MIME-Version: 1.0 Content-Type: multipart/related; boundary="----=_NextPart_01D5E037.E5F59E00" Este documento es una página web de un solo archivo, también conocido como "archivo de almacenamiento web". Si está viendo este mensaje, su explorador o editor no admite archivos de almacenamiento web. Descargue un explorador que admita este tipo de archivos. ------=_NextPart_01D5E037.E5F59E00 Content-Location: file:///C:/6A8530EF/12EnfoquedeaprendizajebasadoentareaseneldesarrollodelahabilidaddelhablaCorregido.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="us-ascii"

 Enfoque de aprendizaje basado en tareas en el desarrollo de la habilidad del habla

 <= /o:p>

Task-based learning approach in the development of the speaking skill

 

= Marco Antonio Bravo Montenegro.[1], Byron Rafael Soria Guerrero.[2] & David Antonio Ureña Lara.[3]

=  

 

Recibido: 02-12-2019 / Revisado: 26-12-2019 / Aceptado: 06-01-2020 / Publicado: 07-02-2020

 

&nbs= p;            &= nbsp;           &nbs= p;               =          DOI: https://= doi.org/10.33262/concienciadigital.v3i1.1.1139

 

The central purpose of the present scientific arti= cle was to determine the influence of the Task-based Learning Approach helps to= strengthen the speaking students' ability from the Languages Center of the Universidad Nacional de Chimborazo level 1. To determine the effectiveness of this procedure, a pre-test and post-test based on the Cambridge KET exam – speaking part, were given to the students of First level at the Language Ce= nter of the Universidad Nacional de Chimborazo, classes 1K4 and 1E4 during the period Octo-ber 2018 - March 2019. A manual for= the teacher was designed which was used during the procedure in the classroom. = The interpretation of data was done before and after the work in the classroom.= The design of the manual for the teacher was made based on the three stages of = the process of a task: pre-task, task itself and post-task with the use of vari= ous types of tasks such as individual, group, open, closed, and information gap tasks, taking into consideration the challenge and incentive that each task implies in the increase of learners’ speaking skill. After the proced= ure has ended with the implementation of the proposal, the data analysis obtain= ed from the pre-test and post-test were analyzed through the use of the T-stud= ent test. The conclusion shows that effectively the Task-based Learn-ing Approach had a positive influence on the developm= ent of the students’ oral production who improved their ability to speak. Therefore, it is recommended that teachers apply this proposal with the Task-based Learning Approach to enhance the oral performance of students.&n= bsp;

Keywords: Speaking - motivation - challenge - treatment - pre-task

Res= umen

El propósito central del presente artículo científico fue= determinar la influencia del Enfoque de aprendizaje basado en tareas que ayuda a fortalecer la capacidad de los estudiantes de habla del Centro de Idiomas d= e la Universidad Nacional de Chimborazo nivel 1. Para determinar la efectividad = de este procedimiento, un Los exámenes previos y posteriores basados en= el examen Cambridge KET - parte oral, se dieron a los estudiantes de primer ni= vel en el Centro de Idiomas de la Universidad Nacional de Chimborazo, clases 1K= 4 y 1E4 durante el período de octubre de 2018 a marzo de 2019. A Se diseñó un manual para el maestro que se utilizó durant= e el procedimiento en el aula. La interpretación de los datos se realizó antes y después del trabajo en el aula. El dise&ntild= e;o del manual para el maestro se realizó en base a las tres etapas del proceso de una tarea: tarea previa, tarea propia y tarea posterior con el u= so de varios tipos de tareas como individual, grupal, abierta, cerrada, y tare= as de falta de información, teniendo en cuenta el desafío y el incentivo que cada tarea implica en el aumento de la habilidad de hablar de= los alumnos. Una vez que el procedimiento ha finalizado con la implementación de la propuesta, el análisis de datos obtenido= de la prueba previa y posterior se analizó mediante el uso de la prueba= T-student. La conclusión muestra que, efectivame= nte, el Enfoque de aprendizaje basado en tareas tuvo una influencia positiva en = el desarrollo de la producción oral de los estudiantes que mejoraron su capacidad de hablar. Por lo tanto, se recomienda que los maestros apliquen = esta propuesta con el enfoque de aprendizaje basado en tareas para mejorar el rendimiento oral de los estudiantes.

Palabras claves: Hablar – motivación – reto - tratamiento - pre-tar= ea – tarea

 

Introduction

Language is used by members of a social group or culture in spoken, manual, or written ways to express ideas, thoughts, and feelings for communication purposes Language as part of any culture is tran= smitted from generation to generation to convey meaning. That is the reason why teaching languages are emphasized in this globalized era. In the present, English is the language for global communication, science, business, fashio= n, and technology, among other fields. It has become a "lingua franca&quo= t; among language users that do not come from the same culture (Crystal, 2003). Being a global language, English is needed to learn by people from Ecuador; therefore, it is demanding to create proposals that help in the teaching and learning process. Students must acquire the B2 level at the end of the university studies, and they need instructors' support and commitment to accomplish this goal.

 

In this context, a proposal focused on a Task-based Learning Approach was developed to help in the improvement of speaking skil= ls. It was designed, taking into consideration the process of task with pre-task activities, task activities, and post-tasks activities with the ultimate go= al of the challenge, motivate, and scaffold students in the construction of fluency, accuracy, and good pronunciation of the target language.

 

In Ecuador, the English proficiency has been catalogued as low a deficient. Most of the people and institutions in Ecuad= or are well aware of this situation. Moreover, they have already identified several problems in the productive skills usage such as speaking and writing rather that the input skills. Ecuadorian people identified as the main prob= lem the poor use of the speaking skill in their daily life. Also, they mention = that speaking skill is much harder to master than the other skills (British Coun= cil, 2015). Ecuadorian students state their emphasis in the oral production difficulty because they fear to commit mistakes using the grammar and the pronunciation of the words which are unknown for them. Therefore, it is a n= eed to improve speaking skills through pronunciation drills (Gonzales, et al., 2015). Furthermore, it can be stated that there is a poor quality in English education due to poor teaching skills which do not allow achieving education objectives (Quezada, Benítez, Vargas, & Z&u= acute;ñiga, 2017); thus, new methodologies, approaches and techniques are a must such as Task-based learning for improving Ecuadorian students’ English profic= iency.

 

Even though new methodologies of English teaching = had been proposed through the time teachers continue applying old-fashioned methodology. Teacher centered approach rather than modern (Belias, Sdrolias, Kakkos, <= span class=3DSpellE>Koutiva, & Koustelios= , 2013) ones such as CLIL or communicative approaches is the current method in clas= ses at UNACH. For this cause, there is a poor speaking production. Students lis= ten to the teacher and he or she disserts something especially about grammar patterns without any interaction moments or tasks. Therefore, the transmiss= ion of knowledge has been developed with useless lectures. An-other issue of the problematic in speaking production is the negative personality factors such= as anxiety, stress and shyness which end in low level of speaking interaction = (Haidara, 2016). Although, students have studied Engli= sh for a long period of time their speaking performance is consider as a weakness. Students have management of grammar and vocabulary but they do not produce complete phrases orally. They evidence fear of mistakes, stress, shyness, indecision, and low rates of self-confidence. Learners do not interact among them and they do not produce English language independently because they al= so have fearful criticism (Leong & Ahmadi, 2016).

 

Besides, students are not enough motivated and the= re is a lack of students agency as major consequence (Leong & Ahmadi, 2016= ). Motivation can be very influential for it integrates people who learn (Merisuo-Storm, 2007 as cited in Leong and Ahmadi, 201= 6). Students who are motivated are sensitive to produce a good pronunciation and they im= prove their speaking performance. Hence, if teachers do not build a motivational class-room environment and language learning process, students will not evidence any important improvement in English language learning. Moreover, a positive attitude might improve students’ speaking performance.<= /o:p>

 

Besides, Inappropriate address of linguistics components of language causes that students lack of those important compone= nts of the language. Learners are not aware about phonology, syntax, semantics,= and vocabulary because teachers do not address them in English speaking skills activities. Phonology is the branch of linguistics that studies the sounds systems of the language (Crystal, 2008); therefore, it deals with pronuncia= tion issues. It is well-known that pronunciation and spelling of English words a= re different hence it can cause many problems at the time of speaking practice (Leong & Ahmadi, 2016).

 

Specifically, at Universidad Nacional de Chimboraz= o, there is a low level of speaking production and performance of the most of = the students. Mean they were exposed to di-agnostic, the researcher had found t= hat students do not communicate their ideas in an oral way. Most of them show l= ow of speaking performance.

 

To summarize, there are very low production of speaking in Latin America, Ecuador, and at UNACH. Therefore, it is necessary and essential to implement other teaching approaches to solve this important issue. Because, speaking as an important skill of English language; needs t= o be enhanced by learners in order to have an effective language learning and communication. For this reason, the study is focused in the appropriate use= of Task-based learning approach in the development of speaking skills of stude= nts at Universidad Nacional de Chimborazo. This problem has its causes and their effects.

 

Methodology

 

The present study was developed to research about = the proper implementation of activities based on tasks focused in speaking ability. Ba= sed on the category of quasi experimental research; thus, it permits the adequa= te use of several devices and statistic techniques, such as tabular displays a= nd graphs, to manage and display qualitative data. Comparative research was us= ed to mean common sequences and confine treads from the context laden environm= ent (Ellis, 2003). The research applied for this type of analysis intended to compare two different groups to investigate and understand the impact of us= ing task-based activities.

 

Moreover, quasi-experimental research was the used method because it is a qualitative methodology extensively used in social science. Thus, precise and meticulous analysis techniques that steadily dev= elop objective and reliable findings need to be determined (Miles &Huberman 1984, 1994). In consequence, quasi-experimental study proceeds of research = of a person or group, especially of a social phenomenon.

 

Based on Samuda (2001), qualitative research throu= gh comparative strategies is a methodological soft option than quantitative analysis. In t= he current study, qualitative re-search had five major methods for collecting data: observation, interviewing, ethno-graphic fieldwork, discourse analysi= s, and textual analysis. Meanwhile, Zacharias (2012) defines that qualitative research wants to provide a detailed description of the learners involved in the study, and it is used in order to comprehend what happened in one particular classroom or what the experiences of specific language learners = and teachers were.

 

The study was performed to investigate how efficie= nt the use of task-based activities for enhancing the speaking skill. That is = why it is based on qualitative data, which was the most appropriate method to research (Bernal, 2010). Qualitative techniques were occupied with collecti= ng, analyzing data, and comparing the expected results.

 

This research developed a quasi-experimental type = of research because a pre-test, a post-test have been applied to obtain data.<= o:p>

 

The students from the language Center at Universid= ad Nacional de Chimborazo were participants of this research. They were in lev= el 1, with ages around 18-22, all of them Ecuadorian citizens. This study had a duration of one term 2 hours weekly from October 2018 – February 2019= and was divided into two groups who were chosen meticulously. The control and t= he experimental groups were formed by 60 students who were administered as the table below shows.

 

Table 1. Population

 

Groups of Students

Number of students

%

Control<= o:p>

30<= /o:p>

50%=

Experime= ntal

30<= /o:p>

50%=

 

Author:= Soria, B. (2018)

 

The focus groups were carried out by 60 participan= ts of two classes from the level 1 at Universidad Nacional de Chimborazo. Moreover, the instruments in this study are pre- test and post- test that h= ave been directed to both control and experimental groups of students. This type of = data collection is a valuable tool which can help to answer questions (Vromen, 2010), this research tool is to determine how task-based learning could be used to enhance learners speaking skill and th= eir learning of English.

 

Table 2. Data collection plan

 

Purpose:

To achieve the = aims for the present study

Place: <= /b>

 Language Center at Universidad Nacional de Chimborazo

Target group: <= /span>

Students of fir= st level. Classes 1K4 and 1E4

Theme: <= /b>

Task-based lear= ning approach in the development in the speaking skill

Researcher:

Soria Byron

Time for the collection of information:

September 2018- February 2019

Techniques:

Testing and cla= ssroom intervention

Instruments:

 KET Exam Speaking part

Kinds of tasks

 

Author: Soria, B. (2018)

 

Method of data collection and analysis

For collecting quantitative data, any random sampl= ing technique was implemented, in-stead two groups of similar level and language proficiency have been chosen intention-ally, and in such a way, that each g= roup had a chance of being selected (Peña & Onat= ra, 2009). A pre-test and a post-test have been implemented with group A, Contr= ol Group, as well as with Group B, Experimental Group. The test has been asses= sed focusing on students’ speaking skills proficiency the beginning and a= t the end of the intervention process. The instrument was a validated test from Cambridge which part is focused on speaking skills. This test was Key Engli= sh Test, Speaking part.

 

As the current study was focused on the applicatio= n of task-based learning in order to enhance speaking skills, it was necessary to develop classroom observations. Classroom observations were carried about during the whole process of speaking. Therefore, the teacher was monitoring= the pre-task activities, task activities, and post task activities. Furthermore, the researcher used a checklist in order to keep a record of the students’ behavior and advancement.

 

The questionnaires which were implemented in the current research were focused on the pre and post-tests. Furthermore, during the application of the proposal, the students took different questionnaires= as guides for their oral presentations.

 

The pre-test was taken by the students to obtain d= ata referring to the students’ level before the teacher’s intervent= ion through the KET exam. It consisted on 22 questions about familiar topics for the students that had to answer individually. The second question consisted= in reading a small picture which contains information about a book store and a= sks and answer questions with the teacher.

 

After the implementation of the proposal, the researcher applied the Post-test which be-longs to the KET exam with similar characteristics to the Pre-test.

 

A rubric which was retrieved from Cambridge home p= age (2018) was used along the whole process of the proposal implementation. This rubric contained three major criteria namely the use of grammar and vocabul= ary, pronunciation, and interactive communication. The first criterion assesses = how efficiently the language learner shows a good level of control in simple grammatical forms as well as the appropriate use of vocabulary during students’ utterances related to everyday situations. The second crite= rion was pronunciation. It deals with the intelligible control of phonological features in production of sounds and word levels. And the third criterion w= as interactive communication. It assessed the students’ ability to maint= ain simple conversations that require little prompting and support. That rubric also had 5 bands from 0 which is the lowest to 5 which is the highest level= of speaking performance.

 

For the accomplishment of the goals, this research used descriptive and inferential statistics. Williams (2018) conceptualizes= to descriptive statistics as the tool to summarize data. The current research aimed to measure the students’ speaking performance before and after = the treatment in the classroom. 60 students were assessed through three criteri= a on a scale from 0 to 15. The ratings were collected and analyzed in order to produce the correspondent summary of the findings. It was developed through= Spss statistical software to measure the central tend= ency (mean, media, and moda), variability and disper= sion.

 

Bundly<= /span> (2018) says that inferential statistics provide effective data for description and prediction. It is the branch of statisti= cs that deals with the generation of insights from statistical data. With this kind of statistics, the researcher proved the alternative hypothesis and rejected the null hypothesis. It was also helpful to draw conclusions from = the data which was obtained from the intended population tests.

 

Results

The data of this study were collected from 60 stud= ents of Language Center at Universidad Nacional de Chimborazo. The objective of = this research was to determine the impact of Task-Based Approach to enhance Engl= ish speaking skill in the Language Center at Universidad Nacional de Chimborazo. The data were gathered by two different means, which are Pre and post-test. Finally, descriptive and inferential statistic methods were used for analyz= ing and presenting the results.

 

Based upon the information presented before, two groups of students took part of this study, the control group and the experimental one. The first group had a population of 30 learners and the second group was formed by 30 students. Besides, two tests were taken for t= he students before (pre-test) and after (post-test) the teachers’ treatm= ent in the classroom setting to both the control and the experimental groups. Thereupon, the data obtained were presented and detailed below: With 60 val= id cases which belong to the control and experimental group of this study, the mean, median, and mode have been calculated. First, the mean or average was calculated by making the sum of the general results and dividing it with the total number of the population in each group of study. Therefore, the mean = in the pre-test of the control group was 4,93 and the mean in the post-test was 6,60; on the other hand, the mean of the experimental group in the pre-test= was 5, 30 while in the post-test the result is 10,83.  It is clearly stated the big diffe= rence in the results of the experimental group where the researcher implemented t= he proposal.

 

The median is the middle value in the general tabl= e of results. The median was calculated by first listing the obtained data in numerical order. After that, the value in the middle of that list was identified. Thus, the median in the pre-test of the control group was 5 and= in the post-test was 6,50; while in the experimental group the results are different. In the pre-test the median is 5 and in the post-test, the median= is 11.

 

Afterwards, the mode was calculated which is the number that most frequently appears in the general table of results. The mo= de in the pre-test of the control group was 4 and in the post-test was 6. On t= he other hand, the mode of the experimental group in the pre-test was 5; while= in the post-test was 11.

 

In order to verify the effectiveness of Task-based learning approach on students’ speaking skill, two hypotheses were established.

 

Alternative Hypothesis: Task-based learning approa= ch improves students’ speaking skill

Null Hypothesis:&= nbsp; Task-based learning approach does not improve students’ speaki= ng skill

 

First, it is needed to apply the Normality test wi= th the error level of the Alpha 0,05 with a level of confidence of 95%. <= /o:p>

 

Table 3. Normal distribution test

Kol= mogorov-Smirnova

Sta= tistics

gl

Sig= .

