MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01D73C45.D2921D00" Este documento es una pgina web de un solo archivo, tambin conocido como "archivo de almacenamiento web". Si est viendo este mensaje, su explorador o editor no admite archivos de almacenamiento web. Descargue un explorador que admita este tipo de archivos. ------=_NextPart_01D73C45.D2921D00 Content-Location: file:///C:/0E85C06C/20-CURVASROCFINAL.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="utf-8"

 

Comparación de la Escala de RIPASA y Alvarado Modificada en la determinación de Apendicetomía a través de Curvas ROC <= o:p>

 

 

Comparison of the RIPASA and Modified Alva=
rado Scale in the determination of Appendicetomy through ROC Curves

 

Jessica Alexandra Marcatoma Tixi.[1]= , Héctor Salomón Mullo Guaminga.[2]= , Natalia Alexandra Pérez Londo.[3]= & Mayra Yolanda Almache Caiza.[4]=

 

Recibido: 20-02-2021 / Revisado: 29-02-2021 /Acept= ado: 21-03-2021/ Publicado: 05-04-2021

 

 

Abstract. =                                         DOI: https://doi.org/10.33262/concienciadigita= l.v4i2.1697

Introduction. Acute appendicitis is a sudden disease that occur= s at any stage of life, it is the first cause of surgical care in the emergency service of all hospitals and among the treatments is the appendectomy. O= bjective. Identify the most robust scale between the Modified Alvarado and the RIPASA scale to discriminate the need for surgery in patients diagnosed with acute appendicitis. Methodology. The research design was exploratory with information collected in the period June 2010 - January 2019, the data matr= ix compiled information from 400 medical records of patients treated in the emergency service of the Riobamba General Teaching Hospital with said anoma= ly, considering 18 variables; 5 quantitative type and 13 statistical variables. Prior to the analysis, imputation of missing data was carried out, with the help of the mode for variable variables and through regression for quantita= tive variables. Results. Of the appendectomized patients, 50.8% correspond to men and 49.3% to women, on the other hand, 50= % of the patients are less than or equal to 24 years of age. Grade II appendicit= is is the most common in the study (phlegmonous appendicitis), among the main symptoms that help to diagnose appendicitis are migratory pain (71.5%) and = pain in the right iliac fossa (98%). Regarding the analysis of the Modified Alva= rado scale and RIPASA, it is obtained that the Alvarado scale through the ROC cu= rve has an area (0.583), sensitivity (69.78%), specificity (82.78%), true posit= ive fraction (65.76%) , true negative fraction (20%), contrary to RIPASA with o= ne area (0.594), sensitivity (88.4%), specificity (90.9%), true positive fract= ion (68.90%), true negative fraction (25.58%). Concluti= on. It is concluded that the RIPASA scale presents greater certainty when diagnosing acute appendicitis and its use is recommended in the Emergency Services.

Keywords: Appendicitis, ROC curves, sensitivity, specificity.

 

Resumen.

Introducción. La apendicitis aguda es una enfermedad repentina que ocurre en cualquier etapa de la vida, es la primera causa de atención quirúrgica en el servicio= de emerg= encia de todos los hospitales y entre los tratamien= tos se encuentra la apendicectomía Objetivo. Identificar la esc= ala más robusta entre Alvarado Modificada y la escala de RIPASA para discrimin= ar la necesidad de cirugía en pacientes diagnosticados con apendicitis aguda. Metodología. El diseño de investigación fue exploratoria con información recolectada = en el período junio 2010 – enero 2019, la matriz de datos compiló informació= n de 400 historias clínicas de pacientes atendidos en el servicio de emergencia del Hospital General Docente Riobamba con dicha anomalía, considerando 18 variables; 5 de tipo cuantitativo y 13 mudables estadísticas, previo al análisis se realizó imputación de datos faltantes, con la ayuda de la mo= da para mudables y mediante regresión para variables cuantitativas. Resultados.= De los pacientes apendicectomizados el 50.8% corresponden a hombres y el 49.3% a mujeres, por otro lado, el 50% de los pacientes poseen una edad menor o igual a los 24 años. El Grado de apendic= itis II es el más usual en el estudio (Apendicitis flegmonosa), entre los principales síntomas que ayudan a un diagnóstico de apendicitis son dolor migratorio (71.5%) y el dolor en la fosa ilíaca derecha (98%). Con respect= o al análisis de la escala de Alvarado Modificada y RIPASA, se obtienen que la = escala de Alvarado mediante la curva ROC posee un área (0.583), sensibilidad (69.= 78%), especificidad (82.78%), fracción verdaderos positivos (65.76%), fracción verdaderos negativos (20%), al contrario de RIPASA con un área (0.594), sensibilidad (88.4%), especificidad (90.9%), fracción verdaderos positivos (68.90%), fracción verdaderos negativos (25.58%). Conclusión. Se concluye que la escala de RIPASA presenta mayor certeza al momento de diagnosticar apendicitis aguda y se recomienda su uso en los Servicios de Emergencia.

Palabras claves: Apendicitis, Curvas ROC, = sensibilidad, especificidad,

 

 

Introducción.

La apendicitis aguda es una enfermedad súbita y repentina= que puede ocurrir en cualquier etapa de la vida, (Wani, y otros, 2007) es la primera causa de atención quirúrgica en el servicio de emergencia de todos los hospitales y entre los tratamientos de oro para = su recuperación se encuentra la apendicectomía, indicación de urgencias más frecuente dentro de la medicina contemporánea. (Fernández Zambrano, 2016) (Fernández, 2016)<= /span>

La presencia de esta patología se observa en 1= de cada 10 individuos a lo largo de la vida (= Ávila & García-Acero, 2015)  siendo más frecuente entr= e los hombres con un  8.6%  en  comparación  con  el  6.7% de las mujeres, (Martin & Stella K, 2018) su mayor incidencia se alcanza entre = los 20 y 35 años, pero el riesgo para desarrollarla no desaparece en otras eda= des, e inclusive es más al= ta en el quinquenio de 10 a 19 años, no obstante se reporta que uno de cada 2000 adultos mayores de 65 años desarrollará apendicitis anualmente. (Zambrano, Ramos, & Merino, 2019) Su importancia de saneamiento radica en el desarrollo de complicaciones como formación de flemón o abscesos (Smink &a= mp; Soybel, 2019) por lo que su diagnóstico y tratamiento debe ocurrir = en las primeras etapas para evitar inconvenientes.=

El diagnóstico de la AA se basa principalmente= en los hallazgos clínicos, difícil, en especial, en las primeras horas del c= uadro clínico, (Humes & Simpson, 2012) por lo que la determinación definitiva de necesidad de cirugía sigue siendo un reto, por un lado debido a la diversidad de métodos y técnicas que utiliz= an los cirujanos para decidir si ejecutarla o no y por otro, a la variedad de sín= tomas que pueden presentar los pacientes cuando acuden al centro de salud  con dolor abdominal, más aún cuando = se conoce que un cirujano experto y con práctica habitual en un servicio de urgencias puede tener hasta un 15% de apendicectomías negativas, pero esta cifra pue= de incrementarse, en especial en mujeres menores de 35 años, hasta el 26%. (Humes & Simpson, 2012)=

Varias son las técnicas de diagnóstico para la enfermedad y aun el área de salud continúa en la definición de una metod= ología significativa en cuanto a patrones de sensibilidad y especificidad, los mé= todos que hasta el momento se manejan todavía arrojan porcentajes elevados de fa= lta de asertividad en el requerimiento de cirugía frente a tan solo un tratami= ento clínico en los pacientes, por ejemplo en Estados Unidos el número de tomo= grafías ante la sospecha de AA en adultos, de 18.5% de los casos en 1998 se elevó a 93.2% en el 2007. Las apendicectomías negativas en mujeres menores de 45 a= ños de edad se redujeron de 42.9% en 1998 a 7.1% en 2007. Sin embargo, esto no sucedió en la población masculina, ni en mujeres mayores de 45 años, a p= esar de la tomografía preoperatoria. (Coursey, y = otros, 2010) = En cuanto a los hallazgos en los exámenes de laboratorio, ninguna de estas pruebas confirma o excluye el diagnóstico de apendicitis aguda cuando se utilizan de manera aislada, ya sean las alteraciones leucocitarias (leucocitosis 87% o leucopenia 10% de los casos), proteína C reactiva, o marcadores nuevos como lactoferrina, calprotectina, d-lactato, etc. (Thuijls, y otros, 2011) (= Laméris, y otros, 2009) (Filiz, y otros, 2010)  

Con tales antecedentes optar por una técnica de diagnóstico sensible y específica ante la sintomatología de los paciente= s deja de lado a los métodos tradicionales. En la actualidad existen dos métodos= de valoración cuasi cuantitativa, la escala de Alvarado modificada considerada como la de  mayor difusión y acep= tación en los servicios de urgencias del mundo, su sensibilidad y especificidad (Reyes-García, y otros, 2012) es de 68% = de 87.9% respectivamente, clasifica a los pacientes en 3 grupos luego de la va= loración de signos, síntomas y exámenes de laboratorio: Riesgo bajo (0-4 puntos) c= uya probabilidad de presentar apendicitis es 7.7% y el tratamiento es netamente ambulatorio, Riesgo medio (5-7 puntos) asocia un 56.7% de presencia de apendicitis y requiere hospitalización y Riesgo alto (8-10 puntos) con una probabilidad de 90.6% de apendicitis, estos pacientes deben ser sometidos a cirugía inmediata (Reyes-García, y otros= , 2012) y la escala de RIPASA cuya sensibilidad y especificidad es de 98% y 8= 3% respectivamente, de igual manera agrupa a los pacientes luego de la valorac= ión de características sociodemográficas, signos, síntomas y exámenes de laboratorio en: Improbable con una puntuación inferior a 5 puntos, Baja probabilidad entre 5 y 7 puntos y Alta probabilidad entre 7.5 y 11.5 puntos= por tanto la preparación para una apendicetomía es inmediata. (Chong, y otros, 2011) (Klabtawee, Saensak, Khetsoongnern, & Piriyasupong, 2011)=

El objetivo de la investigaci= ón fue evaluar el sistema de diagnóstico robusto entre la escala de Alvarado modificada y la escala de RIPASA para discriminar la necesidad de cirugía = en pacientes diagnosticados de apendicitis aguda en el servicio de emergencia = de una casa de salud en Riobamba, junio 2010 – enero 2019 en torno a los porcentajes de sensibilidad y especificidad. (Almache Caiza & Mena Chavarrea, 2019)

Metodologia.

Por el método de investigaci= ón se consideró mixta ya que la información se concentró en mudables y variabl= es estadísticas; según el objetivo fue aplicada ya que se procedió a soluci= onar un problema específico en el área de salud; con respecto al nivel de profundización en el objeto de estudio fue considerada exploratoria debido= al estudio general de comportamiento entre la escala de Alvarado Modificada y = la escala de RIPASA al momento de discriminar=   la necesidad de cirugía en pacientes diagnosticados  de apendicitis aguda. (Almache Caiza & Mena Chavarrea, 2019)

Instrumentos de recolección de datos

Las historias clínicas fuero= n los instrumentos donde reposaba la información de los pacientes diagnosticados= de apendicitis aguda, conforme se leían los datos de los pacientes se selecci= onó 18 variables de las cuales 13 son cualitativas (estado civil, sexo, náusea/v= mito, anorexia, tipo de apendicitis, dolor migratorio, tipo de dolor, dolor fosa ilíaca derecha, signo de Bloomberg, signo de Rovsing, resistencia muscular voluntaria, hipersensibilidad en la fosa ilíaca derecha y examen de orina)= y 5 variables de índole cuantitativo (edad, temperatura, evolución con el sí= ntoma, leucocitos y neutrófilos). (Almache Caiza= & Mena Chavarrea, 2019)

 

Población y Muestra

Se trabajó con un colectivo = de 400 pacientes diagnosticados con apendicitis aguda del Hospital General Doc= ente de Riobamba quienes al derivarse de un marco muestral no definido se constituyeron como la muestra del estudio.

Técnicas estadísticas

El análisis exploratorio de = datos permitió describir las características generales de los pacientes, para el análisis bivariado se utilizó tablas de contingencia que indicaron la dep= endencia o no de variables, dentro de las técnicas multivariadas se destaca las Cur= vas ROC mismas que permitieron visualizar, organizar y seleccionar el requerimi= ento de cirugía en pacientes con apendicitis aguda.

El análisis de datos se desarrolló en el lenguaje de programación R.

Resultados.

= Duran= te el período comprendido entre Junio 2010 a Enero 2019 se evaluó 400 pacien= tes que fueron atendidos con apendicitis, en el servicio de emergencia del Hosp= ital General Docente de Riobamba, considerando 18 variables; 5 de tipo cuantitat= ivo (Neutrófilos, Temperatura, Evolución con el síntoma, Leucocitos y Edad),= y 13 mudables estadísticas (Estado civil, Sexo, Nauseas/Vómito, Anorexia, Grado de apendicitis, Dolor Migratorio, Tipo de dolor, Dolor en la fosa iliaca derecha, Signo de Bloomberg, Signo de Bloomberg, Resistencia Muscular, Hipersensibilidad en la fosa iliaca derecha, Examen de Orina ). (A= lmache Caiza & Mena Chavarrea, 2019)

 

Sexo

ni

%

Femenino

197<= /o:p>

49.3

Masculino

203<= /o:p>

50.8

Total

400

100=

= Tabla 1.Distribución estadística de la variable sexo

Fuente: Elaboración propia

=  

La muestra obtenida, estuvo conformada por 197 mujeres (49.3%) y 203 hombres (= 50.8%) valorados con un cuadro de dolor abdominal y sospecha de apendicitis, esta = patología fue mayor en los hombres (Tabla 1). De los pacientes atendidos el de menor = edad tenía 2 años y el mayor 85 años, con una población predominante joven, = con una edad media de   años (Díaz-Barrientos C. , y otros, 2018) además el 50% de los pacientes poseían una edad menor o igual a los 24 años. (Almache Cai= za & Mena Chavarrea, 2019)

=  

 =

Edad

Temperatura

Evolución con el síntoma

Leucocitos=

Neutrofilia

Media

29

36.98

36

14245.292

75.60

Mediana

24

36.9

24

13550

78.45

Moda

18

36

24

15600

84

Desviación estándar

17

0.94

48

10123.25=

12.54

Mínimo

2

34.2

1

1480

11.62

Máximo

85

40.5

720

151000

97.39

= Tabla 2. Estadísticas descriptiva= s de las variables cuantitativas

Fuente: Elaboración propia

 

La temperatura mínima de los pacientes fue de 34.2°C, el cual mostró un cua= dro de hipotermia que generalmente manifiestan los adultos mayores, la temperatura máxima fue de 40.5°C indicó la presencia de fiebre, en promedio la tempe= ratura fue de , el = 50% de las personas conservaron una temperatura menor o igual 36.9 °C. La evol= ución con el síntoma es propia de cada enfermedad, en el caso estudiado el míni= mo de horas de evolución de un paciente reiteró 1 hora de dolor y su máximo fu= e un total de 720 horas (30 días), en promedio la evolución con el síntoma se englobó en<= !--[if gte msEquation 12]> 36±48  horas, el 50% de los pacientes presenta= ron dicha característica en un tiempo menor o igual a 24 horas; la mayoría de= los pacientes soportaron el síntoma por 24 horas antes de recibir los primeros auxilios (triage). (Almache Caiza & Mena Chavarrea, 2019) El recuento de leucocitos se refie= re al número de glóbulos blancos que se explora en la sangre de cada pacient= e, el número mínimo de leucocitos que se examinó fue de 1.480 células/mm3, mi= entras que el máximo punteó un valor de 151.000 células/mm3, en promedio estas = células se mantuvieron en un total de  células/mm3, el 50% de los glóbulos b= lancos asociaron un valor menor o igual a 13.550 células/mm3; la mayoría de los pacientes asumieron un conteo de 15.600 células/mm3. (Almache Caiza & Mena Chavarrea, 2019) Finalmente, dentro de las células defensivas, los neutrófilos son los primeros en lle= gar al tejido afectado, seguidos por los macrófagos y linfocitos cuando son afect= ados con algún tipo de patología. El valor mínimo de neutrófilos era de 11.6= 2%, con un máximo de 97.39%, en promedio los neutrófilos tuvieron un valor aproxi= mado de 75.60%, el 50% de las células son menor o igual a 78.45%; la mayor cant= idad de neutrófilos que relucieron los pacientes es de 84% con una variación d= el 12.54%. (Almache Caiza & Mena Chavarre= a, 2019)

 

Nauseas o Vómito<= o:p>

Anorexia

ni=

%

ni=

%

Si

280

70

18

95.5

No

120

30

382

4.5

Total

400

100

400

100

= Tabla 3. = Distribución estadística de Nauseas o Vómito y Anorexia

Fuente: Elaboración propia

Los primeros síntomas de apendicitis son de vital importancia; mientras más temprano se conozca la anomalía, menor será la posibilidad de evolucionar= de una forma grave. (Ferreira, 2019) Para la obtención del diagnóstico de Apendicitis uno de los síntomas que ayuda son las Nauseas o Vómito, la sintomatología suele aparecer después del dolor abdominal, si= endo un indicio inespecífico y fácil de confundirlo como síntoma de otra anomal= a (Thompson, 2012) (Díaz-Barrientos C. Z., y otros, 2018= ). De los 400 casos intervenid= os el 70% de los pacientes presentaron náuseas o vómito, los cuales el 4.5% mostraron la presencia de Anorexia (Tabla 3.). Además, se presentó una diferencia del 34.8% (139 pacientes) entre grado II o flegmonosa y Grado II= I o gangrenosa, mientras que de forma uniforme se encuentr= ó el Grado I o Simple y Grado IV o Perforada en pacientes con problemas en el apéndice (Tabla 4.).

Grado de Apendicitis

ni

%

Grado I

59

14.8

Grado II

219

54.8

Grado III

80

20

Grado IV

42

10.5

Total

400<= /o:p>

100

= Tabla 4. Distribución estadística de Grado de Apendicitis=

Fuente: = = Elaboración propia

 

Dolor Migratorio

ni

%

Si

286

71.5<= /o:p>

No

114

28.5<= /o:p>

Total

400

100

= Tabla 5. Distribución estadística de Dolor Migratorio

Fuente: Elaboración propia

 

Al evaluar el resto de los síntomas el 71.5 % de los pacientes presentó dolor migratorio (Tabla 5.), sin embargo, el tipo de dolor que manifestaron los pacientes con problemas de apendicitis fue moderado con un 68.3%, de manera similar muestran una diferencia del 42.3% (169 pacientes) en relación a los pacientes que manifestaron dolor intenso (Tabla 6.).

Tipo de Dolor

ni

%

Intenso

104

26

Leve

23

5.8

Moderado

273

68.3

Total

400<= /o:p>

100<= /o:p>

= Tabla 6. Distribución estadística de Tipo de Dolor

Fuente: Elaboración propia

De la misma forma uno de los síntomas presentados con frecuencia de la apendicit= is aguda es el dolor abdominal presente a nivel de la fosa ilíaca derecha con mayor o menor intensidad. (Montero Tapia, 2016) Por consiguiente el 98 % de = los pacientes presentaron dicho dolor, mientras que el 2 % no muestran indicios= del malestar (Tabla 7.), en cambio el signo de Bloomberg suele manifestarse como dolor cuando se realiza una descompresión brusca de la pared abdominal y q= ue puede ser referido con mayor intensidad sobre la fosa ilíaca derecha (Serrano Serrano , 2016), el cual se mostró en el 93= % de pacientes al finalizar el examen físico (Tabla 7.); por otra parte, el sí= ntoma signo de Rovsing  (Tabla 7.) prese= ntó el 75% de los pacientes y 25% no evidenció dicha característica. Con respecto a la resistencia muscular el= 91 % de los pacientes no mostró evidencia de dicha particularidad, mientras que= el 9% manifestaron esta particularidad (Tabla 8.).

Casos

Dolor en la fosa ilíaca derecha

Signo de Bloomberg

Signo de Rovsing

ni=

%=

ni=

%=

ni=

%=

Si

392

98

373

93.25

299

74.75

No

8

2

27

6.75

101

25.25

Total

400

100

400

100

400

100

Tabla 7. Distribución estadístic= a del Dolor en la fosa ilíaca derecha, Signo de Bloomberg y Signo de Rovsing

Fuente: Elaboración propia

 

 

Casos

Resistencia Muscul= ar

Hipersensibilidad = en la fosa ilíaca derecha=

ni=

%=

ni=

%=

Si

35

8,75

391

97,75

No

365

91,25

9

2,25

Total

400

100

400

100

= Tabla 8. Distribución estadística de Resistencia Muscular e Hipersensibilidad en l= a fosa ilíaca derecha

Fuente: Elaboración propia

 

La hipersensibilidad de la fosa ilíaca derecha o signo de Mc Burney, se manif= iesta al presionar la fosa ilíaca derecha en un punto que corresponde a la unió= n del 1/3 externo con los 2/3 internos de una línea trazada de la espina ilíaca anterosuperior derecha hasta el ombligo. (Orbea Marcial, 2012) Por esta razón, es la más frecuente con el 98% en pacientes diagnosticados con apendicitis (Tabla 8.)= . Al aplicar el examen de orina el 85% de los pacientes no presentaron infecció= n urinaria, su el diagnóstico fue negativo (Tabla 9.).

Casos

%

Negativo=

340

85

Positivo=

60

15

Total

400

100

= Tabla 9. Distribución estadística de frecuencia de la m= udable Examen de orina3=

Fuente: Elaboración propia

Segú= n los indicadores sociodemográficos se analizó la prueba de masculinidad de los pacientes con problemas de apendicitis, teniendo así que de cada 100 mujer= es que presentaron esta patología 103 hombres lo mostraron. (Almache Caiza & Mena Chavarrea, 2019)=

= Figura = 1= . Pirámide Poblacional=

Fuente: = Elaboración propia

Según la pirámide poblacion= al (Figura 1.) existió la presencia de una pirámide estacionaria con una base más e= strecha y un número de personas aproximadamente igual en cada grupo de edades, generalmente ilustró una proporción moderada de niños y una tasa de crec= imiento lenta ya que la mayor concentración se localizó entre las edades de 15 a = 24 años tanto en hombres como mujeres, es decir existió más población de adolescentes que presentaron problemas de apendicitis. (Almache Caiza & Mena Chavarrea, 2019)

= Figura 2. Curv= a ROC comparativa de la escala de Alvarado modificada y la escala de RIPASA<= span style=3D'mso-no-proof:yes'>

= Fuente: Elaboración propia

Para evaluar el sistema de diagnóstico robusto entre la escala de Alvarado modificada y la escala de RIPASA, (Almache Caiza & Mena Chavarre= a, 2019) se realizó los cálculos de la curva ROC, sensibilidad, especificidad, fracción de verdaderos positivos (= FVP) y fracción de verdaderos negativos (FVN).

ALVARADO

ESTADO DEL PACIENTE

Total

CRÓNICO

AGUDO

> 7

194

101

295

< 7

84

21

105

Total

278

122

400

Se generó las cu= rvas ROC para las dos escalas, donde, la línea de referencia indicó teóricame= nte que las escalas serían incapaces de discriminar a los pacientes agudos de los pacientes crónicos, con una probabilidad entre 0.5 y 0.6, sin embargo, amb= as escalas poseen igual sensibilidad y especificidad (Figura 2.). El 58.3% represen= tó el área cubierta de la escala de Alvarado Modificada, mientras que el 59.4% conformó el área de la Escala de RIPASA; por lo que se estableció una diferencia porcentual del 1.1%; lo que significa que existió cierta homogeneidad entre ellas, por lo tanto, la escala de RIPASA fue superior con respecto a la de Alvarado.

Tabla 10. Tabla de contingencia Escala Alvarado Modifica= da4

Fuente: Elaboración propia

 

RIPASA

ESTADO DEL PACIENTE

Total

CRÓNICO

AGUDO

> 7.5

246

111

357

< 7.5

32

11

43

Total

278

122

400

Tabla 11. Tabla de contingencia Escala RIPASA5

= Fuente: Elaboración propia

 

Figura 3. Resultado de Resultados de sensibilidad, espe= cificidad, fracción de verdaderos positivos (FVP) y fracción de verdaderos negativos (FVN)

= Fuente: Elaboración propia

Mediante tablas de contingenc= ia se estableció puntos de corte para el estado con el que ingresó el pacien= te (crónico, agudo) (Almache Caiza & Mena Chavarrea, 2019)en ambas escala= s. En la Escala de Alvarado se determinó un punto de corte de 7 (Tabla 10), dond= e se obtuvo 295 pacientes con un diagnóstico confirmado de apendicitis superior= a los 7 puntos, por lo que representó una buena sensibilidad de 69.78%, especificidad de 82.78% y un FVP de 65.76% (Figura 3).  De la misma forma se estableció un pu= nto de corte de 7.5 para la escala de RIPASA (Tabla 11), donde se obtuvo 357 pacie= ntes con un diagnóstico confirmado de apendicitis superior a los 7.5 puntos, teniendo esto una sensibilidad de 88.48%, especificidad de 90.9% y un FVP de 68.9% (Figura 3). Por lo tanto, la escala de RIPASA tuvo mayor exactitud al diagnosticar apendicitis, realizando un mejor tamizaje de los pacientes con dicha patología. (Almache Caiza & Mena Chavarrea, 2019)=

Discusión

= La exactitud de 75% a 90% del diagnóstico de apendicitis aguda se establece p= or la historia clínica y la exploración física. Sin embargo, el estudio debe respaldarse (Díaz-Barrientos C. Z., y otr= os, 2018) con estudios paraclínicos. La mujer debe ser sometida a un ex= amen pélvico y el hombre debe realizarse un tacto renal para la exploración f= sica completa del abdomen. El diagnostico incorrecto o tardío aumenta el riesgo= de complicaciones como infección de la herida quirúrgica (8% a15%), perforac= ión del apéndice (5% a 40%), abscesos (2% a 6%), sepsis y muerte (0.5% a 5%). = (Díaz-Barrientos, y otros, 2018) (Wani, y otros= , 2007) (Shrivastava, Gupta, & Sharma, 2004)

En es= te estudio la población predominantemente fue joven con promedio de edad de <= /span>  años, similar a lo encontrado por Chon= g C. et al. (2017) (Guallpa Guallpa, 2019) = el cual determino una edad promedio más joven de 29.5 ± 13.3 años (Chong , y otros, 2017). Malik M. et al. = (2017), en una población oriental encontró una edad promedio de 22.7 ± 9.2 años= . (Malik, y otros, 2017)=

El diagnóstico oportuno y certero  de apendicitis resulta fundamentalmente importante para este estudio el cual concuerda a estudios previos realizados en España, México, Cuba, Colombia= , Perú y Ecuador, donde la molestia en la apéndice se presentó con mayor frecuen= cia en los hombres, así también, concuerda con el estudio de Serrano Tatiana (20= 16), el cual analizó a 151 pacientes y obtuvo como resultado que, la mayoría de pacientes que presentaron un malestar (Alm= ache Caiza & Mena Chavarrea, 2019) en el apéndice, fueron de sexo masculino con un 64.20%  y  el 35.80% fueron de sexo femenino. (Serrano Serrano T. C., 2016). Mendoza J. (2010), en su investigación obtuvo en cuanto al sexo, el diagnostico de apendicitis con mayor frecuencia fue en los hombres con 55.8% el en relaci= n a las mujeres (44.2%).<= span style=3D'mso-bookmark:_Hlk36156928'> (Mendoza, Rodríguez, & Guerrero, = 2010) De igual manera Thompson Nat= alia (2012) en el Centro Médico Naval encontró como resultado que el 65.5% de = los pacientes con problemas en el apéndice fueron hombres y 34.5%, fueron muje= res; por lo tanto, el sexo que predominó fue el masculino. (Thompson, 2012)

Adem= s de los 400 casos intervenidos, el 70% de los pacientes presentaron náuseas o vómito, lo que coincide con el trabajo de Orbea Víctor (2012), donde la población en estudio fue de 194 pacientes atendidos en el Hospital Provinc= ial Puyo y el 86.59% de los pacientes tuvo nauseas o vómito (Almache Caiza & Mena Chavarrea, 2019) (Orbea Marcial, 2012). De esta manera se obtuvo también que el 4.5% de los pacientes presentaron anorexia el cual está sustentado por la investigaci= n de Orbea Víctor al realizar un análisis en 194 pacientes atendidos en el Hos= pital Provincial Puyo (Almache Caiza & Mena = Chavarrea, 2019), donde se evidencio que el 51.54% tenían Anorexia. (Orbea Marcial, 2012)

La investigación realizada por Thompson Natalia (2012), en el Centro Médico = Naval, obtuvo como resultado que el 73.3% de los pacientes presentaron Náuseas/V= mitos y el 66.4% manifestaron Anorexia. (Thompson, 2012) Sanabria Á. (2010), indicó= que el 79.7% de pacientes tuvieron Náuseas/Vómitos y 63% Anorexia. (Sanabria, Mora, Domínguez, Vega, &am= p; Osorio, 2010). Sin embargo, el autor De Quesada L. (2015), mostró que el 80% de los pacientes padecieron de Náuseas/Vómitos y el 70% de Anorexia. (de Quesada Suárez, Ival Pelayo, & González Meriño, 2015)

El análisis realizado por Orbea Víctor (2012), en el Hospital Provincial Puy= o, mostró que el 50% de los portadores de la enfermedad fueron de grado II y = el 30.9% de las personas atendidas presentaron un grado III (Almache Caiza & Mena Chavarrea, 2019), coincidiendo con nuestros resultados los cuales el 54.8% de los pacientes c= on problemas en el apéndice fue de grado II y el 20 % fue de Grado III. (Orbea Marcial, 2012) Por otra parte, el 71.5% de = los pacientes mostraron dolor migratorio, el cual concuerda con el autor Orbea Víctor (2012), que, en su estudio, el 60.3% de los pacientes tuvieron (Almache Caiza & Mena Chavarrea, 2019) la presencia de dolor migratorio. (Orbea Marc= ial, 2012) De forma similar el estudio de Thomson Natalia (2012), en el Centro Médico Naval mostró que el 81.7% de los pacientes manifestaron dol= or migratorio. (Thompson, 2012)<= !--[if supportFields]> Así mismo, en la investigac= ión de Sanabria Álvaro et al. (2010), se observó, que el 66.7% de los casos t= uvo dolor migratorio. (Sanabria, Mora, Domíng= uez, Vega, & Osorio, 2010) En el trabajo de López Abreu et al. (2016), se concluye que el 84 % de los pacientes presentaron dolor migratorio. (López Abreu, Fernández Gómez, Hernández = Paneque, & Pérez Suárez, 2016)

Se generaron las curvas ROC para las escalas, donde se observó, el área bajo la curva de 0,583 para la escala de Alvarado Modifi= cado y 0.594 para la escala de RIPASA, siendo superior la escala de RIPASA. Estos resultados se contrastan con lo encontrado por C.Z.Díaz-Barrientos (2018),= que muestran en la escala de Alvarado un área de 0.719 superior a la escala de RIPASA (AUC de 0.595). (Díaz-Barrientos C. Z., y otros, 2018= ) Del mismo mo= do Golden et al= . (2016), en EEUU obtuvo un área bajo la Curva ROC de 0.67 para la escala de RIPASA y 0.72 para la escala Alvarado Modificado, esto puede deberse a que la escala= de RIPASA fue diseñada para población asiática. (Arroyo-Rangel, Limon, Vera, Guardiola= , & Sánchez-Valdivieso, 2018) (Golden , y otros, 2016) Sin enbargo, Arroyo Rangel et al. (2018), indicó una  AUC de 0.88 para la escala de RIPASA s= imilar en comparación con la escala de Alvarado (AUC de 0.8). (Arroyo-Rangel, Lim= ón, Vera, Guardiola, & Sánchez-Valdivieso, 2018)<= /p>

En la escala de Alvarado Modificado, se obtuvo, una sensibilidad del 69.78%, especificidad 82.78%, F= VP 65.76% y FVN 20%, para la escala de RIPASA una sensibilidad del 88.48%, especificidad 90.9%, FVP 68.9%, FVN 25.58%, con estos resultados de ambas escalas podemos decir que la escala de RIPASA presento una mejor sensibilid= ad y especificidad que la escala de Alvarado modificado. Resultados semejantes se obtuvieron por Guallpa Edison (2019), el cual t= rabajó con 201 pacientes en el Hospital José Carrasco Arteaga de Cuenca, donde se obtuvo una sensibilidad y especificidad del 98.34% y 75%, respectivamente, = en comparación con 93.92% y 85% para la escala de Alvarado Modificada (Guallpa Guallpa, 2019), demostrando que = RIPASA lee mejor a los enfermos, pero Alvarado Modificado evalúa mejor a los sano= s. (Guallpa Guallpa, 2019)=

Shuai= b A. (= 2016), estudio 134 pacientes, donde se halló en la escala de Alvarado Modificado = una sensibilidad del 82.8% y especificidad 56%; en la escala de RIPASA, (Alma= che Caiza & Mena Chavarrea, 2019) sensibilidad d= el 94.5% y especificidad 88%, llegando a la conclusión que la escala RIPASA es más preciso y específico en comparación a la escala de Alvarado modificado pa= ra la población de Kuwait. (Shuaib, et al., 2017)

C.Z.D= íaz-Barr= ientos (2018), evaluó a 72 pacientes en el Hospital Universitario de Puebla, en el cual comparo las dos escalas y obtuvo como resultado una sensibilidad del 9= 3.3% y especificidad 80.3% para la escala de RIPASA; una sensibilidad del 75% y especificidad 41.6% para la escala de Alvarado Modificada (Arroyo-Rangel, Limon, Vera, Guardiola, & Sánchez-Valdivieso, 20= 18), concluyendo q= ue la escala de RIPASA comparada con la escala de Alvarado modificada no mostro ventajas al aplicarse a pacientes con sospecha de apendicitis aguda. (Alma= che Caiza & Mena Chavarrea, 2019) (Díaz-Barrientos, y otros, 2018) <= /o:p>

Reyes-Ga= rcia et al. (2012), con 70 pacientes comparó las dos escalas en Hospital Genera= l de México hallando para la escala de Alvarado Modificado una sensibilidad del 89.5% y especificidad 69.2%, en la escala de RIPASA una sensibilidad del 91= .2% y especificidad de 84.6%, concluyendo que ambas escalas presentaron buena sensibilidad para el diagnóstico de apendicitis aguda. Sin embargo, la esc= ala de RIPASA presentó mejor especificidad y valores predictivos, con menor probabilidad de apendicectomías negativas. (Reyes-García, et al., 2012)

Nanju= ndaiah N. (= 2014), en la población india aplicó y comparó las dos escalas en 206 pacientes,= donde encontró una sensibilidad del 96.2% y especificidad 90.5% para la escala de RIPASA, en la escala de Alvarado la sensibilidad fue del 58.9% y especifici= dad 85.7%, señalando que la escala de RIPASA es un sistema de puntuación más conveniente, preciso y específico para poblaciones orientales que la escal= a de Alvarado. (Arroyo-Rangel, Limon, Vera, Guardiola, & Sánchez-Valdivieso, 2018) (Nanjundaiah , Ashfaque , Venka= tesh , Kalpana , & Priya , 2014)

Pasum= arthi, Vamsavardhan, y Madhu C. = P. (2018), analizaron a 116 pacientes, donde aplicaron ambas escalas y encontr= aron una sensibilidad y especificidad de 52.08% y 80% respectivamente para la es= cala de Alvarado, en la escala de RIPASA la sensibilidad fue del 75%, especifici= dad 65%, indicando que la puntuación RIPASA es una herramienta de diagnóstico= mucho mejor para el diagnóstico de apendicitis aguda. (Díaz-Barrientos C. , y otros, 2018) (Pasumarthi &am= p; Madhu, 2018)

Maxim= os Frountzas (2018), realizó un meta-análisis en EEUU comparando las dos escalas RIPASA con Alvarado (estudio predecesor al de Alvarado Modificado) donde se evaluó a 2161 pacientes, encontrando sensibi= lidad para la escala de RIPASA del 94% pero una especificidad significativamente = de 55%, indicando que la escala de RIPASA diferencia mejor a los enfermos. (Frountzas, y otros, 2018)

Conclusiones.

·&n= bsp;        El análisis exploratorio de d= atos manifiesta que el grado II de apendicitis (Apendicitis flegmonosa o fibrino= sa) es la más frecuente en este análisis, mientras que los principales sínto= mas que ayudan a favorecer el diagnóstico de esta patología son el dolor migrator= io (71.5%) y el dolor en la fosa iliaca derecha (98%), al mismo tiempo existen otros síntomas como la anorexia, náuseas o vómitos que en la personas observadas toman valores de 95.5% y 70% respectivamente (Almache Caiza & Mena Chavarrea, 2019), en cuanto a las características biológicas el 50.8% corresponden a hombres y el 49.3% son mujeres, el 50% de los pacientes poseen una edad menor o igual a los 24 añ= os,

·&n= bsp;        Para la construcción de la es= cala de Alvarado Modificada se considera 5 variables cualitativas (migración del dolor FID, anorexia, náuseas/vómitos, dolor en el cuadrante inferior dere= cho, signo de Bloomberg) y 3 variables cuantitativas (fiebre, leucocitos > 10= .000 mm3 , neutrofilia > 70%); en relación con la escala de RIPAS= A se emplea 10 variables cualitativas (sexo, dolor fosa ilíaca derecha, náuseas/vómitos, dolor migratorio, anorexia, hipersensibilidad FID, resis= tencia muscular voluntaria, Rebote, Rovsing, examen general de orina negativo) y 4 variables cuantitativas (edad 40 años, síntomas < 48 o > 48, fiebre, leucocitos); cada una de las variables expuestas anteriormente en las dos escalas poseen un criterio de puntuación específico que al momento de ser sumados dichos valores permiten predecir el riesgo de padecer apendicitis. =

·&n= bsp;        Existen 2 signos importantes q= ue ayudan al diagnóstico correcto de apendicitis que son la hipersensibilidad= en la fosa iliaca derecha y la resistencia muscular que toman valores de 97.75= % y 91.25% respectivamente mientras que los signos como Rebote (93.25%), Rovsing (74.75%) y fiebre (36°) son detectados con gran frecuencia, pero no aportan significativamente al diagnóstico final. En los casos donde el juicio méd= ico no se encuentre claro, es necesario acudir a algunos exámenes de laboratorio = en esta investigación se toma en cuenta los leucocitos donde la mayoría de l= os pacientes asumen un conteo de 15.600 células/mm3, neutrofilia c= on la mayor repetición del 84% y el examen general de orina en el cual el 85% de= los pacientes obtuvieron un examen negativo. (= Almache Caiza & Mena Chavarrea, 2019)

·&n= bsp;        Finalmente, al contrastar la escala de Alvarado Modificada y RIPASA, se obtienen los siguientes resultad= os: Alvarado Modificada curva ROC (área 0.583), sensibilidad (69.78%), especificidad (82.78%), FVP (65.76%), FVN (20%), RIPASA curva ROC (área 0.= 594), sensibilidad (88.4%), especificidad (90.9%), FVP (68.90%), FVN (25.58%). Se concluye que la escala de RIPASA presenta mayor certeza al momento de diagnosticar apendicitis aguda, pero no existe una diferencia estadística = muy marcada con respecto a la escala de Alvarado Modificada. (Almache Caiza & Mena Chavarrea, 2019)

Referencias bibliográficas.=

Almache Caiza, M., & Mena Chavarrea, G. (2019). Comparación de la escala de alvarado modificada y la escala de ripasa a t= ravés de curvas ROC en el Hospital General Docente Riobamba, servicio de emergen= cia, junio 2010 – enero 2019. Obtenido de http://dspace.espoch.edu.ec/bitstream/1= 23456789/13795/1/226T0053.pdf

Arroyo-Rangel, C., Limón, I. O., Vera, Á. G., Guardiol= a, P. M., & Sánchez-Valdivieso, E. A. (2018). Sensitivity, specificity and reliability of the RIPASA Score for diagnosis of acute appendicitis in relation to the Alvarado Score. Cir= ugía Española, 96(3), 149-154.

Ávila, M., & García-Acero, M. (2015). Apendicitis = aguda: revisión de la presentación histopatológica en Boyacá, Colombia. Re= vista colombiana de Cirugía, 30(2), 125-130.

Chong , C. F., Husain , S., Jumat , L., Chong , C. L., T= an , K. K., & Yap , S. K. (2017). RIPASA Treatment Without Operation (TWO) – A Non-Inferiority Prospective Randomised Clinical Controlled Trial of Antibi= otic Non-Operative Management Strategy versus Surgery Management Strategy for E= arly Uncomplicated Acute Appendicitis. Brunei Int Med J, 13(4), 111-123. Obtenido de http://www.bimjonline.com/PDF/Bimj%202017%20Volume%2013,%20Iss= ue%204/BIMJ2017134111.pdf

Chong, C., Thien, A., Mackie, A., Tin, A., Tripathi, S., Ahmad, M., & Telisinghe, P. (2011). Comparison = of RIPASA and Alvarado scores for the diagnosis of acute appendicitis. Sin= gapore medical journal, 52(5), 340.

Coursey, C., Nelson , R., Patel,= M., Cochran, C., Dodd, L., DeLong, D., & Vaslef, S. (2010). Making the diagnosis of acute appendicitis: do more preoperative CT scans mean fewer negative appendectomies? A 10-year study. Radiology, 254(2), 460-468.

de Quesada Suárez, L., Ival Pelayo, M., & González Meriño, C. (2015). La escala de Alvarado como recurso clínico para el diagnóstico de la apendicitis aguda. Revista Cubana de Cirugía, 54(2), 121-128.

Díaz-Barrientos, C. Z., Aquino-González, A., Heredia-Montaño, M., Navarro-Tovar, F., Pineda-Espinosa, M. A., & de Santillana, I. E. (2018). The RIPASA score for the diagnosis of acute appendicitis= : A comparison with the modified Alvarado score. Revista de Gastroenterología de México, 83<= span lang=3DES style=3D'font-size:12.0pt;line-height:115%;font-family:"Times Ne= w Roman",serif; mso-no-proof:yes'>(2), 112-116.

Díaz-Barrientos, C., Aquino-González, A., Heredia-Montaño, M., Navarro-Tovar, F., Pineda-= Espinosa, M., & de Santillana, I. (2018). Escala RIPASA para el diagnóstico de apendicitis aguda: comparación con la escala de Alvarado modificada. R= evista de Gastroenterología de México,, 83(2), 112-116.

Fernández Zambrano, J. (2016). Apendicitis aguda, utilidad de la escala de Alvara= do para su diagnóstico precoz, estudio a realizarse en el Hospital Teodoro Maldonado Carbo período 2015.

Fernández, J. (2016). Apendicitis aguda, utilidad de= la escala de alvarado para su diagnóstico precoz.

Ferreira, G. (2019). Apendicitis aguda y Score de Alvara= do, nuevo método diagnóstico. Universidad Nacional de Córdova. Obtenido de http://pa.bibdigital.uccor.edu.ar/1266/1/Apendicitis%20aguda%20y%20score%2= 0de%20Alvarado%2C%20nuevo%20m%C3%A9todo%20diagn%C3%B3stico.pdf

Filiz, A., Aladag, H., Akin, M., Sucullu, I., Kurt, Y., Yucel, E., & Uluutku, A. (2010). The role of d-lactate in differential diagnosis of acute appendicitis. Journal of Investigative Surgery, 23(4), 218-22= 3.

Frountzas, M., Stergios, K., Kopsini, D., Schizas, D., Kontzoglou, K., & Toutouzas, K. (2018). Alva= rado or RIPASA score for diagnosis of acute appendicitis? A meta-analysis of randomized trials. International Journal of Surgery, 56, 307-314.

Golden , S. K., Harringa , J. B., Pickhardt , P. J., Ebinger , A., Svenson , J. E., Zhao , Y.-Q., & et a= l. (2016). Prospective evaluation of the ability of clinical scoring systems = and physiciandetermined likelihood of appendicitis to obviate the need for CT.= Emerg Med J, 33(7), 458–64.

Guallpa Guallpa, E. P. (2019). Validación de escalas RI= PASA y Alvarado Modificada para diagnóstico de apendicitis aguda. Hospital Vic= ente Corral Moscoso y José Carrasco Arteaga. Cuenca 2017. UNIVERSIDAD DE CUENC= A. Obtenido de http://dspace.ucuenca.edu.ec/bitstream/123456789/32094/1/Tesis= .pdf

Humes, D., & Simpson, J. (2012). Clinical presentation of acute a= ppendicitis: clinical signs—laboratory findings—clinical scores, alvarado score and derivate scores. Imaging of acute appendicitis in adults and children. Springer, Berlin, Heidelberg, 13-21.

Klabtawee, W., Saensak, W., Khetsoongnern, A., & Piriyasupong, T. (2011). Accuracy of RIPASA and modified RIPASA score comparing with Alvarado score for diagnosis of acute appendicitis and complication of acute appendicitis. Khon Kaen Medical Journal, 35(1), 38-47.

Laméris, W., Van Randen, A., Go= , P., Bouma, W., Donkervoort, S., Bossuyt, P., & Boermeester, M. (2009). Sin= gle and combined diagnostic value of clinical features and laboratory tests in acute appendicitis. Aca= demic Emergency Medicine, 16(9), 835-842.

López Abreu, Y., Fernández Gómez, A., Hernández Pane= que, Y., & Pérez Suárez, M. D. (2016). Evaluación de la Escala de Alvarado e= n el diagnóstico clínico de la apendicitis aguda. Revista Habanera de Cien= cias Médicas, 15(2), 213-224.

Malik, M. U., Connelly, T. M., Awan, F., Pretorius, F., Fiuza-Castineira, C., El Faedy, O., & Balfe, P. (2017). The RIPASA score is sensitive and specific for the diagnosis of acute appendicitis in a western population. = International journal of colorectal disease, 32(4), 491-497.

Martin, M., & Stella K, K. (2018). Acute appendicitis in adults: Diagnostic evaluation. Obtenido de https://d1wqtxts1xzle7.cloudfront.net/40030840/Acute_appendicitis_in_adult= s__Diagnostic_evaluation.pdf?1447620698=3D&response-content-disposition= =3Dinline%3B+filename%3DAcute_appendicitis_in_adults_Diagnostic.pdf&Exp= ires=3D1618962602&Signature=3DfDNfIROr1KRbTachM

Mendoza, J. D., Rodríguez, C. G., & Guerrero, M. A. (2010). Evaluación prospectiva de la Escala de Alvarado en el diagnóstic= o de apendicitis aguda. Cirujano General, 32(1), 17-23.

Montero Tapia, E. (2016). Apendicectomías no enfermas e= n el Hospital Vicente Corral Moscoso y Hospital José Carrasco Arteaga, Cuenca = 2014. Universidad de Cuenca. Obtenido de http://dspace.ucuenca.edu.ec/bitstream/123456789/23770/1/TESIS.pdf

Nanjundaiah , N., Ashfaque , M., Venkatesh , S., Kalpana= , A., & Priya , S. A. (2014). A Comparative Study of RIPASA Score and ALVARADO Score in the Diagnosis of Acute Appendicitis. Journal of Clinical and Diagnostic Research, NC03-NC05. Obtenido de https://jcdr.net/article_fulltext.asp?issn=3D0973-709x&year=3D2014&= ;volume=3D8&issue=3D11&page=3DNC03&issn=3D0973-709x&id=3D51= 70

Orbea Marcial, V. H. (2012). Utilidad del Escala de Alva= rado en el Diagnostico Temprano de Apendicitis Aguda; Hospital Provincial Puyo Abril–Diciembre 2009. 92-93. Escuela Superior Politécnica de Chimboraza= .

Pasumarthi, V., & Madhu, C. P. (2018). A comparative study of RIPASA sc= ore and ALVARADO score in diagnosis of acute appendicitis. International Surgery Journal, 5(3), 796-801.

Reyes-García, N., Zaldívar-Ramíre, F. R., Cruz-Martí= ne, R., Sandoval-Martíne, M. D., Gutiérrez-Banda, C. A., & Athié-Gutiérrez= , C. (2012). Precisión diagnóstica de la escala RIPASA para el diagnóstico de apendicitis aguda: análisis comparativo con la escala de Alvarado modifi= cada. Cirujano General, 34(2), 101-106.

Sanabria, Á., Mora, M., Domínguez, L. C., Vega, V., &a= mp; Osorio, C. (2010). Validación de la escala diagnóstica de Alvarado en pacientes con dolor abdominal sugestivo de apendicitis en un centro de seg= undo nivel de complejidad. Revista Colombiana de Cirugía, 25(3), 195-20= 1.

Serrano Serrano , T. (2016). Valoración de la Escala de Alvarado como herramienta diagnóstica para apendicitis aguda comparado co= n el resultado Histopatológico en pacientes atendidos por el Servicio de Cirug= ía General en el Hospital General IESS Ambato en el período Junio 2015-Novie= m. 2-4. Universidad Regional Autónoma de los Andes.

Serrano Serrano, T. C. (2016). Valoración de la Escala = de Alvarado como herramienta diagnóstica para apendicitis aguda comparado co= n el resultado Histopatológico en pacientes atendidos por el Servicio de Cirug= ía General en el Hospital General IESS Ambato en el período Junio 2015-Novie= m. 46. Universidad Regional Amazonica de los Andez.

Shrivastava, U., Gupta, A., & Sharma, D. (2004). Evaluation of the Alvarado score= in the diagnosis of acute appendicitis. Trop Gastroenterol, 25, 184-18= 6.

Shuaib, A., Shuaib, A., Fakhra, = Z., Marafi, B., Alsharaf, K., & Behbehani, A. (2017). Evaluation of modifi= ed Alvarado scoring system and RIPASA scoring system as diagnostic tools of a= cute appendicitis. World journal of emergency medicine, 8(4), 276.<= /o:p>

Smink, D., & Soybel, I. (201= 9). Management of acute appendicitis in adults. Obtenido de https://www.uptodate.com/contents/management-of-acuteappendicitisinadults?= search=3Dporblema%20apendicitis%20aguda&source=3Ds earch_result&selectedTitle=3D5~150&usage_type=3Ddefault&displa= y_rank=3D5

Thompson, N. A. (2012). Asociación entre Escala de Alva= rado y diagnóstico de apendicitis aguda complicada y no complicada según anat= omía patológica en el Centro Médico Naval. Horizonte Médico, 12(2), 1= 4-20.

Thuijls, G., Derikx, J., Prakken, F., Huisman, B., van Bijnen Ing, A., van Heurn, E., & Heineman, E. (2011). A pilot study on potential new plasma markers for diagnosis of acute appendicitis. The American journa= l of emergency medicine, 29(3), 256-260.

Wani, M. M., Yousaf, M. N., Khan= , M. A., BabaAbdul, A., Durrani, M., Wani, M. M., & Shafi, M. (2007). Usefulness of the Alvarado scoring system with respect to age, sex and tim= e of presentation, with regression analysis of individual parameters. Internet J Surg, 11(2), 1-5.

Zambrano, J., Ramos, D., & Merino, R. (2019). Utilid= ad de la escala de alvarado en el diagnóstico precoz de apendicitis. Univ= ersidad Ciencia y Tecnología, 1(1), 7-7.

 

 

 

 

 

PARA CITAR EL ARTÍCULO INDEXADO.

 

 

<= span lang=3DES style=3D'font-size:12.0pt;line-height:115%;font-family:"Times New= Roman",serif'>Marcatoma Tixi, J. A., Mullo Guaming= a, H. S., Pérez Londo, N. A., & Almache Caiza= , M. Y. (2021). Comparación de la Escala de RIPASA y Alvarado Modificada en la determinación de Apendicetomía a través de Curvas RO= C . ConcienciaDigital, 4(2), 326-345. https://doi.o= rg/10.33262/concienciadigital.v4i2.1697

 

 


 

 

 

El artículo que se publica es de exclusiva responsabilidad de los autores y no necesariamente reflejan el pensamiento de la Revi= sta Conciencia Digital.

 

El artículo queda en propiedad de la revista y, por tanto, su publicación pa= rcial y/o total en otro medio tiene que ser autorizado por el director de la Revista Conciencia Digital.<= /o:p>

 

         =                                      =                                      =                                      =                          =

 

 



[1] U= niversidad Nacional de Chimborazo, Facultad de Ingeniería, Riobamba, Ecuador, = jessica.marcatoma@unach.edu.ec, Orcid: https://orcid.org/0000-0001= -9531-3234

[2] E= scuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Riobamba, Ecuado= r, Orcid: https://orcid.org/0000-0001= -8448-4652

[3] E= scuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Riobamba, Ecuado= r, Orcid: https://orcid.org/0000-0001= -9068-8790

[4] E= scuela Superior Politécnica de Chimborazo, Facultad de Ciencias, Riobamba, Ecuado= r, amayrayolanda@yahoo.com, Orcid: https://orcid.org/0000-0002= -7750-0076

