+Cf/AO27/wAHQXxY+LH/AAUI+K/iqbwZ4U0/TbvS/hRaXUfmQSXUO57XS4t2MW8e 8me4A5llJAyWC/kh8TPhv48+C/xI1r4X/Efw/caN4j8NatNYavpt0NstrcwuUdD7hlPI9iK/uu+C HwU+Gn7PPwo0H4IfCHwla6J4X8MaXDp+i6VaphIII12qCerMerMSSxJJJJJP4rf8HbH/AARyTxz4 Zm/4Ke/s9eFSdY0W2jg+Kum2ceWvLNdscOpBR1aIYSTA5j2sf9WxIB9E/wDBsj/wWTj/AG/v2dW/ Zo+OniTzfiz8N9OjjmurqXMviHSgdkV5/tSx/LHL1JOxz984/U1W3LuAIz61/Cn+x3+1h8Xf2Iv2 kPCv7T3wU1prLxB4U1Fbm3Df6u5iPyy28o6NHJGWRh6NkcgGv7P/APgnt+3N8Iv+Cin7KXhj9qL4 NX6/Y9atQmq6YZA8ukaggH2izlx/EjHr/EpVhwwoA9uqh4j8Rab4W0O+8Q6vMI7XT7OS6uZGOAsc aFmP5A1fJA6mvkv/AILRftLWX7Ov7Dfia3tL0R634xi/sHRUBG4mb/XuP92ASH6layr1Y0KMqj6K 56eS5ZXzrNqGBpL3qs4x+96v5K7fkfgH4x1u48TeLtU8TXABl1DUZ7lwo6tJIznH4mv0W/4JK/8A BGG++MT6Z+0p+1f4fkt/CmUuvDnhW5Xa+sDhknnGcpB6IRuk74X73Pf8EDv2M/gL+0t8U/EXxJ+L 8Q1e78CSWk+l+GZ0/wBHkkkLlLmXn94FaMgRkbc8nPAr9t4YIY4wkcQUAYAAxwK+byjLIVksRV1X Rfq/8j+ivFbxKxOUVJ5DlV4TSSnPZpNX5YebTV5dNlrqodJ0jTtEsINL0iyhtbW3iEcFtbxhEjQD AVVHAAHYVaoAwMCivqdj+Y223dhRRRQIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAK+NP2vv+C+H/AATP/YX+Oepfs5/tHfGHU9I8V6Tb2819ZW3hm7uURJoxJGRJGhU5VgeDxX2X XPa78JPhV4p1J9Z8TfDLw/qN5IAJLu/0aCaRgBgAs6EnA4oA/mi/4OlP+CsH7E//AAU30L4KWP7I PxGvdek8GXfiCTXxe6JcWYhW6TTxDt85Rvz9nlzjpgetfK//AAb8/ti/Ab9g3/gpt4U/aQ/aU8T3 Gj+E9L0LWLa8vrbT5bl0knspIogI4wWOXYDOOK/r5/4UF8C85/4Uv4T6dvDtt/8AEUf8KD+BX/RF vCf/AITtt/8AEUAfn943/wCDnr/gh38SPCOq/D7xb8cdVv8ASNd02fT9UspvBN+UuLeaNo5Iz+76 FWI/Gv51/wDgqT/wTM+K/wDwTn+OD6VfaHqOofDfxOi6n8M/HDWji21fTJlWWFWcqAtxGkiLJEfm DDP3WUn+yn/hQfwLzn/hS/hPj/qXbb/4in/FL4F/Bf44eBJvhf8AGT4UeHfFXhueMJLoXiDR4bu0 YD7v7qVWUYwMEDIxxQB/Iz/wSJ/4L1/tU/8ABJGPU/AvgnQNK8ZeAdbvReah4Q1yaSMQXO0K09rN GcwuyqqsCrK20cAjNfoN8Rv+D3DxJq/gGXSfg3+wfDYeLJ4zHaXuueLzd2cUhGFbyIoI3fDY+XeM 9M96/QT4jf8ABrv/AMEXviLqU2p/8Mu3GhNM25ovDfim+tY1Oc/KnmkL9BgV6P8Assf8EGv+CU37 H3ia38c/CT9kjQrjXrOQSWWt+KHk1W4tXBBDxfamdYnBGQ6qGHY0AfCX/BEn/glv+0v+2T8eJ/8A gsj/AMFePt2s+KdUQt8N/B3iOyMQs4WRkW8e0ZQsESo3+jwgDGTKfm2mv5/f2xP2a/HH7I37UXjj 9nL4haXc2eo+FPEt1Yj7ZEUaeBJWEM4yBlZI9rhhwQ2a/usWKNMBFwAMADpivEP2r/8Agmr+wh+3 E8N3+1T+y94U8YX1vH5dtrF9YeXfxJ2RbqEpME/2d+32oA+Lf+CXX/Be3/glx4e/4JqfCjQPi9+1 f4b8IeIvAnw60vw/r3hzWmkS9Sews47YtHEFLTK4iDqY92d+OCCB+Kv/AAXt8KfE79qL9oLWf+Cs PgX9nvxNofwX+JmsLpvhXxRq1k0Z1RrK3itxeyRkZt47gITDv++ImxyCK/oj+Fv/AAb6/wDBHX4Q eLIPGvhb9hbwndX9rIHtjr7XGpwxsDkHybqWSIkEAglTjHFfUvjz4NfCX4o/Dq5+EPxH+Gmha74V vLQWtz4c1XSop7GSEDCxmF1KbQAMDHGBjFAH8s//AAbF/wDBXD4Sf8Ezf2jfFvgX9pDVJtN8A/E6 xsob3Xo4WlTSL+0aYwTyKuW8plnlRyoJHyEjCmv3D/ai/wCDjf8A4JkfArwcJ/hH8aLX4x+MdSUR +GvA3wxzqV3qFy4xFEzxgpDlioOSXGThGOFMmr/8Gyv/AARZ1fXpNeb9j63tvNl3tZ2fiTUI7cH0 CCfgewr3n9lz/glp/wAE8/2L75db/Zo/ZH8GeGNVVQo16LSxcaiBxwLucvMoyAcBwM9qAP4yP2s/ DfxU8MftJ+NbX42/DbU/B3ii78R3V/q3hrWbdormwe5ka4EThgDwsq8kcgg1+p//AATN+MU/gP8A ZD8H6FJoz3qS6dvtxDJhg5dwR0Oc8dOa/c/9sr/gj/8A8E6f2+vE8Hjr9p/9mjR9c8Q28CQL4htp ZbO+kiXO2OSaBkaVRk4D7sdsU34Tf8Egv+Cf3wQ8LWHg/wCG/wADIrGy02HyrPfqlxLJGuScB3cn qT3r43jfhyvxNlcMNS5bqXN7zaWzW6TfU+14G4kw3DOaTxNfms48vupN7p7NpdO5+Zfgjwl4T+JX i3S9b/bFvNM0v4bxX0UniXTNWuBBZrpwcfaGu3YgLEIt24sRxnpXtf8AwW+/4KJf8E0Pil/wSB+K /wAAP2dP2y/hFqmqSeGbW28O+FfDPi+ykkkSK6tyILeCFyTtRThVGAF9q+7PEX/BNn9jbxfoF74U 8WfCGHUtL1K1e21HTru/naK5gdSrxON/KspII9DXmH/EP7/wRqPX/gn54GP1S5/+O1zcCcN5lw1g 61HGOHvSTioXsla3VI6OPuJst4nxtGthFNcsWpOdrt3v0bP4yFU7sZH51/YJ+xF/wWz/AOCTlh+y n8MPA+tft7fDrS9W0j4f6NYanY6zrQsnt7mGxhjljbzwgyrKwz044Ndl/wAQ/f8AwRn/AOkfXgX/ AL93P/x2j/iH7/4I045/4J+eBj7lLk/+1a+7Pgj6db41fCRfhC/7QB+I2jf8IPH4fbXX8W/2jH/Z 40xYTO155+dnkiIGTzM7doznFfPUv/Bcj/gkKjsjf8FEfhblc5x4niI/DHWvfofgF8Grf4Fn9mZP h3pp8At4Ybw6/hWSIvaNpTQG3azZWJ3RGElCpPKkivAB/wAEL/8AgkAP+cd/wwPufDqE/wA6AP5H P+CjvxG8I/GP9vv4yfFPwBrMGoaJ4h+JOsX+k39tJvjuLeW7kaORT3VlIIPoa/bb/g0+/wCCgX7D /wCy1/wT38VfDz9o/wDay8AeBddufibeXtvpPivxRbWM8tu9naIsqpK6llLIwyO6mv0t/wCHGH/B ID/pHd8L/wDwnEpk/wDwQq/4I/XEDW0n/BPH4ZBXUqSmgKrAH0YEEfUGgD8pf+C7/wDwTP8A2dP+ CpOva5+3h/wSD+Lvgr4neOdCsYm+LHgX4f67Bf3GoQ4fytQhigLFrnC7Gj4MoQFQXVg/5u/8Eiv+ Csvx7/4I2/tI6j4isPCk2p+G9aaOx+IXgXUd1vJcJEzbXTdgw3MRZ9pYEYZlYc5H9Y37Kn/BPD9i r9h681i//ZO/Z40LwNN4giij1mTRRKDdrEWMYbe7fdLNjHrXnv7bn/BFz/gm3+39dSa/+0P+zXpM viGVNreLdAzp2qMO2+eDaZsdvMD47YoA8l+Gv/Bz3/wRl8e+BIPF2pftSt4auZLbzJdB8QeHb1L2 FucxsIo5ELD/AGXIPY1+d/8AwVe/4OpNc/ad0a7/AGN/+CUngfxI0/i1v7IuPHFxpzLqV952Y/s+ mWqEyI8m4KJXxJyQqA4evpuX/gzC/wCCXMmuHVk+MHxoW23ZGmr4k00xD23HT/M/8er6/wD2Ff8A gh1/wTa/4J5a9H43/Z/+AVvJ4qgjZIfF/iW6bUdRhBxnypJflgJxyY1UkZGccUAfzJ/8FKP+CO3x Z/4Jj/sz/CP4pftEeJVHjn4oXV/PqPhW3+ZNEgiigdIZZCMvckyt5gHyrgKCxBNct/wQ8+Lnwy+A n/BV34K/F/4y+ONO8N+GND8Tyz6xrmq3Ait7SM2dwgZ3PCjcyjPqRX9fH7TP7DX7If7Zcekw/tT/ ALPfhnx2mgtKdHTxHYC4W0Mm3zCgJwN21c/QV5P/AMOMP+CQP/SO/wCF/wD4TiUAc98VP+Cnv/BF f9r/AMA6n+y/46/bX+FniXSfHtqdEu9CPiGNnvPtB8tUQdpNzKUYcqwUjBAr+cX/AILC/wDBF39p L/gkX8df+Er0a11PWfhjd6v9p8D/ABB06JyLXEheG2unUAQXSBQeyvt3Ieqr/SvoX/BCr/gkX4Y8 W2Xjrw5+wb4GsdV02/ivbC7tLaaP7PPG4dHRVk2qVZQRgY4r6c8aeAvBHxI8M3ngr4h+ENM13RtR iMV/pOs2MdzbXKHqskUgKuPYg0AflN/wRi/4Oef2Wf2l/hFovwe/bq+Kmk/Dv4o6Rax2d3rviW6S z0nxBsUKLlbmRhHBK2MvHIVBY/ITnA/SST9tH9j2Lw03jOX9qz4bLo6R731VvHOni2VcZ3GXztuM d818d/tDf8Guv/BHn4+anPrVp8Ar3wLeXDl3k8A63JYwhicnbbsJIVH+yqBR2FeJWP8AwZe/8Ev7 bWV1K4+NfxruIA5Y2EviPSxER/dyunB//Hs0Adr/AMFDv+Don9ir4DaJc/DL9iTVP+F4fFPUibLw 7Y+EoHutLhu3yqNJcR/8fA3YxHb7y5wMqDkeFf8ABKj9ljw7+w38TLz/AILHf8F3vjponhL4u/FG 8uU8E6d47vlgk0tJIw0rsjj9zc+URGkK/wCph+U4LFV/RX9h/wD4Iv8A/BOH/gn1dp4g/Z2/Zv0q HxEibR4u14nUdVUHGQk82TCDjkRhM984Fev/ALRv7I/7Mf7WPh6y8PftLfAXwn48s9Jne40q28Wa HDfR2kzrtaSNZVYKxAAJHUCgD8Rv+Dhb/gvn8P8A9pnTNJ/4Jz/8E+/jroU2g+NJYoPiN8Tf7RNv p0du8iBbNLk42xdWuJAMbAEGcvX2N/wTD/a9/wCCFf8AwTG/Zf8AC37Kvwr/AOCgXw11DU5JEm8Q 65b6kHl1vVZdokmkZFO1d2EjViAiKo7EnnP2XfA//BFHxl8Wtd/ZV/aU/wCCeXwP8IfEXw3r1zpS S3XgKxisNZMcrKjxO6YjkZQpMbEZLfKT0H2Np/8AwRx/4JPQSQ6lYf8ABOz4ORyRuskE0XgGxBVg chgRH1yAc1lRr0q8eaDv+nqenmuTZlkmIVHGU3FtJp9JRe0ovZp9189T6UtLu3vrdLu0lEkUqB45 FPDKRkEexFeQ/to/tbfsefsk/C/+3/21fifofhrwp4gkfSj/AG/byTQ37PGxe3McaOXzHuyNpBGa 9ftra3s4EtbWFY440CRxoMBVAwAB2GK4P9oH9lb9mz9q7w7Z+Ef2mPgZ4W8eaXp939rsdO8V6LDf Q28+0r5qJKpCttJGRzg1qeYfxb/8FHvhf+y98Jv2ufFfhv8AYu+NGn+OvhhcXn27wjrFis6mC2lG 77JKJ40bzIWzGTghlVWzzgfT/wDwbt/8FiL3/gl/+09/wiPxY1u4/wCFQePp47XxdF8zrpFxuAi1 REHeMZWQAEtGx4JRRX9KB/4Iy/8ABJg4Df8ABOX4NHA7/D+x/wDjdcr8Xf8AgmX/AMESfgN4Nu/i J8W/2G/gVoOj2SFpr3UPA9gi9Cdqgx5djg4VQST0FJyUVdmlKlVr1FTpxcpN2SSu2+yS3Ot+CP8A