Stistics

Control group Pre test

0,2= 78

30<= /span>

0

0,8= 32

Control group Post-test

0,1= 6

30<= /span>

0,0= 48

0,9= 37

Experimental group pre-test

0,2= 48

30<= /span>

0

0,9= 15

Experimental group post-test

0,2= 75

30<= /span>

0

0,8= 54

 

Author: Soria, B. (2018)

 

Based upon the data displayed above, the level of significance of the control group in the pre-test is 0.832 and in the post-test is 0.937;  additionally, the level of signifi= cance of the experimental group in the pre-test is 0.915 and in the post-test is = 0.854 which are > 0.05; therefo= re the data come from a normal distribution, or have a normal behavior, for both t= he control group and the experimental one in their two tests, pre and post-tes= ts. From now, the process of data analysis can be continued. =

Statistics of paired samples

Table 4. Statistics of paired samples

Sta= tistics of paired samples

Mea= n

N

Sta= ndard deviation

Sta= ndard error mean

Pair 1

Control group Pre test

4,9= 3

30<= /span>

1,2= 02

0,2= 19

Control group Post-test

6,6=

30<= /span>

1,4= 53

0,2= 65

Pair 2

Experimental group pre-test

5,3=

30<= /span>

1,4= 66

0,2= 68

Experimental group post-test

10,= 83

30<= /span>

1,5= 77

0,2= 88

Author: Soria, B. (2018)

Mea= n: 5,3

Sta= ndard deviation: 1,466

N= =3D 30

 

Figure 1. Histogram: Experimental group: Pre-test

Author: Soria, B. (2018)

Source: Table 4

 

Mea= n: 10,83

Sta= ndard deviation: 1,577

N= =3D 30

 

Figure 2. Histogram: Experimental group: Post-test

Author: Soria, B. (2018)

Source: Table 4

 

Analysis and interpretation

Based upon the date displayed above, it is stated there is a slight difference between the means in the control group. It happens because the researcher did not devel= op the treatment with the control group. On the contrast, the means of the exp= erimental group have a big difference between the means of the pre-test and the mean = of the post-test. Indeed, this phenomenon happens because the researcher appli= ed the Task-based approach learning in order to enhance speaking skill.

<= /a> 

Table 5. Significance level=

 

Pai= red samples test

 

Paired differences

t

gl<= /span>

Sig. (bilateral)

Mean

Standard deviation

Standard error mean

95% difference interval of confidence

Inferior

Superior

Pair 1

Control group Pre test - Control group Post-test

-1,67

1,422

0,26

-2,198

-1,136

-6,418

29

0

Pair 2

Experimental group pre-test  - Experimental group post-test

-5,53

1,383

0,252

-6,05

-5,017

-21,91

29

0

 

Analysis and interpretatio= n

 

Hence there is a significance value of 0,000 which= is < 0, 05 (the Alpha value), it is concluded that the alternative hypothesis is accepted and the null hypothes= is is rejected. It means that the treatment which was developed by the researc= her with students had a good impact. Therefore, the Task-based learning approach had a big significance for improving students’ speaking skill. In fac= t, students belonging to the experimental group increased their average from 5= ,30 in the pre-test to 10,83 in the post-test.

 

Conclusions

·         First, the impact of the Task-Bas= ed learning approach has been determined in terms of enhancement of English speaking skills in the Language Center at Universidad Nacional de Chimboraz= o. The results from the before and after the teacher’s treatment showed = that it was a positive impact on students. The speaking skill was improved throu= gh the application of the proposal.

·         The initial state of students&acu= te; oral production was established based on the diagnostic test when the semes= ter started, which was very helpful for the establishment of the problem of research; and, with the pre-test results before the researcher’s intervention.

·         The components of the process of Task-based approach to enhance English speaking skills were analyzed through the implementation. In this process, pre-task activities, task activities, = and post-task activities were applied in the proposal in order to help students= to achieve their learning goals.

·         Useful tasks such as pair/group, open/close, information gap, opinion gap tasks; for ex-ample, role-play, debates, questioning, and simulations were explored, which were very helpfu= l to enhance learners’ speaking skills through the use of Task-based appro= ach. All of the tasks were developed in a motivational and engaging way in order= to promote students’ oral interaction.

·         The effectiveness of the task-bas= ed approach for the development of the speaking skill in the English language = was assessed. Thus, the treatment was carried out in order to obtain data for analysis and interpretation. The data assessment was performed along-side i= ts implementation of the proposal, which demonstrated that the proposal was ef-fective for the improvement of learners’ spe= aking skills.

 

Referencias Bibliográficas=

 

Pearson. Bogotá.

British Council. (2015). English in Ecuador. Retrieved from https://ei.britishcouncil.org/sites/default/files/latin-america-research/En= glish%20in%20Ecuador.pdf

Crystal, D. (2003). English as a Global Language. New York: Cambridge Univers= ity Press.

Crystal, D. (2008). Dictionary of Linguistics and Phonetics. Malden: Blackwell Publishing.

Ellis, R. (2003)  Task-based language learning and teaching. Oxford: OUP.

Gonzales, P., Ochoa, C., Castillo, L., Cabrera, P., Quiñonez, A., Solano, L., . . = . Ulehlova, E. (2015). EFL Teach= ing in the Amazon Region of Ecuador: A Focus on Activities and Resources for Teaching Listening and Speaking Skills . Retrieved from https://files.eric.ed.gov/fulltext/EJ1075454.pdf

Leong, L.-M., & Ahmadi, S. (2016). An Analysis of Factors Influencing Learners’ English Speaking Skill. Retrieved from International Journal of Research in English Education: http://ijreeonline.com/article-1-= 38-en.pdf

Miles, M. B., &Huberman, A. M. (1984). Qualitative data analysis. Beverly Hills.

Peña, M. &On= atra, A. (2009) Promoting Oral Production through the Task-Based Learning        =      Approach: A Study in a Public Secondary School in ColombiaVol. 11, No. 2, 2009. ISSN 1657-0790. Bogotá, Colombia. Pages 11-26.

Quezada, P., Benítez, C., Vargas, A., & Zúñiga, A. (2017). Factors that Influence the English Language Teaching-Learning Process in Ecuadorian High Schools in the contex= t of E- education and E-Society. Retrieved from https://www.researchgate.net/publication/309511514_Factors_that_Influence_t= he_English_Language_Teaching-Learning_Process_in_Ecuadorian_High_Schools_in= _the_context_of_E-_education_and_E-Society

Samuda, V. 2001 “Guiding relationships between form and meaning during task performance”. In Bygate, M. Skehan, P. and Swain, M. (eds). 2001. 119-14= 0.

Vromen, A. (2010). Debating Methods: Rediscovering Qualitative Approaches.= In Marsh, P. & Stoker, G.  (E= ds.), Theory and Methods in Political Science (p. 249 – 266). China: Palgra= ve MacMillan.

Williams, G. (2018). Using audiobooks to meet the needs of adolescent readers<= /span>. American     Secondary Educat= ion, 105-114.

Zacharias, N. T. (2012). Qualitative research methods for second language education: A course book. Cambridge Scholars Publishing.

 

 

 

 

3Deditorial1.png

 

 

 

 

 

 

 

 

 

 

PARA CITAR EL ARTÍCULO INDEXADO.

 

 

Bra= vo Montenegro, M. A., Soria Guerrero, B. R., & Ureña Lara, D. A. (2020). Enfoque de aprendizaje basado en tareas en el desarrollo de la habilidad del habla. ConcienciaDigital, = 3(1.1), 181-193. https://doi.org/10.33262/concienciadigital.v3i1.1.1139

 

 

3Deditorial1.png

 

 

 <= /o:p>

El artículo que se publica es de exclusiva responsabilidad de los autores y no necesariamente reflejan el pensamiento de la Revista Conciencia Digital.

 

El artículo queda en propiedad de la revista y, por tanto, su publicación parcial y/o total en otro medio tiene que ser autorizado= por el director de la Revista Concienc= ia Digital.

 

3D"logo_catalogo3b.jpg"
=

 <= /o:p>

=  



[1]Escuela Superior Politécnica de Chimborazo, Facultad de Salud Pública. Riobamba, Ecuador, marcoa.bravo@espoch.ed= u.ec

= [2]Escuela Superior Politécnica de Chimborazo, Facultad de Administración de Empresas, Riobamba, Ecuador. byron.sor= ia@espoch.edu.ec

[3]Escuela Superior Politécnica de Chimborazo, Facultad de Salud Pública. Riobamba, Ecuador. david.urenia@espoch.ed= u.ec