------=_NextPart_01D73C45.D2921D00 Content-Location: file:///C:/0E85C06C/20-CURVASROCFINAL_archivos/item0001.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml Wul13JournalArticle{85036D1D-B423-4696-A9F8-74A5479186CA}The= effect of polymer surfactant on the rheological properties of nanoemulsion= s.Colloid and Polymer Science 2013 709–716291Wulff-Pérez MiguelMartín-RodriguezAntonioGálvez-RuizMaría J.de Vicente<= b:First>Juan11Zam15= JournalArticle{FB40766B-903F-463C-A57E-3F34CA9E5021}= Composite chitosan/Agarose ferrogels for potential applic= ations in magnetic hyperethermiaGels.201569-801Zamora MoraV= anessaSoaresPaula = I.P.EcheverriaCoro= Hernández Rebeca<= /b:First>MijangosCarmen12Bha10JournalArticle{3EC2A2EA-5A35-480A-9A1D-C11383B455BF}Supermacroprous chitosan-agarose-gelatin cryogels. in vitro characterizati= on and in vivo assesment for cartilage tissue engineering.Journal of the Royal Society Interface2010<= /b:Year>1-15BhatSmuritaT= ripathiAnujKumarAshok13Rui04Report{289ADC54-049A-4459-B615-36603B0D1B08= }Desarrollo de un Sistema de liberación de fármacos bas= ado en nanopartículas magnéticas recubiertas con Polietilénglicol para e= l tratamiento de diferentes enfermedades.2004Universidad Autónoma de Madrid. Departamento de Física Aplicada= .MadridRuiz EstradaGladys Amalia14= Cor11JournalArticle{2CE82786-F4F8-40AE-B743-82C4554E5E89}Hidrogeles na= noestructurados termosensibles sintetizados mediante polimerización en mic= roemulsión inversa.Revista Mexicana de Ingenierí= a Química.2011513-520<= b:Volume>103<= b:Person>CortésJ. A.PuigJ. E.Morales J. A.Men= dizábalE.15MarcadorDeP= osición1JournalArticle{819DA7= 73-947B-4BC2-855C-003DB219D8AF}Enhanced spinnability of n= arbon nanotube fibers by surfactant additionFibere= s and Polymers2014762-766154Song JunyoungKingSoyo ungYoon Sora= ChoDaehwanJeongYoungjin16Ilg13JournalArticle{752C8BEE-7C38-4885-8859-F6= 5068501C9B}Stimuli-responsive hydrogels cross-linked by m= agnetic nanoparticles.Soft Matter<= b:Year>20133465-34689IlgPatrick17Bos15JournalArticle= {8726F6AC-1312-4A0D-94FD-908B651CD5BC}Functionalized microfibers for field-responsive materials and biologica= l applications.2015BossisGeorgesMarinsJéssica A.KuzhirPavel= VolkovaOlgaZubarevAndreyJournal of Intelligent Material Systems and Str= uctures1-918Lin12JournalArticle{CABBB6F0-E9CB-4C6D-BB4E-88B488FEA5A4}Micro= fluidic synthesis of microfibers for magnetic-responsive controlled drug re= lease and cell culture.PLoS ONE20121-873LinYung-ShengHuang= Keng-ShiangYangChi= h-HuiWangChih-YuYangYuh-ShyrongHsuHsiang-ChenLiaoYu-JuTsaiChia-Wen19Tar05JournalArticle{8A89917D-A7C1-4E7C-9FB6-ED9C063087E3}Advances in magnet= ic nanoparticles for biotechnology applications.Jo= urnal of Magnetism and Magnetic Materials200528-34290TartajP.MoralesM. P.González-CarreñoT.Veintemillas-VerdaguerS.= SernaC. J.20= Gar03JournalArticle{9B6= 5BBFA-A814-4A04-9249-A6A47D160DAB}Síntesis y propiedades= de ferrofluidos de magnetita2003= Superficies y Vacío.28-31161García-CerdaL.A.Rodríguez-FernándezO.S.Betancourt-GalindoR.Saldívar-GuerreroR.Torres-TorresM.A.21Dia11JournalArticle{= 7FD6F7BB-B6BD-4D3D-AC43-1AF5FDBD6366}A biotechnological p= erspective on the application of iron oxide magnetic colloids modified with= polysaccharides.2011DiasA.M.G.C.<= b:Person>HussainA.= MarcosA.SR= oqueA.C.A.142–155Biotechnology Advances = 29 2922Lew11JournalArticle{69BACEF5-DDAD-42EE-BC36-71ACEA6223A9}Biohybri= d carbon nanotube/agarose fibers for neural tissue engineering.2011Advanced Functional Materials2624-263221= LewitusDan Y.BranchJonathan R.SmithKaren L.CallegariGerardo<= b:Person>KohnJoachimNeimarkAlexander V.23Est10JournalArticle{AD= 2B1400-8746-4FD6-8914-4CA8F67548A7}Hidrogeles polimérico= s potencialmente aplicables en Agricultura.2010<= b:JournalName>Revista Iberoamericana de Polímeros= 76-87122Estrada GuerreroRodolfo = F.Lemus TorresDafn= eMendoza AnayaDeme= trioRodriguez Lugo= Ventura= 24Ald16Journ= alArticle{D12368F2-04FB-475B-B3C1-20843943EEEC}Facile synthesis of magnetic agarose microfibers by directed s= elfassemblyPolymer201661-6493AldanaSamuelVeredaFernando<= b:Person>Hidalgo-AlvarezRoquede VicenteJuan25Fer19Misc{36C731A3= -AD3A-44D0-A97C-6C33B445419E}Apendicitis aguda y Score de= Alvarado, nuevo método diagnóstico2019FerreiraGaston= Univer= sidad Nacional de Córdovahttp://pa.bibdigital.uccor.e= du.ar/1266/1/Apendicitis%20aguda%20y%20score%20de%20Alvarado%2C%20nuevo%20m= %C3%A9todo%20diagn%C3%B3stico.pdf1Tho12JournalArticle{A77CF343-31D6-4037-A609-3B9E99D208A1}ThompsonNatalia<= b:Middle>Alarcón<= b:Title>Asociación entre Escala de Alvarado y diagnóstico de apendicitis = aguda complicada y no complicada según anatomía patológica en el Centro = Médico NavalHorizonte Médico201214-20122<= /b:Issue>2Día181JournalArticle{668155A4-C329-4B5E-9= 81E-A21A4DEAD2C1}Revista de Gastroenterología de M= éxico2018112-116Díaz-BarrientosZCAquino-Gon= zálezAHeredia-Mon= tañoMNavarro-Tova= rFPineda-Espinosa<= /b:Last>AMde SantillanaEI832The RIPASA score for the diagnosis of acute appendicitis: A= comparison with the modified Alvarado score3Mon16Misc{224DD376-5D3C-4C79-9AC0-A2D6CE6B1D26}Apendic= ectomías no enfermas en el Hospital Vicente Corral Moscoso y Hospital Jos= Carrasco Arteaga, Cuenca 20142016= Universidad de CuencaMontero TapiaEdgarhttp://dspace.ucuenca.edu.ec/bitstream/12= 3456789/23770/1/TESIS.pdf4SerMisc{6EF10C16-3= 7C6-4A28-A23C-02DC0E5C0D9F}Valoración de la Escala de Al= varado como herramienta diagnóstica para apendicitis aguda comparado con e= l resultado Histopatológico en pacientes atendidos por el Servicio de Ciru= gía General en el Hospital General IESS Ambato en el período Junio 2015-N= oviemSerrano Se= rrano Tatiana20162-4Univers= idad Regional Autónoma de los Andes5Orb12Misc= {84D7D649-5985-40BC-966E-57EED7F1FB6B}Utilidad de= l Escala de Alvarado en el Diagnostico Temprano de Apendicitis Aguda; Hospi= tal Provincial Puyo Abril–Diciembre 20092012Escuela Superior Politécnica de ChimborazaOrbea Marcial= HugoVictor 92-936Men10JournalArticle{329675CB-D784-4300-92E8-A6E3D05985BC}Evaluación pro= spectiva de la Escala de Alvarado en el diagnóstico de apendicitis agudaCirujano General201017-23= MendozaDJRodríguezGCGuerreroA= M3218San10JournalArticle{4A2DD5= CC-9ED1-4039-9E56-5708F622DA04}Validación de la escala d= iagnóstica de Alvarado en pacientes con dolor abdominal sugestivo de apend= icitis en un centro de segundo nivel de complejidadRevista Colombiana de Cirugía2010195-201Sanabr= iaÁMora<= b:First>MDomínguezCLVegaVOsorioC= 2539Gol16JournalArticle{06CD92E= C-A733-4299-B6F4-64638A5273A3}Prospective evaluation of t= he ability of clinical scoring systems and physiciandetermined likelihood o= f appendicitis to obviate the need for CTEmerg Med= J2016458–64Golden KSHarringa BJPickhard= t JP<= b:Last>Ebinger ASv= enson EJZhao Y-Qet al33726Alm19DocumentFromInternetSite= {942C4436-06E8-4A67-B06A-EE3B008BFAED}Comparació= n de la escala de alvarado modificada y la escala de ripasa a través de cu= rvas ROC en el Hospital General Docente Riobamba, servicio de emergencia, j= unio 2010 – enero 2019.2019http://dspac= e.espoch.edu.ec/bitstream/123456789/13795/1/226T0053.pdf<= b:Author>Almache CaizaMayra= YolandaMena Chavarrea Gladys Estéfani7Rey12JournalArticle{538800A2-2265-4E7B-A035-A9DF9= F957708}recisión diagnóstica de la escala RIPASA para e= l diagnóstico de apendicitis aguda: análisis comparativo con la escala de= Alvarado modificada.2012Cirujano= general101-1016Reyes-GarcíaNZaldívar-RamírezFCruz-MartínezRSandoval-MartínezMGutiérrez-BandaCAthié-GutiérrezC34227Día18<= b:SourceType>JournalArticle{BBB71C7C-C3DF-4785-A0B7-= B27E46B748B3}Escala RIPASA para el diagnóstico de apendi= citis aguda: comparación con la escala de Alvarado modificada.Revista de Gastroenterología de México,2018112-116.83= 2Díaz-Barrient= osCAquino-Gonzále= zAHeredia-Montaño= M Navarro-TovarFPineda-EspinosaMde Santillana= I28Gua19Do= cumentFromInternetSite{A057162B-6574-4166-BD5E-CDC07= 2E1E52B}Validación de escalas RIPASA y Alvarado Modifica= da para diagnóstico de apendicitis aguda. Hospital Vicente Corral Moscoso = y José Carrasco Arteaga.2019http://dspac= e.ucuenca.edu.ec/bitstream/123456789/32094/1/Tesis.pdfGuallpa Guallpa Edis= on Patricio29Arr18J= ournalArticle{CA2BF1E9-8438-4676-8165-D8ED82844093}<= /b:Guid>Sensibilidad, especificidad y fiabilidad de la escala RIPA= SA en el diagnóstico de apendicitis aguda en relación con la escala de Al= varado2018Cirugía Española149-154Arroyo-RangelC= LimonIVera= A GuardiolaPSánchez-ValdiviesoE96310 ------=_NextPart_01D73C45.D2921D00 Content-Location: file:///C:/0E85C06C/20-CURVASROCFINAL_archivos/props002.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01D73C45.D2921D00 Content-Location: file:///C:/0E85C06C/20-CURVASROCFINAL_archivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQAC Thl/wwYAAFEaAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZz48bNRS+I/E/WHNP82smP1bN Vskk6UJ326pJi3r0Jk7GXc84mnF2G1WVUHtEQkIUxIFK3DggoFIrcSl/zUIRFIl/gWfPZGInDtuu elih7l4ynu89f37P/p49vnzlfsjQMYkTyqOWU75UchCJRnxMo2nLuT3sFxoOSgSOxpjxiLScBUmc K7sffnAZ74iAhASBfZTs4JYTCDHbKRaTETTj5BKfkQjeTXgcYgGP8bQ4jvEJ+A1ZsVIq1YohppGD IhyC2yHYoDFBNyYTOiLO7tJ9j0EfkUhkw4jFA+mcZDYadnxUlohkkfgsRseYtRzoacxPhuS+cBDD iYAXLaek/pzi7uUi3smMmNhiq9n11V9mlxmMjyqqz3h6mHfqup5ba+f+FYCJTVyv3qv1ark/BcCj EYw05aL79DrNTtfLsBoo/Wnx3a13q2UDr/mvbnBue/LfwCtQ6t/dwPf7PkTRwCtQivc28K5br/iu gVegFF/bwNdL7a5bN/AKFDAaHW2gS16t6i9Hm0MmnO1Z4U3P7dcrmfMVCmZDPrtkFxMeiW1zLcT3 eNwHgAQyLGiExGJGJngE89jHjB7GFO3TaSBkN3iHYO192jRKNppkjygZxXQmWs7HMwwrY+X1n5c/ /vPyOTp99OL00S+njx+fPvo5dWRY7eFoqlu9/v6Lv59+iv56/t3rJ1/Z8YmO//2nz3779Us7EBbR is6rr5/98eLZq28+//OHJxZ4O8aHOnxIQ5Kg6+QE3eIhDExFxWRODuO3sxgGmOoW7Wia4AjLXiz+ eyIw0NcXmGELrkPMCN6JQURswKvzewbhQRDPBbV4vBaEBvCAc9bhsTUK12RfWpiH82hq7zye67hb GB/b+vZxZOS3N5+BelKbSz8gBs2bDEcCT0lEBJLv+BEhltHdpdSI6wEdxTzhE4HuUtTB1BqSIT00 ZtPKaI+GkJeFjSDk24jNwR3U4cw26i45NpGwKjCzkB8SZoTxKp4LHNpcDnHI9IDvYxHYSA4W8UjH 9RIBmZ4SxlFvTJLEZnMjhvFqSb8GAmJP+wFbhCYyFvTI5nMfc64ju/zID3A4s2EHNAp07EfJEUxR jG5yYYMfcHOFyGfIA462pvsOJUa6z1aD26CdOqXVBJFv5rEll1cJN+bvYMEmmCipAWk3FDuk0Zny nfbw7oQbpPLVt08tvC+qZLdjal0ze2tCvQ23Ls8+j8f04qtzF8+jmwQWxGaJei/O78XZ+d+L87b1 /O4leaXCINByM5hut9XmO9y6955QxgZiwch+orbfCdSecR8apZ06eZL8LDYL4KdcydCBgZvGWNmg mItPqAgGAZ7B1r3sSCfTJHM9TdCMJ3BkVM1W3xLP5uEBH6dHznJZHi9T8UiwWLWXvLwdjgsiRdfq q2NU7l6xnarj7pKAtH0bElpnJomqhUR92SiDpA7XEDQLCTWyd8KiaWHRkO6XqdpgAdTyrMDmCMGW quV4LpiAEZyZMCNjmac01cvsqmS+y0xvC6YxA0rwZSObAatMNyXXrcOTo0un2htk2iChTTeThIqM qmFJgOGrivogkqUwWxAbUV7ReNtcN1cpNejJUGSx0GjUG/8VjPPmGuzWtYFFulKwCJ20nFrVgykz wrOWM4GjO/wMZzB3ErmpxWwKX8BGIk4X/HmUZRYnoouTIA24Ep1UDUIqSIwYDVuOHH4+G1ikNERx K1dAEC4suSbIykUjB0k3k0wmEzISetq1Fhnp9BEUPl0F1rfK/PxgacnnkO5BMD5Bh2we38Iwxbx6 WQZwTBP4vlNOozmm8EkyF7LV/FsrTJns6t8E1RxK2zGbBTirKLqYp3Al5Tkd9ZTHQHvKxgwB1UKS FcLDqSywelCNappXjZTD1qp7tpGMnCaaq5ppqIqsmnYxNXpYloG1WJ6vyGusliGGcqlX+FS61yW3 udS6tX1CXiUg4Hn8LFX3DQqCRm3VmUFNMt6UYanZWatZO5YDPIPamxQJTfVrS7drcctrhLU7aDxX 5Qe79VkLTZPlvlJFWt1e6NcL/PAeiEcXPuTOmUhUKuHyIMawIRqoapnKBiyR+yJbGvALzWPach6U vLbrVzy/UGp4vYJbdUuFhteuFtqeVy33vHKp26k8hMIigrDspTcnffjYxBbZ/Ylq37hDCZff0y6N eFjk6m6kqIirO5RyxbhDSe9D0FBekTiIgug8qFX6zWqzUys0q+1+we12GoWmX+sUujW/3u13fa/R 7D900LECu+2q79Z6jUKt7PsFt1aS9BvNQt2tVNpuvd3oue2H2TYGRp7KRxYLCK/itfsvAAAA//8D AFBLAwQUAAYACAAAACEADdGQn7YAAAAbAQAAJwAAAHRoZW1lL3RoZW1lL19yZWxzL3RoZW1lTWFu YWdlci54bWwucmVsc4SPTQrCMBSE94J3CG9v07oQkSbdiNCt1AOE5DUNNj8kUeztDa4sCC6HYb6Z abuXnckTYzLeMWiqGgg66ZVxmsFtuOyOQFIWTonZO2SwYIKObzftFWeRSyhNJiRSKC4xmHIOJ0qT nNCKVPmArjijj1bkIqOmQci70Ej3dX2g8ZsBfMUkvWIQe9UAGZZQmv+z/TgaiWcvHxZd/lFBc9mF BSiixszgI5uqTATKW7q6xN8AAAD//wMAUEsBAi0AFAAGAAgAAAAhAOneD7//AAAAHAIAABMAAAAA AAAAAAAAAAAAAAAAAFtDb250ZW50X1R5cGVzXS54bWxQSwECLQAUAAYACAAAACEApdan58AAAAA2 AQAACwAAAAAAAAAAAAAAAAAwAQAAX3JlbHMvLnJlbHNQSwECLQAUAAYACAAAACEAa3mWFoMAAACK AAAAHAAAAAAAAAAAAAAAAAAZAgAAdGhlbWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbFBLAQItABQA BgAIAAAAIQACThl/wwYAAFEaAAAWAAAAAAAAAAAAAAAAANYCAAB0aGVtZS90aGVtZS90aGVtZTEu eG1sUEsBAi0AFAAGAAgAAAAhAA3RkJ+2AAAAGwEAACcAAAAAAAAAAAAAAAAAzQkAAHRoZW1lL3Ro ZW1lL19yZWxzL3RoZW1lTWFuYWdlci54bWwucmVsc1BLBQYAAAAABQAFAF0BAADICgAAAAA= ------=_NextPart_01D73C45.D2921D00 Content-Location: file:///C:/0E85C06C/20-CURVASROCFINAL_archivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01D73C45.D2921D00 Content-Location: file:///C:/0E85C06C/20-CURVASROCFINAL_archivos/image001.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAHgAAAAqCAYAAAEPJa+4AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAFxEAABcRAcom8z8AABbISURBVGhD7ZsFlBXH0oA3CSS4S4AQXIIHWByC BXd4uDtBggRJcJfFLbi7w7LALvaQuLufuAtxT/qfr+bWbN/ZWYGf985LTuqcunemu9q7y7om4vXX Xzdp06W9Jozg5+T5U0Zhzea15mDModCbMfuO7Zf/p556ypz6d6zJnz+/eeONN0xERIRbeOXKleau u+6SBKBSlcomJiZGno+fiTE5cuQwmTNn9vIVpHCmTJnMli1bzKlTp8zjjz8uraVKlUqIeea/VKlS 8rw/+oCZPHmyORJ7jPQIE3fpjBDceOON5tCJw/Lcrl0707FjR3m+8847zf333y/PPkyQkHLUmbsW jNAxATfffLOMq1atWl7tZcuXMz/99JM5f/68jFdByp389ymZ+j179gjxjPkzJVMrXLFihSldurTp 0aOHad2+tXnttdck74SzvBH2mgJH46LN5t1bzAMPPCCTt/foPjNgwADTq18vb+bB0HOEqVGrhunf v7+XATZo0MB7rlmzpvfcp08f79lB7+HqkVmjCyAT0qVnV5MuXTpTo3ZNE33muJcHRp8+7hWs36iB DEnzxj4w1stjHjX9yKmjXnrlqpFeGa9hMoKAdOa0Wctm8r5+/XqP9vPPP3d26VFZCNLmzp0r6QDv g4cP8Z7t/5izJ9yGY86dMG+99ZYpWLCgZPihd//ezihizTvvvCPvdkV2p/nX59UbHzTHz8aYs2fP mkuXLiUsky59OpmaAgULmO+//14ybYCQCqC5nujU6/YS7De4vzlw/KA55mxP1nvDtg1enuLChQsT pIEjR470zsYNN9zgpcMfvvrqKxkE7EvTI9hIejT/W1i5cqSJ4MAx5+BRh53lvjW3yZI1q1m5fpWX rjh01DCvxzBgTaecpteuWztst0+YEs/12Eukbdm9Nb7hDBkzCONWuHLlihBrJYWKFJL01q1by//h w4edtYqVpYHFAEw1QDnK1KpTS95/+OEH+X/22Wdlfb2G125Zay5evCiZfmAGqGT8+PHyTqVFihSR Z9ava89uZtCgQZKuAKM8djraNG3a1HzxxRfmjz/+MF27dpU86LyGtRD/YPbs2U3ZsmW9NDba7t27 5R3p07NnT3kmr/Zdtb3nkiVLyj+AzJw6daq3seLi4uSf/AQNlyhRQv71HeCZEWsaMlIBxkwDzz// vPn44489GhUZ+s5/ixYt5Dlq+cL4hrPnyC6JnOOPPvpInvft2yf/2jBrzfPgwYNN0aJFhSuRDu48 uEvyJk2aJP+HTx4JK9O7d2+ZwX916Sjp0vDpy2eEJULgB6buaNyxsIN/TejMiv3OhnTac9f1xLmT 8l++fHlTv359eabHiC6ladu2rfds40033eQ9582bNyxPxVzVqlXD0h2Mf4m9ECfTBOOHTbJr7XzW cdmyZTIbdnratGnNe++9J+nwezuPtY2MjDSrV68OS3cw7OW/h6lvTi1njk2WGMKZ0PygY0aCaBLD E+dPmjMPnTWnL5+VGT10MpjORpbdLXPGxF50VyGIzkZErZaJu3g6sMzuw44sgWfzoicDhKXWrBOv 7rBs7KvatWuHzRZ8xWbLimzijJkyimrMtrABBZayeuIU6fCteW41GTJk8LaLQq9evaTMAV97KEgF ChUQnvbmm2+GqF0YOnSolNlxYKdXRk6xPWBOc9HiRYUQDpscFC9eXGhZfe2EshIbGIAtfoBKlSoJ l6dM6FSLavz111+bKVOmyHvu3LnD6oLzN2/dQsocc7iLnVehQgV5V0QbBmDuNR3tcV+0b8AMNlfu XHIgbTh58qT55ptvQm/GPP300+by5cuhN2POnTsnDUQ7g6bjRYoWESVLAftGO0GnbCCNLV+hYgVz 9OhRSYO3Kj3IoG0gDVncsHFDs2rVKkl76aWXJP3PP/+Ud0xC3hV4RnkIG7Com04GxABCoFixYvKs YFdiA+loocw82obKaoUgi2/nzp2mYOGCMkmzomabnDlzhnLc+rAiAQbx3XffmerVq0t6jpw5ZHGW r1lh0qVNJzS///675E2fPl00ZZ4LFXKVlueee86kSZNGjlDYgBEYEG7YsEEIH330UXnXM0cHb7nl FjkvjRs3ljQFnqfOnioD5rxs3LFR0tgNwPLly01UVJQ8A+Q1bdFUeABlwO37dkj6xUvBShAyCL7C BGkZylPm+PHjIapwyJgxo2M1lvWObIIzvHLdSqngmWeeCRVJHqDPkiWLV4eNcNsVTp0dOnUwrdq1 NtPmTJeJ3Xc0nM5GdtqDm9aYDp3/ZVq2bWmmzJoq9QTRKsJD1m5Z5/CErk6ZVmbyzClyVPx0MmA6 rLj70B4hRLvnfdOmTaFhhQNbjG0CzSpH8Yar2/X8j2PCxBhm1OFqrFprZ2UQFaSnSp3KlC5b2ixa sVg0E2beFl9+5FigIi9atMi8//77plGjRmb48OGBtKAyTJ5hlpzf1KlTx7uJApD86Oho4TeVK1c2 S5Ys8epIBAMTPcxfIL/p0qOLGTdxnBl4zyBTpVqVQLogBGAiM2bM8N79NDayszBCu3XrJtwfLRnx 8vPPPwfSgwwYgDl17tzZTJw4UfgM4i2IPoJZ4Rz/3ZHJFHG15/Be2bqJIewcFw+MASU7iCYxxM1z +tIZUfdQ+6gniM5GysRdOu2Vod0gOhvpY1gZ57j5aWgbNToCzuXnZiCMKGpZlKlYuaLJlDmTwTGT 77Z84huxNasgRDTRiWLFi4VtJ+pYsmppmGixy+BvKVWmVFgZRCH9QPYGlaEv5e8sH1aGLT1z3sww 9ZVBs9IJBkwlW/du8wpjMmG3tWnTxuTLl89Lb9WulcyaXVbLz1k0V2jmz58v50vhkUcekXRcI3TA LoMrjDyUBxvwWJAO72D17TIbtrvyfty4cSFqF15++WVJL3FHCZlE6AMHTCXY6BBnzZrV/PLLL6Eq wmHWrFlCg0fEv9qqF3/77bchapdR2V4VlIiBQwd6ZdRP9MEHH4QojKivhw4dMj/++KO8w8E7d+/s lVFRCFNUeOWVV8L6jPbWpHkToQ8c8EEnkUqqVKkSKpI44MiEtmr1qp7GRKXZsmczW7duDVG50K9f v9BTPFD25AXXP5X/9vzi/sNo1jwQq17FDEAaOjHtsfVHjRol6Rg6WgYsXLiwpAO8MzkJBgxD4ryw hVMKOGSocO8R1/xCqefdBu2EPx3ZjtKiKi1bl10VRKuQL28+5zwvFPNTaZDV6OoVK1aUd4A8de5h sEyaMSnhgPcc2SuE9hbhjsi2jABudtRHBlAGxqYr7O8s74o2NGzYUGS7OvkBtXJs/PLLLyUPYKcM uGegKEZaBsAdp/4+ALdanTp15Hn06NGmY9eOCQfcb3C/sErQkHgvU6aM/Ou2oSL+dftxqcI7Z9nu vILaqWxPNd8A/D7T5swI6/yJE+65RJm444475GqMd87vww8/bJo1a2ZGjh3p7QqFF154QTQ5BfI6 dOggz927dzf9hwxIOOBqNavLlgY4+HaFAI3TCT+g1kHLNlNG8uuvv4Zyjfn0008lDaPeBtIOnjgk Xgue0YwA9UHaXo/NmzdLGrjr0G5xLXL03n33XclHeeKdHaLllWnCGzbt2hw8YNVl8S1TyAa2Tbly 5UJv8cBtJ7QMmHqYTVw7CjhgyefyUmHOnDniAlI5OXr8aNGEFJo3by5lQMQhcODAAVEc4OiUmTZ3 unB7hRo1XDcniwY/AI4cOSIDVoUnbMB9BrjXdAoIb7bW3XffLenKldU+Vu45bJh7JYF2Qz04+nLm yun51PE6ox8rL2Cw0LMboAcZBEpNYldca9askTIqU0GcgRgyHL0gwH6nDAMVev+A2SoQqEscwGLZ v9+95AaQibhsbHnJVqJh25jHpmXHUB9nHuOhU6dO8s71ClYWMl/pQbZ2vYb1hIbVogw3FryrZ9Vf hq3donULoWFbc2w4s7zTLxQVLZNgwMxyamdV4XApBWUyeAbtjoBMAHWOmXCfON76Duxrtu/fIeLP T6tIGbYfV7CU4YZ5y56tYSsbhDBMXEst2rQwPfr0NJt2bpYJsmm8ASP44XrMFhkMAFUyOdAtjgtF 6whEvXfQ/5TgtZRRTKQMhgW6vNNnlzngHIOJzF7onjG/t9AG7qGhQXXj7C5YGiXvfxGMf+nRt6ds q8274l2rcD3kH7EHiCVNb9aquWw/9Xb6ES9jly5dxPupXBdNinc/rSL3MvyrrEcqJOUhUZw5c6ZJ nz69PDdp0iRBvg/DE7r16i7bG9/WDMfEKl6yhLB/2HvWbFlFgWegcjai3SMQhHgs+Qf4R3HQ58QQ 5WH79u0So4No4zlXrlzCOIPoQRWhMFj+YaxMtE3jw4SJmbNklnsYDj7nE+YD4+DgY5eiwLdq2ypB ORsRQ3BaFAjekYl2tEoQcom9dOlSkaOsNpfepFerVi0BrSLik4n57bffxJfdt2/f5CY2MNHDuvXr mqH3DhXO2aFzB5MrdP2RHKKHY65p46iiuHP9dDYqrf2PmPTfadnIyhKp9Nlnnwk9ugN2t3pVAzAw 8e+LhKB179NdtjAyD7n8l8W/ev+vBzpzgJ+yW+/uEl4YkSZdGslQlTOlqEoRMh1+xgZBweHGA6Qh 6BDT0IjO7zB1fz1Xi2iKouc4+gX8c+GKReYeh8VwX9CkhXubyi3sxOmTpD9osX6lK6XIGBFWqCdL Vi81I8aMMG3at5FrseaOVO7UrZMoeOu3rRfp7Amvq0Rpx+knwpGbqVHjRpk2Hdx2CM9r37G9sFBu oFAqmVPKBNUFspasaZq0DhtDu0zJAjOxEvrhNDBpxmSJ5AxkCYkgvJOgxgVLF8iC057fFEgKoWVR 8W2WcZRZrTdbtmyi1hAIu3jxYrNgwQJxSXDdrjRoET369JAFYLGSapc87Dg2R6R1x5IhfQa5KBo7 dqxcHNHOkCFDEsTMtOvYTtqwzZYgJA9zCSukVt14GYSaRzzOfffdJ+MBR4wYIaqYHfTXqFljqSfI pNIFFsshuQWmMAuyaOViCcDQBkD0Pi59udTh8scPGMJPPvmkBIoVKFAgrGzJUiXFqcxkJjcRbKpV G1Z7N3poL/6ADhxfSxwDHfPND2vXrhXthLL1764vp23/8fATQDtwoo07NnuKBlFbjC2lgNdQ9dsq 1asK1wq6PTh86ojY4gULufFOOAEeeuihUC3JQ2xsrBgxlC1esrjZf+yAOAe0/hQtMANmh3FiUDOp DMQhh1f/WgF9Gp+x1oc/etfB3WE3CjaeuhBrevd3PTHo1B9++GGopnDARat1osIGAZuRfBwQGEfq XgLhDsNHu0YKixQ0RvxquLm0HUUNy1TAJ086XIuNqWY3yIZ+YNpEycfvoPaFAhv13nvvlUXHgQEN xhaeV3yDNuA91j7MXTRP1os2UrTATCwyRivgBPrDrf4/8Oqrrwp71fpHjh0lk2z3Ae8tbmvyiY7C NvADLnRYMuwSKxJ2hhXLqQ0CdXMVcE4PDlPkORxi5nz35ogJZWK1X2xGbBF9v/322yWgFwcrTtEn nnjCfPLJJ6Ha4+HMGff7Ci5hOK2cZBZ66YPLhNWyiWwvGaAxuiAhNLjZaQtXvKYjeuybJKJcqQ/W vnHHJtm0yS4wi4ss0UqZwP8UqD8URInRRUaJQL5UinRlqX2nYIPtrbaRONXEAPc/NITXsLhsJGKR SeNDDwWiW+w6QewvDFX6DRLhmxhonJNcGzjjQtQRokMaRrMCG5cbMm0DLqF2n8Lp06e9fFyUNqjL Euc4H6QkucAc8zkLXWcVqDHONmDk+q14draGxAG4OuzPa0DuWQjWsoFoMg3uTp8hvbBO+sLJ4r9I MdcXZIf12aAff/jRH01nAxda0IyfNF60V5QvwgBJ01BAAA8lyo5dbxAyrgkTJiTQC/TkcRHGDSNt ETpImj8GE4ATJBalz3UK3IWy+K9t0M3B5RlemSQXmF3WqGkjKQDyQYoNGgMJG8OlArBIBG/Cyt5+ +20zZswYoYF17NixQ2j4BICvbqDh0ssGBqvtDR05THah25dYcRKSjvaaGCCbNKwRRKlLDPgCCGWN /nNNi2XAmLv3ck8BfVSgz8SXEkJJHhOsShf3Zpw8PDHz5s0L0ytATjf+OJ652oUb0Q4mHWlo5DYQ BKhl/XkAEU2av27dulCqC3Ar0rFujjsKZKILDFvExqpaw/WVMWm2nGByCFskz753tgH5QDwnNJyU lABaIfRgd8dAZyJYYOQWQYG4ysnjtAYBk2wvsH1f5wc1n7CV2UC0o9wCuUwe3l4bWGRxGoTqpy3u KFhEFt9PT2iZ3jJjl+vXP8wv3KJcBdfEJJTbBlxw3GNqO2j+qv2DtOvXtpU9Ey6j13TJnmBlIyCN 2qDfWWBb2toqMoWvivBPDhw40KOxWR40rVq1kkBEG1CItL0hI+7xTrBMfowz+Y7igFlFPgvkl09s Qi0PwkH8ALfRfE6RTrqiTn5kVdf2RXOFG/mBxSPGD0WOBUIs2bESjBftmTrw7PvbAZHHDRu7ugen XC91bUDEMb/4Ygm49AMLrb5fwnV1s4JJLjBKx4y5bkAkqPECNjAIZVuKaMS2fKVjyEGbhg75A7YA PR0oMOu3bQgzX0BMNmzXletWmTx58wgtO52PWDWK3Q/Y5QRP6zfKIF4hNFm0Z7t+ux3Gv2HHRvkc kjKIGTTzF198MVRzOMCm0Zjtm/s69erIGEDqDGoHmxvtukw5N44ERPxpYLkfEBeYVPqVM0hADR5E 7G27nSQXGGTXtWzjansgisZ/CthA2s6gYYM89hyEDILBoAhOmHx/gjBDP7LpcC2u27pednhS7j0b aQdnBJuKoPSKkRXNTanivwTzIyEbjZs1ETcjcwfLD1pYP0LDvHOisWP5Ik0VqSBM55hWcNfFq5bI eBBhQe0ku8AgHW3bIf6zNwJ3NLjmegAaqv3J3MChg8Q8s/uQHLJgLDiyh7JMFP1mk3AS/WO6VqQd HDFeO079LsaKznK92gGlHWdj6TjsdvycLTEMW2DkRbuO7UXp4LYXVXt21GyRR5wUPh9WFyGIeWTL nKuFxx57LIy9E5KKaQTLgn1iM9IH+vIPXhuylqxpSBdwJ9qPxAyxW/HZspuII+ZTNZtGvxP1238K yCdMIuKL/TK7cNEicuvEbmVnckr4BNym+QevCwYmesg32HyOilzR26SxE8dJrEcQfWKIshJZNdKR NXM9b4sr52IkaDuoTGKomj3hE7gLietAmULpAtRTdfDgQXn3K3spQUIfiQ+hfnXso2jpF3pYCgAa PaEZmFI4IOw6UorY7SiFuB0xM1EctU2CeYErV66EcdKrwMDEBMhV38adm+R7ZQLlOXEsNjKCE0je sjXL5aRzR4sTYdvebSIjkSEY+iLLnHfqWLAsyhQpFn6qU4p4ewjRxokSFxcni8DNFnl8YQuw6PiJ 2Vj+8ilBtHQ8SxcuXJD66tatK859Ng0uSMC2jbWM/Z5S5BYMgBNyPaiePepjYVFy+fqBcfvLpgAD E5NE5CafPvIBHouGC06VHBQRkIWHtaMc7Dq0Rz6iadyssbgjg+q8GsSUIAhK3/G2cYL0nfhcxEMS cTvJIpPLCeaeGUe+xuFzWXHbbbfJ87Jly4QWWQc3IZrMX09yiKLJwmqorQZaT5s2TTxW9AGdR21h PHr+OpLBwMT/acQ/jm3KNR1Yr54bY6wIq+QSgIWx068G8SD179/fY/cgzo2WLePNxwYNG4ibEk+W RsxdC9IWrl4CCagLt2eePHnMyJEjw27c8B7id86UKVNY+STRNlX+wb8X5s2b1/wfwqTu9MTyProA AAAASUVORK5CYIJ= ------=_NextPart_01D73C45.D2921D00 Content-Location: file:///C:/0E85C06C/20-CURVASROCFINAL_archivos/image002.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAADcAAAAWCAIAAADrSZOCAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAO xAAADsQBlSsOGwAAAZ5JREFUSEvtlTtygzAQhpecBbvw+ARwAl9ElLjxDdKlESWl2/RBN/AJMimC 7qKskASSEI8ZNBkysRoQC9pvd/9dEiEE7H697J5QAj4p45Upci55lecVj4enT1KUnFVFnqiVF44b znoLmlhEAo4+C+ZExAoNMVxU0EK0NIOMNi12u9oAkKbbCNEQQJs22Rtt9y/4uXl94g3lpSHSjeXI OCeawzhXJEjpLYtF8StGE8I8xBrKlhIikyId9ekYx9TlS9tHuuTfnwDnYxrSVno8w+Or3Si7tKzr 8hJ0YJ3MP94fGb1d1KNAJocAZbgYj86mqpMfvtLIxJrL/GwuXaNDKevlnYvl0RBZRqhVhLDs1lTc fDlD6UttoJQObO0GMBaUpJpvTff0nRnW5ahNDSUWc6gsxfuwnJcQYlDabaMpuu7BWfx6utda0ahb OB1coeFAzQ9XoPdySfUbWwuAvV2tttHHmRHpnO6PH5CitCbZ5CxclUupdavj5NnDtAuqKpEzc/dr +38c5TL6rfUPIv3U/0suf0Mu2yv+pDQZ+Bu5/AHbZt3YeNrbfAAAAABJRU5ErkJggk== ------=_NextPart_01D73C45.D2921D00 Content-Location: file:///C:/0E85C06C/20-CURVASROCFINAL_archivos/image003.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAGoAAAAWCAIAAACno556AAAAAXNSR0IArs4c6QAAAAlwSFlzAAAO xAAADsQBlSsOGwAAAwxJREFUWEftWD12ozAQFnsWk4LnE4gTONukcusOSrtJl9JdGlzaXVpXaQIn MCfwc2F0F3Y0ktAfYF7wi/ftosqg+fn0aeZjkqCuazKt7zLw67uOkx9nYKJvVB1M9P1D9LFdHO/Y qAP9rLOoPlakcRyIBQcoPAxMWaT+nnCX3kGcFub52U5vwd59uDHyOeka4D2QlA3cVRC0noczInE7 kM3jxLBH6rrKKKFZXsE3WDwQkuT4IFeegEGiLMwd/J0nBPylu/kggiVyq674nhPaCQYOKpKXpnkh oiJe/Nni0Q3JjtIFR+MwESF+xRSehgJ99pLgXLCdpxHkC/IU/+qZZzBvwrX1gg6hz7ogvDv3Svog 6YqgWebAswqmufSMiiO4xPAX1Pp08BZdHed5tV/ICme71aZM8ub5trLMnuakvFRouHhJyGGrGpYV 7xDrbT27HaTHgl3PhC5/qyA8BTlfe/XShISRi3RL3k7rp840YUSOXxiTfR1JFIofJUleFDHwZrY+ nRR9RQriFYbPBzKPwuaAwie6NvoFUuPkRGybdyV4rPg8a4vFvsqXx1DoYrglxsVYCqSEM9yU5Uaa ow77Wlldylv090ICVYuBvP6CmK0/lpcVR7C6LD/wwnleikRay2ld2d+yGa1uB/ESquP3O4gjLgoS adrw+m46u0uojHADmtfuXVt5daQq64DkahmcBl75Z+pVeL3paZ/1JXCx4mZ/LtOiTft63QfSZ8bw IPoqbcDAevDXQPp87P1jcxjRRshQCbjw+BWs8bDd9kCzV6EQ3PruyxE7Rwpb0lmQFnuDXU3rAG3H vIdPQ7v4kNoMLrJdnQ6zHsW3WnySWjpR9Lb7FTZmojsNLjIMDi7WhOJPMT4kszZvt5JVyWqmUxOe GlwgSUKlevEBT08h3B1IMfbkeOjQJ8hsmw21CIFB9+yop57bcx+/u0bZDLT2jXZDErl0Gw/oXD2V qcT8uCCZAezcvcH+n4AP/5cB/unUtf76P4Cn6hvVKg+vvlHoH+480TfqCib6JvpGMTDK+Q/FZnnX d/ge1gAAAABJRU5ErkJggk== ------=_NextPart_01D73C45.D2921D00 Content-Location: file:///C:/0E85C06C/20-CURVASROCFINAL_archivos/image004.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAADoAAAAWCAIAAAAetxgyAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAO xAAADsQBlSsOGwAAAaNJREFUWEftVsuVgzAMFNtLLinBVJBGTDvmmEZIB6lg3x4W95KVJfzDxvgB OfA2ugnZ0mg0VtK8Xi84j32dB6pB+oH7znm9kV3dt22vjwWfwtWPrm0bNqz3SOppe6JLYxvBYWdN E6fTfWdRII7O9o2bIbBRCRBqGOmTcQDkEB4YJB6Q9kR8eebhdaE4U9m4TliIvkh7eRykDUMpE9/y cOf+KooauEiAUAoBBYUMvpAmZhFbX4Q7Yk9CyIloR3bM9X52sYhJOcdnfNcrscuFc3CJe2M4dT/M aUAK1WCjkUy8fBYEnFJt5MIw5nBRiQNLhHFY1gpiYMm4IpNndU3ZilyvaTeMT3DxE6c0Mc+uKcVe UbvUtL0VzSfPSPJsS9p1M4yHQXBz2iVu6vfu5Srg+TO65Pr3G8T1snF1AdzuQXce3/0GYFIvWG6R TYIltXqCIpeUUn74a2KI92O6gvxCXV5kqHBcCLmnRvNHSflYsDVyK6IarpdFtDTdmw4WfWP0ex6r 125NT/RjumRH/IH41+zWTGDXmWPFsAtKzeUP3BqWtp75A+M5aZ0qaML8AAAAAElFTkSuQmCC ------=_NextPart_01D73C45.D2921D00 Content-Location: file:///C:/0E85C06C/20-CURVASROCFINAL_archivos/image005.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAHIAAAAWCAIAAACT2l9mAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAO xAAADsQBlSsOGwAAAsJJREFUWEftWDtu4zAQlfYsVgrDJ5BOoN0mVdp0UikdIKW7NFJpd9u6X+kE 1gmMFBHvop0hqR9/ogUzCAINEORDznDe4/DNOH7Xdd5mj2bg16MDbvGQgY1WJ3Ww0fqzaa3TtDYh JGUUlcQJBw6CTquVlGmkxQawfF+zSmrw9JlFqRK87F6n3IN9+31+HDo1EFJPkqwNN6R0N2DEwAP8 qKTVAZMAWFslIYWVVOwPgrUFXVat4lJYVC2LQ/dJ21TuVaI9TZNBWLBDTKYFQlNIaJr0R3UwjbsB o3oJaW2LJEFetECB87Ao7GjAIELKancHtBqAzNPC31SXv8BDf58KjHyJX16HIrDLTqcs3ukeYZ0e vbdr9mT1SMnnzfMOT5Ngd7lbnaHdpAeCaYUvf/q04mfg9fYpCMECD8OxMka6REAMXi+Hqj3FiwMW aCKQChvtrH7Pm6Qat5vc96F3PnJNUioy1ePegrxp8mD8/b7+1X40dgAsdokYwYX2iSCA/nDYB3h3 5gGLlK+Xl78zUgGrrq0hh7cCL4ub0T3Orl13hS9U9sM5D6SwO9zRGzyvmbZcM+3zsqBm9RYJI40U n3iHQhz0wif6L6kdlSDZlG0NYbOOMNgd7r0m6buRSKupb8myLYqpXh0hrlb1FRjFNHhgY7XyS2Cu 42EKSQBV+XiDssYKGurZ3n118dg6CmIqSK1dFCVGjevaT1lU97i+4cPYc06B1X8Xbx8sZYr+gzwS lCsvebZV8KXginXktcnf6bhKj+sb2BSIIa4W4xxIeTyz1simTZigxpjwmsUJcXzPXAHG2Y/PpNOU pJlQcgc5BdEYzgTZnOuH/MStRMAIBBdZllN80yFW627CCEhG9vrIPgBYcfmbi5mBtSLwFbzOBqzZ J138kPyt/0GwVauTAvnO1eoE8NcE3Wh1wvNG60arEwacBP0P97YGMWHxv9IAAAAASUVORK5CYIJ= ------=_NextPart_01D73C45.D2921D00 Content-Location: file:///C:/0E85C06C/20-CURVASROCFINAL_archivos/image006.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAA8AAAAWCAIAAACQbVFOAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAO xAAADsQBlSsOGwAAALxJREFUOE/tk7ERwjAMRW1mAQouE9gbQM8I8jpOmxGoaLA3yAg09i5GshWS EC5xSYG6f3qy9KWzTCmJ6thVkwT+6eW6cCfRGy0xtPGjkLpFtQgHYENyQAmlwDoSihQ4vNw8RJbB TvNcio98pWvhlG8Znj3NcTqQ8PeOxPWyH6b2Bk21kSQ2m3Ue+wQLn6MjXeC3KcaFAjQ8ZLmsuFwL qlbseJOewsXlSsTHrRfNkR1v0fmh7ox3pp3In/lpL3mcAtUnMi2kAAAAAElFTkSuQmCC ------=_NextPart_01D73C45.D2921D00 Content-Location: file:///C:/0E85C06C/20-CURVASROCFINAL_archivos/image007.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAg8AAAFdCAYAAACEi47DAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAFxEAABcRAcom8z8AAGkkSURBVHhe7Z0HeBTV/v5/9X/b71qvgAURr4UO ISQBQgm9d0gDAqETSgBBBOmhhBY6SgelKIKKclVUlHJFAelKV4pSBEEQUJq8//M92WWz7C57ksws Ke/ned4n2dnZs7tTzvnsmTMz/0EIIYQQQgghhBByT/nPO/JfDMMwDMPkqNzZ1meYtKLw32nyPwzD MAzD5KikbefTCoURT6mAYRiGYZhck+dV/qTy/xxxykTaHom7QnlgGIZhmNyV4ip/V/k/lb+q/FnF KRFGPRAFVbwVzDAMwzBMzkyISl6Vf6g8qCIiIRJhLBBPq3grmGEYhmGYnJkIlX+qFFB5TOURlftV nALhPIThFbEKygPDMAzD5K40UCmpUlTlGZUnVEQg7lORQxj/q+Kz90Eminl4K5hhGIZhmJyZGJWK KqEqJVREIKQH4iGVv6k4ex885EEm3E0eToIQQggh2RbVlv90R9vuTHuV2ipVVMJUpAdCDmFI74OM f5AzMZzy4CYQ/uThlOO9CSGEEJINUW352Tvadme6qTRRqaNSSSVIRXwgn4rz0IUMnPQqD3I8g/JA CCGE5EBUW+5LHnqpRKk0VKmqUkblOZVHVR5QccqDx7gHf/Jw2vHehBBCCMmGqLb85zvadmdeUIlV kd6HGioy9qGQyuMqIg9/UaE8EEIIIbkN1Zb7koe+Ki1VmqrUVCmrUliF8kAIIYTkZlRbnl55kFM2 5aJRlAdCCCEkN6LachN5qKVirzxcvHgRW7duxaZNm/Dll19amh07dmDnzp1en8tspNzt27d7fS6z 2bVrF7Zt2+b1ucxEyrXjM3/11VfYvXu3LZ/ZWfbXX3/t9fnMRMres2eP3v68PZ+ZbN68WZctf709 n5ls2bJFLxP5/N6eT2+kvA8//BDTp0/H1KlTMXPmTLzxxhv45ZdfHHspIYSkotryu415CFzPgzTw UmlJ5fXBBx9YljVr1uDll19G//798fHHH3udJ6OR8vr164dhw4bp9/E2T0Yiy+Cjjz5Cr169MG7c OMvKljLlb9++fTF69Gh88sknHvNkNFL2e++9h+7du2PixIn49NNPvc6XkUjZ77zzDjp37oxp06ZZ /rnffvttdOrUCfPmzbN0G5GypfHt2LEjli1bdnv5WxHZJuTzyjJ59913LSlbvvtrr72GAQMGoE6d OnjyySf1uvz5558de6n9iGitXr1afz/5TlZGypTtct26dfp/O95DIstx/fr1eju163usXbtWfw/n 4zvnyUycy0bKt/s7fP7557ffz9t8GY2zTPkO8j5Wly+RMgO5Pcl72fUe//rXv3Do0CHHXmiGasuz hjw4f/XYgTTuL774ouORtTgbeDvo0qULFi5c6HhkHYmJifpXpdX89ttviIuLw5IlSxxTrEN+/TZt 2hTvv/++Y4p1nDt3Do0aNdK/vq3myJEjuuzvvvvOMcU6pMehWbNm+PXXXx1TrENkonXr1rhx44Zj iv3cunVLS5YI1xdffIGNGzdaGlm/M2bMQPv27XVFbMd7SJlSEbdq1QqLFi3SPane5stM5HuMGjUK CQkJ2LBhA/797397nS+jke8gjZSs/1mzZtn2HSZMmKDFWgTCju8g0tC2bVv9g8Ou7yBlx8fH27o9 SZ3XsmVL3RbY8T3kPWRbXbVqlWNPNEO15XeTBznbIjDyIN3RssHawciRI3Xvgx1Iz4P8OrODbt26 6V+CVvPCCy/glVdecTyyjt9//x3t2rXDm2++6ZhiHRcuXEB0dLRu1Kzm/PnzaNGihT60YDXff/89 mjdvbps8REVF6UN+ViO//kUE//jjD8cU+5H3kl4gES67kO8lFfHVq1cdU6xHempEGGX92IXsv127 dnU8sp7Lly9rWZdG0S4WL16sG3e7trHr16/rOkN65uxCGtyYmBhd99nFTz/9pLcnEQe7kEPZIr3p QbXlWUcepPvEDigP7tglD9LzIPIgvxytRnoepCJI7wZugvQ8iDzYUdmLNIg8HD582DHFOuSXj8iD iJXVyK+dQPc8OOXhwIEDjinWI9+rTZs2tvTWODl9+rRe5/KLzi5effVVXT/Y1fDK/hYZGam7zO3i 9ddf171AdjW8V65c0aIohzztQsREepns3J5+/PFH3cMovTN2Ie0v5cELlAd3KA/uUB48oTxkHMqD GZQHMygPrlAeDKE8uKA8eEJ5SD+UBzMoD2ZQHry28ZQHEygPLigPnlAezKE8mEN58A/lwRzKgw8o D+5QHtyhPHhCecg4lAczKA9mUB5coTwYQnlwQXnwhPKQfigPZlAezKA8eG3jKQ8mUB5cUB48oTyY Q3kwh/LgH8qDOZQHH1Ae3KE8uEN58ITykHEoD2ZQHsygPLhCeTCE8uCC8uAJ5SH9UB7MoDyYQXnw 2sZTHkygPLigPHiSXeVBGg1Zl4GE8mAO5cE/lAdzKA8+oDy4Q3lwh/LgQtbhiRMnsGDBAl1hHT9+ PGC9D5QHcygP/qE8mEN58AHlwR3KgzuUBxdyO3W5IVtwcDDy5cunbygnjWEgoDyYQ3nwD+XBHMqD DygP7lAe3KE8uJBKUD6z3B6/QYMGuiGXGwwFAsqDOZQH/1AezKE8+IDy4A7lwR3KgyeffPIJxzxk EMqDGZQHMygPrlAeDKE8uKA8eGKnPEgjy7MtMgblwQzKgxmUB1coD4ZQHlxQHjyhPKQfyoMZlAcz KA9e23jKgwmUBxeUB08oD+ZQHsyhPPiH8mAO5cEHlAd3KA/uUB48oTxkHMqDGZQHMygPrlAeDKE8 uKA8eEJ5SD+UBzMoD2ZQHry28ZQHEygPLigPnlAezKE8mEN58A/lwRzKgw8oD+5QHtyhPHhCecg4 lAczKA9mUB5coTwYQnlwQXnwhPKQfigPZlAezKA8eG3jc448jB8/HsOGDXM8shaRErkanx1QHlxQ HjyhPKQfyoMZlAczPvjgA13n2XkV1p9//lnXfVu3bnVMsZ4cLQ+ygcl192VjlqvfmeTTTz/FunXr EBMTgyZNmmD9+vV6mrd5MxIpTy7hGx8fr9/HqrKlLKmAevbsSXlwQHnwhPKQfigPZuRGeZBtQvYp 0zZGegIGDRqEcuXKYdWqVfjss8+8zpeZSFuwdOlSBAUF6R7ujRs3ep0vvZG266effnJ88xwuD5s3 b0aZMmXQuHFjXWHKhm0SmVfEoVGjRul6nUmkPClXyreibClDGsiwsDDdo9G/f3+94VgN5cEdyoMn n3/+OTp06OB4FBikIZT1K42vXVAezMiN8iDbRtGiRW/XxWnrZm+R+qhp06Zo2LChfmxFG3BnpEyp m+Q9ZJvK7HvI6+XHdPHixZGcnOz45jlcHuSLSSMtFf3ly5f1xn3+/HldcV66dEn/lcd3Rua7du0a rl696vX5zMT5WeT9vT2fkcj3WLhwIXr06IG+ffti2bJljiVgHZQHdygPLg4dOoRp06YhNjZWVzDz 5s3T22UguHXrFlJSUvDCgBcxdvIEjJ2UmjEp45GssnHDBsecGYfyYEZulAe5Db3UX7I/yfYhdbsz 8vjOulrqjYsXL+r3cbZH/iJlS3nyOm/Pe4uULe8hr5H39DZPeiLljBkzRrcvTnK0PMhzstPLsaWb N286pqbir2tVGrU7X5OVkY1dVqw08pSHVCgPntghD/v379djhGSAVpEiRfR4Hlk+gSIysgUK/+dD qH9/cVT/e2HUUKl7X1E8+5/3oVVMLP7ALcecGYPyYEZulAc5RJyYmKj/l/ZCfnA6fxxatZxFkKWe vNfMmDEDAwcOdDzK4fKwZs0adO7cWR9bkp1fKjlBNu64uDj9em/I8dO2bdvqBZX2GE9W5s0339QN POXBBeXBEzsPW8h+JevSrsbJG6IFUc1boOcjVbAyrA8WBHfFouAEvBXaCwkPVUJ0ZBSu3crcGAzK gxm5UR4WLVqke3wF6YWQQ9JS58g+NmDAAEvaDxnDIMtVBD2Q+9adTJo0KffIgzwnldn333+vxz2M Hj1aW6FMkx1VVqx0x0g5e/bs0dYoyE6wePFiPfhw165depog3TfSWHz77bf3dCV6g/LgCeXBEzvl YfXq1XrAZCB77EQeoltEoWueylgS1hOvBnfErOBOeC20Ozr9oyJaxbbE9VuZ+zyUBzNya89D9+7d 9f8yMLFTp076tW+99RZGjBiBgwcP6u1Gxt/t27dPzyeP5X/JqVOn9I/aEydO6Ofk8ZYtW/TrpMdB kNMu5bBg165d3Xog5DUyr9QXgSDXyYOcTyvMnTsXHTt21L0R0usgYwQEGUEqG6PMt3bt2ts7lkiF NJY7d+7Uj0U6Zs2apQeOJCQkaBvMSoc1KA+eUB48sVMepJEN9NkWlAdzKA/+yYg8yDIVZPsYO3as 7t7fsGGD3g/kB+qUKVN0+yLthvzwlDMAq1evjpo1a6JXr156XJ6IhiB1tyxDmf7NN9/cFohjx44h KSlJt0OCiIM8ls/ap08fXa7d5Dp5kMpMkMZp1KhRetCHWJysJBkLIRfskBGkUjmMGzfudu+DrJyp U6fqFShIWbVr19av79KlC+rXr4+TJ0/q57IClAdPKA+eUB7SD+XBjNwuD9IzLa+VM9/kh6Ygy6JG jRq63ZBD4XI20tGjR7VQSH0q49SknZFBxoKUJ2fMSRsjEuKUB5GD4cOH326f5s+fr8/akGkiH1KO UyzsIlfKg+ws0qCKDe7du1d3r8pGKL0LYm9yxUfZ6EUuZOXIChN5EMmQwxbyWM4lr1q16u3TIeU5 eX1WgfLgCeXBE8pD+qE8mJHb5UEOOYg0SG+1c3zde++9h4iICLz44ot46aWX9Do4e/asPq1Z5hNx kB+wcphDDp1LGyRjJeQzTJ48Wbc9sr5EHqR3Qr63TJNByTK+QtoimV8Os6c9pGEHuUoe5BCFHKqQ HbJKlSoYOnSobvCl+0i6jOT1Mk2OU8mKEDmQCluuyiXdTMHBwXoE+YcffogjR47oS1bLa2VjkZVn Z2WSXigPnlAePKE8pB/Kgxm5UR7SDpiUQ+NyXSGpK53yIO2GSIP0JMjYCJl/+/bteh+U3gc5PCHz i1xI78TgwYP1tDp16ug2SA57SN0uPd0lS5bUFxeUcQ4iE3K4Qk4IkPkpDzbIgyxsWZFLlizRV8mS Sl9eI42VHHbYvXu37jKSMRDS6MrzUnnLyFmZJpFjVIKYoWwgs2fP1r0Xdq+s9EB58ITy4AnlIf1Q HszIrfLgHDApdYG0G9LWyBgFJ9J+SBszZ84c3QbJAMiVK1fqQZTyGhl3J4MtpSdC/jrbI1mOcsrn pk2b9Gvlu0v7I/WDIOPuZLpMk54MuTaRneS6wxZy4ZrcAOXBE8qDJ5SH9EN5MCM3ykPawxY5nVwn D7Ih2HkDkqwC5cETyoMnlIf0Q3kwg/KQs6E85FAoD55QHjyhPKQfyoMZlIecTa6TB7mmQ25ARuzy 8tTuUB48yany0EXJw2IlD68oeXhVycMiyoMHlAf/ZEQeZMBibmDmzJm5Rx7kvuly+2sZvCKDI+X0 S9PI/dClgfD2XGYj5crpOt6ey0jkFCEZOCMVgwgE5SEVyoMndsqDDAaTdRlInPLQK181vFO+r5KG brrX4a1yfdD9kSpo1yY+dcZMQHkwIzfKg1xvQYRZ2hfTNubMmTP6mhDpbZPSE2kTZH3I2Rrenk9P 5HPK9imniko74CRHy4OcchkaGop69erpC2rIxTRMI6fKyEWhvD2XmcjnkHKlfG/PZyRSZkhICIYM GcJbcqeB8uCJVfJw9uwZHDz4LQ4c2KP+7lGfeS/mzXtVn/J84MDBgB4qjI6MRuxDoZhcqg1GFovG qGIxSCkZh8gHgtGgaSPsP3oYh44fwcFj3/nMgaOSwzijpP7WHY0r5cGM3CgPUrcUK1ZM3/7AW918 Z+TUf2mP5FIBpq/JSGQ/lPeQH8/pbfu8RbZN+Z5yfw0nOVoe5NQVuX74v//9b71TyikvJpEGQWzS 2Th4myejkdNzZKOR609YVbZ8NxEl6c2Q+3HIDmY1lAd3crM8XLlyGfHxHRAcXAWVKzdGpUqNUK1a cxQtGoq8efPpc9alMQwUso4f+++/I+iBp1Di/gI6pdT/z//tUTz7SH5ULB6KyiXLolKJMJ+JUM8H P18MMUpEpNcxLZQHM3KjPMj8ciFB0/ZF6n/5BR8eHq6Xk9Xti0TKlM8v1ymSixnKe3qbLz2R7yft rfSYOMnR8pAZxLCc1xu3mkGDBulLj9qBVA5yHM5qKA/u5GZ5+Pnnk6hYsS46dPgAycnHMHTod2p/ +QExMfNQv34TnDhxPKD3fZE7Z7Z6OAxTS8VjdPEYjCkeqzO+ZCuMK9ISwws2wfCnVOSvj4x9JhLd 76uI0k8VxqFjRxwlp0J5MCM3ykNGkOsPSZ1n13oQnHWf8xpFdkB58IFcTVIuRW0HcjnsiRMnOh5Z C+XBBeXBEyvk4ezZE6hdO1LJ9WG13uS4L7BiBZCYuAatWmV+jEF6cI556Jm3KlaUewELQrpiYUhC uvNGud4Y989IVCoaog9xpIXyYAblwQwZ3C5Xj7Rze5ILUckhEul1twvKgw8oD+5QHtzJ3fJwErVq tcCgQd9Abk47cyaweDGQkPC+Wt6tceuW97MtpNGSK+bdeSU8uaFPRnsq0p6qmfZsi/RmYVh3jCzY FJWKheAw5SFDUB7MoDx4beMpDyZQHlxQHjzJTvKwaBHUdgEsWXJ3eZAGS/ZVGesjl/B1yoJ8HllH cplfZ6MmN6czbeB8XechvVlEecg0lAczKA9e23jKgwmUBxeUB09yojxIpSy3vpebCMm+JadPSw+E 3EVQxv+kpKRgx44dumH77LPP9LozgfJgDuXBP5QHcygPPqA8uEN5cIfykD55EFGYMGGCPnVMzgiS 88/lcIXsB1Jhy51r5YZAMphM7kAotzY2+f6UB3MoD/6hPJhDefAB5cEdyoM7lIf0yYOMdZB1LHex lVO/Dh48qNe9nEomFfbatWu1XMhthosXL45q1arh7bffdrzaN5QHcygP/qE8mEN58AHlwR3KgzuU h/TJg1T2cm18uQLq9OnT9XeTcQ9TpkzRwjBu3DgcOnRIN6JyGENuf29yoSnKgzmUB/9QHsyhPPiA 8uAO5cEdykP65EHYsGGDvja+bJ/O+19IT8TgwYP1YQtBhGL//v16uzCB8mAO5cE/lAdzKA8+oDy4 Q3lwh/KQfnmwA8qDOZQH/1AezKE8+IDy4A7lwR3KA+XBSigPZlAezKA8uEJ5MITy4ILy4ImV8jB4 8LdqW5NGCZB7sXXrtlot77h7Ig8JSh6WhiVqEZgd3DndeS2sB0YVbEZ5yASUBzMoD17beMqDCZQH F5QHT7K+PJxAnTrRGDXqmL4stfQ+qPoQvXuvRVxcB8dcgcEpD73zVse74f2UBHTH60oEfCa0BxbL 35DueK2M2lcckVt4T3gqEuHPl8bBY9+nFu6A8mAG5cEMyoPXNp7yYALlwQXlwZOsLg+//HIOlSvX QGhoWzRo8LISiYFo1GgQSpdugeefL6y2k5l6+QSK6KholPjTY2j0WBnUebQU6j4a5D35glAnXyk0 UPPVfbgkqt9fGNXvS03tB4qhzJ8fQ5niJXH8xI+OklOhPJhBeTCD8uC1jac8mEB5cEF58CTry8PP iIiohYoVE1RjMQpNmoxQy3k0ypaNQ9GiJTB//ly3W/faTbT6PmX+/CSi8pdD08dDfabZE6Fo8XhZ FPzfh1GneSOkzJyGsZMn6iSrjJo8FivfWYmrv191lJwK5cEMyoMZlAevbTzlwQTKgwvKgydZXR7O nHEetjiiD1vI5rZqlRy2+ERViu0dcwWG24ct8lXHqvB+eD20OxbLoQkvkQGVy0N7o8EDJTB97qup