wWA/4JmftMeIz4L+B37ZvgvXtXWxnvjp0V80Mq28ETSzSlZlQhUjVmY/wgHNfjx/wVk/bzn/AG5P 2i3vvDF1J/whPhUSWXhOF8r5yttMt2y9mkZRj/YVOhzXO/ty/Gr9irxl8QBpX7B/7HHgP4ZaBp5m hbxL4f8ACVtp+q6wjqUcPJEoaO3ZSR5Wfm6v2A+fVBY7VGSewFfI5vmccT+5pP3er7/8A/qzwo8N a3D/APwrZpG1eStCP/PtPdv+81p/dV1u3b7v/wCDef4tL4A/bnn8C3VwVtvGXhW5slQtwbiFkuIz jPJ2xyAf75r90EcOMgHr3r+aL9hHxV4u+FH7YPw3+JWj6DqMy6X4usnvBa2cjs1q0ojnHyjvE7j8 a/pbgIZNw7816WQVObCuD6P8/wCmfnvjtl8MPxRRxcNqtNX9YNr8nEfRRRXun4iFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUVkeN/Hfg74beGrzxn4+8VaboukWEXmXup6tepbwQLnG55JCFUcjqe9AGvRXg3w+/4Kgf8E8/ it4ps/BHw6/bN+HWr6tqM5h06ytPE9uWvJAcFIiWAlbOBhSete7o28ZyPwoAdRXjvxw/b8/Y/wD2 cfGEfw6+MXx60XTPEctt9oTw3bebe6l5P/PQ2tqkkwTp8xXHvWn8BP2zv2Wv2opr6y/Z++O/hvxT eaWxXVdN02/H2uxOcYnt2xLCc/31FAHps0sUETTzSBURSzsxwAB1NY/w8+Ifgr4seC9O+Ivw68RW +r6Hq1uJ9N1K0bMVxGSQGU9xkGvzl/4L2/8ABcj4HfsW/AXxd+zV8GPiDZa38ZvEWmT6RHp2kziQ +GUnjZHu7l1yI5VRiY4vvlirFQvJ7v8A4Ip/txfsfWn/AATs+APwRvv2pPAa+NT4I0/T28LSeKrU ah9sIx5Hkb9/mZIG3GeaAPveZgsTMxAAUkkngV+Tl3+zb+0P/wAFvP2/bj9o3XPij4r8EfssfDu4 bR/Blt4f1y4sJ/H00MpF1cIYXR1tnmUqJyPmjRRGclmH6T/tHfFn4BfCP4T6r4g/aX+IWh+G/CNx CbPU77XtUW0hkSUbTFvLKSzAkbVOTnivM/hv/wAFM/8AgnXrGsaP8K/Bn7R3hfSLq8RLXw7pGqwT aQt0qhVSK1F3FCsoA2gCPcMYxxQB71o/hnRfD/he28H6RaeRp9nYpaW0CSN+7hVAiqGJ3cKAM5z3 zmvwj/4OhP2d/AP7Bvwv+FvjH9k7XfG3hDUvFHijUIdcuYfiZrt39pRIEdV23V5IqYZiflA/Kv3q Vg8YcMCCMgg8GvxQ/wCD0L/khPwO/wCxw1P/ANJY6AP2M+C881z8HvClzczPJJJ4asWkkkYszE26 Ekk9SfWulrl/gkcfBfwif+pXsP8A0mjrifip+3v+xl8EfGrfDf4q/tMeDtG8RJF5kug3GtRtexpj O5oEJdVx3IA5oA9eorg/gf8AtO/s+ftL6HP4l/Z7+NHhnxnY2sgju7jw7rEV0Ldz/BII2Jjb2YA1 295eW1hbPe3k6RRRKWlllYKqKBkkk8AAdzQBLRXzJr//AAWY/wCCV3hjx4fhnrn7fPwwg1lZzBJb DxRCyRyZxseVSYkbPGGYGu2/aZ/4KAfsh/shfAy3/aP+Pfxz0PR/CF8UXSdViuftP9qO67kS1SHc 1wzDJ+QHABJwASAD2WivJv2a/wBt79mH9rb9n6H9qH4F/FzTNW8ESCb7RrU7NapZtCcSpOs4Uwsn UhwOCDyCDXLJ/wAFVv8AgnGZEB/bV+HQie6+zLeHxJCLYzdNgnJ8vdnjG7rx14oA+gqbKcRscZ46 VX0PW9I8SaTb69oGqW99ZXcKy2l5aTLJFPGwyroykhlIOQQcGn6nciz06e8YgCKFnJJ6YGaAs3oj +f8A/wCC0/h/Q5/2yLn4z+D0C6X49sBeIVHAu7SWTTrpfqJbRifUsfWue/Zg/wCCuH7bn7LVrb6B 4W+J767oEGAmg+KIvtcKL/djZiJYh7K4HtzT/jV4lT9oj9i+8+IcchmvPh78XtTWZj1XTtc3XMRO P4RcWs2M8Au3rXg/wu+D3xT+NXiJPCXwl+H+reIdQfGLbSrF5SgzjLEDCL6sxAGOTXwFWrVjivaU W05a6ee/43P7pyvK8pxHDMcBm8ITjh7037S1ko/C7vZ8jg7767n6d/Dz/g5kQ2kcHxV/ZVc3CgCW 68P+JPkc9yIposp348xvrXV6j/wcvfAn7Gz6T+zV4smmPRbjVLWND/wJdxH5V+fUf7KHwO+CKfbv 2vP2hrKDUYRmTwB8PPL1bVCw/wCWc9wG+y2pzkEF5GH93vU8B/4J8/HqP/hC9E8P6z8GNXg/d6N4 j1bWZda07UByQNQwivbOTx5sKlADynBJ7lmWZxVnUV+ztf8A4HzsfG1vD3w3xFX2tHA1ZU1vKDqc i80nLmmvOmpJH0t8Z/8Ag5E/aD8VWkum/BP4KaB4TDKVj1DU719TuF91G2KMH2Kt+NfC/wAdv2l/ jz+014lPi346/FDVfEd4GJhF9cfuYAe0cS4SIeygVP8AHb9mL4x/s8X1uvxB8Ng6ZqALaN4i0yZb rTdUj7Pb3MZMcgxjjO4HggUfsu/BeT4//HXw/wDDV7r7NptxdfaNf1BjhbHTYAZbu4Y9gkKO31xX DXxGNxU1Tqyd+234H3OSZDwVw5gXjstowjBRbc170rJa++25eqT30sfqV/wRR/4JkfBPW/2XIvjl +0h8GdE8Sap4vvPtegxeIdOS4Fnp6DZGyq+QDI29845Up+P3r4b/AGVP2a/B8ax+GPgD4NsQuNv2 bw3bLj/xz2rE/Yb+LPgv42fsv+EPiD8OtEXTNCn0+S20jTlP/Hva280lvEh9wkS/nXrlfZYPDYel hoKCT0Wttz+PeLOIc9zPP8VPE1JwfPJcnM7Rs7KNk7aJJee5U0rRNJ0OIW2j6XbWkX/PO2hVF/IA Vboort2Pkm23dhRRRQIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigBJBlcZI9xX4zftgfGyb/gp3/wAHC3gb/gmF4uvHu/g1 8K2n1Txj4aVz9m1/U7fTmvCLlQcSxpK1vDsbgfvu7c/sxJ93/wCtX4N/sS6BqXww/wCDvn4qeH/F ySQ3GtyeIrvTfOH+tiubGO9i2nAyPJz06bcdjQB+vf7VH7B/7On7VH7Nus/s1eM/hZoUGj3umPBo 72WmRQNo9wFIhubYooMMkbbWBTHTHQkV8Mf8G737f/7Qfx7+B3xX/Y0+N2sPrnxL+BN7Npej6tqL ky31ovm28Edy5yWkjnt3Rn6lSmclSW/VCT7h4rwX9p39pn9nL9iH4a/En4v3fhrTYtU8IeBpvFGu 2OkackU97EZHjt1klVQA01wGRS5yTvboGIAPz/8A+DZz4Xft9eEfi9+0H42/bm/Zs1nQNT8Ta9Dq Evjbxn4fntNU1PUGeVZYIJZlHn2aqNymPKKThSQePGv+CyHjJv2S/wDg44+APxm+C94dG1bxLbaH F4uGnp5Y1KKW+ksnSYDAl3wfIc84Ve6gj0b/AIJjfCf45/8ABfrw/wCJ/wBtn9vP9pTxxp3gZfFF xpXg34Q/D3xPPpOlWyxIjPJMYiHmI8wICTuO1iWwQtfGf/BWn9lv4Jfsgf8ABcn4JfB/4FRanFpi XPha7uodX8QXGozrPJqjAkyXDu65VVO3OOc45oA/Rz/g6+8AeBdN/wCCV2r+LtP8FaRb6tP4+0Yz anBp0aXEhaR87pQu4575POK92/4ImfAL4HT/APBMP4AfECf4MeFH14/D/T7ptafw7am7M+CfM84p v3/7Wc+9eQf8HZv/ACiO1H/sftE/9GSV9Hf8ERv+USv7P/8A2TXT/wD0E0AfDf8AwVa+Gn/BR74i f8F2/gD4i8B/s06r49+EnhSaxm003Wgz3nh2zlmZ49Qub2RVMUE8aFXjaUggxRFd3Svdf+DoL4fe BvEv/BInxl4l8QaXbNqHhrVtJvPD14YR5ttcG8jiPlsOUzHJIDg8j868J/a5/b4/aZ/4KSf8FfW/ 4I5fsrfG/VvhR4F8MXF4nxG8deFZjFrOoNa24kuoYZeDCqyYt124JZmdiygLXHf8F8f+CTf7IX7G n/BMXxH8WfAOseOdR8Upr+l20WreLfiDfag1y0s4Em6OSTy3YjJ+7xjIxigD7s/4N+/jh47/AGgP +CTHwo8b/EbXLnU9VtNOuNKnv7x90syWlzJBGWYkliI0Rdx5O3nnmvh7/g9C/wCSE/A7/scNT/8A SWOvq/8A4NiBj/gjX8N/+whrH/pwmr5Q/wCD0L/khPwO/wCxw1P/ANJY6APsj/grB+3hr3/BPX/g kQfjP4Du0h8Xan4c0nQ/CErrkQXtzAimfB6mKISyAdCyKDxmsr/g3P8A2e/CHgv/AIJoeD/jfq2n Q6t41+Kct34l8X+LNSQT3+pTzXMioJZ3y7KqIoAJxkserMT8+f8AB0b4J8QeI/8AgjT8NPE+lQO9 p4f8R6DcamVBOyOTT5IVY46DfIoye7Ad6+yf+CEGvWniL/gkV8CLy0aL914JS3lWHorxzSowPvle fegD89/+C8PjPV/+CRP/AAVB+DP/AAUT/ZptF0a38c2s9h8TNA08iG115LaaLzGmjUBHkkgmxvPI eBH65Jzf+DrH/gpx8R7zSvhn/wAE9/2WPFV1ap8VtItda8TX2nztHNf2V1KiafZKyNkJKwd5F/iA jXkFxU3/AAej6xZ3Phn4CeC4I1e/udW1m4iUH5ygS2jxj0LOo+tfHX/BdX4deLf2Xv8AgpN+yx8R PirbzQ6bYfDDwM08k6sAraZOi3aZPdSBkdRkHuMgH7J/Af8A4Nyf+CZXw+/Y3sf2afHv7OOgeI9X u9BWHxH47vLRTq89+8Y825guSN9vtckoiYUAAEHnP4n/ALE37HngK+/4Kr+PP+CMX7aPiLV/Eeja dY+LfC/wfuNU1ec2fh7WpYhJZarHbBgoZ4YlfYBje44I5r+qfTby31Cxiv7OVZIZ41kikRsh1YAg g9wQetfzZ+HtOuf2jP8Ag8XvL/4ZK09voHxUlm1K4tv4I9N0/wAq6YkekkTRnn+dAHEaJ+y18eP2 T/2kvhR/wb+fE74y2GpaH4w+K9l4i+KcPg++n+yX/wBrMCQWJeRInaNba2ErKVA8y4zzsVq/pS8Q /s5fA3xN8Ibr4C6v8JPD8ng670ltNl8OLpcS2gtWTZ5axhcKAOmMY6jmvwk/bT0XU/hl/wAHdXgD xR4phjSz13xb4au7Ca5U7DC9kltuU+qyRvj/AGhX9CTY2n0xQB+J/wDwbt/tUfED9nX/AIKA/Gf/ AII2/ELxfd6r4Y8La5rVx8N31GcvJafY7zY9shJyEkt2E+wcK0chH3uf1e/bZ+JcXwl/ZE+JHxB+ 0GKTTfBt+1tIDjbM0LJGf++2WvxD/wCCcGlXvxS/4Oxvip4v8JxFrDQPEHiy51OaJcrHHGhsySR0 zNIi/U1+k3/BwF8YE+Hf7CFz4ItrrZeeM/EFppyIGwfIjY3EpHqMRIp/3658XV9jhZz7Jnv8K5c8 24lweDSvz1IJ+l05fck2fkH+y/8AtI+FPgbo3jXwj8RfhPF418P+MtJtYLvQ7jUpLSL7Ta3SXFvK zx/PhSrKQCCVdhkAmpvih+3H8dviF4dfwB4bvdO8D+Em4HhDwHZDTbFlxjEvlnzLk+pmdyf0rx6i vgFWqqHInof3hLJMrnjJYqdNSm2nrdpNJJNRbcVKyS5kk7Ja6Csd7F2JJJyxJ6mppdMvY9Li1d7c i2nuJIIpexdFRmH4B1P41BXsOl/D7+2v2CtX+I0dsSdE+KdraSS4zhLmwkOPbLQr+VRGHPc6MZio YOMHLaUox/8AAnZfjYzfgR+1v8WfgTZT+FbCay8QeE79v+Jt4J8U232zS7wdyYmP7p+4kjKODzni vTNY/aC/ZH8E/A/xnrP7NHhDxH4a8d+P7SLQdU8P6pOtzZaPpjsZrxrK5GHZZmSGLZINyqXGWGSf