------=_NextPart_01D5E037.E5F59E00 Content-Location: file:///C:/6A8530EF/12EnfoquedeaprendizajebasadoentareaseneldesarrollodelahabilidaddelhablaCorregido_archivos/themedata.thmx Content-Transfer-Encoding: base64 Content-Type: application/vnd.ms-officetheme UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF 90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv 8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2 JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn 9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B /xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5 4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg 0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQC3 VUKK2AYAAJEaAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZz4sbNxS+F/o/DHN3/GvGP5Z4 gz22s212kxA7KTlqbdmjrGZkRvJuTAiU5NRLoZCWHhrorYdSGmigoZf+MQsb2vSP6JNmPJZsOZtd Uggla1hmNN97+vSe9D3N6Oq1hxF1jnHCCYtbbvlKyXVwPGJjEk9b7t1hv9BwHS5QPEaUxbjlLjB3 r+1++slVtCNCHGEH7GO+g1puKMRsp1jkI2hG/Aqb4RieTVgSIQG3ybQ4TtAJ+I1osVIq1YoRIrHr xCgCt0OwccbYuTWZkBF2d5fuexT6iAWXDSOaDKRznNlo2PFRWSL4ggc0cY4RbbnQ05idDPFD4ToU cQEPWm5J/bnF3atFtJMZUbHFVrPrq7/MLjMYH1VUn8n0MO/U83yv1s79KwAVm7hevVfr1XJ/CoBG IxhpysX0Wa8EXobVQOmlxXe33q2WDbzmv7rBue3Ln4FXoNS/t4Hv9wOIooFXoBTvb+D9TrPTNf0r UIqvbeDrpXbXqxv+FSikJD7aQJf8WjVYjjaHTBjds8KbvtevVzLnKxTMhnx2yS4mLBbb5lqEHrCk DwAJpEiQ2BGLGZ6gEczjAFFymBBnn0xDmHgzFDMOzaVKqV+qwn/589SVyijawUizlryACd9oknwc PkrITLTcz8Grq0HOXr06ffLy9Mnvp0+fnj75NetbuTLs9lA81e3e/PTNP8+/dP7+7cc3z75Nu17H cx3/+pevXv/x59vcw4hXoTj77sXrly/Ovv/6r5+fWby3E3Sow4ckwty5iU+cOyyCAVr448PkYhbD EBHdoh1POYqR7MXivydCA31zgSiy4DrYjOO9BKTGBrw+f2AQHoTJXBCLxxthZAAPGKMdllijcEP2 pYV5OI+n9s6TuY67g9Cxre8AxUaWe/MZaCyxuQxCbNC8TVEs0BTHWDjyGTvC2DK6+4QYcT0go4Rx NhHOfeJ0ELGGZEgOjdm0MtojEeRlYSMI+TZic3DP6TBqG3UXH5tIWBuIWsgPMTXCeB3NBYpsLoco onrA95EIbSQHi2Sk43pcQKanmDKnN8ac22xuJTBeLek3QGbsaT+gi8hEJoIc2XzuI8Z0ZJcdBSGK ZjbsgMShjv2MH8EURc5tJmzwA2auEHkPeUDx1nTfI9hI9/lqcBcUVqe0miDyyTyx5PI6Zsb8HSzo BGElNVAADF2PSHyuyK/Ju//fyTuI6NkPzy0jej+Sbnds5OOCYt5OiHU17a1J+DbcunAHLBmTD1+3 u2ge38awVDaL10fZ/ijb7v9etret5/cv1it9BumW29Z0u64279HWvfuEUDoQC4r3udq+c6hK4z40 Sjv15orzd7lZCJdyJUMHBm6aIGXjJEx8QUQ4CNEM9vhlVzqZ8sz1lDszxmHrr5qtviWezqMDNk5f Wctl+XqaigdHYtVe8vN2eN0QKbpWX72G5e4V26l6XV4SkLYXIaF1ZpKoWkjUl40ySOrlHIJmIaFG 9l5YNC0sGtL9MlUbLIBanhXYNjmw2Wq5vgcmYARvVYjiscxTmupldlUy32emtwXTmAGwh1jOgFWm m5Lr1uHJ0aVT7R0ybZDQpptJQkVG1TAeIvgqoz6oZCnMFsRGlFc0Lprr5iqlBj0ZiuVqWNGoN94W jMvmGuzWtYHGulLQ2DlpubWqD1NmhGYtdwKv/nAZzWDucLndRXQKX9BGIkkX/GWUZZZw0UU8TAOu RCdVg4gInDiURC1XDj+fDTRWGqK4lSsgCB8suSbIyodGDpJuJhlPJngk9LRrLTLS6S0ofLoKrE+V +eXB0pLNId2DcHziHNJ5cgfBFPPrZRnAMeHwBaicRnNM4JNmLmSr+bdWmDLZ1b8pqjmUtiM6C1FW UXQxT+FKynM66i6PgXaXjRkCqoUkK4SHU1lg9aAa1TSvGimHrVX3fCMZOU00VzXTUBVZNe1iavSw LANrsbxckddYLUMM5VKv8Kl0r0tuc6l1a/uEvEpAwPP4WaruOxQEjdqqM4OaZLwpw1Kzs1azdiwH eA61dykSWvGpLd2uxS2vEdbuoPFSlR/s1mctNE2W+0oVaXX6oR9PsMMHIB5d+BA8p4KrVMLhQ4Jg QzRQ1TKVDVgiD0W2NODKmSek5T4q+W0vqPhBodTwewWv6pUKDb9dLbR9v1ru+eVSt1N5DIVFhFHZ T09e+vAZii6y8xfVvnEGEy2/tF0ZsajI1NlKURFXZzDlinEGk56nOEN5xOI6BETnUa3Sb1abnVqh WW33C1630yg0g1qn0K0F9W6/G/iNZv+x6xwrsNeuBl6t1yjUykFQ8GolSb/RLNS9SqXt1duNntd+ nG1jYOSpfGSxgPAqXrv/AgAA//8DAFBLAwQUAAYACAAAACEADdGQn7YAAAAbAQAAJwAAAHRoZW1l L3RoZW1lL19yZWxzL3RoZW1lTWFuYWdlci54bWwucmVsc4SPTQrCMBSE94J3CG9v07oQkSbdiNCt 1AOE5DUNNj8kUeztDa4sCC6HYb6ZabuXnckTYzLeMWiqGgg66ZVxmsFtuOyOQFIWTonZO2SwYIKO bzftFWeRSyhNJiRSKC4xmHIOJ0qTnNCKVPmArjijj1bkIqOmQci70Ej3dX2g8ZsBfMUkvWIQe9UA GZZQmv+z/TgaiWcvHxZd/lFBc9mFBSiixszgI5uqTATKW7q6xN8AAAD//wMAUEsBAi0AFAAGAAgA AAAhAOneD7//AAAAHAIAABMAAAAAAAAAAAAAAAAAAAAAAFtDb250ZW50X1R5cGVzXS54bWxQSwEC LQAUAAYACAAAACEApdan58AAAAA2AQAACwAAAAAAAAAAAAAAAAAwAQAAX3JlbHMvLnJlbHNQSwEC LQAUAAYACAAAACEAa3mWFoMAAACKAAAAHAAAAAAAAAAAAAAAAAAZAgAAdGhlbWUvdGhlbWUvdGhl bWVNYW5hZ2VyLnhtbFBLAQItABQABgAIAAAAIQC3VUKK2AYAAJEaAAAWAAAAAAAAAAAAAAAAANYC AAB0aGVtZS90aGVtZS90aGVtZTEueG1sUEsBAi0AFAAGAAgAAAAhAA3RkJ+2AAAAGwEAACcAAAAA AAAAAAAAAAAA4gkAAHRoZW1lL3RoZW1lL19yZWxzL3RoZW1lTWFuYWdlci54bWwucmVsc1BLBQYA AAAABQAFAF0BAADdCgAAAAA= ------=_NextPart_01D5E037.E5F59E00 Content-Location: file:///C:/6A8530EF/12EnfoquedeaprendizajebasadoentareaseneldesarrollodelahabilidaddelhablaCorregido_archivos/colorschememapping.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml ------=_NextPart_01D5E037.E5F59E00 Content-Location: file:///C:/6A8530EF/12EnfoquedeaprendizajebasadoentareaseneldesarrollodelahabilidaddelhablaCorregido_archivos/image015.gif Content-Transfer-Encoding: base64 Content-Type: image/gif R0lGODdhTQAbAHcAACH+GlNvZnR3YXJlOiBNaWNyb3NvZnQgT2ZmaWNlACwAAAAATQAbAIcAAAD3 9/cZYxmUpZwpMSmttbUICAhja1qMlJRrKRlrzt5rzlrvEN7vEFopzt4pzlqtEN6tEFprzpxrzhnv EJzvEBkpzpwpzhmtEJytEBnvpRBrGYytpRApGYxrCBlKzt5KzlrOEN7OEFoIzt4IzlqMEN6MEFpK zpxKzhnOEJzOEBkIzpwIzhmMEJyMEBnOpRBKGYyMpRAIGYyttaVrhGNCSlJjSlq1xa3O3r0hGSlC KSGMc5ytpcUIEFrOtaWtpe9rKVprWimt76Xv5pwZQmPv5hBrWoyt5hApWowQOhmMpe9rCFprWgjO 5pwZQkLO5hBKWoyM5hAIWoytzt7W7+ZrhJxr797vc95r71rvc1prpVrvMd5rpd7vMVqt794p794p 71qtMd6tMVoppVqtc94ppd6tc1qt72Nr75xr7xnvMZzvMRkp75wp7xmtMZytMRlrpRmtc5xrpZzv c5zvcxkppRkppZytcxnvpTFrGa2tpTEpGa3vtaVrKd7vtWMpKd5KpVqM795KpZzOc97Oc1pKpd4I pVqMc94Ipd6Mc1qM72NKpRnOc5zOcxkIpRkIpZyMcxlKKd7OtWMIKd5CCBmMUpzOlKVK797vUt5K 71rvUlrOMd5rhN7OMVoI794I71qMMd6MMVophFqtUt4phN6tUlqtzmNK75xK7xnOMZzOMRkI75wI 7xmMMZyMMRlrhBmtUpzvUpzvUhkphBkphJytUhnOpTFKGa2MpTEIGa3vlKVrCN7vlGMpCN5KhFqM zt5KhJzOUt7OUlpKhN4IhFqMUt4IhN6MUlqMzmNKhBnOUpzOUhkIhBkIhJyMUhlKCN7OlGMICN7W 1t5CY1KMnHMIEDEhEAhCUilCKVJrWu/v5nMZY2Pv5jFrWq2t5jEpWq3vteYpWu/v5r2tpXOM76VK Wu/O5nPOteYIWu+tnJyMpcWMpVJCWghCCFprWs7v5lIZY0LO5jFKWq2M5jEIWq3vlOYpWs6tpVKM zqVKWs7O5lLOlOYIWs7v3uYpEFoAEAgI/wAREBhIsKDBgwgTKlyYMMc1bA0R5MDBA0cBaQUsSrsh raM0HOduTPExsiRJkjg6XuSIUWPGAiE7Uvy4MeQNmyGnpCxwg+XLljkIFJhBlCiPoQNoHKhhg8aA G0OLSp3BY8aBa9aC1kBwo+rUAgNqYA1qYwZUolHNIqhBICgBGgXS3hg4xShaagQA6N1rYCtPqnYL IDBgABsNBDaSGCgbtWoBGoSbVrlm4B8Nr2hv2ABg7UCVA9gM5Bgw9OjAG0WHbgZgOB2PpDr0HgA8 gOiNwQSkBQigO0AiADUAzyhwAICN3cipbKbRdXiBvAiQ78ZBwACCoXOFei1QA0COGdKRD/8wYBz1 ULB9kdv413sAgAPmEQCIvltwut1G5qPdXGB3TeQ6GOAcATpExR0ABIQXnjQ5vNccdwZIV4UO0hlh AGkzNDjAbnnpBV4AA8XlHn3y6ZUbb0nYcBFdw8mXQz8KLkhYbUMZQA1yiB1gAxW79fPPAdJUYUBe bQGwYW8BFGAkDuvVB0CB7uWw2wEG8HRaTw32F2N47tUAlXznIHfNXkg+hMMB1iRJ3ns7fLibAQdM QcBxAXTHw5QAgMeDddKEKBgA1yD3GAIwBjCAERvuloOANyTCHnLY7KVlnbmxhedeeSKXwwE45EDD bjPQGUA68wXgw4XPXcODD8XRRwOCCPb/011edBaXyBQIPLrbq94hyRaTCQawWV9F6jAAg0DO6R8O OBqpJgJ9EiBSdz7wBhxvM7iXSJIfukfDOePRt1s1mSLX2RSQ6SaNAdb0NkOkhHFlaQDyRSeNNQDo NphZIfrQnW4zlLrbb0juRip8zwW7G75ujujDngfsNh6cKvLG7peZMugdeYk6FBddN3TXnzTG7cZD vbxp6Z4RPXmLHMf+9YXdq3cGMEMNQQEMwGU9VdcbDTUcUHNxpFFHgA/EAXBfncBl1Sdw6QWQH3Or UhmxzYkWINpwznWXqHTyqYgaDzfkkMOkyBVnBEUJY1wDjjXQoFs/NDRVaHVcF8ADZJ7y/3DyrGdl 1p0O192wA61co5UOrRgaYY0BcKHlZ4b5bhneDEOmJWINjz+eQyJx2WWbQIQRRkAVgXsFFQ2LVmaN DU95ZfRGN7yqsOUBcPwwVHFRhFptHMUVuvAZkZ3tDTjg4Nx5cXH0+3AWEc/DQOmQ5u+1lvdD6xQD dD9A9d/XJn734HtffrYzpIOA9+y3j3771c+QF2E1fIxgmArOQK6X6bReOnn/CyC7BEjAxxHGgIQB gAARmMC92GAj3QHOUzCCAHh5SRrX+IcCNWg6wpCLM3rRoF4AWDoTNYgvmHpShxq4FxGmEC44MIJi UoggBFgkgphqF1VscAMdVKFENFybAa7SEbdzSKM4NNzZUfgTsCTSsCw4uI0NxBI0rkiDiEls19qm 8cCnJfFTiKLGOawxJycO4Bw0wIYOOnJCJ2KKAG1KifM2MgPIODEHVEhEHfP1GyfSIB0FoBsP9ILD FOoALjT41pncmMQcxA0BkKxbG5OYBGkg4BzySZoTd7AWYWXLB+5JIvl4gMYdrIuRqEylAuO2Gpy5 MShQM8BnXmkENEWwBmtSpS53icpc8tKJAQEAOw== ------=_NextPart_01D5E037.E5F59E00 Content-Location: file:///C:/6A8530EF/12EnfoquedeaprendizajebasadoentareaseneldesarrollodelahabilidaddelhablaCorregido_archivos/image016.gif Content-Transfer-Encoding: base64 Content-Type: image/gif R0lGODdhkAFNAXcAACH+GlNvZnR3YXJlOiBNaWNyb3NvZnQgT2ZmaWNlACwAAAAAkAFNAYf////v MTr3MTr3MTHm5u/OxcX/MTrm5t737+8AAAB7e3vO3tZaY2M6OkJrY2OEhHvOzt5KCAitEBm1tbWM ECHFjKVSWuZKUqXFlEKMlEIZWoQZWs7mMTFaGRDvGRlSGXutGUq11uacreaEGXvO3qW9GXu9Wu9j 7+ZS72Mx3uZSrWNS3jHFGe9SGe8ZGaUZrWMZ3jGMGe8ZGe/OUhkZ72MZYxmtUlJSzmOtUhkZzmMZ QhlKGTFKGVpKUnvOlGullGtSUsUpISmMjIwQjKV7GTpKSkqEGVoZWqUZWu97ECF7EBBKYxlzISGU 3uaUjKWESsWtIRkZGRCcUqWtxb3vQiHvziHvcyF7SubF7xCM7xDFxRCMxRAQjOZSjBAZjBB7e+/O OlJaCBDvUubvUoTvxYzvGebvjIzvGYTvUrXvxVrvGbXvjFrvxb3vjL21lBB7lBDvGVKlra0QraVz zqUQ76WUjPcxjKVSzqUQzqX3MSFrSlJSUlpzY3PWIRmcpZzvSlIQY1IQQlJ7UqXOGTrv7/8IAAhK KaXFxcVahN7vxe/F73POY1LOWqXF7zHFKaWl772M7zGM73OMKaXvjO/FxTGMxTHFxXOMxXOl75wQ reZSjDEZjDGEYxDOWs5zzuYQ7+ZSjHNS7xDFKc5SKc4ZKYQZjHMZ7xCMKc4ZKc5apeYxjOZSrRAZ rRBSCKXF71LFCKWM71KMCKXFxVKMxVKlzpyEQhCtWs5SzuYQzuZSjFJSzhDFCM5SCM4ZCIQZjFIZ zhCMCM4ZCM57QjG1SnsIGRAIGVqtUpzOUntCOjEhGVpzhKUxraVz76Ux76VzpaVSpaVS76UxzqVS hKXWlBCclBCESlKUjNbOCBB7lGvFrdbFjO9KQhDvnBDFjM69rfcIGTExreZSrTHOGVqEYzEZrTGU Wnvv74Tv7xk6WlJ7peaEY8U6IRCEa+/W5u/v77Xv70rvnDHFtZyMIRmUCBDO3sWMa1pSY0rvEDo6 OlrmMTrW79Z7e2Pm9+/vMUIAABD/7/8I/wABCBxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzI saPHjyBDihxJsqTJkyhTqlzJsqXLlzBjypxJs6bNmzhz6tzJs6fPn0CDCh1KtKjRo0iTKl3KtKnT p1CjSp1KtarVq1izaoV6YMKEOF+/Iuh4IM5YjgfOHjwwRW1RBAckxt1K96SQBHjzJijQ8S7fjQi+ CUnoJEEcpEEURFQQpa5jknfNIpg8FkGcuQUmAGCLoMBlggi8EhLIeQKEA37aAZhQgC3f0JoHdo0N