BRhAeTCD8mAG5cFrG095MIHy4ILy4El2GTDp62wLIGN3yMwI6TnbYnaZzlhYuitq31cUKdOnpBZg AOXBDMqDGZQHr2085cEEyoMLyoMn2V0esuqpmpQHyoM/KA/mUB58QHlwh/LgDuWB8mAllAczKA9m UB5coTwYQnlwQXnwhPJAeaA8+IbyYA7lwQeUB3coD+5QHigPVkJ5MIPyYAblwRXKgyGUBxeUB08o D5QHyoNvKA/mUB58QHlwh/LgDuWB8mAllAczKA9mUB5coTwYQnlwQXnwhPJAeaA8+IbyYA7lwQeU B3coD+5QHigPVkJ5MIPyYAblwRXKgyGUBxeUB0+skYcTqF07CiNGfIc33wTmzwdWrgQSEz9WlWK8 Y67A4JSHnnmrYmX5F7AgJAELQ7p5zaLQ7lgW0hP17y+O6bPMt2XKgxmUBzMoD17beMqDCZQHF5QH T7K+PJxCzZrN9F00p0//HuPHf6capiNqPS5Ew4bNVcV1DDduBKb3QctDZBTaPlwOrwZ3wISSrTGx ZJzXpJRsg+kl4lHp/57BkHEjcfLcGfzw00md4/L39ElcvHgRt25JqS4oD2ZQHsygPHht4ykPJlAe XFAePMnq8nDx4i+oUCECTz5ZDkFBjVGiREOULt0UTz0Virx58+ntWxrDQCHr+LH/ug9BDzyFEvcX 8JmSjjz554dR7JnnUatiVVQrW0mnukr5sBB06NgB58+539SL8mAG5cEMyoPXNp7yYALlwQXlwZOs Lg8//3wa1as3RseOKzFq1G4MHrwbycm7VbnTUKtWfRw6dADXrl1zzG0vzp6HFg8GI7l4Swwp0kyl +V0zslgMhv6zCV58vDb6P15HZ0iBRmj/f6EoWbAQDh87klq4A8qDGZQHMygPXtt4yoMJlAcXlAdP ssuYh6SkI3rMw4IFqWMeevWSu2q2c8wVGJxjHhLzVsPb5ftiYWgCFoXK+AaTdL+d5eX7YMLTUahU NASHjlMeMgLlwQzKg9c2nvJgAuXBBeXBk6wvD9nzbIu7ZVFYd4ws2BSVioXgMOUhQ1AezKA8eG3j KQ8mUB5cUB48yanyIBXz2bNn9XvfvOm6bbcsy6tXrzoeuSODFy9fvqxfJ4MZ0zZ88po/1POUBzMo D/6hPJhDefAB5cEdyoM7lIf0ycP58+fRq1cv1KhRA126dMHu3bv19PXr16Np06aYM2eO1zM0pBLs 0KED6tSpo19/6NAhPX3x4sUYOnQofv3tMlrHtqI8GEB58A/lwRzKgw8oD+5QHtyhPKRPHk6ePIlx 48ap+Rdh/vz5WgJk3SclJelpkydP9rosZVkkJyer8pdgwYIF+nXHjh3T6zUxMRGXr/6G1i0pDyZQ HvxDeTCH8uADyoM7lAd3KA/pkwc5TCGN1pkzZ/DJJ5/owxHyGVJSUnSF/eGHH2LevHm6J2Lp0qVY sWIFjhw5cvvwxtGjR7Fu3Tq9TmUbb9iwoe6J+P7YUcTHtaE8GEB58A/lwRzKgw8oD+5QHtyhPGRs wOSePXu0GAjyGaZOnaorUREKadxGjx6tl6tsExs3btTzCbKcpRGXcQ7SEyGHMerWrYttu3agQ9t2 SMgbQXnwA+XBP5QHcygPPqA8uEN5cIfykH55kMpSGuK9e/fqx9evX9fykJCQoIVAvreMexBBkDh7 HWS8hFS4Bw4c0I8FOfRRq1YtbNup5CGe8mAC5cE/lAdzKA8+oDy4Q3lwh/KQfnm4dOkS9u3b5zYw Uh6LOKxdu9YxxRP5rCIOac/Q2LBhA+bOnYvvjn6PNq1aIyEP5cEflAf/UB7MoTz4gPLgDuXBHcpD xg5b2EF0i0iOeTCA8uAfyoM5lAcfUB7coTy4Q3logcGDv1XbmjRKwNKlsu2tRkxMnJrD1UNgN86L REnPw9KwRC0Cs4M7m6WMK6+V7YFRTzejPGQCyoMZlAevbTzlwQTKgwvKgydZXx7k8tTRGD36GGTs o2xuqj5E796fIS6uvWOuwOC8t0XvfNXxbng/vB7WHYvDevhJTywO7YHXQ7rfzlvl+mBiwShULByM g8e+Ty3cAeXBDMqDGZQHr2085cEEyoMLyoMnWV0efvnlZ0RE1ELFij1UYzERTZuORUzMJJQt2xbF i5dUFfyiTJWfXqLV9ynzlycRnb88mj4e6jdR+cPR7JEyqPf3Yqh3X3Gdxg+UQvn/eAKlnimCYz8e d5ScCuXBDMqDGZQHr2085cEEyoMLyoMnWV0eLlw4h8qVayIkJA716w9A7dovomHDgShduhmee64Q ZsyYppdPoIiOikbxPz+GBo8Go3a+Uj5TJ18Q6qvk/98HUbVeTSQlj8ag4UNvp//QgVj02iL8rrbJ tFAezKA8mEF58NrGUx5MoDy4oDx4kl0OW4wceVjfVXPhQuDtt+Wumh+pijdezRH4MQ+uu2qq7T+0 u9e8HtYDb4Ykou79xTB1zszUAgygPJhBeTCD8uC1jac8mEB5cEF58CT7DJjcqypzaZSAZctk2/uX Y8CkPY2TN9IOmFxW9u4DJueEdMFrpRNQ575imDRjamoBBlAezKA8mEF58NrGUx5MoDy4oDx4kl3k ISucqpmeW3LLWRULS3dF7fuKImX6lNQCDKA8mEF5MIPy4LWNpzyYQHlwQXnwhPJgDuXBHMqDfygP 5lAefEB5cIfy4A7lgfJgJZQHMygPZlAeXKE8GEJ5cEF58ITyQHmgPPiG8mAO5cEHlAd3KA/uUB4o D1ZCeTCD8mAG5cEVyoMhlAcXlAdPKA+UB8qDbygP5lAefEB5cIfy4A7lgfJgJZQHMygPZlAeXKE8 GEJ5cEF58ITyQHmgPPiG8mAO5cEHlAd3KA/uUB4oD1ZCeTCD8mAG5cEVyoMhlAcXlAdPNm3apCvH GzcyfgnpK1cuon79lkhK+h7LlwMLFjgvT/2JqhTbOeYKDE55SMznvDx1AhaFdvOa18J64I2QRDS4 vwRmzDbflj9e8zE6duiglpl9UkR5MIPyYAblwRXKgyGUBxeUB082b96iKpWm+Oab7ar8vTh06Nt0 5bvv9mLnzn8jPLwqundfjZSUvRg16ltMmbIPcXGzUa9eYzXPIVy/ft3xjvai5SEyCq0eCsPUoLYY UzxGJdZrkku0xMRirRH+t6cxcPQwHDl5HIeOH7lrjpw4jlcXzEWT6BbYvV99/x+O3n5Obt198vRJ 3LieeamgPJhBeTCD8uAK5cEQyoMLyoMne/d+g8KFiyMkpCoiIhqhcuUG6Yq8Jjy8NgoWDFLl1EDJ ko1QvHgDlCrVBE8+GYI8efKib98XcOrUKcc72o/cVfPR//w/lHqgAIrf/6TPlFApqVLwL4+gWIHn ULVMeVQuFXbXyDylnymKZ/LkR8USIYgIKud4rizCS5ZB1QqVsH37dscnyTiUBzMoD2ZQHlyhPBhC eXBBefBk164tCA1tpNbnNowYcRBDhqQvgwcfwNChhzBu3I8YPfqw2k8OqBzEpEkHVaUrPQ+NcEz9 Ig9oz0OLKMQ8FIpJpdpgZLEolWjfKR6NcSVbYdRzkRj8ZAMMKdDwrpF5kp5pjrFFYtTjRupx6vRh BRpj6BMNUPRPj+Kdf72X+mEyAeXBDMqDGZQHVygPhlAeXFAePNmxYxMqVYrFjBnXsXRp6u200xsZ JJn2sYx5WLkSSEy8d2MeeuathpXlX8CCkAQsDOnmP45xEPL3bvE1z+KwHng9uBsq5ymKdz96P/XD ZALKgxmUBzMoD65QHgyhPLigPHiyY8eXqFgxCikpFzB/PjBrVuaj2qR0nW0hAw/TNmCmjdmdrxPS c7aFlZlbpgvmlOqEio8UwaqPVqd+mExAeTCD8mAG5cEVyoMhlAcXlAdP7qU8yKGM5cuXo0OHDrf3 282bNyMuLg6LFy/22ahJhb5gwQJ06tQJGzdu1NOkch83bhwu/XYFrWNbUh4MoDz4h/JgDuXBB5QH dygP7lAeXDGVh7Vr1yI2Nhbjx4/H0aNHdQMwevRoTJkyBRMmTPA58FAqW1mPMt+JEydw9uxZxMTE 6G39ytXfENeyFeXBAMqDfygP5lAefEB5cIfy4A7lwRUTeZBehxEjRiAkJAR9+vTR303WvewHUmF/ 8MEH6vPM1z0RclEm2a+lQb158yb69u2LsmXLYvjw4Thy5AgGDhyol0///v1x/MSPaNM6Dgl5IigP fqA8+IfyYA7lwQeUB3coD+5QHlwxkQfpLWjSpIk+bCH77WeffYarV69i+vTpuHjxIj755BPMmDED w4YNQ8OGDXUFLstWnqtfv76Wi61bt+rDFrJvVqlSBbVq1cLXO7ejQ3w7JOSlPPiD8uAfyoM5lAcf UB7coTy4Q3lwxUQeZD1Lz4L0GgwePFjLg/RGTJ48We8Pcihj3759uHbtGi5duoTLly+rcm7p182c ORODBg3SPQ/OynDu3LmoXbs2duzeifZKHrrm5WELf1Ae/EN5MIfy4APKgzuUB3coD66YyIMgFf60 adMwYMAA7Nq1S0+TvyIT0rPgC1mPIhciDwcOHNDTPv30Uy0eB747pA9bdOVhC79QHvxDeTCH8uAD yoM7lAd3KA+umMqDXUS3iOSASQMoD/6hPJhDefAB5cEdyoM7lAdX7r088DoPJlAe/EN5MIfy4APK gzuUB3eyqzzs2rUZlSpFY/LkX/XVIefMyXxmzwaWLZNt71+IiYlT75LxO3amF+dFouRsi2VlEzG7 TCfMKdPZ2gR7Tpsf0hXzgrqgEuXhNpQHMygPXtt4yoMJlAcXlAdP7JSHgwd3IiKilVqXN9Qyl8o4 85HNTeraXr0+RevW7R3vFBicd9Xslbc63infD6+FdsfroT0sjVyKerH6uyi42+0sCVHTgrqh0kOF 8PYHvLeFQHkwg/LgtY2nPJhAeXBBefAkvfKwbdt2jBo1AsOHv4ykpME+M2bMcHTp0gaPPvo0atTo hwYNhqJu3cGWpHHjEQgOjkKhQkUwe/arOH/+vOPT2Y/cVbPkXx5H48dCUPfR0hYnCA0fL4OGeYNR 4++Fb6fWfUVQ/S/P4ak//wMffZr5xpLyYAblwQzKgyuUB0MoDy5yizy8/PIA5M9fCQ0bjkbt2iNQ p4731K49HPXrj1IV/ETV2CehUaMRlqRhwxFqWYxGaGgrFClSHPPmzQmoPMQoeQj+c360yF9ONfQh aGRhpMygv+RH0dIlMTIlGeOnpiB58gQkTxqP0RPHYvbcOThz+ifHJ8k4lAczKA9mUB5coTwYQnlw kVvk4cUXX1AVRYq+s6Xzrpe+IpvG4sWuQw5WRMpU9SF69/5YVYpyV017GidvOMc89MpbDe+Wt/6w xTvh/dDtkQjEx8fb+q0oD2ZQHsygPLhCeTCE8uAit8jDgAEvomnTCfqMBzn7QQYwBjLynnJ7727d VjsGTAZeHhLyVMbSsER9JsTs4M6WZYkqs9M/KqJ1bCtc+8O+s0goD2ZQHsygPLhCeTCE8uAiN8lD kybjdY+Cah/cTqMMROQ979WpmnbfknuxKrOjkodWsS3x+41rqW9qA5QHMygPZlAeXKE8GEJ5cEF5 CEwoD5mH8mAG5cEMyoMrlAdDKA8uKA+BCeUh81AezKA8mEF5cIXyYAjlwQXlITChPGQeyoMZlAcz KA+uUB4MoTy4oDwEJpSHzEN5MIPyYAblwRXKgyGUBxeUh8CE8pB5KA9mUB7MoDy4QnkwhPLggvIQ mFAeMg/lwQzKgxmUB1coD4ZQHlxQHgITykPmoTyYQXkwg/LgCuXBEMqDi9wmD6peVesotTEPZOQ9 RVzupTz0zFsVb5Xrg3khXTE/JMGyLFdldn2kMtq0jtPvZRe/nP9Fb092VvaUB/9QHsyhPPiA8uAO 5cGdrCQPw4YNRlTUNLz9tusS1IGMvKfUtb1737u7asY/XF73FEws2QYpFmZWmc5o+WAomkY2x/Gf T+OnX362JXv270XTZk2xadOm1C9mA5QH/1AezKE8+IDy4A7lwZ17IQ9Xr17DoUMHsHPnZuzevUVl K7755mu1/KJQuXJXjB+/TYnEFgwfHtjIe44b9zViYqaiVq36+PbbPeqzXnV8avuJjorCY/95H4Ie KIiS9xewNEEPFsQ//5IHBR/Nj2rhlVGjYlVUrxBhaWpUqoqw0sEoHRSk1uc3jm9lPZQH/1AezKE8 +IDy4A7lwZ17IQ+bNv0bZcpUQFhYPYSHN1BpiAoVGqFo0Yp47rkIlCzZCCVKNLgnCQpqggIFQpAn Tz61fffFqVOnHJ/aXpw9D80eKI3RxWPwcuGmGFS4mWWR8oYVjcTw55qj32O1bclLj9dDlwfDEfp0 Mezcuyf1i9kA5cE/lAdzKA8+oDy4Q3lw517Iw4oVS1RD3QKjRx/HmDHHMWpUaiZOPINJk37C+PHH VI4HPOPGHcfMmcfRtu1CNGrUDKdPn8CNG4EZ9+Ac89ArX3Vb7qrplrCeegCl1XmzXB/MKNQWlZ4p ja+/3Zn6xWyA8uAfyoM5lAcfUB7coTy4cy/k4Z13lqJy5QQ9zkAit9+WLFhwbzN/vogN0LPnGlXx xjs+bWBwyoNdZ1sEIjIwc/yz0ajwTCls+3ZX6hezAcqDfygP5lAefEB5cIfy4M69kYdlqFixE+bM gY630ybvRVSbZHSq5q1bt3SlL+Mh5H8ndz6+E3lOtpM7x1HIdMqDOZQH/1AezKE8+IDy4A7lwR3K gysm8iCHMWapmWNjYzF16tTbIrBx40bd4MyfP9/roY7r169j0qRJukKXeZwN39KlSzFixAhc+u0y Wse2ojwYQHnwD+XBHMqDDygP7lAe3KE8uGIiDxcuXEBcXBw6dux4e5+9fPkykpKSMHfuXC0Imzdv 1tPTIuswKioKPXr0wPr16/W048eP6/WamJiIK1d/ozwYQnnwD+XBHMqDDygP7lAe3KE8uJKengdZ H8OHD8cPP/yAS5cuISUlRW8Dsh/PmzcP69atU2UtwYoVK3Ds2DHcvHlTi4W8bvLkybpS7NWrFxo3 bqy3ySPHj6Ft6zZIyBNBefAD5cE/lAdzKA8+oDy4Q3lwh/Lgiok8SEX55Zdf6lM4pfIUOZBDEtOn T9frac2aNXr7Gj16tP7u8fHx+lLNIhjyujNnzuCtt97C6tWr9b5Tq1Yt1K5TB9t27UD7+HZIyEt5 8AflwT+UB3MoDz6gPLhDeXCH8uCKiTzIYYsxY8boQw2yb33//fe6EZPxD927d0dycrL+3oL0UkiP gyDSMHToUL39jR8/Xr9OkF4KEQinPHTNy8MW/qA8+IfyYA7lwQeUB3coD+5QHlwxkQdBvteECROw atUqxxRg3759GDt2LD777DPHFE/27t2r5/n0008dU6DHP8ydMxffHf0ebVq15pgHAygP/qE8mEN5 8AHlwR3KgzuUB1dM5cEuoltEUh4MoDz4h/JgDuXBB5QHdygP7jjlwdsZAplFuualbGc3vpN3331D yUNnzJ0Lndmzs0ZEIJYulW1vNWJi4tQnTT3kEAic13lIUPKwNCxRN8azgztnqywI6YYJz8Zoedi+ d3fqF7MByoN/KA/mUB58QHlwh/LgjshDdHQUdu+2/pfimTOnERsbg5MnTzimpPLRR2+jSpUE/Stf ourRLBHZ3KSu7d37k3tzV03n5anDbb48tU15o2xvzCgUh4jny+Cb7w+kfjEboDz4h/JgDuXBB5QH dygP7vz66yU0aNAQiYldMXPmJEydOs6SzJgxEUOG9Efhwk9j8OB+6nGKnj5zZgri41vgiSeKo0WL CaqSHo/mzcdlmbRsOQnly7dD8eKlsHjxa3qAZKCQu2qG/rUAWj5ZAc2fCFMpm60Slb886j1cEo// Iy9eGDoQr86fjamzZtw1Ka9Mw4LXFuHUSfMbkFEe/EN5MIfy4APKgzuUB3euXLmEGjXqo2TJKNSs ORBVqvSzLFWr9kedOoNRrVp/t+k1agxAvXqD1fv1y1KpUaMf6tcfiFKlmuLZZ5/H9OlTdc9MoIiO ikaxP+VDvUeDUCNvCdTMWzKbpQRq5SupP3/1B4qgyt+fv2uq3lcIEX99Fvn/5wGsXGXeyFEe/EN5 MIfy4APKgzuUB3d+/fUc6taNwpAhO/DWW6k3iHLeqMqKyOGAO6ctWpQ6Xf5mpchne/ttoFevNapS lBtj+b5PhdXowxaRUeiVtxreLt8XC0O7YVFo92wX5+GWRcEJWFi6613zenA3LC7ZFZX//iwWLV+S uiAMoDz4h/JgDuXBB5QHdygP7qTKQwsMHLhFDxaUsx+cAxkzG+fZFHeWmXZ6VooMmly2DOje/V+O AZP2NE7ecI556JYnAm+U7YXZZTpjTpku2TDyuVM/+1w/WRCSgAVBXVDlocJYvMJ8v6E8+IfyYA7l wQeUB3coD+445eGll77SvQGqXvY4hTG3RL77vTpV0ykP2flUzfRGS0SpToh4sBDlwWIoD+ZQHnxA eXCH8uAO5cEVykNgQ3mgPPiD8uAK5cEQyoMLykNgQnkIbCgPlAd/UB5coTwYQnlwQXkITCgPgQ3l gfLgD8qDK5QHQygPLigPgQnlIbChPFAe/EF5cIXyYAjlwQXlITChPAQ2lAfKgz8oD65QHgyhPLig PAQmlIfAhvJAefAH5cEVyoMhlAcXlIfAhPIQ2FAeKA/+oDy4QnkwhPLggvIQmFAeAhvKA+XBH5QH VygPhlAeXNgvD5EYMmTn7ctTOy/VnNsi333FCiAx8RNVKcrlqQOHUx565q2KleVfwILQrvoS1Tk5 r4f1wOulE1DtwSJ4633zRm7evHnoldjL8ch6KA9mUB68tvGUBxMoDy6yqzxcuvQL6tRpjo4d38aE CYcxYsQhlYMYPfoIJk06gbFjDyM5+ZD6m/Mj33PatMNo02YeGjRoiuPHj+L69euOJWUvIg8xkVFo /XAYpgW1Q3LxWIwt3jJHZ3zJ1phQtCWC/68Api2ajeM/ncSx0z/eNT+oeZLGjUGr9m1x5OQPOH76 hNf5/OXoqR9x4vQp/P6bZ+NNeTCD8uC1jac8mEB5cJFd5eG3366gVq06KFQoFJUqNUZ4eH1UrNgA wcHV8fTTZVG8eD2UKNFApX6uSFBQYzz5ZAgeeSQv+vZ9AadPe91lbUFuyf3Yf/4dpR54CiXufzIX pABK3FcAT/7lYZR8pggiyoSjUumyd02VkHAUf+p5PPfoU6gUVBaVS5fzOp/flCqLMqWDMGv2LMfS d0F5MIPy4LWNpzyYQHlwkV3lQcpu3rw5li9fgn37dmLv3h3Yv18OYcxT4lATQ4duVb/IdyIpaUeu yMSJO1WlOxN16jTEgQN7ce3aNceSshd92CIyCjEPhSClZBySikWpROeKjCvRCkn/bIZBT9THoPwN 7pqX1Twjn22OMYWivD5vlvoYU6AZKv/Xk+jSIyF1BaSB8mAG5cFrG095MIHy4CK7ysO5c+cQpX7x 7t692zEllZ07NyMioh3mzUu906SsipweGeuRekvuT9G6dTvHkggMzjEPifmq453y/bAoVG3/jltc 5/Sk3sq7R+oYCIM4X+ftOZMsUpFl3PrBsujZx3PsBOXBDMqD1zae8mAC5cFFdpaHFi1a4KuvvnJM SWXTps9QoUIrTJ9+BfPnez87IaeFZ1vkjryqskTJStQDwUikPGQYyoPXNp7yYALlwQXlIfsnPfKw evVqjB8/HpcvX9aPt27dqhsDf+tfnp86dSpu3Egt+/3338ekSZNwWW0/rWNbUh4CEMqDNVAevLbx lAcTKA8uKA/ZPybycOvWLZw4cUJXzB07dtTrXRqA0aNH631BhGLHjh2OuV3I6w4fPowGDRqgb9++ uHnzJs6cOYPY2Fi9rV+5+jtat2xFeQhAKA/WQHnw2sZTHkygPLigPGT/mMiDVJTS+Msyk23phx9+ 0BW17AfynPRILFiwAFu2bNH/SwMkZ2xID0X37t31ekxKSsLJkycxYMAAPVi1f//++OHkCbRpFYcE yoPtoTxYA+XBaxtPeTCB8uCC8pD9YyIPIgHS6EdERKBKlSr6cIUcgpg2bZpeT2vWrFHLbDoGDRqE 2rVr60boiy++0GdtJCYm6tc1btwY33zzDYYMGYJKlSqhRo0a2Lp9GzrEt0NC3gjKg82hPFgD5cFr G095MIHy4ILykP1jOuZBRGCWekG1atWwfft2fQhi8uTJugdh3Lhx2Lt3Ly5duqTX24ULF25faEoa iuTkZNSqVUvPI9Ih5cjj7bt2okPbduiah/JgdygP1kB58NrGUx5MoDy4oDxk/6RnwKQ0LCIK+/fv 14937typ9zM5VOELkYxVq1ZhwoQJOHLkiJ72ySefICUlBQcOH0TbVm2QkJeHLewO5cEaKA9e23jK gwmUBxeUh+yf9MiDHUS1iOSAyQCE8mANlAevbTzlwQTKgwvKQ/bPvZYHXuchMPEnD3KoifLgH8qD 1zae8mAC5cGFnfJw8eJFxMTE4MMPP3RMsQ7nryw5OyAtX321DhUrtsaMGb/ru03Onp3zIwIhV9Ps 1u1fannHqaVgzy2fveG8SFTvfNWxKvxFvB7WHYvDejA2RK4yuap8P7R+KAx9X3oxdQWkQRr0mNhY 2+pkgfJgBuXBFcqDIZQHF1euXFI7aaz6JWT9NvLrrxdUQxmFnTu3O6aksnPnJlSu3Bbz5v2hvpNU djk/srlJXdur18dqecvlqaVJDxxyY6xKf3sGHQtWQ+sClRHH2BJZtp0KVkfQn55ARN0aeH3FMix8 Y7HK63ht+RJMnTMTVatXw/r16x1rxnooD2ZQHlyhPBiSW+VB7jGRnDwSSUmDMWrUUIwZMxyDBr2I QoWeVjtqC4wfP0pPtyJS9ssv98Nzzz2FTp3aYuzYJD1d/nbq1BL58j2DunUHoFGj4WjQYGiOT/36 Q1VFlYSQkFgULlwUc+bM1j0zgSI6KhrP/b9HUC1PMVR6pAgqM7amSp6iiHi4CCo9WAgVH3xep7L6 P+SvT6LQE09jy7atjjVjPZQHMygPrlAeDMmt8jBy5HA89lhF1ZAlo3bt4ahVa5j6OwJNmoxHvXqj 9ONatWS6FXGVXbfuSP3YOb1u3VFqpx2nGlURh9yTZs1Ga3koUqQY5s2bjfPnzzvWjL04D1v0zFMV b5V7AfNDErAgpBtjWxL0zccWlumGeUGdVbroLCrdDTOei0P4E8Wwfsum1JVjA5QHMygPrlAeDMmt 8jB06AA0bjwFK1e67vQofxcvdj22Mr7Kdk53dunnhsh3lrq2d2+5q2Z7xxoJDE556JYnAsvK9sLs Mp0xp0wXJsARsZhaWMlD/mLYQHm4K5QHr2085cEEyoMLq+RhxIhBaNgwBUuXAnPnAnPm3LvIIEJv 03Nq5Pu6D5i8mbpSAgDvqpk1Mq9MV0wu1IryYADlwWsbT3kwgfLgwkp5aNBggv7V7zwDgAlM7uWp mpSHrBHKgzmUB69tPOXBBMqDC8pD9g/lgaE8mEN58NrGUx5MoDy4oDxk/1AeGMqDOZQHr2085cEE yoMLykP2D+WBoTyYQ3nw2sZTHkygPLigPGT/UB4YyoM5lAevbTzlwQTKgwvKQ/YP5YGhPJhDefDa xlMeTKA8uKA8ZP9QHhjKgzmUB69tPOXBBMqDC8pD9g/lgaE8mEN58NrGUx5MoDy4oDxk/2QFeeiR twqWl+ujGrEumK8aMsbChCT4zWuhPTCjSFtUyF+c8uAHyoPXNp7yYALlwYVV8pCcnIQmTaZjxQp7 LkfN+M7ChdCXBU9MlMtTy101A4eWh8gotP9HuL5M8qRSbTC5VFvGgkwNisf0kvGY8HwMxj9390x6 riWSnmiEso8XxsatX6auHBugPJhBeXCF8mBITpeHGzduqB3jGA4c2I2DB/fcTo8e8ahYMREpKd+q dbcHSUlMoDJixB61PX+D2NhXULduQxw+fBDXrl1zrDH7iY6OxuP/9XcEP1gQJR8owFiQUg88heL3 PYkiD+ZH2JNFUK5gcZR9qpjPlFfPl3ziaRR6+hls/Zp31bwblAevbTzlwQTKg4v0ysPOndtRvnwE wsJqokKFBrdTtGg4nnmmEkqWbIjixeszAU5QUGMUKBCCPHnyom/fF3Dq1CnHGrMf6Xloen8pJBWL woBCjTGwUBMmE5FlOLxoJFr9oxzCQkKx4euv8NXOr/Hljq0+s3nXNqxZvxb1GzbAZ2vXOtaM9VAe zKA8uEJ5MCSny8NHH72rRKExhg37BqNH71e/evfpjBt3FCkpR5CcvA9jxzKBjCzzadMOoE2buahf vwmOHv0O169fd6wxe3GOeeidrzpWhffD66HdsTi0B5OJvK6yovwLGPpkIzSpWV8vYxOuXb2K2JhY fLRmjWOK9VAezKA8uEJ5MCSny8PHH69C5cqdIMfZ5Q6adx57T/uYCUxcYx4+UZXiPRjzoOShS57K WBzWA68Ed9BnXDAZzyvBav8K7YYXn6iLulVq4MKVS6kL2w+//PILIiMj1T76sWOK9VAezKA8uEJ5 MCTny8N7qFAhHq++ehXz5nkf/c8ENuk52+LmzZvqefffsjKOxR8yz52vE5zywFM1rcurKotCu6O/ kod6VWri4m+XUxe2HygPZlAevLbxlAcTKA8uKA/ZPybyIA3/t99+i06dOmHChAlaIoRNmzbpylq2 2T/++ENPS4u8bsuWLYiPj8fs2bNvz7N8+XKMGTMGl367gtYtW1EeLAzlgfJgAuXBB5QHdygPjK+Y yINUlCkpKZg7d67e9jdv3qx7E0aNGoWZM2fqaVu3eo7Sv3jxIsaNG4elS5di8uTJ2L59O86cOYPY 2Fj07NkTV67+TnmwOJQHyoMJlAcfUB7coTwwvmIiDzKA8vTp09i4cSPmzJmDgwcP6opahOLSpUv4 4IMP1Pqchw0bNuDNN9/UFeyxY8f0606cOKGny3a9d+9e9O3bF02aNNHb5NEfjqFtXBsk5ImgPFgU ygPlwQTKgw8oD+5QHhhfMZEHWc87duzAiBEj0L9/fy0EUlFPmzYN586dw5o1azBjxgwMGzYMjRo1 0pWrCIM0EnLYYsCAARg+fDgOHz6s/1avXh01a9bE1zu2oUN8OyTkpTxYFcoD5cEEyoMPKA/uUB4Y XzGRB2lYZJ+SMQ9t27bVPRDClClT0KNHDyQnJ+veiKtXr+ptQiLjIuQQxaBBg9C5c2d07NhRi4SM g5DeC5GHbbt2oH3beHRlz4NloTxQHkygPPiA8uAO5YHxFRN5EHbt2qUHSy5btkyvd0EGUcrAx08/ /VQ/9oaMjxg7dqyudJ3Xj1i3bh1mz5qNw0e/Q5tWrTnmwcJQHigPJlAefEB5cIfywPiKqTzYRXSL SMqDhaE8UB5MoDz4gPLgTtaTh2uUhyySO+UBSD0NMxDwOg/WJ6PycOHCBS0Pn1Ae7grlwWsbT3kw gfLgIr3y8NFH7yh5UJXbIqjXSGWSGrkVtzRg8pcJbGT5r1oF9OnzqaoU2zvWVGBwygMvT21dZBmu dFyeunE6Lk995bcraNW6FdZvWO+YYj1yfQ/Kg38oD65QHgzJ6fKwdu1HeOKJENSrNxpNm05Ew4bj 0ajReMTEzFA75HT1y2ccoqLGMwFMZOR4tG49CeHh7VGiRJASitf0r9BAER0VhbJ/fQqtC1REZP5y iGIynVZqWVa5rxCeffY5THxlKmbMeQXTZs/0mRlzX8XYyRNQrEwpdO3VHa8unON1vszk1YVz0bJ9 HLp07owbNt07hfJgDuXBB5QHd7KKPJw8eQrJyaPVMuyN/v374qWX+mHgwH4oVy4YBQqEo27dl1Gj Rl8mwKlbdwBKlmyCZ555DtOmTdGnXwaK6KhoFPlTPtR5NAg18pZgLEh1lZr5SqJOnlKocn8ho1R9 oDBq5ymJag8W8fp8ZlPrwWJ4+r8fQJcunXHLuD8kfVAezKE8+IDy4E5WkQdfJCcPQ5MmU/D226nd 6LIImMBEDiHJcu/V61O0bh34wxYxLaKQmLca3i7fF4tC1fYf2p3JZGTMg/yVQxgLg7sa5/UQ9doy CV6fy2zeLvsC2j8Yjnbt2+MGPC9lbgWUB3MoDz6gPLiT1eUhKWkwGjacqO+0OXcuMGcOE6jMng0s Wybb3mrExMSptRH4AZNyhcllZRMxu0wnzCnTmcmBeaNcL7R9qLwe80B5uDuUB1coD4bkVnkYMWIQ GjSYoAfwSWPm7awAxp7cy1M1nfLAsy1yfpYqOWzzUDnKgwGUB1coD4ZQHigPgQ7lgQlEKA/mUB5c oTwYQnmgPAQ6lAcmEKE8mEN5cIXyYAjlgfIQ6FAemECE8mAO5cEVyoMhlAfKQ6BDeWACEcqDOZQH VygPhlAeKA+BDuWBCUQoD+ZQHlyhPBhCeaA8BDqUByYQoTyYQ3lwhfJgCOWB8hDoUB6YQITyYA7l wRXKgyGUB8pDoEN5YAIRyoM5lAdXcpw8TJ061fHIWnr16oVlcrk/i3nppZcwd+48xyPruHnzJjp1 6owVK1Y4pmSMMWOGo3HjKXjrLWDhQmDBAiZQmT8fern37LlGVbxtHWskMDjloUfeqnirXB/MD+mK BSEJTA7MivIvoP3D4bq+sIvr168jLi4Oq1evdkyxHim7bdu2tt0ZVKA8uJKj5KF///5IShqGX345 g7NnT6qcsCAnVXk/oU2bGEybNtGyss+dO6X+nkTnzvEYOzYJFy6c1Y+9zZvenDt3GsePf4fIyCbq 1+tUR9ne5/WVn38+pco5ib59u6Jq1Zcwc+ZZTJhwAuPHM4HKuHEnMGPGGVUhvoZGjZrjzJlTWgoD gZaHyCjEPVwOM0q3x7gSrTC+RGsmB+bV4E5odn8QolrH4NTFn3Hu0gWcvXjeskh5x079iEYtmmLB ktdw4fKvXufLTKRMKbtJVHN8/+MxnL98UU8/I7lwDr9evoQ//sh8rwrlwZUcJQ9Dhw5DwYKFUb16 E1Sr1tiySHnPPhuMUqUqokYNa8p2fsbnny+DEiXCVblNPebJaKTsKlUa4plnghAUVAk1azbzOp+/ VK/eGEWKhOKpp8qpcpqpz9mYCXBKl26uln8o8ubNp+S4H06f9rrL2kJ0dDQe++/7UPqBgihxfwEm hyZIrd9//jUPnnn0SVQNq4DqZSuhWlhFyyLlVQkJxz/z5kfw88VRo1xlr/NlJlJmmUIl9HtElCnv 9h0qB5dDreo1sG3bdseWnXEoD67kKHkYOPAlRET0RVLS1+r/rZZm5Mi9GDZst/p/i8dzmcnIkd9i +PDdGDDA2nJffvlrjBoln3lXpspOSvoGY8bsUeVsUZ9zKxPADBu2FePHb0dMzDTUqlUfe/d+g2vX rjm2dvuRnoeoB8uoX6etMKxoCwwvGsnkwAwr0gKjisdgVKFIDHyini15OX89Xf7QpxtjwBN1vc6T mUiZw1TZ8h4v56+vpqW+xyD1/8uP1kXRP+fD8vfedmzZGYfy4EoOO2zRV/1amgEZkyNjG+UW0rk5 Vi0DLst7E1nu774L9O59b27JLWMeeuWrjnfD++G10G76NtJMzozzluGvh/WwLXaXL7nzPZaU7Yll ZXqi6iNFseL9zA/WpDy4kqPk4aWX+qFp04m64pUTGGS0OsNk18g2LGe5dO1678626JKnMhaH9cQr wR31sXGGyU7Rt5Iv1RGV/lEYK1crE88klAdXcqQ8SIUrla+3098YJrtEtmGTUzVv3bqFS5cueRzS kGk3bvgWDhlA5m0eGZTJUzWZnJA5ZTpjbqlOlAfKw92hPDA5KSbyIAIg1/Jo1KgRRo8erU+JE9at W4fmzZtj7ty5Xs/QkNfJcw0bNsT06dNvC4Rcy2To0KG49NtltG7ZivLAZOtQHigPRlAemJwUE3mQ C+JMmTIF8+fPx+TJk3HkyBFcvXpV72ciAjLtyy+/dMzt4uLFi0hJScHChQu1PMjrfvjhB30hnz59 +uDKtd/ROpbywGTvUB4oD0ZQHpicFBN5kF4FuSjOrl278MEHH+j/L1y4gEmTJuHy5cv48MMPMWfO HL0/S0/DYrVzHD58+PbrNm/ejLVr1+Ls2bPqfRLQoEED9OzZE98d/R5t49ogIU8E5YHJtqE8UB6M oDwwOSkm8iDjHT799FN9gbStW7fqaSIPcqXVM2fOaHmYpQqTQxqRkZH6kuVffPGFft17772nX7dv 3z79eMyYMahbty5q1aqFbTu3o0N8OyTkpTww2TeUB8qDEZQHJifFRB6kMqtQoQKee+453fgfO3ZM j3sQeejQoYOWBjkkIT0NMq5BIqJw6NAhlCpVSkcOX5w8eVKXJ70TNWvWTJWHtu3QlT0PTDYO5YHy YATlgclJMZGHX375Rd8QaMaMGVi0aBFOnDihp4scTJs2zWcl99NPP+Gtt97Sr1u6dKk+bCFs2rRJ vecSHP3hGOJaccwDk71DeaA8GEF5YHJSTOTBTqKaRzqu89ADrwR30ALBMNkpaa/zsILykN3lYZSS h0GOR9YyYMCLSh5SKA9MjohLHlZreQACc1MswXmdhz75quP98BexRAnE0rCeDJOt8kbZRLxRpieq 5y2Oj9Z/mrpxZwLp6YuNjcW2bdscU6yH8uCDceOSMWzYEMcja3n55ZcQFTWVl6dmckRcl6f+GK1a tVNbeObvCpgeYiKjEfG3Z9Hl6RqIf6oKw2S7tCtYFe0KVEHBv+dFj5dfwOIVb2DRm0syFHnt5Fen o2RYMAaOGIIlK9/U0xfK828s1kIh44kyS66Xh3PnzmP27FlIShqE0aOH6sitp6tWDUfFiqFKIkbe nm5Fxo8fifLlS+PZZ6sgMjIJjRoNZZhsnxYtRiI0NBZFihTH3Lmzcf78ecceZj/RUdF45n/+gYg8 RVDhH4UYJtum0iOFUeHB5xD+kIr8zUgcr630sCrzoedVHI8fLIRn/vYwolpE4rfff3fsPRkn18vD l19uRMGCwYiI6I9atYahRo0hqFlzCOrXH4kGDUbp/2WaVZHypNxGjUaibt0hqFePYbJ/GjdOQpky UShcuKiW8UDJg/OwRY88VbG8XB/MC+mK+SEJDJMtszCkG+YHddbjH+aUknEQGUlHPfhyYZkEzJWy SqaWtTi4O3o9XBX1a9bBhSu/pu5AmSDXy8O6dR+iQoU2mDcPWLo0tQtWIuMRJM7HVsZZNsPkhMih i9TDFp8hLu7e3FVTLhK1rGxi6sCzMqrCZJhsmNm3/+/iNj19SX3tnWXJjeN656uBJvUaUh6skIcN Gz5W8tAaM2Zcx/z5UL+aGIZJT2TQpIh3t26rERMTF9CzLXhjLIYxi9wGPDFfdcqDYJ08tML06dd0 78OdI8kZhrl77uWpmpQHhjEL5SENlAeGufehPDBM1g/lIQ2UB4a596E8MEzWD+UhDZQHhrn3oTww TNYP5SENlAeGufehPDBM1g/lIQ2UB4a596E8MEzWD+UhDZQHhrn3oTwwTNYP5SENlAeGuffJKvIg F8F5RcnDq6qiZBjGPYsoDy4oDwxz75MV5KFH3qp4S1+eugvm60tUMzk5C0ISbEvqe3h/zoqkXora 3u8gufM93ijXC30frUV5EKyQh/Xr16BSpbaYOzf1UrsLFzIMk54sWACsWAEkJspdNeMde1bgiI6M Qod/VNCV5dSgeEwLasfkwMi6nVG6PWaUbIeUQi1ti5Q/tVgcJnp5LrOZWChWl233d5hUuBVmlmqH yUVb3/4erxSJR4f/K4u6NWpRHqyQh3Xr1qBo0ToYMGAvhg8/jCFDDqkcxOjRx1V+0P+nTrMqBzFm zA8YNeq4/t/7PBmJlHUQyck/YuTIo47H3ubzncGDDyIp6SjGj/9Rfb5DKgcdfxnGd0aOPIRJk46h ZcvZqFevEY4fP4IbNwLX+yB31Xzif+5DyINPI+iBgijN5Mw8WBDF78uPEg8/hXIFiqPcUyry16qo 8soWKIZiqvzgx55HeMGS3ufLRKRMKbu4eg95r/JPlfA6X2ZSvmAJhOUvimIPFUDI44Vuf49w9V6F HsqPLh074eq1a469J+PkennYv38fatSoh/Ll6yAiopFO1apNlFCEo0iRcvp/53QrIuUVLlwWxYtX sLzsKlUa4/nnQ1GqVOUMlV2tWlOULh2Bp54KRYkSDVUaqzRiGL8JCmqGAgVCkSdPPrz4Yj+cPu11 l7UF6XlofH9JDC/aAv0LNcZLTI5MUrEo1Px7YdRp0gBf7NiCLbu246sdX1sWKe/zLzeiWt1aGJMy Htu/3e11vsxkx949uuzq9Wtj7RfrsWW3td9B8vWenXhvzQeoUK0yXl0w9/b3+HLHVmze/jVO/Phj 6vG+TJLr5eHmzT9w6tQJHDr0LQ4f/hbffbcXR47sR+/e3dC1azv9/+HDey2LlNe+fWsMHNjX0rLl c3///T60ahWJlJQxGSr72LGDmDVrvJKPphg79huMH78Pycl7GeauGTNmL6ZO3Y+4OOl5aKy2w8O4 fv26Yw+zF+eYh175quPd8H54LbQbXg/tzuTArKrwIjo+XBFdu3RNXfk2cPPmTcTHx+ODDz5wTLEe Kbt9+/a4ZsGvf1+cPXsWMTEx2Lp1q2OK9eR6efDFuHHjMXz4cMcja3n55Zcxffp0xyNr6d27D5Yv X+54lH4+/PBdVKnSU99mWQbBebulOMOkzaJFwNtvA716faLktZ1jSwoMTnnocvtsiw6Q0zWZnJcl ZXuizUPldMN7A3+kbgAWc+XKFbSMjcU777zjmGI97777Llq2bIlff838uANf/Pjjj2jatCn+/e9/ O6ZYD+XBByNHjtSNvB3069cPEydOdDyylm7duqkKXdXoGeSdd5ahYsXOmDXrOubMSR1JzzB3yyuv pA42NjnbQn7Z3brl3mf622+/4Y8/7t4YyOvuRMqRV/E6D7kjS8smBkYeVMNutzy0atXKdnlo1qwZ 5UGF8mCIVfIwe/Z1fQaKt1PzGCZtRCBMTtVcs2YN+vTpg/379zumAF999RVat26N16WrywcrV67U +8yxY8ccU6Sn422MHTsWl367gtaxLSkPuSCUB3MoD65QHgyhPDCBjok8yNkXEyZM0BWaCINw6dIl jBo1Sh/Ck/1h27ZtenpaZOzE0KFD9fHbPXv26N6GEydOIDY2Ft27d8eVq78hrmUrykMuCOXBHMqD K5QHQygPTKBj2vNw+PBhTJs2DVu2bNGPz58/r/eDixcvYvXq1ViwYIEWi/fff1/v11IBCnv37sXk yZP1XznE0atXL30894UXXsDRH44jPq4N5SEXhPJgDuXBFcqDIZQHJtAxlYfff/9dC8KOHTv04wsX LmiZ+OWXX/QhjRkzZmDIkCGoW7cuoqKi8Pnnn+v5RDJeVW/y3Xff6bEPsl9GRESgZs2a2LpjGzrE t0NCngjKQw4P5cEcyoMrlAdDKA9MoGMiDzIgcv78+ShXrpyaLwGHDh3ShzKkRyExMRHJycnYt2+f 7oX4+eefce7cOVy9elXLggiGvK5v3744evSoPsVtlnpjkYftu3agQ1vKQ24I5cEcyoMrlAdDKA9M oGM65kEGPkrPQkpKCg4cOKCnyziGpKQk3fPgDRnzsHTpUgwbNgxTp069PWhSeiVkrMSh7w+jTas4 JOSlPOT0UB7MoTy4QnkwhPLABDqmhy3sIqp5JMc85IJQHsyhPLhCeTCE8sAEOvdSHu68SBTlIedG 5CGO8mAE5cEVyoMhVshDpUpdMGfOTX2L8tmzGebuEYFYulS2vdWIiYlTW5E9Fbs3nPLQO18NvBf+ ohKI7roHInemh+v/UPX/ndHP3zHN6jg/h7fnMpn3K/RH54crol27dpQHP1AeXKE8GJJZeVixYjHC w7ti0aI/9CWqnbddlv+lWLn9ctrbMVsRKVsucZxVy5YynN+f8Yzr8tRrVMUrt+T2vBqknURHRqP8 Xwoi/qnKiHkyHLFPVsiV0d/9qYpoWyACkQ+VQdP7S6GZI/J/bN6yaP1Y+O1plueBILR5vCKi/xHi 9t5WJfbBUJT8r0fQuUtn2/SU8mAO5cEHuVUe/vWvVXj00VKIiEhE9eovolq1vqhatS/q1h2M2rUH 3n5sRaSsatX6oV69IarsAfp/b/NlJM6y69cfglq1pGzv890tztfUqzdYlTNQldNPfc6+jJc0aPCS vrPmc889j2nTpuizJQJFdFQUCv9vHtTKVxJV8xTLtampvn/4/c8izwMPIbZdHHr3ewGJL/TW6fNi X0RUr4piQSXQs08vJPZNnW5VevXtg87duuKfzz+Lxs2b6vfzNl9m0luVWbVWdXTt0gU3b9gjqJQH cygPPsit8nD69E+YN2+2+nzJmDx5HKZOnYApU8YhPDwUTZrUUw1Din5sRaTs8eNHqUaniNqZWmD6 dGvLHjNmOIoWfRZyF9OMfO7U756MsmVLoUiReoiJSUHTpuMYL4mJmaiWU1sUL14Sr7++SF+7IRDo wxaRUeiZtxpWln8BC0MTsCi0W67MG+V6Ycqzsaj4fBD2H/sudQGlYc78uUjs3cvxyHqu/PYbYlrG 4vP16xxTrOfN5cv1mAe5ZogdUB7MoTz4ILfKgy8GDRqkyl3keGQtct7/e++953hkHbdu/YG4uDis W5d6saGM0q9fH1XOIvUZU28AxbhHDumsWgX06fM52rTp4FhqgcE55iEhT2UsDUvErOCOmB3cKVdm UWh3jH8mCuHPlsKeQ/tSF1Aa5NoY3bt1V/uF+43JrEIu+hWlRO6TTz5xTLGexWqDozz4h/LgCuXB ELvkQS7QI1f5sxq53LBUBm+88YZjinXIr9/o6Jh0b+Du/IGePburcl7VgwK9DRjM7Uk7YPJenW3B UzU7YWFoN4x7JlLLw+6De1MXUBpk/5X6wd8dTDOK7G+RkZH4+OOPHVOsR26gRnnwD+XBFcqDIXbJ g9xH4BW597LFiDzI6Gn75CHaAnnohqioV/XpiM7TExlXssKpmpQHyoMVUB7MoTz4gPLgDuWB8uAr lIesEcpD5qE8mEN58AHlwR3KA+XBVygPWSOUh8xDeTCH8uADyoM7lAfKg69QHrJGKA+Zh/JgDuXB B5QHdygPlAdfoTxkjVAeMg/lwRzKgw8oD+5QHigPvkJ5yBqhPGQeyoM5lAcfUB7coTxQHnyF8pA1 QnnIPJQHcygPPqA8uEN5eFVfEEkaSsY9slnIsrmX8tAjbxUsL9cH80K6YH5IV/eEJmQ4C+RviETK cn/O0qR5D/2eGcjScomY9FwsKjwbRHnIIJQHcygPPqA8uJPb5aFly7lYsSL1BluMe+bPlxuqAYmJ zhtjBQ6nPHR5pBIWh/XAK8Edde+DZHaZTphTuhOmF22T8RSJwysl2mFOUCfMKNbW+zwWRMqWzzqz eLzX500yp0QHjHqiEYKfLIRd+79NXUBpoDz4h/JgDuXBB5QHd3KzPHTp0gm1aiVhxoyfkZx8QuVH jB17ElOmnMf48af049TpVuRHjBsnZZ/Tf60uWz6vlC2f36qyx4w5gWnTfkJc3Oto3LgFzpw5hZs3 A3dnzeioaBT4nwdQ9qFnUebBfyJE8tA/EfzA0wh+6GmE5X0e5VTKZiDl8hVC6CPPppaT5zn92Nt8 mYmUKWUHP/xP/V7e5jFJeVVOsb8/gfJlwnDk2DHH0nFBefAP5cEcyoMPKA/u5F55gGrEx6FQoRBU rNgc4eFNUKFCU5Qr10hNq4yQkHpqejM93YpI2WFhDVTZldTf+vqxt/kyEilLPq98bvn8VpZduXIL VW5Z5MuXDy+91B+nT3vdZW1B7qpZ576iePH5hujxbG30fLYO+qn/a/ytMCpWi8BHG9fi803r8enG z9OdL7ZtxrCxo1C5VjW89/EHWPflRq/zZSbrvvo3lq9aidDK5ZEycxo2bt3kdT5/+UTl4w2fYc/u 3bhx3fPQEeXBP5QHcygPPqA8uJOb5eGXXy7g2293YufOzdi1ayu++WYbNmz4BFWqlMeSJfOxb99O Pd2KSNlr1ryHqlXL44MP3lHvu93rfBmJlCWft0aNSvjqq/XYs+drr/OlN7t3b8XevTvU9jEF9erV U+XuwbVr1xxLz17ksEVMZBR6562Od8P74bWw7ng9rIe+w2aPR6qgXdvMH0aRxrBjp4629qbITaVi Y2Oxfft2xxTroTz4h/JgDuXBB5QHd3KzPHjj0qVLurLfuXOnY4p1yK92qcBOnDjhmGId8nnlTqM3 blg/qFHupijrMpD4OtvitdDu6PSPimgV2xLXb2Wu0X///ffRpk0bWyt7WefNmzfHF1984ZhiPZQH /1AezKE8+IDy4A7lwZ1z586hRYsW6hf8V44p1nH48GG948tfq9m0aZOu4GXZWM17772P1q1b2yIm vqA8mEN58A/lwRzKgw8oD+5QHtyxUx6+++473ZDYIQ9ffvkloqKidDe51Ugj608epMK8evWq45Fv 5LDHrVuiBneH8mAO5cE/lAdzKA8+oDy4Q3lwh/LgiT952Lp1qz5kMmXKFMcU7yxduhRDhgzRh4b8 QXkwh/LgH8qDOZQHH1Ae3KE8uEN58ORu8iAVZXJyMmbNmoWpU6di48aNjmfc+f7773Xl3b17d1y+ fNkx1TeUB3MoD/6hPJhDefAB5cEdyoM7lAdP7iYP58+fR0pKiq7UZNzF4sWLcfHiRb3/yrpfvXq1 /r69evVCgwYN9HZs8v0pD+ZQHvxDeTCH8uADyoM7lAd3KA+e3E0eZF3I4Qr5btLrsGLFCn02iWxX Usl17doV27Zt0/PUqlUL1apVw+bNmx2v9g3lwRzKg38oD+ZQHnxAeXCH8uAO5cGTu8mDDJKcPXu2 rvgHDRqkv6M0YlJZSyUqhyjkOgoSma9KlSrYsmWL49W+oTyYQ3nwD+XBHMqDDygP7lAe3KE8eHI3 eRCOHDmCadOm+V0fUuHNmzdPLwd/UB7MoTz4h/JgDuXBB5QHdygP7lAePPEnD3ZAeTCH8uAfyoM5 lAcfUB7csUsepBKwSx6kgcyu8iA7PuXBP0556JOvJt6r0B+LlUAsCUvUl6rumacq2sdn/oqXn332 GTp16uR4ZA8i0XLF0t27dzumWM+iRYvQt29fxyPrESmRRlEGxNrF22+/jYSEBMcje5D6SK6WahdS docOHRyP7EHERLanXbt2OaZYz6FDh7BmzRrHIzNUW5415EGuA79hwwbHI2uZMGECRowY4XhkLXLM d+bMmY5H1iKVgwxGsxr5zHZIiSCVgR2mL8fZ5Rfj2rVrHVOsQ36hSEUp93GwmjNnzuiy5deo1cjn lWVix69PWc7yqzDQREdGIfx/8qP9w+Fo+WAIWj0YinYPlUfZ/3gMpUuXxoJFC/W2m5HIWSF9+vRB xYoV9VgMb/NkNvJrWg7nhISEYPDgwfqxt/kyE/kebdu2RY0aNbBwYcaXx90iPy7CwsLw4osv2vYd unTpgsqVK+vDWt7myWzmzJmD8uXL67N+7PoOUnaFChX0acve5sls5HPLwOPQ0FDbtifJqFGjsHz5 csdeaIZqy7OGPIjhSsMjjXxSUpJlkYUiO5lspPK/t3kymtGjR+sNp06dOpaWLT0lEtl55RexVWVL mfJXPnOjRo0wZswYj3kyGil76NChCA4O1t2dVpctPUfFixfXv4atLnvAgAEoWrSorsxknXqbLyOR skUAixUrpnt7nMvfisg2IZ+3RIkS+iJMVpYty0CWsyxvqdjl1MyAcOsWmjVvhvCICmjXoT3axrfV aRMfj/hO7dBOyYxcmEqESf6mN/ILsVKlSnjiiScQExOjG2Bv82Um8eqzyj6bN29efaaJCJi3+TIT +R6ynxUsWFCvp4wuD1+R5SI9WnJXVRnsatd3KFeuHPLnz68PLVi9LqQ8+bX++OOPa1m06zvI9iTv Ydf2JD0n0nMp21PNmjVt+R7yHiVLltRinR5UW5415EHsR35Z9O/fX9uuVZGGQTZS+SUg/3ubJ6OR 8uQzywZkZdmyDF566SVdeYuYyP/e5ktvnMs2KCgI1atXx8CBAz3myWjkM8rGV6hQIdStW1c39t7m y0ik7J49e+Kf//wnmjRpYvnn7tGjB55++mndQ2DlepSypYtcKnn5a9V6lMjnlEpXlon8+rFyv5Gy ZTnLMpFf0XJYJxDI2RkiRZu++go38Adu3LqpI+Mcbt76Qz8vh8YyGum9Wr9+PcaOHasP9Xibx4qc OnUKw4YN0zcuk/f0Nk9mImVKl79coEsOkXibJ7P5+eef9Q85OZRn13f48MMPda+wdMt7myezkXUs 25Osc7u+w7p16/SPGRFsb/NkNvIechq0/DCT3nm7vodsT+k9/K7a8qwhD3K8RbqB7EAuWrNy5UrH I2t58803bTumtmTJEqNT3NKLdE/ZNfhm/vz5evyK1UjXvBwe+vbbbx1TrOP69euYMWOGHphkNXLa 4vTp020ZUCWf146xK4IsZ+mKDTTSaMn6sAupKM+ePet4ZB8//fSTreNF5FCbDGq0EznkZuft2EV8 7O7Vku3Jzu8g25MsJ7uRbdbO28jLupBllR5UW5415EEMSHYIO5CGx64KScq1a8SzLA87NnzZUOza EGU92oXcH8Guzy2VgF2IQJjcGCq9SONkctnnjBLIwZKC7EvSy2FyHwwrsGOdSF2QdrnZ9R5Srmyz dpQfSKQusqOOcy4jQZaTXXW0XeWmRd5D6j276igpNyP7nGrLs4Y82IXYufwKsGMDlYXutGcrGzX5 rHZsKFKpOSVKuvTsaHjkPWR52/nr0WpkecvOY0fvgFOmpCKzq6KXbc/q7U+u42DHIE9fyLKXq1XK jbTkTA/nhaesRJaRbPciKNIdL/fesBJZ1/v379dnwUhXs4xgt3o/ls8vn/2DDz7QvakHDhywfDnJ /nv06FGcPHkScgO0b775xtJtVz7vwYMHdTe89NrK95F61EpkPchho3379unDFnLmi5X7iCwP6Z2T zy77iiwrq9e11KGynOQMobfeekv3zlv9A1vaRzmlWHqj5bTT9PS+qrb83suDLBC5nK2cimJVIy8r 9/jx43qBywjVZcuW4YcffnA8mzlk45cNRnZgOdQikYrIih1MGnTZ2OVyvrJxSrlWNcRSIcuGKBuk 7LRyDrdVv/KkoZHR/1JxykYolY5VO6ts0FIRyHvIIShZPlYhFaOcHSI7p5wqLKdUWrEepQypuGQZ y/I+duyYbkysKFu2P9nppYGSSlLOUrKq69RZmTj3GdknAyGCIg5ymETukSH/y3UMrKwoZblLYyVn kUhDIvfmsPrMnR07dujlJg2KjEcYN26c5UIqA8snTZqkT4f+/PPPtUBY3fUvn1+O40tkfIi8j5XI Dww5c0DO+hJJkePtVp/WKodO5RDq+PHj9aDfVatWWdq4Szsl4/SkLpLItpTebn9/SHnyHnLKviwv +T4ii1Yi61rOSpHD77KupX417T1Wbfm9lQeprOQDywb03nvv6QEoYtdWIBu9VEhSCUpl8emnn1oi J7Lxi5TIAEEZyCcVhXxuKxpL2Znmzp2rdybZKEWqrNroxY5lWciIelkesmHK8rcC2VllkKSIlFSi Ml7DqopTGkg5tU6Ws+xIsr1YhVT2sixkOYtQyS/ftN3OGUW2swULFuhtWiRz8uTJWqqskAfZP6Rc aUgkUqmYXMHRBNnuZJ8ROZayZbnb0SNzJ7LdywA6ES6RIZFQK38pinCJkIssigxJpbl3717Hs9Yg P05kG5J9Shp3GeQmMmQlIrfyHiIMss5FtKz+NSrbruzPsh3IerDqB50TWRdyCrpIu/RyiKzKDz0r kTpTfsDImCCpL6z6cedE6ghZD7IOZPnI+8n3shLZTqUNkEHLUpfI97C6N1DGUsj3kHUgPxRknzDd nlRbfm/lQTYasUP5ZSYrQn5xWDVwTczNuVBk45H3sOpXlFSu0tUjxiYXLrKq8pYuVdlgpIGQjd3K DV6QX6vSLSwNmmwoVlXQslGLrEnvgyxnqZytkh5ZBjKCXT6z/JK3clyFVJLSwyPvIQ2LiI8VlYAs V6l4pbKXbVwqAKsGqUrvlGzX0tsg27Ns31IJW4E0SvK5ZaCuNEyyPKxsxO+GfC/pnbHrcIlU8s6G UCp/KyTxTqTilS542UaljrC64ZXt1LlfyfKyurs/LfI+Vn/+O5HPb8fh00Agn9uqH7q+kG1U1oG8 l9WSmFlUW35v5UEWjPzakMpKfv1J5RGoyiqzyI4sDY3VO5iz8smuSINmV6VjdYXvFAVZl1Yv87Tb hvx6t3Lnl31EPrMgy8TKXz1SrvRSBeoUTUJI9kO15VljwKR0+UmPg3RRW9WVTgghhBDrUW35vZUH 6Y6RYy7SfSzdxnKcTXoiCCGEEJI1UW35vZUHGZcggyXlOKd08ToHoRBCCCEka6La8nsrD3K8Vo4H O4/fyvF+u46XE0IIISTzqLY8a4x5IIQQQkj2QLXllAdCiG/kWgVyqrNc7ErOhsrOZwIRQqxBteWU B0KIb/r164fw8HB9p025lbtcxMzKc/NFTnhaKCHZC9WWUx4IId6R8UeRkZH6yqFyISq5AFjr1q1v 3wFXBjs7BzjLRaWcF8KSM6bkYmTO8UvSYyHzyhgnubCOXPBLHsu1L+TKj7Vr19YXpCKEZA9UW055 IIR4Ry4+1aZNG3Tq1EnfU0GuBpuYmKjFQC513qFDB4wcOVJfCjgiIkLfr0BkQHorYmNj9SXQ5ZLX Mk/79u31a0Q8goKCtJTIpbXlCq2PP/64fo4Qkj1QbTnlgRDiHTkLSnoa6tati969e2txkBtMyfiH 0qVLo0ePHihfvjyGDRum5UAu8iYCMWDAAH1oQ242JjfcCQsL0/NWr15dP+7bt6/usZDXyD0g5Dkr r5JJCLEX1ZZTHggh3pH7G8TExOh7iqRFJKFixYpaAuSufHI/jBYtWmipkLsxvvTSS3qQpdytVG4K Jr0So0eP1jeUk/vXyA3O5NoucXFxGDFiBBISEiy/iRQhxD5UW055IIR4R8YsSK+A3JE2LdKrIIcu 5JCG3OZdeg3atWunpUJuvia9D02bNtXzyKXnJ06cqAVBrukid1Ts37+/lgeZJoc85PCF3DmQEJI9 UG055YEQ4h05bCGNvLezK+Q5uaGd83bKcjMt5wBJ+V8ObziRwZYyFkIGSF66dEnfEVRu7iXzCVK+ 1bdlJoTYh2rLKQ+EEEIIMUe15ZQHQgghhJij2nLKAyGEEELMUW055YEQQggh5qi2nPJACCGEEHNU W+5LHvqo2CIP11S+Udmrsk9lv8oBHznIMAzDMEyWSNr2+bqKtzbeNnlgGIZhGCZnhvLAMAzDMEy6 YtuYB4ZhGIZhcmYoDwzDMAzDpCu+5OFxFcoDwzAMwzAekTEPMSpNVGqohKkUUhF5eEDFrzz8n0ot lfoqzVRaq3RRkYJfVhmhMlpljEqyI/K/TGMYhmEYJntE2m5n+x2vEqXSSKWaSojK8yqPqRjJgzz5 Z5X7VfKpPKNSWqWySl0V6dKIVmnpJdLlwTAMwzBM1s6dbbe069K+Szsv7b20+9L+iweID4gX+JQH yX+r/Enl7yp5VAqqFFcppyI2Uk9FzETeRHommjv+MgzDMAyT/SLtubTr0r5LOy/tvbT70v6LB4gP iBeIHzhdwQ2nPPw/lb+pPKwiIy2fUymlIgVGqFRXkUMbtRmGYRiGydaR9lzadWnfpZ2X9l7afWn/ xQPEB8QLnPLggUyULon/VZHjG9JVIdZRQEUKKqESrBKqIm8gKc8wDMMwTLaMsy2Xdl3ad2nnpb2X dl/af/EA8QHxAo9DFk6c8pC290EGSkgBYiBPq0ihMgKziEpRhmEYhmGydaQ9l3Zd2ndp56W9l3Zf 2v+0vQ4+5UGQJ2QmGRghxzjkhWIe0nUhhT2qIqduSOH5GYZhGIbJ1pH2XNp1ad+lnZf2Xtp9af/F A8QHfB6ycCJP3ikQ0mUhp3DepyImIpGLRjzEMAzDMEy2jrTnzrZd2nlp76Xdv1Mc7ioPwp0CIcc6 pNtCTtWQAtPmrwzDMAzDZMvc2aZLOy/tvbT76RIHJ86ZnWMgnCLhjBTMMAzDMEz2T9r23dnmO8c4 GItDWpwvdIoEwzAMwzA5N2nbfctIWyjDMAzDMDknhBBCCCF28B//8f8BmKIeHeUwcBgAAAAASUVO RK5CYIJ= ------=_NextPart_01D73C45.D2921D00 Content-Location: file:///C:/0E85C06C/20-CURVASROCFINAL_archivos/image008.