mSg9K0jXqRjbf16enb8jixWQ5fia/trOLbTlyuynZprnW0tUtWr9L2bT/cP/AIN2fi5beOP2LdR+ HE1wGvPBvimeAxlssLe4VZ42x2BczKPdDX37X4Wf8G/n7TUPwZ/a/n+Euu34i0r4h6abOPe/yLfx EyW59PmHmp65cCv3RjYuu4ivssnrKtgI946fdt+B/H3ixk08n42xDt7ta1SP/b3xf+TKQ6iiivUP zYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAMA9RXwv/wUd/4Jb/EL4rftT/Dv/gpb+xLrWi6N8b/hrNsksNdZotP8 VaeUaJ7S4lQMYX8mWeMSBWyspU4wpH3RRQB8s+IP2nP+ClWueEDoXgD/AIJkXOj+LbnbCmq+LPil ob6BZOcBp2ezuZLyeNckhBbIzYwdmc1Cn/BNaT4lfsa/E34AftN/FSXxX41+M+nzf8J943trFYFj uWjC20VpDk+Xa2m1BFET821mfLSOT9WUUAfiT+wX/wAE8f8Ag4h/4JQzeIvgD+y/YfCPxp4A1vWm vLfU/EetbILWZlEZulj3JPGSqIWjw4yoxk5J1v23f+DfT9tL4hfED4VftpeBfiboHxK+OOj+KV1r 4r3HiG/Ol2msPHNbyWlvYkKy29vbxwmBUIBK4fBbK1+0FFAHwl+37+wn+1z/AMFSv+Cffjj4KfHC Dwn4A8V6pd2Oo+CPDOlaxJqdrptxZ5fbd33lRGYzszKdkO2JQpHmHJrm/wDgmR8Ff+CxH7Pv7Jvg n9iz4l/DX4ceD7XwZKLIfEoeLjq1xJpSXBkEUOmxwqhnKExrJJOFVdrGMkba/RGigD8a/wBt7/gi N/wUN+Dv/BUG4/4Kkf8ABKvxZ4bvdY1nVZtU1Twx4l1BbYwXdxCYbxMy/u54Jt8jlSysjOdvKqa9 K+MX/BMH/gpf/wAFUfgP4l0//gpr498FeFb608OXMfww+HfgZnk06x11oyseq6jNuYzMozGkasyo ssjD5sCv1KooA/PT/gjN+yx/wUr/AGLv2ePCP7HHxm+GvgLw/wCG/COu3t7qHjTTfGDanc6zayyy yi0hshboLdmeQZneU7UTiPc3y+If8F6P2Gf+CmX/AAVf8J+CvAPws/Y2tPDsfgnxHe3f9pav8StL dL+KRBGhREcMmQobDcjOK/XqigD5Y0b4S/Ej9s/9mjXP2Nv23P2Op/CHhLUPBcGlXF8fG9hqJu5U WNQ0S2pLQujIsqu3AZBXzN+wl8Af+Csv/BHvwpqX7Jvgn9mSw/aL+ElvrV1d+Bte0Dx/puhaxpEM z+Y0E8GpSRxupYs3ySEq7tglSAv6gUUAfmXN/wAEuf2l/wDgpB/wUO8Mft2f8FJvh/pPgnwZ8N7C KH4e/Byz8QQ6vcSTpMZvtF/cwDyBmTa7RxFw3lxqW2qd3Bf8HQukfAP9qTwj4D/YJ8L/AAc1/wCI X7SPiCefUvhTpXhSSKKbSYBt+1T3c037tLWRIiChI3GDduTZur9ca/AT/gtT+198bv8AgkV/wcCe Hv8AgoC3wj/4Srwt4h+F0ekWVld3LW8V7bhWjuYYZ9jiGaOQRSfdbhxkYbNAHrv7MN5/wdj/AAi/ ZG0v9lD/AIZI+Hpv9P0saTonxI8S+PtLlv8AR7YLsiaSO3vJEneJMBW2OcKNyua+mv8Agib/AMEO fDn/AATGttc+Ofxi8cR+Ovjb44SRvFPivyj5NnHK4mltrYv8zb5RvklbDSMBwoGD8L3P/B8J4dFq 66f/AME37xZdvyNN8VUZQfcDTRkfjX0T/wAE8f8Ag7V/ZC/bM+MekfAX4xfBzWPhRrviG9Sy0K/v tai1LTLm5dlSOF51jieFnY7RujK5xlhmnawHvH/BZz/gj/P/AMFEbDwr8c/gN40g8HfG74aXMdz4 J8S3AIt7lUnWYW1wVBICuN6PhtjFvlIY1Po37VX/AAWwm+HE3gXX/wDglLpUXjsWTWkHja1+Muin w49ztwt60Bk+2rEGO4wiJmONuQOR9xRsXXJFOpAfDv8AwRp/4JCwf8E3/C/ib4p/Fvxhb+LfjL8S bx73x34lt4yIIvMlaZrSDdgsnmsXeQgF3wcAKAPkH/g5A+Oi+K/2h/CfwG0y9zbeE9Ca+1CNWP8A x93T8Bh/sxRoQf8ApoRX7K65rNj4f0u41rU7hYba0t3nuZX6RxopZmPsACa/mV/bI+Ot5+0v+1D4 4+N1zMzRa94huJtPVjnyrRW2W6D6RKg98Zrws+r+zwqpreT/AAWv+R+2eBuSPH8T1MfJe7h4Oz/v z91f+S8x5pRRRXyB/XAV9u/sv/DmHx7/AMEV/wBoC7gsw93ovjnStTgkx0EAtw/5RSTfnXxFX6yf 8EZfhhJ8T/8AglT8c/AZjVzr+qapDbp1y/8AZUAQH/gYFehltP2tdw7xl+R8F4jZh/ZeRUsVf4K9 B/JVIt/gj8m6KvnRLYHjxFYY9d7/APxFH9i23/QxWH/fUn/xFefZn3PtYf0mJ4X8Ta54K8S6f4w8 L6lJZalpV7Fd2F3C2HhmjYOjg+oYA1/SX+wX+1p4W/bK/Zm8P/GfRZ40vp4fs3iCwQnNlfx/LLGR 2BPzr6q61/NVdQJbTGFLqKcAffiJ2/qBX1V/wSY/4KF337C3xzNp4tuZZPAXil4rfxPbKu77Ky5E V4g9Y9x3AfeQnuFr1cpxqwmItJ+7Lf8ARn5d4rcGS4syJV8LG+Io3lH+9F25oersnHzSXVn9CVFU PDfiXRPF2i2fiTw1qlvfaff26z2V7ayh45o2UMrKw4IIIOav19unc/jGScZNPdBRRRQIKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/Fn/grF+0V45/4Kx/8ABTmw/wCCDHwV 8P8Ahew8MaQPtvxO8f65oEOo3lj5dql1L/Z5kBFs6I8cO9QHaWUKWVFbd+01fhx/wU6/Zs/a3/4J U/8ABYyL/gtn+zP8GtT+JHw+8TwlPiP4f0ON5LjTw9pHa3IdY1ZkjcRpcJNhlWRGD7VxkA+vPhV/ wa+/8Eb/AIb+E4fD2ofs03Pii5SAR3Gs+JvEl3NdTtjlz5TxxoTjOERQM8AV+Y3/AAcif8EG/wBm b/gnv8HPD37a/wCxMuq+HbL/AITC20jX/ClzqT3MMMsySyQXVq0mZEw8OxkLMPnQqBhq/Q7wz/wd of8ABJPVvCkWr6zrPxE0jVDFul8O3XgK5kuVfGSgeItExzwDvA9cV5V4vg/ad/4OPP2gfh/Bqv7P Hij4X/sifD7xJB4kvrnxxafZdT8dXsORDGkGflgaORlyMqqySnzCxRQAfqr+zZq/iLX/ANnnwJrn i8yHVr3wdpk+pmViXNw9pG0hYnvuJzXbEhRkniorK3gs7WO0tYUjiiQJHGihVVQMAADoABT5mCxl iR+NAHx7/wAFu/2n4v2eP2IdZ0XR9UEOuePGPh7TljbEiwzIxuZBz0EIZcjoZFr8AzwcV9p/8Fz/ ANrFf2if2w7r4f8AhrVfO8O/DyJtJtgjZSW93Zu5B2zuAiz/ANMveviz6DHsK+GzfE/WMY7bR0X6 n9seE/Dj4e4SpurG1Sv+8l3V/hXyjbTu2FFFFeYfpgV+4P8AwbraUtr+wxql6Yk/0zxveMcHrtig Xn8q/D6v3o/4IGaK2k/8E6dEunX/AI//ABHqdwD7eds7f7lezkSvjvk/0Pxzxyq8nBKj/NVgvwk/ 0PxG/aA8BH4V/HTxj8NRCyJoXia+solbskc7qv8A46BXIV9V/wDBYvwJoPw2/wCCi/xF0+XR7zbq d5bapFJDeJGsgubWKVyAYjj94zjqfu18x/avDXfS9Q/8GSf/ABmvLxFN0q8odm1+J+k5DmDzLI8L i+Vv2lOEunWKfcz8jPT9KDtPUfpX6o/8EdP+CRPwl+MXwxuP2iv2q/hu+qaX4ghEfhDw/f3ksYEC kbr1mhMbHeQQg6bQW53A19qf8Oav+CZ//Rqulf8Ag41D/wCSK9KhkuLr0lUTSv3v/kfnmd+M/C+S ZpVwMqdSpKm7NwUHG/VJuavZ6Ppc/N//AIJC/wDBXm7/AGXru2/Z1/aH1W4ufAN1Pt0fWJGLvoEj HkHJ5tSSSQOUOSAQTX7XeHNf0XxTolt4j8Oaxb6hYXsKz2d7aTrJFPEygq6OpIZSCCCOtfN7/wDB Gn/gmkR+7/ZY0pTng/2vqH/yRXt3wQ+Avwt/Zz8Dp8Nvg74dk0nQ4p2lt9ObUbi5SAsBkR+fI5Re M7FIXJJxkkn6PLsPjcLT9nWaaW29/TbY/nvj3O+EOI8b9fyqjUpVpP31JQ5Jf3lyzbUu+lpb6Pfs KKKK9I/PAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApBGi9FApaKAMY/D n4fNq/8AwkB8C6N9v8zzPt39mRedv/vb9u7Pvmtjav8AdFLRQAAAcCvnr/gph+1/ZfsZ/sn+IfiV b3iLr97EdN8KwE8yX8oIVvpGu6Q+yY719C18A/8ABRv/AIJn/tRf8FGPj5ZTap8V9A8I/Dvwzb+T oVs8ct5dzSyBTcXDRKEQEkBBmTIVB/eIrkxsq8cO1RV5PRf5n0vCOGybEZ9Slm1VU8PB8073fMlt FJJtuTsnZbXfQ/EK+vr3Vb+fVNSuHmuLmZpZ5pGyzux3MxPckkmom+Xlhj61+23wg/4NzP2PvCPl XfxY8b+KfGE6EGSD7Wthbt6giH95j6SA19S/CH/gnv8AsYfAkRSfDH9nTwvZXEIGy9uNNW6uAR38 2fe+ffOa+ZpZDjJ6zaj+L/r5n9I5n468K4NOODpVKzW2ihH75a/+Sn89Pwm/ZF/ad+Oksa/CT4Ee KNcSUjZc2ekSeTj181gEx15Jrh/EvhzXfB3iG98KeKdKmsNS067ktr6yuU2yQTIxV0YdiCCK/qsi sYYUEcMaIq/dVEwBX5O/8HAX/BPs210P23fhVoRKyFLbx5a20f3TgLFfYA78RufXYf7xq8bkv1bD e0hLma39Dl4P8Z48QcQxwGMoRowqaQak37/RSbS+JbWW9lrfT8p29A2M+tf0P/8ABGvw2PDv/BNb 4YRNH813pt3dt7iW+ndT/wB8Fa/nhPXBHfnnFf0z/sIeEn8CfsWfC3wlNHtksvAemJKPVzbozH8W JP40cPRvipvsvzf/AACfH3EKPD+FofzVb/8AgMGv/bj8qf8Ag5C8ALoP7WHhT4hRw7U17wasMknY vbzyDH12yL+leE/8Er/2DdX/AG5P2i7XSNatpYvBXhxo7/xbehSBJEHG20U/35cFcj7qh26gV+gv /Bwp+zz4v+Nvhr4On4daBNqOuT+M59CsraBCWka8iV1yR0UG2JyeACSeM19XfsAfsZeE/wBiT9nH SPhFoXkzao+LzxNqaR4N9fuo8x/XauAig9FUdya6XlrxGbTlJe4rN+d1t/n5HgUvEX+wvCnB0sPL /apqdOPeKjJpz+UbKPm79Gey6DoeleGtJtfD2habFaWVjbJb2dtAm1IYkUKqKB0AAAA9qu0UV9Kf zq25Nt7sKKKKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABTfKjznYOOlOooAAAOlFFFABWX4z8G+GfH/AIT1PwT4w0eG/wBL1exltNRs7hNyTwyKVdGB 6ggmtSkYEqQO4pNJqxUZShJSi7Nar1P51f25f+CfvjD9k39su1+A1lZz3eieKNYhbwRqDIWF1az3 HlpExAwZY2Oxh9DjDDP9DnhXRLXw14Y07w5Y/wCp0+xitof92NAo/QVwvx5/ZY+FP7RGq+D9f8f6 MsmoeB/FFtrmg3sajzIp4jnYSQcxscZX1VT1Ar0eNCiBDjj0FedgcBHBVajjtK1j77jLjivxflmA pV1+9oxmpvpKT5UpL1UbvzuV73RdI1Ka2uNR0yCeSzm820eaIMYZNpXehP3W2swyOcMR3qyFCjAF LRXpHwDbYUUUUCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q== ------=_NextPart_01D76819.203EB2D0 Content-Location: file:///C:/2223D501/04FormatoCienciaDigita_JazminMarisolMedinaRea_archivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="windows-1252"