IHPnKX/v7jG72etfPwloD/QM9/Dq07S/zq1NOzOA0Acg4DbI2fNy1l0rT2hrEHgD3qG5C/8kVGDK hLEHghj++7g9R+CaR4+u/S0IvwkJHABwkEB9gijGTaBeFEXExZ96QhRWAAIJEOOfAv7pB4ATA+4x VhEJIOMPXgocoFcBwOEVhWLAGScQAnvg1YB6nf0XBTLk+efPAwIhk8BZ6Nx4iIscFqRAf8Qk4I8f z+EVRBQHLKBhIciw91yQeE3QzpJB8KVPinh9U8CPeBXh3pca3aUXXnwVQGAQ6Aj04x4HHHJkXEf6 sSYAPzpADwB+EdLfZVEkkJqNCLQThQ5+8DdYigwcUACg+HUIAAMOHDJBIY3BR9BdDljWZzsL9HdI OwggE8UE+vBHJIZn6ZEAeRlOcECKRA7/VFgRCyy6FwD+AHgAISkKIYQ/MBJUQAJsApDiA34UokNt CRQxgR9F+IEAhgu4Bea1EhXmgB9+CNHtWXdFQYBA/M31IwQM5kUgnbfiuRc/xAr0TWPG3jiskP/p l+JZDNzY6WAAQODAigl8A4ClA2HID7n2JqAYAJ3ycWK8GM5nz6rDAuzhwwL5JVAcwQHQ7EB9ihhE bejs4UCnEpb8XxD/IOBAFEEUIcRYDSSA7c4U3bUcaBgmAPCPTjBcbbOgxnHYj7klcIjIewhEs0Ap sprpAU5olqJq+zUMsHpx0HMkACCb2HV8GLazMWkjr5YfABjqI1DO/AwrIXAAdyy0miG3/w1AFN+k FQeREyATRJNvA/DmP4MTEprSquqHIc+UQ3QXMinvobncGMYBK7tR7JGzfoTwVwSGgzGt94IJ2CM1 vfvyk+IencN9I9UJqP1fh0EQ4wCGhbgr3AJH7mFPny1y/CPmTKr2YxB72Kjzjs2miMzP4Z4eL7zI DHR5ihIO1E7B+yDgHfgA7BgEA6jXW4TZlcdvUBwNGB7E/UFEZzPV+v3oBzrIUIBahIAMZMTKCdf7 WAP40oCHaa5jyKiMEA4XGwVEEIJjIWAR1OaAIDhgAnvITJOEpYDTgTB3B2hArBSIDD7MhRAERIYQ FNCAFjkAQg6AQEHuIgQGJGYuDSRIHP+KEAQhzIcgfkBGA+IyxCA8YD4FsMfhYkWPPQRhhfLLIkXK BZIjguRHRXBAiopgrYjgJ28GuYtwtMjGnhDwZ0AxHxGR4QA4SqQA70tIHJChwzb68Y+A1AplJgMq yhSSkIM8ZKASyUhDNhKRjowkJCe5SElWkpKKzOQjL8lJTVJGH5NJywEOWchSLtKUp4SkJ02JSlC5 MpWtVCUiY2nKUaYSlLCcZCwHKctK7pKUvWRlMIfpS2L+cjI0OUARFKCAGzaTmc505j4UwIdnWnOa 1YwmM7FpTWlSs5vb/KY2FcDNcZYTmuHMJjrJKc51nvOa7YSnOq1ZzW+mc503nKY82Qn/TnjeMJ/8 1KdAw8nPcWpzH9XU50H7OU2EMjOhBC0oOh0Kznyq06HTBChGLwrRjLozoSAlZ0g9ulGRmrSkKIVm omZSgPyN8gAvjanaXtoOfcz0pqO0KUxxWlOc0lSnMs2pT9XW050atahBRSpPgbrUoQr1qELVBwF0 elN9wJSmRsUqVmua1ANMladbzapTu6o2BFiVqESF6VTDqjYCvJQAaQ2qWI8qVaZSla1bbetd0xpX vuLVr4D9q2BhWoSnyeQQXgpkSv6BEcYCwLGQFYhjVTLZybqHV056SQEaoNjO+pEBmXUJYj1LWvmh 6E4yoQdnS8tanoWQpattrWzdg6IF/7A0sbPNbV0QANqZHCK2ug0uVlAU2pbgUbjIvQohentY4Cb3 uU9BgD36GJPjQve6TllucT0yAcNuSQGGJcgCnIvd8hrltCTxwzcUgwAFKK2wBfCWtyxo3voihbkh Cc00CxKpODjAAXxwADrIa98C94S4JZnhQP7hhykYBAK4NbCEecIP/IqEmgI5hALWKBDrTvjDOUFv egfDqzAWS1jdA7GKbSKz7Y7Ei8Mh8IpnzBIEy8TDNM4xS7TrWxnr+McjkS51YYJjIBv5xRZ+yW+P zOQg7wG11Y1wk6fMkSSL1sdUzrJEbBxlLXv5IhV2sUqW/OUyb/nJtzWzmiHy2uau+f/NCxFxl+FM Z4OEucd1zvNAuExkKev5zaUTc0rI/Gc6CznNha5zm2NC6ESvWc59bjK09EDpSlv60pjOtB6ixeQ7 u5nJCghDH/oABVKbutSoPrWqU13qPoSBY0Dms2b9rGMhyMMA/cC1AXada17vWte+Drau54HGHwca z0cmxAMoYIAAODsA/XB2tKMNbWlX+9rYlkexdXzoG9M6x7Y2ABWkPW5ol7sf5043uZ9NgW3nmMef NjIMKYDtZ9v73vjGt7aZDOlZNznc+Q64wO0tD1gD2cotafSP+WFrZ5f74Q5/drkDMPGJO3vfR5a1 S4r8Y4AP/OMSD4ABlOBuGvNW0Cj/UbiOlS0PkLuc4CWfcb83/m0ae3zgEKd4xO1tgIJ3GuEsUfm7 hUABKkQ75xZ/eQAwbmSNG7fmM7650vE98XYz+djxBjLLqS3wpH+c6bGeLqKPLHWQI53nPk820Fci dBrDsOU6j7vXQZ6Hpcd8xTN/+r9vjfOQg9zqTF77mLGsYpZP/d554EDcL353Fb8K5SfheK35bm8O 1L3rAcjH3NMubwdA3iRtn/Hbd270xc+93uUG+8LFnl7jFABScYDxAqC+4rIHnAqW//jIGw/iFgd5 guzdDQjp4RmlxYGAV38A3F3eDw6UfvEw5zeaQ+K4724msXr4ivH0ED3Cq9j26M69/725fu9yG4AC Bv/xoi+smAOkeA9rlLzbG77zZzf/+S9XPbdZP5JmPgcdh3AA9pBZqrV3zWZvE0d+Fed3zrZ7yWYs n3cRgyMQILQbBrFZybd8h0d1jMdv/BdpTAZwc3d6AueATLZ+SuZ9HzZ69pZ4HFh/m8d7H9Ztc0Z2 lGdu9Wd2BJd+7+Z5yCZvyodv5LeB+pdjTscS8mdzfEeCpJeD9gZ4RuZpjKaCE8aC+caEz5Z4E1eE JveB/haCN+iEJKh4XNdzPOh2Pph1xhaEDJhvLkh65MeFMjd9NWhkthdwHIBuA2eCR4aCV3Z19PeC TniFHZhxXkhzBjiIWJhv6Ndkfv+YcFQoYYZXfrfnd14nh3hHhyBogwe4gfnGh0AmhTAReitmhW/Y gs43hAgYfRn3iEhIe9+3hDgocXm4itDncKBobGk4hRlobQjYD8B4eJioYjS4iXYYhhtocWZ4dYI3 aJFoYFaIebcYcMPYe5r4hZxoieJXiQwIhUbWjCn3jAU2iUKYipQ4cNX4YY83dsfYifemivi2jSLX iMm2i6MojvbFgkw4gveXhek4YcWIjUamAMgod5V3eeNHbePmjQsHjidBirWngdMocfkwkc/GebF2 jYgIagUZcPCobzJYhfaYgoAId6d3kk74jxJ2hCuRhFHXkYsYcPQYhQ4JevhYX+T/OIgGSYiF2HSH qHdg6I6eyHMkd3Uj+YfJRn9ep4UvmHTjppIGlnev2GQEKZQOV4sDJ48BwJDqF4EkAZGxeI7BmIXO F4/4B5UFFpAbeWRV+XHhN4TjRn7LeIJeORJguYJKyZMfmW9oaV9S2ZKwCGJ3KI2XV3eGmYs6Jook mZQamHMBlwdgMAxSIAVP8ARSYAxg0A99WV8sqRIuuWJtaXZ1BwaUaZnGMAyoSZns8AFnKHpHKRKE 4F8M4Aeyd5P1FYj4xpTOlg9ScAVSAAYGkAfCGZzQBgZP8AXeYIhDRhIplBbwNxuSIgSB2Ub/oA8Q QA/XmZ3YuZ3a2Z3ciZ0LEJ6h/2lxuEdteTAM7PAEYCByAicPyvAFdcA1K1eTGyEEKiNAQpA50ZNi rSUzOyAMACoMRBCgAqoHADqgAYqgB5qgwhAFFPAHCGl/9mYMFjAMxFmC2kYIIvAF7WBZmQhlJfEq oAR/BXGXbOQ4DjAPzTYIHNCiAcCiHOAB99CiigejNeqiNhoBTOCOFld3vQkGESpwRQkA3oCcP0af GfF4UZRZGChb7eAAEtBs7miVDchzz3aAHNABzDZwgqCe7liYznZ5PZc37YCcMKaOrhgSB8BMofWZ f8QPDgAFVOqJzdcBROB1udebELqKerhufEgIZZqcrlmXGHGmA2GibIQAeiCnQ/8ZpAHAARFAeUn3 BOyglV9XbCHwBSEgcz85lbIFp4waAGAqqmFaqqSKeM+2AxL5bOi5njrIbttWpPL5YYqJlP0Zp3Pq iZAahuM2DBYApC3ockVYpITgoWmpkUDJWigKBX2XlRGaB6o6iwYABldgoe94dhKHmAJRB3VgqDj5 mkFnm5QDql+qeLlprqKKruoaqZ2YB/lgmUNpdwhBCGY6g2nqmdOZqHEacnnolOoqcFl6p/YmBeyQ D4bZhgPHleLDobSKpHYprjzzpKE6cAr5cbuKa6Lqq8CpdEmHibIKkJ2qEJbBYRjhpn4kMxPLk9fa hAHbbJB5BcYQoU4phhfXmgD/QAjc6q3XhXUQgQBR8CIN4HmgghGIqkUyIwF7SnFHR6cXa3SUGa8X 2Xj0KqjHCqIPQQiHIGD+UURlBBEm20YS22zoyo0W6Wyqmmut6qgI+4kKSxCEkKk6C133mhDt4DlE 9DKGYRFFm0Uom6sxSYvsGgBPYAxZiIrneIkyWAciEJUhmxA+GwUNYA+OQgh+QLIP8bVatKzrNnU5 1w/50AE7SqEGS4maJ3Dhd3kYSbcMW2BzixCs4RF7Kz/8sKhC6XWOiYdaSq3HUH7UNpZl25MLkbN+ iawMAWGKUQQjVLL5qkVwCgIoeXhZKg+28ARQS5QhObX2VasMwSBIQjYZkhGx/xs/fZuMeBgBRXAF wNqsbbiFIUmkX0AIcatbnZkQceIEwJEmyitby4prt6uTTfioTGAIMWuL/itwbXsQ9Lq45sWzEPEq eSFA4AuxOzO7ULCX55iV+GALuWaq0ri2UFmmswpdapmsyoqrTXmtliptQCAIamuRWml+qbsQONut 5QVvEVEAAkY7YRTBs9W3+Ady/WiqeWAMQLClOumUFUmN7SsQIGyswvWXCUEI6lFAShQ+FoG5zBun XPe842du5toPFsADq1qOCLmX2hq8NIxdDgsA/PAisCvB2BK256p00ZYHlNkBBYmnP9yjwOsQ9NoO 8dta6ygRDuAP7hUH5pERWP/Mt/s6frhHs9NIrWAAujtJiRZculu5xAOxodjFwA7hs1CCF/ypt3B8 LYqasr74clRgAJOZD+wKj6e4tve2mX8cyKU1wtt7FpNhywyxyPJTOqG6j4Kou9C6owGHydxocTHs EHXwBdelvQyBtf+1APBTEeFbOWGLf/37mAEgCFLwqHjMo138u7OsyQNRy88FxQkhBFEQJAJixRXh y/EDqr4bj0GadNRqoR4QrbdIgkx4wAxBrM/lyQ3BILsRHEFgMERbymByyrlKcUmcrkNImXlgABfb qObKvhWBvck1vwhxP+BTCK6Tv5/qAM5LwL4Yfs+We2DADhv7uQKrvhPXr/f/NpcTQQjekMbCBc0L oUx5UT48LFvjq7SyfHRcV5kr/cqVjHP13McRQa+bily4DJj6O9QdjG8tDZzltgPGTLYvd8YPIQI6 rVsEvb0MYA8OACk3FNStRcEWjNLj9rQrHc6vmq4XLK8W0cRPTLwKQQhzFAQbgr8XIc+VA8zixoBM OK3VipC7Oov+W562K3JDahHCK1ytG2cjwtasFbZv7YbG8AT4xwGq+tDvqIAgWairK7+NmxBTIClf 0R+KvLxZBKouV3GWB8bD4HcRENPQt80lONmUXQfIddkFkS7qUs0Tcc2U49DY6pEBYAxXMITRi7HV G7UZode5pc4IMRaO07UU/0HY48oHcrqXc8cBiz1+WdrVr5pz4gfWEcGtwcXTUQxN0aQyhEoQys0z KNvZBomeET3XkirLXWfUm3kQZQq/2U3cBdEngJMlR+JgDKEcBkEPsi0/ciyI+PauUuCoAevPBVxv y3zTRppbZc0QhrMw9FAI+/DJcaAA9jlKBYCdEOAHDP0lPvzhYToM6MuAF8vfdo2O5pwQcJvdq40Q 3yA0BVAYVDgt3cUX0nk6yDvKt6zFeHh5CSgFgnCh98bPtNjCmNy/AC0RI66/a1wb0kMsdoTA+lBE zBQXCOA4hDABFR4/F26L5himYPAFGxuP7Ip/Qfzj9caXQZ4Q3pAOvJyofP+dy2meEASQWBZIEAUo 1I3skRNNvS94tvk2bY/cp0JIBXVn0xnB0bJV5rXBTO1guQjhX8xkLeAdsSbs23h+3jl40RbZ2VhZ 4IQ+1qQ1yBHhB/7xzhAhHWXUpG1twpmOewgp17jL2yh9wvcW5hIBwvoLriLbLCDTUidTsjVOW7RL sWWZD+wwDC0Mzre2xYebf4OuEIor1EV+EPXBH2AU27PFD+LN6QxIbcPwBFxn5Zcn2mPsialnsxRx 4G1d5vRwMXhxYheR3zvTtxUrcNWKgBU5lhcdkxPngh2b7lFcr7ec6AjxDzAFAa2xEa2OLZoLctP6 q2Ucj1r6B85OdWN7pdD/PhEEX1olXu1zvhAMH8fGTsDl9gTqkAdLy7u0rr7S9pG43tdj7lkefRB7 UAh+UABSb1skXeyonJvEDHJc3ex1fZECXxFDTlryvd0uYySafcu0C+sUjeGPGriqTLZJrxDSTlpT rRAQUCsiP/JVz1r0XsHcCO7iTnejPbNLbZHufRGV3Vk3fxATAMEfsfOm3PNuqOz9nNTy0NRQG/dy n9qKpd0E8SOHgABF1BElz/Mn3eXP9q4DfJD5xtXizLkRd/iIL9ykpeDsAkqJsxGQ39CSD23m6Kuq uMdtf2skiPFhGvPlLBIhwA6Hrt/tPhA/4hXEEp56P9g5v9yTnoB1PLhc/39voOu3Mf/l+AbqH7H0 gWT7XDImsL3Qs/WkUfqYWX3Vw4+xCwhtqmjBmr8Qhd782OL54lMAAHGoQAGBAhcAQJhQ4UKGCgsU aRhR4kSKFS1exJhRIj8HUAxQCRBSZEgpT0LmGZkyAMgAHDoQYalSZMyYI6lwQBmAghCNPQmxa9dT 6FCiRTXyY1DA6FKFhxowhRpVak8Eejz2m3kSzJVhOWnKbLlDngGsYM2alcdzKkMRdf6thRvXKII9 SuVqfHhX716hHEHUHDlMXdmzKTswMWAzK1iWgAPIU7CX0BdCfC1fRkjIgV3MEp12Bt0ZQcfEKfPk 45qzcMibEcY6Vlw4Zv/aqQeE3MbtxMIXbE5w/wYe/HYcBKGNL0RgD8JxhnmZP59KaDSU2AGGsQOj 8uvKkWIJr+Z+dqdUQofWKZFAQd48KEaArJ83D778+PTjz5cQBtkB6MYJJe0Poc8CJLCodkgzLYAn pPDgI/BC4sC10rarrjDapIqDiQAM4JDDP65gJI8ORySxRAOg0AOBygq0jC56CHSORRkx4sgjwMDA rjTWVnMJJrNgWywmA5RQK6opmOAgpH5YGuaJfj5aMkoqlgzgDymXPFEPfWa0DMAAB+QyTImqukok lEpSLaWY8khSpAjH+u5BmUC60EgkRcIqDxyHUbIfP/8c6U8/T3SgODH/5TqgLhghOrRRhTSDoqyb AsjnCT5Xy6exkHZATM2RcAoSLAMgm2qCHdocKY+S5BQpy6AcXUszzqADE9ZDD/RIyZCGsSAxlGAD yc9POxgrPO3yYbVOqCYQpo849bwCjDQTnOlJFA21NarklgswxmzDrFHHPP54whjGVnPt3ACwonJO UEMaT6ojUR3JgAWVpMIrsJYcRMtvo0Jq1udq/VdGMqHcNdppwaMiH7F0fJBNNctSlql5Fwsgj+uQ 1bXCkLJcseC59nixW0ZFlhFSYTMud1rAamKpH5fkWVfTsyY1ljBS5WWiD1Et6Go1lrLcEuWiZCWQ YKP7m640PS0AY0LZ/1J6E+JQA40zpYqXypBjlfIwxskdCzNgEHuwXZoqRU1Ou8BwT3rClqnNyucl ID3Ft7ohi4TqYowN2Cro6mJaEsVX2z7Ky/6URtw4XEvbc2E5q/5OYlZH2tqoCe4ES1WTHiz77MY1 2nbR0aEb7a8Nm8wnJ5fdVK0m77LKVKZ3zRo1MqkOOXXs23HM7ibJa86Sv9MvQvrLp44/7mBKLTAm D0mRdaxh2yVMaWWYqceYpcyL8rvake5dN7yv/DSceYtcNF390MI1YJgrvssaz87FqvnHPleL1056 yzfTMSzgtbO4yn0VWdvilndAzDyOAwsaHsbMx5p8YO9yZ/keUY40iP+7neYK0VsNodDGQOQop30k tEy4gNe9251FZnaLzd3GJjyR7Mx/c2qV/FqnHXwRDYURSSCtFvhDvRwMgvviwJR4JKH6xVAmWPEe 3yzGOWOlak8SrBcUHEAAIiKHZCfsolwg9QeouRAr7wISp8gCrAv2r29UNIvndriv4oUxIQELzQQO spACDNGOaxmNBIxhC45R6FNKHBuEiGU1hqFFilxjAge/YzNogQGRLGHTlET4RwDQRWB8KUACeIKA A7SjlFM4GSfJMx2uNLKJIHmTE1XSwr/ZsG/C+N8T86AOsX2qfNbSUsi6mLzLHEABRfADAITQgCI0 MwjIUCVc+KGHEbD/g4B4exAHHqa/8CSxiSHJ4FAyhKo8AAlw2JlYq7TIxT+W7jJ0iYMDFIAAUx7A