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAf4AAAGECAYAAADX1kKCAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAFxEAABcRAcom8z8AAJOxSURBVHhe7b0HfJzVlf7/T8+mkk3ZlM2m92Sz vzTSKwkECCHJJiG0QGBDJ/Tigg027t3Gxg33invvVZasXq02ozaSRtI0STOjasPzv88ZvUaI8Vi2 VUbznufzeT7SvHOn2ZK+95x77zn/n0qlUqlUKpVKpVKpVCqb6k09/Ga1Wq1Wq9Vx456cvmh1h/xb uvmtarVarVar48bdGd19MtArfdoYarVarVarh4S/ZPwO47d32ZoIdM8ExJSCX61Wq9XqoeNvGL/X +D3G7zJ+p7E1AehV5P8Z42hPrFar1Wq1Ov78XeP/MP6Q8QeMOQngBKDX8P+scbQnVqvVarVaHX/+ ufHnjD9l/HHjDxu/39iCv5X2jyrOCBT8arVarVYPHf/O+JvGXzP+vPF/GhP+7zNm2v9txueM+nmR s4ZoT6xWq9VqtTr+/Dfjnxh/z/i/jQl/Rv7/bvxuYyvqfwP4eSEW+N1QqVQqlUo1KDIcbujBZct3 GF9l/Avjy40Z+TPtz6if6/3c8W+B/3XwPx/467peW6VSqVQq1QDLcNjbg8uW7zP+g/FvjX9q/P+M yfKPGlvpfm7yiwp+rgEo+FUqlUqlijMZDp8L/A8Z/9X4OuNfGn/H+IvGHzO+zNgC/xvW+c8H/vqu 11apVCqVSjXAMhz29eCy5UeNbzRm1P9rY671f9n4E8YE/78ZK/hVKpVKpRpKMhw+F/gfM77J+I/G vzH+vvFXjBX8KtVAqaamBsePH8eBAweQkpKCQCDQdQ/Q1NSEEydOwOl0dl15TaWlpTh27Bja2trg 8/nk+4MHD77OfKzbHdlr6/F4cPjwYdTVRV+JS0tLE7/yyity+8yZM8jKypLncblcci2agsEgkpOT 3/DafD/l5eVdo17Tq6++isLCQhlz9OjRcz53Z2cn8vPzcejQIXFBQcHZ96ZSqWLLcPhCwc9jfSzo o+BXqfpLBOv69evxwx/+EO9+97vxnve8B+9973vxv//7vwJSiuD++Mc/jieffFJud9d9992Hf//3 fxe4btu2DR/84Afxrne9S57H8jvf+U785je/EdAS4p///Ofx+OOPy2t3V3FxMT7zmc/glltuEeBS BO03vvENvO1tb8O//vWvc0I3MzMTX/jCF/Bv//Zvb3jtb33rW9i+ffvZx4ZCIUydOlVei5+Z/sEP foAtW7bIhMASJyvDhg3DJz/5SXkufq7/+q//wrPPPouGhoauUSqV6lwyHO4N+K80VvCrVAOl/fv3 48Mf/rCAfdSoUZg5cyZuvPFG+R0iMBnFnzx5UsD30EMPdT3qNf3f//0f3vzmN0s2YOPGjQLo66+/ HrNmzZLnmjFjhozh9euuu06yB7feeqtAl1DvrmeeeUbgygmEpcmTJ8tEhO/xK1/5yhseY4lZAk5A vvvd7559bfqJJ56Q61//+tfhcDhk7Jw5c/CWt7wFP/rRjzB9+nSMGzdO3s/HPvYxyUZQHR0deOyx x+Tf4aqrrpJxEydOxNe+9jW5NmLEiDdMXFQq1etlfldirfFrxK9SDbTC4TD+8pe/4D/+4z+wY8eO rqtAS0uLTAIYlTOFTvB/4AMfEBD21D333CNRdVlZGTZt2iQThNWrV3fdGxEB+e1vf1teh+DnBIGA 56TAEpcALr/8cnz/+99HY2OjXOP7u+KKKyQanzt3rrzO/Pnz5b6eSk9Px4c+9KGoWYmbb74Zb3/7 25GamipLGpwE8P1YEwFqz549+MhHPiL/Hu3t7fKZORG49tpr5b1ZYmbh73//u3xGTfmrVLFlOKzg V6niSVVVVfjiF7+Ia6655nUpboq3rYg2KSmpV+DfvHmzpM0Z4XMisXXrVjGjY4L+T3/6E1pbWyVN Tph/73vfk4wCtXTpUoHz7Nmz5Ta1b98+mSw8//zz8hhODJg1aG5u7hrxmgh+jmV0zrQ+0/b8ypQ+ rzN7wdQ91+n5fkePHt31yNf029/+VpYh6uvrsWzZMslkrFy5suve12QtQ6hUqtgyHI4Ffu7qV/Cr VAMppuc/9alP4W9/+1vXleiywM8MQE91Bz9T9Fxj7/m7yDQ9x3GN3xJhzuzAzp07JcL+wx/+IBF2 9yicEw3uGcjIyJDbnEAw7c/IvacYiX/iE594w2tzIvLXv/5VPgPFiQjfL1P3PcVonyl/bvRbsGCB TEQ4eVCpVBcn8zuo4Fep4kmVlZWyIe7qq69+Q9qaEf/p06flewv8Tz31lNzurgceeEAAaUX8jOz/ 8Y9/yPf//Oc/8aY3vUk2x/GkQHedOnVKomtu5GNk/773vU9Ab70mo+5f/vKXshbP7ADfI8fzd3vK lClvyFBYET+XBhjtDx8+HO9///tlItJ96WHXrl0C/vHjx3ddeU2///3v8bnPfU5OHDADca6In+v/ KpXq/DK/rwp+lSqexPV7pt8JzN27d3ddjVxnKpyg5zp7Xl6ejCEYuSPeEiP13/3udxKFV1dXyxo/ I+yXXnrp7P3cXEf4/+pXv5IxlriMcOedd8rz/uxnP8Nll10mR+ss8bl4jbvov/zlL0skzo11fP4f //jH8Pv9XSMjIviZWXj44Ye7rkD2A7zjHe/AV7/6Vdn8R5WUlMhtbuzjZMUSN/UxY8DTDDyayMkO 1/y5UdHr9XaNgmQb7rjjDqxbt07X+FWq88hwWMGvUsWbmMq2AMvd7YsWLZLUP3+HuAZfW1srsOcG OV7jROHFF1+UVLh1jV8ZBa9du1ZAy930lrhRjyl0juNxPELVEk8U8LWt57XW7vlczBbwPtYV4CSB kwheJ9h5QoBLBN1FIDMrwcdZIpi5PMDn5yY9az8B9xFYu/o5OWAGgUsenDjw9ShucORRRT6Wkxt+ Xu4XsHb1c2JkZSdUKlV0md8VBb9KFW8iTJnOJuSt3x2m6xn5dl9L534ARugWqGmu0d9+++1n1+UJ fqbseVyuuxhlf/Ob35QU+5o1a7quRiYF3FDH17OyBBT3AnDT4Z///GfJOHQXI3HuBSDgu4PXSvXf e++9XVci4msQ+ny/TO9zYx4nMtOmTZO0vvVZeJqAyxPdj+gxQ/HII4/gox/96Nlxn/3sZwX6PTMO KpXqjTK/Mwp+lSpexWNuLNTDXe/cTMd0f08xWs/NzcWRI0ckNc5iPNylb4nH3rpX6esuThwYTXMS YInr9Ey3c/2/+059HvljFUHuQegpgpuQz8nJeV2qnTDnEbxo1QWt3fx8TPfJAics/Bx8LWY2oomv x9oB/MysAshKhSqVqncyHE5c8DMNySgl2jEf/nFhRMU11GjHkFQqlUqlSkQZDicm+LluyKIhV155 pUQq3WWlCm+77TbcdNNNsk6o64IqlUqlsoMMhxMP/IQ4zwXzSBJrkXdvbEKxQhmPOzEjwBQo1x+Z 2lyxYoVsOmLN7+eee06+8lzzwoULJTvA4iFqtVqdCF69agXWr1uJ5ctXYdK0GVi9aQ3azN9EVeLL cDjxwM81Rkb8XD9kkZCejTt4Fpjgp7hOyBrl/MpdxTzrfPfdd8tkgLuHuVuYu6lZxpS7q9VqtXqo eTw9fhwmTRiPaVMnYuaMSRg1eiz+dttTuOHvj+BHP/0erv7zNahrjJywUCW2DIcTd42fZ4S5C7on +DnbtcDPPQCcHHDDkrWzmOauZR4d4nIAm4tY7U3VarV6sO33034EAn400o1+NDUG0Nxk3BxAUNyI UNA41IiwMcfV1DYgt7AK63fk4dmZKXji+R04fHQH5i94Btfe9HvUBgbsz7NqEGU4nLjg5xEj1jtn tTGKR4K4kY8b+hjNV1RUyJIAy5bylymaeB/3AFDWZECtVqv7221trehob0VnRxtOd7bjlTPtwKsd ePWVDpw+3W6ut8rpjXC4BcFgGI1NIdQ1NKGkzIOMPDcOJJm/b/scWLH5FF5YkYuZS7Ixa1kWpizM wtRFeVi3LR3Z2duBzjJs2b4Jf7jtz/A0vlYUSZW4MhxOXPCzTjgbk1hQZ6UvpvO5ns+2ojyrzIwA y4WeSzyXzMIoFM8ec6OgWq1W94etvzFtLUG0hJvhDzTCXedDVbUHpWV1yC+qQVp2FQ6ecGLHgWKs 2pKP+auzDcjT8NzsFDw7Kxnj56Zg2uI0ub705Vys3ZaPzXuKsPdoKY6nVSC7oB6VVU7UVu5GQ00q XsUrmLduMf5821+jHhdVJZ4MhxMX/EzPs763VfyDRVF4jI+3+cvFQihc2+9eHKSnFPxqtXqg3Bxs RltrCDn5NXhpfS4Wrc/BvJVZmPlSBibMO4lnpifh2ZknTNRuwL4qG2u3F2D7wRIcOlGGtKwqMzGo haO8XiYK9Q1+BPxM9zejoy2EM52tOHO6E8GmKlSW7UB1VSrCzWG0vNqBJ5eMwg3/uBEtoRb5W6dK bBkOJy74+0IKfrVaPVDu7Agjv7AGwyYflyh+894i7D/uRHJGpUT71bVeeLx++PwBBMzfo2CwCeFQ UCYLHe0hdLaH5Stvt4SDCIWaEWw2z90cNJOKVtTXO+Eo2oaaqnTzekG0hzrgP92EP825DTfcfiPa w6+Vbr5UcWmU+6Vi9U5gcDYQR6lZlKpnA6lYupCxQ1GGwwr+WFLwq9XqgXC7icqLSt0YPf0E1u0o RGtr0EA8jNaWYMTmdmsLoR5Ei7kdJthNNB80bibczXM0Nna5+3Nb0K8rhqN4G2qrs9FsoN/cHIIJ 9+ForcQ3Jv0Mf7v9JnSGL73DIUHOapDcQM1TUiz7zPfRUxy3ePHiN3SI7A+xhwQbOPVG3DTJ/g/R KlQmigyHFfyxpOBXq9X9bQK+xkTz415IwZKX8wTmhD2BLo7ymN642YK++5SJ9LegtibHXDOReLAF pw3kSzxOTCyfj1/O+AP+75//h7bQa6WeL0aM7llumX8zuXeKm6dZB4VfuWGxp9gG2tp83Z+aNGnS 6zpExpLL5cKvf/1rKZGdqDIcVvDHkoJfrVb3pxnBe3wBzFySjgWrs+Uaoc/IvefYCzEj+mYDeHdN vkDfXZsvu/87Qh1oNdcPVB3H/WnPYHHNeqzYuAr33X2vTBQuRdxDxaJnPDFlicekCX62d2YKndkA RuDs0cDW0uxHQbGiKmus7N27V8ZYjaDYh4KdJdk10pLVv4IZA04wzrWcwOdZv349nn76aWniRHF5 gdH/vHnzXteS2hLfDzd9871x/xdPh02fPh2rVq06ZxOo4uJi2TjO57VKwCcnJ5/NGnAvWXZ2tix9 8H3zMy5ZsuRsjwz2pODxcxaV48SJGYcNGzacfa6+luGwgj+WFPxqtbq/HAF8I+atzMSUBWmyIY8b 8aKNvRBLpG8ie0b4pQL9UwgH23EmfAY1fjfmFa7Aw+nPYb1zO1559RXs3r5bTkBd6q5+wp3P07N7 IztDEoyE7o9//GM89dRTAm8uBbAzJI8lsl4KK6fef//9+Pa3vy1NnMrLy2WpgNBmJVVuyOZEgmCm x4wZI+2ZObHoLk4w2LzpwQcflInIL37xCylkxMcSuizINnLkSGn/3PMoN8HPdtSs8cJlCD7H8OHD pbz7hAkT3rD+z8kOJwacXPDzWMe/WQOGnTEpdqAcNmyYnCj7+c9/Lq/NI+XMRBD2nFSwDTXfG8vJ c+wNN9zwho6afSXDYQV/LCn41Wp1f5hr9OFQM1ZvLcDY2cmoqGowEAhHHXshlki/KYQaVyYcxVvg qS9FR/gVnA53IsOdg8cyxmFk9hTk1heiMxhZ09+yZUufgH/fvn0CyJ6R6sSJE+UINScErK3CFD/F suqMbBlVW0XVGPleccUVAmT+7SV0OZ6PZ1VVfsabb74ZixYtkvGjRo2SiUR3cYLx0EMPyXNT/J7g Z2R9xx13SMaB3SQ5edi+fbuMsWSBnxE/I/aioiLpcEkIsyV1T/BzwjJ27Fj5ns9vLRGwXfbLL78s 3/O9P/PMM5IZ4OdntoOl5DkB4ASFkxN2muQkgp0mWXSOE52///3v8vi+luGwgj+WFPxqtbqvTeC3 toawaU8Rnpl+AoWl7kik37VJ72LdHORzBFFTlYby4h1o9rhwuuUVifJXlG7EfWkjMddE+w0BD06H OtHUGNl011fgZ0T+2GOPyXvpLqbV2e+Ef0NZKdVK799+++3y2gQxo2WK6XRGuwQ/gfnVr35Vomde Y2TN98ixTIlTHEP4dxcnGCzFzokIxb/hjLr5uj/4wQ9w1VVXyWtzAtFzLZ9jOCHIz8+XCQwnD5w0 XH/99fIeeorZCGYquouTA77Hbdu2yW2+b47jJIKTB6uNNCcD7AvDrAKPnhP4jP75euwzw/+T/pDh sII/lhT8arW6L82Ne6dNZH/4RBlGGeinZbtkc5+1M/9i3RxktqAZ9dWZqHHsMdCvRoWvFmscWzEq exqGZ03CwaoktAVbxXwM/6ZRfQV+Pufy5cuxZ88eWc9mCp8AZUqd6/6MiJmat/YAsA8K18WzsrKk Pwo3+jHdzdQ8wc81f6bDnU6nLCNweYDvkQDmZIFiup+p8e5izRZOBpgV4GfkxIERNJ//X//6F44e PSqpfH5uaxJiiev+1157rWQZ+Lefr8X3xwkN4d8z4udrMGLn52Ukb+1F4MSDEx5OHvj6XApgxM/n 5r8JtXr1avz3f/+33EdxEsAJCZ+H/x/MiPSHDIcV/LGk4Fer1X1hHrEj3HnWPjWrCmNmJyMls9Lc DslkINpjzuegie65Ua811I6Q+b7eRPrO4u3IcaVheekWjMiegqn587G38oiJ8hvQEWyTcdbj+xr8 FCNXwpBRLFPzXLtm2pxi6pwgraqqkttMh3PzHTfREYKEP9P2v/zlLwXIjIC5xs/S6YyguVmPaXym 6zlBoPj8hH9PEexcL2c6nbDl+jw3AXLdntE3ocqvnIx0F2/zPTI651i+NiN6TlII857i5yUj+Fl4 v7Wuz0zB1Vdfjccff1wyDHx9TmD43NZSBzf3/fCHPzz7GE5myBy+Z04y+O/RHzIcVvDHkoJfrVb3 hQn9050h5BXWYqSJ9HcdKZWz+6zWF218dzebSJ6QDzeH0GJA324AfibUaW4HUeV3o8JbiWLnfuzM moVJWdMwLHsq5hWuxInqNJlwvBo+LY/t+bz9AX6K69eE9I4dOwR2lriRjWlufqW42Y2l1DmeO99P njwpj+NyADf2UYzAuQ7PKNgSn9N679wE2DNqt0Swcs8Ax1uAJ/y54549W3pu7KOYLeB7tI4fMkrn e+JX6z31FDMJ1r4BKyPAr3wdruFz7Z7vk5MWPjczIRQnPLzd/d+d2QAuY/C991ctAcNhBX8sKfjV anVfmJF+WVWDRPorNudLVT062tjuJrAJ+o5gO4JNQTg9lUiuScfmsj2YX7wWMwoWYr0B/sHchZhf sAirnDtQWF8qk4XOUIeJ8EOvL+jTzf0F/gsV19n5t5Y74pn2ZnTM1Lmqf2Q4rOCPJQW/Wq2+VLOE Lgv0THgxFS+uypbonyV1o43t7lZZi2+Wtfl5RSswPvcFjM2dbTwLY/PnYqYB/Y6cF1FcssNEzrUI svZ+MIzW5hYBfrTn7O54AT+P2XFtnDv4586dGzUSV/WdDIcV/LGk4Fer1ZdiAp7NcuYsy8TspZkG 0AHpvhdtrGVG6yy04w7UY+apJXgk4zm8WLQSG8t24Xh1Kkq9lfAHPPBUJsNddhSNfo+BfguC5nF8 bLTnjOZ4Ab9qYGU4rOCPJQW/Wq2+WPOsPnd1L92QJx32aut8sq4fbazlCPTbUelz4XkT3Y/Inoz8 +iLZxHcmfBpnWl5B2PwtcpUdRqXzoJlUeKVCX7TnOp8V/PaU4bCCP5YU/Gq1+mLMs/qM9tfvOIWx c1JQXtkgnfOijbXMNfzOUCdO1RfL8btpBQvlDD6j/1ATd/+3wO+vQ7ljLyrKDplI32cmFhdf9EfB b08ZDiv4Y0nBr1arL9TsmscCPXuPOjB65gnpk3++s/pck+8ItSG5JgNPZ03E0pL1aGxqPHvmnlG9 z1uLspI9qCw/Yv4e+S8J+rSC354yHFbwx5KCX61WX4jZI7/dQP9Icjmennwcx1LLz3tWv8UAnBv5 dlUclOp665zbI+fzu1L4hL7XWw1nyS5UlR8zf4sCXQV7oj9fb63gt6cMhxX8saTgV6vVvbWc1e8I IbugRkrx7jERPxvxxII+gc8U/3KW1E0diR0G/q0G6pwMcEe/QN9TaSL9HXBVnjDXDPR7sWO/N1bw 21OGwwr+WFLwq9Xq3pqRPevuj30hBTsOFKPFQD/WWf12A31vox9zi5bj0YyxOFmTdfbsPaHPNX1P Q5lU46upOim1/Nl5L9pzXYzjBfwsqsMOe6zex6N9FKv9sQBQ95a7LPBz/PjxrlsRsZwuS/BaYpte lvq1iuSwSiBL4T7xxBNSRY9189lz3xKr6LFzoFVNkMWFFi5cKGP5mO5NfFjch/9WrDXAioHdixMN JRkOK/hjScGvVqvPZ/bO58Y9buBjgZ5VmwtkY9+5zuo3G7MznstXLefyh2dPRrHHKY1zWKHPivQb 6h1wFG1GdWVq5FofRfqWLxb8rErX0XkG7R0X7zNnXqt5T4Cyhj9r9FsV+tivniVwrYkAxffJxjbW +yaI2bueoKesBjs/+tGPpK4/tWnTJvzkJz+RTnl8/KOPPoqHH35YquhRLNv7jW98Ay+88ILcZhU+ tg5m2Vx23vv9738v/Qf4WnxPZMLixYulIx9LErO071CT4bCCP5YU/Gq1+nxubwtLL/3x805i7oos +VtxLugT7GdCp1HmqcCzOTMwLvcFVHirTKTPynzMDkSgX19XAkfxVtS6MuRaUx9Dn75Y8Hv8rdiw x4ElGwqxYkvRBXn55ogLHf6uZ4NAmUBmsx02tqEY/fPvb3fw8/2xc51Vp5+TBHbdY9tcit3w2IKX 0GZkTzFrcN1110njIJbPZV1/1t9nZM/In33x2eGPzXs4GWDtfbblZclcio/7wx/+IM2E+NxWgx2+ L8KfPn36tFwbKjIcVvDHkoJfrVbHcmtrEIFAE15YkYlJC1JlAsBKfT3H8Xw+S+9yl/7hqhOyc39h 8Wp4Az4pxytjzKRAoO8uMpH+Vrhrcsw1ngbou/R+d18s+Bub25GUUYv9SVU4lFJ9QT6YHHFVbeS1 WKufFftYnz4zM1Ma67BO/ubNmyWi7g5+iiBn4x7WR2C9fTb5ofje2UyHqX6m7xnVE+KM/NkBj419 /ud//kd63Fs18BnBT5s2TZoBcbLAmvysGkjwW5kH/juxQRC7/XFy0F0bN26UbnpWXf+hIsNhBX8s KfjVanU0M73PAj304vW5eHZmMqqqPegw0X/Psdyd324ieoeJ8ucWLpNKfBvKdsqmPuu4XpMBGaHv ri0w0N9ioJ9n4MZd/f0Dffpiwd+XIuy//e1vS/c7Apb99wldrvn3BC3F982yvoT0ihUrZOJAMeV+ +eWXS797/t3+yle+gkOHDokZ4XPNn5OGJ598Up6D4lICu+Mxkv/mN78p8Geqnx30rPV7TiIY8TMT wfdjZRcoXuNeAKvp0FCR4bCCP5YU/Gq1OppDIQNtE9mv2XYKw6cel019bMRj3c/GOGyByy56vkY/ 1jl34IHUUZiSPx8F9UUG+C1dO/fN3xUzLhgMG+jnotRAv672VL9Dnx5s8BPGbMhDGDNy53o819yZ pidUub5OcHPzXm5u7tnon+l3wpoRN8Uud3wMIcyUPJ+HKXguA3CjHvvhU3w80/q8n/392fZ22bJl MslggyA+J7vsXXPNNbJvgFmIm2++WXr5MyswceJEWY7gBsM1a9bI83L5YKjJcFjBH0sKfrVa3dMs 0HO6I4wdh0rwyPNHkJ7jwulOA/GuAj1SdjfYJmA/Vn0SI7On4PGM8dhbeVTuj6znR6DODXt0rSsb pcVbUeculsi/v9L73T3Y4Gc73jlz5kh7Xku8xhQ8U/Y33nijRN9/+ctfZG3een8cw6jfasfLtXne 7r7RjmO5JMD9A7zPOh3ANrh8bsKfX7uLPfS5fEC4//GPf5TXJey5rEAR/lwaYKbg/vvvl6yD1YZ3 KMlwWMEfSwp+tVrd3YQA0/mHTjjx8JjDOGi+chLAM/yM8tkZ73SoA8UNDkw20f29aSOwqHgNqrw1 Ev2zex4r8kWeKwL9GlcGnEVb0VBXKtBn2r/n6/aHBxv8cjqgo6Pr1mviNUbxfD+ELdPvhH33o33d N9RZz9MTwozwLXcXH8tr3Z+P4mvyPk4kmNKne47h/XxP/PcbqjIcVvDHkoJfrVZ3N0vvpmRV4aGx h7H9QLEc4wsFuVs/hFcM2P0BPzaX78GD6aMxOmcaMtw56Ay2y8Y+ZgKs3vgR6AdRXZUKZ/E2eOrL pMNef6f3u3uwwa8aHBkOK/hjScGvVqtpVt870xmGo7xeSvGu2JwvBXpYmc/arZ9am4VxeXMwLHsS 9lQeRsBE9oz+rbS+5UiN/Wa4KlLgZC/9hgrz/IT+wET6lhX89pThsII/lhT8arU9zV37/Mrz+Gyl 224i+2KHG2PnJGPxuhwpwnO6tU2K7pR7q2S3/oPpo7Ck5GW4/XUCfO7mt9L6liWVb75WVRyPQN/j GhTo04MNfqbbuZlu0qRJ4pkzZ6K4uFiO1CUnJ0v1PhbW4dn9tWvXIhQKdT0ScDgcsiGQSwCW+JlW rVolGwa5ac/tdnfdAzPZapY1/MLCwq4r9pXhsII/lhT8arW9bAGfjXakja4BRu6pGonwR05Pwkvr c9AUMIDseAXeRi9edu6QcrsTcuciozZXau+/ltZ//d8MAp4NdirLj6GsZCd83uqzE4HB8GCDn2D+ 9a9/Lcf4uInuqaeekiNzPKb34IMPSpW+K664Qq7zHD436XEdn+bu/69//euyi5/iZ+Hue54Q4FcW BOLxPGtiwKN8PM/Pnf9W1T67ynBYwR9LCn612j5mOp/RfYexu84nnfVmL8uUM/pLN+QhLceF9mYT 5ZtIP6U6A8MyJ+LhjOews+KgAT176TOtHz1yJ+DZSrfCeRhlpbvh97kHFfr0xYI/fLoFp5pLkdVY gNzGwgtyTpcDp5tQXV2N66+/XnbxMxLnEbubbrpJaucT0KyJz+N4FI/c8Yw+N9dxNz/P5hPsrKfP TXksynPVVVfJMTtuvmOEz9r+zBLwfhbgYaEgfk6r+p5dZTis4I8lBb9andgmIMKhCPCZ1i8tq8O2 AyWY+GIqxs5OxsbdhSgx1zpaWtlNBpX+Ksw7tUI66b1wajkqTdT+aui0HN3rGeGffQ0D+EDAiwrH fpSX7oXf3yDRf7SxA+mLBX9FuBrPF87Bw9lj8FTuhAvyEznjxWnNufB7/bjm6qvx85//HL/5zW+k mA6b4rDaHiN+NtdhpT2eqecZe6bwKcJ9xowZqKiokKN3KSkpAndODu666y65xnP5VqqfBYGYNeDk gEsH8+fPl/F2leGwgj+WFPxqdeKZ6fygAT4L8FiV9tJzqmTtfsqCVExfnIH9xx2oq/eho7UF6Dwj Z/d3VRzCsKxJGJc7B1nuPNnQ13O3fk8T8IFAA8oJfcdeBAz0BzvSt3yx4D/96mk0djbD39GIQEfT Bdnf5fZXOiTiZ1Md1t5nBT9G8ayUR7OG/vPPPy+Ne/h3mIV3uPZPYPN8P6N7Fun57ne/K3sAKN7H z5CdnS37BVi2l+V0mTX4f//v/0ktAFbh4xl962y+HWU4rOCPJQW/Wp1YZptcrt0zuq9x+3AwqQwz XsrAhHknsWxDHjJzXTIpYAbgdEsb2kNtyHYXYFLei7Jbf3flIQE96+tHOulFfx2a1ff8/nqJ8sud B83fEF9cRPqWLxb8fSUrPc+UPMXNeozIWZmPf3sfe+wx2fTXXazkx4p5nBQw6mckz/r+bM/LDX2c QDDS5+ZAfiZW1uMYmtX9WM2Pewp6Fu+xkwyHFfyxpOBXq4e+I+n8oAA/2NyEU6VubNpThDGzUzBp fip2HCiVFD839LHsbsgAkGD3N/qx1rENj2eMw9Lil1Hpc3Xrlx/9tSwT8H6vG2Ule1BZftT8/fDL RCDa2MHyYIOfTXS4mY8ROsX1eFbaY1U9Ap9tcbn+b4mb+liNj++3uzhZ4P6A/fv3S5T/17/+Vcrx pqamIi0t7WynPkvs4seSwD0L/thFhsMK/lhS8KvVQ9dMz/OcPYHv8zciObMKC9dkY/TMZNm0dyy1 AnUNPgE+I3xW3+OZex7FK2lwYkLeXIzImoLU2my0BU30bxztdV7vZoE+d+w7S3ehqvwYmhoD5tpr dfzjxYMNflbFC4fDr6vCxwp83HXPOv782nMHPlP33cdTHGtV52O1PZYA5qSCYvqf93cXH8/XtasM hxX8saTgV6uHnpnOb28JCfRr3T7sOlSKyQvS8PwLKbKOn1tYIxkArvGHw80CfD6Oa/bcpHfYlYxH M8ZgRsFi1PrcUnnvfGn9iLug76mSM/quihMG+o3m+fu+l35feLDBrxocGQ4r+GNJwa9WDw0T3qyk x6N4/F09VezGum0FsjOf0Gdq31lRjw5G98ZM/1tNdRjld4TapfDOouK1eDJzPLZXHJAjer2L8o3N 83HTnqehHM7iHaiuPGmuc1IxcCV4L9QKfnvKcFjBH0sKfrU6vs2z95F0fhgNHj+S0sqxYHU2Rk0/ gRdXZSEls0p25zOVzwjfiu4ttxhYc90+y52PZ3NmYGLeXBTUF8u1ll5H6oR+KxrqHQb621FTlSaT hniN9C3HK/j9fr902rPzkbv+lOGwgj+WFPxqdfyZ0TrT+QQ+XVXtwbZ9JbJR77lZyVi+MQ9FDhbI aZL7uYO/J/BZctc6irepbDf+lf4cXipeL73z24Ptcr37+HO6K9KvryuBo2gral2ZAv2BbLZzsR5s 8HMzH0v2di+tyzV+FvDhWfuenfEuRdzIx2ODVVVVXVcuXqwGyNLArA/QX+KRxn379nXd6lsZDiv4 Y0nBr1bHj610PiP3gPl9zC+qxZINuXjWwH7qonRs2VcEl5kEMN3PcdzcR8D3fB7uymdP/HJPJaYV LJT1/IOuEwgbgHONv+f4c5vQD6OurshAfwvc1TkS5cdzer+7Lxr8LJv7yhnj011fL8R8TGRzHo/z XXnllTh69KjcprgRj0fw2IqXG/a6v0+KkwGe5+9et5/jYrXK5USRWQSe4beO8RHe3ev8W+LGP74H 6/mZdfB6vWc3A/I+lgVmxUHCmeL7seoCcILBDYn8t7Q2IfJ9cYwlTm74/HxP3cXPab0nVjLkRIXi 8/Hz9dWGRMNhBX8sKfjV6sG3da6e5tn7Q8lOzHgpHaNmnJBSukzne7wB2b3PCL9ndN/dbJzDSP9E TRqeyBiHiXkvwtFQhs5gRy838Fnm64Thri2IQL8mTyYBQyHSt3yx4O/oCMPbkIsGdxoa6jIu0Onm cel45UwTXC6XwDgpKanrmSGAmzp1qpzp53ti2d4bbrhBqvIRgDzqx0I/rONfWloq5XtZ5//222+X oj880mdlCvj18OHDuPXWW6V4z29/+1uZVPCsPysB8igh6wJ0PyXAMsCsC8AeAAQ+qwSSA6wbwMkI KwtedtllUgSI/158PF+XJYbZYOjAgQO48847pYAQKwtycsCywjxeyPfC26wjMGLECClBzMxGe3u7 QP5vf/ubHEXk5OTIkSPCnpKSEnlPrF3AugasV3CpMhxW8MeSgl+tHhwzUuf6PaP7NgPzwlI3Xt5Z iPHzTmL0zBNYv+MUip31EmlxQhCOks7vbqbuCXyW1V1RugkPpz+LreV7pOIed/P3OrVvzIieZ/Ld NfkoNdCvN/Dncb2hEulbvljwnznTjlBzNZoby82/W8VFGWgX8P/pT3+SEr2WmIq/5ZZbpCofG/Tk 5uZi5cqVUq2PkwFOFAhAPu7uu++Wx/LM/+rVq6W8L+FpHd8jeAlZntsn8Al+dvnjZ+VjCWg2CWLm gWK0/vvf/14mEozICf2rr75aIvxrr71WJgS8Tjjz3yw9PR3XXXedTCBuvvlmaSQ0bdo0yQbws3Gi wN4DvM7JCicLLD/MEsWcIPA98RpfhxOD3bt3S/Zj+fLl0pDo/vvvl3Q/3w+XFvheOBG6VBkOK/hj ScGvVg+sCXurz70/0IjU7CrMX52FsXNSMG1ROvYec6C23ieTgdbWSDo/2vN0d7g5hA4D/cL6Ejyf OxsjsqcgrSZbivSELyi1b0E/JGl9R/FW1LmLzHtuGXLQpy8W/H0lwpElewlQS4zg+V4IfkbKFJvq EOCMuglNVuxjBE/Ys/gPC/gQloyKCW4rTc/iPQSrdcafcCWYOaEgQFkGmMV9rPQ6MwTMDlgpdr6H H//4xzKGfQPY1pdiPwD2B2D0/+1vf1veC+HM98D3wuifKi8vl5LC/Bx8LUb3LFDE98l0PzMN/Kzs JsiJQXexQ+EDDzwg2ZA5c+ZIVUKCn5mKSy08ZDis4I8lBb9aPTBmtM7IndB31XilVv6kF1MxZnYy Vm7OQ1a+C02NTWfL7XKCEO15epqFd7huv6P8AB7OGIO5RctR46+VIj08xhftMedyZP0+hBpXBhyF m1FfV2zeRyuahiD06cEGP6N7RtyM6J1Op4CSa9uM+JkKZwqdysjIkLQ4G+8wuuZEgHBmNMzqfgQp 0/cEMqFugZ/Pz7/hjJa5YfCb3/ymwJnPweiaz7to0aLXgZ+ZBC4rUIQtgcwTBswasLUv9Ze//EXK CnNiwSwDywMT0Js3b5ZJgvW+a2trZcLC69wIyIwFMw6c7Fj7CLiMwWqEhDw3OnI5YPHixRLxs1ER /x04keDnu+aaa+QzXqoMhxX8saTgV6v73+yOR5gXOeqwdvspKbTDHfq7DztQXlkv93PDHr/GSud3 N1P3XLev8bvxQuEyPJbxPPZWHpXo39rNH+1x57K1aa+6Kh3O4m1oqCuRNX2pBxBl/FDwYIOf/3Ys sUugEYBcpydQrQiXsKa4ls91bqbkmRYneAlFTgAcDodEwUyLM7LmuO7V/ghkwpL7Btijv6CgQJYH GNkT2gS6dWyQkTSjd2vpgVUCWdqXoGaa39rMx8yDNYZQ5zIE//2YueCEgpMRS5wUcEmBY/haBPjo 0aNlXZ/wt/YqMO3PZQFOergMwL0D/Hfgc5JDfO+csDCjcKkyHFbwx5KCX63uP3N9nSl9puu37S+R zXpzV2QhOb1SNusxlc81/t5G95YZ4XPXfqY7D6NzZmBy/osoqXfIROBCU/u0bNozEw5XZYoU5/E2 lMsRPh7lizZ+qHiwwU9ZO9Z5pI9r4oQhU+BMzzMdTjESJyit73vu4Odud5bq5XPxcT1T4RzL6wQ8 H09xR333nfaW+Jrd6wfwvfB9df+3sdL0lrgJ0Moa8LHW+7bEf2e+P74v2vos3b+n+H6s98T3aT0P 3z9fg2OtZYtLkeGwgj+WFPxqdf+5zYCdEfyKTfkYPjUJyRmVsknPSvnzPrbQjfbYaGYUzwp8/F3l Br4H0kZhVelm2dDH9fwLjfLpyE79JlRVnEBZiYG+p8pAgM12hjb06XgAv2rgZTis4I8lBb9a3T8m 3AOBRixam4PnZiYjv9gtnfEuJJ1vmZkDns1/JXwapR4nnsuZiUcyxuC466SJ/lvkCF+0x53PhD4n DWy0U1ayCz5PtXlviQF9WsFvTxkOK/hjScGvVve9uUGvvsGHucszMGlBKsoqG9DZcfHr5a3BVknh 76s8iicyx2F6wSJUel04He7sVQvdaCb0A41+VJYdRlnpbvi8tZH0foJAn1bw21OGwwr+WFLwq9V9 Z0byBHxFVQMmvpgqRXjc9T65Fm18LDPKDxoIs3Oemxv4Ti3HQ+mjsbPioEwCmPK/WEgzld8Y8KHC eQjlpXvg99Ub6LdGHTuUreC3pwyHFfyxpOBXq/vGjOZPG8AXO+swdnaKbOJr8LDa3sVAvxEtJiLn kTw21BmVPV3S+3n1ReZapzTeifa43pjH8wIBDyoc+1Hu2IeAvwFBSe9HHz+UreC3pwyHExP83C3J YxQ8N8njGz13efJYCAspsLxj912VPcVjIAp+tfrSzF35XL/PyHNh5LTjWLYxT87kc50/2vhYDjUH ccbAnSn87RX7pezu4uK1aDCwJvQvZgNfxJFe+gF/vYny95po/6CJ+r1yLfr4oW8Fvz1lOJyY4Ged Y5ZQ5PlLwjsvL6/rnkjXIxZE4LlPFk0g2Hlek8cweFSiuzXiV6svzdylf7ozjBMZFXhywlGs3pov x/d4TI/p+miPiebIEb0OAX9yTQYm572IEVlTcKDqmKzx97pv/jnMSN/nc6OsdI+s63N9P5GhTyv4 7SnD4cQDPyN4FjtYsmSJ/CCzHKJVCILauHGjAJ0VolihiTWb+T1LLrLOM4s6WP76178uVaUoBb9a 3XvzGB6L8hDwe4865Iz+7sOlco1n96M9pqclpW+AfzrcARbPSanJxIS8uXg8cxwWFq2G01Mh6f6L OZv/mpvNRKQVfm8Nykp2GugfNZG+/+wxvkS2gt+eMhxOPPCzmANLOLKiEsUqSqyOZKm6uloifjZa oFnvmb8AbJ7A8oicKLB6E3355ZdLBSlKwa9W996EezgUlMY6I6YlmYi/MnJcz4A/2vieZoU9pu75 /cnaLEzJX4CH05/DvMKVyK8vQkeo7YKb6/Q09x1IpO9xSWEeV0WSud5orl/cSYChZgW/PWU4nLjg 5w8zxfaILONoifWdWeKRpRO5B4Df9+yLbIlNHTTVr1ZfmBnls7vesg15Upgnu6DaQD8k7XWjjaeZ 9ifEJcI3UTxvH6s+iekFi/FoxlgsLlmLkganwJ4p/0sBfsQR6Hs9FXCWbIOrMlmek612o49PPCv4 7SnD4cRM9bON4sKFC6VM4qhRo6TmMcWSjux6xMYLLLnIJgus+8yOUNGkm/vU6gszN+x5fQEsXJMt HfUKHe6uM/rRx1tmkR2W2eX3R10pmMiUfsY4LCom8MsE+DyixzV+LgH0fPwF2UxAmkOt8NSXmUh/ q5Ti5UTALpG+ZQW/PWU4nJib+44fPy4ND9grmZBn5ydmAtjdiev5nAiwIQTvY2vFc9U/1s19anXv zGiZjXRq63yYtSQdE+eloqraI+n9WNAPByOb9gjzEzXmcXnz8HTmBCwqWoNiE+ET9uywFzTAj/b4 CzX3CgQN9OvrS+Eo2iqd9pqbIl33oo1PZCv47SnD4cQEPxscsA0iOyWxexPFTACvcfc+f+CZ8mfE H0sKfrX6/A4GmwTwzooGTHjxpBTmqXF7z3lcr3tKP2B+r466TkqE/0TGeCwtfllS+gR+e+jSduq/ 0Wzn2yLtdB1FW+CuzjLA58RkaLbVvVQr+O0pw+HEBH9fScGvVsc2j+YR+rmnajB61gksXp8Dn78x KvS57m91zuOufwJ/Ut6LsmmPZ/FLPZGUvtU290KO+53fzVJyt859SiL92upcgf5Q7aXfF1bw21OG wwr+WFLwq9Xndoh98g30T2ZWYfjkJKzcnC/Rf2tLT+ibCJ9r+Abo/kY/DrtOyLG8pzIn4qXidWc3 7fE8Psvwvv6xl25G9IS8uzZfIv262gJzm2f07Qt9WsFvTxkOK/hjScGvVkd3S7hZovrjqRUYOS0J W/cWyRl9XrcidUnpG+B3hDrgbfThSFUyxuTOwuMZz2N16WY4POWyvn+px/JiOQL9kInwcyTSr6st FOhfbEOgRLKC354yHFbwx5KCX61+o6UIT2sQOw+VYvT0ZBw9WS699dlS14J+5Bx+B3wmwt9fdexs 4Z0VpRtR5q2QdL6V0u/5/H1lAj8C/SyBfoO72NzmcT2FPq3gt6cMhxX8saTgV6tfbxbm4S79dTtO YdT0E5Lm525+1uPn/QS+BfSDriQ8mzMdj5kIf6VjE6p81WgLtZoIv6VfUvrdHdml34waVzqcxdvR UO/oqsan0Les4LenDIcV/LGk4FerX3Obgb4/0IhF63KkBG9eYa2s8bMwDzftEfj8PUmqTpOU/qMZ Y7C09GWUe8zkwET/LK07ECl2C/rVlScF+t6GcgM1+xTm6a0V/PaU4bCCP5YU/Gp1xO1tYTR4/Ji9 NAMT5qXCUV6P9vaQtMflOr034MHx6lRpnjMsaxLWObfD6SmXyUB/ruH3dCSqb4SrIhllJTsM9CsV +uewgt+eMhxW8MeSgl9td/MInlWYZ87yTMxckgFXjRdnOiKlcznmYFUSxuTMlNK6q0q3oMLrOnss r79T+t0dWb9vRFX5cWm44/W4zLXE7rB3KVbw21OGwwr+WFLwq+1sruW3twZR7KjD+LknMX91NgJ+ A4fOSPOcY66TGJ/3Ap7JnoqVpZtk0x6r7LUa2Maqy98fJvQbG/0G+kcN9HfB56sxIFPox7KC354y HFbwx5KCX21Xc7NeR3sI+UU1eG5WMtZsLkRbcxvCrY04Up2CcbkvYGTWFKxzbEO5t0qK8jDKDw7C 2XgCnq10K50HJb3v97kV+r2wgt+eMhxW8MeSgl9tR7MwD4/rnciowPNzUrH/YBWamhtxrO6EifDn yhr+eud2VHgrBfYR4A/ObnlG+oGAFxUG+uWOvQb6dZre76UV/PaU4bCCP5YU/Gq7mT30WXlv7+Ey jJhwEtsPFeK4OxlzS5ZgVPZ0Kbzj8ta8BvxBLHnLqN7vbzDA348KxwEzAfCYa7qRr7dW8NtThsMK /lhS8Kvt5JaWCPT3HKjEExOPYfKurZhW/CKmnpqPbWX7UOOrQUfXLn0Cv29r6V+YI9CvR1npXlQ6 D0nUr+n9C7OC354yHFbwx5KCX20Hs2EOU/vckLdrbxUenLoTd+4Yj7GF07HfdQTVvtou4HPT3mDX t2+OQN+8p/LS3agsP4rGgE9S/tHHq89lBb89ZTis4I8lBb860U3os+a+39eM5WuKcPOkFbhl3wgs KFuKCl9lVz/81qiPHXCbiUnQvBef1wVnyU5UVRw31xu7zu5HGa+OaQW/PWU4rOCPJQW/OpHN43qd HSH4GoKYvzwXv5s0EzcdegKbqrdJZN8RstrjxsPPvoF+qBUeT6WB/nYp0EPoB4PRe/6rz28Fvz1l OKzgjyUFvzpRLdBvb0FtVTOmLD+OX88ZhQeSn8VJTyraTVTNrnrRHjc4jkT6noYyOIq3oboyRa5F SvNGG6/ujRX89pThsII/lhT86kQ0z+ifbm9FcaEfD8zehF+/9CSmn1qAmqYq6agXMkAdzI173c3a /oR+fb1DOuzVuNLQ1NVqN9p4de+t4LenDIcV/LGk4FcnmnlG/0xbO7Jza3HrCwtwzfrHsKZsE9rC kTa6LNEbL9BvagpGoF9XItCvdWUJ8BX6fWMFvz1lOKzgjyUFvzpRTJjzjP6ZcCcOp5bi+nkT8fe9 I5FUn4yOcBtaJbUfTz/jXZG+u8hAfzNqq3MM8MMm2lfo95UV/PaU4bCCP5YU/OpEcWso0kVv04k0 XDF/OB49PhVljWUyEWBqP9pjBsvNkspvQV3tKZQWbUFdTa7s3Of1aOPVF2cFvz1lOKzgjyUFvzoR 3BFuRUtTC5ak7sKVqx/D9MxlCIR8MhEYqHa5vTXT+EEDfbeBPSN9t4F/M7MRCv0+t4LfnjIcVvDH koJfPVQdOYLXjDMtHaj3+DDh+Ar87+anse7UXnS2RKrvRXvcYJpH81hyt7Y6G04T6de7CxX6/WgF vz1lOKzgjyUFv3qomufwX209jVJ3FR7eNwM3bh2F444cvNrSiXAcnn2PbNoLosaVYSL9bWiocxgQ EfrxlZFIJCv47SnDYQV/LCn41UPRLc0tONPagaSqTNy05Tn8a+dsFFVV4XS4Q8ryRnvMYFp26Rvo u6pOwlG8HZ76skikH2fLEIlmBb89ZTis4I8lBb96KJnr9e3BNmm0s86xA79e8RhGbFsJd50fZ1ra DWCjP24wLeV2zftyVSbDWbIDHk+FeZ8K/YGwgt+eMhxW8MeSgl89VBxsCqIz1In6Zjem5y/GFYuf xIxte9HoaUF7C0Ea/XGDaR7P416EqookOIt3wOup6oJ+9PHqvrWC354yHFbwx5KCXz0U3GIAeibc gXxfPh5JHo+rFjyDVXvT0dbUjjYT/Ud7zGCb0A80BqS7XlnJLvi8NV3p/ejj1X1vBb89ZTis4I8l Bb863t0WbJPCPLur9+PGXcPxv3NnYN8xBzrDbWgJx2e6nDv3Gxt9qCw7jLLSPfD76hT6g2AFvz1l OKzgjyUFvzpezfX8jmA7vM0NmOdYit+sfgT/mLkSJ05Wo7O11UwG4hP6XNMPBLyocB5EuWMfAv56 hf4gWcFvTxkOK/hjScGvjkez0h6L75T6S/Fc3nT8av7T+Nf0HcjL8aC9tcX8AY/+uME20/t+vwfl zv0G/AfMBMCja/qDaAW/PWU4rOCPJQW/Ot7MmvosvpNcn4InMsfhdy9MxPDpR1Fc6EVHG8vaxmt6 v0VS+mWl+1BRdkigL+f0o4xVD4wV/PaU4bCCP5YU/Op4MVP7BL6n0YP1lZvwWNp4/H3OS5jyYgaq Kvxd0I/+2MF1pNmOz1droL9bNvNxfV877A2+Ffz2lOGwgj+WFPzqeHCoKYiOYAec3nLMKJ6Ph49P xL9mbcMLi/NRU22g3x6SdrrRHju4bkYzoe+plp37rvIk83sUkJR/9PHqgbSC354yHFbwx5KCXz3Y 5lE9RvpJNal49tRkjD42H09NP4SFKwrg8QQE+tEeN/gm9Fvg9VTCWbwNVWXHze9QZJ0/+nj1QFvB b08ZDiv4Y0nBrx5ME/g86762bAtGFkzEjCObMHrGCazdXAx/oBFtbfELfa7fexoqpASvqzIl8vuj 6f24soLfnjIcVvDHkoJfPRhmFb7ToQ64fXWYUbQQI/InYP6BA3huWhq27C6VDXxtrfHasc6CfpmB /jbUVKWZa+yvr9CPNyv47SnDYQV/LCn41QNplq8NG0AS+hnuHIzNn4FZJYuwcn8anp+WjoPHytEa DqKlJX6hz+N59XUOOIq2otaVIcBX6MenFfz2lOGwgj+WFPzqgXKjMVP77Ky3rXw/nsgZizXlm7B6 Wz5GTjqJoykVaG8LxW1hnkik32qgXxyBfnWWQj/OreC3pwyHFfyxpOBXD4R5VK8z1I5afx1eOLUC I/Mn4mh1sqzlj5ySgtSsKnQY6IeCcVqNr5mp/DDq3KfgKN4Kd22u3Ob1aOPV8WEFvz1lOKzgjyUF v7q/zSp8TO3n1BVgVM50zCiZj+zKIixefgpjZ6Uiv6QWnR3huOyjT1vQd9fkCfTr3AUGICzMo5F+ vFvBb08ZDiv4Y0nBr+4vM7Xf2twq6f09lUfwYPqzWF31Mipq6jBzfi7GvZCC8qoGgX58FuYh9ENS e7+mOlvS+/Xuwq66+xrpDwUr+O0pw2EFfywp+NX95fZQO/yNASwsWo1704bjYP1hA9BGTJ2XhdlL M1Dn8cU/9I1rqjNk935DXalE+vFaMlj9Riv47SnDYQV/LCn41X1p7toPNvOoXieqvDWYUbAIw7Mn oiCQh8qyRoyfk4aFa7MRCDRKYR5mBaI9z2BbivCYz1FdlSbFeRrqneZzMdJX6A8lK/jtKcNhBX8s KfjVfWXrqN6ZcCcyanMxImsK5hQuhT/cYOAZwNiZKVi1JU/Gtrca6DdGf57BNlP7hL6rMtm87+3w 1FeYiYBCfyhawW9PGQ4r+GNJwa/uK3Mtn2v6OysO4omMcVjr2CrH80pLfHhq0nFs3FWI1tYgWluC cQ39xuZmVFWcEOh7Pa6uNX2F/lC0gt+eMhxW8MeSgl99qY4c1euAt9GLF4tW4bGMsTjiSgY6z6C+ rgmjZiZh/postISbI9CP8hzxYEb1/B2oKj8KZ8kO+Lw1BhStUceqh4YV/PaU4bCCP5YU/OqLNQHO 9fwzoU44PGUYmzsbw7OnIK++EGg/g5ZQCLOXZWD8vJPw+gJoa43f429BRvqNflSWHUFZyU74fQr9 RLCC354yHFbwx5KCX32xZlc9FuU5Xp2KRzLGYNapJXD76/FKSyc62luwYXchhk0+jhJnHdrb2LEu PtPl3KkfCPhQ4TyI8tI9CPjrFPoJYgW/PWU4rOCPJQW/+mLcbsAYMtH+9vL9eCBtFFaWbpJCPR1m IsDd+kmp5Xh8wlEkZ1TgtBzZi2Po+xtQ7jhgvN9MABoU+glkBb89ZTis4I8lBb/6QkyAswpfXaBe 1vOfyZ6G5Jp0mQgwA9BhIF9cVi+R/qbdRVKGNz4r8jUjGGqF31eHstK9Eu0HAt6ujXzRxquHohX8 9pThcPyAv7OzE/PmzcM//vEP3Hnnnbj77rtxzz33yPfW7fvuuw/Hjx/vekT/S8Gv7o25nh8pvduJ wvpSjM2dhYn58+D0VKAz2C5tdttbg/D5GjFpQSrmrsgy15risuFOszGjep/fjTLHHlnXb2r0mUkN lyOiP0Y9NK3gt6cMh+MH/O3t7fLDd9lll+GjH/3o2ce8//3vxwc+8IGzt1evXt31iNgqKSnBiRMn UFNT03XlNfG1srKykJ2dbaKwjq6rb9S9996r4Fef160mEuZxvUOuJDyROQ6LitfAayLk9mCb3B8y gKcXr8vBs7OSUVvni9N++oz0W+DzVptIfzeqyo+hMRBQ6CeoFfz2lOFofKX6mSqtq6tDcnIyvvKV r+Bvf/sbKisr4Xa7cdttt+FLX/qS3Hc+nTx5Erfeeiuuu+46PPDAAyguLu66BwL6DRs24I477pDn X7BggUwEPB4PysvL5fWqqqpQXV2Nm266Se6nFPzqnuZRvQ4T0fP7FY5NeDB9lKzrs7VuqxS1Yfq/ CZ1tYWw/UIwnJhxDXmEtOtvjEaRsq9sCr9cFZ/EOA/0kE+k3mvevzXYS1Qp+e8pwOD7X+Pft2yfj 77//frzyyit49dVX8dBDD8m1l156qWtUdBHsTz31FBYuXCg/2M8888zZqJ1iFoDPRciXlpZi27Zt qKiowJNPPokrrrgC1157rfiaa67Bpz/9aaxatUoep+BXd7eczzcRfYUB5eT8+XgyczzSarJlAx/T /tY4Qj4rvxqPjzuK/ccdcjv+NvN1Qd9TIYV5qitSDPQ5adFmO4lsBb89ZTgan+Bnmv7yyy/H29/+ dnz/+98Xv/nNb5ZrTM/HUjgcluwAf5ipWbNmCfwtrV+/XqA+cuRImSAQ+i0tLTh8+LDct3HjRmze vFm+/uY3vzk70VDwqy0T7CzKk+XOxaMZz2Nc3guo8lbLNU4IrHGszFfh8mDUjBNYuSVfivRwXT++ KvNFoO9pKItAvyrNXGOrXY30E90KfnvKcDg+wU8xPc9NfV/84hfx+c9/XlLzhPT5RPAzzU94UzNn zhTIW2IEz8ieSwbcL/Dggw/C7/d33ft6MePADYeUgl9NtxhItgRbcbAqCcOzJ2F56SYEmgJn1/Mt t4aD5ueqETNfysDURWnw+eOxSE+z7NRvqHfAUbQNNa4Mc43Q10jfDlbw21OGw/EL/mjiD2pDQ0PX rejiev2jjz6KlStX4syZM5gwYQJmzJjRdS+wY8cOPPLII/J9YWEh/vznP8t6fjTprn61ZUbyhDsh v7x0I4ZnTcZhVzLazDVu7us+lhv5WH539ZYCPDczGa5qj4n+4w2mEejX1xUL9Gurs7uifIW+Xazg t6cMh+MX/Hv27Dl7hI9fCeHf/e532LRpU9eIc2v//v2yce+GG26QH+iCggL5oV62bBmcTqek7++6 6y6J6NetWyeThWhS8KtpK7Vf7q3C1PyFGJ0zHfn1RV3r+a8HJdfvmeI/dKJMzutn5FZL0Z546qvP iJ479etqTxnob0FtTa6ZBPA9KvTtZAW/PWU4HJ/gz8zMxKc+9amzj3vXu94lX6+88kq4XK6uUefW 6dOnkZKSIrv38/Pz5VpbWxtSU1OlXgB/4Hfu3Cnr+rx9Lin47e7Gs6V3j1WfxKMZY6X0bo3fLbv5 o23SI+TzCmswYkoS9h51yCQgGHz9mEH1Wejno7RoE9yEPo/rKfRtZwW/PWVYGp/g5/o8xz/++OMS lTM9P336dHzyk5+UTMBAScFvb7cFWySNv8G5HXemPImlJS/Lz0HP9XyaRXxYc7+m1ovnZiVjxWZu 5gtK2r/n2MGyRPomsq+tyZH0PiN+Se8r9G1pBb89Zdgan+BnNM7xhG5SUpJU87v66qvxpje9SY7p DZQU/PY1I/p6v0ci/AfSnsEh1wkBPjMAPccS+oQ8d+u/sDwTE188iQaPH20t8QPUCOBDqHFlwlG8 DfV1JeYPffz2CVD3vxX89pRha3yC3+fzyY7+JUuWyBn+G2+8UdL93IjH4joDJQW//RxppXsaRfWl GJY1WXbu59cVoTPcibBsfovymGDk6N6mPUUYOS0JjvJ6uR1t7GCY0Kerq9IF+tzFz/763OAXbbza Hlbw21OGw/G7uY/irnyKa/asqMevAykFv71MsDPST6pOxcNpz2J6wSK4/XUG+jyfHz1656a9051h 6bT31MRjSMtxoSOOKvNZqfzqypNwGuh7GsoV+mqxgt+eMhyOH/AT8tyNz4I7hC2jfZrfL1q0SHbk 0yzuM1BS8NvHrLXP3fsvO3fg3tQRWOfcJrejred3NzvslZoI/+lJx7F++ylzO4xgnOzgbw6G0WgA X1V5As6S7fA2VJo/7myrq9BXK/jtKsPh+AF/a2urpPTf8Y534N3vfrd85WP49Z3vfKd8z69Lly7t ekT/S8Gf2ObafNBAkK10q301mJa/EE9mTsAx10k5qtfzfH5387GtLSF4fQFMXpCGF5ZnyVn/ljhZ 17ca61SWHzfQ3wmfx6XQV7/OCn57yrA0fsDPmvzsmMeNfSy+w4p9LNG7Zs0avPzyy/jJT34iFfx4 TG+gpOBPXDc2NUpqn+v5efVFGJY1Sc7nl3icOBPulGg/2uMsR4r0hLB0Qx4mzU9FXb0P7a0hmRBE Gz+QJvQbGwPSUresdBf8ZlLT3EzoRx+vtqcV/PaU4XB8rvET7m9729swYsSIrivA888/j/e+9729 bsvbF1LwJ665O59p/L2VR/Fg2mi8WLgK3kafRPrn2+keDDbLOv72gyV4eOwR5J6qwemO+FjXZ939 xoDPQP8Qykv3GOi7NdJXR7WC354yHI5P8LOt7sc//nF87GMfk655TzzxhHzPPv179+7tGtX/UvAn ppnCZ8W9FSUbcV/aSGwt33u2p3608T1N6LMi3yMG+izS09kRH5X5ItD3oMJ5AOWOfQj46+VatLFq tYLfnjIcjk/wc6Pf1q1b8a1vfQsf/vCH8aEPfQjf/e53pbBPrEp7fS0Ff2KZ6f2WYFjq7c8tWo4n 2Eq3NkfK8UY7nx/NPKZXVe3B6JknsHb7KTmrHw4PfjRNwAf8DQb4+wX8ATMBiOzejz5erVbw21OG w/EJfktsyMN1/4yMDNTXX9BD+0QK/sSy9NA3kF/j2IqH0kejqMGBV8JnEOxlYxo23uHPwfTF6Zj+ UrpMJLjOH23sgLmZbXVb4ffXoax0j4H+IRP1+zXSV5/XCn57ynA4fsDPKH/fvn3SB9/hcMju/RUr VsjmPnr58uXSXEeP86kv1qdDnciszcM9J4fjQOUxwEA/2rhoZh99gn/FpnwMn3IcZRUNcVGkJxhq hc9Xa6C/E5XlR8zPqV8290Ubq1Z3t4LfnjIcjh/w8zjfX/7yF0nvE/gf/OAH8b73vQ+XXXaZ2Pqe Z/oHSgr+xHGrgWHA/B+OyZmF6QWLZUf/uSrx9TQ3+53pDONISrkU6cnIdaFz0Iv0NKOZ0Pe64CzZ garyo+ZnNCC1+KOPV6tfbwW/PWU4HD/g53E+duVLTk6G1+uVZjw82rdr1y4xv9+9ezdqa2u7HtH/ UvAnhpnK7wi2YaNzJx7JGINKX7VU6Ovt0bvOjhbkF9XiiQlHsetwKU4b6AcHtcZ9JL3v8VRKNT5X xQm5JlX6oo5Xq99oBb89ZTgcX+AvLS3F0aNHcfDgQZkA9DSP+XHdf6Ck4E8ME/Lsn/9g+ijsrjyE TrbU7eXxNqbzq7s67s1flW3+ODZL2j/a2IGxgX6zgX59uUCfpXibzMRGoa++UCv47SnD4fhK9d90 001Sne8973nPG8xqfkz3L168uOsR/S8F/9A3U/zegB+jc2ZgTuFSOcbHHfy9ifa5ps8GPLOWZuD5 F1JMhB0Y5M18jOpbpMmOo3graqrSBfgKffXFWMFvTxkOx9fmvkOHDmHOnDkCW67ld/eCBQsE+swK DJQU/EPbTPGfCXVgnWObFOlxeiqkQE+0sT0tRXpMtL9lbxGGT0lCsbNObkcbOxBmL33u1K+rK4Gj aCtqXZkKffUlWcFvTxkOxw/42X7X4/HI+j5VXV0tLXhdLpfY+j4cDsv9AyEF/9A2j+4V1hfj0Yyx 2FV52NzufYq/syOMpPRKPD7+KJIzKqUD3+AV6emCvrtQIv3a6pwu6MdPv3/10LOC354yHI4f8Le1 tcmufhbqYVneD3zgA5Le757qf//7369NetS9cmtzi4F8EybmzcPkvBcRbg6Lo43taVbmK6tswIip SVi/o1DW+ZkBiDa2/03Ah+GuLZBI312TL7c5GYg+Xq3unRX89pThcHyl+letWiWp/ry8PIwePRoj R47Ec889J+b3zzzzjBT0GSgp+IeepeOeiYSZ0t9cthsPpT+H4gYH2kOx2+ta5rp+pONeKuauyJIC OS3hwYEsI3qBfk2uQJ8Rf1CO6w3m5kJ1oljBb08ZDscP+M8llugdyDK93aXgH5pmm928uiL8M/Vp bC3fJ7v6Gf1HG9vd4VBQvGhtDkbNOIFat3fQivRIKt9AvrY6S9L79XUl0l9foa/uKyv47SnD4fgE P9f709PT8bvf/U5S/izc89vf/laO9PG+gZKCf+iZu/i5qW9szmyMyZ0lGYDeFOrh7n1u3jt0ogxP TzqGnIJqWeePNra/LUV4TLRf48qAs2ib7OKP1N1X6Kv7zgp+e8pwOD7Bn5+fj69//etyfO+6667D H//4R5kAfOUrX8GJEye6RvW/FPxDy4zqT4c7savykBTqKWwo7d0u/mau64eQV1Qr5Xj3H3dE1vUH oUiP7NI3r1tdlWoifUK/TKGv7hcr+O0pw+H4BD8L+HA82/FaYj/+t771rVi2bFnXlf6Xgn9ouSPU hsL6UjyYNgpbyvfIrv7e7OJvaw2i0uXBuLknsXprAULBZoQGoUiPdTTPVZECZ/F2eD2VXdCPPl6t vhQr+O0pw9b4AT9T+HV1ddKgh+BnxH/VVVchLS0NxcXFuOWWW/DVr35Vbg+UFPxDx1ZRnudyZkma 37rWc1x3czw38wUCjZi1NBOzlmUh0MhrA7+uLzv1zWtXVSRJRT6vp8r8IW6NOlat7gsr+O0pw+H4 AX97ezv+9re/ybi3vOUtPR931uzSN1BS8A8NM6pn570dFQfwgIn2TzWUyJn9aGMtNxrIMrIn+Dfs PIWxc1Ik6m9vHRzos8FOVfkxOEt2SeOdoKb31f1sBb89ZTgaP+Dncb4NGzZg1KhRGDFiBMaNG4fx 48efPc7HVD9v5+TkdD2i/6XgHxrmOn6ZpwJPZo7H9vL9sqv/fLv42XGPHfaOnizHU5OOISvfJZv7 erP7vy/NnfqBRh8qyw5LP32fz23+AGt6X93/VvDbU4bD8bXGz6i/o6NDvmft/paWlrNmxT5+5QRh oKTgj3+HuirYzTy1BBPy5so1Fu/pOa6nuWO/sMSNYVOTsHVfcddmvuhj+8vNBvCBgBcVzoMod+xD wFen0FcPmBX89pThcHyl+m+//XZcccUV2LRpEz7zmc/g4x//OD7xiU+IP/rRj+K//uu/sGbNmq5H 9L8U/PFtRuc8o7+n8jDuT3sGOXUFvSrLy818Hq8fE19MxYI1OeYPXpOZWA5sWp2AD/gbUO7cb8B/ wEwAGhT66gG1gt+eMhyOH/CzSM+MGTMwbNgwJCUlCXT/8Y9/yGSAP5R33XUX7rzzThw5cqTrEf0v BX98uzXYiipfNZ7IGIeXnTvQHmyTM/zRxlrmuj4hv2hdDibNT0V9g99MBAZ2XZ+Rvt9Xb6L8vQb6 hyTqD0pxnujj1er+sILfnjIcjq9Uf09Zaf3Tp08jFArJ9wMpBX/8mkV56NmnlmBszix4Gn1oO88u eKvj3rb9xdJxr8jhxukObqyLPr4/TOj7fLWynl9ZfsRA3x/Z0R9lrFrdn1bw21OGw/EJfjbsWbhw IXbv3i3AJ4C/973vYf78+bL2P1BS8MenrV38h1xJ0nkvp+4UOkIdUcda5mY+Qj4z14UnJx7FkZRy WecfyI57PJ7n9dbAWbJTdvDzZ0qhrx4sK/jtKcPh+AT/0aNHpRvf7NmzMXfuXHzkIx/BF77wBfm6 bdu2rlH9LwV/fJop/QpvFYZlTcTLzp3oDHacN8XfZiJ9dtxjDf6Xd55Ce2twAIv0NAv0PeY9O4t3 GOgnyZl9hb56MK3gt6cMh+MT/DzWx/Hs1HfNNdfgV7/6FZYsWSLteTkZGCgp+OPPkuJvCuHFopV4 Pm82/I0BtJxnF39LOCRFeqYtSsfspZlSordtwIr0dEG/oQKO4u1wVaaYa5Gue9HHq9UDYwW/PWXY Gp/gP3z4MN75znfi85//vNTrnzBhAlauXIkPf/jD2LhxY9eo/peCP74stfhDHThefRKPZz6Pgvoi if6jjbXMbnttrWGs3lKAsXOSUV3jGbiOe83NaCb068vgKNom9febBfoDXyRIre5pBb89ZTgcn+Dn ef2ZM2fiO9/5juzq5w8p1/snTpxo/mg2d43qfyn448sdBvI1/jo8nTURG5y7pMc+fx6ijaW5ma+9 LYyDJ8owfGoSsvKrpRkPI/5o4/vSrC0QDLVIZz320menPWm1q9BXx4kV/PaU4XB8gt9SfX392c18 POc/kC15KQV//JiFeliYZ07hUjybPQO+Rj9az3PuvbMjhJzCGgybfAz7jzvRaaDPiQJr9Ecb31cW 6Jv3Vl9XZKC/BbXV2eZa2Ew4FPrq+LGC354yHI5P8L/yyiuS7n/66afxr3/9C/feey/uv/9++f74 8eNdo/pfCv74MEH9Svg0DrmSpfNejrtA2u9GG0vzeB7T+dW1Xjz/QgpWb8lHS0tI0v7RxvelGdHz TH5dbUEE+jUR6HMyEG28Wj1YVvDbU4bD8Qn+zMxMfPrTn5ZmPf/5n/8pFfusrytWrOga1f9S8A++ G5sa0R5shctnIvesSVjj2BppwBMjXd/SEoHsi6uyMH1xOvz+Rtng13NcX9uCvrsmV6BfV3vKXGtR 6Kvj0gp+e8pwOD7Bv3nzZhn/6KOPoqKiAuXl5SgrK5OvrNk/UFLwD76DBppc219cvBbP5kyXFH+L gSsnBNHG84geo/31OwsxcloSKqoa5ChftLF9aWv9vrY6C87irah3Fwv0uYM/2ni1erCt4LenDFvj E/zsv/+Nb3wDDz300ICv63eXgn9wzV38naEOnKhJx2MZY5FZl3fedrunO8M4kV4pHfdOZlV1retH H9tXbg5yw2AINdUZKDXQb6gv1ba66ri3gt+eMhyOT/BnZWXhs5/9LN7+9rfjyiuvxE033YQbbrgB N954Iw4cONA1qv+l4B9cswSv218vKf5VpZsjtfhjpM1Zjre0rA6jZ57A9gPFsoOftfmjje0rW5E+ j+o5irehoaGsK9JX6Kvj2wp+e8pwOD7Bf+jQIXzta1+TqP9LX/oSPve5z0m3Pp7rX7t2bdeo/peC f/BMwHMX/4qSTRiX+wI8Ae85a/Fz8x8b7Xg8fkxakIZF0nGvGeF+rswXKcLTLEV5WJyHRXoiHfYU +ur4t4LfnjIcjk/ws1MffzCtPvz8geRtfs/7BkoK/sEzU/wpNZl4PHMcMt15OB08dy3+UCiIlnAQ yzbmYcK8VNTX+9HaEjL/Z9HH94WtyntVFUlwluwwkw6XFOtR6KuHihX89pThcHyC39L27dsxcuRI qdpXVFSE3NzcrnsGRgr+wTHb7db7G/BM9jSsKN1oIv0WhM6R4g+y/K6J9nceLMXoGSek454U6Yky tq9M6Dc2BlBZfkwa7vi81V3p/ejj1ep4tILfnjIcjk/wM9IfO3YsPvShD8njfvrTn0qznu9///tI T0/vGtX/UvAPvMNM8RvwLy5eg5HZU1Hrrztnip+b9riun57jwtOTjuFYarl04OvPzXwEfGOjT1rq lpXuht9b25Xejz5erY5XK/jtKcPU+AQ/i/e8+c1vxn333YfLL78cV199NZYvX473v//90q53oKTg H3h3hNqRUpuFR9PHILkmA53hDmnDG21se1sQrhoPnp2dgnXbT6G1pX877hHwgYAXlWWHUO7YC7+Z lPDcfrSxanW8W8FvTxkOxyf4+YPI8VOmTMFVV12FX/ziF5g1a5Y07GFP/oGSgn9gzci+1u+WFP/y kg1y+1y7+Al5ruHPXZ6FuSuyEJAiPf13Zp6RfsDvQbnzACqc+w30GzS9rx7SVvDbU4at8Ql+p9OJ H/zgB1Kt79/+7d+kU9+nPvUp/PjHPx7QdX4F/8CZtfgJ+lWOzXg2ezrqAvVoOUcKnbv1Gdmv2VqA CfNOStTfnx33ms378PvrTZS/D5XOg2g0Ub9CXz3UreC3pwyH43dzX2lpqZzd5zE+Qv+3v/3tgK7v Uwr+gTPb7Wa586RQT2ptllTrizYuGGySzXv7jjsxbNJx5J7q6rgXZWxfOAJ9N8pKd5lI/0AX9DW9 rx76VvDbU4bD8Qt+qqOjQ7ryDZYU/ANjRvY8pz82dxZeKl6HFgPWaLv4WcmPkM8trMHwqcex/7gD bW3shNc/6/rBYCt8vho4DfS5ma8x4DPQ7//yv2r1QFjBb08ZDscf+Hfs2IGXXnqp6xZw9OhRDBs2 DHPmzIHH4+m62judPn2667uLk4K//82Nex3BdqnM9wx38QfOvYu/vTWEqhovxsxKxqrNBbKm31+b +ZjK93pcKCvZAVdFUtc1jfTViWMFvz1lOBxf4N+/fz8+9rGP4ec///nZ2+zIx8e+4x3vwCOPPGL+ 0IfkvlhyuVx4/PHH8ac//QmTJk2C1+vtuuc15eTk4OGHH0ZJSUnXlTeKrYDnzZsn3yv4+95stMNC PSzQ81jG8zhWfVJuRxvLtrpNjU2YtTQT09hxL9AoG/yijb00Nwv0WYXPWbxdqvLxutTjf8NYtXro WsFvTxmexg/4GZ3feuutAvi9e/dKiv+Pf/yjPG769Ol47LHHcNlll0nnvlg6c+aMnAYYPXo0du/e jQceeADr16/vujciPvcTTzyBD37wg9ICmNUACwoKkJycjJMnTyI1NRUpKSm4/vrrsWjRInmMgr/v 3Ro0UXWjT1L88wtXoa25FcEe3exYjpepfEb7L+8sxLMzk1FR1V+b+ZrNa7Wgob5c6u5XV500k4Cg pvfVCWkFvz1lmBo/4G9ra8O1114rET518OBB2c3/ne98R9b6N27cKJMCK/V+LrGs75133olt27bJ bR4DHDNmjHxviROLESNGyIZBRv78JWAnwJ/97GdyfJDX2RzoE5/4BFatWiWPUfD3rXlMj2f2N5fv xrDMSajyVkdP8Tc3obMjjKMp5Xhq4jEp1iNFenqOu0Q3N5tIX6BfilJC35VuXluhr05cK/jtKcPh +AE/o+6//vWv+MhHPoLs7Gzcc8898pjVq1fL/cOHD8db3/pWLFu2TG6fSwT/3//+d5koUDNmzBDI Wzp16pQsGTBzcPPNN2PXrl3y2nl5eTh+/LhE/Yz2GflrxN9/7gi1Ibe+EE9nTURSdRpOhyL9GXq6 sz2MolI3np58HNv3F6OjjZX5+nhd3wCekX59XbGJ9LeitjpbI311wlvBb08ZrsbXGv++ffvwhS98 AR/+8Ielct8vf/lLBAIBmQgwzf+Tn/wEDoeja3R0tba24q677sLWrVvlNiN+lv+1xEwCn/f3v/+9 7Ce49957JaMQTbxP1/j73qGmEPyNfkzMn4clJetNpN+CcJSNc2y009Dgl7P6i9blyEa+cJ8X6YlA v859Snrpu2tyBfgKfXWiW8FvTxkOxxf4qQ0bNgiU77jjDuTn58s1Fu1h+p7R+Pn0yiuvyKmAu+++ W9b6+QPNHv5cSmCK3+12o7y8XCYZP/zhD7FmzZquR75Ruqu/7y319YPt2ODchdG5M+Dy1Uqf/Z7j CHmu7c9fnYVJ81Ph8QSkGU/PcZfiSFQfNrDPh6PIQL+2AM1BZhT6rwKgWh0vVvDbU4bD8Qd+ipDu fhSPMOemvd6KWYKZM2fKrnyu0fO5+EPNev9+v1/GML3PSUZtba3cjiYFf9+7M9SOvLpCPJk5Hkdc yV27+F+fupfNfO1BbNlbhBFTklDirENHBzvivf65LskS1YdRW5Mt0K93F8ptpv2jjlerE8wKfnvK cDg+wd9X4oTB0quvvvq6272Rgr9vHSnB24jJ+fOxoGi1FOoJ90ipMyPAzXup2VV4atIxJKVWyjp/ X3bckzS+ee0aVyZKCf26EnON702hr7aPFfz2lOFwYoP/UqXg7zuzEl+Hie43le/GiOwpqPTVRC3L y2N6jrI6jJyWhE17iuR2qA8r80WgH0J1Vbps5Guod6JZThP0TyEgtTpereC3pwyHFfyxpODvG7M6 3+lwJ1JqMvBQ+nM4Up0sk4Du7XaZxrc67k1fnI5ZSzLMZMFc68PNfNamPVflSYG+p6EcwZBCX21P K/jtKcNhBX8sKfj7xmzAU1BXhH+lj8byko1SuCfIyLvbmHAoKJv3Xt5xSor0VLJIT2tfQp+nBppR XZkMZ/E2eAl9jfTVNraC354yHFbwx5KC/9LNzXsuXw2eyZqCOaeWyrWW4OuP7sm6fmcYR1LK8eSE SJEeNuPpqyI93KnP8sBV5UkG+jvg87oU+mrbW8FvTxkOK/hjScF/8SZoWZmv3t+A8XlzMa9ohVxv 7dHHnqn90+1hFJa6MXxKEnYeckSK9PTRuj7P6Dc2+aW7XlnJLgP9mi7oRx+vVtvFCn57ynBYwR9L Cv6LM+vrt3LjnoH6tIKFGJs7G55GL9pDPTbzmftZg99d58OEuSlY8nKedNzrqyI9Av2AD5Vlh1Be ugd+n1vK8kYbq1bbzQp+e8pwWMEfSwr+izOjeh7Te+HUMjye+TzKvZVoD7a/YRwhzzP781ZlY+KL J+HxBtDaR+v6hH7A70GF44DxPvN9g0Jfre5mBb89ZTis4I8lBf+Fm8An+Nc5txvoj0O2u0A29/Uc xyN6XMffsq9Iju6VltWjo4867jGV7w/Uo9wAv8J50EDf27W5L/p4tdqOVvDbU4bDCv5YUvBfmNlx j5X5tpXtE+jn1J2S5jvdj+1Z7jTQT8mskOY7yRlV0oHv0ov0sMyvgb7PjbLSPagsOyypfm7uiz5e rbavFfz2lOGwgj+WFPy9N/voczPfgarjeCh9tJTjJfSDUaDPY3slZXUYMTVSpIeRPmvz9xx3oSb0 uXmvrHSXgf5R83/ml3P70caq1Xa3gt+eMhxW8MeSgr93lgI9oQ6k1mTh3tQR2OTcJRv5mAHoOZZr +F5vAJMXpmHB6mx5LNf6e467UHNN3+t1wVmyA1Xlx83/V6RgT7SxarVawW9XGQ4r+GNJwX9+E9w8 q3+qvhiPZ4zDKseWyOa+KOl1FukJh5uxbEMeJryYilq3T3b19xx3YW6WTXteT6Wc0XdVJEeuKfTV 6phW8NtThsMK/lhS8J/PzdJit9RTJt325hYuR0g2973xnHwwGEnx7zpUimGTk1BQUivr/Je2rs81 /RYpvess3o7qqlS5phv51OrzW8FvTxkOK/hjScEf21zTr/S58HTmBEzKfxHegPcNBXpowp3NdjLy XBg25TgOJ5fJjv7gJUE/KJv2GuodUoK3xpWOZl7TSF+t7pUV/PaU4bCCP5YU/Od2R6hNQD82Zzae zZmB+kAD2qN026MJfVeNF8+/cBIv7yxES7j5EjfzEfot0k7XUbQFNVUG+txPoNBXq3ttBb89ZTis 4I8lBX90txnoMoqfcWoxnjTRfqXXJROBaGMjHfcaMXtZJuauyELAfH8pm/kiUX3YQL/QRPpbUVud I9cU+mr1hVnBb08ZDiv4Y0nB/0a3GOhz496C4tV4OOM5FDWUyNn9aA11WKSnrTVoovxTGDX9BMoq G9DefvGAZlTPSL+uNh+O4i2oq8mX1L5E+1HGq9Xqc1vBb08ZDiv4Y0nB/3pz415bsA2rnVtxf/oo ZNflRa3KRzMj0NkexvGTFdJ8JyPXJc13oo3tlQX6YdTW5Egv/Tp3oXkN7idQ6KvVF2MFvz1lOKzg jyUF/2uOnNXvxN6qo7g3bSSOVafizDmq8tEsylPscGPUtBPYfqBY1vmDzRe3ri+Rvpl01FRnCfQb 6krMHymFvlp9KVbw21OGwwr+WFLwR2yd1T9RnW6gPwLby/ehM9gh1fqijW9rCcHj8WPKglQs3ZCH cOjiN/NFUvkG+q4MOIoM9Osdku5vvshJhFqtjljBb08ZDiv4Y0nBb0X6HciozcU/Tz6FJSXr0cp1 /nOclSfk6UXrcjBlYSq8Pnbcu7h1fWv9vroqzUT62+CpLzN/nFgjQKGvVl+qFfz2lOGwgj+W7A5+ bthjer/EU4b7Ukdgzqllke57kmaPMp7n9dtD2HPEgVEzTqDQ4ZZ1/mhjz2cpwtPYDFdlCpwl2+Ft KDfXFPpqdV9ZwW9PGQ4r+GPJ7uDnET2XrxrDsydLgZ5Gc401+KONJfRPd4RlEx+b7ySlVcjtaLv9 z+dgV7lfV0WSgf5OeD1VGumr1X1sBb89ZTis4I8lO4OfxXjc/jo8kz21W4Ge9qhjaZbfZU99Httb v+OUnNXnuj4nC9HGn8vcud/YGEBl+TE4S3dKt72g7N5X6KvVfWkFvz1lOKzgjyU7gr+xqRFtJrrm xr2p+QukBn+ltxqdMaDPHftlVfUYPeMEFq1lQZ0mtLRc+I577tRvbPShouwwyh174PfVdkX60cer 1eqLt4LfnjIcVvDHkt3AT+iz1n5Lc0g28Y3Imgynpxyd4egFemge23PX+TB2TgpmL81EwG+e4yI2 8xH6gYCBvvOggf4++P315hpT/hrpq9X9YQW/PWU4rOCPJTuBn9BvaQ7Lxr2lJS/jyawJKGoolR39 5zqrz5a6fgN6luOdND8V9Q1+c+3CN/M1m6g+EPAY4O813m8mDx45shdtrFqt7hsr+O0pw2EFfyzZ Cfyh5qBAfkvZHjyQPgrptTnnhH5jY6QGP7+fvyobY2enwFXjkei/59jzmal8RvdlpXtR6TiARr8X kYp80cer1eq+sYLfnjIcVvDHkl3Az4p6PLZ3rPokHst4HsdcqRHoRymSQ+hz/Z7gX7UlH8/NSoaz vP4ioM9e+q3w+d0oK9mFyrLD8m8c1F76avWAWMFvTxkOK/hjyQ7gj5zV70BabTaeyHweeyuPyCQg eI7GNyzOwzX8tdtPYfjU4yh21smO/mhjz+0I9L3eajmuV1V+DE3m31fO7kcdr1ar+9oKfnvKcFjB H0uJDv5IVb5O5NcX4f60Z7CydJMc42MznmjjeTyPZ/N3HirF4+OOIjWrCp08q9/8xrHndrOs3/Ns vrN4h5zV5/vQSF+tHlgr+O0pw2EFfywlOvhZf5+99NlTf9apJQLg1nMAOBhsRkd7GEdSyvH4+GM4 nlqB052Efu933XNsMNQKT0OFgf42VFemoMlcaw5e+N4AtVp9aVbw21OGwwr+WEpk8DOyr/G7pTjP lPwFCDQFzLXoZ+atFrsnTYT/1KTj2HmwVCYB7LcfbXw0s+Y+j+x56p0C/ZqqNHM90nUv2ni1Wt2/ VvDbU4bDCv5YSlTws0CPr9GHyfnz8XzubNQHPGgPRS/QI6V4DeRz8mskvb9xd6EU7AmFel+gx4J+ fV2JQL/WlSnA5/Vo49Vqdf9bwW9PGQ4r+GMpEcHPWvtMuc8tXI6R2VNQ6a1CRwzod7Szr34dhk05 jqUbciXKZzneaOOjOQL9MOrdhdJW112do9BXq+PACn57ynBYwR9LiQR+rt93BNvhbwxgYdFqDM+e hBKPQxrxRKvKx2s8ouesqMcz009gwZpsmQhY5/d7Y8KdtffdtQUG+tvgrsk317gvQKGvVg+2Ffz2 lOGwgj+WEgX8PJrHI3ulnjJMyp9nIv2pKKgvlkg/WoEeuqMtjIYGP8bNPYmZSzLg9TUa6Pd+PV6i egP92ppcifTragsF+lqCV62ODyv47SnDYQV/LCUC+MMGtty9n1qbiaezJsru/Wpfjazznwv6ba0h A/oAZi3NwOQFLMXrk/K80cZGsxXp11Znw1G8BfV1xeaadthTq+PJCn57ynBYwR9LQx38FtxfduzA /WkjsdaxDeGmMNqao+/eZwvdNhPV+wONmLsiC2NmJ6OqukE280UbH80CfeMaV4aB/lY01JWaPygK fbU63qzgt6cMhxX8sTRUwS/r+aF2Oa4389RiPJI+BkerU2QiwAxAtMfQ4XBQNu6t2pyPkVOTUFJW h472C1nTj2za41E9R+FmE+mXmtucZCj01ep4s4LfnjIcVvDH0lAEvzTbCXYg250vqf1xeXNQ4ilD Z7jjnBX56HCwWSL7TXuK8fTkY8g5VYP2doI8+viettbvq6tOSkW+hvoySfcr9NXq+LSC354yHFbw x9JQA39bsEX66e+pPIx704ZjXuFyBBr9MTfx0azK12mgv/+YE0+MP4rkjMoLKsVrFeFxVZxAWclO eD2VkfT+BVT1U6vVA2sFvz1lOKzgj6WhAn5J7Qfb4Ql4sah4De5LewZbyvci1BSS/vrRHmPZOqt/ MKkMT086jiPJTjnG19uqfIzqGxsD0mjHWbILPm+1Rvpq9RCwgt+eMhxW8MfSUAB/sCmIM6FOFDU4 8Ez2NDyeOQ4Z7lyZCLTEWM+nWciH6fzU7Cqpv8/mOxdSipfp/caAH5VlR1Beuht+X00X9KOPV6vV 8WMFvz1lOKzgj6V4Bz/Bzu56x6tT8XD6c5hesBhVvmoD/TaZEER7jOVIpB9GQUktnpp0DC/vPCXt dntbipeADwR8qCg7ZKC/10C/3lyLnV1Qq9XxYwW/PWU4rOCPpXgGP0vv8uvy0o14MH00Njp3I2Rg 3x7iEb7oj+lubuQrq2zA6FknsHRDnrTc7W1VPq7fBwINKHccEAf8DQp9tXqIWcFvTxkOK/hjKR7B H2xiD/0OuHw1eD53Du5OHYajrhQp0tPSS/hyDb+u3o9JL6Zi/upsBBpZird3Z/UJfb8BfZljLyqc Bw30vZLyjzZWrVbHrxX89pThsII/luIN/OHmkAF8O7Lc+Xg8czxG5UxDqccp0OdRPRbgifa47mYp XkJ/6sI0zF6aDo830OuqfIS+z+dGWeluVDoPozHgU+ir1UPUCn57ynBYwR9L8QT+tmCbwP1lZ6QK 3+LitfA3+nE63CGb9KI9pqetUryzl2Vg4vyTqHF7ZXNftLGvd7P5o9AKn7cGZSW7UFV+FE2NAXNN oa9WD1Ur+O0pw2EFfywNNvgZwfOo3pnQaTmqN6dwGR5MG429lUfkmF67gXG0x/V0o6TyWUq3Wbrs jZubgpo6rxzjizb+9Y5A3+t1SWEeV3mSXNdIX60e2lbw21OGwwr+WBpM8BP6jPC5az+n7pT0zh+d Mw2n6kvk+B7T/tEeF83hMHvoN2PFpnyMnnECjvJ6WeePNra7OVEQ6HsqDfS3o7oixVxvVuir1Qlg Bb89ZTicuOA/ffo0Wlpa8Oqrr3Zdeb14X2dnZ9et6BpM8LOufnuoHbsrD+PO1CcxJX8+6vz1srEv