=

www.concienciadigital.org

                     =                                                                            =                        ISSN: 2600-5859<= /span>

     <= /span>                                                =                 Vol. 4, N°3, p. 54-67, julio - septiembre, 20 21

Mundo en <= span class=3DSpellE>Pandemia     =                                                                                    =                                                  Página 17

 

------=_NextPart_01D76819.203EB2D0 Content-Location: file:///C:/2223D501/04FormatoCienciaDigita_JazminMarisolMedinaRea_archivos/image006.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCAF/BFEDASIA AhEBAxEB/8QAGgABAAMBAQEAAAAAAAAAAAAAAAQFBgMBAv/EABgBAQADAQAAAAAAAAAAAAAAAAAC AwQB/9oADAMBAAIQAxAAAAK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAfEVGaquMo3ag+e80LPO80LPDQs8NCzw0LPDQs8NCjSa7QdAFeWCh+DQs8NC49gA AAAAAAAAo+5agAAAAAAAAKuMXoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4quxn18RbT74TgAAAA AAABdyY0nPpDkgK6q6/JIkWXpWLMc+j4PtTRDSM13L5Gkhn+JpmZ9NKpbk9fFOXbNeGmZnQkTpVy S3K8sGc+DTMzck1U15pmZGmUF0dStLJnPg0zM2ZI48ohoTOGjZkaZmpxbgAAAAAAAAAAAAAAAAAA AAAAAAAAAcfqjlX7yL6B6eJP1zsRLERLERLERLERL8Ir7+O8AAu5MaTn0hyTz3wzUmNIL4ACivM0 fVzDtyPU30EqdDnLsquvKSTotnwKC9orwgQunc7d5wgzPoZ+TGkk6isq0sbCq+yz+qqcQocyIXHO aM1ZV88k0llWkmdL6EHv3FTElxDQxpNWS1YO9d34F9IiygAAAAAAAAAAAAAAAAAAAAAAAAAARHIE U0ZQ66XUWwpuPELPXg9eD14PXg9DqPIOVcHRc5159Mh203cmNJo0hyQFDwu6Qvu+a6GhZ4aHN3sE 4XmZmlzW/EA+b6rvDPyY0kt+HfgUF5R3hU/U+oNMouxbqizKOTGknWr0VCS+kWUJkOYQIkuIaEGc nwJ59VeioS7752UXColkWJLiFxRX9AWUuq7naqlxC8lRZQAAAAAAAAAAAAAAAAAAAAAAAAAAo7Sj spC2oC878e2bTnBpzAAAAe9OQmzKZCWj9pbeq77qLfm7ykxpPAJAOHcVvlmKxZjn0CFGthUSJ489 Cv6TA59BWTewRpIrfLMVlh9iv6TA59BW+WYrJncRONiAK2RKDn0Ff8WYrJMoRONiEWUKxZisWY49 gAAAAAAAAAAAAAAAAAAAAAAAAAAq6/ryvyhLgF7249s2nODTmAJUqMqtaOdq1oKtYw+x5CXHfg40 X1V2lGn4+znQdAKPkaFnhoWeGhZ4aFnhoWeGhUHcuEGWfYAABnzQM8NCz1oTQAAAAAAAAAAGf8NC zw0KFNACHVGhZ4aFQX4AAAAAAAAAAAAUfI0LPDQq2yAAAAAAHPpERphpzAAXvbj2zac4NOYCysq2 yo0BGYD5+jlHHvqK6jwTh7f5+zrssRVeABn+PbiAAAAAAPr5FrY5meW4AGa0uaPALinuCcAAAAAA AAAADNee+AFxOgzgCFTXNMAfWkzekAAAAAAAAAAAAM/x7cQCytKu0AAAAAAFfYVkoVwvzgAXvbj2 zac4NOYCysq2yo0BGYACluq6VdYL6EiP7xo3nufWABn+PbiAC9KJphmWmGZabwzS9qyMAC2sM3oD oBmtKMy0wzNxOAAAAAAAAAAAGa80wzLTCDOACFTXNMAfWkzekAAAAAAAAAAAAM/x7cQCytKu0AAA AAAFVa1Uq4AvoAAve3Htm05wacwFlZVtlRoCMwAEKbF7GlGjMBoOnHtm1A6Bn+PbiAL2ivSSAAB5 6KGPe0QAsq3oaICPIzReqEX3TO3BOAAIpK50scvVEL1RC9UQvVEL1RC9k5vSAEdReF8oRovuFMOC iFnWAB9XdEL1RC975vQnX4+4wUQvVEL1RC9UQvfaEaLpme5foU0AAz/HtxALK0q7QAAAAAAVdpWy hWi/OABe9uPbNpzg05gLKyrbKjQEZgAIsqF2NQNGYC+7c+mbUDoGf49uIAvaK9JIAAAGf0FQQAAX 0ivsBmtLmjwC4p7gnAEE51YAAAAAAfWkzekAM1574AXEyHMM2AAAABoc9oTrGkxiiAAAAAAsq0aZ FlAGf49uIBZWlXaAAAAAACDOj9jRjRmAAve3Htm05wacwFlZVtlRoCMwAFZZ0Mq+IvofXzK4uhn1 gAZ/j24gC9or0kgAAAV1jBKcAFja09wM1pc0eAXFPcE4HPP2NYAD6E+d3IHs4QU4UMebCAPrSZvS AGa898ALidBnHN0FfU3NMAfWgz+kOboOf36Hx9iMkiMkiMkiN5KEOFcjMpUUAmXWd0QBn+PbiAWV pV2gAAAAAA89OZzyTG0ZQ6Ave3Htm05wacwFlZVdjRf9vlGf0+R9PiI59U/1830BKK1rb+uz6FV4 AGf49uIAvaK9JIAAAEKbAKgAE64qLcZrS5o8AuKe4Jx4UPD3wAWVbfncAAFNCnQQD60mb0gBmvPf AC4nQZwBCprmmAPrSZvSAAAB5CJyoFuqBbqgW6oHaqkRwD3S5nSnoM/x7cQCytKu0AAAAAAAK+r0 NBbR8iysC97ce2bTnBpzAAAAAACfzvec8z6HsWU6DoGf49uIAvaK9JIAAAFZZ0hEABZ2cKaM1pc0 eAXFPcE74+/kzYAGlzWlPQAAVECfAAPrSZvSAGa898ALidBnAEKmuaYA+tJm9IAAPn6pzlGAAAAA ABpc1pT0Gf49uIBZWlXaAAAAAAACqtefY599fOjMBed4c3Ppza6W1Uq6FKuhSroUq6FKuveKTrdd edgziu1A7U067aZDmRmHJAZ/j24gC9or0kgAAA+M9YVoAJJc9AZrS5o8AuKe4JwM58TIYAv6CeW4 AAKiBPgAH1pM3pADNee+AFxOgzgCFTXNMAfWkzekAAOeeuqQAe+Wpw62YrFmKxZikiW1SANLmtKe gz/HtxALK0q7QAAAAAAAAhVGkrLKa4W1d7rPfcJ6FSITu1ILtSC7Ugu1ILtSC7UfMu4FenD3wnC4 mQ5mfSHJAZ/j24gC9ohpmZ9NKzfpo2dGhrqzwAAXNfegDNaXNHgFxT3BOBCptNQkcAFrY5nqaFTf RbqgIHbiAfWkzekAM1574AXE6DOAIdLf0AAvqH7NGru5KRpJDpb+gAFxT/Zo1b0JyCJyCPmpmwgB pc1pT0Gf49uIBZWlXaAAAAAAAAAFdW6OPOqjSY1tIdAAAAAAAAXEyHMz6Q5IDP8AHtxAAAAAAAH3 93J72ABmtLmjwC4p7gnAcewznxfUpzAAAAAB9aTN6QAzXnvgBcToM4A8z2iilG+vkAA+tJm9IKK9 5GedeQAAAAAA0ua0p6DP8e3EAsrSrtAAAAAAAAAABw7nK6PcpQovm/d5QL8UC/GfaB1n2gGeaE5n mhGdaIQ5hXaDoFHy0IzzQjPNCM80IzzQjPNCM99X4ppc4eegAAz+gGeaEZ60mgAB8fYrYl6M80Iz zQjPNCM38zYQB9aTO6IAz/mhGeaEQpoAAcK25Gf80IzzQigvwA+K60FB86EZ5oRnmhGeaEZ5oRnm hGe0HoAo+WhGeaEVtkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiEtUC3VAt1QLdUC34Vk UfIASb2tsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABX2FeV IAAAAAHZdn39AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhT RRrwUa8FGvBRrwUa8FPJnjz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/2gAMAwEAAgADAAAAIfPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPA0ggQQQQQWPPMMMNPPPPPP PPPNPPPPPPPPPOPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPBPvPPPPPPPPPfPOFPOPNNPONNPOGON ONPNPPOEOPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPBXPPffffefPPPfLPPPNNKLKDKMPLKHABAHENP LAMAHNPPPPPPPPPPPPPPPPPPPPPPPPPPIv8AwHHHHHHRlff3zyBjAjjCCjyixDSjjTgDwDDTAByD RTzzzzzzzzzzzzzzzzzzzzzzzzzw/wA8r88888MPjEv88888MMscc888c8cs8sc8s888cs888888 88888888888888888888888f88r888++78/4988wwwwww408884w088888888888ww884w088888 8888888ww8888888H888r88888t68q8888888888888888o8888888888888U888888888888888 8888888888Y888r888888j8/888884884888U888s8888888888888c888888888888888888888 8888D888r888888Q88C8888o888sU840sMY8848MMMMM88MMwMc8MMc4MMMMM4088888888888A8 88r888888A88K8888o8888s88888o8488888888888A888888o888888888888888888Q888r888 888m8/c8888o8888o88888o8084Ec8888888EMc8sMM8MMMcs0888888888888t388r88pxx3+85 88888o8888s88c88o8084888888888U888888884wwwc8I88888888888y88r88888888DY8888o 8888s88U88oo88s888U88888U888888s8888888o88888888888A88gwwwww65qRW8888o8888k8 4888o8U8s888U88888U888888s88s88U8o888888888888R88999999/d8W8888s8wwc88g888o8 w88owwU88888U808sw8c84088c8o8888888888888n/888888888W888888888808888o8sU8888 888888U840888o0888888o888888888888885TXOOAAhBjG88MMMMMMcsc88sMc8888MMMU888MM 8888MMc88sMMMMMM8MM8888888888888888888888888888888888888888wwwwo88U888888888 