nnHwYzSZggAFACFoaZIhhKY1s3atJk6OceMUUcWBbypIChkTFYrYacf/fPIuyeHDM433FgB4S59M 0YcygKA9bpqPexCKABHIYppc3qyGjzTKBnEYHpTIL0kvA+YIicg+0CjgkR796Fygd0H7paRuxTIf Q2E2Q7DYUqFUKqjt2HEplfDLX5xUXGeEKaB8BpUo7bAACBiJySQ+qGER6BTWbNJQrcG0KOOUk+cq BDJOJsqixgGqV4dShwvkKpEQyhqQsPKwgE4NJXubSvhK2g+gSc6H/38kphD1upTJ8EECDtLOJPEW kzet7HKWYyg43apBOE7wa2E76JPMptMfurM/eZ0sRgjhjS/wwa9E/ZoaZblU7tSuXk5dCu9airvI 5YwK6fsjHpUXW6JMxhsd0azHCjOzxBS2qpJ6aWKp6BjLuW5BWSvbHliLQp6+NpXMzUhbwhXVmTJ1 RxWkWSPBk9ClHMlnjFFqSz4GBqhN67EU3UzSuopeikymHZAaK261idSvDReDoxUnEXIZsybaQhCE AQkV+nW4MHoSjAS2SAgoA6nLyZCg28HZy9wLTt0ZCZewjKBp5CctPP03jMpVIIhly44QdBJBVQRy e1Gq0qx5NlkQFv9KhgYhqcD+VUHmsskgCsVJ10IHtjpeyD/aQRkfq+6JaJQuSI7KyLxJNyWI5VlL aWkaAdJ4XScqgvEAfNfQMA7LCyFEHbxRmcd5zJvZRCtmrcvD7Eplc/9jyZ+p9WTWWKtQW23tF9l2 Z4kQYssrehsOV7ZmwGwTm4sB85mBaxTh7ovQH7tOdj6GoqL9MYgDGzClEVKHOqzIedYtK35d8weX Ug2RiwmnUPx2N9icpmWr3iKVTThpWWf50gkh8aez4lnA9KNuaXWleJCskX9MoVnZs9mndbhqPXA4 jK9mjp0pnWcRKCTTQi5p1U6S6yA3uCbB7oliP5uPqR72WlSWtHn/m82QLXN4OuydG1jwt6TQPojh 38ldqXqH24Rlp2xXtSOOJTtwhdB6IY/DrpOzuch1vbJCWcO3Rg6xXULzNmP85tMm24nu41xZx1rm 8qN+3OuX3c4lGtqsmWVCgT1MIQ5HR3rSlb70pU9BAROXtsj7obEr5ONEe5BzGCMLa44nxOPIccBl iRqslihR3hdEcQA6EAX1yIMI8nA73N8ed7rP3e5wV08EOkDxkeQDaFlSUTuXLfCuF5whB097vbPX HWwPGncdUIKJJD95EskjAkmKndBuF78r/KEPGNd6VrnO8Tx7oyEgj5iDWyKhX5uJ3oofSQeSwHeV GIAJO+AmbGQW/5PAoQjSkS4Z4QdueIbUSE4prk4ePK2mhp+6JgY4zFmmlaaFjeryWDSoma7Tr1bb UfTpjjWB2R2RplXRcmpd66dc00QMywnyZjrJ16TfKibsXb5368cTPjCO36PQrh/GMpwzN2jbOdZo E5tBuJTQLdNilaGJPqqxHdjxJSyhgA54PQOMsR3JCQHig6wbpgBbrmbLszoYE6uIEyMzq9V7jSZL FXqDDcirru4Rn5WQGRqsl/obBKnBkwsUuZd7AkQIvg4bPCs7r5t7tojINMIprBdEDLZiuBB6QFap HyxJgg7wrSeSk6njlUTgJI0bvXX7AtOTiD7rtXrjrJQiMyxssP/YUwLaC48nqb98OKig85iyuYB2 m7kgfA6bmyxLyzkkdAAv68HJWaTEC7LGyK8NiUJjSbxwa5UKVL3j2xAJ6IEvGEAU2jrwk7XJ6LGJ OJj6AZI1QZWGeRi2kro4eT83ZA3bwz0sYiPG6JcvwMMOozm8KkICawuOqjQEWULma5cXYgLHg0Im SMALehLLi8SEA6YQAIqM+77jULfJagceq4iDkzbBYhc36QAKWCneqp6zkL3dmhslsj0LjDqyuhkp QwAR+AJdbK0h3MNbZC5ac8eIIENVXLCoyz1QgT6gG8dBNABIhKhPe0In0yQJOBvn0joQzDEsIz6K SELpyqSzOLv/MjS1kIBBVVyJcgytwoKiV9owAKCt/lOf8iJCLCu9i0idu/G5OewmGJolyZGhfoQ/ vnsSJYA624kxwjEgheyiWqyz8AuqSyNJhXCeFqQgG8Q+lIKT2OBBbGKJVLQem1GxFRsVcxycGjQr KTMeEbvEkoRH5uBDffJJizA+m0AVU1SJBay29ltKRQQ6trIu27u+wmiXVzSgWas1IgJK0IjGj6K1 ogS7XKEwpXzLmaAujcTI2VNFTZKHVoQ9eGMNKWs1AwO+zigAIVCAQ2AIepDHobTEjMAVikPAHnlF l9ObRaSa4XHEDUHG9ho0aykCtGkLwUQcLywiBfADJyiCAiAE/32gJwSIg88ky6/DiPKzSNijnMhk qRdsQ9OaEhcMofpLxpIiN7RxLttMGw+7jJBxgAnwg2ZqJmSAJub6BxHTTmhDTga8oAUsw4eTCZp0 IYejgoDEysNszVVEroRATxLKRL7wgwkAgHYYCAgoACcQSk56SBoJO15TF5E7PxWEGOtySbV7zriS Tvq7TzYJOaFREpnruL08oCoDJSEQUIZYAOJUpcCkCtLIQLDwLUwirAdlTri8v+bLHutLkoKUzPhk NYbgRAaqKMzghz1ABgdgAA/sI+aira+kCAdKuJyhmvWr0JlyzhhkTzwBxY+5vUAxv/+ZyNoLSYJj h/QUGZO0DP/p0KmxHKayJB3ouhph3JS0CsWEk0/rPLWPeU26gRkcnYmrGy8WdZ9nxKsEDaM6SIev KsAo7TmSU8xUTEEzLEf9MbLoEok/uJbfy071+T9mC6qRJIr1ktMvg8lE8sYCUk1OA48nEcgs9VBy 676F8Er1+U/j+Msu2rJOHIpASsMVq6IzbMoSc72oZMzGOKlX5dL7zD2y8T2J+AdBPR0SFUsVJaLJ IMGiWElZak9s61G0LIs77Zix09Gx0w4bA1JZZB7chEZDRSFoHYp7lK95U79iyU95rSrDuNAHpcoc 7dKWu5yymbKJ2DIxHB00ndaPOs8/JIr1BIs1a4moSsxTe7j/erVRxRzXQfSYmKnPH6WIWR2dWg3K j5rGPVuKPqOQRMMpABoyhJlPGpVKX7XT+kNWg9rPiXDX7exLzKRWIa2DWTSKs7RLuWwJYknOqAPX koKxcm1VtKu9f7MIdG0cdbVVdnWfOlBYbLWKXm20wwwLBhtVlcjIOPLTsqs96nSvmgjTzQodJ/04 diDY7QzLmttZWgVVqECws43XkFi/qsRbvDla5tuXE7xYs3jCMxoeTE0RjPDYtAFZv6Ta41ncfYKu 1qPR6qkglVJMC/XVkHNEIenX7EtKHy23jGjSeiwYg5XbP8K5t2UKeLXJMaNRf20V1eTaJ6rPPRWo pWQXGlIn/9CzCKs1UzHJWcy4VeYZ2LV4N9djzwgF1j/4ldWIUJmAVHK9QfsrpzOqytbbPXUK2IwA 3qWR1tQNo2n0WW3pCO1QvStcyyYcRSdSXwkE19ep0Y8RSPrJQknJy4wYweCdkeG9jOL92C+4VkAK O5YtOcrlDpJCTEd1uMwSiXDsJmIzyGStTn3MKaEYP5RBXVscpjCMC+mAU4xdVfiKXck8WrW03cFl QBl6vprVXwHmXwKR2pB1FASYgAmYghvOYRzW4R7m4R+egGz4AkQ4hCko4kOI4YlIXtmdrsPA0rxd jLBlWqz53Jmdk7IpgjjI4R0u4hwu4gn44iM24iK2gDrYYf8cPjof3uE1VuM25uEcHi9s9V/LYNP+ aAdkYAK3y2Mi2OM+1uM/JgIl0AMgeAJhYAI+ZoIo0MO5WFTm3NeunVAmfjx/ZMS+FZU9FUbHOMYo 2GN5OGQmyOND9mRQRmRQJmVheIILEAZPToJC6IBVFuVYfjtZ9uRZruVbVoIgOFHyYMiNa5QD2IE+ oLzJG5creCgR4ZA+YAK27Qky/FqqkT0DnjcElq7ppV49VdarccUsurzJ25BhBpwneAIO4YB1uAZw NpFvLpEAYALOnIrw5WBHueNEfGSb2YqHopodoDOhmA6Xuh0TI5ZKvQkUrpcHzOSqut26dDKZeVEs gYIgqJ3/YiSbfpCCaOmDdcjBOGUq9oqJHZiCWCFUGv7lYF6piLkOwWmVQdgPqXBdx3jKWbKgxWvB zo09xqxdu6xis3jpMxOGMBjbiDkJir4CG4gAKHDQaz4JZNjnXQ24k5RnZKhgiKroYfAAmVC+pe6J 841MFHSvuvERjP3pM6PdOFVVPVXomWLBBDYACVgHB6O+mjwzY7AAHoCCF2UVJthlqQhpx4UVYK5g PRFnaREXkeiDlY6KdsjaLTVM5WQi5+ucXLJmu8w1x7jKA8TPAqIAku6eDu2gPBAgKZg6jbzqtehU 4TsUfYBqcVyJe67Ps9BnqUjeZxYJ93QhwLhCkJBPRIyx/1cygCqM6to+kQh431Xl3TfrgyAI7IGs 5xVLNCb46Ojo5S+8FZIOqKnuVVjagVhlZBsxRZcDVkGL16yJ7O29aQpG2sGpMWHogCXDrawZhAgY BCmYqoHkO6UGpLiN519ObbPwgGPgJTfzVW3C6oywxjxlFScGRYed5Cfyk1ccGyq8T4oFbhC4voIy xG+EkHWo6yZ5AgDHLbxG3r3uDACGjnbISfgDg6l+EvDgAMOGinvEcOW1V1hi4Kp6SkOS4ih9onK8 psKI3t9qa4IOs0HAaAOQHmNgh2NOuJrQpkVeig0OjTqGjgPYbw0EA/mRAlU7TAPog9c239vSPCpJ xHUxTf+JdcsFh1nrpMBsdj7LZkQDoPDhbu8IoQ6teAKuwAl9YU7ly2u7jW5NdBS/hr98kB91iJrY yZpyMsDslopAOuptLjmZZspuVEUItuqdjk+zNfD9wR15CHIZ1ObuIXJJ0r4nUAc+sevwYAInH5kB p+O5LXFk6AOU0BP5sRT6PpeGkxkmcPWLIEMFZxX8seIZ4sexhs9NDxYVfmaHPutNd6FyBnMlsfVL kd9OQ+KpmGG+DvQdkB4wMIYreIJjEJGlJLuUKOw9ggpepUFFS1ttnXSo1Ecyx8jn1OSljF5WxL6T xZsnEYYTvz+VGHUEHhcOH4bsyMA8sO93xu8oh/XnQID/BhiGis5yXL8gbeIWpgBhKCAcfPFTCS7z +QVI1WThvlNC+/xtj7GWCLgvxEz1QKGCPogC9mYN1dhAcZaCYQCV4QFx6O71vSDx45itdLAAS8EK cTnVT9Mm7S4KjrisKaz4xiZNwohs/MzG6p0w3ArIU3HpUN93aGfZRAecsFkQMDB4Wm+THWB1OU57 0JByrWoHb7BauC8CD6D1B8/CRPNyP4/2bq0ir4aYfw417Ptb6lVhK+1BZmeoqJJouqHzR8cdlDgG Y1AHYy54g88YZOhzqJhjvvj5IrI0uLdaEdgzQuAHbmeySJ0lZFj7Fo0UmqZDNYEvlrWeHaTm2AhH sjp6/7LRdO4K63AzAGEQ7gb0VSqg8IxOpOHJCW+3eSkwBjDIh3a+74t36tAgBEJIhBAAfQFOh9E3 yiqXXWAPCWWW/pIlDUu9nMGSB/stKCO7G/mEKmQteZykF5qIaiwBgbY2cPBvFQ6IedjwrTUDCAN5 DPwBY0zKkytAvnhr144QAgASJ1KsaLHingIXN3LsuLHdgYuHGngs6REBoZTtEoXw5k1EnS8y64gI 4ZCjvh0cAvDs6fMnlX4+qQztx2GHPpNKASBwIMHAz6hEo/Kc2pNDB3lQqXIFGrWDkq1dx0Y1IK/D Tqr9hJL9abbDIANWh1Y1OjYoFQ7rBgWlG4BtX5953P/yBNPDmreYX+rQdOnwISGmShHYg7D0Msd/ fuztURAxcuRDRUCnLA2xNEqVhB6vbNew5cvEiWHSZCzCcUqK/zoSQtYHKvAAAwMENxB88HHiBo6G xMzbARTjxKdT35rcunDpHZhIxz4dufDv1IcbB6t8+tbh4MGPB24gSQfl19FTQU5UPXoDUCJwkE6e J3bJZQdgPwYMsk506ClYHHH/CeReHh3QE5lEDrVEm2003eZSS645lAhrGTk34kQHFEEAAnsc4kcR Le6BzDd79CAjjTLi0wM+N+a4Iykf4EMKKckE2cuPQv5444w9KOCAAksuyaQDDvAR5ZRSMhBllPYE 0QH/l10ysUOXYXYAJhNjemkml1HsgaUDV7YZpZtxwjknmwwEEQGYYopZZpd5clmmnx1EgaeeXvrJ 56FobhfFOmeeSWafegL65zpRiAlpmJBqul2kO1hKZqCT8vmnmaOSGUEUgXIZaqacrhpmmUGsCSUf tfKhwJRJ5kjKj8UE+auRPeLTwAIkktgOMhLtMYE+BUzh7CEHHFDAtNVCQM+1EByg7QRBCJEIPQeE G66044prLrX0LFDAAoesC8EC2MqbbbzwLnCvtiA5pE87CxzQDr/8trOHPQv0ewC/Bhusj8HSwlvA w++uKzG7EE9sMbvrIgwwxx0v3K8f3xyiz8b9Hpyw/0P+Btxxwv+iTDLKC8T8r8EmfywzwAt8I4TL HCeMMs0p52yyzwoHjfPCCNOM8L0cK8xwO+ig4zTTJjPcsLQeZ42y1QoffDRI6r6L7cTRhitEEAWY K225bWPbnLHOHUASAMvGPfcEcestEYUdMaDA3oF7NAUyfettuFK7ldTbFCYpLrhzUS6FON+TV/S4 RxMUTlFEkgGAOeSTOyCEH3rA7RwhByATR+itT7Sm667HEUQ7sUMO0eq2h87HHrpDPnvnvt8thALF xr1A7sLv3ZnyewPffNwIfJM39MZeWb2xcSBTO/bdT/RPHNx7f5mz42N2QBz8mH/ZBKev71EB1L9f Ev/681cfvP0n5b9/4OrzvxEh/Pc/jiAAfwMU3AT2sId9EOCAE1mAAhigB9Y5kCJ7EEIFJcKP0u2B gg6MQ5QU4L79EQJXEklgEUSYweUVgB8O8OABy1cAulVQM1EAXAZBiID4ZbAIBSCEA/zgQCEUoXd1 04gDnLBCvSEjIk1aIgCmgMEMTsAPxFuhAlKoAI1UMA4Ec4Dx/geRBEqkiQBQwBShOKLtnTGNFZwA DA+IAGTsoQjIsEwFlwSAGfYwJGjsoj0k0oDa/VGNI2qSF7l4wH8cAB16mID8HDitOhrwf4dQQBz8 gEMHJnEKfIgj/+JQBIk8QAF+cEAkDbkUBBAvlQP/LAAaTQnFAiiygrBUYgY3uMUM1o8prVQlMIMp zGESs5jGPCYyk6nMZTKzmc58JjSjKc1pUrOa1rwmNrOpzW1ys5ve/CY4wynOcZKznOasYOpoqc4f Cg4iBRCf7tJZyXPSs54UaUAC8qnPeZJoCglwY9wIAcrXJWCEahQoPzfCQ3sylETIKOi/pAWAdrQw nRP9IbUoQgiIdW6HIJGWH0ICrx1GJqMPLEDnNtqOHYakKQmIQ7EQAAGTOqCghtsoAigKAJUeoFgQ WddE2jEhd0aEWhStpFFRutMdyrQ51bIIAvbxUuNR9HQUVeoCgpC2hDa0qxbBZ5OIh8EJ/LMAUUDH /xkT8FB/CCEy9ChCPotQrDgkIAgJWFYChBiFuiaAAXtIwPQAcIC/qvUQe6yrDgBbRX3SDq6AFaI9 CkoR5KnVrvwoQF2jkKxu5dMBEflrSPzwUgAkIAp2vSNF2lHa0xZLCAlIrAMAIIRvlFYBfSOEaPMZ BAD4Ya83jIwf7JoAdBxAuP/0KnI9AtcoRMEfzI1IyIJQBCfedQJwzRtcSZeAUdIVGRNAAFmVyFwv JiCICdgHAGpqyiB8AwEHqGscupuiBEyAHnucwAO2m17JElQIcdjrZeH7L9PGQQEJAFxNQ0LXvBHD H34Q7eYkgoAEOFi0oxRtAyZAUbWSl3XiotZfQ/9aAH8gwwk1FWJ241CAfyxAre9MLowvgs+LIMCu FORDAjRCV9btNQGFKC0A6IpLsgqxEMkycAETwAcArLXHJDuwRNS634hoRgiuHWWCKRKFbygrAf/A 7BQxi0MpZ1m0eZMyAIJADM7pN81rdgJ9JZLbHgNOuGhMQEToWtrO7rEIQUCGAmrX5hgTeiJwpda2 moM2ZCDDj8MtwHWZ/M9Mso6sFAwvAEybVn9BmQFKfrAf/gGB8kqExPuNAwLo+kL9gpYicPXDBAAM 5gqZdgKuRXBeD/FQ1v04vmiWsI/9QFeSmFkih0hAA0CtkXVFy8BO2KFahS0EjVB0Cn9lXV0PwNX/ QtvzofrMJ3gPvAB/jNLA3sblDHUrRLoKEQBkxaA/dJBWaZHaRMSoK+DEzJS6BjmfIrRrFPyMAE8f oG8m2u5D3X1cicwun3uICGdNG2fmspbN3zhtSFwrP7TFFY8T8cOPGSBb2m5Xx8ItQkgI60pud5XZ BTjEITTSrMhMK60Qs+9ENmpSpkpYqRAT7A8JEa2JqJNvQ9+jU9UGkaEfwr2GtSAyhKBrPAsdfzvE eYWihYCmk7YBW7/phKerVKaMXSLTKjtFDjCFpLNTIs1S5Ea5zvK5cyTL46OcSYTQY2Lg8jIUCvtG AK9RuhN+fe2QuyoPf3QS6RyAais85CMv+clTFr7ylr885jOv+c1zvvOe/zzoQ5+/gAAAOw== ------=_NextPart_01D5E037.E5F59E00 Content-Location: file:///C:/6A8530EF/12EnfoquedeaprendizajebasadoentareaseneldesarrollodelahabilidaddelhablaCorregido_archivos/image017.gif