VhW+nuaZfEb2W/cVSSneguJadLb3BtzBCPQbyuAo2oLqylTzuswa9H7CoVar49cKfnvKcDgxwd/Q 0IDRo0fjxhtvxNy5c+WH3BJ/uFevXo077rgDTzzxBIqLi7vueaPuu+8+zJs3T74fCPBbqX1u1vM3 BbCkZD3uSh2Gl8t2yLn89mDkCF9vzPS+lOLtiJTiHTblOE5m9bIUb3ME+uys5yjeJk13OBFQ6KvV iWMFvz1lOJx44D9z5gxmz56Nxx57DMuWLcNdd90lP9iW0tPTBfjr1q3DmDFjcM8998DtduPIkSNY uXIl1qxZg7Vr1+Lll1/Gb37zG7z00kvyuIEAf9AA90y4EyUNTozOno6nMscj3Z0rUX7LBUKXafrT BvIpmZUYbqB/+ES5RPrn2wgobXVDrdJDv9RE+uypHwxGuu5FG69Wq4emFfz2lOFw4oGfKfw777wT 27dvl9ucBIwdO1a+p/jD7fP55PuCggIZm5eXh2HDhuGKK67A1VdfjWuuuUb8+c9/XrIDVH+Dn5v1 CPjkmgw8kjEGE/PmwuWrNhOB011V+Hr/+ozoCfnMvGo8OfEYth8oltvMADATEO0xYjO5YCGeutpT kt6vrck1z8XJgkJfrU40K/jtKcPhxAN/OBzGrbfeig0bNsjtGTNmYMSIEfJ9d/GHfPHixdi2bRva 29sRCoXg9XplUuD3++WX4rbbbsP8+fNlfH+Cn3X1WW1vrWMr7kkdjtWOLbKxj9ejjT+fWYq3sNSN pycfx6ot+dJjn4421jLT+DynX1ebJ9Cvq8kX6DPFH228Wq0e2lbw21OGw4kZ8fOHeOvWrXKb4GdK v7sI+V27dmHv3r2yNHAucRmgPzf3MbXP9fxqXy0m572If558Gvsqj0qRnhZ2vYvymPOZ5/Krqj0Y OycFi9flmtdoQut5oc/1+7BE+I7iLah3F5rHsQqgQl+tTlQr+O0pw+HEA/8rr7wiG/IeffRRiegJ 7x07dsgu/5ycHDgcDknv33LLLdi4cSOSkpLOubu/P3f1s8EOoZ9dV4CnsyZiRNZkFHYd1YtU4bvw 1+MRvVq3FxNfTMWLZ0vxnj/Sp2tcWSgt2ooG8x64sU/b6qrViW0Fvz1lOJx44Kfq6+tlV/9NN90k u/rb2toM3JqxYsUKJCcn44EHHpA0PicAkydPRmtra9cjX6/+Aj+hzyY7+6qO4v60ZzCvcAU8Ac8F H9Xrblbl8/sbMXtpBqYtSkODx3/eUryyS99E+9WudBPpE/oOhb5abRMr+O0pw+HEBH9fqT/Az8I7 hPtqx1Y8kTEOOyoOINwUks190cb3xmyww2WBRWtzMGl+Kqprvb2APtfvm1FdeVKK83gayswvPt+D Ql+ttoMV/PaU4bCCP5b6A/xM5e+tPIyH0kcjrTYbr4TPSGo/2tjemJv2wsZrt5/CmNkpKK9qkJa7 0cZaFug3NsFVkQxnyXZ4GyoV+mq1zazgt6cMhxX8sdTX4G9pbkFDoAFjcmdiRelGvGqgzza70cb2 xuFQUNbwN+0uxDPTTnRV5TsP9LlpsDGAqorj0nCHNfgjzXYU+mq1nazgt6cMhxX8sdSX4OdmPTbb 2VFxUFrqVhrgXkp6n2fyeWxv1+FSDJt8HBm5LinNG6sqXwT6flSWH5XWun5frZzbjzZWrVYnthX8 9pThsII/lvoS/K0m2q/3e/B87mysKNl0QeV3e5obFRnZH0+rwDPTk8zXcoE+j+5FG08T+oGAF5XO Qyh37DXQr+ta548+Xq1WJ7YV/PaU4bCCP5b6DvwG1MEO7K04ikczxqLKWy0TgehjY5sRPUvxZuVX Y9T0EziQ5OyC/rlT9YzqCf0K5wGUl+4x0K83v+Qa6avVdraC354yHFbwx1JfgZ9r++yn/1zuTKx3 7pBon8V7oo2NZUK/vS2I3MIaaa+7dV+x7N4Ph2JA37y2P1Bvovx9An6/36ORvlqtVvDbVIbDCv5Y 6gvwsxRve7AVO8oPYFjWJKnSdzFp/gj0Q3CUN2CUgf6qLXmym5+ONp5mpM+UfpljNyrLDqEp4FPo q9VqsYLfnjIcVvDHUl+An+f26/wNeCJzHNY7dnTV5b/wHfRtJtKvcfvknP7idTnmWiNaYlTlYyrf 56uBs3Q3qsqPoKnRb64p9NVqdcQKfnvKcFjBH0uXCn6rt/7Wsn14Nme67ORnxb4LKsfbGIn0a+t8 mLowDfNWZcHrDaC1NXak7/VWo6x4pxzb4yRBI321Wt3dCn57ynBYwR9Llwr+sIFtQ8BjoD8Dm8v2 yCQg2rhzmdX4WIo34A9gzrJMAX99zFK8zRLpez1VcJbsgKsyWZYaFPpqtbqnFfz2lOGwgj+WLgX8 LMxD0G8o24nh2ZPh8tWgTergRx8fzSzO0xyMlOId98JJ6bp37qp8hH6rgX65VOOrrkyV68HgxVcF VKvViWsFvz1lOKzgj6VLAT8hX+WrxojsKdhYtksmATx/H21sNHPTHtfw12wrkM18pWX16IwBfab3 PfUOOIq3o8aVLqcGpAlP1PFqtdruVvDbU4bDCv5Yuljw80w9d+5vLd8n7XYbGj0XVKUvFGyWaH/j 7iIMm5yE/KJIKV6m7XuOZS99pvfr60pQWrzVQD9TgK/QV6vVsazgt6cMhxX8sXQx4OfGPR7fq/W7 MTJ7KraU74mc2zdRebTxPc1JAwv07D3qwJMTjiE1uwqd5nbUUryM6gl9dyEcRVtQW51jJgcG+BdR I0CtVtvLCn57ynBYwR9LFwN+ptjbDOi3mWif5/Zr/XW9rtLXbCJ9Qv94aoXU3z+SUmYi/bD5hYwy vgv67tp8gX5dbZ6ZHHATn0b6arX6/Fbw21OGwwr+WLpQ8DPaJ/RrTLT/ZOZ47Kk8LLd7c25f6u8b 6KfmVOJpA/3dh0ulCQ+b8bxxbBf0a3Ij0HefMrdb5XrPsWq1Wh3NCn57ynBYwR9LFwp+pulZk/9l 5w6MzpkhhXtae7mTn9A/VezG8ClJ2Ly3GB1tLMUbBeTNIfMLGoa7OkugX+8uNrdbNL2vVqsvyAp+ e8pwWMEfSxcKfu7kr/G5MSp7GnZVHEJ7qBdV+pqbJLJ3lNdj1IwkrNiUhxbu6DdubHz9WGvTXo0r Q6DfUFdiflk5sVDoq9XqC7OC354yHFbwx9KFgJ+A7zCgX+3YjAl5L0hTnpZelMhlZF/pasCzM5Kx YE22AXvk/H506AdRXZVqoL8NDfVOgf6FHBFUq9Vqywp+e8pwWMEfS70Ff2QnfxucnnI8lTkBOysO 4pXwmahju5vFeBoa/Jg0Pw3TF6fD7zfPE+WsPjftcULgqkiGo3gHvA0VssbP8/s9x6rVanVvrOC3 pwyHFfyx1Fvw83z96VBkbZ/leb2NPoRinKNnNN/KUryBRsxdnimNd9x1Pon+e46VxjrmtasqkuAs 2Qmf12WuaS99tVp9aVbw21OGwwr+WOot+DtMtF/hq8JzubOwv/IYOkPtUcdZJvRDoWYsXJMtffUr qjxRod9soN/YGEBl2VGUlew20K/tgr5G+mq1+tKs4LenDIcV/LHUG/Dz3D7T/KtLt0i0H2gKSCve aGNpbtoLh5ulFC+hX+R0o4NV+XoU6GEqvzHgQ6XzEMpK98Dvc5sxGumr1eq+sYLfnjIcVvDHUm/A z538Tk+FnNs/XHVCNvidayc/S/GyIM+WvcVSlU9K8UapyhcMtSAQ8KDCeQAVjn3w+xsk+u8+Rq1W qy/FCn57ynBYwR9L5wM/Ad9iovBNZbswIW8uvCZCP1cHPhbiYWR/6IQTT086hqTUSjnG9wbom0g/ 4Peg3AC/wnHAfO/VSF+tVve5Ffz2lOGwgj+Wzgd+2cDX2ITxeS/ITn6m/KNF+zxyx1K8x06W47Hx R7DvuAPtbW+EPtP7fl8dykv3oqLskKT6NdJXq9X9YQW/PWU4rOCPpfOBn2v5bL07PGsSMt25eCV8 Wo72dR9DuDOdn11QgyfGH8OmPUVyZI+b+14bx176hH4tykp3o7LsiHm9gFzr/lxqtVrdV1bw21OG wwr+WDof+NsMmA+7kjEl/0VUeCrRHmp7Hfh5zI/p/VPFtbKmv3pLvhTnYa/9156H0G+Fz1djoL8L VeXH0GSgH2m489prqdVqdV9awW9PGQ4r+GMpFvgF6qF2zC9chaUl6yXtzx3+3ce0tYZQVtmAkdOS pCpf0ET/LQb8r41plvV7r6dKzui7Kk7ImX3tpa9Wq/vbCn57ynBYwR9LscAfMpD3N/kxJncWdlQc eEOan5G919uIKQvSMH1RpCofJwKvPUcE+p6GCinBS+hzMqHQV6vVA2EFvz1lOKzgj6VY4OdGvrTa HAF/ljtfon/rvmCoWcD/8s5CPGOi/QpXzwI9kTV91tt3FG9HdVWaXNe2umq1eqCs4LenDIcV/LF0 LvBz5z5r8a9zbsf4vLnSkOds0Z7myLp+Rm4VHht3BMdTy3sU6LGgXyqRfo0ryzxfpOue9fxqtVrd 31bw21OGwwr+WDoX+INNQQP6MOYWLsdLxevQGeqQyQDva20NosHjx9g5KVi0PhehUBPC1g7+5mY5 nlfnLjLQ3wp3dU4E+Brpq9XqAbaC354yHFbwx9K5wM8iPQ5POabkL8DR6pSz5/dZmY/r+Oyp/8z0 JFTXetHWtZmPaXye069zF0SgX5NnftHCCn21Wj0oVvDbU4bDCv5YOhf42YnviCsZz+XOhNtfL9X7 eJ3n9dOyXXh03BGcSK+Q8ryS4mek3xyGuzYPjuItqKs9Jbd1TV+tVg+WFfz2lOGwgj+WooGfkX2r Af3Gsp2YWjBfoM+jfJFd/AE8P+ckFqzJkcg/GOQvmIn0zf3umhw4i7ei3l1krmuHPbVaPbhW8NtT hsMK/liKBn6CvtbvxqxTL2F35SGZBIRDQbS3h7Bu+ymMmJqEqhqPAT+Bz/R+ELXVGSbS34aGupIu 6Gukr1arB9cKfnvKcFjBH0s9wd9oflnag+3Iqy/EiOzJcHrK0WbAz5R+Rp4Lj407iiMpZV0pfu7U D8pRPaeBvqfeKWv8rNsf7ZdQrVarB9IKfnvKcFjBH0s9wc/KfEzrbyrfhRmnFiNgrnW2tMLr5S7+ ZLy4OkvK8YbDkVS+qyLFQH87PA3lmt5Xq9VxZQW/PWU4rOCPpZ7gbzXwrg80YGT2FBxyJaHNAJ5d 9tZsK8CoGSfgqvWgo73NjG1CVcUJOEt2SDlehb5arY43K/jtKcNhBX8sdQc/2++2hlqQ5s7BqJzp KPdUAp2dyCmoxsNjDuNoajleOdNhfqEaUVl+DGUlu+DzVoNleTW9r1ar480KfnvKcFjBH0vdwR9q CslGvvlFK7GydBNaW0JoDDRj7OwUzFuRhZaWVoRCjahwHhTo+73urkg/+i+dWq1WD6YV/PaU4bCC P5a6g7+lOYwqE8GPzp6O5No04PQZ2cU/fPJxuGrZgKcR5Q4D/dLd8PvqTJTfGvWXTa1Wq+PBCn57 ynBYwR9L3cHfGWzH1vK9mJz/IgJhD/IK6vDw84dxPM2FjnZG+vtR4diHgN+DoEJfrVbHuRX89pTh sII/lrqDny1zCf31FVsQ9rdi7JyTWLy+AKGgB1Vl+wz0D6Ax4DO/PAp9tVod/1bw21OGwwr+WOoO /ozaXIzNm4kCXwF27inH6BlpqHS5UFO5D5XOwwb6ftnIF+0XTK1Wq+PNCn57ynBYwR9L3cG/3rkd LzgWIr+wDk9NPIlDSfmordqLqoqj5hcoYH5pFPpqtXroWMFvTxkOK/hj6a67/oklC15C6EwL5pYs xobSPZix4BReWHYE5Y7dqHUlo8n88mikr1arh5oV/PaU4bCCP5buuusu3DP5X5hVvQRP543D/E2Z GDV5D3KyN8PjTjO/POy6F3rDL5RarVbHuxX89pThsII/lu66+y78ddxteMmzFlMPbcH4Wftw9Mg6 +BuyzC9OpOtetF8otVqtjncr+O0pw2EFfyz9855/YsGiFxFuBVatP4btu1bA15BtfmnYXY9+rUe/ Wq1WDyUr+O0pw+HEBH9HRwe2bduGWbNm4fjx4zh9+nTXPRHl5eVhzpw5WLt2LXw+X9fVN+qe++/B wkVLUOqswJ69q+Gpz0dra5s04QmHQ8ZhtVqtHpIOhULyd45/KxX89pHhcOKB/9VXX8XWrVtx6623 4r777sPtt9+O5OTkrnuByspK/Otf/8Ldd98tYzgB6Ozs7Lr39brr3nswbORTyM7ZB3dNAdrbO6Q0 b0tL2Lglod3a2iqOdl+iu62tzdafPdp1O9hu/+eEP0Xwcz+Tgt8eMhxOPPDzD9cDDzyADRs2yO3J kydj6tSp8j3F6w899JB8n5GRIROAsrIyif5HjRqFsWPH4vnnn8fECRPxk5/9GFf99kd4ZsTDeO7Z 5zB69LPGoxPezz77rPwbPPccP3P0MYlq/ez2/Oz8zPzs/DeIdn8imn/vJk2ahL/+9a+4+eabz04E VIktw+HEAz9/eP/+979j06ZNcnvmzJkYOXKkfE8tXboU999/v3yfn5+PW265Rb7OmDFDHsez+5wM 3PGPO/DDn1+Oq6+70kwk/oV7770P99xzT8Kb/zb8N/nCF76AX/ziF3jwwQejjktEc8LIz/7pT38a V111lfxb3HvvvVHHJpr52f/3f/8Xn/zkJ/GnP/3JVv/v/Ky/+93v8NnPfhZ//vOf5d8i2rhENLOf P//5z/GrX/0KVVVV8ndRldgyHE5M8N92222yYYXiOj9ntpaWL18uv+hUYWEhbrjhhrM/8NwLQL/y yiuS9vvrDX/FuPHj5b4zZ86cvT+RTTmdTvlDOHfuXLkdbVwimmL2h38I16xZI7ft9P9+4sQJXH75 5Th69KjcjjYu0cz/X2r79u244oorkJKSIrejjU1EU/xZ/+lPf4rS0lK5rUpsGQ4nHvj5w8x0HSN4 AmzYsGF46aWXZO2fywD79++Xtf9Tp05h/fr1MgkIBAJdj35NhD8nBRMnTuy6Yh+5XC788Y9/xMKF C7uu2EfV1dX49a9/jY0bN3ZdsY/S09Pxox/96Cz87KS9e/fit7/9LbKysrqu2Edc/uRk1+FwdF1R JbIMhxMP/BR37f/jH/+QX+THHnsMdXV1cnyFG/m4uY/pf97HtN7BgwdlUtBTPBnwl7/8BePGjeu6 Yh9VVFTg+uuvP1uu2E7iz8cvf/lLrFu3ruuKfXTy5En84Ac/kMjfbtq1axeuvPJKmfzYTfxZ/9nP fqbgt4kMhxMT/JTX60V5eTmam5vlNjMBDQ0NZyN/ws3tdkeFPkXwX3PNNa9bJrCLmClh1MtlEruJ qX6mu1etWtV1xT4i8L/xjW+cTfXbSTwJ9OMf/9iW2Y6VK1fi29/+NkpKSrquqBJZhsOJC/5LFScK y5Ytw4EDB7qu2Ed+v1+WR+z4R5DLPvPmzUNOTk7XFfuIe1042eOk2G7ifp8FCxbIMpfdxJ/1F154 QYIlVeLLcFjBr1KpVCqVXWQ4rOC3xPQ2TwKw2A939HcXC1vs27dP1gG5PJBo4hLIzp07JbthlfG0 xMwH1375b5NokSALNyUlJUmal///0cRCJwUFBfI10ZSbm4vNmzcjOzv77O52S+3t7Thy5IhseuP+ mEQTl3T42aP9vrOiHTcBs7AN9wclmrj8yU2s0cSfBf678Gej58+EKjFkOKzgpwg0nmflZj7u5Odu f2vtn/sBmALk2Wbez5oATIUnivhHgEWLuNGR5sZHC3I82bBkyRLccccdckSS9Q24cTIRxM/GI1ws XsL/V570iLa5ianvb33rWwKKRFJmZqZsgOXPOytYdl/X5/8/d3qzhgH/31nspeeEcCiLSxoPP/yw /Lz/7W9/e91GTk7yWdSGZ/k5hr/vifR/z8/CzzxixIiuK68pLS1N/r/5O8GaJnbc5GkHGQ4r+CkW 9Xnqqafkl54wYOEWq3wlN7zwl4Az4Pr6etx5551S/z9RlJqaKgBgJoOfkb/4RUVFch9n/Ix8+G/A CJB/DPlHMRHEKJawZ1THyc+TTz4pNR66q7i4WMD45S9/+ZwZgaEqVqnjkVdGt6zXwE2s1rluTgr4 O8CfDf7fJ1rUz707jz76qPy/8/edPwf8+aZqamqkiNOxY8fk/5yTXmb6EkH8P+T/9U9+8hMJdLqL E2H+DHCiy58JBgAMCFSJJ8NhBT81bdo0PPPMM/I9N7rceOONZ5v38Fwvo/3a2lq5zcp+O3bskO8T QQQ7JzaUx+OR2T5n/j3FUw6saZAon53LG4x8+AeeGjNmzOtKO/OP3+LFi2XHM/s9JBr4H3nkEZnw UqtXr5bo3oIffyZYzObpp5+WLA/T4YmU9uXv++OPPy7fc5LD33erYQ0nP9zcySwQf++HDx8uE/5E ELOXzHYQ/pz4dBf/fzkB4qZeij8TPScHqsSQ4bCCn+If/HOBn7f5B4CRAJXI4CcM+QevJ/gJfS5/ 8HOfq6HRUBMnOd3Bz1rt3cHPz3v11VfLhIDH+1jM6FxHP4eiCP7uf+RZvtUC/549e+Q4J3tZMLvF qDeR0t0E/xNPPCHfE/z8ObDAz58LZju4p4efnxMi7nVIJHFCy2WMnuLn5n0Uj7Mq+BNThsMKfop/ +BgBEPas8c9qfvxDwE0/THszvc+oh7Nltq9MpLUv/uHj52PNA/6hY6qfKW7CniDgH3ym/VjJjhMD Kx081MU0L5s1cX2X/+8s9MTonilPrnHz/5vRHv89PvrRjyZcIacpU6bIsg33q/D/l9UuOanjZyfs OTHg8S5OeAlGa/knEcTfd4LP+n0n8BgN09znweUdfl6W/+b+h0Sr4sije5zQWLL+37n8w8kvfyb4 1Y7Fy+wgw2EFP8U/bkx9sT49I15GPBTXfAl5Rn/XXXed3D9+/PiEal/JX3gCgJ/v97//vUSB/EPA iIfrnwTE5z73OfljSAgmUvTDz8j/b/6/EgTcwc3JzezZs89uZrP2eHBnfyKJjakYyV977bXy/8r9 Hfy5ZhqY33Ndm3s/OCnk5MjKBiSCuGzHiJ8Furi0Za3hM8rlpIcnXJjZs9p2J9r5di7xcBnHEk/t 8G8dd/QzsOHPBP/v7VjLwg4yHFbwW2I0T+CzZKcV1bKeP0HASIApYR53S8QiF4x8+Nm4s9tqzcnS tcwCcG2bfwy5JMB/H2vJIxHE/2f+f/Nz8fNS/Pz8g2eBjpMg/jskEvgsMardvXv32UkNszzWBICf m0cdaV5PNLFQT8/fd/578PedWR8Wr2I570Q8ysjf9+6/x5zwsoARP7f1M8HbqsSU4bCCX6VSqVQq u8hwWMGvUqlUKpVdZDis4FepVCqVyi4yHFbwq1QqlUplFxkOK/hVKpVKpbKLDIcV/CqVSqVS2UWG wwp+lUqlUqnsIsNhBb9KpVKpVHaR4bCCX6VSqVQqu8hwWMGvSmyx61hFRcXZJiwXIpbtZUU/ms9h mVXfWNluoMUqcnx9llmmWHGO5Wd5jZXYWGHwfJUlWYWS46P112cTIlauY4tmVnHrrfg4PoYV4BKp kZFKlYgyHFbwqxJbbLH6sY99DGvXru260nuxSQkb9Lz//e/He9/7XvG73/1ufPrTn0ZpaWnXqIET 68ZfdtllUl6ZEw82Vfmv//ovfOQjH8EPfvADfOADH3hd85VoYglePke0XussV8za9b/85S+liVFv xXLGP//5z6Wjn1XyWaVSxacMhxX8qsQUwcWuc4Qhf/asdqMXInZp5GP/+Mc/SotSmp3cRowYIe1b B1rspcCOgtXV1cjLy8OHPvQhfOELX5AugmymxI56bKgTS+y9wOewGlF1FwH+s5/9TJoyRcsInEuM 8vmYL3/5yxeVWVGpVAMn8zdNwa9KPDGdzW57jIZ/+MMfys8eO5JdqAhIwpXtiqOJywhbtmzBjTfe KB3+2OUwEAjIfYzG77rrLonSGUWz6x3bPFsivEeOHCmPY0tcpsotEcDskshuiWPGjDkL4cOHD8vk g13U2D3uzW9+s4CfLaXZaGfUqFFYsmSJjKXYfZBdFe+77z5ptUyx7SyzAuxAR/EzsCvdzTffjMmT J+O73/0uvvnNbwrAuaTAFq5/+MMf8Kc//UkmTxbY2biHr3XTTTdh+vTpkgX59re/reBXqeJc5u+h gl+VeGJ3ObZdZTtlpvj5s0eQXqiefPJJgeuHP/xhARsnElw2IODYs5xp8//4j/+QJQAC+PLLL8fW rVslArYmHJ/85Cfxzne+Uzxr1iy5j+vwBC2f9ytf+Yo8B9ugEpq8n7Dlfe94xzvkOTiJodgjnbdX rlwprVPf9KY3yZjvfe970leeSxLXX3+9jGVnuS996UvyunzMlVdeKVkKdlrkbast64oVKyQr8va3 v10+41vf+lZ8//vfl8kTPx+XED71qU/hfe97H97znvdgw4YN8h7nz58vn5uvz8fxvXCspvpVqviW +f1X8KsSTwST1Ur25Zdflp+9aOBnRMsWpIxcCcCysrKueyLi5OFtb3ubRMFXX321wPOKK66QKJqQ 3rZtmzz3ddddJ5E/2zhzUxyjaKbMCVNOPhihf/azn8U3vvENgS+jbQL2N7/5jUTRfG4ClBE6o/v/ +Z//EYgyimc2gO+D4oSAr3fo0CEBOIH9wAMPCKQZ0RPEt9xyi4xlJM4JBdtJM9vBvvrclMje63wO ZiSon/zkJ2fHcbLAic23vvUt2UjIz8H3w9a1zF7wcZy88D5Ocj7+8Y8jNTUV27dvx7ve9S6ZECn4 Var4lvk9VvCrElurV6+Wn71o4K+qqpJ1aevnkxsBu4upfm6cY4/6aCIUuUmOwPviF78oUfiJEydk 4vHjH/9YlgmYGaCYLv/P//xP2VHPSQZfj9kETg44ueBtRvJcAmCWgMsHPcWUOsdxrT8nJwcf/OAH 8dRTT8l9nLQQ/LfeeqvcJtC/9rWvvQHER44ckecYP3683P7MZz6DX/ziF/I9xff99a9/XR7HzAQn CM8995wsF7zlLW+RpQsuSzDDwc18FCdZXOO3lghUKlX8yvz+K/hVia1Y4GekzEh3x44dYk4Euosp 9n//93+XCJ3H3Cz7fD6BO3fWc7Mco29G5nwdrr1TzAwQ7JxMcDLAdDknCHwsI2SmxhnxM9vAiHzB ggVybJCw5ThmGRidc/Jx++23y3NynwBfg+DnvgO+t8cee0zu4/tgOt6K+G+77TZZLuAmvhkzZsjE g1kBRuh8DiviZxaDmQN+/s2bN8tjvvOd78hnY3TPsfzK/Qv8np+Hk4Kf/vSnMnb//v2ynMKMBR+n Eb9KFd8yv8cKflVii1Dlzx6heaFiGp2P5To5IctjcIyqmbbn+XlG2dyc94lPfEKie66xL1q0SB57 1VVXSYTM6J1fCVdrgyHT/X//+9/lGiNlPh+BTXhTnKQw08DlAL4+4U9x8x1v8zhfSkqKTB6s43sl JSVyH98PxfV5RvycfPA6Ac9z9tYav7V8wD0JTPXzGjMS/MosCDcYMgPBjASPMPJ98jNyYsMlEi6h MOPA8fz8/MrX4/4KlUoVvzK/qwp+VWIrMzNTAE5QXqi4hs9d9Exz33PPPWfNTAAjf0b9XJfn8xPA 3B3PSJnr/NbaOSN6gpvH7FhwxxLT5TyCd/fdd8sxPKbgrX0JfA6O53PySKJ1pp5r+zxiyAkCsxPc oMe9BRQzBYR59139fE6+N54esPYv8LH8TNaufoqfk8/L/QYTJ06U6J7vhRkRPh8/P98PMxWcfDBr QW3cuFGen2N4xJGfhxMGlUoVvzIcVvCrVH0tgpsb9BjRdz/ClyjihEelUg1NGQ4r+FWqvhYje26y YwU8TX2rVKp4kuGwgl+l6g8xHc7lgAupea9SqVT9LcNhBb9KpVKpVHaR4bCCX6VSqVQqu8hwWMGv UqlUKpVdZDis4FepVCqVyi4yHD4X+B8x7hfwdxgXGBcaFxkXG5ecw6VqtVqtVqsv2d3Z2mkcjc/9 Bn61Wq1Wq9XxZwW/Wq1Wq9U2cr+t8avVarVarY4/K/jVarVarbaRzwX+Txgr+NVqtVqtTjBzjf9v xn8w/rXx5cZfNib4LzM+L/jfY3yl8bXGfzK+xfhuYz7xcOPnjMcZjzee0GV+z2tqtVqtVqv73+Su xd7bjf9q/HvjXxl/1/hLxh837hX4eec7jd9v/FHjzxt/y/hnxlcbM5Vwg/FNUcxUg1qtVqvV6v5z T+6SyWQzGU1Wk9lkNxlOlpPp5wQ//Rbjdxi/1/gjxp8x/obxD4w5k7jGmLMKvggzAv/b9VWtVqvV avXAmiwmk8lmMpqsJrPJbjKcLCfTyXaL86+TBf63G7/b+IPG3BX4ReP/MeYT/tz4CmMuB1ylVqvV arV60EwWk8lkMxlNVpPZZDcZTpaT6Rb43yBeZCrgbcZcE2CKgDOGTxnzif7b+NvG3zPmC9A/VKvV arVaPeC2OEwmk81kNFlNZpPdZDhZTqa/Ic1vyQJ/96ifGwP4BJw9fNaYT8rdgl81/pparVar1epB M1lMJpPNZDRZTWaT3d2j/XOCn+IdHMSNAFwX4AM5a2DKgE/2MWMeEeCTf1KtVqvVavWgmSwmk8lm MpqsJrPJbjKcLD9nmt8S7+wJf6YKeMzvfcacRdAsCvDvarVarVarB81kscVlMpqsJrN7Qj8m+Kme 8Of6ANMFPBLAJ+zud6nVarVarR5w9+QxGU1Wk9kXBH1L1mBrzd+aBFjmE6vVarVarR5cd2ezxWtr Tb/X0O8u64HWJECtVqvVanV8ujuz+0zdn1StVqvVanV8WKVSqVQqlaqn/r//7/8HKX2B598E+m4A AAAASUVORK5CYIJ= ------=_NextPart_01D73C45.D2921D00 Content-Location: file:///C:/0E85C06C/20-CURVASROCFINAL_archivos/image009.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAnEAAAFNCAMAAABYA8lBAAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAC6UExURdnZ2dra2tra2tnZ2UBAQEREREdHR0hISExMTFFRUVVVVVZWVllZWVxcXF1d XWBgYGRkZGVlZWZmZmxsbHNzc3h4eHl5eXt7e35+fouLi42NjZWVlZiYmJn/mZubm5+fn6Ojo6ur q62tra6urrW1tbm5ub29vb+/v8XFxdLS0tbW1tfX19nZ2dvb2+Li4ubm5unp6evr6+7u7u/v7/Hx 8fLy8vT09PX19ff39/j4+Pn5+fz8/P/Mmf///8snpO0AAAAEdFJOU4efx9+nhZkZAAAACXBIWXMA ABcRAAAXEQHKJvM/AAAXRUlEQVR4Xu3dDX8bx3XFYbehKjqiI6lKqEpsaiphRVO0S9VyW5kIv//X 6p2Z/75B2LncwWKIBc7zS0S8HOAusQeLBVaCv/vuZ5F6/kmFk7qscQ8itahxUpcaJ3WpcVKXGid1 qXFSlxondalxUpcaJ3WpcVKXGid1qXFSlxondalxUpcaJ3WpcVKXGid1qXFSlxondalxUpcaJ3Wp cVKXGid1HWPjLs/ex5+3P/wSflynHw+fX32wP5srr8+Cn+Lp7hbxwpe/xTMP9296kbzu3lbvzn/n fsI4059o1wXNRYfo8Bv31xYX3L/5t9QZGpeaRvPaK+O569Sn7hbx/GXqynX8cbu5HP9oxbPdvaXG hbPcsrnzFIn33M47REfYuNuXv7yKRaJxsQPNj/ZK+hdL0d0iNTBWpykql62hbiae7e6ta9zDZawV d86oqJ13iI6vcat37+1/4RSNY0sWG9Rd2Wtc7xapXbE1qS+c+QZ1M/HsxsbFC5s7v3/T3k037xAd X+M+2+Yjruu2calX8bLuyvjnZTzZuwXbM2tbV7SmegPUzcSz3b2tb+PaO+/23bp5h+j4Gndt6zm9 IjaNi6s+Nai7Mu7rp1L1bkHjrA/dq+CjGtfeW9e4tB/Y3fnlt/MO0dE1Lq7x9BLWNi4UKa7i3pVh I5Nebvu3KG7c8N7ie9U4vXfndjq+f+1fdICOrnFsT8LqbhsX2hM2LP0rQ0dW79YuHLyqto3b1A3q ZuLZ7t5S45rJ/Ts392/sxPCig3N0jUufjMWNSbfeL1/+GgvUuzJ0JDWsf4vUuNi2ZtPWbez6qJuJ Z7t7W2tc786DEFm76NAcW+PiCv9mvd+e/d321gdXxo6ENg1ukRoXXx85nYLfoG4mnm3vbW1y/84D y61fdGiOrXFtT+xn17j7N/FAQv/KVCTbkA1uEU+nXX7b0++dWUfdTDzb3tta47o7/4/0Av5+sBCH 6PAbN9S8FqZ1G8RNSfpoon9l6sjt2YeRW5h4jmsd7b2tNa535/HerL39eYfo2BonT02Nk7rUOKlL jZO61DipS42TutQ4qUuNk7rUOKlLjZO61DipS42TutQ4qUuNk7rUOKlLjZO61DipS42TutQ4qUuN k7rUOKlLjZO61DipS42TutQ4qUuNk7rUOKlLjZO6jrJxNycnJ88+hVP3L+zkx3hh0F5hJ55/sZ+r 8x/jFTKbY2zcVejYRWjW3akVKp4dXnH/4uPDxVu75OL113SVzOUIG3f/InQp/hkLtTqnVt0VN7aB u7JLw0+Z1xE2Lm7YYs/uX8TXzKv0Ctu7gsbdnXYvuDKTo23cw8XzLzTqhpfV4RUXb1fnYZsn89px 48Ku+Elcj90prM5P4gptr6i1t746T7twz79QtaZx3RW2R3fy+mt4XZW57bZxcV3ehD51pxpXz/41 NK69ot7eunXdCvX+m8Z1V8RzN88+NU8Cmc9uG8eeufWoO4X7F/8Zz7VX1N5bt8Frr6qg8fYMaJ8E Mp8dNy60J70rbE/h4vX/psY1V1TeWw8j2XFr3jkkLGR4Etz98Yvers5tt40L+0Sr87DOulPJ3fef 0havvaLy3nqoWfpcpP10JKF/YXNrC/lwM7hStrbjdw53pyfp/UHvVBCKRbnaK6rurV/xZsX+jBVr PwZOV8Sy2eZOr6qz23Hjrk7+dGo9GpwKwmsVjRtcUWVv/cLeH/BCGt4ox5PpcEN7BZ/U6Z3D/Ha8 HxfW303oU3cqiCs0NW5whfbWD99OG9ftma/to4dNS/RxcEXooPbWD9zTNC6K27jBFdpbPwI7bVzz IX54l9CcSntM6Vo717tCe+tHYcfvHMK+eHrz154aNq53hfbWj8KOG7drcYcwFDUeoGo3jfEvWnJB G2mqrL9l+aSW3bjuaG14Ib7pfeAXxH3EJzhuKznLbtza0dp4xKwTzz7ZcVvZbOGNC+3pjtZeDcqU Ln+q47YyYtmNWztaO9zGpU9cnuq4rYxY+DuHwdFaPttDc4D+aY7bypiFN65/ULb/V1NM87fe6h+3 lZyF78eFF87moGw802r6p+O2e2bRjRseIms+WU64bhAJO3E6bvvEDqZx/L22Flu8YSltS8dx2388 TritzGrRjesdlO3+0U7a1jUfmYwdt6VRnngfMqeFv3NoDsrGg1zGipUa173Gbj5uS6M84QYyq4U3 rhiN8pCW+ahxWaRlPrUaxxp0EK6AgR7SMh81Lou0zEeNyyIt81HjskjLfNS4LNIyHzUui7TMR43L Ii3zUeOySMt81Lgs0jIfNS6LtMxHjcsiLfNR47JIy3wOpXF/fRzSatzTUeOySMt8pjYu/Fu8+Pcb w9d5pL/Ybfzv+WANOsJ9laFRHtJq3NOZ2Lj2r9bGE8N/PZX+TcHI93ywBh3pfkrQKA/pfWvc4Hkc TyTt03rw7F22aY3j36k0/4yg+/6FKPc9H6xBR7qfEjTKQ3rPGtc+j7tv7onap/UhfUvPtMa1X+yR qjf8Xvrs93ywBh0hWYZGeUjvV+Pa5/HaN/d0T+vhs3fZJjWuaxgP0uCLPrLf88EadMRoERrlIb1f jeu+oKd9ukbd03r47F22iY37S/wvV321U6FeoV1c1dVx8/d8sAYdMVqERnlI71Xjeq8Uw2/u6Z7W h/QtPZMad/8i9Oz+RaxcqF7zH00L8t/zwRp0pBuVoFEe0nvWuOZ53Hu6Br2n9QF9S8/EbVzaeMWX z6C3I+t8zwdr0BFuU4ZGeUjvVeN6z+Ph03XtaX0g39JTsh/XNq7d4zC8BPAjRUJD+Z4P1qAj3LQM jfKQ3mHjmg864uccbT/6H1j2I+H61V++D49ZeMgGT9cGT+vu2btskxrHPm77fqHb2LFtW2tceBmY 9D0f4aZlaJSH9O4a133Q0XtsGunBaSJNf1Zn/xIeT3vIBg9eg6d179kbL16saY0bfsVH+nKZ9AA2 m7vtvucj3kURGuUhvbPG0RmzqXHxqdpG2o88nsXGxTcIGxrHud6zN168WNMaZw+XvSCEhoVv8+Ch iOfb5/ZW3/MR8mVolIf0zhrXfdCxoXHpWdlG2o88/tY8j3tP1/bxPLj/FuLExhVjDToIF6BRHtK7 alzvg44NjYtbqy7SfeTRPo+7p2tsXPe0PqD/uooal0X6sXofdMR3DoPWpa71Isf5xcRqXBbpx+p/ 0BFctPsaJn1guRY5kI88JlDjskg/1voHlv2Pj/jAchg5lI88JlDjskg/1voHlr39uuY96iByMB95 TKDGZZF+tLUPLPvbuOYvE/YjB/ORxwRqXBbpR2s/sFyd205beiEdfmDZRQ7pI48J1Lgs0o/XftAR 36umF9B4vvvAso0c539QVo3LIi3zUeOySMt81Lgs0jIfNS6LtMxHjcsiLfNR47JIy3xKG8cadBA2 rEEH4QIM9JBW456OGpdFWuajxmWRroCBDsJLpsZlka6AgQ7CS6bGZZGugIEOwkumxmWRroCBDsJL psZlka6AgQ7CS6bGZZGugIEOwkumxmWRLsBAB2HDQAfhJVPjskgXYKCDsGGgg/CSqXFZpAsw0EHY MNBBeMnUuCzSBRjoIGwY6CC8ZGpcFukCDHQQNgx0EF4yNS6LdAEGOggbBjoIL5kal0W6AAMdhA0D HYSXTI3LIl2AgQ7ChoEOwkumxmWRLsBAB2HDQAfhJVPjskgXYKCDsGGgg/CSqXFZpAsw0EHYMNBB eMnUuCzSBRjoIGwY6CC8ZGpcFukCDHQQNgx0EF4yNS6LdAEGOggbBjoIL5kal0W6AAMdhA0DHYSX TI3LIl2AgQ7ChoEOwkumxmWRLsBAB2HDQAfhJVPjskgXYKCDsGGgg/CSqXFZpAsw0EHYMNBBeMnU uCzSBRjoIGwY6CC8ZGpcFukCDHQQNgx0EF4yNS6LdAEGOggbBjoIL5kal0W6AAMdhA0DHYSXTI3L Il2AgQ7ChoEOwkumxmWRLsBAB2HDQAfhJVPjskgXYKCDsGGgg/CSqXFZpAsw0EHYMNBBeMnUuCzS BRjoIGwY6CC8ZGpcFukCDHQQNgx0EF4yNS6LdAEGOggbBjoIL5kal0W6AAMdhA0DHYSXTI3LIl2A gQ7ChoEOwkumxmWRLsBAB2HDQAfhJVPjskgXYKCDsGGgg/CSqXFZpAsw0EHYMNBBeMnUuCzSBRjo IGwY6CC8ZGpcFukCDHQQNgx0EF4yNS6LdAEGOggbBjoIL5kal0W6AAMdhA0DHYSXTI3LIl2AgQ7C hoEOwkumxmWRLsBAB2HDQAfhJVPjskgXYKCDsGGgg/CSqXFZpAsw0EHYMNBBeMnUuCzSBRjoIGwY 6CC8ZGpcFukCDHQQNgx0EF4yNS6LdAEGOggbBjoIL5kal0W6AAMdhA0DHYSXTI3LIl2AgQ7ChoEO wkumxmWRLsBAB2HDQAfhJVPjskgXYKCDsGGgg/CSqXFZpAsw0EHYMNBBeMnUuCzSBRjoIGwY6CC8 ZGpcFukCDHQQNgx0EF4yNS6LdAEGOggbBjoIL5kal0W6AAMdhA0DHYSXTI3LIl2AgQ7ChoEOwkum xmWRLsBAB2HDQAfhJVPjskgXYKCDsGGgg/CSqXFZpAsw0EHYMNBBeMnUuCzSBRjoIGwY6CC8M6vz k5OTt+HUjZ04OXn+JV48OBtP/phOxAtW5+HcY6lxWaQLMNBB2DDQQXhnLqxtN7FyN88+pYuS7uzN ycfwx48P9y8+xvzDxeuv6apHUeOySBdgoIOwYaCD8G5dhC3XaONiv1bnbx9uLHZlZ8LPCdS4LNIF GOggbBjoILxbV/nGhWvvX7SNuzu1bd4EalwW6QIMdBA2DHQQ3q38Nu7u9PmX1blFQtUu3oat3SRq XBbpAgx0EDYMdBDeqbtT3hacnHSt6529O+XNxdXJyeuv4XV1EjUui3QBBjoIGwY6CO9S3H7hIrxL 6KSzVyd/OrWqpYts29e8ZX0kNS6LdAEGOggbBjoI79JF7+U07K71xLPx+hsqZ+9X27esj6TGZZEu wEAHYcNAB+Eduupv1lbng9fMcDa95j5cxV6Gnbi7P36Z9HZVjcsiXYCBDsKGgQ7Cu3MVP9ttbNjG DRoXduLuvv/0cDNhZ06NyyJdgIEOwoaBDsI7Ez7ZjVbntqlLu3Rhq9edXZ2Hrt2dhiqGsoUXVr2q jiOtxm0WD3IZK1B8cxo3XfF1tjtr7x9MKOb9i1hPvXPIIX2cjesOmlpZ7GTYYWvqMu3Y6DbUuCzS BRjoIGwY6CBcpjtoGnfGwrar8NjoNtS4LNIFGOggbBjoILyFeECBY6OvvxYeG92GGpdFugADHYQN Ax2EtxAOmrIDZu83C4+NbkONyyJdgIEOwoaBDsJbCNs4CnZz8rHw2Og21Lgs0gUY6CBsGOggXC7u wcW/4pZ+lB0b3YYal0W6AAMdhA0DHYSLpU/Yeo2LPycfG92GGpdFugADHYQNAx2Ei6WDpt2ravhR cGx0G2pcFukCDHQQNgx0EC7FQdOtj41uQ43LIl2AgQ7ChoEOwoWag6bpAD2H6UuOjW5DjcsiXYCB DsKGgQ7CZdqDpulU2sQVHRvdhhqXRboAAx2EDQMdhIv0Dppa5fgbvWXHRrehxmWRLsBAB2HDQAfh JVPjskgXYKCDsGGgg/CSqXFZpAsw0EHYMNBBeMnUuCzSBRjoIGwY6CBcAQM9pCdQ47JIF2Cgg7Bh oINwBQz0kJ5AjcsiXYCBDsKGgQ7CFTDQQ3oCNS6LdAEGOggbBjoIV8BAD+kJ1Lgs0gUY6CBsGOgg XAEDPaQnUOOySBdgoIOwYaCDcAUM9JCeQI3LIl2AgQ7ChoEOwhUw0EN6AjUui3QBBjoIGwY6CFfA QA/pCdS4LNIFGOggbBjoIFwBAz2kJ1DjskgXYKCDsGGgg3AFDPSQnkCNyyJdgIEOwoaBDsIVMNBD egI1Lot0AQY6CBsGOggXYKCHtBrnYqCHtBo3hrQa52Kgh7QaN4a0GudioIe0GjeGtBrnYqCHtBo3 hrQa52Kgh7QaN4a0GudioIe0GjeGtBrnYqCHtBo3hrQa52Kgh7QaN4a0GudioIe0GjeGtBrnYqCH tBo3hrQa52Kgh7QaN4a0GudioIe0GjeGtBrnYqCHtBo3hrQa52Kgh7QaN4a0GudioIe0GjeGtBrn YqCHtBo3hrQa52Kgh7QaN4a0GudioIe0GjeGtBrnYqCHtBo3hrQa52Kgh7QaN4a0GudioIe0GjeG tBrnYqCHtBo3hrQa52Kgh7QaN4a0GudioIe0GjeGtBrnYqCHtBo3hrQa52Kgh7QaN4a0GudioIe0 GjeGtBrnYqCHtBo3hrQa52Kgh7QaN4a0GudioIe0GjeGtBrnYqCHtBo3hrQa52Kgh7QaN4a0Gudi oIe0GjeGtBrnYqCHtBo3hrQa52Kgh7QaN4a0GudioIe0GjeGtBrnYqCHtBo3hrQa52Kgh7QaN4a0 GudioIe0GjeGtBrnYqCHtBo3hrQa52Kgh7QaN4b00zTuZ5GtUKQhNU52hiINlb6qipRR46QuNU7q UuOkLjVO6lLjpC41TupS46QuNU7qUuOkLjVO6lLjpC41TupS46QuNU7qUuOkrp01bvXu/PeH65e/ 9c6FP+KJ6P7Nh3Sis+GieaXpn1+dvfy1XY7m0uAplunYlDbu+uzsrFtnG8TVWKVxYVHOzn74hbM5 LMb7fsueonG3cZFf/nbNUn9+9SFd9ETt3rg88bSdipfMp7BxcdGu3YVpGxf11/KcjXtU2TqZKfUa 91P82axP+xVuw29xe2ZPhiewYXnseRyWZV8ad//mcY/MXjYu8yDWbhyPSPgRG/dwOXjAqtmwPNc/ /HtYov1pXNudsEEO9bs+/5836VVh9S5soOPCX7/873RhPBf+SL+T3eiHT3FVXjYvJd1FU7WNS4N7 S9IuXHMqTA8Tz963y8GlMy+To1nDtkcQToTVmho39dkzkw3Lc22/uT10+9I4Wyls5MKyxqW6jivb zsXdpNu0Sq/DzsCtrb54LvwRT6QbhbV6af+Pv2530WTNWmJwN5Q7DfcZZ1z+FKfHS9rlaC7tFmCO ZXLEuw/Si0X4DfZiG9dbHvt/+LE3jQvbAVtNaS3HF8+43sNLEC9DcTWmp8wlRQt/pP+HG7W/S/gt 1y6aJL1zaAf3hzYLl06xUG3j+pfOvEyOdg3HisWlio273kW9H2HD8tj6DA/C/L9+aeNsscJa/vwq LGp4tOIuW1hJdkVYyLTY4cKw8PFcWrPnv6dqtDtI4UZrF00Su24Y3A3tFq553OJitI3rXzrzMjnC q3l6yqbtqI2IF/GbVLdhecKjas/d5jGaT3HjwroIKzUua79xcfvX7sdtalz6LeKqDL0Nu1K9iyZr GsfgfuOahUvdS93qN667dOZlcnTblLAdiQucXlWfyIblCY+q7a7/V3wQ5rRF48JyNivNljAsZmpc eClKH7Gy8ulf+CP8P63E8CcXz7ONC2zwb+3QbuFSeb5tXHfpzMvk6NawvYz9Gh+0PWlcuzzxUb09 +/teNc4Wqlsfg8bZ4/dzWHGpDOP7caz8Lffj+uvKVlw7tFu48MwN4mK0jetfOvMyOXprOKzUcGZf GtcsT3wUV+/+PPuvX9a421Cvz69sjcTd9NtQrqZx4Yytw/8LK5e3jeENbK9x8UbxTWBc5/F9b3vR dE3jGPx7O7RbuHTq8kOc3jZucOm8y+ToreH7N2FPwC7ak8Y1y5MeVdvB24/GhSXpfeQV12m7jUsH wNJqtP2As/DbxHPhj3giRGzjbbcPu1ofLu1G3UWTpfeqNiUNtiX5JQ3tFi6FwmbLznWN61/aLcAc y+ToreFUbrtoTxrXLE9qXPNubEbbvKruqbQfJ3tKjZO61Dip6wAbJ3tNjZO61DipS42TutQ4qUuN k7rUOKlLjZO61DipS42TutQ4qUuNk7rUOKlLjZO6YuNEKvrunzkhUsHPf/h/oy8pzqRjf4YAAAAA SUVORK5CYIJ= ------=_NextPart_01D73C45.D2921D00 Content-Location: file:///C:/0E85C06C/20-CURVASROCFINAL_archivos/image010.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCADEAXMDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKb 5hNG/wBBQA6g9OlNycZAp1G4Hjf7e3xq8Z/s6/sqeLPjN8Pxa/2todvBLZreQ+ZGS1xGhDDIyCrH vXwp8Lf+DhzX7YR23xp+ANvcLnEl54b1Axtj1Ec24Z/4GK+v/wDgrcuf+CfPxF/68Lb/ANK4a/BX Z6Gv1ngPhvJ88yeq8XTvJTsndppWXY/L+Nc+zTJ80prCzsnG7WjT1fc/eD4Cf8FZv2Jvj0kFtpvx PXw/qU2B/ZXiiP7LIG9N+TE34Oa+kLDU7DUrWO/069iuIZlDxTQyBldfUEdRX8x5jB7169+zv+3b +1F+y5dxf8Kr+KV8mnxyBpNC1CQ3FlJzyPKc4XPqu0+9dWbeFseVzy+r/wBuy/Rr9UcuW+I9RWjj qf8A29H/ACf+Z/QwrfNUleCf8E7/ANrzVP20f2foPi1rfhOLR76HUptPvLe3m3xySRhCZEzyAd/3 TnGOpr3uvyTFYWtgcTPD1VaUXZ+qP1LC4mjjMPGtSd4yV0FFFFc50BQTgZNFcL+0h8ePCf7NXwU8 RfGrxtMFsdB09p/L3YaeT7scS/7TuVUfWgDmf2vP23v2fv2LvBH/AAlvxm8U+XcTKx0vQ7FRJe6g w/hjjyMD1diFHc1+bfxh/wCDjX43a1ezWvwP+C+h6HZ7sQ3WuSSXlyR6kKURfphvrXwz+0n+0Z8T P2qvjBqnxj+KmsNc6hqUxMNupPk2UGSY7eIH7qIDgDqepySSeFAxXRGnHqB9qf8AD/X/AIKEkk/8 JB4TUdl/4RlOPb71H/D/AG/4KE/9B/wn/wCEwn/xVfFW45wRS1XLHsB9qf8AD/T/AIKFE/8AIweE /wDwmU/+Lr9AP+CNn7bXx3/bb+HXjPxN8c77TJ7rQ9at7axOmacLdRG8RY7gCdxyK/Cuv13/AODb Nz/wpr4lHH/MzWf/AKTtUTjHl0QH0J+03/wV7/ZT/ZJ+L998E/inY+KX1nT7eGW4bTNJjmh2yoHX DGVecHnisD4T/wDBcL9jP4z/ABN0L4UeELHxguqeItUhsLBrvRY0jEsjBV3ETEgZ6nBr83/+C5p3 f8FF/FQP/QK03/0lSvI/+CfBC/tw/Csf9T1p3P8A22Wl7OPLcD+kSiiisQCiiigAooooAKKKKACi iigAooooAKKKKACiiigDm/i58TPD3wX+F/iD4ueMEuG0nw1o9xqWoi0iDymGGMyPtUkZbC8DIya+ O/8AiIQ/YRzxpvjj/wAEEX/x+voT/goYx/4YU+MAI/5pzrH/AKSSV/N+AnXHNaU4xkrsD+j/APY8 /bd+Dn7cnhHVvG/wXg1iOz0bUlsbxdYslgfzTGHG0B2yMEd+teyjgYr84f8Ag28JX9nP4gEf9DpH /wCkkdfo8OlRJcrAKKKKQBRRRQAUUUUAfhV4A/4LJ/t9eBGjE/xWt9cijxmHXtJimDD0LKFf8mz7 19H/AAf/AODhy/XybP48fAeJm4E2oeGL0qp9xDNnH08w1+ZtNfd0C5+tf05jODOG8dfnw6T7x938 j+dMLxXn+Da5K7fk9fzP6Dv2YP2/P2Zv2t4Ps/wm8fxvqqR759B1BTBeRjuQjffA/vIWFe15yARX 4H/8EnHmi/4KD/Dfyn2Z1K6DbW+8PsU/FfvegwM1+HcYZBh+Hc1WHoSbi48yvutdj9j4TzzEZ7lr rVopSTtofOX/AAVt/wCUfPxE/wCvC2/9K4a/Bav3p/4K2/8AKPn4if8AXhbf+lcNfgtX6X4Wf8ie t/18/RHwHiP/AMjal/g/VhTZAMZJp1NfpX6cfnR+zn/BBBf+MKLg/wDU5Xv/AKBDX29XxH/wQS/5 MluP+xxvP/RcNfblfyzxR/yUWK/xs/o/hn/kQ4f/AAoKKKK8E90K/Mv/AIOPvjTc6L8N/AnwF0y/ 2/25qNxquqQq2CYrcKkQPsXkYj3j9q/TSvxE/wCDhHxZPr37dFn4eeUmPRPBdlDGvYeZJNMf/Q/0 FaU9ZAfCwAHIFfSH/BMX9hC5/bs+Pv8Awi2t31zZeE9BhS98TXlqv7xo92Ft0Y8B5CCM87QGODgC vm9unSv2q/4N6fhjp3hr9jXUviKloovvE3iy48242/MYbdEijX6BjKf+BVrN2iB9OfC79hP9kH4P 6FH4e8C/s9eFoIVUK01xpMdxNL/tPJIGZz7k11X/AAzf+z5/0Q/wn/4T9v8A/EV2g4GKK57sDi/+ Gb/2fP8Aoh/hP/wn7f8A+Ira8KfD/wAC+Abaa28D+DtM0eO4cPPHpdhHAsjAYBYIBk49a2qKVwPj D9sD/gol/wAE+/2ffjtqXww+Pvwlk1bxLZ2tvJdXn/CKwXW5HjDIPMc5OFIHtXMfBL/gqN/wTK+J fxg8N/D/AOHHwUey17WNYgtNIuj4Lt4vKuHYBG3rymDj5h0r4P8A+C5//KRjxT/2CdN/9JUryH/g nz/yfF8Kf+x50/8A9HLWyj7twP6RAcjIrN8V+LPDXgrRZvEni7xDZ6Xp9qhe4vtQukhhiX1Z3IAH 40njDxXoHgfwrqXjLxTqUdnpuk2Ml3f3UxwsUMalmY/QCv5//wDgop/wUW+Jf7cvxOuv+JrdWPgX Trth4b8Oq5VCg4E8wHDysOec7c4HvnCLmB+rPxO/4Lef8E/PhrqsmiwfE+88RTRPteTw7pMk8Ofa Vtqt9VJHvXI/8RB37C//AD4+MP8AwSr/APF1+IKsMbR2pdy5xmtvZRA/b3/iIN/YX/58PGH/AIJV /wDjlfT3wU/ag+HXx6/Z/h/aS8Epfr4fmsrm6jW6twk3lwFt/wAuTz8hxzzX80pI6A1+63/BMUhf +CQ2n8f8yvrf/oVxUSpqIGI3/BwX+w1HK0TWPjDKsQf+JKv/AMXR/wARB37DH/QP8Yf+CVf/AIuv xIu/+PqT/ro386jzVeziB+3f/EQd+wx/0D/GH/glX/4uur+E3/Bb/wDYH+KviKLwvP8AEHUPDdxc OEgm8SaY1vblj0BlG5U+rYHvX4M5B4pvDGn7OIH9Tmj6vpeu6XBrOjalBeWtzGJLe6tphJHKp6Mr Dgg+oq1mvx7/AOCDX7d/ivwv8UY/2OfiDrc95oGupJJ4VNxMW/s+7UF2hXPRJFDHaMAMOBya/Vr4 2/F7wf8AAf4U678XvHt20Ok6Bp8l3eMuNzBRwi+rMcKB3JrGUXGVgLvxA+JXgD4V+HpvFvxI8aaZ oWl24zNf6reJBEvtuYgZ9upr5U8e/wDBdX/gn94I1STSdP8AHesa+0TENPouhyvC30d9ufw4r8if 22P24fjF+278ULnxr4/1aaDSIZ3GgeHY7gm306Ak7QBgBpMY3ORlj6DAHi4YDjmtI0u4H7fD/g4N /YX/AOfDxh/4JV/+OUf8RB37C4/5cPGH/glX/wCOV+IYYHiin7OIH9K2sftBfCrW/wBk2f8Aac1z TLi68F3Xgk+ILmzuLNXkl09rbzyjRE4LGM4Kk47V8Xr/AMFfv+CSfUfACT/wg7WvWp9v/DisAj/m 29e3/UIFfg+ODwtTTipAf0UfsHftQfs0ftReB9c8U/sx+CW0TTNN1ZbXUIG0WOy8yfyg4bbHw3yk DJp37Zf/AAUO+BX7C9zoNt8Z7fWXbxCk7WP9l2Im/wBUUDbssMffGK+Xf+DbvH/DOXxAz/0Osf8A 6SR15/8A8HKjg6v8KR/076p/6FBU8v7ywHuZ/wCDg79hcf8ALh4w/wDBKv8A8XSf8RB/7C//AD4e MP8AwSr/APF1+IucdaNw9a19lED9wtM/4OA/2Dr+7S3u5PFlnG3DTy6DuVfrtcn9K+nP2f8A9q39 n/8Aah0A+IPgZ8UtN16JFBuLe3l23Fv7SQuA6fiAPSv5oAwbpXY/Ab48/Ev9mv4paX8XPhR4hm0/ VNMmD/u5CI7iPPzQyrnDxsOCp4/EA1LpLoB/TmpyuaK8w/Zq/ah8DftEfAfwv8atMuYrOPxBpSXE lm8uTBKCUljz32yKy59qKxtID+deg9aKD1r+xD+Uz6G/4JPjP/BQX4bH/qJXX/pHPX74p92vwP8A +CTv/KQT4bf9hK6/9I56/fBPu1+B+KH/ACPqf+Bfmz9q8Of+RRP/ABfoj5x/4K2/8o+fiJ/14W3/ AKVw1+C1fvT/AMFbf+UfPxE/68Lb/wBK4a/BavrvCz/kT1v+vn6I+a8R/wDkbUv8H6sKa/SnU1+l fpx+dH7Pf8EE/wDkyW4/7HG8/wDRcNfblfEf/BBP/kyW4/7HG8/9Fw19uV/LPFH/ACUWK/xy/M/p Dhn/AJEOH/woKKKK8E9wK/CP/gvCsi/8FEdc8zv4f00r9PJP/wBev3cr8Uf+DiDwTcaB+2jovjDy WEOveC7Zll28GSKaaJl+oUL/AN9CtKXxAfBLdK/eL/ghXJC//BOnwyIiMrrGprJ/vfaW/pivwdbn tX7Kf8G7Pxj0nxH+zJ4j+DEl6v8AaXhnxI92sG7k2tyilWA9pI5M+mRWlT4QP0QooB4ornAKKKKA PwZ/4Ln/APKRjxT/ANgnTf8A0lSvIf8Agnz/AMnx/Cn/ALHjT/8A0etevf8ABc//AJSMeKf+wTpv /pKleQ/8E+f+T4/hT/2PGn/+j1ro/wCXYH66f8F1vjPffCr9hTUvDuk3HlXXjLVrfSNynB8k5llx 9Vj2n2Y1+FKKB0NfsB/wcjzTj4FfDu3GfLbxdMzf7wtXx/M1+QNFP4QP0n/4It/sWfsuax4Uk/aZ /ag8QeEb65nvGh8L+G/EGp2/l26ocNcywyNhmLZCBhgBc4yQR+mNt4m/Y9s4lt7XxJ8NY441xHHH eaeqqPQAHgV/NQJHUbVkYfQ0vnS95pKHTcne4H9LD+MP2Re3in4b/wDgdYf41qfEeLw8vwD8SP4V SzGnyeFb6S0OnhPJdGt3IZNnykHOcjrX8yLyy9RM9f0UfAE5/wCCZ/hfd1/4Uzb/APprFZyhy21A /nbu/wDj6k/66N/Ov0U/4N+vgX8FvjX4h+JUHxh+E3hzxSlhZ6e1iviDRYLwW5ZptxTzVbaTgZxj OK/Ou7/4+pP+ujfzr9Pv+Dav/kZvir/146Z/6HNWtTSDA/QLUv2AP2H9T0+bT7n9kr4drHMhV2g8 I2kTgEdQ6RhlPuCCPWvwz/4KW/s7+Dv2XP2zvF3wj+Hcbx6FbyQXWl28khdreOaFJPKyeSFZmAzz gDr1r+iw9K/BT/guL/ykX8Wf9g3Tf/SVKyp35gPL/wDgnHdXFn+3j8KJ7aRlb/hNrJdy+jSbSPyN fpP/AMHFXxk1Twn+zn4T+D2k3jRf8JZ4gebUArf6y2tUDbD7GSSM/wDAK/NX/gnb/wAn1/Cf/seL D/0aK+2P+DlKec+LfhTAD+6Gn6o2P9rfB/StJfxEB+YGCDxX6j/8Ec/+CTvwi+Kfwltf2oP2l/DK a5HrE7nwz4duXYW628bFTPMoI8ws4bCn5dqgnOePy3c4Oc1/SB/wTxs9Osf2GPhLBpqKsbeAdMch f77W6M3/AI8WoqXsBci/YJ/YjhjWKP8AZG+G+1Rj5vBdkT+Zjp3/AAwd+xL2/ZG+G3/hFWP/AMar 1iiue7A8P/bp8NaB4Q/4J7/FPwx4W0e103TdO+F+qW2n6fY26xQ20KWTqkaIoCqqgABQAABgV/OV k4yK/pD/AOChf/Jifxg/7JzrH/pJJX83fb862p7AfsV/wbef8m5fED/sdo//AEkjr9DNZ8K+GvEB R/EHh+xvvKz5f2y0SXZn03A4r88/+Dbz/k3L4gf9jtH/AOkkdY//AAW2/wCCm/xB+D2vD9k74AeJ W0vU5rFZvFeuWcmLm3SQZS2iYf6pinzMw+YAqARk1Mo3qWQH31rlx+zb4XufsniV/A+nS/8APO+a zhb8mwao/wDCYfsiHr4p+HH/AIHWH+NfzW6p4g17XLyTUdd1u8vLiRt0k93cvI7n1JYkk1X86TvK 1V7LzA/Yv/gst8A/2Nfib+zBrHxe+Hmr+CbPxr4X8q4tLjw/fWiTX8JlVJIJFibMvytuXIJBXjjI P44Ab+TTmlcjaXbH+0aBjtWkVyqwHtnwh/bk+LXwf+Hmn/Dnw1rs0Njp3neRGshwPMmeU9/VzRXi eB6UVQHWUHrRQetf1wfymfQ//BJ3/lIJ8Nv+wldf+kc9fvgn3a/A/wD4JO/8pBPht/2Err/0jnr9 8E+7X4H4of8AI+p/4F+bP2rw5/5FNT/F+iPnH/grb/yj5+In/Xhbf+lcNfgtX70/8Fbf+UfPxE/6 8Lb/ANK4a/BavrvCz/kT1v8Ar5+iPmvEf/kbUv8AB+rCmv0p1NfpX6cfnR+z3/BBP/kyW4/7HG8/ 9Fw19uV8R/8ABBP/AJMluP8Ascbz/wBFw19uV/LPFH/JRYr/ABy/M/pDhn/kQ4f/AAoKKKK8E9wK /On/AIOJ/gTqHjX9n/wv8ctGsGmk8G6xJb6k0a8x2l0EG8+wljjHtvr9Fq5/4p/DPwp8Yfh5rXwx 8b6et1pOu6fJaX0LAco64yPQjqD2IFVF2kB/L0G5xivY/wBh39svx5+w98crX4u+DrKO/tZIfsuu 6PNIVS+tSclMj7rgjcrc4YDIIJBsft0fsQfFD9h74w3fgTxfYzXOh3FxI/hnxCsJEOoW275TnoJF UgMmSQfUEE+KAbutdGkkB+9Pw2/4Lff8E/vHOgQ6rrPxOuvDt00YM2na1pcqyRNjldyBlbnuDzXS f8Pg/wDgnZ/0cbp//gFcf/G6/nxC85Ap2AeoqfZRA/oM/wCHwf8AwTs/6ON0/wD8Arj/AON16n+z 1+1d8Bv2qdK1DXPgR4+t9etdKuEgv5reF08qRl3BTvUdhX80HToK/Xj/AINsUx8GviVn/oZbP/0Q 1ZzpqMbgfIv/AAXP/wCUjHin/sE6b/6SpXkP/BPn/k+P4U/9jxp//o9a9e/4Lnf8pF/FR/6hWm/+ kqV5D/wT5/5Pj+FP/Y8af/6PWtvsAfqt/wAHBPwt1Dxv+xXZ+N9Otmkbwn4qt7u62j7sMqPAWPtu kT86/EhW3DgV/Tz8cvhF4Z+PPwi8RfB3xgjNpviLSZrG5ZR80e9cCRf9pWww91FfzlftT/sx/E39 kf4x6p8H/idpUkdxaTMbC+8krFqFsSfLniJ6qw+uDkHpUU5aWA+1f+CPv7MH/BOn9sj4e33gH4z/ AA2af4iaHO80+PEl5b/2hZMw2SpGkyr8hO1sDj5T3zX2sv8AwRB/4Jstx/wo28/8KrUf/j9fg74b 8SeIfCWsW/iTwpr15puoWzb7a+sLloZYjjqrqQR+HrXqUP7fn7bNvEsMP7VPjoKi4UHxHOf5tTlG Td0wP2Qb/gh9/wAE2s/8kOvP/Cq1H/4/Xu3ivwR4a+Gf7M2q/DrwbYNa6Tofgi4sdNt2maQxQRWj Ii7mJZsKBySSe9fz9n/goJ+2+Bx+1V45/wDChm/+Kr9jf2A/HvjX4o/8Errfxx8RfFV9rWsXnhjW vtWpajcGWaXb56jcx5OAAKzlGUdwPwWu/wDj6k/66N/Ov0+/4Nq/+Rm+Kv8A146Z/wChzV+YN3/x 9Sf9dG/nX6ff8G1f/IzfFX/rx0z/ANDmrSp8DA/WI9K/BT/guL/ykX8Wf9g3Tf8A0lSv3rPSvwU/ 4Li/8pF/FvH/ADDdN/8ASVKzpfEB5Z/wTt/5Pr+E/wD2PFh/6NFfoV/wcifDu/1H4XfDr4q2tqzQ aXrV1p15Iq52efEHQn0GYWH1Ir89f+Cduf8Ahuv4Ukj/AJniw/8ARor97v2x/wBmrQP2sv2cvEnw M1qWOFtWs86feSKWFrdId0UnHOAwGcc4JqpPlmmB/NXgMK/bT/gh/wDtt/D34sfs1aP+zlrviG3t fGPguBrWLT7iYK17YqxMcsWT8+1TsYDkbQehr8cfjH8HfiJ8A/iRqnwp+KXhybS9a0i4MV3bzLw3 o6N/GjDkMOCDXPWN7eaZdx6hpt5Nb3ELbopoJCjI3qCOQa0kudAf1OrKhH3hS70/vD86/mJT4+fH ONQsfxo8WAKMAf8ACQ3PH/j9L/w0B8dz/wA1p8Wf+FFc/wDxdZexfcD+hL/goU2f2FPjAP8AqnOs f+kklfzft90H2r959Zv9Q1j/AIIeTavq1/NdXVz+zp5tzc3EpeSWRtIBLMx5JJ6k8mvwYYZAA7Cq orcD9iP+Dbz/AJNy+IH/AGO0f/pJHX5r/wDBQjxRq3i/9uP4ra1rEzSTf8J1qNspbtHDO0Ma/gka j8K/Sj/g28/5Ny+IH/Y7R/8ApJHXxV/wWi/Zv1r4E/tv+IvE40+RdF8cTnW9LuvL+RpJAPtCZ6bh LvP0YGlH+IwPPv8AgnD+zl4B/as/a88M/Bb4najc2+i6gLiW8Wzm8uScRQtIIlb+EsV6jnGcc1+v UH/BDz/gm0kSqfgletgY3N4s1Dn3/wBfX4P6Dr+u+FdZtvEfhjWrrTtQs5RJa31jcNFLC46MrKQQ fpXqcf8AwUA/bcijWJP2qvHW1RgZ8RT/APxVVKMpdQP0r/4KCf8ABJf9hT4G/sc+PPiz8M/hJdWO vaHo4n026k8RX0wik81FzseUq3BPBBFfjmhzk5r07xn+2d+1j8RPDN54L8dftEeLtW0nUIvLvtOv 9alkhnTIO1lY4IyBXmYGKqMXHcAoooqgOsoPWig9a/rg/lM+h/8Agk7/AMpBPht/2Err/wBI56/f BPu1+B//AASd/wCUgnw2/wCwldf+kc9fvgn3a/A/FD/kfU/8C/Nn7V4c/wDIpqf4v0R84/8ABW3/ AJR8/ET/AK8Lb/0rhr8Fq/en/grb/wAo+fiJ/wBeFt/6Vw1+C1fXeFn/ACJ63/Xz9EfNeI//ACNq X+D9WFNfpTqa/Sv04/Oj9nv+CCf/ACZLcf8AY43n/ouGvtyviP8A4IJ/8mS3H/Y43n/ouGvtyv5Z 4o/5KLFf45fmf0hwz/yIcP8A4UFFFFeCe4FFFFAHJfGT4HfCb4/eDJvh98YvAWn+INJuOWtNQgDb Gx99G+8jjsykEetfBHxc/wCDcj4KeItUn1L4O/GjWvDsUjFo9N1K1S9ji/2Q+VbA9yx9zX6SUVSl KOwH5Ln/AINrvHIb5P2oNK29t2gSf/HKB/wbYeOif+Tn9J/8J+T/AOLr9aKKftJdwPyX/wCIa/x5 nj9qLSf/AAn5P/i6+xv+CY//AAT513/gn74K8UeE9Y+Itr4ibxBqkN3HNa2LQCEJGU2kMxznOa+o qKTlKWjA/Pv9vP8A4IreK/2yv2lNW+PWm/HLT9Dh1KztYV0640l5mTyoljzuDAHOM9K439nX/ggJ 4z+Bnx48JfGO7/aH03UI/DOvW2ovZR6JIjTiJw2wMXOCcehr9NqKOeVrABG4YNeZ/tMfsjfAP9rf wh/whnxw8AW+rRRq32G+X93dWTH+OGUfMh9uQe4NemUVPoB+X/xD/wCDbXwhd38lx8LP2jb+yt2b MdtrWkLMyD03xsuf++a5cf8ABtf46/6Of0n/AMEEv/xdfrRRV+0kB+S7f8G13jo/83P6T/4IJf8A 4uvvj9lv9kvU/wBnb9je3/ZbvfF8OpXFvpV9Z/2tDalEY3BkIbYSTxv9e1e4UUnKT3A/JeT/AINs vHU0zy/8NPaUu5s4/sGXj/yJX1V/wTE/4Jk+IP8Agn1qvi3UNY+Kdp4jHiWC1jjW109oPJ8ppDk7 mOc7/wBK+vqKHOTVmAjZ28V+fX7eH/BFPxZ+2P8AtKav8edN+Oen6JDqlraxLp9xpMkrJ5UQTO4O Ac4z0r9BqKUZOOwH5l/s3/8ABAjxl8B/j54R+Mt3+0NpuoReGdet9QksY9FkRp1jcNsDFzgnHpX6 aMoYYNFFOUnLcDxn9rP9g79m/wDbN8PLpPxm8CxzX8Ee3T/EFi3k31n7LIPvL/sOGXvjIBr4Z8bf 8G2Glzag8vw6/aYuILZmzHDrGhiR0HoWjcZ/75FfqZRRGUogfkuf+Da3x12/ah0n/wAEEv8A8co/ 4hr/AB3/ANHQaR/4IJf/AIuv1oop+0l3A8Vk/ZW1N/2B/wDhjP8A4S2H7V/wrMeFf7c+zny94s/s 3n7M5xn5tuc18Ar/AMG2HjvqP2oNJ/8ABDL/APF1+tFFJSlHYD5l/wCCZn7A2tfsBfDbxF4B1j4h W/iJ9c1xdQS5tbFoViAhWPYQzHJ+XOa9K/al/ZJ+C/7Yfw4m+Gnxp8LLeW+7zLC/hOy6sJsf6yKT qp9RyGHBBr1Cipu73A/Kvxf/AMG2G/VJJPAP7TRjs2b93Fq+h7pFHoWjcA/XArLH/Btf46xz+1Bp P/hPyf8AxdfrRRV+0kB+S/8AxDY+Ov8Ao57Sf/Cfk/8Ai6P+IbHx1/0c9pP/AIT8n/xdfrRRR7SX cD8l/wDiGx8df9HPaT/4T8n/AMXRX60UUe0l3A/mHoPWig9a/sE/lM+h/wDgk7/ykE+G3/YSuv8A 0jnr98E+7X4H/wDBJ3/lIJ8Nv+wldf8ApHPX74J92vwPxQ/5H1P/AAL82ftXhz/yKan+L9EfOP8A wVt/5R8/ET/rwtv/AErhr8Fq/en/AIK2/wDKPn4if9eFt/6Vw1+C1fXeFn/Inrf9fP0R814j/wDI 2pf4P1YU1+lOpr9K/Tj86P2e/wCCCf8AyZLcf9jjef8AouGvtyviP/ggn/yZLcf9jjef+i4a+3K/ lnij/kosV/jl+Z/SHDP/ACIcP/hQUUUV4J7gUE8UUEZGKAMXxR8QvA3gcQv428a6To63G4WzapqE dv5pXG7bvYbsZGcdM+9ZP/DQfwH/AOi2+Ef/AAo7b/4uvzn/AODlkY8P/CEf9Pmtf+gWdflH+NaR p8yuB/Tp/wANB/Af/otvhH/wo7b/AOLo/wCGg/gP/wBFt8I/+FHbf/F1/MXj3ox71Xsl3A/p4svj t8FNRuVtNP8AjD4WnmY4WOHxBbMzewAfJrqIbiO4jWeCVXjYZV1YEMPXNfyvqXV9ytjHQ169+zf+ 3l+1X+ynqcN18JPi3qkGnxS+ZJ4fvrprjT5uckNA52jPdl2t70ez7MD+kagnHWvmf/gnD/wUe+Hf 7efgGaS3s10bxho0aDX9AeTOM9J4T1aInjnlTwexP0wCGGaxa5dGAA56UEgdTX4p/tTf8Fjv28fh h+0p46+HXg/4k6fb6Vofiq+stPhfQoHZIY5mVAWK5JwOpr1L/glP/wAFP/2wv2pP2ytH+EPxi8dW WoaHeaTfzz20OjwwsXigZ0O5QDwRVezkB+rQOelFIuQvIpakAooooAKKKKAAkDrRXg//AAUn+NXx C/Z2/Y08YfGD4W6nHZ65pMNu1lcTW6yqpe4jQ/K3B+VjX5Hj/guR/wAFFAP+Sp6Z0/6F23/+Jqow lLYD96KbK4jjLlgoXkk9q+UP+CPH7UHxk/a6/ZY1L4ofG7XbfUdYt/Gl3p8U9vZpAogjtrV1XamB