8888888888888888888888888888888888888888888888888888o88888888888888888888888 88888888888888888888888888888888888888888888888MMMMccc8888888888888888888888 8888888888888888888888888888888888888888888888888888888888888888888888888888 /9oADAMBAAIAAwAAABDzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzz+/bPPPPPOfzzjTzTzzzzzzzzzjzzzzzzzzzDzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz bx777777774DzyRzxjjzTDDDTDSDzDDDDzjDBTjDzTzzzzzzzzzzzzzzzzzzzzzzzzzzx/37zzzz zjb74DygjzzCSxADwDSwwDDBATyQhwxSjyBTzzzzzzzzzzzzzzzzzzzzzzzzzxz/AOdNNNNN0O99 A88EU8EwsAA8AU40AsQoU8UswwUEYoU88888888888888888888888888s++3+++++N/zOa88888 88Mcss888ss88sc8c8cscs88888888888888888888888888888e++D++x882++Nt88888888408 888888888888888888888888888888888888888888885+++D++B88V0++888AAAAAAAAE088AU8 8888888888oA88AA8888888888888AAU888888h+++D++B888I+u888AAAMMMAAA888Mc8888888 8888sM88AA8888888888888AAU8888885+++D++B8887++V88AAA8888oAE08w08884wwwwwc84w 8wAAwwkowwwwww888AAU888888u+++D++B888v8AvtfPAAAPPPPKAAPPAFPPEAAAAAAPPKAPAAAA AFKAAAAAAFPPAAFPPPPPPK/vvg/vgfPPH/ufPPAAAPPPPOAAPPAFPOAAJLDKAPPKALDAADDHLPPP POAAPPAAFPPPPPPLffvg/vkwQQ/PvPPPAAAPPPPOAAFPAFOAABPPPIAPPKAPPAAPPPPPOMMMIABP AAFPPPPPPPEfvg/vvvvvvvv7/PAAAPPPPPAAPPAFOAABPPPAAPPKAPPAAPPPKAAAAAAAFPAAFPPP PPPPPvvqfPPPPNrlngfPAAAPPPPIAFHPAFPAAEPPPAAPPKAPPAANPPIABPPPIAFPAAFPPPPPPPPG fjwwwwwwyPHgfPAAAPOMOIAEPPAFPJAEAMMAAPPKAPPAABMNCAFMMMCAFPAAFPPPPPPPPPEtvvvv vvvvvgfPAAAAAAAADHPPAFPLDAAAAAAPPKAPPHAAAPKCAAAAAAFPAAFPPPPPPPPPPHLegQTDDz7W PPPPPPPPPHPPPPPPPPPDPPPKANPPPPPPDHPPPDPPPPPPPPPPHPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPMMMMMAAPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPKAAAAAACHPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPLPHPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP/EADQRAAECAgYJAwMEAwAAAAAAAAIBAwAEEBESFTNRFCAh MUFQUnGBBbHwEzBhIiMyQnCAof/aAAgBAgEBPwD/ACyDZn/FIGRdXfUkJ6eXEou4uqLuLqi7i6ou 4uqLuLqi7i6oJLJKOXO2WDdX9O6GpNsNq7VhPsvYpd151Ky6urWu6BFBSpKNIa6kjSGupI0hrqSN Ia6kjSGupISYa6khFRdqUvYpd15yAKZIKcYbBGxQUonH1I7CbkiqKoqiqKqBIhWsVqhqeMdh7Uht wXEtCsPYpd15z6e3vcXtS5/Ne+sooW9Ick2j3JV2h+XJldu6Jd5Wjr4cYdxC7rzmWCw0g0niL3pO baArJLtjTmc405nOG5htxahWgwQxsluh5pWjUV5y0No0T86h4i96ZzGLx7ako/8AUCpd6UT7doLa cOcyqVvJqHiL3pnMYvHtqSRWXkTOgxtCo585k8ZNQ8Re9M5jF49tSX2Oj3pJKiVOcSi/vJqHiL3p nMYvHtqS6Vuj3pJayVecMFZdFfzqHiL3pnMYvHtqSIWna8qHTsApZc6bK2CFnSeIvemcRfrFs+VR UuUVLlANma1CkS7CMhVxon3ah+mnHnUg5WFheFJ4i9/sOui0NooccUyUlgxskorzlh36RoXCEWtK 0oeSy6SfmNPayWNPayWNPayWNPayWNPayWLwbyWC9QX+qQ44Ti1ksSkuprbLdExil351JzNn9s/F EzKI6todixd7uafPEXe7mnzxF3u5p88Rd7uafPEXe7mnzxF3u5p88Qnp58VSGpEA2ltomMUu/O5e dUP0ntSAcE0rFa/tTGKXfngkorWK1QE68PGuLwcySLwPJIvA8ki8S6YvEumLxLpi8S6YvFen/sGd s1LP/U7/xAA2EQABAgIFCQgBBAMAAAAAAAABAgMABBAREhVRBTEzQVBScYGhExQgITKx0fBhIiMw kUJwgP/aAAgBAwEBPwD/AGyt5tv1GqFZQZGaswcpJ1Ji8xu9YvMbvWLzG71i8xu9YvMbvWLzG71h tVtAVjtt+ZbZH6s+EPTzrnkDUPx/FL6JPAbam5oMioeowpRUbSs8Z4Es8f8AE/1HdXt0x3V7dMd1 e3THdXt0wZZ7dP8AUEEGo0y+iTwG2XFhtBWdUOOFxRUrOaJCXCEdoc5isRWIrEViKxQpCVipQrh7 J6FebfkekONKbVZUIl9EngNs5SdzNjjSzok8B7eIKKfMGG551Gc1j8xLzSHh5eRwiZYDyKteqGNG ngNszLnaOqVS16E8BS3JuuJC0jyjuD+HWO4P4dYclnWxWoUIWpCgpOeJd4PNhQgCoVbYeVYbUrAe Br0J4CmR0CefvSRXnidl+xXWnMaMnO2V2DmO2Zw1MK+6/A16E8BTI6BPP38E+i0yThQ2qwsKw2zP 6A8vA16E8BTI6BPP38EyK2lcKWzWgH8bYnR+weXv4GvQngKZHQJ5+/gmTUyrhS2KkAfjbEym00of jwNehPAUyOgTz9/BlByy1ZxoaRbWE47acRYWUnVS16E8BTIqHYJ88feLQxi0MYceQ2K1GJmYLy69 WqjJzNpZcOYbayi1ZcCxrpa9CeA/gZZU6qymGm0tICU6obXbSFDXtmZZ7Zsp16oIINRol1WmkkYR dr2I+8ou17EfeUXa9iPvKLtexH3lF2vYj7yi7XcR95QjJm+r+oaaQ2LKBE9NBCS2nOekSuhTw21P Slf7iOfzRKzhZFlQrEXk1genzF5NYHp8xeTWB6fMXk1genzF5NYHp8xeTWB6fMHKbepJh3KDi/JP kKJXQp4bbmZEL/U35HCFtqbNShV/FK6FPDbikJUKlCuFyDKswq4RdrepRi7Ebxi7Ebxi7U70Xane i7E73SLsG90i7BvdIaR2aAnD/k7/xABbEAABAgIDBg0PCQYFBQACAwABAgMEBQAGEQcSICExsRMW FzZBUVVhcXJ0gdEQFBUwNDVUc5GTlKGkstIiMkBCg5LBwuIjUlNiZbNDUGCj4SQzY4KiZHCAkPD/ 2gAIAQEAAT8A/wD7ULKHHTydS3gpfDbFLRt0tG3S0bdLRt0tG3S0bdLRt0tG3S0bdLRt0tG3S0bd AQR/rmOmcFLkBcZFMsA5NEWATwDZpG3SZNDEphkPxStgpTep8qsfqpFXTpi4bISBYZH/AJCXD+FI ivVYYgkdkC2n91ttKfXZb66OVgnDp+XNY07wfUB5LaKmcetVqo6JUdsuqP407Ix3hkR51XTTsjHe GRHnVdNOyMd4ZEedV007Ix3hkR51XTTsjHeGRHnVdNOyMd4ZEedV007Ix3hkR51XTTsjHeGRHnVd NOyMd4ZEedV007Ix3hkR51XTTsjHeGRHnVdNOyMd4ZEedV00qM4t2p8Et1alrOiWqUbSf2iqDZwS QASTYBlpWK6WxBvKhpO2iJcSbFPuW6GD/KBjVw5OGkZXSsMaVX8zebB2GbG7MduK9sNNMc83amPp S+mmmOebtTH0pfTTTHPN2pj6UvppVR52IqvLXn3VuurZBUtaipSjtknL9ErLPJxDVnmTTM2jm2kR CwlCIhYSkW5AAcVLm01mUdWKIai5hFPtiEUoIeeUsA36MdhOXGfL9DulTSYy+cwjcHHxUMhUPfKS y8pAJvjjsBpIp9OH6wytp2ax621xbSVIXErIUCsWgi3GP9ADJkoclJzW+UyW+Q49o8QP8FnGoHf2 Bz46Ta6DOJgVIhlJgmTsNY12b6j+FlHXXHnFOOuKccUbVKUSSTvk/Qqh6y5f9p/cVTZwbpdY1wjC JPCuXrj6b6IIyhGwnnx273D1Kt1EmFYIcRSnUwkKTYlxaSor30pxWjftFNSP+ueyfrpqR/1z2T9d NSP+ueyfrpJpd2JlENAaLougICL+9vb7fstNn0SbXM+yk1io7svoXXDpcvOtr69tOS2/FtKq1G0s zRyN7I9c37JavNAvLLVJNtt8f3fX9DrVUnTPHsRPZDrbQmtDvdBv7cZNtt8NukvuYGXzOFjRN9E6 3eQ7edbWX16oGy2/xZP9ATGZQkrg1RMY+lppOyo5TtAbJ3qVhr9HTNSoeAvoSEyWg/tFjfOxwDy/ Rah6y5f9p/cVTZwaxTBU0rFHxhNoW8oI4oxJ9QFJXBKmU2hIJNtr7qW7RsAnGfJRhluGYbYZQENN pCUJGQAYgMGaTWDksAuMjng20nJslR2ABsmk7ukzWPWpuXWQMPbiIsLihvnY5vKaRMfGRptiot98 222uuFWPno064w4FtOLbWMikKIPlFJZXWfStabyOW+0MrUQdESRtWnGOYilV63wVZGy2BoEckWrY UbbRtpOyPWOpWvXbNeUrz9Vp1xlwONLUhYyKQbCOelWq9zGVRbTUc+5EwBISsOEqU2NtJy4trJRp 1DzSHW1BSFpCkqGQg5DSaTOFk8vdjYxy8ZQNjGVHYAGyTSeXQpxM3VIhHlQMNb8lLJsWRtlWW3gs FHn3X137zq3FWWWrUSbOfq1Y1qynkjXuila9ds15SvPS5VroieRK99HUrhX7sa8uXSgpXFI+S6+R als7QGQnhxCkZMY2YulyMi3ohZNtriyqzg2urct1qvcrX7qaXV+/0Dyb8ysCU1rnMoiEusxrriLb VMvKK0K5jk4RjpIpyxPpS1HsWgLFi0HKhQyjqVquiLg4hyAk14pxBKXIpQvgk7SBkNm2cW9s0jJv MZgpRjI6IfvsoccJG3kydW5L/wB2bcVr89Lq/f6B5N+ZVKt66JRy1n3x1Jn31jPHr949ViKiIVd/ DvusqxY21lJ9VKq3QouGiW4OcvF+FWQkPr+e3vk/WG3bjzUBBFo/zewWCk/n8LIIAxEQb5asTbQP ylna3htnYpOZ3GT2NMRFuWgWhtsfNQNoD8dn6NUPWXL/ALT+4qmzgRbhZg33E5UNqUOYdSoLQdrt LgRaAVq8iFEeuzCrvP3J3P3kpWetIZRaZTsYsRVzn1WUl8BETOPZgoVF++8q9SPxO8BjpJahSaVw 6BEQrcbE2fLdfTfAneScQHrpG1Oq/HMltcrh2jZiUwgNqG/8mz10rTVp6rUzDCll2GdBUw7ZYVDZ B3x0Ugox+AjWYuGcKHmVBSCNvopKZg3NZVCx7WJL7YXZtHZHMbRSteu2a8pXnpUGTwE6nr8NMWNG ZTCqcCb9SbFBSRbakg5Caan1V9zPaHfipXGoUvgpS7MZUlTBYALjJWVJUm2wkE2kEZcvUqDEriam QBcNqkBTYO8FED1WUukTtcfPTL21nraDxWA4lOEYzzZOY7dEgqUEpBKibABs0kVzFUVDpfm8S6wV C0Q7SRfpH8xNoB3rKalUi8KmPnEfBTUqkXhUx84j4KQEI3L4CHg2lLLbDaW0lZtJAFgts2aVr12z