Content-Transfer-Encoding: base64 Content-Type: image/gif R0lGODdhjgFeAXcAACH+GlNvZnR3YXJlOiBNaWNyb3NvZnQgT2ZmaWNlACwAAAAAjgFeAYf39/f/ ///vMTr3MTpze3ucnJSMjIz/MToAAADv5uZSWlLFxcUQGRD3MTGlpaVzY1re5uZSCBDm3s5rCAit GRmlCBBSUs7OISnO1tbmISnFxc6MnJRKSkpja3O9lBBrGRlKGVp7GTq9Wu+c7+aMlEK9WsUZWs57 jHMZGTEZUqVa7+ZS72NSrWMZ7+ZS3jEplOa9KYxSGe8ZGaUZrWMZ3jEZGe+c76XFUhkZYxkZ72NK lOalUlJSzmMIlOa9CIylUhkZQhkZzmNSWu+EUpRzQkqMIRkQGVL39+a9lELvGebvhIzvGYTvGbXv hFrvhL1zc3OllGuESsVSOjG9GTqcxeaEGVq1GVoZWu8xIRDmQlKEKYzF5qV7YxmECIylUpzmGVLv QiF7UubvSubvSoTvtYzvSrXvtVrvtb3v5mvv5hC1rb2MEBnvhO+9jJyM7xCMxRBSjBAZjBCMhPe9 va3FlGt7lBBze+/vMSFrzqUpzqVKzqUIzqWUpffFxe9SY5zvte/v5pzv5kK9jMW97xC9xRC9jO/m 5vcxITE6AAg6OkrFOlK1re/FY1LFWpxrpeZSKaWM7zGM73OMKe+MxTGMxXOMKcVSjDEZjDEpWoRr zuZSjHMpzuZS7xBSKc4ZKYQZjHMZ7xAZKc6czrVSrRAZrRBSCKWM71KMCO+MxVKMCMUIWoRKzuZS jFIIzuZSzhBSCM4ZCIQZjFIZzhAZCM6czpSlUnvFSnPF3u+EY8Vr76Up76VrpaUppaVKpaUIpaVK 76UI76VrhKUphKVKhKUIhKWclBDvvRDvaxDvlBCUpcUIAAh7a+/mEAjmMTGUhMW973O97zG9Ke9K YykxY1K9xTG9xXO9KcUQY1K971K9CO9KYwi9xVK9CMUQQlJ7QhBzOjFaY2NSQpxSGTFSKXtSrTEZ rTFSCHtKQhDvvTHvazHvlDHFCBDm9/dSIRB7WnNSSnu9rZzFIRDvEDqMhKWMpaXm5v97e2P/9/fe MTrvMUKcrZQAABDv//+Ee3v3//f3MUII/wADCBxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzI saPHjyBDihxJsqTJkyhTqlzJsqXLlzBjypxJs6bNmzhz6tzJs6fPn0CDCh1KtKjRo0iTKl3KtKnT p1CjSp1KtarVq1izat3KtavXqeAUcBg7dl5HCBwcdHSgIaEDBQmMJigQtyDbiBrUft17URkCFIeA HEJxoiMGKXo1QkBgICEBBG2LdkDAr+DiAhH3SeHLmSICDgcNNA4whwCEBAQcOCBAdyAEAvYiv4a3 ocDrtqJLG0jwuh+EgXM6GPgdYLUEAx3oJlCA4JC9uKvB6X0c2TUB0wUIBNBAYI4BvcEJLP8YyJo8 5tUaTrgbXzA3Ad8EHYA7gWFggg3g+s0hjQLBgw32cdBcB3GVZtpA3D0wXAAGIMBAB9V1JuFCDBwC wYUXxtVgARhggUICEiDwl4gcxKXBIQygwABmc4iIAjgtNsbAX/sgIIWKzcVVQIop/sYcjggoAMGM COwDATgOMqAMOAGcABlBEsxYoYgMOqiMdg0q41djCXwmUJeHBCAgA0TqU5CLfjEQGThaaqkWBFKk KKJqIu4D2pdEMgDBHCh4qCZpZPanp4AOJjbhoQcRKaKICggEToUfbpfjPY9hxhwBBqRIWpAmMhYA mRrckwgCZj6AwGkpFmDqAwEg2U8ACYz/moAGCGAWgIISOKBMmP0gIAFBAsKzKQoBFICAOwK1qMA9 CQgIwT1eBsCPl8w1hoGK9xBE5n4OBFksAvYEAEGf9Sx2yAJzgIOZqXUhWCusKhrQa6OPiadqfdEi qq9BKarmb2QJzGhmABggUJi4CHQQwCEIaEnmPbSaJamMYYqJQLaPYbCYX381imRdH4c4GgYK4Bhm gxGiQKxAKH6rhkDd7lccAmp5KxC1Fzt6qrYVB+BhAI8Rh3IAG2DR3IFI/jbHIYnA6GmXizKQSAD3 sMkAB7bauO/WA0F7p0ENIpBIp43O3JgU+8S1AIvvbkqxQALWE0Cvp3l7jwPjmUockvXQ/4pZwCgs ECUQQD85kBQ7Q4AFA9+y1+1o1AUQ7QI4y4x4u59GuhhoGwrE3LMOzMEdztk6wLQCLf79GXT7QQBP XqPW/DXX+yrDADi44862AsYuu9hnD6RYX4uHsAkaraMh/ykWcOccualiefq5ziD+tRuZ4AhIbK8R qpFi9g4GMA8CMjf7GXMK+LMw8P2BhuSLo2pHUH+HPMDwm4coE324CdgOjqlMQhIHXuYuFDTmMRxg zqvGd4gOIK4t2CMO7RB1IzJZUDvgOISGUCABWingURyIDD/0gaIHmAgFetEACgOQiLKBAwXZKgAH xeWOVAmEAJGaGwr8gRosjA0DHGCAAv8cEEIZ/mogEujAIaSgBiAQywGBc00HVNSPbBEsiIfYAArC Va1DYEF+2iJMhWQWAAk8CgUFsKIGgogC+UkgiGCkGgF8GJcT9Gk09ygAECpEwAIMhj0TDCRCaPWq oQioAxtwhzJmNxHmYK4gFRKkJHkigX2MRigkIxJcLvKoRxIEC4ycpChpYsWi3KOUFzmlQtQ3yla6 8pVN0YABCjDLWtLylrbMJS53qcte8vKXvgwmMIcpzGISswDzuOU8ZrlMZOJyAwaA5i+TacxiSrOa 0qQmMpmZy2vSEprerGU4v+nLZs4jm7UUjTipuQFtLrOdunynO8lJT3mKZpvETCctq3n/TG5uwJMu IQBiCkDQAjggmQU9aEENilCCKjShDWXoQh/q0IhSVKIQnahFN6rRjmZ0oSANqUhHClIHkPSkKC1p SlfKUpaatKUOhalMEzrTmtb0EBGCyXUIUhmeFqSnAwGqQIQqrZ8a1adIDepRlZrUoS7VqSaRW0ju QdSX1AOVMckWVmPCjwfk9CU7TUA9EkBWsZqVrGMdK1rPala1trWsaYUrW+O6VrfS9a11latd58rX vcb1r29Vq2DXGtiz8qOwhQWsYhPLWMCe1a+NjSxgYeXYwUb2sYQdrGU3i1jMSvaziw0tWQ+rgK+6 xB3aOaw/6qFaHrY2Aa6FbWz9wcPZ/9oWtgl47Wtvu9vcyta3tMWtbn/LW+ICt7a4Ra5yfbvb2i53 tskFbnSfO93qUpe6h1UtbLV7Xet6F7vbDW93sytc4mqXu+FFL3dVy97vure78L3HWBUAyJiEFbf4 jW15eVje/ZJVv9Dtb4ABLF0BF5jA2jVwgnlYD/4e1rfS5e9YHfzf/j4YvdDNcIQ3fN7oqtfDFf4w chs8WvxeGLck3rCJvSviCoN4wcwFcX5DXGIORzfFJ4Zwjh+MW3CYtiX2SK2A1UpeCK+2xDk+coyN TGQd/7fJSYZyjZV8ZB7v+MlTrvGDa9tkf0RZy0zmDZWbLGa1KvnBEBgzliEMWzOvWf/NbN5yhauM ZBdzGcwoTjOZc9zmPp+5rEXm8Z/DnOQ+x9nFV3ayk0lbX51qx6wIBnSJkStW/XYYzJQm8Yn16+RM W9q/MT5ximOrWgiQt8ig3rSiNZ3lDo9auod9dYdJDetK+9fVFOY0cq1cYhLT2re+tvCiZ1xeVJ+4 w4UOdVlpTV5/mFrZp1Y2f31ME9QGYNeThraYC7xkCgc62xRecbTTzO0iU/rSH87vhNds7j37ltzN XraMjdzt07yYrOSu8bv5e247y7vd3R5rtBN8aGxjGsu5hveyBV7sbQ9buVIWtLsVnWg605cmYWWw og+NY2Ere8kEZ3Wswz3ybCe643j/pvCrZd1tkPfa28BmcG2fTfKPy3ngLr+yzG0t51c7+9UUhy3N Y07jHAf75yrHdmw7XvKdV9reS4d51FccdHqT9scsCbK05qxtOdPZ5YPe9IQTLGdF3/nYTyb3p5vN cLLTmNIOVnins01vqtN5yxOHc9m1y3BDO1vp5cL2zRWu6nWvO9wPzzKB9Yxfqnt93W5f7pLpffeG 3zm2EHhAo8H6aF9DYN3Djm7oIV91Z6NY8GZ3/IaRTnTRo73nMX/2ob8t4YSXuu6RjjZ00W7jmaeY HVw38mmMzm8IH13oXQdzyXmeZZvre8bOLjLKo83mcE9f3MvB+kqsDffQixrL5pY8//W/zt+6czfi C281og3r8tyqncYxPnK46fzpPmdX4VJuPq8Nrdo9D3/F5Gd/0gZ2eXZ5eHZzbxd01Md224V/B8cP cpdr8VdrAohb8rUcmwcSc1AX6dEaBXFf5mZ8zLJ7ondotpZ4ykZiHRdsoTd1JgdqrLZz0VdWQbdz Xldn5qdlkdZ68dZvpMYPVMUsQMgP2RVcRHhq97BaSRgXuUVqW2d6PniAk3d7vBaCzEd3ROeCpldy y7dyxZeDwUZtIzEX+7AfGiAdBEAgGjAHbLgACvAqOnd4qSd1MZiA2Pd+BsdDcvd6RSeF3CZ/kpZe E+h6hFZn9Td/bbd+YVd9vIEBjv+oMbfwiBrziBDgiJU4iZIIAZGIiZgIdYHnZ3XGgPFHel9GcCHo ZVy3dwlwgV84YKCHcxg2XxloGETUFqrULAmQPWRBGLAiauLHfA32eU5XfNInc0MXeycYb6yWegio arP1bOkWa/iVYio4jAWWaNHGgjB3isnIXETDAB8gDu0gjuNYjuJ4juaIjuhojuOIjisEgHjGiMvn dPGGfWhHZuBGeac3Z0M3g5C2fv/1LNlnEkNEEAVARgPRD9rBcJQmgN1XXczFeC3Hb31HgvNXiORH Zmd2GlTmYowXbzDWfV8nbYlIeX1nheT1fninIxNwAC55By4ZkzJ5ADAZk3cgADL/WZMzqZMfQBd8 Bosfd5ELlojEaHVBeZLk9olLl3IBB1ysFZCaZxIcUD4OUB8GsVMjaGszWH58SHdyyHssJ2iSxoKg FoUSWGjkVYfX2F/A54+oB33KR4Mzx2tM93QTSDQtKQB6qZc3KQB9uZd8CZiCGZiCeQcf4AA4l4PY F2BC53P/R40SaINGqWLBdmWVaWccCWFiSBIDJC4owAEEIDEEEVZlB2F69mswB1z7R2AE5pSguI00 5mZdeXZ+Z3cbR38TV4jutmWHBXwOmVygh3j8RTQfMJiFaZyA+ZfIqZchoA/LCHAruX9iB30VuZZH 9n6TqXNGmW619m0XVxIawISh/+MAwlIQ1tZwujeWM+iLhtiNrEd7yXUa1YhWZ1l188lvexhjdRl5 Obd6FAhsCmaXSqdteHkAy5mcx4mgCuqXhwkrcTmgtCZyIBaMNTd5+rWCoThp9rZ8P4mMdVlaGPdo pYeDXKl46oZ9jVdosrdcswZ/aIefFFliEvmF3yajNGqCzQhus9lmM3qST1YsxbmXfamcyJkPYKCX R3qg/9CTiVl1aBmIdded9piK/4WSv1l/4xdhEyaLGAeHfqhq8PlgwXiDYvpriVlkvml9Euhzs2d5 ++iPiTefKVh/zxmPN2hgKFegB1qYSWqcSXoHYJAPgPkNf8OHK9hvQgeUnwZ6KP+nX21plECnayO6 mtG1mTGhdRnalbxXeAH5ZzW3kv35dZemkoSVpSumdj6amH/XX0apcBBHqlr6b/o3WsQpmEl6q0iq l4K6p7vql3p5mBuniilaXmbmZqCIbpbHkBXpZsw2WhIJlO2nZN8pE+5QGNh4ggpId0aYgGaanbjn cfxwqIyZjQmHolUohQQHoBepcd3argS6AXkJqL26pwLQp8sZqL+KmMkHlKNGghQ6q4jHn5OZYk4W bEDXdGbHQ5bqaA76bW7Xf2BXnauVb4PWcqBaZR/ZnosngBfrmsgWl+iaoYcom1P2id6HZ0Cqq/NK r3uJq7kKmAcArBXnh8Jpokz/hqphFrDC5arRum0x+ngvSFbTal9C1rPJVqP+6HboqZ7+WX4Vmnjo xXLEdmUO63yb2nAByqIBemV6eqB9aq8su5eEWqMcGpfkinyJyHf9VmoLWGNeOIEvOmX5mVtXF6IB 0Hcg26TemqmS1oPyxn/7WoGA6LPuR5tYmreKmH8Qq2PwxnjsWqzgJ2lOuAFBCpguO5hgy7If4JxC OIEDaqWLCbjDCqoISH/qN6Kx6qL4FpUzYW1LmJiROlpnK6GIO2whOI9MKYFTSJ8rJqHXx57/Saar BqMgFmDFWFZ6mrlh27IvW6972aBf+nJMC1yyB6bxqWrEyq4AKIzrZ6jzN3XZ/zVWC8t5Dpqh07Wl LWhnJXm1i/tnZReAoppviopvgCiUuzugfXhY8tueoktu/gubTlgAlbunyuu8exqzBdC2fvaKvddl Jjh3gCi82ips0yljR0tWzDK0MKF19UeAI1aiA7a0FpqApZuZWei2I4q/rFehaal6ZVunUKufhztj Dda1zVvABry8h3m1Uwtmstdfl5mWtceRmbll+Xl9/3iZOGi9sQWiM7FTaety+wuAeAtwwRqU21a1 6MUbfmZwRkd3QEu1wJm+UarAOju6GElWtXqgyonDlpurNxkChUqD90drs4W+IDms6gd4kyZleThh IWy1FfhurCsT73Ft+ua9L/+4tiQswod6gtc3pirGhaF2ob8mwje4dksrxpwMrtYZF/BqoDlsuSvL vM2LnGMrVkmIxIWGqEEswy7WcZK6f3UIhbHJwlRKXuN7WiLarLU5sn07yNIJxnhIuNj7s6drmvVJ opiGtyN5rQrMexyLg6AoNwKMnEkqqER6r8gJrN13YjirXftrikw5iGLcrI6KcNXJhxOrcYYGI3ar vRbLu0nGaQ8Ly7orxgR4fE96tqYHt91IiB/GyoF4pjnIziVmw/eqzW6Mufm6xU2adNlag8a3qvY5 fxs6iJ/Ku58sWxDgxDKBqchaayVaZKhKsQw8xhBbtVWHnbx2Z3NoiBqZgjT/htK3Zr7X2p+pB1wp m8NuvKt/CQZECrY9yYrVaX8ROIdRrJ2VZ8dztr7+Rn1r+YLS6FV2a65ym7R1xoJR+5BOq7q41p9C XMRLbGtheYCarI1mJX1ZSbY6Lci+pdC2is3zWsqC+Q0OAF6XiXIfR3XtJ5YV3Yfd+3LcK7IU+L7O BtIxwX1VPIrTPHdXhp2VB4EwDYhHLX+NjdXJ1q0pHJy2GZk+aoBr2aE5tsZh26dG+saj/Lx0Yc/+ Bo/QSYCC7IrgR3j5yNmLGJ1mpcHka8GSO9hX7NYwdsIhSdI3tsyuXY9FadBTHcUajWLMopgsbWze GMp8+bWqvbzNu8NrfcKR/2y/cwqy2ruVtUawuFthjcqDG8Ysu9wS9zXZbJZqOr2SgxaAB51++EWx HstuFuqjjFh1xo2A8Yh6dqy4R6kjlWvX2r2cMesAFBhprcnDEgy0MJ1j+j3JNEeKBra7vsXbLqF1 wnpVTQiZAe3WWruqh7ufm2yiAh63M+i7nWvQNVenMyyNXz3MQSnXBKza9pq5eH3PiSq9Hytd343P yPdp4OvdMmjCOTqAdfvEvQzB3HpvUnqbE1dqrh29Que+yZpvuCeHFYrZO82Ap3h4DKlsDVvQoByk 2G3Amau8ONyTpluBpalmYmm4tvl/VS7gn32iYs7nvJZ5s8gS1kbJt8nk///YjQT9scIN11I9w9dY h+9b4vFJ4N9q5NX1u3+t49is3X8qANytcdEY5P6lhcP6yle8jE5dfXreikKubYrNsMFXuiVpgBF+ 2LN6xVQcsh43uO/rwINbeS5WeujbmoWLcLUbbT294AueD0xKpSlHlJFLYTg7YlN6u9HufBFJath5 aBfo4e7tpd0Nn7UH7W59hcA7v7LscqzW7svF1fD3r5NMdCa+5fS8ZGyKanMHbDbc0HM9ymB7pNx9 exJaj2WqiNyrjWpXvRxN3fDp5NGrqmTV3ixBmuGlbs9aXr7ZoU7t4n+9x2qOXN0u2rT58IfbzoIL 1Qd2cH+3Z7rXd9lCuZ3/7ubMDphybNTzpoqkWu2u16Ptec8vjYWiqnhHjXbgnnWPVqLH94wD6O5Q CmCFjcvDS+SpqdxZvccMr532Tpn57J76dskXrD7WvbwFbK+AOqgJDJF1SruPCtgHX7wPXKPLqOIr Du9ITPHbpx2m25r725Gkt+Kbjcd8i+Wg2KY8is4l+2ahndIx5rj7deZ3fKVl/fgITphCzbJHus26 KpibW31KmY+dhsdJXeGyWsEkiOseF6XbGWNHvxIZ59eUTLAaxqpGzHytnPq0vNzpa968a5EdDZsB +t9o5nUOSGoxfoK1JT55ia/z+peaP8ryWpghoK8Gr95qO2OUrL+ztu5i//mkeniPsMm2M6uZ2qcS Fv/YuafMOj3nfDjOyefF1Pxh1b9vf7vSWIuaFGfb9g+XShaIMbrmACFA4MCB+cAIPCggIUGG+RgO /KAvAb8ECfxVnGix4sWMGutZhMDxIkWNFUmSDLnR5MaPIzVSPMnS4keYGDmS9NcyAc2VNWdmDADh wYIARY0eRZpU6VKmSu0RCLDyosuYODu6rMcxq8epJWvGzEhxa0eSVzGCrdpxbMewK8lmHNuV58q1 YqdC2ApWpNedF7NCUMkvp9yuFwNs+HDg4UKBDh8SZKwQocAPDmrmrbjVHwSfFLVu1tyTK9zNN1Vu