kNK/Pv7V9T64M6Lef9esn/oJpWs7AcuP2hPgTnDfGzwkP97xFbf/ABdanhj4nfDzxvdSWfgrx9ou sTQoHmh0zVIrhkXONxCMSBnua/l9vAftcxz/AMtW/nX6Of8ABt2D/wAL8+IH/Yqw/wDpQKuVO0bg fsJnPSiiiswCiiigAooooAKyfFfjnwd4Gtkv/Gni3TdIt5ZPLhm1O+jt0d8Z2guRk4BOOta1fnP/ AMHIQA/Zl8B4/wCh7/8AbK4qormdgPudv2hfgOoz/wALs8I/+FHbf/F10+jazpev6dDq+i6nb3lr cJvt7q0mWSOVf7yspII9wa/ljIOOtf0Yf8EyBj9gP4Uc/wDMn239aqUOUD3aiiiswP5h6D1ooPWv 7EP5TPof/gk7/wApBPht/wBhK6/9I56/fBPu1+B//BJ3/lIJ8Nv+wldf+kc9fvgn3a/A/FD/AJH1 P/AvzZ+1eHP/ACKan+L9EfOP/BW3/lHz8RP+vC2/9K4a/Bav3p/4K2/8o+fiJ/14W3/pXDX4LV9d 4Wf8iet/18/RHzXiP/yNqX+D9WFNfpTqa/Sv04/Oj9nv+CCf/Jktx/2ON5/6Lhr7cr4j/wCCCf8A yZLcf9jjef8AouGvtyv5Z4o/5KLFf45fmf0hwz/yIcP/AIUFFFFeCe4FFFFAH5cf8HLf/IB+EP8A 1+61/wCgWdflFX6u/wDBy3/yAfhD/wBfutf+gWdflF1rop/w0B9Hfsw/8EsP2tP2uvhinxd+Dmj6 HNo0l9NaK+oa0sEnmRkBvlIPHIr0R/8Aggf/AMFCkGf+Ec8K/wDhTJ/8TX3v/wAEBVX/AIYBteP+ Zs1I/wDjyV9tkA9RUyqS5gP5w/2lv+Ce37Xf7JdqNY+M3wivLXSWcKuuafIl3Z5PADSxEiMk9A+0 ntXi5B6E1/UZ458E+FviN4U1DwL420S31HSdWtHtr+xuow0c0bjBBB/yK/nH/bZ/Z4uv2Wf2pPGH wQkD/ZtI1Mtpkjnl7OUCWBj6/u3X8RVU582gEX7Gn7SviP8AZG/aM8OfG3QLibydPvFj1i1iYj7V YuQJoj65Xp/tBT2r+kXwt4h0nxb4csfFOg3S3FjqVnHdWc6HKyRyKGVh9QRX8tL9M1/Qh/wSM+Jz /FT/AIJ8fDvVbq58y60zTZNJuiWzhraZ4kz7+WIz+NTVXUD8/f2nv+CJ37c/xW/aN8b/ABK8I6D4 bfS9e8UX1/p7XHiBEcwyzM6ll2/KcEcV6d/wS3/4JRftd/smftgaP8Zvi/o2gw6HZ6XfW80lhraz yb5YGRMIF5GTz6V4/wDtTf8ABZH9vD4X/tJeOvh14P8AiNpsGl6H4qvrHT4ZNBgdkhjmZUBYrliA BzXqH/BKn/gqJ+2F+1J+2Ro3wh+MfjixvtDvNKv55re30eGFi8UBdDuUZ6iiXPygfq0DkZoppbbH 1r4q/bx/4LTfBX9kTXrz4XeA9F/4TbxnaLturS3uxFZ2EmPuzSgNlh3jUZHQlTWSTewH2vRX4Y+L f+C+v7fviS/kudG1XwvocLNlLXT9BDBB6bpndj+dY/8Aw/L/AOCimP8AkqOlf+E7bf8AxNX7KQH7 zUV+DI/4Ll/8FFf+ioaX/wCE7bf/ABNdJ8HP+C1X/BQDxd8YPCnhHXfiVpsljqviWxs7yNfD8ALR S3CI4BC8fKx5o9nID9UP+CjHwL8f/tMfsfeLvgt8Lra1l1zWYbdbGO8uRDGdlxG5y5HHyqa/J8f8 EDv+ChXQ+HPCv/hTJ/8AE1+rX/BSP42/EL9nT9jbxh8YfhZqcdnrmkQ27WNzNbrKqF7iNDlW4Pys a/JD/h+X/wAFFQcf8LR0r/wnbf8A+Jp0+e2gH6f/APBIn9lH4v8A7Gv7MGo/Cj412Wnw6tc+MrrU o006+FwnkSW9rGvzADndE/Hpj1r6d1tx/Yt4R/z6yf8AoJr5Y/4I+ftS/GP9rn9lXUvin8b9cg1D WLbxnd6fHcW9kkCiCO2tXVdqDBO6V+ff2r84vir/AMFq/wBv/RPiD4k8Kab8SdMWzs9ZvLSCNtBt yREszoozt6hQKSjKUgPi67/4+pP+ujfzr9Hf+DbsgfHv4gEn/mVIf/SgV+bxdpHaRjyzZNenfsu/ tjfHf9jnxJqXir4FeIrbT7zVrRbW8kubFJw0YbcBhwcc962lG8bAf0rfSgHNfgyv/Bcv/gokXVW+ KGl7SwB/4p23/wDia/Zn9pX4j+Kvhx+yn4u+KXhS8SHWNJ8IXF/ZTyQhlWZYd4O08EZ7GudxlED0 2ivwZ/4fmf8ABRX/AKKhpf8A4Ttt/wDE0f8AD8z/AIKK/wDRUNL/APCdtv8ACq9nID95qK/Bj/h+ b/wUUBBPxP0rr/0Ltt/hXqv7O/8AwcQ/tC+GPEdvZftG+BtF8TaHI224utHtTZ30P+2vzGOTHdSq k9mFHs5AfslX5z/8HIf/ACbN4D/7Hr/2yuK+5vgL8dvht+0h8L9L+L/wo8RR6lourQ74ZFOGicHD RSL1R1PBU8j8q+Gf+DkP/k2bwH/2PX/tlcVMfiA/HM9K/ov/AOCZP/Jgfwo/7E+2/rX86B6V/Rf/ AMEyf+TA/hR/2J9t/Wtq3woD3WiiiucD+Yeg9aKD1r+xD+Uz6H/4JO/8pBPht/2Err/0jnr98E+7 X4H/APBJ3/lIJ8Nv+wldf+kc9fvgn3a/A/FD/kfU/wDAvzZ+1eHP/Ipqf4v0R84/8Fbf+UfPxE/6 8Lb/ANK4a/Bav3p/4K2/8o+fiJ/14W3/AKVw1+C1fXeFn/Inrf8AXz9EfNeI/wDyNqX+D9WFNfpT qa/Sv04/Oj9nv+CCf/Jktx/2ON5/6Lhr7cr4j/4IJ/8AJktx/wBjjef+i4a+3K/lnij/AJKLFf45 fmf0hwz/AMiHD/4UFFFFeCe4FFFFAH5cf8HLf/IB+EP/AF+61/6BZ1+UVfq7/wAHLf8AyAfhD/1+ 61/6BZ1+UVdFP+GgP3K/4IC/8mAWv/Y2aj/6ElfbVfEv/BAX/kwC1/7GzUf/AEJK+2qxl8Q5bhX4 n/8ABw74btdL/bV0fX7eIK2qeB7Vp8D7zRzzpuPvt2j6KK/bCvxW/wCDiTW7a+/bM0DRYn3SWHgW 3Mw/ul7icgfkM/jVU/iEfAg+90r9sf8Ag3o1We9/Yk1LS3fK2fja8CfN03RQtj86/E4HBzX7W/8A BvDps9n+xRq2osPluvG92U99sMIrSp8IH5Tftz/8nmfFD/setU/9KXr3L/gg/wD8pGfDv/YA1X/0 lavDf25/+TzPih/2PWqf+lL17n/wQe/5SMeHc/8AQA1X/wBJWofw/ID9O/8AgrX+1/e/sgfsl6l4 h8K3Bj8TeJLhdI8OyK2DBJIrGSf/AIBGGI/2yn1H8/8Ad3d5e3UmoajcyTzTSF5ppnLO7E5LEnkk nqf/ANdfp1/wcm+OLiXxz8M/hok7eTb6Te6lJH2LSSLGCfoIz+Z9a/MNs4xRTVo3A7b4Gfs5/HH9 pTxK3hD4H/DXU/EV5Goa4FjDmOBT0aSQ4RB/vEfoa93X/gid/wAFIXXePgNH+PiSw/8Aj1frb/wS 4/Zv8Ofs4/sZ+D9D0/S4YtT1rSodX126WMeZcXNwgk+ZupCqVUA9AtfROAEwKmVWXQD+Zb9ob9m3 4xfsr+PF+Gnxw8LLo+tNZx3a2q3kU/7lyQrbomZex4zmq/7ORz+0R4DP/U56X/6VxV9Z/wDBwQoH 7dcJ/wCpNsf/AEOWvkz9nHj9ofwHj/oc9L/9K4q0Um4gfuh/wWZ/5RyfEP8A697T/wBK4q/n97D6 V/QF/wAFmf8AlHJ8Q/8Ar3tP/SuKv5/e34VNH4QP2y/4N4QW/YT1pR3+JGof+kdjXyD8UP8AghF+ 3Pr/AI78ReL7AeEPsd9q95eQ79fIby3ldxkeXwcH86+v/wDg3d/5MX1n/spOof8ApHY19y62oGjX XH/LvJ/6Caz5nGbsB/LOyNG7I3VWxXr37IP7EXxr/bd8U6t4Q+Co0n7Xo1it3ef2tfGBfLZ9g2na 2TmvJbvi6kH/AE0b+dfo5/wbdru+PfxBz/0KkH/pQK2lK0bgefp/wb9/t87ldk8G4DA/8jEf/jVf r5+0Z8MfE3xP/Ze8WfCLwz9n/tbWfCc+nWfnzbY/OeHYNzYOBnvivSO2KjuJ4rZDNMyqirl3ZgAB 65rnlKUgPw/H/Bv1+31j7vgz/wAKI/8Axqj/AIh+v2+v7ng3/wAKI/8AxqvvD9oz/gur+xv8CfEl 54M8OPqnjbUrCZorlvD0aC0SRTgr9odgGweMoGHvXkn/ABEofCYk7P2YPEJHY/2/B/8AG605qnQD 5K+JX/BDX9vr4b+E7zxg/hHRNaisYWmns9D1kTXBQDJKoyqXOB0XJPYGvj+eOW3ke2niZJEYrIjD BUjqD6V+uT/8HJfwmY/N+y/4g5/6j0H/AMar8t/jv488O/FH41eLPiR4T8OvpOm694gu9Qs9LkkD G1jmlaQRZAAON2OAOlVGU+qA+7f+DeP9o/WvC/xy139mfU7xm0nxJpkmpafEzcQ3kG3dtHbfETnH XyxXuv8Awcg8fsy+Ax/1Pf8A7Z3FfD//AARSmlh/4KOeBTG5G6PUFb6fY5a+4P8Ag5CGP2ZfAY/6 nr/2yuKmStUuB+OZ6V/Rf/wTJ/5MD+FH/Yn239a/nQPSv6L/APgmT/yYH8KP+xPtv61Vb4UB7rRR RXOB/MPQetFB61/Yh/KZ9D/8Enf+Ugnw2/7CV1/6Rz1++Cfdr8D/APgk7/ykE+G3/YSuv/SOev3w T7tfgfih/wAj6n/gX5s/avDn/kU1P8X6I+cf+Ctv/KPn4if9eFt/6Vw1+C1fvT/wVt/5R8/ET/rw tv8A0rhr8Fs19d4Wf8iet/18/RHzXiP/AMjal/g/VhTX6U6mueOlfpx+dH7Pf8EE/wDkyW4/7HG8 /wDRcNfblfEP/BBKQH9iS4YD/mcrz/0XDX26HBGa/lnij/kosV/jZ/R/DP8AyIcP/hQtFAORnFFe Ce6FFFFAH5cf8HLf/IB+EP8A1+61/wCgWdflFX6u/wDBy3/yAfhD/wBfutf+gWdflFXRT+BAfuV/ wQEI/wCGALXn/mbNR/8AQkr7aJA6mvwU/Yy/4LBfGr9in4MR/BTwL8NvDeqWMepT3outUafzd0pG V+RgMDHpXrDf8HHf7TrDA+CngvP+9df/ABys3TlzAfsPrWr6foOm3Gt6tfR29paQNNc3E0gVIo1B LMxPAAAzX85//BQj9oyP9qn9r3xl8Y7CfzNNur8Wuit2NnAoiiI/3lTd9W967f8Aa1/4K4ftdftd +F5vAHinXrHw/wCHbni80bw7btCt0v8AdldmZ3X/AGchfavmDOBzWlOPLqwA9M5r+gL/AII3fDNv hp/wTz8BW9zbGO41q3uNXuAVxnz53aM/9+hFX4b/ALM3wG8UftN/HXw38EfCSN9p13Uo4Zp1XP2a DOZZj7IgZvw96/pU8BeD9G+HvgjR/Anh23EVho2mw2VnGP4Y4kCKPyFTWlsgP5xf25/+TzPih/2P Wqf+lL17p/wQe/5SL+Hf+wDqv/pK1eF/tz/8nmfFD/setU/9KXr3T/gg9/ykX8O/9gHVf/SVqp/D 8gPVf+DkTS7mH9of4f6yUPkzeD5YlbtuW6ckfky1+cQbYyvj7rZr9jP+Din4G6p4x/Z+8LfHDRdO eb/hEdae21Ro1yYrW6VQHb/ZEqRrn1kFfjkWyNmKKesUB/TL+yp4q0nxr+zR4B8U6JcpJa3vg/Tn jZOn/HsgI/AgivQO1fi//wAEvv8Agsxpn7Kfw+g/Z/8A2hfDmoal4XspnbQ9a0sCS4sFY7jC8TEb 4wckFTlc4wRjH2gP+C9n/BPLZz4s8TdP+hZl/wAaxlGVwPhH/g4LGP264QP+hNsf/Qpa+S/2cf8A k4fwH/2Oel/+lcVe2/8ABWn9qn4R/tf/ALUcfxV+C+oXlxpC+HbazMl9ZNA/mozlhtPb5hzXiX7O P/Jw/gP/ALHPS/8A0rirePwgfuh/wWZ/5RyfEP8A697T/wBK4q/n97fhX9AX/BZn/lHJ8Q/+ve0/ 9K4q/n97fhSpfCwP2z/4N3f+TF9Z/wCyk6h/6R2Nfc+t4/sa7z/z7Sf+gmvhj/g3d/5MX1n/ALKT qH/pHY191anA91p1xbRj5pIWVfqQRWMvjA/lmu/+PqT/AK6N/Ov0c/4Nuz/xf34gf9ipB/6Uivzl 1CCa21C4t542V45nV1bqGDEEV9Sf8Eiv23vAX7Ev7RV94h+Kltdf8I74i0n+z769s4vMezYSCRJS nVlyCDjkZyAcYreS90D9+q+I/wDgu5+094n/AGf/ANky18HeBtWex1Xx5qjaY11C22SOzRN8+09i 2UTPo57mu+g/4LHf8E6Z0Vl/aJs1LAfK2m3QP0/1dfK//BypbXeoeDPg94gs9zWK32sRySfw75I7 Jk/NY3P4VhFe8rgflB1+duT1zXd+Af2Xf2l/iroS+KPhn+z5428QaazFE1HRfC91cwOwOCBJHGVJ B6gGuFI445r9wv2Uf+Cv37AGj/s8+D/DOv8AxNXwvfaT4etLG80e60qYeRLFEqNtMaFSpIJBB5z2 NdEpSjsB+SY/YS/baH3v2RPiX/4Q99/8arzPxH4a8Q+DtfvPCvi3QbzS9U0+4aC/07ULdoZreRT8 yOjAMrA9QRkV+/w/4LE/8E6f+jjLL/wW3X/xuvxG/ba8feFPil+1z8RfiL4F1Vb7R9a8W3l3pl4q MomheQlXAYAjI9RUxlKW6A9b/wCCK3/KRrwJ/u3/AP6Ry19xf8HIf/Js3gP/ALHr/wBsrivh3/gi t/yka8Cf7t//AOkctfcX/ByH/wAmzeA/+x6/9srilL+IgPxzPSv6L/8AgmT/AMmB/Cj/ALE+2/rX 86B6V/Rf/wAEyf8AkwP4Uf8AYn239adX4UB7rRRRXOB/MPQetFI2euK/sQ/lM+h/+CTpP/DwX4bD /qJXX/pFPX74p92vwO/4JPnP/BQj4bH/AKiV1/6RT1+925duM1+B+KH/ACPqf+Bfmz9q8Of+RTU/ xP8AJHzn/wAFbv8AlHx8Rf8AsH23/pXDX4Lmv6LP2tfgCv7UH7PniL4Gv4kbSRr1vHF/aCw+b5Oy VJM7cjP3Mde9fntrf/Buv42SMnw3+0lpszfwi80WSMf+Ou1ehwBxLk+TZfUo4upyyc7rRvSyXRHD xxkObZpmFOrhafMlGz1Xdvqz83Ac9Ka+AwOK+4vGf/BAv9sTQI2m8K+J/COtqq52R6hLBI30Dx4/ UV4z43/4Jd/t5+AjI+rfs461dRx5zNpLRXikDv8AuXY/oDX6dh+KOH8Tb2eJh83b8z87r8O55h0/ aUJL0Tf5XPpb/gkL/wAFL/gH+zb8NZf2e/jU17pH2rXJr218QiHzLQeYqLskC/MmNv3sEc84r9TP Anj/AMF/Enw/B4q8A+KbHWNNuF3Q3un3Cyxv+Kmv5uvF/wAM/iF8P7trDxz4E1jR7hfvRapp0kLL +DgV0/wD/at/aA/Zm11dc+CfxMv9HbzQ89irCS1uMdpIXBRh26Z9CK+M4g4BwucVZ4zAVUpyd2m7 xb8n0v8AcfW5HxvisppxwuMpXhHRNaSS9Ha9j+jlN235qWvz2/ZC/wCC7fwv+I8tv4P/AGntGj8I 6m6hRr1lvfTpX/2wcvDn33KO5Ffevhrxb4b8Z6Hb+JfCevWmpafeRiS1vrGdZIpVI+8rKSCK/IM0 ybMsnrezxdNx7Po/R7H6nlucZdm1HnwtRS8uq9UalFRhwxzTh9zivLPU3Py6/wCDlv8A5APwh/6/ da/9As6/KKv6bPi9+zh8D/2gksIfjb8LtI8TJpbSHT11a1EotzJt3lc9N21c/wC6K4n/AIdtfsH/ APRq3g3/AMFK1pCooxsB/OTRjNf0bf8ADtr9g/8A6NW8G/8AgpWj/h21+wf/ANGreDf/AAUrV+1i B/OQSR0rsPgx+z78av2h/E0fg/4M/DnVPEF87hWWxtiY4s93kOFQepYgV/QbYf8ABO39hzTLgXFl +yv4LVlOVZtFjb9GBr1Dwf4C8F/D7TF0TwN4R03R7NPu2ul2KQRj/gKACk6vYD5T/wCCV3/BMDQv 2G/Cs/jfx9NZ6t8QdatVS+vIFDR6ZCeTbQsevON78bioxwBn7EA2jAowPSg7u1Yybk7gfzX/ALc/ /J5nxQ/7HrVP/Sl69z/4IP8A/KRfw7/2AdV/9JWr9evEf7AH7GHjLxDeeK/Ff7NXhO+1LUbp7i+v rjS1aSeVzuZ2PcknJNafw0/Yv/ZY+DPi6Hx38KPgR4d0HWIInjh1LTdPWOVEcbWUEdiODWjnpYDs viT8OPCPxY8Bat8NvHWlJfaTrVjJa39tIOHjcYP0I6g9iAa/CL9vn/glN8ev2PfF+oa14c8OX/iX wE0hk03xFY25la3jJOI7lV5jdem7G1uoPUD9+QcJ8w+tNnht7uBraeFZEkUq0brkMPQj0qYy5QP5 XtpP3qXHGK/pO8X/ALD/AOyH491CTVfF/wCzb4NvbqVt0lxJoMIdz6kqASaxj/wTe/YOC/8AJqvg 3p/0CVrT20ewH85QGDkV2X7OP/Jw/gP/ALHPS/8A0rir3T/gsP4V+CHw9/bX1T4ffATwzpOkaXo2 j2kF9Y6NGqwpdlS8gOP4gGUH0PHY14/+yD4bvPGX7WXw08M6fEWlvPHekphRnC/a4izfgoJ/CtdH G4H7ef8ABZj/AJRzfEIf9O9p/wClcNfz+544r+ob4g/DbwR8WPCd14D+JHhe01rR77aLzTb+LfDM FYMNy98EA15f/wAO2/2D+/7K3g3/AMFK1hGfLGwHz5/wbu/8mL6z/wBlJ1D/ANI7Gvu+TO3Irl/h R8Fvhb8CPDcng74PeAtN8O6TLeNdyWGl24jjaZlVWkIH8RCKM+iiuqqJO7uB/P3/AMFW/wBi7x3+ yt+074i1weGp18H+KNWm1Hw7qkUX7j98xke3yOFdGLDacfLgjivl4LlQ/rX9SHjDwV4S8faLJ4b8 b+F9P1jT5hiax1KzSaJ/qrgivKrz/gnV+w3qM7XN5+yx4LLN126LGv6KAK1jU01A/nHgUecg/wBo fzr+gz/gol+xmf21/wBkA/DjRZo4fEGmww6n4Zml4X7VHFjyieyyKWTPYkHtXTn/AIJufsIqMp+y t4Nz/wBgla9rtreO3iWGONVWNQsaj+EAYxUyqc1gP5efiL8NvH3wj8YXnw/+JnhO+0XWLCVo7qwv 7cxuhB64PUehHBHIzWKBjmv6c/id+z/8E/jRGsPxZ+E/h/xEI/8AVtq2lxTMn0Zhkfga4L/h25+w iTk/sreDfw0lar2yA/nJIB4IpAgByBX9G/8Aw7c/YQ/6NX8Hf+ClaP8Ah23+wf8A9GreDf8AwUrR 7RAfjn/wRW/5SNeBP92//wDSOWvuL/g5D/5Nm8B/9j1/7ZXFfYfw+/Yj/ZO+Efi218e/DL4AeGtF 1iz3C11LT9PWOaLcpVsMOmVJH0NdH8XvgL8IPj5o1r4e+M3w50vxJZWN19ptbXVbYSJFNtK7wD0O 0sPxqXP3rgfzGnpX9F//AATJ/wCTA/hR/wBifbf1qY/8E2v2EO37K3g3/wAFK16z4J8GeGfh54Ws fBPgrQrfS9J023EGn6faR7Y4Ix0VR2AolPmA1qKKKzA/mJEUxOFib/vk1INL1VhldNuCPaFv8K/p mtdI0mzXZaabbwr/AHY4Qv8AKrH2W2xlYF/75r9el4r1ebTCr/wL/wC1PyuPhnHriP8AyX/gn82f wm+I3xL+BHxG0v4tfDuWSx1vRZml0+7ksxII2ZGQ/K4IOVZhyO9fV3g//gvH+3B4cVU8Qab4S15V +81/okkTH8YJEAP4Gv2cNpbsPmgX/vmq114e0O+XF/o9tN/12t1b+Yrycdx1lubTUsZl8ZtaX5ne 3a9j0MHwXmeWrlwuNcV2tpf7z8vPC3/BxN4xhCp45/Zs0+b+/JpeuSR5+iyRt/6FXpnhH/g4S/Z0 1Jo4/F3wh8VaWzH55LcwXCL7/fVv0r7c1X4JfBzXwU134UeG7xW5YXWhwSZ/76Q1zOr/ALF37JGt Bl1D9mnwO27q0fhm2Qn8VQV49TNOEKz1wMo+cZv9dD1qeW8VUdsZGX+KH6o8p8Df8Fkf2BfGyp53 xffR5G4EesaXPFz9QrL+teteDf2vf2W/iHtHg/4+eE75pMBY01yFWOe21mBz7YzXH63/AMEyP2Ed eBF3+zV4djZurWtu0R/8dYVxPiL/AIItfsB68jCH4W3mms3/AC00/Wp1YfTczfyrikuFK3wOrD1U ZL80zsi+KKa95U5+jlH/ADPpjV9A8F+ONJ+xa9pGm6tYzDPl3MCTxsPXDAivDPit/wAErP2GPi6k smrfA6w0y5lB/wBM0CRrOQH1xGdufqprzqw/4IyfD7wA7XHwC/ab+J3gl2bcsWma6DCW/wBpNq7v xNadl+yj/wAFLvhq+fh/+3rYeI4V5W18Z+Fw272LozN+tOj7HCyUsFj+V+anD8romt7TER5cZguZ eTjL87M+f/jR/wAG8tuxmvvgB8cmUdYdO8U2YbHoPOhA/wDRdeJeFPCf/BUz/glz4gbVtJ8Kapce G7ebzLy3t86hpNymeSyoSYsj+LCEetfoXY/F7/gpX8NIVT4lfsw+FfHVvH/rL/wL4m+yzEepguwN xPopFbnhn/goP8M5Ln+yPjN8N/Gnw7u84f8A4Svw7KtqT3xcxb4se7Fa+go8TZ/7F0cXGGKpdU2m /vXvJ+qPDqcP5LKsquFlPD1Fta6X46W+ZxP7FX/BXf4AftSCHwh4vmj8F+LpCqf2VqlyPIu3/wCm EpwDz/C2G9M9a+tkl3rwd1fMXxg/4J//ALCH7bGkT+M9J0bShf3mWXxN4Nuo45PMP8beXlHPruBJ 71xfgbQ/27/2AIl07Wbu4+Nnwzt8JG1r8uvaTEOhCOT56hcfKGJ4/hFfPYzCZTjpOeBbpz6059/7 sv0dj3sJi81waUcalUh0qQ/9uj09UfahcdqcDkZrjfgz8c/hn8ePDCeLfhp4ljvrf7txCymO4tJO 8c0TAPE47qwBrsgc9K+eqU505uM1Zrue/TqQqRUou6YUUUVJYUUUUAFFFFABRRRQBleOrie08E6x dW0rRyR6XcPHIpwVYRsQQfUGv5yLv9uL9saO8mjj/ab8bKqzMAP+Ein6Z/3q/pA8R6U2u+Hr7Q1m 8s3lnLB5m3O3ehXOO+M1+V8v/BtbrNxO8x/aytvmcnH/AAiTcf8AkxWlNxW4HwX/AMNy/tkf9HO+ Nv8Awop//iqbP+29+2FcwtBP+0z42ZXGGX/hIp+f/Hq+9f8AiGl1j/o7G2/8JJv/AJJoP/BtNrAG R+1lbf8AhIt/8k1pzUwPy8v7+/1O+m1PUryW5ubiRpLi4mkLPK5OSzMeSSe5r76/4IJfsf8AiL4n ftB/8NQeINLaPw34LEi6dcSr8t3qLoVVU9fLQlmPYslfQnwT/wCDc/4J+Etfh1v42/GbVvFkEMm9 dL0/T10+GT2dt8jkf7pWv0E+HPw18C/CfwbY/D74ceF7PR9F0uHyrHT7GERxxrnPQdSSSSepJJOS amVRWsgN5elFFFYgDHAzimeZtHzClY4Jr5g/4Ks/tg+If2Qv2am1/wAESCPxF4h1BdM0e6ZQwtWK M7zYPUqiHH+0RXXgcFXzHGQw1H4ptJHLjsZRwGFniKvwxV2fTn2uMPsLLn03U9JQ4yPyr4C/4J0/ sP8Ah7xz8FrX9rz9pbx1r2ueMvFdjJe2ms3WvTxyaVaEkqUdXBDcbic4AOAMZz7P/wAE5P2rbz4+ fAzXNY8aa+t03g/xJeaTJ4juCI01C1iO6K5YnADGMjd7jPeu3HZT9WdX2M+dU2oydrau607q6t+h w4PNvrEabqw5PaJuKbu7LXXtoz6Vkk2rkCuT+Hfx0+FPxY1XXND+HXjmw1e88N6i1jr1taSZeyuA SCjggY5VhkcEqeeDXm3x2/bo+Bngb9n7xn8VfBPxO0XWrjw7pbmKHT75JM3LkxwrweQZMDIyODX5 2/sn/Cn9rmH4deHovgz8UdH8I+KPi5rb+IdT1fUtWWHUL21gm8uOOKM581f3txOQeHBxnsezLeH5 YzBVK9afs7NKPNom7NyvpeyWpy5hn0cLjKdGjH2l027au2yt0u2frR49+Knw/wDhZoqeIfiR4w0/ Q7GS6S3jvNSulhjaVz8qBm4yewrchvYbiFZ4ZFZHUGORTwwPQ1+T/wC234a/as+M37S3gn/gnlrf 7R0fji4uLmDUtSvo/C8dkNPbDkyS7JD5gSHc+Mr1UdTX2zpXhPxdob6X8JPix+29Zx3UKQxw6P4d 0210q6njVlEaZeSWQAjauVIJzweazx2SU8HhaNT2qcppysk/hvaL2vrrvYrB51UxWKqw9k1GDUbt rWXVb20+Z9FrJkZYUGT5ScV4Dc/t0eGPDX7X2s/steOPDf8AYlnpHhdNXTxdqmopFb3AIQsoVgOB uxuDHlSMV03xj+N/hTWP2Zdf+I/ws+NHhqxju9Lmt9D8VXl8psYbxgUjLOuekhA7kHseleXLL8VG UFKLSlaztp7221/8z0o5hhZQk4yTcb3XXTc9XSXf0FO3e1eHfsq3njv4D/spaNqn7XXxr03UtUhi kuNS8RXV8nkLG7lok844EgCEfN3zx0Fdlo37Tv7P3iCfSrbRvjBoFxJrl01tpKR6khN3MoUtGgzy wDLx/tD1qamDrQqSjBcyTauk7O3mXRxlGdOLm1FtJ2bV1c2Piv8AGb4a/A/wt/wm3xX8XWmh6SLi OA316xCCRzhV4B6mug0zUrTVrGLUrC5SaCeNZIZY2DK6sMggjsRX54f8Fbtfvf2nf2lPhd+wF4Kv WkN1q0eq+IlhY/uchlXdj+5D5r/8DFfoR4Z0Sx8M6BZ+HdMi2W9jax29uv8AdRFCgfkK68bl8cHl 9CtKT56l3btG9k/nr8jmweYTxeOr0or3KdlfvK12vloX6KKK8o9QMD0ooooAKPwoooAKMZ6iiigA wPSjA9KKKADA9KCAeCKKKAGhAOg/Oo7qytLqMw3VvHIrcMkihgR+NTUEZ6ijbYLJ7nF2XwD+Euke Lv8AhO/Dngey0jWGb/SNQ0dTaSXI/uzeVtEy+zhgO1dcsI8vB/WpdvuaTbjvTlKc9ZO/qTGnCHwq x5v4x/Z08Map4tf4oeA5m8L+LzCI31zSo1X7YoORHdRfduU/3vmH8LKa6rwlq/ieWH+yvGelx2+o RRjzJLUlre4H99CeRz1RuRn+IfMd/bxgmkMeWzn9KqVWpOPLPWxEaMISvHT8hU+6KWgcDFFQahRR RQAUUUUAFFFFABRgelFFABRRRQAUUUUAFBOOtFB6c0ARTywwq0k7hVVdzMewr8uf+CgfxvuP+CoP xP0/9i/9lX4enWpvDOtveXvi64uvLtY2RGikI4I8obsbzyxxtB4J+6v299b8V6B+xx8StX8EGVdT i8I3n2d4c70BTDsMcghCxz2xXwB/wRw+Hni7x1+yl8WrL4C+O7Lw78RdQ1W2tIdZu4yz2dn5YYMu PmUsTKA3YgHqOPtOGaFLB4Krm8rc9OUYxveycvtStq0l0PjeJK1TF4ynlSXu1IuUrWu0vsq+l2e2 fsC/A/8A4Kj/AAe8a6J8NfjV4o8LN8M9Dsms5tJe4guZHtwrBFi8tQ4OccuQNvBBrM/4KdateeI/ ih8Of+Cc/wACba18O2/jzU0vfFUOjW6W6valyPmCAZGI5JG9fLHWvUL79k3wt+y98GdL+IFj411y 6+JFjdWQk8ST6/dSPrN/LNGjwNE7lXik3MBGV4HIwQTXQ/tK/sN+Ifij+0p4L/a4+EXxGtfD3jHw pbNZv/a2mm7tbq1ZZVwVV0IYCeXHODu7YzRDNMLLOPrlXlStK3LHli5pe7JpN9Xe/wCASy3FQyv6 rT5m7xveV2oNq8U9Omlj5S/bx+CHwi8fftLfCv8AYA/Z98Kw2M1jplsvjLULVmH2fS4XeVIpTnBY AzzFiMlpUJPOBnaH448BfF3/AIKCat8fLK5jt/hL+zj4b+zaTJb/ACW7PbxvHBDF675txAGcqg9Q a+mtG/4JmX+i/tKap8covjZd3Fv4o8Pix8YLcWA+3XspYGYxShtsCSgKpCqSq5VSM5GZ8Pv+CUNl 4Q+E3jb4LX/xJgm0LW9R1C98OwWmlmJrWedCkUty28+eYV+VFAVV5bkkbfQp51lcMLGk6rdoct7O 95v94/W2i8vuPPqZLmU8RKoqaV5X6WtBfu16X1fmfMXwK+NWofCf4afFT/gq18U4lm8W+OdQuNJ+ HOnzHJQs20suf+WcYCL/ALsBHVhnuPhp8PfH/wAGv2XfAPxo8R/C6D4ieNvi58QNP1Xxh/aEMl3q P2ASfaY0t0WRXZ40TzMA7Vb7w2jj2s/8Er9P8W/shL+zv8T/AIgw3OsWOiw6foGraXYGO10wRSiU OkLMSzyyLumckF84G0ACvUf2Z/2XvHPw6tdB1r45fEe38Ua34X0UaR4d/s+xNtZ2NqFClxGWJad1 VQ0hxwNqgDOefH55l06M5U2m+e1tdYRjaEVtZJ6vbXU6cHk+YQqQjUVly3vppJu82+76LfQ+cf8A gpp4svPB/wAAfE3xj8f/AA7t7fxV48az8L+BdI1KKG5u9LtNrvK3y7lSZy0jHYTt/dgkla+ffjB4 N8aeHvgv8I/+CUPw6Am8SeIryLXfHUiy5W0lmYyLbt2CxoS757xqe9foT+2f+yBrX7TurfD/AMUe GvGVlpGo+BPEh1KBdU003dtOrBQQ0QZdzqURlycdQetcRc/8E0Y7X9pe2+OXhr4pTWtvdeGZdL8S edal9Qu5ZZA81xFPuAhkkGULBTsViExwVWV53l+FwNOM370eadtWlJLlgvRK703e4sxybHYjGTlB aPljfS/K3eb9W9PJbHzufs/7d/7ePhn9kjS7iS6+E/wZ02MalbNMfK1aW2VIyzgH5laQhB1yiseN 2Bi+Lbf4XfGv/gqBda94H0uz0H4c/BuRtb8X6xDuW3kvIFUSSdSAS0UUSqoGRCSB1r6h0r/gnBrn wt/aV8Q/GT9nj4tw+FdF8aaWll4k0n+yvOnt1G3c9nIWCxu23IZ1bazE4PAGD4L/AOCSWl+FPD/x K+HEvxUk/wCEV8bXUt1Y2NvZn7TFMYysX2iYsTPHEzF1QbdzHLE9K6IZ1ldN3hUaXs1GKs95P95J 6WctXbp5mMsnzOpG0qd3zuUndaqK9xLrbRXPKP8AgnjLqXjX4q+Nv+Cg3ivw59q8RfELxQ2hfDjT 7zJYwlh5soxkhI4YwrOOiwuO/P6TW+duW698V4d+xx+yHdfs2+B9E0Lxl4xt/EGqaDo50zS57Ww+ z29lbGTzHEaEsfMkbDPITlsAYAGK9ziGK+UzzHUsfmEp0/hWkf8ACtEvkvxbPp8jwVTBYFRqK0nq /V6u/wA9vKw6iiivHPZCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigCvfWFlqNrNY39rHNDNGY5YpF3K6kYIIPUEV+TP7dHg4f8Evv jXD8XP2OvEuqeHbjXpmTUNHmmSfT2Q5bYIimdoPQFjt7Yoor7bgf95j50Z6wlF3T1T9Vs/mfG8Zf u8LTqx0kpKzW69Huj7W/YxtdQ/aE8N6L+0H8ZvEN7r2tWsW7S7W58tLLTpGXDSwwxoo8wgkeY+5g CQCAa+lIlVo8kUUV8/nkY08znCKslslsvRdD3snblgYzlq3u+r9WP2L/AHaTy0/u0UV5CPUDy0DD C0BV447UUUuwC7VznFII0HRaKKYA6KB92kCqzciiigGOCKOi0oAHQUUUwCiiigD/2Q== ------=_NextPart_01D73C45.D2921D00 Content-Location: file:///C:/0E85C06C/20-CURVASROCFINAL_archivos/image011.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCACBAToDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAGYKu49q4/4xfH34Pfs/+FZPGnxj8fWOg6cmQk145Lzs FLbIo1BeZ9oJ2IrNgE44rz39uz9tDwr+xn8JZvF2oLa32vahIbbwzoUkhVrybALO2ORFGCGduByq 5DOufxd+Nnxv+Jv7RPxDuviX8V/E02papdYjjLnbFawgkpBEn3Yo1ycKO5ZjlmZj9fw1wniM+/fV JclJO17at9o/q/zPheLONsNw7/s9GPPXa26R7OXXXolq1u1pf9DPix/wXi+HeiapJpvwb+Cmpa7H C00Z1DW9QWwjLK2EdI0WVnQ4z85iYZAwOceO3P8AwXb/AGs3upHsvhv8PooS2Y45dMvnYD0LC8GT +A+lfIll8MfibqdnHqGnfDrXri3mQPDNBo87o6noQQhBFS/8Kk+LP/RL/En/AII7j/4iv0rD8H8L 4eKTpqT7yk23+NvuSPyfEcacXYqXN7WUV2jGy/K/3tn1l/w/Z/a9/wCie/Dn/wAE99/8m0f8P2f2 vf8Aonvw5/8ABPff/JtfJv8AwqT4s/8ARL/Ef/gjuP8A4isbU9K1bRL+bS9b0y4s7q3ZRNa3ULRy R7hkZVgCMjnp0rrjwvwxJ2WHh97/AMzjlxbxXDWWImv69D7L/wCH7X7Xv/RPfhz/AOCe+/8Ak2v0 5/Z18fa38VfgX4N+J3iW1tYdQ8ReFdP1O8iskZYUlnt45XCBmZgoLHALEgdSetfz6V++H7Fv/Jo3 wt/7J3ov/pDDXw/HmT5XleDoywtJQbk07X1VvNn6D4d55m2a5hWhi6zmlFNJ9Hdano2t6zpfh3R7 rX9c1GCzs7G3ee7urqQJHDGgLM7MSAqgAkknAFfnT40/4LNftQ/Fnxpq2kfsKfsk3HivRdFuFS41 a58PahqkksbFxHI8Nm0f2UPsbYrsxIRjwcqv0/8A8FTvGfiDwL+wF8StZ8NOFuLjR4tPlZow3+j3 d1DazjB9YppAD1BORyK4D/gh74O8P+HP2D9M1/R9Ra4uvEHiLUr3VY2l3fZ51l+yrHjJ2/uraF8H H3845yfzM/XTV/4J6ftUftvftBeK/EWk/tX/ALOi+B7LT7GCXSJ/+EQ1LTDdSMzh13Xkrh9oCnCg EZ56ivquvM/2xvj5F+zB+zP4v+ORsFurjQ9MDafbyRl0kvJZEgtw4DKfL86WPfgg7d2DmvgP9lv/ AIJ7/FL/AIKJ/BcftcftEftVeKF8Qa1eXEnguS1mE8elNDctHJM8T7FRWlifbb25hRFRWD5bYgB+ pFFflP8ABb9pH4163+yH+0x+yJ+0R4tm13xB4D8P3wtNUurhricrHM8F1C9wx3TKkwUozAtiRhkI saL5r8HP+CXd749/YPl/bq0j453Gm3+n6Hq+swaHDouNn9nS3KkC4E4YFvsxIYICpYccZoA/aKiv ym+Mn7fn7RHh3/gmH8HrPRfGmrN40+IVxqlhceKIJj9u+x6demAKkikP57q1spmJMjBZCTvcuOv8 A/8ABAfxXZ6to/xA8a/tXRnWobuC/wBUtY/CLXCvcK4kdRO12jSAsMeYyKT1Kj7oAPrLwH8ev2ld e/b48afALxN8IltPhjo3huO88O+Ml8P3sf228MdizQfa3c28pDT3Q2ooYeRjqj594r8+PC/xA034 S/8ABZH9oz4pa/byzWfhv4M/2pex26je8UFnokrhQSAW2qcDPJr58+AXhL4L/wDBRTxB4h+Pf/BQ X9s6w8KyJqktnoXhePxZZ6fJbR7YpMwR3vmLHaqHEahVy7o7OxbczgH7FUV+V/8AwVE+H3wb+En/ AATl+Fvw6/Z6+IH/AAlPhLTPGl3/AGPrjalBe/afM+2yS/vrdVik2zPInygY2YPIyeN/a5/YF8f/ APBKvw14b/af+EH7SmoXmqf8JVBpim30UWbIWhmuAW/fussR+zbXicFXDYIK5BAP2CpsrMsTMpGQ pI3dK/Nv/gpX8X/j/wDtMftheE/+CfPwE8c3Hh+2utPjm15rO4a3a5llgkuJBPIpzLBFaKJBEAA7 s2Q5WPb337Hf/BGCX9k39ovw7+0A37SA1/8AsBrz/iUf8If9l88T2k9t/rftkm3b5277hztxxnIA Pcf+CfPx2/aX/aC+D+reL/2qPhEvgvxBaeJpbOy0lfD97pvm2QtreRJ/LvJHdsySSrvBCny8AZUk +71+Wf8AwT1+HXw/+LX/AAR2+KHw++KPxYs/A+hX3xFD6h4nv41eKzWJNGmXKs6Bi7xrGBuBLSDA Jwp+a/iV8Mv2Pvg34Tm+JP7Nn/BQ/Vtc8aaXNC+i6Xp3w/1TSZpWaVUcrdsQICsbO+4nnZtHLAgA /eCivGP+Cevxs8V/tEfsceBvi345ZX1fUNNlg1G4G0G5mtriW1achQFUyGHzCoAAL4HAFez0AFFF FABRRRQAUUUUAFFFFABRRRQAUUUUAFMnbbHuxT68l/br+L158Cf2RfHnxN0u9uLW+s9Ce30y6tVV pILu5ZbaCUBgR8ssyNyCML0rbD0Z4mvClDeTSXq3Y58ViKeEws689oJyfoldn5Jf8FH/ANpu7/ad /ag1rXNP1Tz/AA7oMzaV4ZjjkDRG3iOHnTHDCaQPIG6lGjU5CjHsv/BEn9nzwN8S/iz4k+MfjvSo b7/hBrezOi21zDujjvLgzEXOO7xLAduQQGlDjDIpHxCOlfo5/wAEGTjwr8WTgf6zSf8A0Xe1+4cT Uf7K4RnQw75VFRjpvZtJ/frfvdn888K1v7Y40p18UuZylOWvdRk4/c7W7WXY9/8A+Hwv7BP/AEVO /wD/AAmb7/41R/w+F/YJ/wCip3//AITN9/8AGq/GSuy8J/s5ftEePtBt/FXgT4DeM9a0u63/AGXU tJ8L3dzbzbXKNtkjjKthlZTg8EEHkV59XgHhuhG9SrOK85RX5xPUpeJXFFeXLTpQk/KEn+Uj9ah/ wWF/YJyP+LrXy8/ebwzfYHv/AKqum8PftV/sDftl2jfDy0+IPhfxQrXCMvh7xHp5ha5kUMwMdvfR oZioBOUVtvXg4NfkC37IH7Wqjc37LvxEwOf+RJvv/jVef3llfaZfzadqVpNbXVrM0VxbzRlJIZFO GRlIBVgeCDyDWP8AqHkVeL+p4mSmtU1KMredkk/xRq/EbiChJLG4aDg904yjfyu21+DP0M/b3/4I 8aF4Z8J6h8Yv2SLC7H9np5+qeC5bhrgvbpGu6Szd8yGQFWdoXZy+5vLKlVif7g/YtyP2R/haCP8A mnWi/wDpDDXyz/wSO/b81744W1x+zh8cNf8AtniXTbPzvD+tX1wGm1a0QYeCTdzJPEPm35ZpI9xY ZiZ3+4vCHhbRfBfhyx8KeGtNjs9N02zjtdPs4VwkEEaBI419lVQB7CvieIcVm1KCyzMHzSpSvGXV xatu912b13T2PveF8Fk1fEPN8sXLGrHllH+WSavotF5pabNbmb8Z/hlpHxo+EniX4S69IY7TxJol zp00ywq7w+bGyCVA/wAu9CQyk9GUHtX5Y/s++IP+Cqf/AATUu/EnwJ8D/sq3Xi3S5tXa9+0W/hG/ 1SzeYqsZuba5syhKSpHGSkp3LtX5I23hv1g8ceNPDXw38F6v8Q/GmpfY9H0HS7jUdWvPJeTyLaGN pJX2RqzthFJ2qCxxgAnivnk/8Fif+Ccatz+0Qc/9ifrH/wAiV8qfcHkvw88a/tmf8FHvhF8TP2df 2rP2bR4Btb7wureG9Qu/DOqaXHLqSzLJBve4Z9yJLHEzKik7cjBBxXl/7K37W37b/wCwp8H2/Zc8 V/sCeLvEU2i314ND1CxtbhIUWWUyFN8FtNHcqJpJW8yOTBDhc4G6vqr/AIfFf8E4/wDo4k/+EfrH /wAiUD/gsR/wThHT9of/AMs/WP8A5EoA+YfgH+xj+0LpP7Hv7QHx8+MXgjUG8f8AxU0K4bT/AA/D Y7r5hK73ErGGMsyyTTSj9yVDoYeRliq+1/sxfDT4j+Hv+CK2pfCvX/AGt2PieT4f+LrWPw5d6VNH fPPPPqJhiEDKJC8gkQou3Lb1xnIr1/4Zf8FHv2Gvi7drp3gv9pPw79okkVIbfWJJNMklcttCot4k RdiegUEmvbIpIpVzEcjPpQB+Wfif9gL48/GH/glt8J4fDPgHWNP+IXw91jWJ/wDhG9XU6fctaXeo ys4WOdVbzsx20qZKgoHxuZkB9m+Hn/BUD9tS+j0XQ/F3/BLT4hNczfZ4NV1qO11G3txIdqyziJtP cxpnLhDI20cb2xuP3RgeleO/tA/t7/sl/ss+M7X4d/Hb4rf2FrF5paajb2f9g391vtmkkiWTdbwS KMvFIMEg/L0wQSAfO/hv9n3xj8QP+Crnx6uPG/w58RW3gvxt8JToi6+dNlitLrzrTSIZYoblk8pp MJMMAkgxPx8jY+T/AAT+yTr/AOzZ4i1/4Y/tDf8ABLnxf8X7m21Rn0rxZ4X1rWIbeS2ICqE+wq8T qdu8bgsqFyrjOFX9Ov2fv28v2Tv2pPF914D+A/xT/tzVrLTmvrm1/sG/tdlurpGX3XEEan5pEGAc 89MA49gAA6CgD8vf21Pgx44+I/8AwTb+F3hf4FfseeNPC32TxjfzH4dx2Ooanf6REZb4F5TLH5+2 Rm80b1AAmUDgivd/+C4vwx+JXxY/ZN8P+G/hZ8O9e8TajF8RLS4lsPD+jz3syQixv1MjJCrMEDOo LEYBZRnJFfZeAeooIB6igD89/wBvz9nX9o/4V/tW+D/+Cgn7MPwvk8VXml6XDbeJPDtjatcXExWN 7Zn8tCZJBLbTCEiNCYvK3nIOR6x+zh/wUF/aX+NHxm0P4Y/EX/gnR448B6RqhuBe+LNZe8+y2Hl2 0sq7/M0+JfneNYxmReZB1Pyn6wwPSjr1FAH5C+Av2PP2o/EP/BIrxJ4Bsvhd4k0rXtI+LjeILrwv qWlz2d7qunpplvDiGCVVaf8AeN5iqM72tmVA0gVTR8eN8TPFf7Jdr+zx4f8A+CMOvaH4kh0HTdPk +Itp4InF/JLbGAy3Py6YJN03lNuBmJxIwLNyT+xGB6V8yn/gsV/wTkBx/wANE/8Aloax/wDIlAGp /wAEqPB3i/4ffsF+BfB3j3wpqWh6vY/2mLzS9YsZLa4gLapduu+OQBlyjKwyBkMD0NfQ1cv8G/jJ 8Nvj/wDDnT/i38IvEf8Aa3h/VvO+w6h9jmt/N8qZ4X/dzIki4kjdfmUZxkZBBPM/tF/tk/s3/smv o8f7QHxFOgHXvtH9k/8AEnvLrz/I8rzf+PaGTbt86P72M7uM4OAD06ivFvgX/wAFDP2Pv2lPHi/D P4KfF061rj2klytl/wAI9qFtmKPG9t89uicZHG7J7A17TQAUUUUAFFFFABRRWX448aeGvhx4L1f4 h+M9R+x6PoOl3Go6teeS8nkW0MbSSvsjVnbCKx2qCxxgAnigDUor5lP/AAWJ/wCCcgO0/tEn/wAJ DWP/AJEr6G8D+NPDPxH8F6T8QvBep/bdH13TYNQ0q8ELx+fbTRrJG+1wGXKMDhgCM4IB4oA1KKKK ACvif/gub4r1PQ/2TNK0HTdWkt11rxxa29/bxvgXNulvczbGHdRLHA3+8q19sV+dv/BfvUrmLwv8 NNIUt5NxqWqTOB03RpbBc/hI1fQcK0o1uIsNF9JX+5N/mj5fjSq6PC+Kkv5bfe0n+DPzRr9HP+CD X/Iq/Fn/AH9K/wDRd7X5x1+jn/BBr/kVPiz/AL+lf+i72v1zjf8A5Jur6w/9KR+J8A/8lVQ9J/8A pEj846/av/gkYq/8O/fAJ2j/AJivb/qK3lfipX7Wf8EjP+UfngH/ALiv/p1vK8nxI/5ElL/r5H/0 mZ7Hhb/yUNT/AK9S/wDSoH0kyKV4UV8Bf8FvP2TvDutfDO3/AGrfC+kRW+taDdQWniS4RlQXljM4 iiZx/HJHM0SKRzslYEkIoX7/AK8h/b28O6X4o/Y2+J2m61aLNDF4H1G8WNlyPNt4GuI2/CSJD+Ff l+Q4ypl+cUatN295J+abs19zP17ibL6OZZHXo1Ff3W15SSumvmj8Tv2e/i7qnwE+OPhX4x6T57Se H9ZhubiG3kCtc2+ds8GSCAJImkjOR0c1/QXZyJLaRyxuGVo1Ksv8XHWv5w2UMMGv34/ZA1bUda/Z X+Guq6tevcXN14A0ea4nk+88jWMJZj7k5P1r77xKwsP9nxK396L81o192v3n5z4UYypzYnCt+77s l5PVP79PuI/21P8Akzj4s/8AZM9e/wDTfPX88+B6V/Qx+2p/yZx8Wf8Asmevf+m+ev556/Kz9kDA 9KMD0r9n/wDgk38B/gd40/YA8A+JfGPwZ8J6tqVz/av2jUNS8O2088u3VbxV3O6FmwqhRk8AAdBX 0W37Lv7M7Db/AMM7+Bfw8JWf/wAaoA/nVx7V9cf8E1P+Cmnjn9lLxjpvwx+KHiS71H4Z3lyIbi3u A0zaDvOPtFv/ABCIH5nhXIILMi7z833R/wAFAP8Aglh8DPjT8HtU8R/Bb4ZaR4b8caTaNc6RNoNr DYw6hsG42k0aKsTeYMqsjAMj7CX2Bkb8Xx8w5X8KAP6X7G9tNSs49QsLmOaCaMPDNC4ZXU8ggjgg jvX5B/8ABwCAf2zfDOR/zTGz/wDTjqNfYP8AwRS/aIufjR+yFD4I8Q6ks2reAb86Pta43SvYbRJa OVwNiqha3Xk5FrnOcgan7cn7Zv7Df7O/xc0/wR+0z8F/+Ei1668Nw31pff8ACI2eobLNrieNY/Mn YMMSRyttAwN2epNAHxj/AMG/oH/DXPig4/5p3c/+l1lX69V8rfsOftkfsQftEfFTUfB37MvwaHh3 WrXQZLy9vP8AhEbPT99qs0KGPzIHLHLyRnaRg7c9QK+qaACivLf2h/20/wBmP9leKBfjj8W9P0a8 ulDWmkrHJcXsyHzAJBbwq0gjJidfNKiPcu3dkgH5rm/4L/fsdQzyQr8OfiRKqSMqzR6PYbZADww3 XwOD15APqB0oA+5qK+F/+IgH9jz/AKJl8TP/AAT6f/8AJ9A/4OAf2Ozx/wAKz+JY9zo+n/8AydQB 90V/M46qG4Wv6Rfhb8QdH+LXwy8O/FXw7a3UGn+JtBs9WsYb5FWaOG4hSZFkCsyhwrgEBmAOcEjm vg0/8FRP+CSmfm/ZbH/htdM/+OUAe7f8EdR/xrl+HZx31f8A9O97XzL/AMHFIG74P8f9DB/7ja+p rP8Abu/Zv+GH7FGmftY+FPh7qlj8P5r2S203RdD0W1guEY3stuxEHnJEgMyyMfmGck8k1+c//BVf 9v8A+D37dB8Cn4UeGfEum/8ACL/2n9u/4SKzt4fM+0/ZNnl+TPLnH2ds52/eXGecAEn/AAQz4/by tsD/AJlPUP5JX7RV+Cv/AATf/ah+H/7IH7Ssfxm+Jelaxe6bFoV1Z/Z9DtopbhpJdgU4lljXAwc/ NX6PfDP/AILh/srfFf4keH/hb4a+HfxCh1LxLrlppWnzXuk2CwpNcTLCjSFb1mCBnBJAJxnAPSgD 7MoryT9sD9sX4efsU/DrT/ih8U/D+uahpuoazHpcUXh+3hlmWd4ZpQxE00ShAsDDIJOSvGMmvnL/ AIiAf2PP+iZfEz/wT6f/APJ9AH3RRXwv/wARAP7Hn/RMviZ/4J9P/wDk+uo+Hv8AwXC/YU8avIvi LxB4i8J7Wwn/AAkPh+R/M+n2I3AH/AiKAPsCvM/20/8Akzn4sf8AZNNd/wDTfPXdeEfGXhHx/wCH 7fxb4F8UafrWlXilrTUtKvEuLecA4JSRCVYAgjgnkEdq4X9tP/kzn4sf9k013/03z0Afzz4HpX9C /wCxUAP2NvhKAP8Ammeg/wDpugr+eiv6GP2K/wDkzf4S/wDZM9B/9N0FAHplFFFABX59/wDBfLw5 PdfC7wD4vSLMdj4iu7KRv7rTwK6/n9mb8vav0Er5D/4LXfDubxd+xPeeKodRWFfCniSw1WWJo8+e rM9lsz/Dg3gfJyMR475HvcL1o4fiDDSf8yX36fqfNcYUJYjhnFRj/I3/AOAtS/Q/Huv0c/4INf8A Iq/Fn/f0r/0Xe1+cYzjmv0c/4INf8ir8Wf8Af0r/ANF3tfr3G/8AyTdX1h/6Uj8Q4B/5Kqh6T/8A SJH5x1+1n/BIz/lH54B/7iv/AKdbyvxTr9qP+CSE4j/4J++AQf8AqK9v+oreV5XiR/yJKf8A18j/ AOkzPY8Lf+Shqf8AXqX/AKVA+mK8n/bm1Sw0f9j/AOJ93qc6xxSeAdVt1Zm6yS2skaL1HVmUD3Ne pfa1/vD8q+Ff+C2v7U/hfw78FI/2ZdB1C2utc8T3lvPrFurbmsbGCUTKzYYFHeaOIKCGBRZeAdpr 8tyLB1MwzejRpq/vJvySd236I/YOI8fRy3JK9ao7e60vNtWS+bZ+V/4V++f7Gtpc2n7J3wxguoGj kj+Hmiq6uuGVhYw5BHYg1+GXwZ+GWu/Gf4seHfhX4b3Lea9rEFnHKsTP5Cu4DSkLztRdzsR0VGPQ V/QlpNlaabpdvp9jbLDDBbpHDEi7QihQAAO2AMV+g+JWKp8uHw6396T8lol9+v3M/NfCnC1Pa4nE taWjFeurf3afeed/tqf8mcfFn/smevf+m+ev556/oY/bU/5M4+LP/ZM9e/8ATfPX889flJ+zH7lf 8Edv+Ucvw7/7i/8A6d72vpqvmX/gjt/yjl+Hf/cX/wDTve19NUAIyq67XUMD1Br+fj9vP4ZS/B/9 sr4keA2sbW1hh8WXV1Y2tkMRQ2l0/wBqt0UdsQzRjb0BBHav6CK/DL/gsGMf8FF/iIB/1Cf/AE0W VAHtH/Bvl471TTv2hPHPwzht4zZ6x4Pj1O4mOd6yWd1HFGo7YIvpSc85Vcd6xP8Ag4A/5PN8M/8A ZMbP/wBOOo0z/ggMbkftm68YEUr/AMK3vRNu7L9usOR77to+hNP/AODgD/k83wz/ANkxs/8A046j QBN/wb+/8nc+KP8Asndz/wCl1lX6I/t7/tdaT+xj+zrqnxWa3gu9amkTT/C+m3UchjutQlDFA+zH 7tESSVvmTcsRUMGZc/nd/wAG/v8Aydz4o/7J3c/+l1lWh/wcCfEjUta/aH8G/C9ZI20/QvCLahHt XDi4vLmRJFY9cbLSAgY43N60AfEPxK+Jfj34xeO9U+JvxO8U3Ws67rF0Z9Q1C8bLSNgAAAYCIqqq qigKiqqqAqgC18Pvgt8ZPiyk0vwr+EnifxMtsVFy3h/QLm9EJPQP5KNtJwcA4zirPwB+EGq/H741 +F/gxo9zNby+JNagsZLyG385rSF3Hm3Gzcu8Rx75CNwyEPI61/Qr8L/hZ4A+DHgLS/hl8M/DFrpO h6ParBYWNsnyoo6sSeXdjlmdiWdmZmJZiSAfz+a9+yZ+1T4V0W68S+KP2Z/iBpum2Nu099qGoeDb 6GC3iUZZ3keIKigckkgCvPjX9Bf7eMDzfsU/FhI492Ph7qzMAP4RaSEn8ga/n0NAH9C37FH/ACZp 8JP+yY6D/wCm6Cv565PvV/Qp+xR/yZp8JP8AsmOg/wDpugr+euT71AH6beDfgv8AE79oD/ghR4N+ Gfwg8Jy61rlxrVzNDYQzRxlo49cvWdt0jKowB3PPavgv4+fsoftB/svNpKfHj4b3Hh8655/9l+de W832jyfL83HkyPjb5sfXGd3GcHH7C/8ABHVV/wCHc/w7faN3/E3G7H/UYva+Zv8Ag4p+/wDB/wD7 mD/3G0Afn38F/gd8Vf2hvGy/Dn4N+D5tc1prWS4WxhniiPlJ95t0rKvGR3zX0x+zB/wTJ/bn+H37 S3w78e+MPgBe2ek6H460nUNUvG1axcQW8N5FJJJtScs21FJwoJOOATTf+CGf/J+Vsf8AqU9Q/klf tEQCMEUAfGP/AAW/+G3xG+LP7K/hzw38LPh7r3iXUYfH1rdTWHh/R57yaOEWN8pkZIkZlQMyqWIw CwHUivy0/wCGLv2xf+jTfiZ/4Qeo/wDxmv6F5DDEPNkA443belcL4q/aj/Zl8C63N4Z8c/tDeB9F 1K3/ANfp+seKrO1nj/3o5ZFYfiKAPwi/4Yu/bFwT/wAMm/EzgZ/5EPUf/jNcd47+G/xF+Fmtr4b+ J3gHW/DepNAs6afr2lTWc5jJIWQJKqttJUgHGMg+lfv7/wANpfsbf9HY/DP/AMLrT/8A49Xxr/wW v+JH7Kfxw/Zo0rW/h98cfAuveKPDviSKTT4NE8RWl5dNazI0c8YWKUsEJ8l2OCMwr06gA+e/+CMv 7YuufAf9oiy+Bmv6rI3hDx9eCz+xy3LCKy1VwBb3CJtYbpGVbdsbN3mRszEQqK/U/wDbT/5M5+LH /ZNNd/8ATfPX4D/Cbxvf/DP4reF/iTpUSPdeHfEVlqdssi5UyQTpKoPtlRn2r99v2z2LfsbfFhj/ ANEz13/03z0Afz01/Qx+xX/yZv8ACX/smeg/+m6Cv556/oY/Yr/5M3+Ev/ZM9B/9N0FAHplFFFAB XIfH74X2Xxr+Cnij4S6hKkSeItDuLFLh7ZZvs8kkZCTBGIDFH2uBkcqOR1rr6bKnmJszVU6k6VRT g7NNNeq2M6tOFalKnNXUk013T0Z/OXr2h6v4W12+8MeILCS11DTbyS1vrWZdrwTRuUeNh2KsCp9x X6Jf8EGj/wAUt8WR/taV/wCi72vPf+CzX7H2ofCv4tf8NIeDdKX/AIRrxZMiax5Coos9W2/MSiqD tnVfM3EsTKJixXcu7E/4JBfta/Dj9nP4n+JPAvxZ1G30vR/GlrZpHrd3Nshtbm3aUIkhxhEdbh8y EgKUXPDFl/bs4xX+sHBsq+GXNJqLaWrTjJcyt3Vn6o/nvI8L/qzxxChi3yqLklJ6JqUWou+1ndej Pj/cvrXSeG/jN8XPBunR6R4Q+KviTSbSEMIrXTdcuII0yxY4VHAGWJJ45JzX6kn9nX/giP8A9DB8 LP8Aw6h/+TaD+zr/AMER/wDoYPhZ/wCHUP8A8m1nU42wNSNp4Sq15wT/AFNqfAeOpS5oY2in5Ta/ Q/Mc/tKftEHg/H3xr/4VN5/8crjry9uL+9kvr+5kmuLiVnmmmYs8rk5LMTySTkknk1+tP/DO3/BE cf8AMwfCv/w6h/8Ak2uk8Dp/wSE+AgPijwV4l+D8NxprG8t7yPW7TU76B0BO6Fmkln3AA4WP5ieg JrH/AF0wlNN4fA1Ob/Ao/ir/AJGj4FxlVpYjMKXL/jbt6J2X4o8b/wCCPf7CPif4f3s37U3xo8Nz abfTWrW3g7S7+ELNFFIMTXjoRvjZlzEmdp2NKSpV0avuD4B/E+z+Mnw1s/iRpN1DcafqV3enS7i3 DBJrRLuaOCTDcgtEiMc9yeB0H59/8FBf+CvXhf4h+CNQ+B/7K8d29rqsLW2teMLq2a3VrR0G+G0i bEgLgmNpJFUqoYKrFlkT6/8A+CZPH7C/w5H/AFBJP/SiWviOI8Lmteh/amPjySqSSjHtFJvbp89b 3b3P0DhPGZPh8V/ZGWS54U4OUp/zTbit+ttbtabJbHW/tqf8mcfFn/smevf+m+ev556/oY/bU/5M 4+LP/ZM9e/8ATfPX889fIH3x+5X/AAR2/wCUcvw7/wC4v/6d72vpqvz3/wCCZ3/BRz9jD4HfsaeC vg38VfjTHo/iPS/7S+3WE2hX8iw+ZqN1OmZY4GiOY5Ebhj97HXivpTR/+CmX7BeuBTZ/tQeGY967 l+3TSW3Gcf8ALZFx9OpoA9zd1RdzdK/n+/4KB/E5vi9+2p8SvG4mtZIW8Uz2NnNZSb4pre0xaQyB u+6KBGJHGWOOMV+lP7cX/BYP9n/4b/CfWvDX7OHxMtfEvjm+tPs+j3GkQGa1015B/wAfckzoYZPL GWEa+YS4VWUKSR+OiBtoB6+1AH31/wAG+ng3W779pDxr8QrdEOm6X4L/ALOu23fMJrq7hliwO422 c2fQgetZP/BwB/yeb4Z/7JjZ/wDpx1GvrL/giB+zte/B79lGX4k+JNH+zat8QNRGoqZY5ElGnRqY 7RWVuNrfvZ0ZeGS6U88V8m/8HAH/ACeb4Z/7JjZ/+nHUaAJv+Df3/k7nxR/2Tu5/9LrKuP8A+C3W gaxo/wC3lqmoaof3eqeHNNurAZHEIiMJH/fyGQ/jXYf8G/v/ACdz4o/7J3c/+l1lXc/8HB/wSvIv EngX9pGxjmkt5rJ/DWqOSvlwOjyXNqAPvbnEl3k9AIl6EjIB84f8EhJIo/8Agon8OzNLsVm1Vd2c cnSbwAfUk4/Gv3Qr+bb4afEDxD8J/iJoXxP8JtGNS8Pavb6jYibd5byQyLIqvtIJRiu1gCMqSMjN ft/+zv8A8FRP2P8A48fDq18Z6r8YvDfg3UsLHqvh7xXr9vZ3FncY5VTMyCeM9VlTKsCMhHDIoB33 7af/ACZz8WP+yaa7/wCm+ev55zX7q/tc/tdfso+JP2Ufid4e8O/tN/D7UNQvvh7rVvY2Fj4ysZpr mZ7GZUjjjSUs7sxACqCSSAATX4VGgD+hb9ij/kzT4Sf9kx0H/wBN0Ffz1yfer+hT9ij/AJM0+En/ AGTHQf8A03QV/PXJ96gD9yP+COv/ACjk+Hf11f8A9O97XzL/AMHFP3vg/wD9zB/7ja+mv+COv/KO T4d/XV//AE73tfMv/BxS3734Ppj/AKGA/wDpsoA8R/4Iaf8AJ+Vt/wBinqH8kr9oq/CP/gld8dvB 37Pf7afhvxl8QtYtNN0W/t7rS7/Ur5ykVr50RETu/wB1F85Y1Z3wiKzMxVVLD91rXUbC+gW6sruO WN8FZI2yDnpQB8Jf8Frv25fFXwF8L6R+z38JPE0mm+IvFdm93rOoWkzR3FjpqsY1EZ2/K00gceYr bkW3YY/eBl/I1dqfu0G35c7R6Cvs/wD4LsSeI3/bdh/ttFFqvguxGjlWB3W/nXO4nHfz/PHPPFc/ /wAEY9W+Cmkftt6dJ8ZZtPjml0aaLwfLqnES6y08AhCsflErR+ese77zsqr+8ZAQD5nTwN45kG5P B+rEe2ny/wDxNQ6j4X8UaRb/AGrVfD1/axdPMuLV0X6ZIxX9KQePHBr5D/4LfyJ/wwdqihv+Zi03 j/ttQB+Ltn/x+Q/9dF/nX9CX7Zv/ACZr8V/+yZ67/wCm+ev57bP/AI/If+ui/wA6/oS/bN/5M1+K /wD2TPXf/TfPQB/PTX9DH7Ff/Jm/wl/7JnoP/pugr+eev6GP2K/+TN/hL/2TPQf/AE3QUAemUUUU AFFFFAGD8TPht4I+LvgTVPhx8RfDVtq2jaxaNb39jdKdsinkEEYZGVgGV1IZGVWUhgCPyX/bE/4J FfHX4D6rN4o+Cmi6l448KSMzL9hhWTU7Ab1VUlgT5p8g58yFSPldnSIAZ/Yao5oEnXa4H4rmvcyX iLMchquWHd4veL2f+T8/vuj5ziHhfLeJKKjiE1NfDJbry815P5WP5xruzudPu5tPvrSSGe3kMc8M sZVo3BwVYHkEHjB5pmF7Cv6HvF/wn+G3xCijt/H/AIB0PXI4/wDVx6xpMNyq/QSK2K5X/hjH9kT/ AKNY+G//AIQth/8AGq+6j4l0+Vc2Fd/Ka/8AkT85n4T1+b3MUrecH/8AJH4FHaP4f/HaNwx3xn3/ AM9q/fU/sYfsjdv2XPhyPp4HsP8A41TT+xb+yG3Lfst/Dn/wh7D/AOM1ovErC9cNL/wJf5Gf/EKc atsTH/wF/wCZ+Bo6V+43/BMh1b9hj4c4P/MFk/8ASiWus/4Yu/ZEHT9lv4cf+EPYf/Gq7zwr4R8M eBtBtvC3g3w9Y6TplnGUs9O02zSCCBSScJGgCqMknAA5NfN8UcWUOIMJTowpODjK+rT6NdD6vg/g 3FcM46pXqVVNSjy2Sa6p319DhP21SB+xv8Wif+iZ69/6b56/nozX9LWu6FonijRLzw14m0a11HTd QtZLa/0++t1mguYXUq8ciOCroykgqQQQSDXng/Yq/Y2AwP2Svhl/4Qenf/Ga+JP0I/nnOCMEfpRx jbjj6V/Qz/wxX+xv/wBGl/DP/wAIPTv/AIzR/wAMV/sb/wDRpfwz/wDCD07/AOM0Afzy741O0uq8 4+Y4r62/4J4f8EvPil+1P410rx38TfCt5ofw3t5Fubu+v43hk1mMBWEFquVdkkDAGcfIBu2sXAWv 178Gfs2fs6fDjVP7c+HnwC8FaDfbcfbNF8K2lrLj03xRqf1rs1jRTuVFBPXAoAh0jSNL0DSrbQ9E 023s7Ozt0gtLS1hWOKGJFCoiKoAVVAAAAAAGBX5C/wDBwCw/4bP8Mrnn/hWFmf8Ayo6jX7BVx/xA /Z7+AXxZ1mLxH8VPgd4P8TahDarbQ33iDwza3k0cIZmEavNGzBAzuwUHGWY9SaAPy1/4N/T/AMZc +KP+yd3P/pdZV+pH7QPwM8DftI/CHXPgv8RbeZ9J1y18q4a1k2SxOrB4pUYggPHIqSLkFdyAMGGQ X/D/APZ8+Anwm1eXX/hX8EPCHhm/ntzbzX3h/wANWtnNJEWDGNnhjVipZVO0nGVB7Cuk1vXtD8M6 ZJrXiPWbXT7OHb513e3CxRpkhRlmIAySAOepoA/n+/a0/Yv+Nf7Gnjybwh8TtCnl0tptui+KIYT9 j1SPnBV+QkuFJaFjvTGcFSrN5MpUkSKPo2K/oz1T4ufs/a3YTaXrXxN8H3lrcRmOe3utZtZI5FPV WVmIIPoa87/4U9/wTMJyfhZ8Cv8AwR6N/wDEUAfgiZCOrN+tBr9X/wDgpV44/wCCb/wW/Z117w38 LPhN8IdQ8b+ILJ7DRYfDOh6a11p5k+V7tngTdB5aFyjZBaQKBkBiv5QDBODQB/Qt+xR/yZp8JP8A smOg/wDpugr+elmVjkfyr+ib9lTwtr/gb9l74b+CfFenNZ6po/gHR7HUrSQgtBcRWUMciHHGQykc ccVRP7Ff7HB5P7Jfwz/8IPTv/jNAHmH/AAR0ZT/wTl+Hig9Dq+f/AAb3tZ3/AAVn/Yo1/wDa9+Al vffDqCObxf4QvHv9GtZF5voGj23FmjF1WNn2xOrEHLQKnyhy6/THg7wT4N+HXhy38HfD7wjpehaR Z7/sml6Pp8drbQ73LtsijVVXLszHAGSxJ5JrUIyMEUAfzR6zo+q6Bqt1oGv6XcWd7Z3ElveWd5A0 csEqNteN0YZVlPBU8g8GvYf+Ccq7/wBuv4W5XI/4S22zx/tZ/nX7m+Pv2fvgL8VtSi1n4o/BHwj4 kvIIvKhutf8ADdreSRpnO1WmjYgZ7A4rN8O/snfsseENdtfFPhL9mn4f6XqdjMJrHUdO8G2ME9vI OjpIkQZGHqCDQB8r/wDBZ39gnxn+0j4X0v49fBnQTqHijwlp8ltqmkW6s1zqum7zIqwDJDywu0jC ILulEzhSXVI3/IW4gntpXtru2kjkRiskcsZVlYHkEEcEGv6YiAwwwzXG+O/2dv2fvijqq678TfgX 4N8RX0cflx3mveGLS8lVP7oeWNiB7ZxQB/OaDgYFG8427mr+hj/hiv8AY3/6NL+Gf/hB6d/8Zo/4 Yr/Y3/6NL+Gf/hB6d/8AGaAP567M/wCmQ/8AXRf51/Ql+2edv7GnxY3f9Ez13/03z05f2Lf2OVO5 f2TPhmCOQR4D0/j/AMg16Drmg6H4m0O78M+JNFtNQ03ULWS2vtPvrdZoLmF1KvFJGwKujKSpUggg kGgD+aYnHWv6Fv2KHWT9jX4SuhyD8M9B/wDTfBTh+xX+xuOn7Jfwz/8ACD07/wCM16FomiaN4Z0a 08OeHNItdP0+wto7exsbG3WKG2hRQqRxooCoiqAAoAAAwKALVFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABXzL/wWJCH/AIJzfEQuBwdI27vX+17OvpqqPiXwv4Z8Z6LN4b8Y eHbHVtOuNv2jT9Ss0nhl2sGXcjgqcMoYZHBAPUUAfzU4PpRg+lf0Wf8ADMX7Nn/RvXgf/wAJOz/+ N0f8Mxfs2f8ARvXgf/wk7P8A+N0Afzp4xyR93n6V9mf8Etf+CavjT9on4i6T8aPi34WuLD4e6Pdx 3ka6ha4/4SGRDuSGNJB89tuA8x8FWXdGp3Fmj/WzQPgJ8C/Cuqxa94X+C3hPTb6A5hvNP8OWsMsZ /wBl0jDD8DXVLFGh3JGq/RaAHKCBgmiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigD/2Q== ------=_NextPart_01D73C45.D2921D00 Content-Location: file:///C:/0E85C06C/20-CURVASROCFINAL_archivos/image012.