XlK89LlWuiJ5Er30UrvPVSOrzjjK72KfOgskZUk5Vcwt57KEkkkm0nKaVFqTDzKETNpmguMqJ0Bi 2wKsNhUqzYtGIb2OiatSNKQkSaX2AWY4ZBPlIppcke40u9FR0UhYKFgWi1CQzMO2TfFDLYQLduwb OKl1fv8AQPJvzKpJYdqLnsuhn0X7L0U22tNpFqSoAi0Y8hpqfVX3M9od+KkyubyKJg1ogWVQkRYb xwOKWLd8KJxcFHW1MvLacFi0KKVDfFLk0SspmcKf+2C24BtE2g5h5KV+nSpPV1aWFXsRFK0FBBxp FnyiObFzjqVXqdG1kWpwL63g0GxT6k22naSNk5qJuVSUJAXGTAqsxkLQATwXtNSqReFTHziPgpV2 qkBVlUQqCdiHNHvQrRlJNl7bZZYBtml1fv8AQPJvzKpVvXRKOWs++Oo5UKrTzq3XJbataipR0dzG Tl+tTU+qvuZ7Q78VNT6q+5ntDvxUrtUaElUtM0ll+002QHmVKKgATYCCceUjL1KlRq46qEuecUVL S2WyTl+SopHqA/zebTWGkstdjYlViEDEBlUdgDfNJxN4mdzFyLilWqOJCBkQnYAwGGHYl1LTDS3X FZEISSTwAUh6h1hfSFdZBoHJoriQfJbbTU5n/wDDY86KanNYP4bHnRTU5rB/DY86KanNYP4bHnRT U5rB/DY86KanNYP4bHnRTU5rB/DY86KanNYP4bHnRTU5rB/DY86KanM//hsedFIioNYmMYg0OjZ0 N1J9RINIuWR0Db13BPsjbcbIB4DkOFUPWXL/ALT+4qmzgPtaNDutW2X6CnyiyiklCilQsUk2EbRp UeJTC1zlrijYlThby7KklI9ZGDFuKag33E/OQ2pQ4QOpcsh0OViiX1Y1NQxvd4lQFvkt8vVupMIX Vth4gX7cSkJO8UqtHqHk6lzhxS6mQoUbQhxxI4L4n8aVr12zXlK89LlWuiJ5Er30dSuOtCaeIPUu c6y4Xjue8aTl1T09mDqvnLiXCedRpc8l7UfW1kvJCkw7anwDsqFgHkJB5sGteu2a8pXnpcq10RPI le+il1l5RiJWx9QJcXwklI/D19SW3RJvK5bDwLENAqaYQEJK21lRG/YoU1VZ54JLvNr+OmqrPPBJ d5tfx0qbPoqsUmcjIxDLbiX1NgMggWAJOyTjx0ur9/oHk35lUq3rolHLWffHVmffWM8ev3jS5L3X NOI3nVS606oxcra+qltxXOSno6kml7UrlEJBMgBLTYBs2TZjPObTgXV+/wBA8m/MqlW9dEo5az74 oVBIKlEAAWkmlYbpkQIlyGkqUJaSSnrlab4qO2kHEBw2201Qa0bqeztfDTVBrRup7O18NI+uM+mk E5BRkfosO5YFo0FtNthBGMJBygdS5zrLheO57x/zbYpXasJnM1LDC7YKGJSiw4lq2VfgN7hwJXLY ibzFqChk2uOHKciRsk7wpIavQUhgw1DIBdUP2jqh8pZ39ob3bLKEBSSCLQcopMKoySZgl6BbbcP+ IyLxVu3ixHntpNbmUS1a5KooPp2GnrEq5lZD6qRkDFS+ILEWw4y6PqrTZzjbG/1ah6y5f9p/cVTZ wa6StUqrTGNXtjTq9Ga2r1WPFwG0c1G3FtOodbUUrQQpJGUEZDSrFY4asUsQ82tIikJAfZtxpVt2 bR2DgOIS42pChalQKTwGkVDLg4x6GdFjjLim1cINhpc/mzcqrQ1oyghmJQWFKOQEkFJ8oA5+rdVm TYhYKWJUC4pejrA2AAQLeG0+TqVHg1QNT5e2sELWgum3+YlQ9RFK167ZryleelyrXRE8iV76OpXH WhNPEHqXOdZcLx3PeNK1QSoCtMyYULBo6lp4qjfD1EUqZOG5LWWHiH1XrDgLTqv3QrZ4AbDQKCgC CCDjBGBWvXbNeUrz0uVa6InkSvfRS6vBLXCS+PSk3ra1NLO1fWEe6fL1JNc3TOJPCzBM3DYfRfXg h769NthFt+LcYpqR/wBc9k/XTUj/AK57J+ulVqvaWpUuB6665vnS7f6HeZQBZZadql1fv9A8m/Mq lW9dEo5az746sz76xnj1+8aXJe65pxG86qXWIJSoWXRyU/JbWtpZ4wBHunqVWnLU7kMNEpUC6lAQ 8nZSsDH5co3jgXV+/wBA8m/MqlW9dEo5az74pXyNcgqnxqmiUrdvWrRtKNh9Vo6lR6kyyaSdMymS FRBeUoIaCylKQDZabCCTaDTU+qvuZ7Q78VK21NkMrqtGRkHAaFENBJQvRnFXtq0g4iojIT1LnOsu F47nvH/NclK9z3sTJSw0uyKirW0WZUp+sryYuE4NzKVpbgn5mtI0R1WhtnaSMvlPu9Trlj+M394U 65Y/jN/eFOuWP4zf3hTrlj+M394U65Y/jN/eFOuWP4zf3hTrlj+M394U65Y/jN/eFOuWP4zf3hTr lj+M394UQ4hz5ikq4Db1SabFJjK4KawxYjodD7exaMad8HKDwUrRUiIkwXFwhVEQQxqtHy2xv7Y3 +pUPWXL/ALT+4qmzg12qwKwSy/hwBHQ9qmrcV+NlJO/sb/CaPMuw7y2Xm1NuoN6pCxYQdoijD70M 6l1h1xp1ORbaikjnFNMc83amPpS+mmmOebtTH0pfTTTHPN2pj6UvppVF56JqrL3n3VuurbtUtxRU pWM5SctLo1VnWotc8g0FTDlnXKUj5isl9wHZ3+HqSO6PNJXDoh4ppMcygWJK1FKwNq+x284pF3V4 txkpg5Y0w4RZfuOlyzfsAG/SMjIiYRa4qLdU68s2qUrKaVOqs9WGYocdQpMAyoF5zIFfyjfPqHNR KQhISkAACwADEBSteu2a8pXnpcq10RPIle+jqVx1oTTxB6lznWXC8dz3jSv9VXJxDpmcAgrjGE3r jYyuIy4tsj1jmoQQSCLCMopJ67zqSw6Ydl5t+HRiQ3EJvgkbQIINm9bZTVVnngku82v46aqs88El 3m1/HSTxjkwksFGvBKXH2EOKCRYASATZbsUrXrtmvKV56XKtdETyJXvopNpYxOJZEQESP2bybLdl J2CN8HHScSiLkkwcgoxBC0n5KrPkrTsKG9SrlcplV1KmWQh+FUbSy7bYk7aSMmamq5i7x+1/opqu f0P2v9FKq1i0zyxyN6162vHi1eaJf22JSbbbB+96qXV+/wBA8m/MqlW9dEo5az746sz76xnj1+8a XJe65pxG86qTmVMTuVPwERiS6nEoZUqGMEcBpNpRFySPcg4tspWn5qvqrTsKB2RSVTmYSSJ0eAiF NLOJSbLUrG0QcRom6nPQkAw0vUclpbXaf/umqrPPBJd5tfx0qPWuOrMuOEa1DN9bhBToKVC2+vrb bSdoUur9/oHk35lUq3rolHLWffFK2ytyc1ZjINkWvFIW2NtSTbZz2Wc9FJUhZQtJSpJsIIsIO1SQ 1xmtXmFw8Ipp1hRvg0+kqSk7JFhBHlpqqzzwSXebX8dJtdAm04lj8BEQ8Ell4AKLaFhQsIOK1RGx tdS5zrLheO57x/zU2WWmlb5v2YrDEPIVay0dCasyXoOXnNpwamNoaqlLkpyFsq5ySTno/wBzO8Q5 u1pUUqBSSCMhFIWfTaEI0CYxSAPq6ISnyHFSAukzmGKRFpZi0bNqbxXlGL1UlNf5PMr1t5SoR4/V ePySd5WTy2USoKSCMYNBbZQpCgQQCDlBpXmqyZREiPhEWQT6rFIGRpZ/A7Hk2qVD1ly/7T+4rDnV VJTPhbGQ9j1lgfbN6sc+zz20fuTw6l2w02dbTjxOMhZ8oIpqR/1z2T9dNSP+ueyfrpqR/wBc9k/X SSS0yeTw0BoujaAi90QJvb7GTktNmXbopIUkpUAQRYQaTi5xKJi4p+EUuAdUbSGwFN/d2OYgUiLl M0SoCHmEG4LTaXApHBkBo1cpnBXY7GwKEbaFLUfIUjPSV3LpdCrS5MIp2MUMehpGho4DjJPlFIaG ZhIdDEO0hppAsShCbABwdSbXM+yk1io7svoXXDpcvOtr69tOS2/FtKq1G0szRyN7I9c37JavNAvL LVJNtt8f3fX1JxLjNpREwGi6Fo6Ly/vb6937LRbTUj/rnsn66Vck3YCStS7rjR9DUpWiXl5babcl p29vqTmpcmnjinomHU1EKyvMG9UeHKDwkW0duStFdrM5WhFmRcOFHyhQpqR/1z2T9dNSP+ueyfrp K4LsdKoSC0TROt2UtX97ZfXosts2KTa5n2UmsVHdl9C64dLl51tfXtpyW34tpVWo2lmaORvZHrm/ ZLV5oF5ZapJttvj+76+pNpLL55DdbzCHS6kY0qyKQdsEYxSIuTQ6nLYabOto2nWQs+UFOampH/XP ZP101I/657J+ulVauaWZY7Bdddchbxdv9DvLLUpFllp/d9dK1VJ0zx7ET2Q620JrQ73Qb+3GTbbf DbpL7mBl8zhY0TfROt3kO3nW1l9eqBstv8WTqxNyrrmLef7NXuiLK7OtbbLTbZ8+lUqnGq7sUvr7 rrR0pFmg3l7Zb/MbcvUmcpgZvC9bx8Kl9vKL7Kk7YIxg8FIy5TL3VEwcwiGLcdjiQ4BmPrpqR/1z 2T9dNSP+ueyfrpVKqBqsuLPX3XXXAQP+zeXt7b/MbctK1VJ0zx7ET2Q620JrQ73Qb+3GTbbfDbpL 7mBl8zhY0TfROt3kO3nW1l9eqBstv8WTqT+osrnzyoopXCxavnOtWWL4yTiPDiNNSP8Arnsn66ak f9c9k/XTUj/rnsn66akf9c9k/XSrkm7ASVqXdcaPoalK0S8vLbTbktO3t/5rXCa9iKtRLyFXrzg0 JqzLfK2RwC082FVDWpLfEjOaP9zO8Q5u31crlHSJaGXFKiIK35TKjjSP5TscGTPSWzKFmsGiLhHQ tpXlB2iNg9SawDM0lkTAvWXjqCm3aOweY2GlSGlsVSg2XBYttTqVDaIdWD/rG6bMNEj4WXIPyWUa KvjKxDyAevCqhrTl3iRnNIjuZ3iHN9AqxWSIq9MQ4CpcK4bHmrco2xvj/ikNEtRkM3EMLDjTiQpK hsg9SXw/W8OpFllrzq7OM4pX4/6xrHGmY1ijoq21KnSlJ/lT8keoDCqhrTl3iRnNIjuZ3iHNg1Pq wxWUxgeiXGet9DsvEg2319t8WmpbBbExiPuppqWwW6MR9xNNS2C3RiPuJpqWwW6MR9xNNS2C3RiP uJpFXLXQgmEmSVK2EutXo8oJzUm0hmMkdCI2HKEnElxONCuA/hlwbnFYC0+ZNEL/AGblq4ck5FZS nny8Nu3TFh1kns3h6zzJpmbRzbSIhaUoRELCUi3IADippjnm7Ux9KX000xzzdqY+lL6aaY55u1Mf Sl9NNMc83amPpS+mmmOebtTH0pfTTTHPN2pj6Uvpppjnm7Ux9KX000xzzdqY+lL6aaY55u1MfSl9 NNMc83amPpS+mmmOebtTH0pfTRiuVYocgom0QfGEL962kFdPnkOQIluGik7JUi8V5U4vVSW3UZTE kIjmHoNRyqH7RA5xj9VIKZQcyY0aCimn29ktqBs4drtERWKeJiXQJzMAAsgARS9vhppjnm7Ux9KX 000xzzdqY+lL6aaY55u1MfSl9NLm0ZFR9XYh2MiXohwRakhTzhWQLxGK07GM+X6PEViniYl0CczA ALIAEUvb4aaY55u1MfSl9NNMc83amPpS+mmmOebtTH0pfTS5tGRUfV2IdjIl6IcEWpIU84VkC8Ri tOxjPlwLosXEwNWkvQkS9Du9cITfsrKDZYrFaKaY55u1MfSl9NNMc83amPpS+mmmOebtTH0pfTSA rBOlzGFQubzBSS8gEGJWQRfDf+lVkns3h6zzJpmbRzbSIhaUoRELCUi3IADippjnm7Ux9KX000xz zdqY+lL6aaY55u1MfSl9NLmMxj4+JmQjI6JiQhDZSHnVLvbSq2y04u3TqL6wksbFpNimmVqTw2Yv XZh1Q1py7xIzmkR3M7xDmwblOWbfY/npsYUXCMR0M5DxLKXWlixSFC0GlbKtOVemICL5cE9aWVnK