HXt5L9+vL0sSduuZr/8CDU1t38ad1B3UzjbnZswpU/bwwMVjGzft2jNPiilbv6UqVXRavglSRleu Mbjrqzw/ms1e9mdyfgEKTHicHvJk9QRD6KtntabIucQL7wQ+Hnxbq9ytOueuO7ba8u+tnxQgKjcF F0yKAKhIa6sr2Vxb7SrOzuqLPwI1FOs11jIULb+U2sLsrZiiQ4stvbSbjkV/JATvJJdgBO2wxO6Q rD0dc3zojsqiWvGv6vqzSi6VTFNNtM2UJDAtzwBDsjqXIIwJnNoYxHJBBwP4r8LlMhoxuN6YO9Kt n56Tj64QUZSqpbm6Oo46nOoz8biQyHxrRJ6uo1Mlt4Lz5zD0GGIsIUP/d4zsnw8KkG2qeq4LTybs AOVuyglT9Ok7MY/Tr1GesGtUOgSzJBW3p6IyDbUpYYyLSRhJSi0/FePUTquSBlyR1c3sCrE3Fstq zVfyMvTrxdF+JXFGKCuyUbEd1YtsPYG+YRREOFslsFgMtQOM1yZl9emlGbMza6zQ4No21o6sLLVd pnYLYNP7arqzzPk43c4+nTgscCLA8uvtS5dS2jfUsijVsM5ZIzTQ0ZLY8ZOfbo9zGGDzPoC2vWjV O2DRWE8UDkOIoyztTQOJrPNgmeqkcUScWhuWolHdpfmoLatLAOI11VoStGErnfjnmEqEOcPn4ISw NE7vbThhJ93CbEpu/+/1NdcMsxLU2Ts2fjYhHHsUx4F7+NLswlcjvNAsS6GDELOPpfNVSJ77JQ4s dmvGe8soi/Z3XLOChXTTFpveGWWFQ3U4zUsjdHPpAif8Cbh6BdSrz1ATsLGg9A7lsSHOFeq4Wp8q zpdTtU0G9swyPUQrTE0BPr3p0tuaGW+aT7WW2MySU1pYqHsml1/q1l78rRJBsnd35cHbq+ptz16b wogZxkqkibNerOtnp3UgKll7d+3tJFOdlKuJw30OdT+jZDHZ7Ma623am+LmnKOsgUIoAd+KtdCZI BdbUm3TiqZMt7HD4mdCmira3/Hzqe6oD3+Dm8x2w9MsvTpuedj5Vj/+LDSRaX9MRCNMTOspt62+R 2w5H8qNCR4XJOAkbl77YlhOXeciFrqmd/JKiASnUJgEE4AAHuoeUfjyoYRNjy7yQpS0PFTBYLCMb nCqYIhAVr3yf6ZVoWsWrJPVmNUPj3Q2xtznHgFCEYHBIZBhTmdE9rolwYlNfLlQko+HHb3SBI2Ba tSvlkQ92JeJI/HRoFH5IgAAomEMAHACOAGBAAQkwADgI8IBDGgBI/IqjyiLXHxrG8FsFpBVIYlbC 4o0ugJscksJuErg/TU9pCkQWmkySuexJ6yAGydhDQiA6UZLJYYCiILisA8fGtW9VzEkTw/qGwFtJ DGkoNJFQEjTIo1T/RAGJLMD+7sEBCBSAAP0wgAEOcQIumRBWKgyY7p7kt3MubWxPU5g6lXc5bRFP ekpzG/uotrt/nehC5tqL0MzUGuzhiGvb25wA2Gim5LzuLtGTU5mKZbZWNk1dIHvo3NqYurHQhppK 4UAi9dGBqCSifkc5wYMm6MmAQWpWBXvgczAET4wGc2D04RPhUEJHThoIlWwS3Lg6ablQBqeDCK3l jhb1xKtICIlPS2dzVsXMdE6VpivbJwa7co965PCjReGAGgKgAdosskH98J4mm7mtc55vhWl7krf8 co/BpJJhOAFQFI1ZoLdZKGH1oOtdM/jFIy1LilXMokbGSCj26Ihz/5GhlvdU1Za0gTJ1jksTHBFb x096cT9Nk6s1r/RVoxjgSgVQADgk0CCVCk9D8hJmCStKTwcGSYMU08mwJmcwAQkOZBVNXMgIqDrp sCktOaFl52r5OfWAsDIrtGvd+IXBkHUHQJ70iOmsSJOj5bYn0iQtluB12bm1koXLsxrI2nkfMsXK Z6n044pikja/nY1f7gUuM9kJyrq0crGNRepj0EgZy8wKqrmT54Hh66FgKsm46PUTFD8pyPDi5mZP lG46V0imOZEothy5h8qumLA/1ZC3J4LpFH36SyY5UyM3TOZ+fXXUAEtLuQPpGHyw+6UYNfBPMBVs hyk1PPwU8MErqv9XWrxaYdt8M63mhPJrg9bKBLbvSVHrX4BOlj4D/WWAfYRrHS/bxvdCqI6TrZ5G oVieDUzAWcsNcLR+FGXiCBNG0CXa8uq7xKYeMJWtwZbdRsvk29wMqK61SuN+lsJTTvU0bfopFVfl yTvLinCuJV2WNduVO7m0yhsyKmI8CODlijChCnUAcDjMVuK+TmCru5fgKHvBC/rrQ7KNnhJbs2RC L+VU6urvQIv7oY1Kz47fMo0SWxTsYy1J1bqebnKShlhZ2rqNV4PNazHX5jdrrCHsOagAqJVVvhnM 0Q1l3rKy9dYn9pdpHTJemaPk0V7fBl4UQ7Tj1r1MFfsjRdjZbWL/SYYyps0uhetrXBs9ncGI3vPF d6YUBwuAsRojiiChK+WPB1RD4nbSqbDVsKSLc+190rO69wBvvZsMlZ8F+6pl9pb4kNfwYjuPy3Fd 3gnTBMjpYQqPg0tzR0aGFyw+cLFfY27FIVLgWKmLKl40rKVDOzdb/dvMWPRW8c5F8ATQW+VMubC2 ZflvIO+XPqG0etqNPKxDn9CNoBL4Jw9uT+lBzjM0xqW3c6TG9eBol/apO8KRbTJ/u9KBUrnqh6wq Kckp8Lof4fXXjeJkn47Zz7GE28/h7r4TApTVYBL5w9ynQmHKfHDIdiKE0UkgDnLbsRZvT2R/h6F8 6pVbqMm8i+Y4/3Na1dnl5brVYddyEQpL/ii4YxtTfc5jWevlhrBcovqS3Smgr1pld5pgj/08duNg dFalu7uob2xqhMo51erdD9LuM3cXUTAlk4Poim2a+elnsuddn6bxkTJeTv0+9EJNGdq7D3wZrPc5 LJ8TqCrjqcyLKNLjlclyHrHzk/8yFMcQiK1ROh8pMPkisUwBnmH5iynZIgj7FsCTDc+THBDBJPzw Ov2zmdZ6tbV5MlPKqwB0ld6TlEeZkQZbje1QJioiIBdDpWwJJhSbCHpaOCNbGDGhMR2xQHAbNcY6 AHHgpQ5LvXeLO3wzwQ3ZN0Z7uABZnAqilKFwwbMKgLFxuwiknv/ESp0UwYzjsrLu07bCwyzWQx4s Oqxps7w/E8BIMbAm+i/GurHXI4g5W0NQkhwEpCgsRLCq8DljiypIbDEIaMEyDIAt8SwgBDX3YyDB 2o8p6qfYWJZw8QsToy4iyzgyG7nYCcMIm51q+4rkGsSk2h6MWxgMYxwlaTBJOzzfWkJOvL+GaTRF w5DIMz5KmsF5kqB165BWbKd8y7ckucHjiSjeKhtpRB/d4bkLOi76+pba64hAnEWGwMAcKUeG+AYH AKzOmi2bAC3OWpHGc6NYY0NQ2jP7Kj4XLKJy+q2L4KqS+EcGKgyiWjSsyrJ4rLYDtEed2BdaKw6S 0Q8B4TPVqbP/GGuTJoS9xngMC1yIRbkzXoQhVeotXzJIXMFBZYq2NXE1/LPEF/Qettk6FlnH1dM+ BSu27zAzTQwf9llHeNqx/iGqBXNDwioymaozw3C9aEk6UmsPDTyweNQWLnohxNEr49LJnGTH0KrI BMhH/eM/IrutgCqcSDEcz5oKRiwa5pOdnaEbu4K45AOTHUQWCnGeoPoIWWTK8kuPvzOgqrguDzk7 I+SkluA4aQtIOqGRPnE0ejENlCPDliyKsCuLa0we94G3Z+Q8WLErG8TMrUQ/97koMWPHmGw6sdSi 4BPJFRLHxzhHG7Oxg1ioSESXduov+yIfdeMVJhIM6Aq6O/y5/7Lho5/riEosw1NJxoqpy/Xhs6OJ kOiAvprji/NqQ9NRIkcbQnpkJilJvejLomPCnInzIFMDoSdUroPKh0UJsRbxvnUilz3MrNjhnSbK LMRsn9mErpowRsm7GdiJQ9aLDmqks+c5Nn26up38J+wwvYPRI2VRnKX5yBKrxmFLJp4bI45EiDRy ze0Zt51AQ/GASpsgOlqpJyV0x6Droo0I0Vxzq2x7xq40vnv7R7JwK89yIQZCvwm6jsJMIunQQcDE txKUQIpkuJXIq3bLIrBYSfRzDrxUutdcOheZri+BTrUMqvHQQd+pUu/ruISjsszLz6/Tm/YUtj+6 iAPFwWDLQ/9Ac84+gsfRiD99U5ufq7Y8gx2BmoolCc2fW6xwY00+FYA7eI+Yo7vQAFDWKazcfLTg /C0PVcEFHEAFPA4X1U8j0kTlc6W2VDzE/I085E2NS0KfDMD6G1ICukc8SU7iupwO8tOkcwwwID+I qJaflI5hurUshZLXkdAWIQ/egjuOk9LMEJAvVblTWT4owzLLk8q1XC//TCzK5I4EvZq29LysK7Hs 0s1bsznMawtB+QdBDLfIaFUAW6gIm0MltEbNkqWWyz0FHUGs1L3ddImxIU4XDLv4WyDfmLVP3LDv Cz7v+tUEmj/pWss3VZbmIUIorTQq4s9FY8hmIcQmBYNduiT/pvLF7MsTpLkcFSOzylm3odI5dDET C3lMyLw3moMyLETUuFFIrOtPjPXNZ4yvWV1WktO3RglROwrRDIu3aeux1dRLpdrAEKlJDLGnv/DA MMtWtiOXTbtFi+CjdJpX/cNEg7RUmsyyUMUIc1WJJJPR4KovwoM0tDQJroU7DqTDwGQ1KxLSGaEl pCPEjSmUJ41QwWzaweTPkMvBWeNBnOwwzwLS4BDWeqO8jD3TODrFQ/1P65m2otMkqxNBwoE5zeMn vgoj+qtHn6oOcxmjAWus1qy4Df1Mv+Ubfx3Snb226XO43YxTD3THFZFUMKXUy3W7KEXVY+PBkMm1 23Kxf82Z/z950PuELpktSsPbV2yFILLYJ7YFz4whz1MjNY/8x7790cEMieCax2FjjRpsox5dRgYU RpaEzAAgVrTLSsuy3GIRKor6WPTbo5kStjecPbgUqjWNLTFd1GZVXKR0s+1ZiP5tSgIjVGjTr30T JTn9PNoUmhG0zaKavXuJ2heNXXbsQHwJSk41OOKC3LHtxHtVPI3riIBLosP7iiLNWmT9UWDaNooL zyYVIVwKHc0qSWNB4eacv9XDRWW73+YgOyvV3QcCk5FtyalFn3c6UiDlrcycibOJSakMzXP5JHDc wkN7mqoTTg5LywMOXjbb34QgTz/1oOblnmNdxVmVmgml3/8lnBj4fdboQlgy1iKXeOBJPcPtqzz3 HVrD0dFbYUbiVUg4rMzq6ksCdNr+IVzBcy1f/U4VFsTFcNsbi4yIWKssVhFThLpRMqU7lgpYQh8k 6iThOhLIyz9LRD7Amqvy5b62Wb2nhcm7UN0Eyln5xDYt3LL1hZ2hDMUN8cw0pJUA9lnXBGMdic1v 9ERfia3SVEYaST3g2U56PJepIr5Bs0RDk04MIeJH/NDs452PyCluBFa7PcpVRE7T6ZfeusFyU7WV iN56dD5KwUsvziX2CJ34MMipcqAhU4vVVU6G1cVEXWY0ThWoAV+S5Q1XIdQOJV/mHFrCqCGWgmUs S5dVbDf/BiJNxn00MZTkTsTcm1hNpYzCjk6PdCTiAgFAIAuN3z3llCVaPCvbVXwbFJFXaC7D/bRo Wv5DVoTouNyrZGpAWoUhk35IuUvp/TqhOEo2U5Ug4jgqrnHVdyYI8luU1DXI/4FSII1Ix53eimAl VbpdtbUeII5mtBql+FTPXcbh2XM3yT2giZpgNxq+BV3XSzXnePNGAqUOdAmUedjf9vhlaCkjAqNW Op0vd60qP6zUXQaJCpLk7AIj2oHp8LqHRSIAmJbMc67lunXjRKVPwn4NOrFCn35OQ6UUuQSg761d t3vFxFpDJnVkj9brhODLFurByua6AgLhw0XAx7HYEUZm/xYCZZVzgEdaAA4YG8AADHBAq7WcLNrV TJwr6VAqiTx7JX6NXD+eizehKGkT1bswbbjM1WKtmjHy3BDau/bwBnUUy4hqaaRtUz8c5iemSQ5E 0r0Iwfx4XR1COeMmAANIgA44hCDiAAawJE0kSpEjVW6BSG3zYG4WXTuWqsJgFXw9Ce3FahRePMqG RdFIz3pMri7Oy29liOfyTqBeSFi7W5WUSD++8AWrF97GiMCVHw14ADUwAAK4BwzQAA1YABhvLTUu uXAkkbEhyvJl2WJLU++Np8vM5I/FNG55CbcucfO144TBnlXdkVdFNeaczoyTZBQkUVHt5wC0alV2 ifrWof8CYKQAOISTMooT2J9kqmph48AALELrysM3zSowd5Xf+rLvlTYhI90uxUUMQguMHEcnjFvK qJZ3tMIgFEmBRRMSpi57WnQidJ3ZCOUKg6QHAIdEQoqwy44E7M6l3YgyLq6nIhZTVzNveSl0MvVU bERdncuiATLODGmw6GUBg8IdSUeZc7oC3U6DfcQ8g8NkjXOx5ro4/ih/0AD8YS1UIecVN2qh5dgG DWHq4donokm4G0hKo9V+5LeD/UVhk3QoDxbVjkI+PfRCLIDNY+hPr2weRsRcfik23lfucxjHvHR6 PW40GzaIRLGolMnp4xuHLN1ExMGZVkEI7GZ+VvSYUib/dZmIWsffbdviDGVhv2bg3LksLrfZIxva nuzUd6cjKIfjxtY/3PGSd/Rk5fSfD2TIT8ypXJbecInRz17TSYNq6lJsPmfvgy4JQte77XHhpTqc RcTaVvTGhTnMct00xRQgT54vh3FxQuM/Vs4iNSbQ4FyVhaaSYcvTYlvD6kzpQGbIJfHunNbl6TDK 5KHApr5Abz33xwhmjkLNOmaSnQ37537v7AyN9JJEDQkNMu+1/RRSDYbldtfpIpMaZXOhUyZYFNJm 2MLzR5VgVOrsLyeJar7niTD3O8CRz//T0A+wKSyADF/DX3UtIeWtGEUZdk/s7qJVgarPqWcyISY2 nP3r/2MZmuKqJ8+jU3W9VrVL3+TWyWJtb+JIYzt3IpfY3NDPAluwBS+Qfi+A/izAhwOw8o4+iA39 enmCL9x0HOGL7b7HEAAxW/vcPJiQGZM3Pr0puz8XeMF7GQwmrOjmj2sfZEcnkBGp9rLuZ44FCH8J EvAbWDCBQIMEETI86FDhw3v1GC5MEKDABwEH7uRTVCsKSJBeRoaM4sWWgDsCwAhYqbIlzJYHPjhI cG/hQ38TBQqEoBPhxIM/Fwp8yPBnwoIFeVZEqhDnwKFGlT5lWvHh0oEJIDxYEOAr2LBix5Ita5as PQIBKGbNWhHqQaIKmca1ys+fz6sUF9azG/Xp38B9n/9SHdw2MDuIcKEy1ssTguGGjAsOVrwW61GG g3UG2DCBo5coYaLYypLvzsYDGQ7gy2IrpJcsMfPFrE0za9G5USEzpfv3YGS+fiv2hQDV9+HkjR8G xyy8IDgNZ80mKDBnOnayBNwFSAp0b26hUTcH1buYeNOmOyn+PLzYae70Pb1Lpmp+qlaq9sUD9TnR vHf41fVfQgkhdFEEjSxDWhaovVRbSy+9FkZsL7HUEhgP0iTXTuvJtxV9hxlIlYHf5UbffAT+Fxd/ bDnmon5VaaWAV9mJBQECKBwiBQHG2TgdAWoBOFkCg1VmYIFF9qYbiUoaJxdeSgZGWXgyYmZkbpVR SRj/l3rt16V7yC2G33vHEVVPMp1EoUg+B0D4Jkx33KGISG/S1tJtA20G41tbCseklDjhZdWeWP5W H1SROXdQYgJKSVV0P4qVgAMKJIICAghwMIdFkooV5FpejvdhfG3llSJ6kh1VD35F5cWfUOWRmWSS /JzKZYy5KiZqe6P2OaViX7KnokUQ8GGBOxqlBOGDbx6w0WukLVsbGBu6FSCXvvn23bXo6XTrrSfm 9dZQPJVHpK7kDpsAjZ6GNQcBDzCQKQL7QOBuWGkFEKOMpQb7VHF7FhUfwarC+qiLLmrLmJa43tfl VTcJ61eVW+75a6h+nujPInYsEswEbsIZ54VvgiaE/y13rtRSPiHo02TDcvlJ5ZMHb2mVv8Ul3HCY Bg855q4CKSCduxAwcDQK4CxgXKT4fgXqrySeO2t5tQ6U16lT/2pueqM2eZB/vhYULrcPm81vl1Il 3DXX6eKWnrHL9HHRBxtRCxNLKmNYG7SjNWhbAVndGquMXfPbrXGHZ1Z2Zk4BuGKRVZ0rKkRc1ehp AgQQ7XRZ7ghJZHpkvq1qorRCUJdwvElW8H17KmeUX8I6el6M/ioX315xmQcXBHbYUU89nYUc58h7 j3wHPlHgYkuz3xSwlpaJyyxllCLu6rqVei5Z5ekJW98W6182N1DT7t5DgAMBKGAA558KKfuhZi4F Of9m4n2rdq9Lqgdl2cOxLSvEdKW4fy1kXL0CjNoOJ0CK1MMOfAieRTACk3yUrHi1adZGvIAyDdXE PQdbFei+NKiqEalA9eje/rB1wML9C3b/Asd13JUAFDDgOhxAAPva97R+dIeAlNmVxn5FOfaYCSFP wkvDvHMkwGBGIEukHPygeDbqIeprwGKR9gjTh2Usoh438YfwRBaTC1UwJncgo96gJYRGoEYAeRLV zXajRCeOCIFMpB4KQwSsD1mxSXBUVWWGhq8EaOorGkCAAnT4FX1pjX8TU8irEPWibZUNVuNyi61s t78qArGT9zBKJ23SpPnkp3Bt+8sn5XKVPnjMLZ3/yYgF8TYblk1LJgeAwQZnEjja/QUp/2GbYqpU Jj0+TFdhk9xcGkk4mXFlc5LiBwGUoQwEKOMQzuScO04QgC8SaYkzk4yhOEmchckvi6rc0qyaIr36 