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCAGhAh0DASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAoorx7xl/wUN/YD+HPiu/8CfEP9uH4QaBrmlXLW2q aNrfxK0q0u7OZfvRywyzq8bjurAEUAew0V4Uf+Cof/BNAf8AOQ/4Gf8Ah2tG/wDkmt/4aft3fsQf Gjxhb/D34Oftj/Cvxbr94rtaaF4Z+IWm395OEUsxSGCdnYBQScDgAk0AerUUAg9KKACiiigAoooo AKKKKACiiigAoopryIgJY4wMmgB1FRx3VtNzFOjDOMqwNPBB6Uk09g6i0UUUwCiiigAooooAKKKK ACiivIfHX/BQX9gr4X+Lr/wB8S/22/hF4d17S5vJ1PRNc+JGl2l3ZyYB2Swyzq8bYIOGAPIoA9eo rwv/AIeh/wDBM/8A6SIfAz/w7Wjf/JNbPw8/b7/YT+LvjKx+HXwn/bT+E3ijxDqbsmm6F4d+I2mX t5dsqM7COGGdnchFZjtBwFJ6CgD1uikVgwyKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr4Z+O3/BuV/wSg/aS +MfiX48/F74EanqXibxbrE+p65fL4svohNcysWdgiyBVGTwAAAMV9zUUAfy4/wDB0l/wSs/Yx/4J oal8Hm/ZF8AX2gp4xi1k63Fd61PeLIbY2nlbfOYlMec+cdcj0ryL/g1gw3/Ban4Zgj/mG610/wCw dPX3R/wfFf8AH/8As6/9cfEv89Pr4X/4NXv+U1Xwy/7Butf+m6egD+upQAPxpaB0/GigAooooAKK KKACiiigAornfAfxe+FvxSvNa0/4b/ELR9dn8Oao+m6/DpWoRztp14n3reYISY5B3VsGuioAbIxR dwx171+ZX/BQj9vT4j+J/iDqXw4+HniKew0XTrmS1SPT5ijXbKQrSSMpyRuBwOmK/TO5QSQNG2cM CDivxW/am+Ffin4PftCa/Z+ILKR1g1CV03g4eNm3I4PcEEGvyrxVx2YYbLaFKjJxhOTUmtL2Xuxv 2er87H6x4TYHLsVmlerXipVIRTinra796ST6rReV2S/Bb9pz4/fCnxLFruneNtRglEgbynuGaKUd SroxIYH0xX6HfsKf8FLvhP8Atk+LPEnwVht30T4g+DIIbjXfDt0c/aLORU8u+tmH34WZgpH3kYhW 6qT+X+m+I/8AhLL0SR2xRI+CeleU/wDBLX4y6x43/wCDjjQpfhFetPp1v4c1DRNfmtiGjntIbOR5 t56bVnEeD/ejXFcPhLLHOhiPaXULqy6J+X6noeL8MBHEYf2SXPZ3el2vP06ep/RhRRRX7Gfi4UUU UAFFFFABRRRQAV8zftM/8Ecf+CZP7XV9rPiH46fsa+C9S17Xpmm1TxTZaWLLVp5iu3zWvLfZK7AY +8xHAyDivpmigD+NT/guv/wS+sP+CVX7ct38EfB+q3uoeDfEGjx6/wCC7rUWDTpZSSSRtBIygBni kidN2ASApI5rV/4Nr+f+C3PwGXpnWdVH/lFv6/QL/g+D8OWMXj79n3xikarcy6Rr9nK4Xl41lsnQ E56As/H+2a/Pz/g2t/5TefAX/sNar/6Zb+gD+xZBgEZ70tIvf60tABRRRQAUUUUAFFeZ/tj/ABWm +B37Lnj34sWt2YLjQvCl7c2kwbBWcREREe+8rj3xX5h/sW/8HD3jrwp9m8Dftk+G38QWW4IPGGjR JFeRDpma3UBJR6lNh9mNceIx+GwtWMKrtfr0+Z9dkXA/EHEuV1sdl1NTVJpON7Sel3yp6OytdXvq rJn7EUVwfwE/aU+B/wC0x4Nj8efA/wCJWm+IdNcDzHs5f3kDEA7JY2w8Tc/dYA13BuIcH94OldcZ RnHmi7o+Wr0K+FrSpVouM4uzTVmn2aeqJKK+MP24f+C1H7M37JYvPB3g28Tx34zhBT+xtIu8W1pJ j/l4uQGVcd0Tc3GDt614d/wSL/4KufG39rb9rzxP8Nv2gfEVsLfXtEN14R0qyt1it7GW3fLwJgbm LxOzFnZifJ9wBxSzHCRxEaKleT002Xqz6/D8AcUV8grZxKjyUaceb3tJSV1dxja9ktbuysnZs/UC iiiu4+LCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig D+fz/g+K/wCP/wDZ1/64+Jf56fXwv/wavf8AKar4Zf8AYN1r/wBN09fdH/B8V/x//s6/9cfEv89P r4X/AODV7/lNV8Mv+wbrX/punoA/rrHT8aKB0/GigAooyD3pCwHU0ALRSb19aXIxmgAryv8AbY/a o8FfsVfsreOv2oPiBPGuneDfD8995TyBTczhdsECk/xSStGg93r1GWaKKMyyyBVUZZmOAB65r+a3 /g6w/wCC0fhb9qLxhF/wT5/Zl8Yx6h4L8Kap9o8e63p8weDWNViJEdtG6EiSGA5JPIaXGP8AVgkA +xP+DNzx94o+K37N3x9+J/jXUPter+IvjM2papc9PMuJrKKSRsdssx47V+yNfil/wZIf8mV/GP8A 7KjB/wCm2Cv2toACAeory79pT9lP4a/tKeFrjSfEtilrqwtXj0vXYYszWjnoSMgSoDjKNwQTjBOa 9RJA60h2g8gflXNi8HhMfh3QxNNTg91JJp/JnThMZi8BiI18NUcJx2cW0180fhr+1B/wRQ/4LeeL NVu/h18K/il8Ih4WvZWi/t3Q7m5025kgbALTLKsrxHBOVhZuhwxr7G/4Ijf8ELPBX/BKzSdW+Jvj zxpa+L/ip4lsxZ6prdjAyWenWhZJGtLXf87BpFVnlYKX2J8q4wf0E+U8cUKVI+XH4UsHgsJl+HVD DQUILZIrG47GZjiHXxM3Ob3bFooorqOQKKMj1pNwPQ0ALRRRQAUUdKQyIOrUALRSb1PO6gMCcA0A fz+f8HxH/H9+zz/1x8Q/zsa/Oz/g2t/5TefAX/sNar/6Zb+v0T/4PiP+P79nn/rj4h/nY1+c3/Bt 5f2+m/8ABbP4C3NyxCnX9RiXAzlpNJvUUf8AfTCgD+xxe/1paRRgf40pIHJNABRSb19aN6+tAC0U Ag9DSPnacUAfEf8AwcAfE9PAn/BPvUvCUdwEn8X6/Y6cq7sFo0lF0+P+/Cg+xr8HMHoxz6n1r9l/ +C5fwm+PP7YfxU+Fv7LH7P3gq61e4tLe/wBZ1ycAraWQkMcFu88p+WPiO4wDy27gGof2Wv8Ag3N+ DPhPT7bxB+1L47v/ABRqgAaTRdCnNrp6HrtMhXzZfTIMY9q+WzHB4rH5g1TWkUld7dz+m/D7i3hn gbgWlLHVf3taU6nJFc07X5VddLqKacmlqfkt8IPjX8WPgJ4wh8e/B34gap4f1eD7l3pt0Yy4yDsc fdkUkDKsCD3Fe/ftE/8ABY79uH9pH4dW3wu8TeP7bRtPW18rVpPDNqbOXVefvTOrEgEcFI9iHJyu Div20+HH/BPX9iH4WWyW/g/9lPwNE0Ywl3e+HYLu4/7/AE6u/wD49XX6p+zP+zjrNkLDVv2fvBF3 AkZRILnwpZyIF9ArR4x7VpTyXGU6bgq1k91rb9Dz8x8YeEcdmNPFVMp9pOHwzk4cy/B/LXR6rU/l 2JYks5+Ynk46++a9D/ZM+N+ofs3/ALSngn422EzBfD3iK2ubxFbHm228LPH/AMCiZ1z/ALVfux8a P+COH/BPz402syXXwCsPDV1KDtvvB2NOeM+qpGPK/NCPavzx/bS/4N+fjh8GNPvPHP7NHiN/HeiW ytJLo9xGI9WhjGT8qqNlxgf3drHjCHtwVsoxuEfPD3rdt/uPu8p8WOC+KKUsDiW6LqJxtUSUWpKz Skm0t/tcp+0vh3xBpvinRLPxFotyk9nf2sdxazoeJI3UMrD2IINXq/n2+DP/AAWa/wCCgf7NOh6f 8MLXxXp97p/h22j0+30jxRoKyPbxwqEWJmXy5RtChcFsjFfQXw9/4OXfjBY+XD8Vf2cPD2oD/lrP oGp3FofwSYy/+hV7dLPcFNLnun6f5XPxbMfBTjPCzk8NGFaPTlmk2umkuXX0bP2Hor8+fg7/AMHE X7LPxL1/TfB/iH4T+OdF1PVb2K1tlt7a3vYTLI4RV3LKr8sQOENfoHbsXTJz1/ir0qGJoYlN05Xs fnmdcO53w7WjSzKhKlKV7XtrbezTaY+iiitzxQooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKAP5/P+D4r/j//AGdf+uPiX+en18L/APBq9/ymq+GX/YN1r/03T190f8Hx X/H/APs6/wDXHxL/AD0+vhf/AINXv+U1Xwy/7Butf+m6egD+usdPxrmPi/8AGT4ZfAP4b6x8XvjH 4z0/w74Z0G0a51fWdTuBHBbRrjlie5JACjJYkAAkgHpx0/Gv5s/+Dw//AIKO+L/H/wC01Yf8E5/B esy2fhjwHaWuqeL7eCTA1LVbqBJ4Elx1WG3kjZR03TsTyowAfRfxA/4OXf23f29f2kJ/2XP+CIn7 JFt4j8rcx8Z+MIGJMIbabtomeOKzgyRhp3LNkDap4r3nw1+zB/wdJeI9CHiLxZ/wUT+Cnh7UZIxI dBtvBQuoo2xnZ5ot+eeM818of8GbP7b37MmieH/Ff7CV74Ni0T4m67qc+v2XiEnd/wAJDaRxIv2X J5R7cB3VM7WV3YfMGz++yLtQL6CgD8H/ANpv/guH/wAF2P8Agjr8U9N8Jf8ABRb9nT4efEPwvqsr DSPFHh1JbGHU0UDcsNzFlYpRuBMc0G7HQY+av0Q/4Jsf8FyP2RP+CnPwo1vxH8F/7RsfG3hjRpb/ AF74a6iq/wBpoqITut8fLcxswCB05DEBgpIzW/4OJP2fPCv7Qn/BID4yaVr2lxS3fhnw7/wkmh3L KN9td2MiThkPGC0ayRnn7srV/Jf+xv8AtWfE39in9pjwf+0z8I9cmstZ8K6zFdqsL4W6gDYmtnHR o5IyyMp4IagD9e/+Cp//AAUr/wCC/v7demap8HvgJ+wN8VfhP8N75XgubbSfDN4+r6rbkMClzdBB 5aMD80cQUdizjOfxR+J/wz+Inwc8fal8NPix4N1Hw/4i0mZY9U0bVrZobm1dkVwro3KkqynB7EV/ d98L/HWj/FL4b+HviZoBBsfEWh2mp2RHeKeFZU/8dcV/Hl/wcOAf8Ppfj+Mf8zhD/wCkNtQB9P8A /BvH/wAFPf2zP2Dv2e/Hngf9mf8A4JjeJ/jtpuueMo7/AFDXNB1i4tk02cWkcYt2EVlcAsVUPksv DdO9ffGof8HJ/wDwVE0qc2t9/wAG9fxHSQAEqPEOot+o0Yisf/gyRO79iv4xbuf+Lowdf+wbBX7W bV9KAPxtvv8Ag5J/4Kiadoj+I7//AIN7/iJFZRx+Y8zeI9QO1fXaNHz+ldf8K/8Ag5E+IvxX+GWj fECP9kjTdDn1KBpLnTLzxVLcNbsHK+WW+zRnIKnOQOvQY5/WKYZTg8g8V+AX7aHjbwf8RP2tPiP4 t8BQxLpc/jG/jgaBQEkaKZopJBj+/Ijv/wACr43jXNcflOX06mEnyycrPRPSzfVM+34FyjLs4zGr SxkOeKhdK7Wt0ujR9h2H/BfL416lBeyeG/2Ml8V3trYyT23h7w3rEzX1+64xFCDE2WJI4x615v8A Fv8A4Oh/2jfgH4Tn8d/Gj/git8WvC+i2237Tq+tai9vbRbmCLukazCrliAMkZJFc3/wSe0UH9qDw 94hdOf7Zht4zj2Zm/wDZa+u/+Dk7SrPU/wDgi78aRdpkW+l2M8eOzpf25Brm4FzvH51hsRLFT5nC fKnZL7MX0S7m/H2SZdkmMw8MJDkU4cz1b+1JdW+x+fL/APB8RpJnKQf8E67kpuwhf4kqCR6kfYTj 86/WT9pr/gqV+yh+xb+yr4e/ao/am8bxeGrLxNoNvf6PoMBNzf6hNLBHKba2iUBpmXzFUvhUXILF Qc1/ErCT5oJbHua/UT/gnD/wTt/bQ/4OMv2jIvjH+0x8S9U074Y+BtO0/RNR8SC2wqW1tAkcWl6b GfkEhRAzvyEMhd9zOA33Z8CfQP7UX/B6p+0H4g8Q3Olfsefss+GtA0dJCLbVPGtzNf304zw/lQNF FF/ukyfWvH/DP/B4/wD8FUND1yK+8R+Dvhhq9rG377T5vDc0Ik55G+O4DDj0r+hL9lP/AIJb/sE/ sZeBbXwD8Bv2XPCemwwQhJ9SvtLS9v7tsDc81zOHkckjJy2OwAAArwf/AIKpf8G+/wCw5/wUG+Eu rP4U+Emg+AviXb2ckvhvxn4Z0xbQm4AJWK6ih2x3ETtgMWBdc7lYHIIBxX/BIX/g5d/Zc/4KWeIb H4FfEbw0fhn8UruMDT9Bvb7z7DWnCsWWzuSq/vAFz5UgVjnCl8Gv0uRtwzjFfwTavp/j34IfFO60 Wa5utF8SeE9dkgeS1mKS2V7bTFSVdTkMrpwR6V/ZD/wSA/b+tv21f+CXngf9r74l61bW2o2+h3Nv 45vHIRIbvT2eK5ncDhQyxefjHSQYoA9m/bF/bL/Z9/YR+BWr/tEftKeOYdC8OaSoXeyl57y4ZSY7 a3jHMsz7SFUehJIUEj8Bf2tf+DxL9tP4xePH8DfsGfArR/COmXF19m0i51ixbV9Zv2Y7VxEpEUbN xiMLIQf4jXxX/wAFxf8Agrf8Q/8Agqn+1bf+Io9TubX4beFLyex+Hfh/ftRbYOR9tlUcNPOAGYnJ VdqA4XJ/Uv8A4M7/APgmp8NIfg9q/wDwUl+JHh221PxTqOt3GjeBJLmLcNJtYVC3NxGDwJZXcpux lVjOD85oA8V8N/tIf8HmPiDSk+LOm+DPHT6Uief/AGZd+BNEhMideLd4VuCMdhzXqX7B/wDwdufG T4f/ABot/wBnH/grf8B4/Dci3iWWoeMdK0mewutJlZgu+90+TJMYzuZ4tpVeQj5r97UACgAYx0zX yD/wWA/4JFfAP/gqf+znqvg7xR4asNP+IWm6fLL4D8bR24W5sL1UcxRSuuGltXY7XiYkYbcMMoIA Pyn/AOD1Pxn4V+I2gfsz+PfAviC01bRdZ0vXL3StUsJxLBd28gsGSSN14ZWUggjsa/Or/g3f/wCU 0nwA/wCxvm/9IbmvD/2jPiN+0r4a8NWH7DXx/wBRuli+DfibWLPTtF1AbpdHuZZI0u7ZWPPl+Zb7 gvQFmI+9XuH/AAbv/wDKaT4Af9jfN/6Q3NAH9llfMf8AwUl/4K1/sb/8EuPh/F4q/aS8cOdZ1GJ3 8O+DdGQT6nqhGRlI8gRxbhgyyFUB4yT8p3P+CnH7fHw+/wCCbH7HHiz9qbx6i3UulWvkeHdHMm1t U1OUFbe2B7Atyx7IjHtX8immeI/2kP8AgsX/AMFHvD9j8WPHV1qvjL4s+N7TTp9Ql+aPT7eafBWK MEBIYIi5WNcAKh7mgD9fPBf/AAc4f8Fav+Cg3xNu/h5/wTC/4JwaPe29u+GuNUkn1GW3Q52vcXAe 2tbbIB+VifZjXrHiP9sD/g7f/Z/0H/haPxL/AGEPhj4y0e1h83UtD8PXFtc3cSDO4COzvjKxwP8A lmJB7Gv1I/ZB/ZG+BX7EXwH0T9nf9nzwTa6LoGiWyRgRRjzrybYA9zO/WWZyMs7ZJ+mK9NkQOpXH XrQB+XX/AATZ/wCDpT9kX9sXx9afs/ftIeDrz4L/ABHurv7Fb6fr12ZdNurwME+zrclEMEpYkBJk QZG3cWwD9bf8FIf2yf2jP2Ovhjonjf8AZs/Yf8R/HS+1LVmtdT0XwzqBgk06ARlhcMRDLuUthcYH Jr8zf+DuT/glF8Mdd+BLf8FL/g34Pi0zxj4e1O2tviCbKPYmq6dKTEl3Io48+KUxKXxlkc5J2LXM /wDBr1/wXu8VfEDXtI/4Jr/tk+MZtRv3gMPwt8YajNullWNP+QVcORl22qTFIxydvlkk7KAO+/aA /wCDpv8Aah/ZRt7XXP2kP+CK/jTwRDqc/wBns73xF4se2S5kVd/lrI+n4YhSTtz3Nef+H/8Ag9sl 8T65ZeGPD/8AwTZu7u/1C6jtrK2h+JKlppZGCoi/6D1LEAfWv1W/4K1f8E+/Cf8AwUu/Yf8AF37M utrBDq9zbC/8IanKP+PDVoPmt5M9lY5if/Ylbviv4ufiJ8PfH/wX+Jer/Df4gaDeaN4i8N6tNZap Y3CGOW1uYZCrqfQhl6j6igD+rH9n7/gtJ/wUj+MHxt8KfDHxp/wQv+JXhLRdd121s9X8VX+vu8Gk W0kqrJdupslDLGpLkbhkL1FfpSrbk3AfhX59f8G5P/BUKx/4KOfsIaZpXjvxBHP8SvhrFBoPjOKZ x516iRKLbUccZEyDDH/nrFJ6jP6BzTQQwNLNKqxqpLMzYAHuaAPyV+MX/Bw//wAFFv2fPh5qHxa+ Nv8AwQc+IHhnwzpMXmanrmreM/LtrZSQAXf7DgZJAHuQK5L4A/8AB0P+2F+1f4Zu/G37N/8AwRP8 c+NdIsbz7Jd6j4f8XPcQxT7QxjLrp+N21lOPcV4N/wAFMv2qPjV/wcU/8FC9H/4JY/sKeIJI/g14 R1X7V428Z2wL2l68JAm1CQjG63hO6KBM4llbfyCpX9x/2QP2T/gz+xJ+zt4Z/Zo+A/hmPTPDvhqw WCEYzJdy9ZbmZv45ZXy7N6tgYAAAB+cfxD/Y8+JX/BXf9mnWv2sfEn7EWrfs+fGTStYntbXwrrl3 vPie0jijdZJWMUIV2Z3RJCucxYYkEFfyw1rRNX8N6xdeH9f02ezvrK4eC8tbmMpJDIhKsjA8gggg g+lf1aSoCuNmeeRivx6/4OFv2HrHwN4u079sr4e6MIbLxDcCx8ZxwphUvQo8i5/7aKrK3T5o1JyW r5vOsvhyPEU1qt/8z+hvBvj/ABMMZHIcfPmhL+E3vFpX5L/ytfD2ei0at8w/8EfPg4fjP/wUI+H+ mT2nnWmg6g2vXi44AtAZUz/21Edf0R24Ij5HU561+Rn/AAbQ/CBLrxj8Rvj1fwDFlp1todhI3Yyv 5836RQ8+5r9dhgj5cfhXXkVL2eC5n9pt/ofL+Nma/X+M3h09KEIx+b99/wDpSXyCiiivZPyEKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+fz/g+K/4/wD9nX/rj4l/ np9fC/8Awavf8pqvhl/2Dda/9N09fdH/AAfFf8f/AOzr/wBcfEv89Pr4h/4NS9MbU/8AgtT8Owsu wwaFrs3TO7bps3FAH9cI6fjX86P/AAdA/wDBEn9sv4p/tw6n+3F+yr8DNe+IOheN9LsV8Rad4SsH vr/T7+0tYrTJtYgZHjeGGEhkVsMH3Y4z/RavSsP4kfEX4ffCDwNqnxM+J/i/TdA0DRrR7rVdY1a6 WG3tYVGWd3YgAf570AfgN/wa8/8ABEL9sP4J/tej9t39rn4Pav4A0rwvot1b+GNE8SW5ttQ1C9uE 8oyG3Yb44o4jJy4UszLgEAkf0KryAfavxE/bq/4PLfgV8ONZvvAf7BPwMufiBfQSNCnivxYz2WmS ScgNDBGfPnTOMbjCTzjjBPz34V/4LWf8HTX7Wdr/AMJL+z5+ytdWukXg3Wlz4e+D0os3U8jyri+M gcYxyHP1oA/ab/gs7qFrpf8AwSi/aCvb2TbEnwr1fcwGetuwH6mv4nl4YfWv2a/bo+OP/B03r37D 3xGX9tT4byaZ8KbzQlg8a3F/oOk280Vo80a/L5TeYMuUU7RnDEV+Mp+/x69qAP7if+CY97dal/wT c/Z81K9l3zXHwR8JyzORyzto9qSfzNfyi/8ABw7/AMppfj//ANjhD/6Q21f1bf8ABLn/AJRnfs6/ 9kL8I/8ApltK/lJ/4OHf+U0vx/8A+xwh/wDSG2oA/X//AIMj/wDkyv4x/wDZUYP/AE2wV+1tfil/ wZH/APJlfxj/AOyowf8Aptgr9raAPM/2zvjxpn7L/wCyZ8R/2hdWkQR+DvBmo6pGsjYEk0Vu7RR5 /wBqQIv1av5uP2Rtf1bxX+zn4X8Ua/ePcX2pWkt1e3Ehy0ksk8jux9yxJ/Gv1I/4O5v2nv8AhR// AASquPhRpWp+VqnxS8WWWioivtY2UJN3ct7j9zFGR6TV+WH7CdlNq37M3gHTLYnfcaesS/VpnFfn niO0sppN/wA//tsj9J8MU3nFZLrD/wBuifo9/wAE09Kj8O/Ff4emcbXu9dSZwe5ckL+m2vpf/g5A /wCULnxwProVp/6XW9eEfsjWUWn/ALQfgLT4UxHDr9miD0AYAfyr3b/g49/5QufHH/sB2v8A6X29 eF4PVZV8rxc31q3++MT2PGOkqObYSK6UrfdJn8dSEBhmv7f/APgl18Fvhn8BP+Cevwd+H3wo8KW2 kaUPh9pV89vbpzLc3VrHcTzOeru8srsWPJJ9q/h/XqPrX91X7DX/ACZR8H/+yW+H/wD02wV+wH48 epUjjPHr60tIfvCgD+Ib/gq7YWmlf8FNfj1YWUWyGL4s66EQHoPtstfph/wTx+OXiX4Rf8GlH7S2 oaPqskM9146vNDsWViDGmoR6ZbzgEcjMUkv4nNfmp/wVv/5SgfH/AP7K3rv/AKWy19z/ALMl3a2v /BpF8eEuZdpm+ONrHEP7zZ0w4/IGgD8kicPk9jzX9bP/AAahalLqP/BGHwNHJGqi18R63CpUfeAv XbJ9/m/Sv5JSMHGK/rS/4NMv+UMvhD/sbNc/9KzQB+lVIy7hilooA/kx/wCDsf4O+HvhT/wWG8T6 x4dtYoV8Y+F9K128SLvcvE0Ejkdixg3H1znvXkP/AAbwf8ppPgB/2N83/pDc173/AMHf7P8A8Pgb wbjgfDrRce3yy14J/wAG8P8Aymi+AHOP+Kumwf8AtxuaAPvL/g9O/a61TxV+0X8OP2K9H1Bv7L8J +H28Sa1bJJ8sl9eM8UO4d2SGJiPQXB/vV8B/8EDvi78B/gH/AMFVfhj8Z/2kviHpnhXwp4cnvry7 1vVy3kQSiymWLO0E5LsoHHU12v8Awc6eL9Q8Xf8ABa74xTXkjlbCTSdPgVm4WOHS7VMD0BILfVj6 1U/4N4P+Ce37Pn/BS39vq6/Z4/aVttVm8NWvw/1HWfL0XUTazvcQz2saDzADhf37EjHOBQB/SKv/ AAcDf8EaAOf+Cgngb/vu5/8AjNL/AMRA/wDwRn/6SCeBv++7n/4zXg1j/wAGiP8AwRwtblZ7jwN4 9uUXOYZvHU4VuO+xQ35GtD/iEo/4Iuf9Eb8Yf+HAvv8A4ugCp/wU4/4LJ/8ABH39pb/gnh8bPgZ4 c/bj8E6tq/iP4Y6zbaBpkbXBa41IWcj2armLG77QsOPfFfys/D34geK/hV4/0b4k+AtYl07WvD+q wahpN/bSbXguIZBJG4Psyg1/V9pf/BqJ/wAEXdMjaP8A4UL4inJOd1z45v2I+h8wVZP/AAaqf8EX M7h+zrrOc/8AQ6X/AP8AHaAPsf8AYr+Pa/tW/si/Db9pA2iW7+N/BWm6zNBGPljkngSR1UegYtj8 K/FL/g70/wCCTAja3/4KgfA7wuW3GHTfirZ2cP3cAJbamQo7/LDI3r5R/vGv3P8AgD8C/hv+zN8G /DvwC+D+iPpvhfwnpcen6FYSXLzGC3TO1C7ks2M9Sav/ABX+FngL42fDTX/hF8TvDdtq3h7xNpM+ m61pt1GGS5t5kKOhB9icHscHtQB/Gn/wRv8A+CkHir/gmB+3F4c+PtrLcz+GLxhpPj3SIm4vNJld fMIUkAyRFVlTOPmjxkBjX7V/8HFn/BaRbr4V+Hf+Ce//AATt8TN4q8e/GjTLR7/U/Csnnz2uk3oU wWsPlnP2i7RwPVYmJ4Lgj8RP+Cuv/BOrxz/wTD/bW8S/s5eIEnn0N5DqXgfV5U/5CWjyyOIJCcAF 12tE+OA8bdsV7t/wbK/tG/ssfAP/AIKjeF/EH7V+j280msWD6P4K8T6pOrQeH9VkAjhlcPwN6Zt1 k/5ZmQdBkgA/oR/4Ib/8EnfB3/BKv9kay8DX8NpffEXxPHHqHxE8QW+GE11glLSNuvkQK2xf7zb3 43YH2qoIGCaFCAZTHPpS0AFeO/t8fA6w/aK/ZF8f/Ca8tRNJqPh2aSwXbkpdwDz4GX3Ekafy717F TXijkzvXORgg96ipBVIOL2asdOCxdbAYyniaTtKnJSXrF3X5H82f7C37dvxh/YN+LEXjbwJeSXej 3Mix+JvDM8pEF/CD83HRJVGdsgGVxzkZFfv9+yl+1p8If2wPhHZ/F34P60Lm1nAS/sJXAudOuMAt bzKCdrrkexBBGQa/mt+KulWmhfFLxHoliCILPXryCAHqESd1H44Ar0H9i39tH4wfsQ/Fy3+Jnwu1 Ey2shWPXNAuJW+y6nb5GY3UdGH8L4yp6cEg/GZbmc8DP2c9YX+7zR/X3iF4cYTjLB/X8GlDFpXT2 U1bSMvPtLps7rb+mEHIB9aK85/ZX/aJ8PftVfA3w98dPCmi6lptlrtp5qWOqWxjliYEqw5GHXcDh 1+Vhgg16NX2kZRnFSi7pn8f4nDV8HiJ0K0eWcG4tPo07NfeFFFFUYBRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQB/P5/wfFf8f/7Ov/XHxL/PT6+Lf+DTL/lNZ4E/7FfxD/6b Zq+2P+D4ywuEX9nLVGUeVJ/wk8SHPO5f7NJ4+jCvif8A4NMv+U1ngT/sV/EP/ptmoA/rRubqCzhe 4uZVSONC8jscBVAySfav5JP+C+n/AAW9+LP/AAUp/aA1n4S/Dbxjcab8EfDOrPb+G9GspCi628RC nULroZSzAtGh+WNCMDcWY/0u/wDBVzxX4o8Ef8E1fjp4p8F+b/adp8LtZNqYThlLWrqzA9iFZjn2 r+IhGYuMevpQB/RP/wAGsX/BET4D33wA0X/gpN+0r4KtfEvibX72eT4faNq9uJbPSbSGXy1vvLbK yXDvHIVLAhEwQNzZH7nxQrEAqAAAYAAwAK+Mv+Der4leDviZ/wAEdfgdqHg26hePS/Cp0m/jibPk 3dtNJFMh9DuUn/gQPevs9jgcHmgD4r/4OKRn/giz8fDn/mVbb/04WtfxsgENg+tf1K/8Hdv7aHhz 4Qf8E7V/ZA0bUY7jxf8AGPWrS3h0yBt06abZXUN1NMEHIDSxQRA9/MYDpx/LW3Eh7c96AP7hP+CX P/KM79nX/shfhH/0y2lfyk/8HDv/ACml+P8A/wBjhD/6Q21f1af8Euz/AMazf2dsMMj4F+EuM/8A UGtK/lP/AODiazubP/gtT8forqFkZvFdtIA3919PtWU/irA/jQB+vf8AwZH/APJlfxj/AOyowf8A ptgr9rT0r8Sf+DI7WbCT9kn40+HY5P8ASbf4jWdzKvoklgiqfzif8q/bbI9RQB/NF/wei/tNHx5+ 2t8Pv2XtH1EvZeAfBZ1HU4VbhdQv5WOCPVbeCAg/9NTWZ/wSu0T+2fgx8PpWQslnozzycccO4X/x 5h+VfDn/AAWz+ON1+0P/AMFXvjv8Rpbgy28fxF1DSdOYtkG1sJDZQkegZIA2P9o1+iP/AASH0Zo/ 2SPDfiCQAeZpiQRE+gkdm/Ur+Vflni3W9hw3GXVzt98Wj9W8IaXtuJJxe3Jf7pRZ92/srHH7SHgj /sZLX/0MV7R/wcfanpyf8EbvjZo0l/Ct3P4eglhtmlAkeNNQtQ7hc5KqXQEgYBdc9RXyyn7Q/g39 k5h+0t4+trq40fwQDrF/bWChpp44AXMaAkDc2MDPAzntXxh8VvE//BQ3/god+yr+1H/wWD/al0Q+ Hvhnqnwfk8HfC3w7M5RY7aXxDpV2GtY8DfGotWEly2DLI425CYXzPBZf8IuJf/Txf+ko9Hxr/wCR 3hv+vb/9KZ+Mw6j61/dT+w1/yZR8H/8Aslvh/wD9NsFfwrD7341/dT+w1/yZR8H/APslvh//ANNs Ffsx+MHqVIfvClpD94UAfxF/8Fb/APlKB8f/APsreu/+lstfZPwb/tI/8Gl/xY/s9XK/8NH2P2nY M4j8qyzn2ztr42/4K3f8pP8A4/8A/ZWtd/8AS2Wv2F/4N8v2QNN/by/4N3fjz+yreukdz4q8c6pH o1zJ0t9RjsbGa0kPsJ448+q7h3oA/n0YYbGfxr+tH/g0yx/w5l8HkH/ma9c/9KzX8o/xF+H/AIw+ FPxA1r4Z+P8AQp9M1zw9q0+navp9yhWS2uYZGjkjYeoZSK/pq/4Mzfi9a+M/+Cafin4Vm4X7T4L+ Jd2jQ7huEN3bwTo+MdC3mge6GgD9eKKKbI4VN/mKoHVj0AoA/lG/4O7tVF5/wWP1uzEJQ2XgPQoi 277+YGfPt9/H4V4b/wAG8RA/4LRfADP/AEN83/pDc1Y/4OGf2pvDX7XX/BWz4rfETwTexXei6NqU XhzS76AgpdJp8YtnlUjhlaVJCrd12nvUH/BvAAf+C0nwAz/0N03/AKQ3NAHo/wDwdT/DW/8Ah/8A 8FpfiNqE9r5dt4l0jRNXsX248xH0+GF2/wC/0Ewz/s16P/wZvXNvb/8ABXDUIpplVp/hDrKQgnl2 +1WDYHvtVj+FfXv/AAeifsMav4k8J/D79vzwVoMlwugI3hjxpLChJhtpJDLZTv6IJWmjJ7GVPWvz X/4NrP2itE/Zt/4LCfC3W/E+ora6d4nnuvDNxNLIFTffQNDACT/038nHvigD+wmikRiwyR+dLQAV Q8SeKfDfg7Q7vxP4s16y0zTbCBpr7UNQukggt4x1d5HIVFHck4q+SB1NfkD/AMHRf7a3ibxN4Y8I f8Eev2YZG1X4mfG3V7KPXbKwkzJZ6WbgeXE+PuefKoJzjEULk8MDQB+t/hnxR4b8aaJb+JvCGv2W qabdpvtNQ066SeCZckbkkQlWGQeQT0rg/wBr39rD4N/sS/s8eKP2lvjt4hXTvDvhfTXubkrzLcyY xHbwr1eWR8Iq+rdgCaofsgfs/eCf2Hf2P/A/7O2i6jBBpHw/8JQWVzqEzCONjFHuuLly2NoZzJIS f7xz3r8Vv2jvHHxZ/wCDpD/gpRB+y58C9c1DS/2Wvg7qS3PifxJbqVTVZQxR7hTxummAeK3Uk7I9 8xHLLQB4r8LP+Cf/AO27/wAHQXxY+LH/AAUI+K/iqbwZ4U0/TbvS/hRaXUfmQSXUO57XS4t2MW8e 8me4A5llJAyWC/kh8TPhv48+C/xI1r4X/Efw/caN4j8NatNYavpt0NstrcwuUdD7hlPI9iK/uu+C HwU+Gn7PPwo0H4IfCHwla6J4X8MaXDp+i6VaphIII12qCerMerMSSxJJJJJP4rf8HbH/AARyTxz4 Zm/4Ke/s9eFSdY0W2jg+Kum2ceWvLNdscOpBR1aIYSTA5j2sf9WxIB9E/wDBsj/wWTj/AG/v2dW/ Zo+OniTzfiz8N9OjjmurqXMviHSgdkV5/tSx/LHL1JOxz984/U1W3LuAIz61/Cn+x3+1h8Xf2Iv2 kPCv7T3wU1prLxB4U1Fbm3Df6u5iPyy28o6NHJGWRh6NkcgGv7P/APgnt+3N8Iv+Cin7KXhj9qL4 NX6/Y9atQmq6YZA8ukaggH2izlx/EjHr/EpVhwwoA9uqh4j8Rab4W0O+8Q6vMI7XT7OS6uZGOAsc aFmP5A1fJA6mvkv/AILRftLWX7Ov7Dfia3tL0R634xi/sHRUBG4mb/XuP92ASH6layr1Y0KMqj6K 56eS5ZXzrNqGBpL3qs4x+96v5K7fkfgH4x1u48TeLtU8TXABl1DUZ7lwo6tJIznH4mv0W/4JK/8A BGG++MT6Z+0p+1f4fkt/CmUuvDnhW5Xa+sDhknnGcpB6IRuk74X73Pf8EDv2M/gL+0t8U/EXxJ+L 8Q1e78CSWk+l+GZ0/wBHkkkLlLmXn94FaMgRkbc8nPAr9t4YIY4wkcQUAYAAxwK+byjLIVksRV1X Rfq/8j+ivFbxKxOUVJ5DlV4TSSnPZpNX5YebTV5dNlrqodJ0jTtEsINL0iyhtbW3iEcFtbxhEjQD AVVHAAHYVaoAwMCivqdj+Y223dhRRRQIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAK+NP2vv+C+H/AATP/YX+Oepfs5/tHfGHU9I8V6Tb2819ZW3hm7uURJoxJGRJGhU5VgeDxX2X XPa78JPhV4p1J9Z8TfDLw/qN5IAJLu/0aCaRgBgAs6EnA4oA/mi/4OlP+CsH7E//AAU30L4KWP7I PxGvdek8GXfiCTXxe6JcWYhW6TTxDt85Rvz9nlzjpgetfK//AAb8/ti/Ab9g3/gpt4U/aQ/aU8T3 Gj+E9L0LWLa8vrbT5bl0knspIogI4wWOXYDOOK/r5/4UF8C85/4Uv4T6dvDtt/8AEUf8KD+BX/RF vCf/AITtt/8AEUAfn943/wCDnr/gh38SPCOq/D7xb8cdVv8ASNd02fT9UspvBN+UuLeaNo5Iz+76 FWI/Gv51/wDgqT/wTM+K/wDwTn+OD6VfaHqOofDfxOi6n8M/HDWji21fTJlWWFWcqAtxGkiLJEfm DDP3WUn+yn/hQfwLzn/hS/hPj/qXbb/4in/FL4F/Bf44eBJvhf8AGT4UeHfFXhueMJLoXiDR4bu0 YD7v7qVWUYwMEDIxxQB/Iz/wSJ/4L1/tU/8ABJGPU/AvgnQNK8ZeAdbvReah4Q1yaSMQXO0K09rN GcwuyqqsCrK20cAjNfoN8Rv+D3DxJq/gGXSfg3+wfDYeLJ4zHaXuueLzd2cUhGFbyIoI3fDY+XeM 9M96/QT4jf8ABrv/AMEXviLqU2p/8Mu3GhNM25ovDfim+tY1Oc/KnmkL9BgV6P8Assf8EGv+CU37 H3ia38c/CT9kjQrjXrOQSWWt+KHk1W4tXBBDxfamdYnBGQ6qGHY0AfCX/BEn/glv+0v+2T8eJ/8A gsj/AMFePt2s+KdUQt8N/B3iOyMQs4WRkW8e0ZQsESo3+jwgDGTKfm2mv5/f2xP2a/HH7I37UXjj 9nL4haXc2eo+FPEt1Yj7ZEUaeBJWEM4yBlZI9rhhwQ2a/usWKNMBFwAMADpivEP2r/8Agmr+wh+3 E8N3+1T+y94U8YX1vH5dtrF9YeXfxJ2RbqEpME/2d+32oA+Lf+CXX/Be3/glx4e/4JqfCjQPi9+1 f4b8IeIvAnw60vw/r3hzWmkS9Sews47YtHEFLTK4iDqY92d+OCCB+Kv/AAXt8KfE79qL9oLWf+Cs PgX9nvxNofwX+JmsLpvhXxRq1k0Z1RrK3itxeyRkZt47gITDv++ImxyCK/oj+Fv/AAb6/wDBHX4Q eLIPGvhb9hbwndX9rIHtjr7XGpwxsDkHybqWSIkEAglTjHFfUvjz4NfCX4o/Dq5+EPxH+Gmha74V vLQWtz4c1XSop7GSEDCxmF1KbQAMDHGBjFAH8s//AAbF/wDBXD4Sf8Ezf2jfFvgX9pDVJtN8A/E6 xsob3Xo4WlTSL+0aYwTyKuW8plnlRyoJHyEjCmv3D/ai/wCDjf8A4JkfArwcJ/hH8aLX4x+MdSUR +GvA3wxzqV3qFy4xFEzxgpDlioOSXGThGOFMmr/8Gyv/AARZ1fXpNeb9j63tvNl3tZ2fiTUI7cH0 CCfgewr3n9lz/glp/wAE8/2L75db/Zo/ZH8GeGNVVQo16LSxcaiBxwLucvMoyAcBwM9qAP4yP2s/ DfxU8MftJ+NbX42/DbU/B3ii78R3V/q3hrWbdormwe5ka4EThgDwsq8kcgg1+p//AATN+MU/gP8A ZD8H6FJoz3qS6dvtxDJhg5dwR0Oc8dOa/c/9sr/gj/8A8E6f2+vE8Hjr9p/9mjR9c8Q28CQL4htp ZbO+kiXO2OSaBkaVRk4D7sdsU34Tf8Egv+Cf3wQ8LWHg/wCG/wADIrGy02HyrPfqlxLJGuScB3cn qT3r43jfhyvxNlcMNS5bqXN7zaWzW6TfU+14G4kw3DOaTxNfms48vupN7p7NpdO5+Zfgjwl4T+JX i3S9b/bFvNM0v4bxX0UniXTNWuBBZrpwcfaGu3YgLEIt24sRxnpXtf8AwW+/4KJf8E0Pil/wSB+K /wAAP2dP2y/hFqmqSeGbW28O+FfDPi+ykkkSK6tyILeCFyTtRThVGAF9q+7PEX/BNn9jbxfoF74U 8WfCGHUtL1K1e21HTru/naK5gdSrxON/KspII9DXmH/EP7/wRqPX/gn54GP1S5/+O1zcCcN5lw1g 61HGOHvSTioXsla3VI6OPuJst4nxtGthFNcsWpOdrt3v0bP4yFU7sZH51/YJ+xF/wWz/AOCTlh+y n8MPA+tft7fDrS9W0j4f6NYanY6zrQsnt7mGxhjljbzwgyrKwz044Ndl/wAQ/f8AwRn/AOkfXgX/ AL93P/x2j/iH7/4I045/4J+eBj7lLk/+1a+7Pgj6db41fCRfhC/7QB+I2jf8IPH4fbXX8W/2jH/Z 40xYTO155+dnkiIGTzM7doznFfPUv/Bcj/gkKjsjf8FEfhblc5x4niI/DHWvfofgF8Grf4Fn9mZP h3pp8At4Ybw6/hWSIvaNpTQG3azZWJ3RGElCpPKkivAB/wAEL/8AgkAP+cd/wwPufDqE/wA6AP5H P+CjvxG8I/GP9vv4yfFPwBrMGoaJ4h+JOsX+k39tJvjuLeW7kaORT3VlIIPoa/bb/g0+/wCCgX7D /wCy1/wT38VfDz9o/wDay8AeBddufibeXtvpPivxRbWM8tu9naIsqpK6llLIwyO6mv0t/wCHGH/B ID/pHd8L/wDwnEpk/wDwQq/4I/XEDW0n/BPH4ZBXUqSmgKrAH0YEEfUGgD8pf+C7/wDwTP8A2dP+ CpOva5+3h/wSD+Lvgr4neOdCsYm+LHgX4f67Bf3GoQ4fytQhigLFrnC7Gj4MoQFQXVg/5u/8Eiv+ Csvx7/4I2/tI6j4isPCk2p+G9aaOx+IXgXUd1vJcJEzbXTdgw3MRZ9pYEYZlYc5H9Y37Kn/BPD9i r9h681i//ZO/Z40LwNN4giij1mTRRKDdrEWMYbe7fdLNjHrXnv7bn/BFz/gm3+39dSa/+0P+zXpM viGVNreLdAzp2qMO2+eDaZsdvMD47YoA8l+Gv/Bz3/wRl8e+BIPF2pftSt4auZLbzJdB8QeHb1L2 FucxsIo5ELD/AGXIPY1+d/8AwVe/4OpNc/ad0a7/AGN/+CUngfxI0/i1v7IuPHFxpzLqV952Y/s+ mWqEyI8m4KJXxJyQqA4evpuX/gzC/wCCXMmuHVk+MHxoW23ZGmr4k00xD23HT/M/8er6/wD2Ff8A gh1/wTa/4J5a9H43/Z/+AVvJ4qgjZIfF/iW6bUdRhBxnypJflgJxyY1UkZGccUAfzJ/8FKP+CO3x Z/4Jj/sz/CP4pftEeJVHjn4oXV/PqPhW3+ZNEgiigdIZZCMvckyt5gHyrgKCxBNct/wQ8+Lnwy+A n/BV34K/F/4y+ONO8N+GND8Tyz6xrmq3Ait7SM2dwgZ3PCjcyjPqRX9fH7TP7DX7If7Zcekw/tT/ ALPfhnx2mgtKdHTxHYC4W0Mm3zCgJwN21c/QV5P/AMOMP+CQP/SO/wCF/wD4TiUAc98VP+Cnv/BF f9r/AMA6n+y/46/bX+FniXSfHtqdEu9CPiGNnvPtB8tUQdpNzKUYcqwUjBAr+cX/AILC/wDBF39p L/gkX8df+Er0a11PWfhjd6v9p8D/ABB06JyLXEheG2unUAQXSBQeyvt3Ieqr/SvoX/BCr/gkX4Y8 W2Xjrw5+wb4GsdV02/ivbC7tLaaP7PPG4dHRVk2qVZQRgY4r6c8aeAvBHxI8M3ngr4h+ENM13RtR iMV/pOs2MdzbXKHqskUgKuPYg0AflN/wRi/4Oef2Wf2l/hFovwe/bq+Kmk/Dv4o6Rax2d3rviW6S z0nxBsUKLlbmRhHBK2MvHIVBY/ITnA/SST9tH9j2Lw03jOX9qz4bLo6R731VvHOni2VcZ3GXztuM d818d/tDf8Guv/BHn4+anPrVp8Ar3wLeXDl3k8A63JYwhicnbbsJIVH+yqBR2FeJWP8AwZe/8Ev7 bWV1K4+NfxruIA5Y2EviPSxER/dyunB//Hs0Adr/AMFDv+Don9ir4DaJc/DL9iTVP+F4fFPUibLw 7Y+EoHutLhu3yqNJcR/8fA3YxHb7y5wMqDkeFf8ABKj9ljw7+w38TLz/AILHf8F3vjponhL4u/FG 8uU8E6d47vlgk0tJIw0rsjj9zc+URGkK/wCph+U4LFV/RX9h/wD4Iv8A/BOH/gn1dp4g/Z2/Zv0q HxEibR4u14nUdVUHGQk82TCDjkRhM984Fev/ALRv7I/7Mf7WPh6y8PftLfAXwn48s9Jne40q28Wa HDfR2kzrtaSNZVYKxAAJHUCgD8Rv+Dhb/gvn8P8A9pnTNJ/4Jz/8E+/jroU2g+NJYoPiN8Tf7RNv p0du8iBbNLk42xdWuJAMbAEGcvX2N/wTD/a9/wCCFf8AwTG/Zf8AC37Kvwr/AOCgXw11DU5JEm8Q 65b6kHl1vVZdokmkZFO1d2EjViAiKo7EnnP2XfA//BFHxl8Wtd/ZV/aU/wCCeXwP8IfEXw3r1zpS S3XgKxisNZMcrKjxO6YjkZQpMbEZLfKT0H2Np/8AwRx/4JPQSQ6lYf8ABOz4ORyRuskE0XgGxBVg chgRH1yAc1lRr0q8eaDv+nqenmuTZlkmIVHGU3FtJp9JRe0ovZp9189T6UtLu3vrdLu0lEkUqB45 FPDKRkEexFeQ/to/tbfsefsk/C/+3/21fifofhrwp4gkfSj/AG/byTQ37PGxe3McaOXzHuyNpBGa 9ftra3s4EtbWFY440CRxoMBVAwAB2GK4P9oH9lb9mz9q7w7Z+Ef2mPgZ4W8eaXp939rsdO8V6LDf Q28+0r5qJKpCttJGRzg1qeYfxb/8FHvhf+y98Jv2ufFfhv8AYu+NGn+OvhhcXn27wjrFis6mC2lG 77JKJ40bzIWzGTghlVWzzgfT/wDwbt/8FiL3/gl/+09/wiPxY1u4/wCFQePp47XxdF8zrpFxuAi1 REHeMZWQAEtGx4JRRX9KB/4Iy/8ABJg4Df8ABOX4NHA7/D+x/wDjdcr8Xf8AgmX/AMESfgN4Nu/i J8W/2G/gVoOj2SFpr3UPA9gi9Cdqgx5djg4VQST0FJyUVdmlKlVr1FTpxcpN2SSu2+yS3Ot+CP8A wWA/4JmftMeIz4L+B37ZvgvXtXWxnvjp0V80Mq28ETSzSlZlQhUjVmY/wgHNfjx/wVk/bzn/AG5P 2i3vvDF1J/whPhUSWXhOF8r5yttMt2y9mkZRj/YVOhzXO/ty/Gr9irxl8QBpX7B/7HHgP4ZaBp5m hbxL4f8ACVtp+q6wjqUcPJEoaO3ZSR5Wfm6v2A+fVBY7VGSewFfI5vmccT+5pP3er7/8A/qzwo8N a3D/APwrZpG1eStCP/PtPdv+81p/dV1u3b7v/wCDef4tL4A/bnn8C3VwVtvGXhW5slQtwbiFkuIz jPJ2xyAf75r90EcOMgHr3r+aL9hHxV4u+FH7YPw3+JWj6DqMy6X4usnvBa2cjs1q0ojnHyjvE7j8 a/pbgIZNw7816WQVObCuD6P8/wCmfnvjtl8MPxRRxcNqtNX9YNr8nEfRRRXun4iFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUVkeN/Hfg74beGrzxn4+8VaboukWEXmXup6tepbwQLnG55JCFUcjqe9AGvRXg3w+/4Kgf8E8/ it4ps/BHw6/bN+HWr6tqM5h06ytPE9uWvJAcFIiWAlbOBhSete7o28ZyPwoAdRXjvxw/b8/Y/wD2 cfGEfw6+MXx60XTPEctt9oTw3bebe6l5P/PQ2tqkkwTp8xXHvWn8BP2zv2Wv2opr6y/Z++O/hvxT eaWxXVdN02/H2uxOcYnt2xLCc/31FAHps0sUETTzSBURSzsxwAB1NY/w8+Ifgr4seC9O+Ivw68RW +r6Hq1uJ9N1K0bMVxGSQGU9xkGvzl/4L2/8ABcj4HfsW/AXxd+zV8GPiDZa38ZvEWmT6RHp2kziQ +GUnjZHu7l1yI5VRiY4vvlirFQvJ7v8A4Ip/txfsfWn/AATs+APwRvv2pPAa+NT4I0/T28LSeKrU ah9sIx5Hkb9/mZIG3GeaAPveZgsTMxAAUkkngV+Tl3+zb+0P/wAFvP2/bj9o3XPij4r8EfssfDu4 bR/Blt4f1y4sJ/H00MpF1cIYXR1tnmUqJyPmjRRGclmH6T/tHfFn4BfCP4T6r4g/aX+IWh+G/CNx CbPU77XtUW0hkSUbTFvLKSzAkbVOTnivM/hv/wAFM/8AgnXrGsaP8K/Bn7R3hfSLq8RLXw7pGqwT aQt0qhVSK1F3FCsoA2gCPcMYxxQB71o/hnRfD/he28H6RaeRp9nYpaW0CSN+7hVAiqGJ3cKAM5z3 zmvwj/4OhP2d/AP7Bvwv+FvjH9k7XfG3hDUvFHijUIdcuYfiZrt39pRIEdV23V5IqYZiflA/Kv3q Vg8YcMCCMgg8GvxQ/wCD0L/khPwO/wCxw1P/ANJY6AP2M+C881z8HvClzczPJJJ4asWkkkYszE26 Ekk9SfWulrl/gkcfBfwif+pXsP8A0mjrifip+3v+xl8EfGrfDf4q/tMeDtG8RJF5kug3GtRtexpj O5oEJdVx3IA5oA9eorg/gf8AtO/s+ftL6HP4l/Z7+NHhnxnY2sgju7jw7rEV0Ldz/BII2Jjb2YA1 295eW1hbPe3k6RRRKWlllYKqKBkkk8AAdzQBLRXzJr//AAWY/wCCV3hjx4fhnrn7fPwwg1lZzBJb DxRCyRyZxseVSYkbPGGYGu2/aZ/4KAfsh/shfAy3/aP+Pfxz0PR/CF8UXSdViuftP9qO67kS1SHc 1wzDJ+QHABJwASAD2WivJv2a/wBt79mH9rb9n6H9qH4F/FzTNW8ESCb7RrU7NapZtCcSpOs4Uwsn UhwOCDyCDXLJ/wAFVv8AgnGZEB/bV+HQie6+zLeHxJCLYzdNgnJ8vdnjG7rx14oA+gqbKcRscZ46 VX0PW9I8SaTb69oGqW99ZXcKy2l5aTLJFPGwyroykhlIOQQcGn6nciz06e8YgCKFnJJ6YGaAs3oj +f8A/wCC0/h/Q5/2yLn4z+D0C6X49sBeIVHAu7SWTTrpfqJbRifUsfWue/Zg/wCCuH7bn7LVrb6B 4W+J767oEGAmg+KIvtcKL/djZiJYh7K4HtzT/jV4lT9oj9i+8+IcchmvPh78XtTWZj1XTtc3XMRO P4RcWs2M8Au3rXg/wu+D3xT+NXiJPCXwl+H+reIdQfGLbSrF5SgzjLEDCL6sxAGOTXwFWrVjivaU W05a6ee/43P7pyvK8pxHDMcBm8ITjh7037S1ko/C7vZ8jg7767n6d/Dz/g5kQ2kcHxV/ZVc3CgCW 68P+JPkc9yIposp348xvrXV6j/wcvfAn7Gz6T+zV4smmPRbjVLWND/wJdxH5V+fUf7KHwO+CKfbv 2vP2hrKDUYRmTwB8PPL1bVCw/wCWc9wG+y2pzkEF5GH93vU8B/4J8/HqP/hC9E8P6z8GNXg/d6N4 j1bWZda07UByQNQwivbOTx5sKlADynBJ7lmWZxVnUV+ztf8A4HzsfG1vD3w3xFX2tHA1ZU1vKDqc i80nLmmvOmpJH0t8Z/8Ag5E/aD8VWkum/BP4KaB4TDKVj1DU719TuF91G2KMH2Kt+NfC/wAdv2l/ jz+014lPi346/FDVfEd4GJhF9cfuYAe0cS4SIeygVP8AHb9mL4x/s8X1uvxB8Ng6ZqALaN4i0yZb rTdUj7Pb3MZMcgxjjO4HggUfsu/BeT4//HXw/wDDV7r7NptxdfaNf1BjhbHTYAZbu4Y9gkKO31xX DXxGNxU1Tqyd+234H3OSZDwVw5gXjstowjBRbc170rJa++25eqT30sfqV/wRR/4JkfBPW/2XIvjl +0h8GdE8Sap4vvPtegxeIdOS4Fnp6DZGyq+QDI29845Up+P3r4b/AGVP2a/B8ax+GPgD4NsQuNv2 bw3bLj/xz2rE/Yb+LPgv42fsv+EPiD8OtEXTNCn0+S20jTlP/Hva280lvEh9wkS/nXrlfZYPDYel hoKCT0Wttz+PeLOIc9zPP8VPE1JwfPJcnM7Rs7KNk7aJJee5U0rRNJ0OIW2j6XbWkX/PO2hVF/IA Vboort2Pkm23dhRRRQIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigBJBlcZI9xX4zftgfGyb/gp3/wAHC3gb/gmF4uvHu/g1 8K2n1Txj4aVz9m1/U7fTmvCLlQcSxpK1vDsbgfvu7c/sxJ93/wCtX4N/sS6BqXww/wCDvn4qeH/F ySQ3GtyeIrvTfOH+tiubGO9i2nAyPJz06bcdjQB+vf7VH7B/7On7VH7Nus/s1eM/hZoUGj3umPBo 72WmRQNo9wFIhubYooMMkbbWBTHTHQkV8Mf8G737f/7Qfx7+B3xX/Y0+N2sPrnxL+BN7Npej6tqL ky31ovm28Edy5yWkjnt3Rn6lSmclSW/VCT7h4rwX9p39pn9nL9iH4a/En4v3fhrTYtU8IeBpvFGu 2OkackU97EZHjt1klVQA01wGRS5yTvboGIAPz/8A+DZz4Xft9eEfi9+0H42/bm/Zs1nQNT8Ta9Dq Evjbxn4fntNU1PUGeVZYIJZlHn2aqNymPKKThSQePGv+CyHjJv2S/wDg44+APxm+C94dG1bxLbaH F4uGnp5Y1KKW+ksnSYDAl3wfIc84Ve6gj0b/AIJjfCf45/8ABfrw/wCJ/wBtn9vP9pTxxp3gZfFF xpXg34Q/D3xPPpOlWyxIjPJMYiHmI8wICTuO1iWwQtfGf/BWn9lv4Jfsgf8ABcn4JfB/4FRanFpi XPha7uodX8QXGozrPJqjAkyXDu65VVO3OOc45oA/Rz/g6+8AeBdN/wCCV2r+LtP8FaRb6tP4+0Yz anBp0aXEhaR87pQu4575POK92/4ImfAL4HT/APBMP4AfECf4MeFH14/D/T7ptafw7am7M+CfM84p v3/7Wc+9eQf8HZv/ACiO1H/sftE/9GSV9Hf8ERv+USv7P/8A2TXT/wD0E0AfDf8AwVa+Gn/BR74i f8F2/gD4i8B/s06r49+EnhSaxm003Wgz3nh2zlmZ49Qub2RVMUE8aFXjaUggxRFd3Svdf+DoL4fe BvEv/BInxl4l8QaXbNqHhrVtJvPD14YR5ttcG8jiPlsOUzHJIDg8j868J/a5/b4/aZ/4KSf8FfW/ 4I5fsrfG/VvhR4F8MXF4nxG8deFZjFrOoNa24kuoYZeDCqyYt124JZmdiygLXHf8F8f+CTf7IX7G n/BMXxH8WfAOseOdR8Upr+l20WreLfiDfag1y0s4Em6OSTy3YjJ+7xjIxigD7s/4N+/jh47/AGgP +CTHwo8b/EbXLnU9VtNOuNKnv7x90syWlzJBGWYkliI0Rdx5O3nnmvh7/g9C/wCSE/A7/scNT/8A SWOvq/8A4NiBj/gjX8N/+whrH/pwmr5Q/wCD0L/khPwO/wCxw1P/ANJY6APsj/grB+3hr3/BPX/g kQfjP4Du0h8Xan4c0nQ/CErrkQXtzAimfB6mKISyAdCyKDxmsr/g3P8A2e/CHgv/AIJoeD/jfq2n Q6t41+Kct34l8X+LNSQT3+pTzXMioJZ3y7KqIoAJxkserMT8+f8AB0b4J8QeI/8AgjT8NPE+lQO9 p4f8R6DcamVBOyOTT5IVY46DfIoye7Ad6+yf+CEGvWniL/gkV8CLy0aL914JS3lWHorxzSowPvle fegD89/+C8PjPV/+CRP/AAVB+DP/AAUT/ZptF0a38c2s9h8TNA08iG115LaaLzGmjUBHkkgmxvPI eBH65Jzf+DrH/gpx8R7zSvhn/wAE9/2WPFV1ap8VtItda8TX2nztHNf2V1KiafZKyNkJKwd5F/iA jXkFxU3/AAej6xZ3Phn4CeC4I1e/udW1m4iUH5ygS2jxj0LOo+tfHX/BdX4deLf2Xv8AgpN+yx8R PirbzQ6bYfDDwM08k6sAraZOi3aZPdSBkdRkHuMgH7J/Af8A4Nyf+CZXw+/Y3sf2afHv7OOgeI9X u9BWHxH47vLRTq89+8Y825guSN9vtckoiYUAAEHnP4n/ALE37HngK+/4Kr+PP+CMX7aPiLV/Eeja dY+LfC/wfuNU1ec2fh7WpYhJZarHbBgoZ4YlfYBje44I5r+qfTby31Cxiv7OVZIZ41kikRsh1YAg g9wQetfzZ+HtOuf2jP8Ag8XvL/4ZK09voHxUlm1K4tv4I9N0/wAq6YkekkTRnn+dAHEaJ+y18eP2 T/2kvhR/wb+fE74y2GpaH4w+K9l4i+KcPg++n+yX/wBrMCQWJeRInaNba2ErKVA8y4zzsVq/pS8Q /s5fA3xN8Ibr4C6v8JPD8ng670ltNl8OLpcS2gtWTZ5axhcKAOmMY6jmvwk/bT0XU/hl/wAHdXgD xR4phjSz13xb4au7Ca5U7DC9kltuU+qyRvj/AGhX9CTY2n0xQB+J/wDwbt/tUfED9nX/AIKA/Gf/ AII2/ELxfd6r4Y8La5rVx8N31GcvJafY7zY9shJyEkt2E+wcK0chH3uf1e/bZ+JcXwl/ZE+JHxB+ 0GKTTfBt+1tIDjbM0LJGf++2WvxD/wCCcGlXvxS/4Oxvip4v8JxFrDQPEHiy51OaJcrHHGhsySR0 zNIi/U1+k3/BwF8YE+Hf7CFz4ItrrZeeM/EFppyIGwfIjY3EpHqMRIp/3658XV9jhZz7Jnv8K5c8 24lweDSvz1IJ+l05fck2fkH+y/8AtI+FPgbo3jXwj8RfhPF418P+MtJtYLvQ7jUpLSL7Ta3SXFvK zx/PhSrKQCCVdhkAmpvih+3H8dviF4dfwB4bvdO8D+Em4HhDwHZDTbFlxjEvlnzLk+pmdyf0rx6i vgFWqqHInof3hLJMrnjJYqdNSm2nrdpNJJNRbcVKyS5kk7Ja6Csd7F2JJJyxJ6mppdMvY9Li1d7c i2nuJIIpexdFRmH4B1P41BXsOl/D7+2v2CtX+I0dsSdE+KdraSS4zhLmwkOPbLQr+VRGHPc6MZio YOMHLaUox/8AAnZfjYzfgR+1v8WfgTZT+FbCay8QeE79v+Jt4J8U232zS7wdyYmP7p+4kjKODzni vTNY/aC/ZH8E/A/xnrP7NHhDxH4a8d+P7SLQdU8P6pOtzZaPpjsZrxrK5GHZZmSGLZINyqXGWGSf mSg9K0jXqRjbf16enb8jixWQ5fia/trOLbTlyuynZprnW0tUtWr9L2bT/cP/AIN2fi5beOP2LdR+ HE1wGvPBvimeAxlssLe4VZ42x2BczKPdDX37X4Wf8G/n7TUPwZ/a/n+Euu34i0r4h6abOPe/yLfx EyW59PmHmp65cCv3RjYuu4ivssnrKtgI946fdt+B/H3ixk08n42xDt7ta1SP/b3xf+TKQ6iiivUP zYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAMA9RXwv/wUd/4Jb/EL4rftT/Dv/gpb+xLrWi6N8b/hrNsksNdZotP8 VaeUaJ7S4lQMYX8mWeMSBWyspU4wpH3RRQB8s+IP2nP+ClWueEDoXgD/AIJkXOj+LbnbCmq+LPil ob6BZOcBp2ezuZLyeNckhBbIzYwdmc1Cn/BNaT4lfsa/E34AftN/FSXxX41+M+nzf8J943trFYFj uWjC20VpDk+Xa2m1BFET821mfLSOT9WUUAfiT+wX/wAE8f8Ag4h/4JQzeIvgD+y/YfCPxp4A1vWm vLfU/EetbILWZlEZulj3JPGSqIWjw4yoxk5J1v23f+DfT9tL4hfED4VftpeBfiboHxK+OOj+KV1r 4r3HiG/Ol2msPHNbyWlvYkKy29vbxwmBUIBK4fBbK1+0FFAHwl+37+wn+1z/AMFSv+Cffjj4KfHC Dwn4A8V6pd2Oo+CPDOlaxJqdrptxZ5fbd33lRGYzszKdkO2JQpHmHJrm/wDgmR8Ff+CxH7Pv7Jvg n9iz4l/DX4ceD7XwZKLIfEoeLjq1xJpSXBkEUOmxwqhnKExrJJOFVdrGMkba/RGigD8a/wBt7/gi N/wUN+Dv/BUG4/4Kkf8ABKvxZ4bvdY1nVZtU1Twx4l1BbYwXdxCYbxMy/u54Jt8jlSysjOdvKqa9 K+MX/BMH/gpf/wAFUfgP4l0//gpr498FeFb608OXMfww+HfgZnk06x11oyseq6jNuYzMozGkasyo ssjD5sCv1KooA/PT/gjN+yx/wUr/AGLv2ePCP7HHxm+GvgLw/wCG/COu3t7qHjTTfGDanc6zayyy yi0hshboLdmeQZneU7UTiPc3y+If8F6P2Gf+CmX/AAVf8J+CvAPws/Y2tPDsfgnxHe3f9pav8StL dL+KRBGhREcMmQobDcjOK/XqigD5Y0b4S/Ej9s/9mjXP2Nv23P2Op/CHhLUPBcGlXF8fG9hqJu5U WNQ0S2pLQujIsqu3AZBXzN+wl8Af+Csv/BHvwpqX7Jvgn9mSw/aL+ElvrV1d+Bte0Dx/puhaxpEM z+Y0E8GpSRxupYs3ySEq7tglSAv6gUUAfmXN/wAEuf2l/wDgpB/wUO8Mft2f8FJvh/pPgnwZ8N7C KH4e/Byz8QQ6vcSTpMZvtF/cwDyBmTa7RxFw3lxqW2qd3Bf8HQukfAP9qTwj4D/YJ8L/AAc1/wCI X7SPiCefUvhTpXhSSKKbSYBt+1T3c037tLWRIiChI3GDduTZur9ca/AT/gtT+198bv8AgkV/wcCe Hv8AgoC3wj/4Srwt4h+F0ekWVld3LW8V7bhWjuYYZ9jiGaOQRSfdbhxkYbNAHrv7MN5/wdj/AAi/ ZG0v9lD/AIZI+Hpv9P0saTonxI8S+PtLlv8AR7YLsiaSO3vJEneJMBW2OcKNyua+mv8Agib/AMEO fDn/AATGttc+Ofxi8cR+Ovjb44SRvFPivyj5NnHK4mltrYv8zb5RvklbDSMBwoGD8L3P/B8J4dFq 66f/AME37xZdvyNN8VUZQfcDTRkfjX0T/wAE8f8Ag7V/ZC/bM+MekfAX4xfBzWPhRrviG9Sy0K/v tai1LTLm5dlSOF51jieFnY7RujK5xlhmnawHvH/BZz/gj/P/AMFEbDwr8c/gN40g8HfG74aXMdz4 J8S3AIt7lUnWYW1wVBICuN6PhtjFvlIY1Po37VX/AAWwm+HE3gXX/wDglLpUXjsWTWkHja1+Muin w49ztwt60Bk+2rEGO4wiJmONuQOR9xRsXXJFOpAfDv8AwRp/4JCwf8E3/C/ib4p/Fvxhb+LfjL8S bx73x34lt4yIIvMlaZrSDdgsnmsXeQgF3wcAKAPkH/g5A+Oi+K/2h/CfwG0y9zbeE9Ca+1CNWP8A x93T8Bh/sxRoQf8ApoRX7K65rNj4f0u41rU7hYba0t3nuZX6RxopZmPsACa/mV/bI+Ot5+0v+1D4 4+N1zMzRa94huJtPVjnyrRW2W6D6RKg98Zrws+r+zwqpreT/AAWv+R+2eBuSPH8T1MfJe7h4Oz/v z91f+S8x5pRRRXyB/XAV9u/sv/DmHx7/AMEV/wBoC7gsw93ovjnStTgkx0EAtw/5RSTfnXxFX6yf 8EZfhhJ8T/8AglT8c/AZjVzr+qapDbp1y/8AZUAQH/gYFehltP2tdw7xl+R8F4jZh/ZeRUsVf4K9 B/JVIt/gj8m6KvnRLYHjxFYY9d7/APxFH9i23/QxWH/fUn/xFefZn3PtYf0mJ4X8Ta54K8S6f4w8 L6lJZalpV7Fd2F3C2HhmjYOjg+oYA1/SX+wX+1p4W/bK/Zm8P/GfRZ40vp4fs3iCwQnNlfx/LLGR 2BPzr6q61/NVdQJbTGFLqKcAffiJ2/qBX1V/wSY/4KF337C3xzNp4tuZZPAXil4rfxPbKu77Ky5E V4g9Y9x3AfeQnuFr1cpxqwmItJ+7Lf8ARn5d4rcGS4syJV8LG+Io3lH+9F25oersnHzSXVn9CVFU PDfiXRPF2i2fiTw1qlvfaff26z2V7ayh45o2UMrKw4IIIOav19unc/jGScZNPdBRRRQIKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/Fn/grF+0V45/4Kx/8ABTmw/wCCDHwV 8P8Ahew8MaQPtvxO8f65oEOo3lj5dql1L/Z5kBFs6I8cO9QHaWUKWVFbd+01fhx/wU6/Zs/a3/4J U/8ABYyL/gtn+zP8GtT+JHw+8TwlPiP4f0ON5LjTw9pHa3IdY1ZkjcRpcJNhlWRGD7VxkA+vPhV/ wa+/8Eb/AIb+E4fD2ofs03Pii5SAR3Gs+JvEl3NdTtjlz5TxxoTjOERQM8AV+Y3/AAcif8EG/wBm b/gnv8HPD37a/wCxMuq+HbL/AITC20jX/ClzqT3MMMsySyQXVq0mZEw8OxkLMPnQqBhq/Q7wz/wd of8ABJPVvCkWr6zrPxE0jVDFul8O3XgK5kuVfGSgeItExzwDvA9cV5V4vg/ad/4OPP2gfh/Bqv7P Hij4X/sifD7xJB4kvrnxxafZdT8dXsORDGkGflgaORlyMqqySnzCxRQAfqr+zZq/iLX/ANnnwJrn i8yHVr3wdpk+pmViXNw9pG0hYnvuJzXbEhRkniorK3gs7WO0tYUjiiQJHGihVVQMAADoABT5mCxl iR+NAHx7/wAFu/2n4v2eP2IdZ0XR9UEOuePGPh7TljbEiwzIxuZBz0EIZcjoZFr8AzwcV9p/8Fz/ ANrFf2if2w7r4f8AhrVfO8O/DyJtJtgjZSW93Zu5B2zuAiz/ANMveviz6DHsK+GzfE/WMY7bR0X6 n9seE/Dj4e4SpurG1Sv+8l3V/hXyjbTu2FFFFeYfpgV+4P8AwbraUtr+wxql6Yk/0zxveMcHrtig Xn8q/D6v3o/4IGaK2k/8E6dEunX/AI//ABHqdwD7eds7f7lezkSvjvk/0Pxzxyq8nBKj/NVgvwk/ 0PxG/aA8BH4V/HTxj8NRCyJoXia+solbskc7qv8A46BXIV9V/wDBYvwJoPw2/wCCi/xF0+XR7zbq d5bapFJDeJGsgubWKVyAYjj94zjqfu18x/avDXfS9Q/8GSf/ABmvLxFN0q8odm1+J+k5DmDzLI8L i+Vv2lOEunWKfcz8jPT9KDtPUfpX6o/8EdP+CRPwl+MXwxuP2iv2q/hu+qaX4ghEfhDw/f3ksYEC kbr1mhMbHeQQg6bQW53A19qf8Oav+CZ//Rqulf8Ag41D/wCSK9KhkuLr0lUTSv3v/kfnmd+M/C+S ZpVwMqdSpKm7NwUHG/VJuavZ6Ppc/N//AIJC/wDBXm7/AGXru2/Z1/aH1W4ufAN1Pt0fWJGLvoEj HkHJ5tSSSQOUOSAQTX7XeHNf0XxTolt4j8Oaxb6hYXsKz2d7aTrJFPEygq6OpIZSCCCOtfN7/wDB Gn/gmkR+7/ZY0pTng/2vqH/yRXt3wQ+Avwt/Zz8Dp8Nvg74dk0nQ4p2lt9ObUbi5SAsBkR+fI5Re M7FIXJJxkkn6PLsPjcLT9nWaaW29/TbY/nvj3O+EOI8b9fyqjUpVpP31JQ5Jf3lyzbUu+lpb6Pfs KKKK9I/PAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApBGi9FApaKAMY/D n4fNq/8AwkB8C6N9v8zzPt39mRedv/vb9u7Pvmtjav8AdFLRQAAAcCvnr/gph+1/ZfsZ/sn+IfiV b3iLr97EdN8KwE8yX8oIVvpGu6Q+yY719C18A/8ABRv/AIJn/tRf8FGPj5ZTap8V9A8I/Dvwzb+T oVs8ct5dzSyBTcXDRKEQEkBBmTIVB/eIrkxsq8cO1RV5PRf5n0vCOGybEZ9Slm1VU8PB8073fMlt FJJtuTsnZbXfQ/EK+vr3Vb+fVNSuHmuLmZpZ5pGyzux3MxPckkmom+Xlhj61+23wg/4NzP2PvCPl XfxY8b+KfGE6EGSD7Wthbt6giH95j6SA19S/CH/gnv8AsYfAkRSfDH9nTwvZXEIGy9uNNW6uAR38 2fe+ffOa+ZpZDjJ6zaj+L/r5n9I5n468K4NOODpVKzW2ihH75a/+Sn89Pwm/ZF/ad+Oksa/CT4Ee KNcSUjZc2ekSeTj181gEx15Jrh/EvhzXfB3iG98KeKdKmsNS067ktr6yuU2yQTIxV0YdiCCK/qsi sYYUEcMaIq/dVEwBX5O/8HAX/BPs210P23fhVoRKyFLbx5a20f3TgLFfYA78RufXYf7xq8bkv1bD e0hLma39Dl4P8Z48QcQxwGMoRowqaQak37/RSbS+JbWW9lrfT8p29A2M+tf0P/8ABGvw2PDv/BNb 4YRNH813pt3dt7iW+ndT/wB8Fa/nhPXBHfnnFf0z/sIeEn8CfsWfC3wlNHtksvAemJKPVzbozH8W JP40cPRvipvsvzf/AACfH3EKPD+FofzVb/8AgMGv/bj8qf8Ag5C8ALoP7WHhT4hRw7U17wasMknY vbzyDH12yL+leE/8Er/2DdX/AG5P2i7XSNatpYvBXhxo7/xbehSBJEHG20U/35cFcj7qh26gV+gv /Bwp+zz4v+Nvhr4On4daBNqOuT+M59CsraBCWka8iV1yR0UG2JyeACSeM19XfsAfsZeE/wBiT9nH SPhFoXkzao+LzxNqaR4N9fuo8x/XauAig9FUdya6XlrxGbTlJe4rN+d1t/n5HgUvEX+wvCnB0sPL /apqdOPeKjJpz+UbKPm79Gey6DoeleGtJtfD2habFaWVjbJb2dtAm1IYkUKqKB0AAAA9qu0UV9Kf zq25Nt7sKKKKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABTfKjznYOOlOooAAAOlFFFABWX4z8G+GfH/AIT1PwT4w0eG/wBL1exltNRs7hNyTwyKVdGB 6ggmtSkYEqQO4pNJqxUZShJSi7Nar1P51f25f+CfvjD9k39su1+A1lZz3eieKNYhbwRqDIWF1az3 HlpExAwZY2Oxh9DjDDP9DnhXRLXw14Y07w5Y/wCp0+xitof92NAo/QVwvx5/ZY+FP7RGq+D9f8f6 MsmoeB/FFtrmg3sajzIp4jnYSQcxscZX1VT1Ar0eNCiBDjj0FedgcBHBVajjtK1j77jLjivxflmA pV1+9oxmpvpKT5UpL1UbvzuV73RdI1Ka2uNR0yCeSzm820eaIMYZNpXehP3W2swyOcMR3qyFCjAF LRXpHwDbYUUUUCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q== ------=_NextPart_01D73C45.D2921D00 Content-Location: file:///C:/0E85C06C/20-CURVASROCFINAL_archivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="utf-8"