NtJ3x6xz4DD7kNENvsqvXG1BSVbRBtBpJ5k1NpRDR6LAHUAkD6qshHMbRh1r12TXlS8/b4KPi5dE JiIOIcYdT9ZtVh4DtjepVi6Q3FLRBzu8ZdOJMSMSFH+YfV4cnBQEEWg2g4UR3U9xznwLlWteJ5ar 3EfR4jup7jnPgXKta8Ty1XuIwLqGtNHKkZlYEt76QnjkZx9KrXrsmvKl58C5J3VNeI3nV266FFBi qb7dthfcQ2PLfZknDqhrTl3iRnNIjuZ3iHNg3Kcs2+x/PTYw6xSdE7kz8IoDRCL5pR+qsZD+HATR aFNOKbWkpWklKgcoI2MC5hMr9mMli1Y0EPNjeOJXrs8uHWvXZNeVLz/Qaj12VLnG5XM3CqDUb1p5 R/7J2if3c3BQEEYsmDEd1Pcc58C5VrXieWq9xH0eI7qe45z4FyrWvE8tV7iMC6hrTRypGZWBLe+k J45GcfSq167JrypefAuSd1TXiN51duupPXsugGLfnvKXZwJs/Nh1Q1py7xIzmkR3M7xDmwblOWbf Y/npsYZyUr5ACArTEFIsbiAHxwnEfWD5cCpUd1jWuCUTYh1RZVv3wsHrsw6167Jrypef6Fc4rSY2 H7DRa7X2U2sLJ+egfV4Rm4MGI7qe45z4FyrWvE8tV7iPo8R3U9xznwLlWteJ5ar3EYF1DWmjlSMy sCW99ITxyM4+lVr12TXlS8+Bck7qmvEbzq7ddTcti5a3j+ShxXlKejDqhrTl3iRnNIjuZ3iHNg3K cs2+x/PTYw7cdLqUINCl0WBkUttR4bCMxwId5UNEtPo+c0sLHCDbRDiXG0uJNqVAEHeOFWvXZNeV Lz4Nz3WRL/tf7q8JyHZdt0RltduW+SDbSa1HkU1Qq2CRDOnI7DC8I5hiPOKVmqdH1cXohPXEEo2J fQmyzeUNg+o4MFGPQEczGQ6715lYWg74/CkomTM3lMLHs/MeQFWW/NOQjmNo/wAnuoa00cqRmVgS 3vpCeORnH0qteuya8qXnwLkndU14jedXbrqBPZyDFpsEPbZ/7HDqhrTl3iRnNIjuZ3iHNg3Kcs2+ x/PTY7RdLaDlWULxfs4hKvUR+ODIXS/V+XOk2lcM2Tw3owq167JrypefBue6yJf9r/dX2iIh2YuH ch4htLjLiSlaFC0EGlbauLq3NywLVQrtq2FnZG0d8dG3g3LJwUPRModUb1Y0Zm3YIxKHksPMcBVe KtpUUqmjYINhF4vopp5q1uq39xfRTTzVrdVv7i+imnmrW6rf3F9FJZNYKbwyn5fEB9pKygqAIsIA NmMbRHaIydSyXkiMmEMwR9VboCvJlo5X6rLar1U0STtpZcUPKE01Qar7p+zu/DTVBqvun7O78NNU Gq+6fs7vw01Qar7p+zu/DTVBqvun7O78NNUGq+6fs7vw01Qar7p+zu/DTVBqvun7O78NNUGq+6fs 7vw0br7Vp51DTcyvlrUEpGgOYycn1cBVeKtpUUqmjYINhF4vopp5q1uq39xfRTTzVrdVv7i+imnm rW6rf3F9FJZNYKbwyn5fEB9pKygqAIsIANmMbRFHXUNNLcWbEISVKNmQDLTVBqvun7O78NNUGq+6 fs7vw0r1WuSzmr6YWXxujPB9K73QlpxAG02qAGzgQLiGY+HdWbEIdSpR2gCLaaoNV90/Z3fhpqg1 X3T9nd+GmqDVfdP2d34aaoNV90/Z3fhpCxLUXCsxTC79p5AcQqwi1JFoNhx5D1JjMIWVQS42Nd0K Hbsv13pVZaQBiAJykU1Qar7p+zu/DTVBqvun7O78NNUGq+6fs7vw01Qar7p+zu/DTVBqvun7O78N NUGq+6fs7vw01Qar7p+zu/DTVBqvun7O78NNUGq+6fs7vw0arxVt0C9mzQt/eQpOcUhZ1K41QTCz GFeUfqoeST5Lbe0Vr12TXlS8+Bck7qmvEbzq7ddQ7+wnJ/zHDqhrTl3iRnNIjuZ3iHNg3Kcs2+x/ PTYwzS6EBpPit5bfvDBqmu/qtLTZZ/06R5MWFWvXZNeVLz4Nz3WRL/tf7q+013konNW3koQDEQ4L zJsx2jKOcW89mDJJiqUTuDj0k/sXQpVmynIoc4JFEqStIUkgpItBGyOrEd1Pcc58C5VrXieWq9xG FWOu8skBUwCqKjR/gNnEnjK2ODGd6k3rtPJupSVRaodg5GYc3gs3zlPOaEkm09rlvfSE8cjOMCI7 qe45z4FyrWvE8tV7iKTLvZF+JX7p7ZVvWxKeRM+4OpdC1kTD7L+6jtkqrXOpMpPWsc4Wh/hOm/Qe Y5OaylW7oUBN1ohY5KYKLOJNp/ZrO8dg7x8pwq167JrypefAuSd1TXiN51dtOSl1FAE1gFWYyyRb wH/nDqhrTl3iRnNIjuZ3iHNg3Kcs2+x/PTY7RdBIFUIkE5VtgfeGDVVIRVaWAYrYdB8otwq167Jr ypefBue6yJf9r/dX2qssuEqrJHwaRYhDpKBtJV8pPqIwalxxmFU5e6o2rQ3oSuFJvcwB5+rEd1Pc c58C5VrXieWq9xGDXWvhhluSuTOjRRal+JSfmnZSk7e2djYx5CSpRJJJOMk7PbZb30hPHIzjAiO6 nuOc+Bcq1rxPLVe4iky72RfiV+6e2Vb1sSnkTPuDqXQtZEw+y/uo7dUKujmityaZulSVWJhnlnGD +4o5jzbVmBWvXZNeVLz4FyTuqa8RvOrtppdUa+VLHR/5Un/5I/HDqhrTl3iRnNIjuZ3iHNg3Kcs2 +x/PTY7RdMf0OrbTYyuxCQRvAE/hgyZkw0jgGDlbh20G3eSBhVr12TXlS8+Dc91kS/7X+6vtV1OD DNYIWKSLA+xYd9SSfwIwblUVokkjYUm0svhY3gpI/FJ6sR3U9xznwLlWteJ5ar3EYFf619iIbsbB OWRr6flrScbSDmJ2NrLtdvlvfSE8cjOMCI7qe45z4FyrWvE8tV7iKTLvZF+JX7p7ZVvWxKeRM+4O pdC1kTD7L+6jtwJBtBsIpUesBn0hSXl2xcMQ29tq/dVzj1g4Fa9dk15UvPgXJO6prxG86u3XTmNE kEM8BjbiBbwFJ/GzDqhrTl3iRnNIjuZ3iHNg3Kcs2+x/PTY7RdRjQqJl8Ck40JU6ocOIZlYEDDGM mENDDK86lvykD8aABIAAAAyAYVa9dk15UvPg3PdZEv8Atf7q+1XWWL6BlsRZ8x1aLeMAfy4NyZ69 mEyYt+e0hdnFJH5urEd1Pcc58C5VrXieWq9xHVm0xZk8qiY98/s2UW2fvHIBzmwUj45+ZzB+NiVX zzyypR/AbwyYMHBxMdEoh4VlbzqzYlCBaaS25XGPISuYxrcPbj0NpN+rnNoA5raIuVScD9pGxyuK pA/KaalUi8KmPnEfBTUqkXhUx84j4KalUi8KmPnEfBSuUihauztMFCOPLbLKXLXSCq0k7QG1gS3v pCeORnGBEd1Pcc58C5VrXieWq9xFFJS4gpWkKSoWEEWgimlyR7jS70VHRTS5I9xpd6KjopdFlEsg aspdhJdCQ7vXCE37LCUKssVitAwJelK5jCoWkKSXkAgi0EXwppcke40u9FR0U0uSPcaXeio6KaXJ HuNLvRUdFNLkj3Gl3oqOijLKGW0NNIShtCQlKUiwJAyADYHUmMvhZrBLgo1rRYdyy/RfFNthBGME HKBTU+qvuZ7Q78VNT6q+5ntDvxU1Pqr7me0O/FTU+qvuZ7Q78VNT6q+5ntDvxU1Pqr7me0O/FTU+ qvuZ7Q78VDc9qwQQJaU74fc+Kj1zSrrqbENRDJ20PEn/AOraVmufRUlYXGQTpi4NGNYKbFtjbIGU b48mDc2mJg60phiqxuLbLZGxfAXyT6iOfArXrsmvKl58C5J3VNeI3nV26u0L13VKPSB8ptAdG9ek E+oHDqhrTl3iRnNIjuZ3iHNg3Kcs2+x/PTYw1HFStMzE2rFFxKFWtBWhtkYxepxA8+XnwKhQPXta odRFqGEqdVzCwesjDrXrsmvKl58G57rIl/2v91farqibaswyrLSIxIt2gUL/AOMG5Wqys8SkmwKg 1Yts36P+erEd1Pcc58C5VrXieWq9xHVuqTcjrOUNqxEaO6B5Ej3j5MGEhHo2MZhYdBW66sIQkbJN Ks1ZhauS8NNhK4pYBffsxqO0NoDYGFdQ12I5KjOrAlvfSE8cjOMCI7qe45z4FyrWvE8tV7iMC6hr TRypGZWBLe+kJ45GcfQSARYRaDSvFX0yCenQE3sJEguMjYT+8nmPqIwJDEmErDLn7fmRLZPBfC31 YFa9dk15UvPgXJO6prxG86u3RUOiKhnYdz5jqFIVwEWUeZXDvuMuCxbailQ2iDYcKqGtOXeJGc0i O5neIc2Dcpyzb7H8+HbSvNYUyiVKhGF/9bFJISAcaE7KvwH/ABg3NZX1vKXpitNiopdiOIm0es2+ QYda9dk15UvPg3PdZEv+1/ur7VdRUBVRsE5YpAH3VYNy5JNa3CBkhVk/eT1Yjup7jnPgXKta8Ty1 XuI6tcI8zGtkxfttSl0tJ4E/J/C3nwblslStyJnLyLbw6CxbsGz5R8hA5zh3UNdiOSozqwJb30hP HIzjAiO6nuOc+Bcq1rxPLVe4jAuoa00cqRmVgS3vpCeORnH0K6yhJl8tXZ8oOrAO8QLcwwEKKFpU nKkgiiSFJCgbQRaD1a167JrypefAuSd1TXiN51dvrxAdYVqir0WIfseT/wC2X1hWFVDWnLvEjOaR HczvEObBuZRkLBmadcxLLN9oN7oiwm2y/tst4aJm8tWbEx8Ko7QeSfxp2QgvDGPODpp2QgvDGPOD pp2QgvDGPODpp2QgvDGPODpo7N5awm+emEKgbanUj8aTu6JL4Jtbctsi4jIFWENpO2Ts83lpGRsR MItyKinVOuuG1Sj/AP7EMCVS92azSHgWQb91YBNnzRsnmFppCQzMFCNQrKb1ppAQlO8MOteuya8q XnwbnusiX/a/3V9qurOAVeg2tlUWFeRCunBuUtk1hjHMdiYQpyba09HViO6nuOc+Bcq1rxPLVe4j qPOBhlx1XzUJKjwAUcWp11bizapRKidsnBqfBCX1TlrQFhU0HVcK/lfjZh3VEgVphyBlg0E/fXgS 3vpCeORnGBEd1Pcc58C5VrXieWq9xGBdQ1po5UjMrAlvfSE8cjOO0OOIZbU44tKEJFqlKNgA3zSb 3S5RAqU3BJdjnBitQbxFvGOXmBFHrq01Uu1iBgkJ2lhSj5QoU1VZ54JLvNr+OmqrPPBJd5tfx01V Z54JLvNr+OmqrPPBJd5tfx01VZ54JLvNr+OmqrPPBJd5tfx01VZ54JLvNr+OlYK3zCsjDLMazDIS yoqSWUqBJIsx2qODDdzM8RObq1r12TXlS8+Bck7qmvEbzq7fdOlhegIWYoTjYUW1kfuqyHmI/wDr CqhrTl3iRnNIjuZ3iHN9Buf1cVLYIzGJRZExKRoaTlQ30nL5N+lmWjbqHFuJSbS2q9VvGwHMRhVr 12TXlS8+Dc91kS/7X+6vtV1qJF9K4UHGA44ofdA/HBuSw9ippEEZA2gH7xP4dWI7qe45z4FyrWvE 8tV7iOpOFFEkj1JyiGcI+6cKFaDEIyyBYG0BNnALMO6rrohuRJ99eBLe+kJ45GcYER3U9xznwLlW teJ5ar3EYF1DWmjlSMysCW99ITxyM4w42Oh5dAuxkU4G2Wk3ylHNw7FK01wjaxvlFqmYFJ/Zw4OX fVtn1D19vhu5meInN1a167JrypefAuSd1TXiN51dvmsC3M5XEwTvzXmym2zIdg8xsNIhhyFiXWHk 3rjSyhQ2iDYcGqGtOXeJGc0iO5neIc30CpVTVRTiJnMmimHSb5llQxuHYUR+7tbfBlxZKOOIabU4 tQShIJUTsAbNKmR5mcBGxhtsdjHFJt2E2CweSym3g1r12TXlS8+Dc91kS/7X+6vtV0WPEbW55tJt TCtpZFm384+tRHNg3MYMw9VS+RjiX1LB/lFic4PViO6nuOc+Bcq1rxPLVe4jqTFvRpZFtWW37K02 cIOE04l1pDifmrSFDgOHdV10Q3Ik++vAlvfSE8cjOMCI7qe45z4FyrWvE8tV7iMC6hrTRypGZWBL e+kJ45GcYd0asKo+bGVsL/6WEVYuw4lubPkycNv0CG7mZ4ic3VrXrsmvKl58C5J3VNeI3nV2/FS6 PJTDTJuatJ/ZRNiHLNhYGLyjMcGpjgcqlLlDYbKfISPwpEdyu8Q5u3Syr01m5T1pBOKQf8RQvUDn OKlXbn8JLlIiZgpMVEjGEWfs0Hg2Tw+SgpbkpdDrAmDgOxUOv/qIgftLPqN/85OC2lzTWwvlCswp s4Na9dk15UvPg3PdZEv+1/ur7TMo1qWy2IjHj+zYbKzv2bHPkpFRLkZFvRLxtdeWXFnbJNpwACTY BaTSRwHYyRwUDYAWWUpVZ+9Zj9dvViO6nuOc+Bcq1rxPLVe4jqzKFMDNIuEIsLDy2/IojBqfHiZV Vl7wNq0tBpfGR8k28NlvPh3VddENyJPvrwJb30hPHIzjAiO6nuOc+Bcq1rxPLVe4jAuoa00cqRmV gS3vpCeORnGFOY8SyTRkcbLWGVLSDsqsxDy2UWtTjilrUVLUSVE5STs4DLLsQ8hlltbjqzYlCBaS doCkuuXzaKaDkY+zB2jEg/LWOGzF66C5GbBbOwDs2Qv66akf9c9k/XTUj/rnsn66akf9c9k/XTUj /rnsn66VsqXpXhYZ/sh1zoyyizQbyywW2/OODDdzM8RObq1r12TXlS8+Bck7qmvEbzq7fixUm0sY m8sfgn/mOpsCrMaTsEcBpHQT8vjnoSITeutKvVD8RvHLgXNY9MRV1cKSL6FdIs2kq+UPXfeSikha Ck5CLDTU+q54I555fTTU+q54I555fTTU+q54I555fTTU+q54I555fTTU+q54I555fTTU+q54I555 fTTU+q54I555fTTU+q54I555fTTU+q54I555fTTU+q54I555fTTU+q54I555fTRqolXGiCJcFHbU 6s+q2ykNIZRCKCmJbCtqGRQaFvly0sG11CbKVorVC1eh70KS7GrH7Nm3J/MraGf1iKin46KdiYhw uOuqvlKOzS5prYXyhWYU2cGteuya8qXnwbnusiX/AGv91fabpVZEurTJIVwFKCFxJCsVoyI5sp37 NrBqPKTNq0wqVJtZYOjubVicg5zZgRHdT3HOfAuVa14nlqvcR1bo0tMDWtx8CxuLQl1O1bkUPKLe fBuaVgTATBcoiF3rMUq+aJOJLmSz/wBhZzgbeHdV10Q3Ik++vAlvfSE8cjOMCI7qe45z4FyrWvE8 tV7iMC6hrTRypGZWBALS3MYZajYlLqSTtC0YV0d4tVNiUg/91xtBx7F8D+GDcxkjLUtXN3EhT7qy 20SPmJGI2b5Nvkw7rHeyX+OVmwYbuZniJzdWteuya8qXnwLkndU14jedX0GvVV+ykL2Qg2/+tZT8 pIGN1G1wjY8m1gVWnyqvzZMQpKlsOC8eQMpTtjfHTt0go2HmEMiIhXUvNLFqVJOL/g71MdMdMdMd MdMdMdMdMdMdMdMfVmVYZVKwoRcay2tP+HfXy/ujHSd3SnXUqYk7RZGTR3QCrmTkHCbeCjrzkQ6p 15xTjizapSjaSd89S5prYXyhWYU2cGteuya8qXnwbnusiX/a/wB1eHERDEK0Xoh5tlsZVuKCQOc0 rPdIZbaXCSNWiOkWKiiLEp4oOU7+ThopSlrK1qKlKNpJNpJ28G5xIzLJEY15F7ERpCxaMYbHzRz4 zzjAiO6nuOc+Bcq1rxPLVe4jq3RpMZjV7rtpN8/BEuYspQfnDMebBBKSCCQRjBFKo3QmX2m4Cduh t9PyURSvmr4x2Dv5DnQtK0BaFBSSLQQbQcG6rrohuRJ99eBLe+kJ45GcYER3U9xznwLlWteJ5ar3 EYF0xu/qgtWP5D6FZx+ODU+ftz2RsulQMU0kNvp2QobPAcvl2sG6Y2V1RKhb8iIQo4uEfjg3M5k1 E1b6xCgHoRxVqdm9USoHykjmw7rHeyX+OVmwYbuZniJzdWteuya8qXnwLkndU14jedX0KvFTy2py by5u1BtVEMpHzdtQG1t+Xg6sBNY+WOFcFFusE5bxWI8IyHnpp8rLun/sN/DTT5WXdP8A2G/hpp8r Lun/ALDfw00+Vl3T/wBhv4aafKy7p/7Dfw00+Vl3T/2G/hpp8rLun/sN/DTT5WXdP/Yb+Gmnysu6 f+w38NNPlZd0/wDYb+Gmnysu6f8AsN/DTT5WXdP/AGG/ho5XasTnzpmvJZ8ltCcwpEzyaxgIiJjF OJOVJdN75MmDc01sL5QrMKbODWvXZNeVLz4QJSQQSCMYIp1y/wDxnPvGiI2LbBvIp5NuWxwinZGO 8NiPOq6aCdTUCwTOMAH/AJ19NOzc23TjfSF9NH4l+JXfvvuOq23FlR9eFU6rqqwztDbiT1mxYuIV vbCeE5rdqiUpQkJSAABYANjAiO6nuOc+Bcq1rxPLVe4jqqQlxBQtIUlQsIOQilb6vLq9O3GUpPWj tq4dR2U/u8IyeTbwpbWCbyjFAx7zKRjvAbU/dNo9VGrplYUJsUYVw7a2cfqIpqqzzwSXebX8dNVW eeCS7za/jpqqzzwSXebX8dKwVgi6xx6IyMbZQ4hoNAMpIFgJOyTj+UcCW99ITxyM4wIjup7jnPgX Kta8Ty1XuIwK6wpjKnzNsC0pa0Qf+pCvwwZVNo2TRqYuAfLToxHZChtEbIpLbqkMttKJnBONuZCu HsUk79hII8po3dFq0uy+jloxW/KYX+ANG6+1aedQ03Mr5a1BKRoDmMnJ9XqVsgDMaqzGGQLV6Ffp G2Um+A9VmDLZlFymNRGQTymnkZCMhG0RsikBdXb0ECYS5eiAY1Q6gQo8ByeU01VJH4JMfNo+Omqp I/BJj5tHx01VJH4JMfNo+OmqpI/BJj5tHx01VJH4JMfNo+Old64S+ssHCswbMS2plwqUXkpAIIsx WKODDdzM8RObq1r12TXlS8+Bck7qmvEbzq+h1qqEH1Lj5OkJdPynIcYgrbKdo71HG1suKbcQpC0m xSVCwg7RH0W5prYXyhWYU2cGteuya8qXn+gyuWRc4mDUFBtFbzh5kjZJOwBSr0khqvSpuCYF8v5z rllhcXsnoG1gxHdT3HOfAuVa14nlqvcRgVjkMPWKVLhHrEuD5TLtmNCtvg2CKTGXRUqjnYOMaLbz ZsIOzvjbB2+3S3vpCeORnGBEd1Pcc58C5VrXieWq9xGA40h1pbbiQpC0lKknZByik9lLsknMTAOg /s1fIUfrIPzT5MOW99ITxyM46tc6vrkE9dShBEI+S4wbMVhyp5ji4LPoEN3MzxE5urWvXZNeVLz4 FyTuqa8RvOr6HsZaT2qsunzZU+3oURZYl9vErn2xw+qk6qVNpOVLDJioYY9FZFtg305Rm36bP0O5 prYXyhWYU2cGteuya8qXn+gSKrUyrA+EQjJDQNi31ixCOfZO8MdKuVZgauQehQyb95YGivqHyln8 BvYUR3U9xznwLlWteJ5ar3EYNZ6qQdZYWxYDUWgfsogDGN47YpN5LHSOLMPHMFCvqrGNCxtpOz22 W99ITxyM4wIjup7jnPgXKta8Ty1XuIwa4VUbrHAhTNiI9kHQlnIofune2to89IqFfgopyGiWlNPN m9WhQsIOFLe+kJ45GcdWeyKErBLVQkWCPrNuD5zatsdFJ5IY6r8eqFjW7LbS24n5rg2wfw2O3w3c zPETm6ta9dk15UvPgXJO6prxG86vouxSZ1Xk83KlRUGgun/FQL1XlGXntpG3LWlAqgJitO0h9Fvr FmakTc6rAwf2bTEQP/G6B71lHapz5k2KlUQeKm+zUXVydostlMbj2mFHMKdgJzuRH+jL6KdgJzuR H+jL6KdgJzuRH+jL6KdgJzuRH+jL6KdhppubGeYV0U7DTTc2M8wrop2Gmm5sZ5hXRTsNNNzYzzCu ii5XMGzYuAik27bKh+FOx0d4HEeaV0U7HR3gcR5pXRTsdHeBxHmldFDL40AkwkQAMZJbV0U63f8A 4Ln3TS5uhSKtLStJSeuFYiLNgUIwaySKbxFZpk6zKY5xpcQtSVoh1lKhblBAx00uTzcWY+ir6KaX J5uLMfRV9FNLk83FmPoq+imlyebizH0VfRTS5PNxZj6Kvoppcnm4sx9FX0U0uTzcWY+ir6KaXJ5u LMfRV9FNLk83FmPoq+imlyebizH0VfRTS5PNxZj6KvooKtz23vLMfRV9FGamVjfNiJTEDjgI94ik Hcyn8QQYgw0KnZv3L4+RNo9dJVcxlMEpLkc65GuDHen5CPIMZ8tGGWoZlLLDSGmkixKEJAAG8Bhx FXZ4qJdIk0wIKyQRCr2+CmlyebizH0VfRTS5PNxZj6Kvoppcnm4sx9FX0UubQcVAVdiGoyGeh3DF qUEvNlBIvEY7DsYj5MKOl0JMoZUNGMIeZVlSsW842jv0m1yxlxSnJRGaFbjDMRaU8yhjA4QaRdQ6 xwZNsuU6nYUyoLt5gbfVTS3PQbOwsxxf/ir6KaXJ5uLMfRV9FNLk83FmPoq+imlyebizH0VfRTS5 PNxZj6Kvoppcnm4sx9FX0UioOKgXdCi4Z6Hcsvrx1BQqzbsOBLe+kJ45GcYERV2eKiXSJNMCCskE Qq9vgppcnm4sx9FX0U0uTzcWY+ir6KaXJ5uLMfRV9FLm0HFQFXYhqMhnodwxalBLzZQSLxGOw7GI +TCn1VpbWJmyLaKX0ixD7eJad7fG8aTO5nOoRRVBFqOa2L1QQuzfBxeQmjlWJ80u9VJo8n+WHUoe UCmlyebizH0VfRTS5PNxZj6Kvoppcnm4sx9FX0UgKvzpExhVrlEwSkPIJJhlgAXw3sCYS2DmsKqF jYdD7KvqqGQ7YOUHfFJvcscClOSiLSpBxhmIxEcChl5wOGkVUysUIohyUxCrNloBwf8AzbTS5PNx Zj6Kvoppcnm4sx9FX0U0uTzcWY+ir6KaXJ5uLMfRV9FNLk83FmPoq+imlyebizH0VfRTS5PNxZj6 Kvoppcnm4sx9FX0U0uTzcWY+ir6KaXJ5uLMfRV9FNLk83FmPoq+imlyebizH0VfRSHBEM0CCCEAE Hg6tZJFN4is0ydZlMc40uIWpK0Q6ylQtyggY6aXJ5uLMfRV9FNLk83FmPoq+imlyebizH0VfRS5j Lo+AiJkYyBiYYLQ2El5pSL6wqtstGP6OMdD1LKYqYqYqYqWDepYN6lg3qWDepZvUs3qWDapYNqlg 3qWDeokAZP8AMLpy0rrbYlQJRDoSobRtJzEYEia0asEtasBv4poY8mNQ/wD0NWSskHVyBLz6kqiF D9iwD8pZ294bZpHRr8wjXoyJWVvPKKlHf6MCokIYuuUvFlqW1F1R2r1JI9dn+vK7VljatQcK9BtM OKecKFB5KiAALcVhFNVWeeCS7za/jpqqzzwSXebX8dNVWeeCS7za/jpqqzzwSXebX8dNVWeeCS7z a/jpqqzzwSXebX8dNVWeeCS7za/jpqqzzwSXebX8dH7pVYnmylDkMyT9ZtnH/wDRNIqLiI2IXERT 7jzy/nLcUSTg3LJOpDUVOHU2aINBZt2QDao+UAcx/wBeXWO9kv8AHKzduq5IIisM1RCMgpaHynnb MSE9O0KQUIzAQbMJDICGWUBCE7w/15dY72S/xys3bavVZmFYorQ4Vu9ZSf2j6x8lHSd6kikcJV+X Jg4NJsyrcV85xW2f9e3QpJMp5AQTUthtGW26VLF+lNgs/mIpqfVo3L9oa+Kmp9Wjcv2hr4qan1aN y/aGvipqfVo3L9oa+Kmp9Wjcv2hr4qan1aNy/aGvipqfVo3L9oa+Kmp9Wjcv2hr4qan1aNy/aGvi oi57WdSrDLQnfL7f4KpC3Lp48Ro70IwnZtWVHyAWeuksuXyuEWHI992NUPqWaGjyA2ny0h4dmEYS xDtIaaQLEoQkAAcA/wD5tf/+AAMA/9k= ------=_NextPart_01D76819.203EB2D0 Content-Location: file:///C:/2223D501/04FormatoCienciaDigita_JazminMarisolMedinaRea_archivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01D76819.203EB2D0--