www.concienciadigital.org

                        =                                      =                                      =                    ISSN: 2600-5859<= /p>

                        =                                      =                    Vol. 4, N°2, p. 326-344, abril-junio, 20 21

 

Mundo digi= tal                        =                                      =                         =                                      =                        Página 306

 

------=_NextPart_01D73C45.D2921D00 Content-Location: file:///C:/0E85C06C/20-CURVASROCFINAL_archivos/image013.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCAF/BFEDASIA AhEBAxEB/8QAGgABAAMBAQEAAAAAAAAAAAAAAAQFBgMBAv/EABgBAQADAQAAAAAAAAAAAAAAAAAC AwQB/9oADAMBAAIQAxAAAAK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAfEVGaquMo3ag+e80LPO80LPDQs8NCzw0LPDQs8NCjSa7QdAFeWCh+DQs8NC49gA AAAAAAAAo+5agAAAAAAAAKuMXoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4quxn18RbT74TgAAAA AAABdyY0nPpDkgK6q6/JIkWXpWLMc+j4PtTRDSM13L5Gkhn+JpmZ9NKpbk9fFOXbNeGmZnQkTpVy S3K8sGc+DTMzck1U15pmZGmUF0dStLJnPg0zM2ZI48ohoTOGjZkaZmpxbgAAAAAAAAAAAAAAAAAA AAAAAAAAAcfqjlX7yL6B6eJP1zsRLERLERLERLERL8Ir7+O8AAu5MaTn0hyTz3wzUmNIL4ACivM0 fVzDtyPU30EqdDnLsquvKSTotnwKC9orwgQunc7d5wgzPoZ+TGkk6isq0sbCq+yz+qqcQocyIXHO aM1ZV88k0llWkmdL6EHv3FTElxDQxpNWS1YO9d34F9IiygAAAAAAAAAAAAAAAAAAAAAAAAAARHIE U0ZQ66XUWwpuPELPXg9eD14PXg9DqPIOVcHRc5159Mh203cmNJo0hyQFDwu6Qvu+a6GhZ4aHN3sE 4XmZmlzW/EA+b6rvDPyY0kt+HfgUF5R3hU/U+oNMouxbqizKOTGknWr0VCS+kWUJkOYQIkuIaEGc nwJ59VeioS7752UXColkWJLiFxRX9AWUuq7naqlxC8lRZQAAAAAAAAAAAAAAAAAAAAAAAAAAo7Sj spC2oC878e2bTnBpzAAAAe9OQmzKZCWj9pbeq77qLfm7ykxpPAJAOHcVvlmKxZjn0CFGthUSJ489 Cv6TA59BWTewRpIrfLMVlh9iv6TA59BW+WYrJncRONiAK2RKDn0Ff8WYrJMoRONiEWUKxZisWY49 gAAAAAAAAAAAAAAAAAAAAAAAAAAq6/ryvyhLgF7249s2nODTmAJUqMqtaOdq1oKtYw+x5CXHfg40 X1V2lGn4+znQdAKPkaFnhoWeGhZ4aFnhoWeGhUHcuEGWfYAABnzQM8NCz1oTQAAAAAAAAAAGf8NC zw0KFNACHVGhZ4aFQX4AAAAAAAAAAAAUfI0LPDQq2yAAAAAAHPpERphpzAAXvbj2zac4NOYCysq2 yo0BGYD5+jlHHvqK6jwTh7f5+zrssRVeABn+PbiAAAAAAPr5FrY5meW4AGa0uaPALinuCcAAAAAA AAAADNee+AFxOgzgCFTXNMAfWkzekAAAAAAAAAAAAM/x7cQCytKu0AAAAAAFfYVkoVwvzgAXvbj2 zac4NOYCysq2yo0BGYACluq6VdYL6EiP7xo3nufWABn+PbiAC9KJphmWmGZabwzS9qyMAC2sM3oD oBmtKMy0wzNxOAAAAAAAAAAAGa80wzLTCDOACFTXNMAfWkzekAAAAAAAAAAAAM/x7cQCytKu0AAA AAAFVa1Uq4AvoAAve3Htm05wacwFlZVtlRoCMwAEKbF7GlGjMBoOnHtm1A6Bn+PbiAL2ivSSAAB5 6KGPe0QAsq3oaICPIzReqEX3TO3BOAAIpK50scvVEL1RC9UQvVEL1RC9k5vSAEdReF8oRovuFMOC iFnWAB9XdEL1RC975vQnX4+4wUQvVEL1RC9UQvfaEaLpme5foU0AAz/HtxALK0q7QAAAAAAVdpWy hWi/OABe9uPbNpzg05gLKyrbKjQEZgAIsqF2NQNGYC+7c+mbUDoGf49uIAvaK9JIAAAGf0FQQAAX 0ivsBmtLmjwC4p7gnAEE51YAAAAAAfWkzekAM1574AXEyHMM2AAAABoc9oTrGkxiiAAAAAAsq0aZ FlAGf49uIBZWlXaAAAAAACDOj9jRjRmAAve3Htm05wacwFlZVtlRoCMwAFZZ0Mq+IvofXzK4uhn1 gAZ/j24gC9or0kgAAAV1jBKcAFja09wM1pc0eAXFPcE4HPP2NYAD6E+d3IHs4QU4UMebCAPrSZvS AGa898ALidBnHN0FfU3NMAfWgz+kOboOf36Hx9iMkiMkiMkiN5KEOFcjMpUUAmXWd0QBn+PbiAWV pV2gAAAAAA89OZzyTG0ZQ6Ave3Htm05wacwFlZVdjRf9vlGf0+R9PiI59U/1830BKK1rb+uz6FV4 AGf49uIAvaK9JIAAAEKbAKgAE64qLcZrS5o8AuKe4Jx4UPD3wAWVbfncAAFNCnQQD60mb0gBmvPf AC4nQZwBCprmmAPrSZvSAAAB5CJyoFuqBbqgW6oHaqkRwD3S5nSnoM/x7cQCytKu0AAAAAAAK+r0 NBbR8iysC97ce2bTnBpzAAAAAACfzvec8z6HsWU6DoGf49uIAvaK9JIAAAFZZ0hEABZ2cKaM1pc0 eAXFPcE74+/kzYAGlzWlPQAAVECfAAPrSZvSAGa898ALidBnAEKmuaYA+tJm9IAAPn6pzlGAAAAA ABpc1pT0Gf49uIBZWlXaAAAAAAACqtefY599fOjMBed4c3Ppza6W1Uq6FKuhSroUq6FKuveKTrdd edgziu1A7U067aZDmRmHJAZ/j24gC9or0kgAAA+M9YVoAJJc9AZrS5o8AuKe4JwM58TIYAv6CeW4 AAKiBPgAH1pM3pADNee+AFxOgzgCFTXNMAfWkzekAAOeeuqQAe+Wpw62YrFmKxZikiW1SANLmtKe gz/HtxALK0q7QAAAAAAAAhVGkrLKa4W1d7rPfcJ6FSITu1ILtSC7Ugu1ILtSC7UfMu4FenD3wnC4 mQ5mfSHJAZ/j24gC9ohpmZ9NKzfpo2dGhrqzwAAXNfegDNaXNHgFxT3BOBCptNQkcAFrY5nqaFTf RbqgIHbiAfWkzekAM1574AXE6DOAIdLf0AAvqH7NGru5KRpJDpb+gAFxT/Zo1b0JyCJyCPmpmwgB pc1pT0Gf49uIBZWlXaAAAAAAAAAFdW6OPOqjSY1tIdAAAAAAAAXEyHMz6Q5IDP8AHtxAAAAAAAH3 93J72ABmtLmjwC4p7gnAcewznxfUpzAAAAAB9aTN6QAzXnvgBcToM4A8z2iilG+vkAA+tJm9IKK9 5GedeQAAAAAA0ua0p6DP8e3EAsrSrtAAAAAAAAAABw7nK6PcpQovm/d5QL8UC/GfaB1n2gGeaE5n mhGdaIQ5hXaDoFHy0IzzQjPNCM80IzzQjPNCM99X4ppc4eegAAz+gGeaEZ60mgAB8fYrYl6M80Iz zQjPNCM38zYQB9aTO6IAz/mhGeaEQpoAAcK25Gf80IzzQigvwA+K60FB86EZ5oRnmhGeaEZ5oRnm hGe0HoAo+WhGeaEVtkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiEtUC3VAt1QLdUC34Vk UfIASb2tsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABX2FeV IAAAAAHZdn39AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhT RRrwUa8FGvBRrwUa8FPJnjz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/2gAMAwEAAgADAAAAIfPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPA0ggQQQQQWPPMMMNPPPPPP PPPNPPPPPPPPPOPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPBPvPPPPPPPPPfPOFPOPNNPONNPOGON ONPNPPOEOPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPBXPPffffefPPPfLPPPNNKLKDKMPLKHABAHENP LAMAHNPPPPPPPPPPPPPPPPPPPPPPPPPPIv8AwHHHHHHRlff3zyBjAjjCCjyixDSjjTgDwDDTAByD RTzzzzzzzzzzzzzzzzzzzzzzzzzw/wA8r88888MPjEv88888MMscc888c8cs8sc8s888cs888888 88888888888888888888888f88r888++78/4988wwwwww408884w088888888888ww884w088888 8888888ww8888888H888r88888t68q8888888888888888o8888888888888U888888888888888 8888888888Y888r888888j8/888884884888U888s8888888888888c888888888888888888888 8888D888r888888Q88C8888o888sU840sMY8848MMMMM88MMwMc8MMc4MMMMM4088888888888A8 88r888888A88K8888o8888s88888o8488888888888A888888o888888888888888888Q888r888 888m8/c8888o8888o88888o8084Ec8888888EMc8sMM8MMMcs0888888888888t388r88pxx3+85 88888o8888s88c88o8084888888888U888888884wwwc8I88888888888y88r88888888DY8888o 8888s88U88oo88s888U88888U888888s8888888o88888888888A88gwwwww65qRW8888o8888k8 4888o8U8s888U88888U888888s88s88U8o888888888888R88999999/d8W8888s8wwc88g888o8 w88owwU88888U808sw8c84088c8o8888888888888n/888888888W888888888808888o8sU8888 888888U840888o0888888o888888888888885TXOOAAhBjG88MMMMMMcsc88sMc8888MMMU888MM 8888MMc88sMMMMMM8MM8888888888888888888888888888888888888888wwwwo88U888888888 8888888888888888888888888888888888888888888888888888o88888888888888888888888 88888888888888888888888888888888888888888888888MMMMccc8888888888888888888888 8888888888888888888888888888888888888888888888888888888888888888888888888888 /9oADAMBAAIAAwAAABDzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzz+/bPPPPPOfzzjTzTzzzzzzzzzjzzzzzzzzzDzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz bx777777774DzyRzxjjzTDDDTDSDzDDDDzjDBTjDzTzzzzzzzzzzzzzzzzzzzzzzzzzzx/37zzzz zjb74DygjzzCSxADwDSwwDDBATyQhwxSjyBTzzzzzzzzzzzzzzzzzzzzzzzzzxz/AOdNNNNN0O99 A88EU8EwsAA8AU40AsQoU8UswwUEYoU88888888888888888888888888s++3+++++N/zOa88888 88Mcss888ss88sc8c8cscs88888888888888888888888888888e++D++x882++Nt88888888408 888888888888888888888888888888888888888888885+++D++B88V0++888AAAAAAAAE088AU8 8888888888oA88AA8888888888888AAU888888h+++D++B888I+u888AAAMMMAAA888Mc8888888 8888sM88AA8888888888888AAU8888885+++D++B8887++V88AAA8888oAE08w08884wwwwwc84w 8wAAwwkowwwwww888AAU888888u+++D++B888v8AvtfPAAAPPPPKAAPPAFPPEAAAAAAPPKAPAAAA AFKAAAAAAFPPAAFPPPPPPK/vvg/vgfPPH/ufPPAAAPPPPOAAPPAFPOAAJLDKAPPKALDAADDHLPPP POAAPPAAFPPPPPPLffvg/vkwQQ/PvPPPAAAPPPPOAAFPAFOAABPPPIAPPKAPPAAPPPPPOMMMIABP AAFPPPPPPPEfvg/vvvvvvvv7/PAAAPPPPPAAPPAFOAABPPPAAPPKAPPAAPPPKAAAAAAAFPAAFPPP PPPPPvvqfPPPPNrlngfPAAAPPPPIAFHPAFPAAEPPPAAPPKAPPAANPPIABPPPIAFPAAFPPPPPPPPG fjwwwwwwyPHgfPAAAPOMOIAEPPAFPJAEAMMAAPPKAPPAABMNCAFMMMCAFPAAFPPPPPPPPPEtvvvv vvvvvgfPAAAAAAAADHPPAFPLDAAAAAAPPKAPPHAAAPKCAAAAAAFPAAFPPPPPPPPPPHLegQTDDz7W PPPPPPPPPHPPPPPPPPPDPPPKANPPPPPPDHPPPDPPPPPPPPPPHPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPMMMMMAAPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPKAAAAAACHPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPLPHPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP/EADQRAAECAgYJAwMEAwAAAAAAAAIBAwAEEBESFTNRFCAh MUFQUnGBBbHwEzBhIiMyQnCAof/aAAgBAgEBPwD/ACyDZn/FIGRdXfUkJ6eXEou4uqLuLqi7i6ou 4uqLuLqi7i6oJLJKOXO2WDdX9O6GpNsNq7VhPsvYpd151Ky6urWu6BFBSpKNIa6kjSGupI0hrqSN Ia6kjSGupISYa6khFRdqUvYpd15yAKZIKcYbBGxQUonH1I7CbkiqKoqiqKqBIhWsVqhqeMdh7Uht wXEtCsPYpd15z6e3vcXtS5/Ne+sooW9Ick2j3JV2h+XJldu6Jd5Wjr4cYdxC7rzmWCw0g0niL3pO baArJLtjTmc405nOG5htxahWgwQxsluh5pWjUV5y0No0T86h4i96ZzGLx7ako/8AUCpd6UT7doLa cOcyqVvJqHiL3pnMYvHtqSRWXkTOgxtCo585k8ZNQ8Re9M5jF49tSX2Oj3pJKiVOcSi/vJqHiL3p nMYvHtqS6Vuj3pJayVecMFZdFfzqHiL3pnMYvHtqSIWna8qHTsApZc6bK2CFnSeIvemcRfrFs+VR UuUVLlANma1CkS7CMhVxon3ah+mnHnUg5WFheFJ4i9/sOui0NooccUyUlgxskorzlh36RoXCEWtK 0oeSy6SfmNPayWNPayWNPayWNPayWNPayWLwbyWC9QX+qQ44Ti1ksSkuprbLdExil351JzNn9s/F EzKI6todixd7uafPEXe7mnzxF3u5p88Rd7uafPEXe7mnzxF3u5p88Qnp58VSGpEA2ltomMUu/O5e dUP0ntSAcE0rFa/tTGKXfngkorWK1QE68PGuLwcySLwPJIvA8ki8S6YvEumLxLpi8S6YvFen/sGd s1LP/U7/xAA2EQABAgIFCQgBBAMAAAAAAAABAgMABBAREhVRBTEzQVBScYGhExQgITKx0fBhIiMw kUJwgP/aAAgBAwEBPwD/AGyt5tv1GqFZQZGaswcpJ1Ji8xu9YvMbvWLzG71i8xu9YvMbvWLzG71h tVtAVjtt+ZbZH6s+EPTzrnkDUPx/FL6JPAbam5oMioeowpRUbSs8Z4Es8f8AE/1HdXt0x3V7dMd1 e3THdXt0wZZ7dP8AUEEGo0y+iTwG2XFhtBWdUOOFxRUrOaJCXCEdoc5isRWIrEViKxQpCVipQrh7 J6FebfkekONKbVZUIl9EngNs5SdzNjjSzok8B7eIKKfMGG551Gc1j8xLzSHh5eRwiZYDyKteqGNG ngNszLnaOqVS16E8BS3JuuJC0jyjuD+HWO4P4dYclnWxWoUIWpCgpOeJd4PNhQgCoVbYeVYbUrAe Br0J4CmR0CefvSRXnidl+xXWnMaMnO2V2DmO2Zw1MK+6/A16E8BTI6BPP38E+i0yThQ2qwsKw2zP 6A8vA16E8BTI6BPP38EyK2lcKWzWgH8bYnR+weXv4GvQngKZHQJ5+/gmTUyrhS2KkAfjbEym00of jwNehPAUyOgTz9/BlByy1ZxoaRbWE47acRYWUnVS16E8BTIqHYJ88feLQxi0MYceQ2K1GJmYLy69 WqjJzNpZcOYbayi1ZcCxrpa9CeA/gZZU6qymGm0tICU6obXbSFDXtmZZ7Zsp16oIINRol1WmkkYR dr2I+8ou17EfeUXa9iPvKLtexH3lF2vYj7yi7XcR95QjJm+r+oaaQ2LKBE9NBCS2nOekSuhTw21P Slf7iOfzRKzhZFlQrEXk1genzF5NYHp8xeTWB6fMXk1genzF5NYHp8xeTWB6fMHKbepJh3KDi/JP kKJXQp4bbmZEL/U35HCFtqbNShV/FK6FPDbikJUKlCuFyDKswq4RdrepRi7Ebxi7Ebxi7U70Xane i7E73SLsG90i7BvdIaR2aAnD/k7/xABbEAABAgIDBg0PCQYFBQACAwABAgMEBQAGEQcSICExsRMW FzZBUVVhcXJ0gdEQFBUwNDVUc5GTlKGkstIiMkBCg5LBwuIjUlNiZbNDUGCj4SQzY4KiZHCAkPD/ 2gAIAQEAAT8A/wD7ULKHHTydS3gpfDbFLRt0tG3S0bdLRt0tG3S0bdLRt0tG3S0bdLRt0tG3S0bd AQR/rmOmcFLkBcZFMsA5NEWATwDZpG3SZNDEphkPxStgpTep8qsfqpFXTpi4bISBYZH/AJCXD+FI ivVYYgkdkC2n91ttKfXZb66OVgnDp+XNY07wfUB5LaKmcetVqo6JUdsuqP407Ix3hkR51XTTsjHe GRHnVdNOyMd4ZEedV007Ix3hkR51XTTsjHeGRHnVdNOyMd4ZEedV007Ix3hkR51XTTsjHeGRHnVd NOyMd4ZEedV007Ix3hkR51XTTsjHeGRHnVdNOyMd4ZEedV00qM4t2p8Et1alrOiWqUbSf2iqDZwS QASTYBlpWK6WxBvKhpO2iJcSbFPuW6GD/KBjVw5OGkZXSsMaVX8zebB2GbG7MduK9sNNMc83amPp S+mmmOebtTH0pfTTTHPN2pj6UvppVR52IqvLXn3VuurZBUtaipSjtknL9ErLPJxDVnmTTM2jm2kR CwlCIhYSkW5AAcVLm01mUdWKIai5hFPtiEUoIeeUsA36MdhOXGfL9DulTSYy+cwjcHHxUMhUPfKS y8pAJvjjsBpIp9OH6wytp2ax621xbSVIXErIUCsWgi3GP9ADJkoclJzW+UyW+Q49o8QP8FnGoHf2 Bz46Ta6DOJgVIhlJgmTsNY12b6j+FlHXXHnFOOuKccUbVKUSSTvk/Qqh6y5f9p/cVTZwbpdY1wjC JPCuXrj6b6IIyhGwnnx273D1Kt1EmFYIcRSnUwkKTYlxaSor30pxWjftFNSP+ueyfrpqR/1z2T9d NSP+ueyfrpJpd2JlENAaLougICL+9vb7fstNn0SbXM+yk1io7svoXXDpcvOtr69tOS2/FtKq1G0s zRyN7I9c37JavNAvLLVJNtt8f3fX9DrVUnTPHsRPZDrbQmtDvdBv7cZNtt8NukvuYGXzOFjRN9E6 3eQ7edbWX16oGy2/xZP9ATGZQkrg1RMY+lppOyo5TtAbJ3qVhr9HTNSoeAvoSEyWg/tFjfOxwDy/ Rah6y5f9p/cVTZwaxTBU0rFHxhNoW8oI4oxJ9QFJXBKmU2hIJNtr7qW7RsAnGfJRhluGYbYZQENN pCUJGQAYgMGaTWDksAuMjng20nJslR2ABsmk7ukzWPWpuXWQMPbiIsLihvnY5vKaRMfGRptiot98 222uuFWPno064w4FtOLbWMikKIPlFJZXWfStabyOW+0MrUQdESRtWnGOYilV63wVZGy2BoEckWrY UbbRtpOyPWOpWvXbNeUrz9Vp1xlwONLUhYyKQbCOelWq9zGVRbTUc+5EwBISsOEqU2NtJy4trJRp 1DzSHW1BSFpCkqGQg5DSaTOFk8vdjYxy8ZQNjGVHYAGyTSeXQpxM3VIhHlQMNb8lLJsWRtlWW3gs FHn3X137zq3FWWWrUSbOfq1Y1qynkjXuila9ds15SvPS5VroieRK99HUrhX7sa8uXSgpXFI+S6+R als7QGQnhxCkZMY2YulyMi3ohZNtriyqzg2urct1qvcrX7qaXV+/0Dyb8ysCU1rnMoiEusxrriLb VMvKK0K5jk4RjpIpyxPpS1HsWgLFi0HKhQyjqVquiLg4hyAk14pxBKXIpQvgk7SBkNm2cW9s0jJv MZgpRjI6IfvsoccJG3kydW5L/wB2bcVr89Lq/f6B5N+ZVKt66JRy1n3x1Jn31jPHr949ViKiIVd/ DvusqxY21lJ9VKq3QouGiW4OcvF+FWQkPr+e3vk/WG3bjzUBBFo/zewWCk/n8LIIAxEQb5asTbQP ylna3htnYpOZ3GT2NMRFuWgWhtsfNQNoD8dn6NUPWXL/ALT+4qmzgRbhZg33E5UNqUOYdSoLQdrt LgRaAVq8iFEeuzCrvP3J3P3kpWetIZRaZTsYsRVzn1WUl8BETOPZgoVF++8q9SPxO8BjpJahSaVw 6BEQrcbE2fLdfTfAneScQHrpG1Oq/HMltcrh2jZiUwgNqG/8mz10rTVp6rUzDCll2GdBUw7ZYVDZ B3x0Ugox+AjWYuGcKHmVBSCNvopKZg3NZVCx7WJL7YXZtHZHMbRSteu2a8pXnpUGTwE6nr8NMWNG ZTCqcCb9SbFBSRbakg5Caan1V9zPaHfipXGoUvgpS7MZUlTBYALjJWVJUm2wkE2kEZcvUqDEriam QBcNqkBTYO8FED1WUukTtcfPTL21nraDxWA4lOEYzzZOY7dEgqUEpBKibABs0kVzFUVDpfm8S6wV C0Q7SRfpH8xNoB3rKalUi8KmPnEfBTUqkXhUx84j4KQEI3L4CHg2lLLbDaW0lZtJAFgts2aVr12z XlK89LlWuiJ5Er30UrvPVSOrzjjK72KfOgskZUk5Vcwt57KEkkkm0nKaVFqTDzKETNpmguMqJ0Bi 2wKsNhUqzYtGIb2OiatSNKQkSaX2AWY4ZBPlIppcke40u9FR0UhYKFgWi1CQzMO2TfFDLYQLduwb OKl1fv8AQPJvzKpJYdqLnsuhn0X7L0U22tNpFqSoAi0Y8hpqfVX3M9od+KkyubyKJg1ogWVQkRYb xwOKWLd8KJxcFHW1MvLacFi0KKVDfFLk0SspmcKf+2C24BtE2g5h5KV+nSpPV1aWFXsRFK0FBBxp FnyiObFzjqVXqdG1kWpwL63g0GxT6k22naSNk5qJuVSUJAXGTAqsxkLQATwXtNSqReFTHziPgpV2 qkBVlUQqCdiHNHvQrRlJNl7bZZYBtml1fv8AQPJvzKpVvXRKOWs++Oo5UKrTzq3XJbataipR0dzG Tl+tTU+qvuZ7Q78VNT6q+5ntDvxUrtUaElUtM0ll+002QHmVKKgATYCCceUjL1KlRq46qEuecUVL S2WyTl+SopHqA/zebTWGkstdjYlViEDEBlUdgDfNJxN4mdzFyLilWqOJCBkQnYAwGGHYl1LTDS3X FZEISSTwAUh6h1hfSFdZBoHJoriQfJbbTU5n/wDDY86KanNYP4bHnRTU5rB/DY86KanNYP4bHnRT U5rB/DY86KanNYP4bHnRTU5rB/DY86KanNYP4bHnRTU5rB/DY86KanM//hsedFIioNYmMYg0OjZ0 N1J9RINIuWR0Db13BPsjbcbIB4DkOFUPWXL/ALT+4qmzgPtaNDutW2X6CnyiyiklCilQsUk2EbRp UeJTC1zlrijYlThby7KklI9ZGDFuKag33E/OQ2pQ4QOpcsh0OViiX1Y1NQxvd4lQFvkt8vVupMIX Vth4gX7cSkJO8UqtHqHk6lzhxS6mQoUbQhxxI4L4n8aVr12zXlK89LlWuiJ5Er30dSuOtCaeIPUu c6y4Xjue8aTl1T09mDqvnLiXCedRpc8l7UfW1kvJCkw7anwDsqFgHkJB5sGteu2a8pXnpcq10RPI le+il1l5RiJWx9QJcXwklI/D19SW3RJvK5bDwLENAqaYQEJK21lRG/YoU1VZ54JLvNr+OmqrPPBJ d5tfx0qbPoqsUmcjIxDLbiX1NgMggWAJOyTjx0ur9/oHk35lUq3rolHLWffHVmffWM8ev3jS5L3X NOI3nVS606oxcra+qltxXOSno6kml7UrlEJBMgBLTYBs2TZjPObTgXV+/wBA8m/MqlW9dEo5az74 oVBIKlEAAWkmlYbpkQIlyGkqUJaSSnrlab4qO2kHEBw2201Qa0bqeztfDTVBrRup7O18NI+uM+mk E5BRkfosO5YFo0FtNthBGMJBygdS5zrLheO57x/zbYpXasJnM1LDC7YKGJSiw4lq2VfgN7hwJXLY ibzFqChk2uOHKciRsk7wpIavQUhgw1DIBdUP2jqh8pZ39ob3bLKEBSSCLQcopMKoySZgl6BbbcP+ IyLxVu3ixHntpNbmUS1a5KooPp2GnrEq5lZD6qRkDFS+ILEWw4y6PqrTZzjbG/1ah6y5f9p/cVTZ wa6StUqrTGNXtjTq9Ga2r1WPFwG0c1G3FtOodbUUrQQpJGUEZDSrFY4asUsQ82tIikJAfZtxpVt2 bR2DgOIS42pChalQKTwGkVDLg4x6GdFjjLim1cINhpc/mzcqrQ1oyghmJQWFKOQEkFJ8oA5+rdVm TYhYKWJUC4pejrA2AAQLeG0+TqVHg1QNT5e2sELWgum3+YlQ9RFK167ZryleelyrXRE8iV76OpXH WhNPEHqXOdZcLx3PeNK1QSoCtMyYULBo6lp4qjfD1EUqZOG5LWWHiH1XrDgLTqv3QrZ4AbDQKCgC CCDjBGBWvXbNeUrz0uVa6InkSvfRS6vBLXCS+PSk3ra1NLO1fWEe6fL1JNc3TOJPCzBM3DYfRfXg h769NthFt+LcYpqR/wBc9k/XTUj/AK57J+ulVqvaWpUuB6665vnS7f6HeZQBZZadql1fv9A8m/Mq lW9dEo5az746sz76xnj1+8aXJe65pxG86qXWIJSoWXRyU/JbWtpZ4wBHunqVWnLU7kMNEpUC6lAQ 8nZSsDH5co3jgXV+/wBA8m/MqlW9dEo5az74pXyNcgqnxqmiUrdvWrRtKNh9Vo6lR6kyyaSdMymS FRBeUoIaCylKQDZabCCTaDTU+qvuZ7Q78VK21NkMrqtGRkHAaFENBJQvRnFXtq0g4iojIT1LnOsu F47nvH/NclK9z3sTJSw0uyKirW0WZUp+sryYuE4NzKVpbgn5mtI0R1WhtnaSMvlPu9Trlj+M394U 65Y/jN/eFOuWP4zf3hTrlj+M394U65Y/jN/eFOuWP4zf3hTrlj+M394U65Y/jN/eFOuWP4zf3hTr lj+M394UQ4hz5ikq4Db1SabFJjK4KawxYjodD7exaMad8HKDwUrRUiIkwXFwhVEQQxqtHy2xv7Y3 +pUPWXL/ALT+4qmzg12qwKwSy/hwBHQ9qmrcV+NlJO/sb/CaPMuw7y2Xm1NuoN6pCxYQdoijD70M 6l1h1xp1ORbaikjnFNMc83amPpS+mmmOebtTH0pfTTTHPN2pj6UvppVF56JqrL3n3VuurbtUtxRU pWM5SctLo1VnWotc8g0FTDlnXKUj5isl9wHZ3+HqSO6PNJXDoh4ppMcygWJK1FKwNq+x284pF3V4 txkpg5Y0w4RZfuOlyzfsAG/SMjIiYRa4qLdU68s2qUrKaVOqs9WGYocdQpMAyoF5zIFfyjfPqHNR KQhISkAACwADEBSteu2a8pXnpcq10RPIle+jqVx1oTTxB6lznWXC8dz3jSv9VXJxDpmcAgrjGE3r jYyuIy4tsj1jmoQQSCLCMopJ67zqSw6Ydl5t+HRiQ3EJvgkbQIINm9bZTVVnngku82v46aqs88El 3m1/HSTxjkwksFGvBKXH2EOKCRYASATZbsUrXrtmvKV56XKtdETyJXvopNpYxOJZEQESP2bybLdl J2CN8HHScSiLkkwcgoxBC0n5KrPkrTsKG9SrlcplV1KmWQh+FUbSy7bYk7aSMmamq5i7x+1/opqu f0P2v9FKq1i0zyxyN6162vHi1eaJf22JSbbbB+96qXV+/wBA8m/MqlW9dEo5az746sz76xnj1+8a XJe65pxG86qTmVMTuVPwERiS6nEoZUqGMEcBpNpRFySPcg4tspWn5qvqrTsKB2RSVTmYSSJ0eAiF NLOJSbLUrG0QcRom6nPQkAw0vUclpbXaf/umqrPPBJd5tfx0qPWuOrMuOEa1DN9bhBToKVC2+vrb bSdoUur9/oHk35lUq3rolHLWffFK2ytyc1ZjINkWvFIW2NtSTbZz2Wc9FJUhZQtJSpJsIIsIO1SQ 1xmtXmFw8Ipp1hRvg0+kqSk7JFhBHlpqqzzwSXebX8dJtdAm04lj8BEQ8Ell4AKLaFhQsIOK1RGx tdS5zrLheO57x/zU2WWmlb5v2YrDEPIVay0dCasyXoOXnNpwamNoaqlLkpyFsq5ySTno/wBzO8Q5 u1pUUqBSSCMhFIWfTaEI0CYxSAPq6ISnyHFSAukzmGKRFpZi0bNqbxXlGL1UlNf5PMr1t5SoR4/V ePySd5WTy2USoKSCMYNBbZQpCgQQCDlBpXmqyZREiPhEWQT6rFIGRpZ/A7Hk2qVD1ly/7T+4rDnV VJTPhbGQ9j1lgfbN6sc+zz20fuTw6l2w02dbTjxOMhZ8oIpqR/1z2T9dNSP+ueyfrpqR/wBc9k/X SSS0yeTw0BoujaAi90QJvb7GTktNmXbopIUkpUAQRYQaTi5xKJi4p+EUuAdUbSGwFN/d2OYgUiLl M0SoCHmEG4LTaXApHBkBo1cpnBXY7GwKEbaFLUfIUjPSV3LpdCrS5MIp2MUMehpGho4DjJPlFIaG ZhIdDEO0hppAsShCbABwdSbXM+yk1io7svoXXDpcvOtr69tOS2/FtKq1G0szRyN7I9c37JavNAvL LVJNtt8f3fX1JxLjNpREwGi6Fo6Ly/vb6937LRbTUj/rnsn66Vck3YCStS7rjR9DUpWiXl5babcl p29vqTmpcmnjinomHU1EKyvMG9UeHKDwkW0duStFdrM5WhFmRcOFHyhQpqR/1z2T9dNSP+ueyfrp K4LsdKoSC0TROt2UtX97ZfXosts2KTa5n2UmsVHdl9C64dLl51tfXtpyW34tpVWo2lmaORvZHrm/ ZLV5oF5ZapJttvj+76+pNpLL55DdbzCHS6kY0qyKQdsEYxSIuTQ6nLYabOto2nWQs+UFOampH/XP ZP101I/657J+ulVauaWZY7Bdddchbxdv9DvLLUpFllp/d9dK1VJ0zx7ET2Q620JrQ73Qb+3GTbbf DbpL7mBl8zhY0TfROt3kO3nW1l9eqBstv8WTqxNyrrmLef7NXuiLK7OtbbLTbZ8+lUqnGq7sUvr7 rrR0pFmg3l7Zb/MbcvUmcpgZvC9bx8Kl9vKL7Kk7YIxg8FIy5TL3VEwcwiGLcdjiQ4BmPrpqR/1z 2T9dNSP+ueyfrpVKqBqsuLPX3XXXAQP+zeXt7b/MbctK1VJ0zx7ET2Q620JrQ73Qb+3GTbbfDbpL 7mBl8zhY0TfROt3kO3nW1l9eqBstv8WTqT+osrnzyoopXCxavnOtWWL4yTiPDiNNSP8Arnsn66ak f9c9k/XTUj/rnsn66akf9c9k/XSrkm7ASVqXdcaPoalK0S8vLbTbktO3t/5rXCa9iKtRLyFXrzg0 JqzLfK2RwC082FVDWpLfEjOaP9zO8Q5u31crlHSJaGXFKiIK35TKjjSP5TscGTPSWzKFmsGiLhHQ tpXlB2iNg9SawDM0lkTAvWXjqCm3aOweY2GlSGlsVSg2XBYttTqVDaIdWD/rG6bMNEj4WXIPyWUa KvjKxDyAevCqhrTl3iRnNIjuZ3iHN9AqxWSIq9MQ4CpcK4bHmrco2xvj/ikNEtRkM3EMLDjTiQpK hsg9SXw/W8OpFllrzq7OM4pX4/6xrHGmY1ijoq21KnSlJ/lT8keoDCqhrTl3iRnNIjuZ3iHNg1Pq wxWUxgeiXGet9DsvEg2319t8WmpbBbExiPuppqWwW6MR9xNNS2C3RiPuJpqWwW6MR9xNNS2C3RiP uJpFXLXQgmEmSVK2EutXo8oJzUm0hmMkdCI2HKEnElxONCuA/hlwbnFYC0+ZNEL/AGblq4ck5FZS nny8Nu3TFh1kns3h6zzJpmbRzbSIhaUoRELCUi3IADippjnm7Ux9KX000xzzdqY+lL6aaY55u1Mf Sl9NNMc83amPpS+mmmOebtTH0pfTTTHPN2pj6Uvpppjnm7Ux9KX000xzzdqY+lL6aaY55u1MfSl9 NNMc83amPpS+mmmOebtTH0pfTRiuVYocgom0QfGEL962kFdPnkOQIluGik7JUi8V5U4vVSW3UZTE kIjmHoNRyqH7RA5xj9VIKZQcyY0aCimn29ktqBs4drtERWKeJiXQJzMAAsgARS9vhppjnm7Ux9KX 000xzzdqY+lL6aaY55u1MfSl9NLm0ZFR9XYh2MiXohwRakhTzhWQLxGK07GM+X6PEViniYl0CczA ALIAEUvb4aaY55u1MfSl9NNMc83amPpS+mmmOebtTH0pfTS5tGRUfV2IdjIl6IcEWpIU84VkC8Ri tOxjPlwLosXEwNWkvQkS9Du9cITfsrKDZYrFaKaY55u1MfSl9NNMc83amPpS+mmmOebtTH0pfTSA rBOlzGFQubzBSS8gEGJWQRfDf+lVkns3h6zzJpmbRzbSIhaUoRELCUi3IADippjnm7Ux9KX000xz zdqY+lL6aaY55u1MfSl9NLmMxj4+JmQjI6JiQhDZSHnVLvbSq2y04u3TqL6wksbFpNimmVqTw2Yv XZh1Q1py7xIzmkR3M7xDmwblOWbfY/npsYUXCMR0M5DxLKXWlixSFC0GlbKtOVemICL5cE9aWVnK NtJ3x6xz4DD7kNENvsqvXG1BSVbRBtBpJ5k1NpRDR6LAHUAkD6qshHMbRh1r12TXlS8/b4KPi5dE JiIOIcYdT9ZtVh4DtjepVi6Q3FLRBzu8ZdOJMSMSFH+YfV4cnBQEEWg2g4UR3U9xznwLlWteJ5ar 3EfR4jup7jnPgXKta8Ty1XuIwLqGtNHKkZlYEt76QnjkZx9KrXrsmvKl58C5J3VNeI3nV266FFBi qb7dthfcQ2PLfZknDqhrTl3iRnNIjuZ3iHNg3Kcs2+x/PTYw6xSdE7kz8IoDRCL5pR+qsZD+HATR aFNOKbWkpWklKgcoI2MC5hMr9mMli1Y0EPNjeOJXrs8uHWvXZNeVLz/Qaj12VLnG5XM3CqDUb1p5 R/7J2if3c3BQEEYsmDEd1Pcc58C5VrXieWq9xH0eI7qe45z4FyrWvE8tV7iMC6hrTRypGZWBLe+k J45GcfSq167JrypefAuSd1TXiN51duupPXsugGLfnvKXZwJs/Nh1Q1py7xIzmkR3M7xDmwblOWbf Y/npsYZyUr5ACArTEFIsbiAHxwnEfWD5cCpUd1jWuCUTYh1RZVv3wsHrsw6167Jrypef6Fc4rSY2 H7DRa7X2U2sLJ+egfV4Rm4MGI7qe45z4FyrWvE8tV7iPo8R3U9xznwLlWteJ5ar3EYF1DWmjlSMy sCW99ITxyM4+lVr12TXlS8+Bck7qmvEbzq7ddTcti5a3j+ShxXlKejDqhrTl3iRnNIjuZ3iHNg3K cs2+x/PTYw7cdLqUINCl0WBkUttR4bCMxwId5UNEtPo+c0sLHCDbRDiXG0uJNqVAEHeOFWvXZNeV Lz4Nz3WRL/tf7q8JyHZdt0RltduW+SDbSa1HkU1Qq2CRDOnI7DC8I5hiPOKVmqdH1cXohPXEEo2J fQmyzeUNg+o4MFGPQEczGQ6715lYWg74/CkomTM3lMLHs/MeQFWW/NOQjmNo/wAnuoa00cqRmVgS 3vpCeORnH0qteuya8qXnwLkndU14jedXbrqBPZyDFpsEPbZ/7HDqhrTl3iRnNIjuZ3iHNg3Kcs2+ x/PTY7RdLaDlWULxfs4hKvUR+ODIXS/V+XOk2lcM2Tw3owq167JrypefBue6yJf9r/dX2iIh2YuH ch4htLjLiSlaFC0EGlbauLq3NywLVQrtq2FnZG0d8dG3g3LJwUPRModUb1Y0Zm3YIxKHksPMcBVe KtpUUqmjYINhF4vopp5q1uq39xfRTTzVrdVv7i+imnmrW6rf3F9FJZNYKbwyn5fEB9pKygqAIsIA NmMbRHaIydSyXkiMmEMwR9VboCvJlo5X6rLar1U0STtpZcUPKE01Qar7p+zu/DTVBqvun7O78NNU Gq+6fs7vw01Qar7p+zu/DTVBqvun7O78NNUGq+6fs7vw01Qar7p+zu/DTVBqvun7O78NNUGq+6fs 7vw0br7Vp51DTcyvlrUEpGgOYycn1cBVeKtpUUqmjYINhF4vopp5q1uq39xfRTTzVrdVv7i+imnm rW6rf3F9FJZNYKbwyn5fEB9pKygqAIsIANmMbRFHXUNNLcWbEISVKNmQDLTVBqvun7O78NNUGq+6 fs7vw0r1WuSzmr6YWXxujPB9K73QlpxAG02qAGzgQLiGY+HdWbEIdSpR2gCLaaoNV90/Z3fhpqg1 X3T9nd+GmqDVfdP2d34aaoNV90/Z3fhpCxLUXCsxTC79p5AcQqwi1JFoNhx5D1JjMIWVQS42Nd0K Hbsv13pVZaQBiAJykU1Qar7p+zu/DTVBqvun7O78NNUGq+6fs7vw01Qar7p+zu/DTVBqvun7O78N NUGq+6fs7vw01Qar7p+zu/DTVBqvun7O78NNUGq+6fs7vw0arxVt0C9mzQt/eQpOcUhZ1K41QTCz GFeUfqoeST5Lbe0Vr12TXlS8+Bck7qmvEbzq7ddQ7+wnJ/zHDqhrTl3iRnNIjuZ3iHNg3Kcs2+x/ PTYwzS6EBpPit5bfvDBqmu/qtLTZZ/06R5MWFWvXZNeVLz4Nz3WRL/tf7q+013konNW3koQDEQ4L zJsx2jKOcW89mDJJiqUTuDj0k/sXQpVmynIoc4JFEqStIUkgpItBGyOrEd1Pcc58C5VrXieWq9xG FWOu8skBUwCqKjR/gNnEnjK2ODGd6k3rtPJupSVRaodg5GYc3gs3zlPOaEkm09rlvfSE8cjOMCI7 qe45z4FyrWvE8tV7iKTLvZF+JX7p7ZVvWxKeRM+4OpdC1kTD7L+6jtkqrXOpMpPWsc4Wh/hOm/Qe Y5OaylW7oUBN1ohY5KYKLOJNp/ZrO8dg7x8pwq167JrypefAuSd1TXiN51dtOSl1FAE1gFWYyyRb wH/nDqhrTl3iRnNIjuZ3iHNg3Kcs2+x/PTY7RdBIFUIkE5VtgfeGDVVIRVaWAYrYdB8otwq167Jr ypefBue6yJf9r/dX2qssuEqrJHwaRYhDpKBtJV8pPqIwalxxmFU5e6o2rQ3oSuFJvcwB5+rEd1Pc c58C5VrXieWq9xGDXWvhhluSuTOjRRal+JSfmnZSk7e2djYx5CSpRJJJOMk7PbZb30hPHIzjAiO6 nuOc+Bcq1rxPLVe4iky72RfiV+6e2Vb1sSnkTPuDqXQtZEw+y/uo7dUKujmityaZulSVWJhnlnGD +4o5jzbVmBWvXZNeVLz4FyTuqa8RvOrtppdUa+VLHR/5Un/5I/HDqhrTl3iRnNIjuZ3iHNg3Kcs2 +x/PTY7RdMf0OrbTYyuxCQRvAE/hgyZkw0jgGDlbh20G3eSBhVr12TXlS8+Dc91kS/7X+6vtV1OD DNYIWKSLA+xYd9SSfwIwblUVokkjYUm0svhY3gpI/FJ6sR3U9xznwLlWteJ5ar3EYFf619iIbsbB OWRr6flrScbSDmJ2NrLtdvlvfSE8cjOMCI7qe45z4FyrWvE8tV7iKTLvZF+JX7p7ZVvWxKeRM+4O pdC1kTD7L+6jtwJBtBsIpUesBn0hSXl2xcMQ29tq/dVzj1g4Fa9dk15UvPgXJO6prxG86u3XTmNE kEM8BjbiBbwFJ/GzDqhrTl3iRnNIjuZ3iHNg3Kcs2+x/PTY7RdRjQqJl8Ck40JU6ocOIZlYEDDGM mENDDK86lvykD8aABIAAAAyAYVa9dk15UvPg3PdZEv8Atf7q+1XWWL6BlsRZ8x1aLeMAfy4NyZ69 mEyYt+e0hdnFJH5urEd1Pcc58C5VrXieWq9xHVm0xZk8qiY98/s2UW2fvHIBzmwUj45+ZzB+NiVX zzyypR/AbwyYMHBxMdEoh4VlbzqzYlCBaaS25XGPISuYxrcPbj0NpN+rnNoA5raIuVScD9pGxyuK pA/KaalUi8KmPnEfBTUqkXhUx84j4KalUi8KmPnEfBSuUihauztMFCOPLbLKXLXSCq0k7QG1gS3v pCeORnGBEd1Pcc58C5VrXieWq9xFFJS4gpWkKSoWEEWgimlyR7jS70VHRTS5I9xpd6KjopdFlEsg aspdhJdCQ7vXCE37LCUKssVitAwJelK5jCoWkKSXkAgi0EXwppcke40u9FR0U0uSPcaXeio6KaXJ HuNLvRUdFNLkj3Gl3oqOijLKGW0NNIShtCQlKUiwJAyADYHUmMvhZrBLgo1rRYdyy/RfFNthBGME HKBTU+qvuZ7Q78VNT6q+5ntDvxU1Pqr7me0O/FTU+qvuZ7Q78VNT6q+5ntDvxU1Pqr7me0O/FTU+ qvuZ7Q78VDc9qwQQJaU74fc+Kj1zSrrqbENRDJ20PEn/AOraVmufRUlYXGQTpi4NGNYKbFtjbIGU b48mDc2mJg60phiqxuLbLZGxfAXyT6iOfArXrsmvKl58C5J3VNeI3nV26u0L13VKPSB8ptAdG9ek E+oHDqhrTl3iRnNIjuZ3iHNg3Kcs2+x/PTYw1HFStMzE2rFFxKFWtBWhtkYxepxA8+XnwKhQPXta odRFqGEqdVzCwesjDrXrsmvKl58G57rIl/2v91farqibaswyrLSIxIt2gUL/AOMG5Wqys8SkmwKg 1Yts36P+erEd1Pcc58C5VrXieWq9xHVuqTcjrOUNqxEaO6B5Ej3j5MGEhHo2MZhYdBW66sIQkbJN Ks1ZhauS8NNhK4pYBffsxqO0NoDYGFdQ12I5KjOrAlvfSE8cjOMCI7qe45z4FyrWvE8tV7iMC6hr TRypGZWBLe+kJ45GcfQSARYRaDSvFX0yCenQE3sJEguMjYT+8nmPqIwJDEmErDLn7fmRLZPBfC31 YFa9dk15UvPgXJO6prxG86u3RUOiKhnYdz5jqFIVwEWUeZXDvuMuCxbailQ2iDYcKqGtOXeJGc0i O5neIc2Dcpyzb7H8+HbSvNYUyiVKhGF/9bFJISAcaE7KvwH/ABg3NZX1vKXpitNiopdiOIm0es2+ QYda9dk15UvPg3PdZEv+1/ur7VdRUBVRsE5YpAH3VYNy5JNa3CBkhVk/eT1Yjup7jnPgXKta8Ty1 XuI6tcI8zGtkxfttSl0tJ4E/J/C3nwblslStyJnLyLbw6CxbsGz5R8hA5zh3UNdiOSozqwJb30hP HIzjAiO6nuOc+Bcq1rxPLVe4jAuoa00cqRmVgS3vpCeORnH0K6yhJl8tXZ8oOrAO8QLcwwEKKFpU nKkgiiSFJCgbQRaD1a167JrypefAuSd1TXiN51dvrxAdYVqir0WIfseT/wC2X1hWFVDWnLvEjOaR HczvEObBuZRkLBmadcxLLN9oN7oiwm2y/tst4aJm8tWbEx8Ko7QeSfxp2QgvDGPODpp2QgvDGPOD pp2QgvDGPODpp2QgvDGPODpo7N5awm+emEKgbanUj8aTu6JL4Jtbctsi4jIFWENpO2Ts83lpGRsR MItyKinVOuuG1Sj/AP7EMCVS92azSHgWQb91YBNnzRsnmFppCQzMFCNQrKb1ppAQlO8MOteuya8q XnwbnusiX/a/3V9qurOAVeg2tlUWFeRCunBuUtk1hjHMdiYQpyba09HViO6nuOc+Bcq1rxPLVe4j qPOBhlx1XzUJKjwAUcWp11bizapRKidsnBqfBCX1TlrQFhU0HVcK/lfjZh3VEgVphyBlg0E/fXgS 3vpCeORnGBEd1Pcc58C5VrXieWq9xGBdQ1po5UjMrAlvfSE8cjOO0OOIZbU44tKEJFqlKNgA3zSb 3S5RAqU3BJdjnBitQbxFvGOXmBFHrq01Uu1iBgkJ2lhSj5QoU1VZ54JLvNr+OmqrPPBJd5tfx01V Z54JLvNr+OmqrPPBJd5tfx01VZ54JLvNr+OmqrPPBJd5tfx01VZ54JLvNr+OlYK3zCsjDLMazDIS yoqSWUqBJIsx2qODDdzM8RObq1r12TXlS8+Bck7qmvEbzq7fdOlhegIWYoTjYUW1kfuqyHmI/wDr CqhrTl3iRnNIjuZ3iHN9Buf1cVLYIzGJRZExKRoaTlQ30nL5N+lmWjbqHFuJSbS2q9VvGwHMRhVr 12TXlS8+Dc91kS/7X+6vtV1qJF9K4UHGA44ofdA/HBuSw9ippEEZA2gH7xP4dWI7qe45z4FyrWvE 8tV7iOpOFFEkj1JyiGcI+6cKFaDEIyyBYG0BNnALMO6rrohuRJ99eBLe+kJ45GcYER3U9xznwLlW teJ5ar3EYF1DWmjlSMysCW99ITxyM4w42Oh5dAuxkU4G2Wk3ylHNw7FK01wjaxvlFqmYFJ/Zw4OX fVtn1D19vhu5meInN1a167JrypefAuSd1TXiN51dvmsC3M5XEwTvzXmym2zIdg8xsNIhhyFiXWHk 3rjSyhQ2iDYcGqGtOXeJGc0iO5neIc30CpVTVRTiJnMmimHSb5llQxuHYUR+7tbfBlxZKOOIabU4 tQShIJUTsAbNKmR5mcBGxhtsdjHFJt2E2CweSym3g1r12TXlS8+Dc91kS/7X+6vtV0WPEbW55tJt TCtpZFm384+tRHNg3MYMw9VS+RjiX1LB/lFic4PViO6nuOc+Bcq1rxPLVe4jqTFvRpZFtWW37K02 cIOE04l1pDifmrSFDgOHdV10Q3Ik++vAlvfSE8cjOMCI7qe45z4FyrWvE8tV7iMC6hrTRypGZWBL e+kJ45GcYd0asKo+bGVsL/6WEVYuw4lubPkycNv0CG7mZ4ic3VrXrsmvKl58C5J3VNeI3nV2/FS6 PJTDTJuatJ/ZRNiHLNhYGLyjMcGpjgcqlLlDYbKfISPwpEdyu8Q5u3Syr01m5T1pBOKQf8RQvUDn OKlXbn8JLlIiZgpMVEjGEWfs0Hg2Tw+SgpbkpdDrAmDgOxUOv/qIgftLPqN/85OC2lzTWwvlCswp s4Na9dk15UvPg3PdZEv+1/ur7TMo1qWy2IjHj+zYbKzv2bHPkpFRLkZFvRLxtdeWXFnbJNpwACTY BaTSRwHYyRwUDYAWWUpVZ+9Zj9dvViO6nuOc+Bcq1rxPLVe4jqzKFMDNIuEIsLDy2/IojBqfHiZV Vl7wNq0tBpfGR8k28NlvPh3VddENyJPvrwJb30hPHIzjAiO6nuOc+Bcq1rxPLVe4jAuoa00cqRmV gS3vpCeORnGFOY8SyTRkcbLWGVLSDsqsxDy2UWtTjilrUVLUSVE5STs4DLLsQ8hlltbjqzYlCBaS doCkuuXzaKaDkY+zB2jEg/LWOGzF66C5GbBbOwDs2Qv66akf9c9k/XTUj/rnsn66akf9c9k/XTUj /rnsn66VsqXpXhYZ/sh1zoyyizQbyywW2/OODDdzM8RObq1r12TXlS8+Bck7qmvEbzq7fixUm0sY m8sfgn/mOpsCrMaTsEcBpHQT8vjnoSITeutKvVD8RvHLgXNY9MRV1cKSL6FdIs2kq+UPXfeSikha Ck5CLDTU+q54I555fTTU+q54I555fTTU+q54I555fTTU+q54I555fTTU+q54I555fTTU+q54I555 fTTU+q54I555fTTU+q54I555fTTU+q54I555fTTU+q54I555fTTU+q54I555fTRqolXGiCJcFHbU 6s+q2ykNIZRCKCmJbCtqGRQaFvly0sG11CbKVorVC1eh70KS7GrH7Nm3J/MraGf1iKin46KdiYhw uOuqvlKOzS5prYXyhWYU2cGteuya8qXnwbnusiX/AGv91fabpVZEurTJIVwFKCFxJCsVoyI5sp37 NrBqPKTNq0wqVJtZYOjubVicg5zZgRHdT3HOfAuVa14nlqvcR1bo0tMDWtx8CxuLQl1O1bkUPKLe fBuaVgTATBcoiF3rMUq+aJOJLmSz/wBhZzgbeHdV10Q3Ik++vAlvfSE8cjOMCI7qe45z4FyrWvE8 tV7iMC6hrTRypGZWBALS3MYZajYlLqSTtC0YV0d4tVNiUg/91xtBx7F8D+GDcxkjLUtXN3EhT7qy 20SPmJGI2b5Nvkw7rHeyX+OVmwYbuZniJzdWteuya8qXnwLkndU14jedX0GvVV+ykL2Qg2/+tZT8 pIGN1G1wjY8m1gVWnyqvzZMQpKlsOC8eQMpTtjfHTt0go2HmEMiIhXUvNLFqVJOL/g71MdMdMdMd MdMdMdMdMdMdMdMfVmVYZVKwoRcay2tP+HfXy/ujHSd3SnXUqYk7RZGTR3QCrmTkHCbeCjrzkQ6p 15xTjizapSjaSd89S5prYXyhWYU2cGteuya8qXnwbnusiX/a/wB1eHERDEK0Xoh5tlsZVuKCQOc0 rPdIZbaXCSNWiOkWKiiLEp4oOU7+ThopSlrK1qKlKNpJNpJ28G5xIzLJEY15F7ERpCxaMYbHzRz4 zzjAiO6nuOc+Bcq1rxPLVe4jq3RpMZjV7rtpN8/BEuYspQfnDMebBBKSCCQRjBFKo3QmX2m4Cduh t9PyURSvmr4x2Dv5DnQtK0BaFBSSLQQbQcG6rrohuRJ99eBLe+kJ45GcYER3U9xznwLlWteJ5ar3 EYF0xu/qgtWP5D6FZx+ODU+ftz2RsulQMU0kNvp2QobPAcvl2sG6Y2V1RKhb8iIQo4uEfjg3M5k1 E1b6xCgHoRxVqdm9USoHykjmw7rHeyX+OVmwYbuZniJzdWteuya8qXnwLkndU14jedX0KvFTy2py by5u1BtVEMpHzdtQG1t+Xg6sBNY+WOFcFFusE5bxWI8IyHnpp8rLun/sN/DTT5WXdP8A2G/hpp8r Lun/ALDfw00+Vl3T/wBhv4aafKy7p/7Dfw00+Vl3T/2G/hpp8rLun/sN/DTT5WXdP/Yb+Gmnysu6 f+w38NNPlZd0/wDYb+Gmnysu6f8AsN/DTT5WXdP/AGG/ho5XasTnzpmvJZ8ltCcwpEzyaxgIiJjF OJOVJdN75MmDc01sL5QrMKbODWvXZNeVLz4QJSQQSCMYIp1y/wDxnPvGiI2LbBvIp5NuWxwinZGO 8NiPOq6aCdTUCwTOMAH/AJ19NOzc23TjfSF9NH4l+JXfvvuOq23FlR9eFU6rqqwztDbiT1mxYuIV vbCeE5rdqiUpQkJSAABYANjAiO6nuOc+Bcq1rxPLVe4jqqQlxBQtIUlQsIOQilb6vLq9O3GUpPWj tq4dR2U/u8IyeTbwpbWCbyjFAx7zKRjvAbU/dNo9VGrplYUJsUYVw7a2cfqIpqqzzwSXebX8dNVW eeCS7za/jpqqzzwSXebX8dKwVgi6xx6IyMbZQ4hoNAMpIFgJOyTj+UcCW99ITxyM4wIjup7jnPgX Kta8Ty1XuIwK6wpjKnzNsC0pa0Qf+pCvwwZVNo2TRqYuAfLToxHZChtEbIpLbqkMttKJnBONuZCu HsUk79hII8po3dFq0uy+jloxW/KYX+ANG6+1aedQ03Mr5a1BKRoDmMnJ9XqVsgDMaqzGGQLV6Ffp G2Um+A9VmDLZlFymNRGQTymnkZCMhG0RsikBdXb0ECYS5eiAY1Q6gQo8ByeU01VJH4JMfNo+Omqp I/BJj5tHx01VJH4JMfNo+OmqpI/BJj5tHx01VJH4JMfNo+Old64S+ssHCswbMS2plwqUXkpAIIsx WKODDdzM8RObq1r12TXlS8+Bck7qmvEbzq+h1qqEH1Lj5OkJdPynIcYgrbKdo71HG1suKbcQpC0m xSVCwg7RH0W5prYXyhWYU2cGteuya8qXn+gyuWRc4mDUFBtFbzh5kjZJOwBSr0khqvSpuCYF8v5z rllhcXsnoG1gxHdT3HOfAuVa14nlqvcRgVjkMPWKVLhHrEuD5TLtmNCtvg2CKTGXRUqjnYOMaLbz ZsIOzvjbB2+3S3vpCeORnGBEd1Pcc58C5VrXieWq9xGA40h1pbbiQpC0lKknZByik9lLsknMTAOg /s1fIUfrIPzT5MOW99ITxyM46tc6vrkE9dShBEI+S4wbMVhyp5ji4LPoEN3MzxE5urWvXZNeVLz4 FyTuqa8RvOr6HsZaT2qsunzZU+3oURZYl9vErn2xw+qk6qVNpOVLDJioYY9FZFtg305Rm36bP0O5 prYXyhWYU2cGteuya8qXn+gSKrUyrA+EQjJDQNi31ixCOfZO8MdKuVZgauQehQyb95YGivqHyln8 BvYUR3U9xznwLlWteJ5ar3EYNZ6qQdZYWxYDUWgfsogDGN47YpN5LHSOLMPHMFCvqrGNCxtpOz22 W99ITxyM4wIjup7jnPgXKta8Ty1XuIwa4VUbrHAhTNiI9kHQlnIofune2to89IqFfgopyGiWlNPN m9WhQsIOFLe+kJ45GcdWeyKErBLVQkWCPrNuD5zatsdFJ5IY6r8eqFjW7LbS24n5rg2wfw2O3w3c zPETm6ta9dk15UvPgXJO6prxG86vouxSZ1Xk83KlRUGgun/FQL1XlGXntpG3LWlAqgJitO0h9Fvr FmakTc6rAwf2bTEQP/G6B71lHapz5k2KlUQeKm+zUXVydostlMbj2mFHMKdgJzuRH+jL6KdgJzuR H+jL6KdgJzuRH+jL6KdgJzuRH+jL6KdhppubGeYV0U7DTTc2M8wrop2Gmm5sZ5hXRTsNNNzYzzCu ii5XMGzYuAik27bKh+FOx0d4HEeaV0U7HR3gcR5pXRTsdHeBxHmldFDL40AkwkQAMZJbV0U63f8A 4Ln3TS5uhSKtLStJSeuFYiLNgUIwaySKbxFZpk6zKY5xpcQtSVoh1lKhblBAx00uTzcWY+ir6KaX J5uLMfRV9FNLk83FmPoq+imlyebizH0VfRTS5PNxZj6Kvoppcnm4sx9FX0U0uTzcWY+ir6KaXJ5u LMfRV9FNLk83FmPoq+imlyebizH0VfRTS5PNxZj6KvooKtz23vLMfRV9FGamVjfNiJTEDjgI94ik Hcyn8QQYgw0KnZv3L4+RNo9dJVcxlMEpLkc65GuDHen5CPIMZ8tGGWoZlLLDSGmkixKEJAAG8Bhx FXZ4qJdIk0wIKyQRCr2+CmlyebizH0VfRTS5PNxZj6Kvoppcnm4sx9FX0UubQcVAVdiGoyGeh3DF qUEvNlBIvEY7DsYj5MKOl0JMoZUNGMIeZVlSsW842jv0m1yxlxSnJRGaFbjDMRaU8yhjA4QaRdQ6 xwZNsuU6nYUyoLt5gbfVTS3PQbOwsxxf/ir6KaXJ5uLMfRV9FNLk83FmPoq+imlyebizH0VfRTS5 PNxZj6Kvoppcnm4sx9FX0UioOKgXdCi4Z6Hcsvrx1BQqzbsOBLe+kJ45GcYERV2eKiXSJNMCCskE Qq9vgppcnm4sx9FX0U0uTzcWY+ir6KaXJ5uLMfRV9FLm0HFQFXYhqMhnodwxalBLzZQSLxGOw7GI +TCn1VpbWJmyLaKX0ixD7eJad7fG8aTO5nOoRRVBFqOa2L1QQuzfBxeQmjlWJ80u9VJo8n+WHUoe UCmlyebizH0VfRTS5PNxZj6Kvoppcnm4sx9FX0UgKvzpExhVrlEwSkPIJJhlgAXw3sCYS2DmsKqF jYdD7KvqqGQ7YOUHfFJvcscClOSiLSpBxhmIxEcChl5wOGkVUysUIohyUxCrNloBwf8AzbTS5PNx Zj6Kvoppcnm4sx9FX0U0uTzcWY+ir6KaXJ5uLMfRV9FNLk83FmPoq+imlyebizH0VfRTS5PNxZj6 Kvoppcnm4sx9FX0U0uTzcWY+ir6KaXJ5uLMfRV9FNLk83FmPoq+imlyebizH0VfRSHBEM0CCCEAE Hg6tZJFN4is0ydZlMc40uIWpK0Q6ylQtyggY6aXJ5uLMfRV9FNLk83FmPoq+imlyebizH0VfRS5j Lo+AiJkYyBiYYLQ2El5pSL6wqtstGP6OMdD1LKYqYqYqYqWDepYN6lg3qWDepZvUs3qWDapYNqlg 3qWDeokAZP8AMLpy0rrbYlQJRDoSobRtJzEYEia0asEtasBv4poY8mNQ/wD0NWSskHVyBLz6kqiF D9iwD8pZ294bZpHRr8wjXoyJWVvPKKlHf6MCokIYuuUvFlqW1F1R2r1JI9dn+vK7VljatQcK9BtM OKecKFB5KiAALcVhFNVWeeCS7za/jpqqzzwSXebX8dNVWeeCS7za/jpqqzzwSXebX8dNVWeeCS7z a/jpqqzzwSXebX8dNVWeeCS7za/jpqqzzwSXebX8dH7pVYnmylDkMyT9ZtnH/wDRNIqLiI2IXERT 7jzy/nLcUSTg3LJOpDUVOHU2aINBZt2QDao+UAcx/wBeXWO9kv8AHKzduq5IIisM1RCMgpaHynnb MSE9O0KQUIzAQbMJDICGWUBCE7w/15dY72S/xys3bavVZmFYorQ4Vu9ZSf2j6x8lHSd6kikcJV+X Jg4NJsyrcV85xW2f9e3QpJMp5AQTUthtGW26VLF+lNgs/mIpqfVo3L9oa+Kmp9Wjcv2hr4qan1aN y/aGvipqfVo3L9oa+Kmp9Wjcv2hr4qan1aNy/aGvipqfVo3L9oa+Kmp9Wjcv2hr4qan1aNy/aGvi oi57WdSrDLQnfL7f4KpC3Lp48Ro70IwnZtWVHyAWeuksuXyuEWHI992NUPqWaGjyA2ny0h4dmEYS xDtIaaQLEoQkAAcA/wD5tf/+AAMA/9k= ------=_NextPart_01D73C45.D2921D00 Content-Location: file:///C:/0E85C06C/20-CURVASROCFINAL_archivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01D73C45.D2921D00--