DREuBbnJefSiKITp7G1+ml4AtriIGIVxZXAqIxj0Bqc72IJCbkzfWhJqEaWQ6C7+4Me+PsnQhxbk Ml4UZmX+9DrDBbNM9jNbwSYiSKdp4AQEKAAYFRkAqB1EItkrF+iS9B1ykTBssNNafM6lSWE6BXJ3 ZGfUHNa1D7noklf8Tcfmph66QaiMsZTlS56lCAp9YAMYuCpWswqBq24VAxqAgAayytWverWrGOiq //Sm91Fleo2FoFxmE0G3lnY57R73CFWndAg1R26No0Tp3rb8mBMCnqijuEvn2yq2K8pdRooeBRjQ khg6hLCyD34Eo2fEeLfikXFkBygoCLBAhG8QQQqjNe03viGF1K72tKlVLWtjW1rSrvYb4uAABsL3 FuxNUp7CvCzovAmV8knqfPTKVCIVCSr7BBY8JgJgAcXjwZ+mrUPrAuoy1bY4XaVyUaHkT68auscT aW0i+fTY/iq6AVj6c2SdfWqEbCGEKmSgvva9L37zq1/94mMdUtBAKhlX2Dp+yaaNC1pQIllEMtHV UzhCgQMKEOFrOu0BPCxdKZ3zmDlKqTIZXaDPwP+rGzpqpkqPQVQ46QMmIjW2MDJt0Tf5eBR/sHKf wUlIP81oRqe6l3gRGscymJePfMhmyEY+sgCInOQjI5k2TtbIBf67lhfjMYR/ok+Kz1lKtYpqpJ46 AgqSq1KwLFcr2GJnOom40WIGjSCRBFvBiNmzxmnNu1sWIjHzJ85yQQ4CcuDD4wjC1Nm8V6BPLdkB wBCBcYThbxPk8aOTnDceU/AC39AAUEf4R6KKqzceAppLH+bSrgzyEIh8AAE6gFC9vk/LCvGwCvma u2wB7LCB+vBkA+WcyFSvl2OCp0MWuMABp5VX00vAn72oMIbkGL4qeS+kYRKBInih0c2SZXtrI9D/ Mv7jAhyQDokb09zdZdmImbGPZPVYIAh4WVIQwAINGaAMBoBDpZ7bJrH0XFhXHzC82QIgxVZ3Hvz5 0Ih8Zhwo45mxLaOoPAYE4EMMOBCJ8EEO1mVukV6Jbc7CF0LtoMA/hhCG03T80C2xNKbHa+X3jG5+ z+2oW4AGlQaPmdVT5h/usKVrlcd0jwMvnBWtLOJusdmxMYoZh4fDHO9w7Hf6a1Kzm1ry9lZw2gfI AkgSbcFow+kAFCACuN9MxUxXZZ1mDgzrSszRhhHXU5VSAASep1J9URmORjUx0NCMLmQSDotiF3r2 FtPdvafLhALn2h+Rswi5WeVMChn0Zsd4vFi2/6MIG8nCMmoheeNt/r3tpWAG/uvyXMdUp+vRe99z 3e+F3MNyTgMHCqY5h33k0OZTHOfOQbrio7bq8BguOnDENT7AvGXhCoFnmXB/KKPg2h+3aGUWUXeQ HJ8xltCmDY8vNO1/tAQGy1DEtacOoXxYOreHKtGXBpse3n5Q5xjnaLt/REgCnAABhxRz++6d+koe WHSdrN3kCEha2cqQABXMnR2foF7BuZBgKdhg6YS5OBCJRFKpaFzeGBrX9VhMiIPlRUgtWNs/dVzJ RFnKUYV/uM3/3Up1ldMKmYkvscvluJumPAAC9AMCqIVytdrC1JHDxJiwvMgA4cfwvR9D6YZBDP9h PNnZykkXm4GXcfhDxU1EzMSRRXgG94lfyd3B9smEAGQd53HcF8rEBYBdqJBY48GP/4mQ95xdUSwd 2iVA2/3IHGAKcuVV++iL//HOby3fTGlYH2aY7h0g//USCZ2ZVujFwumdzGlXEFbFFvUBNxGO4UEU RmjWxvlTBmYby1SeGN1BFlBIs1SQ541MpYkeUS1HY4AU/SRAYjzMCmFS1sAg59yDBmiABNTcXi3F AAaKEGFS9lyJmDhK0AHHiOVHRp2YD6Zf1ADblmHRdPUiXNCYHfSBcB2FUQnPJW6d8ThV9bXE9pUM QYUB82AhhHgdEZgfuuFFurjTIgZV7RwVwzD/RfzZSAKowRzcowbMAYXhy739IcahoL8BHkNIXIjx XVOQ1wFmkk5BjEUUXQ+eRysqDuskxJ+pCnxAjkC8kiWWTCYWz52AAQcyS7XhQ+S9CbSlRBaEXsrJ 2KZhUej8XXadkGJhUW64XtEcF3KpFNRkic7hnu5YDb9Nj6EEx88UBhGF25DgXSMqo1IwI3U5SmRg ScdAkEU+oYsET2aRI7NA2hZCiEkMFEdakDmC23flnnf5Cfud3x2BzkLEYXa03lZBAAEwwKq1T5md WwIazGEQy2L41FHmpSYhRMSJiSTtn+LExeBBo53x1Bv6wz1UFkLuoVAMWvhtFkdem8ogWuX9/0MZ eSLKaKKhFc8BoJyd2YxN7N3hYeRQNSJCwlBdgQWO1Jsi6cvuBJEQXdmSLJFiqRjzkZhL/lyirKFw 2gcqoiD88MzD9A4f3ISHIFFBVuHwtNeDVOYEaeKbbJ/IPMhnCYHedOQYkZ8UYMA9MB3CYBxyMtxu ABJP3t5Hscs+YkcCHIKOHMK84KAO6R8yEabUtKf69ef/uSBgzpSeWeRCHubEgZhRBFhc+cu/3AMf /I6WNZdDaJxlSlrJAZQAhCTLVNABgEQtbVyGbCNM/AMFXNoBqSAT+gxBSOTpOZeEdtNCzGN2QAAH KIAUcAAH1J7tvaNP9ksBueLOXcwA/coU+v/aifGarJ1nKiLmEAkhgTFGUjzizakjZCXEemBldJqc dXIdIoAcNwpAFuCCF1iitonmGJqfZKpdirokcTJd9wQfwhhbbrhlzblLLpYSBUaO49GkdXGNnw7k C1IOfKjiiwhoWwlTi7VQbQKNIeZnAy2ny8HOxhDFoHmn1IWgRlSebMBJBhQU+IWhBZViCbYVm4qN KPESc63ioKxhqBkFzf2I0RwNAjBA7GUKBNyV0+DhvwiMKsVabxwREV0ZH7pgzbRjUNIMby4WcSqg Yj4kU0Qh8jWqczJQ1GGqVlrd5snEHXhh53EeGnXbN5jfagolJUGj+70hYRUmHL7ndMQnAqD/Gqag 2gPYYVnIZT9QWD+0GhECq1PgxkRgTUD2zEetqbISBgX2Kaeh5pc01lsoaDB5yA86xBbdgsTw0mQt BYVWqLWaZG1wIseiZBSwETmSID+A2OoxIYIum78xYrC+k01iDgMklwTgkI1gAPo4AAHcAzw4AM86 AAdcmLIlZC/tImPKGZHWkWTNk9E2jtl12Lgpo8ylk60dXetBH85wycUUSLNxHaSNIt7kwzcWzx18 IEmK31gi32C135+soZH4FgMtTIsGh4zCJ6ac1A3Z53TAw6bURAJ0QI1ywAOgAPsQZgK1FU39p3/G jsJArOFGal60Yq+QDctOH3s+nuMVrks6/+aDBtrq5Y95SdDUUWfxcOAVWqdGbGsUWEj4eR4YjOal lewmCaORNhKtqBMpJasTbZcs4osG3NCsGgC9moUDHIIDGADePo2QMAWS+iE6WWSPomqhLsk/EtWN 7UorqmtL7t7QBRVPSKnT9p8c6Ua1eiu10EY37hiEdGkWkGl7XV2QqcSQma62RZl4+h5vra2sTWDW At6vMgadSkrw/IgDyOYhjAWoLGRgFCC6Mt16GN7BZa51AR3a4RSgsFN8JOJaDt4j+eKx6YQDuVSS GBUImUjGrZeIdpyhbdsBVN6H8tjYgmBJPtpo/pc/aJentVkUSeKosOxxEMsPFcSrSsoC0P9fAsRQ diTABqCa3IUFAfAQeTavG1ZJcGyG2VmNtFqjiwGnLxYplunnpomKsp0nun3RVI6nwDUM9iTJ+JpM tHmttBUBZ4amGeXDV1rfBI2hBviGzuBlwYgP3p2YF6tLYrUlu06HAcwLAszhEmNHPegjWnzOn9qa 8kJSwIlb+D7xigFl4bYHihKiwOnpWzWkEj4dIELJI8LTwQ3Y1diFT0DepV5IZoJqtpKu2LKMZ47j x9YGyf4iKBts7vJPRRxTxI5JJ1dEEM8oAoCDDd6fvakFHT2h6sSjigqWosLaUzLQ+m0Llc1TAxcr TzRqqfJDxeIGYEmRQDgQFe+bc1IpnC7/RLVaKnwpGhyDqMlUG8lloutiADW33KsZRE7tVLOqi/I9 xP+eBSE9ADggQAEks06qBeMum1uI3YDkqaH+lb+Jx05o81HSbr8YGEYTXhIiU//cR8eoICnl2kf9 RMZmYrSFIkxcXdhaq2p0qBfE8BiR4M0FYDIRRR8vjq1F7eU2MFG41DFjBz8UACJryr3kYA/tYY+a JgcLlwuFW05IzxSbIfaCEkBrBiqvJWL9RYtWVO/s0wL+0dhkxRqLIIYY2kt0JXwdwFQpwseWDPmB XdqW0O4ZyPgspY9GyTGSTyFPhwYUwDwUgE3MXavlpU/3D4E0Y0MomLkQ5AM+9KomhDAL/y3UqvIB vZMLtuiBtWoCRCEJ+1Qe9pQr6xgm2rQse6xqx0RofOjI4HQHN3Zpk1CKLm1OqKZ+vKy7HcIij9md Fqku6ubZ6UoXG5GQYm//qqFyKB80rm3tHqfyTreVPKYd3EIZRkWa9h6zZeU2yrH8XqoAxHT2GY8n Zh77ytIMi2s7Ty2X+QVyImGbqpJezO103AMQHELw7ihebrCx3VQRfZrjBZpHQxIwlZPe4UzVkLYR 0spDu8WfjXNAczfGmjA8ix9IznMulyPZTgtLNEulva7ArRkPn2zgsaZjFfV0QMA06UgiHII2KdK9 EdOf4NoUp80V0QUmv6MvOkRUhtu6Wf+ssfW3NL8FQzSKlzxo0JZmnFqMlQpP6Yo3poLjdcJxQGUh Hde0lJPft0FP3RWKHpNnYDrjf2qU/wZ2WbALB0hDIkjDIego5+zkxQHTKM1FrsRizOXF5MzauJYS zoTLnDdhwvDwwLrZQ1nlYNWD3CRmbgPz6JyIRmop11HQF3LgRj4VQX0m16HczeE1jO1RRMYPCiLY 4tR3DNap0zTxlKps19RT4SDdrorJPJk52hQp+B6bNTu6UIUymA8EHzyQWrZnjaOIQeSYG2+4BWmh hr/yF2ZQFIC3Rnwdpj3G8PGSUvKF88JFxRYRO7vzunrKXFqEBuy3XbaaCG92r3q2v4b/dHMxKMHG FX6I8Oj5Ypo6lr7paUayEsUK6CpCabCHTcZOnh2b5D9s5rF7VhZsEPmuhEqG1Pkxbr9NjjY30u4Y 3uGqeFkoAALUwwIgwDygOm0aSk8P+SM9KQPy8vQuWAWb5YibWzsbp6x9c+L42SJUbGGh7LENyRqj kY9la/FsH7RfkBkV1KbaSfk9IBJFtxGaZpTwj7LN5Nh1lH2XRUIHAI78townLwi9O0EOhZURex6i DsKZGVtN1kT6sK+5pMN6NU1N5W3CFdmXNVNNZwhSenh7nqXn8oM4VZaLLgkyOgKODcE9tp92yFSb qlxArnnwdnbQYAEQACJFmAOgeXaA/4pMKVGtvZqO/ycaaxJT4iWSOrX/VeN2N6uBjg0XQbG/8ziO Y6nIXDizjIz6PptJhuaDyFfRY2K3fRvaKqp7hJOITTNK86GiiBTlh0VC42ROMvV45CneTY+eG/n0 Pu2/iXTOoX0jfrK7r1j2Y1EAyIEjHJtp2lGmBXw2JvuGNtUKdyBqt/ZGeGhlkibrj6v0zgVF86j1 2HBg3ATGk8XVbAVAJIAwMEEAgwcRJlSIkEC/APwSJPAXEWKCev4gTEwAcWJFjxH9Tez4UePHiBtR Qvx4USJKlB1BuoRZkmJNlS4/VmSJcmfOmi1vpnR5r4+devdaArVpEeZNn0sLbphwQP9AVatWwVzV KiAr13xbtUYo8g/M16plwZ7deieLEFtgD1AgogEpTZxLTWJUyjQiy50ue/adyJJmU5TgNCxUvJhx 44X2CAR4KVRkvZb+LN+FeZKkxbtOf07WqDlmzoxJNwetuBlzzZlKQV+23BoqR352FlmebfnpaJN5 eVMMUOCD1q5gux5Py1WruCJU0ypfe9VWmCx3ruYDk0GKhpDBP9+VLXQyx9IyYaPGCzLzRAULHMeX H99dZJ6+Tw7GaPj+xt+XwxPqpsDMy+wpnWpiaSWYFATQJfQghIiw8/5bxCiRYgLsJQj+CwxDlgKQ iirpriIxuujE+ger5YzT6gB8ovD/QgDsusrngrkw7O/BBU/rT68NBRRvMvF22gyx+ZBMkqHIzCOP n9M0smu1B1tr7TSToIpwL39ikyg4Lof8iTXO1sMso9m8pOyk9O6qx44+AATNvNZUi1PMlkIs7kQW +WxuLBNXZG65O6pTZKsLpFiAn8LSAw0/B2+iMynxmjRvSgxvek/JTecjwD7RnKyNPDU/NIyfikLd zMD8lsoxSgguwmyz9cSLMqYJLarLP77Sm4gPo/Ii01aa/uswxKn6DFRQE+9QDhEKstgK0Ba1iiIK 6Ko64IJvMNDvJ1SLDdUvWz0b0LBxISCPHV4hUiAxTuFlzFPJVltVs1XBJc9WLEla/1VSiQz79z8I 9w0VuJSgXDNHVKO0N4Ci+pBMpi/Z67HONIOUaDg91RLUKuySZc6sbNt5LuSOwWJrGVtA1g5RDSas LFQqa81QpDkhtdlgpe6B4AH44g1aIcjopXSvLY2uk9hW0Zu1s9TW69DpqJP6Tda9IsV6IzkWkVOp mAPEObxjsV0LrWk9plYs6KRD+yqQZ/QijKsOmIJbkWDVa2lTyXR0o3RvTcpDDoXltaWLIHBX6MUP qi8A8GYC70kMJb20PckDHI82zKZ8MjyO7M0a6qm/LX288u6EiChgS+9xTPBE7TyiPFnMZ+RAwYCb T+ek0x0r3WtUDp8wasHO5e6mRP89zc2DS75ehDFVSmCM+dPoZ8YZnxepISvVcWGau9dXfL1wztdo NnXCT0K+s74YwJ0CIwwC3NBs81WwY/OpQbLTbvZ2sP7XrLQ8KwvYQouy/pcWQoUBH1TRFhG6xT2o RO97gdFazaqmHtmpBAJHwp7Q5kU52IEONZiT1H6oVqv6weRML9nNzjJoKfGdL2koIdxEEmY5C0Hg HnzL4AUvFpSGbaxFCWTRccxyHDAcoGQnU1ZaDmAtkL1MiBTLGXuWh0WoqfBef5MZwyyjqQ8GjWh3 Gp30zCgRWKnRfEHC1X8Y9b0N2ixdspMSrXySxyz5A2ISI1DGTBdENEYFWXtKjhP/r5IiaSGHWsfB jspYpq1vJMY1h+vPhJqEtwJF72LRy9ClCGcexY0xXvMSCuFGBZEeuZBmtPEaw2JImiHdEWPPm97n XIOvHQVSTBDhgxwoFqw0vbJvPMHiRmiHyGWVaDnOYZu0fHdEqxxgCFHIh7aQx8otJWyXwXpUHlvo Q8+5MiI+AxopOeU4C+oxY5oElfOKycv0JQgj+esVgPizvgn+sE7matPqLAg1O5ZOaeiBCP885rY+ CfAsazugVowYsrbYIi4Q7CGrxKbGsN2njjoamLfsR6F2vQudmwphCicmkC9qMXS4bGfTQNXN0Kiy YViEZ7hcmjMMyYEP90DT9J6G/7nzQY2IypTm7fJRsgBmR4m/41N1ssAdDTjqNF96oRC1ZCdB8tNO D0qAGEuqpIZIhpai89Gd2NSgjepzi/0JSnjGhcbXCOWPgpznZCyEq1KRCXwzW1DVEGq2jpFIoQJQ JFYiupWvKEc6MYrHXOrSUb68Ro6F8ydBUWfPUEnGg2FNEgHsEYBbZu2nKk0dN2W40TthTmx6vNQP qQc7Tw6MhNE7E25c1Z5GzbAi9/DbSpM5WAEkNm3F1Q7InEMW5ETTiYRaht28Q8Ly5UeXXvpoxp5H Wy6265yenY/jtPqTN6rppjNNJXm7mq8GBct8MqSsR1U7p46y5Fc+UZVd4mcXGv+WJLBG5ZNZDgvA ZRa3uHCLQjhwFJNXlUt5EhTS0rKKU7F11rvyMWUtmfavw4UzOLpUXXUPllKzcnFmVbKZFfPFzmGC ZHV98G1NLBbLOGL3W1cqCHGqwtzlLueQVylZ2QjMYxYdgC1heIeiYgsqHPqQfSvma7jeajSwVjg+ 85ojatI1WwdRzlb4o7H0smzeCWFytxlEnAaBiFk08qGnpftjLGvYzwTx76EDrpFwpZmiwvapx1bx ghAWcNG5aje/Tw4vMXF5WQpTuTEXTu2/VlreqkLoaClWIzmZnMXsGnpycr1ckAoqM4kUpXnvVDCa tNte0gQXZf5NizMXy0xBAS//ZES+gAUWoRHUiglypq6iTdFqYu0qZcqMZgzR+GWnIi3ljxRMNGCG xa5KsupwlcXvj0AJ26ecWSQYod/2CL1Xb9WVNArqr39JpLsAHzGBDF2Ott5xocGwMUie3GXNpqtW b+nRLos2tmLAG6DNmbZ6vJYnX09YOgjTyVK73rQMJVyTFwf1cHlFXyX3E2bPUO5BL55M/W7MMSei LSvascqPR54drTB3WzpYhIL362GDKs8u+MnRPktd7H8vxMp0fc0m10i5G55HrfbkuJyRJt5vEuyT NL6s6aoGgWUsQrS8lGk9F3wgjKcEoU21M7VyXGer6PmJfGIsniWphjcFZZ0N/9anqo22RZX89UNI 8ffOE9KPT722hOphnhZnfu8mYVhrMq+UjVt1Vb7OsMlB4mnbEa1bYPsV4ZZhtaurElEwOEeaQU5W VhCFgV+h0Wsxbu1dbBypUlc6Q/j8anf/zcOhMcnNGBmvnV6DKzyWia6k/2H03qxkUJPpLzXcCB/t cAuk6BPaeOGbvdk5pXMrU6F6vt203N1qsNwIZm+qn/kYlCPErZeei18a+WUYmFHuHB7KgIBC9F40 rF6aaRjUCG/k/NY22nalDNJSZxJgXVKKNGYCpwYDN2AqawqCHx4iAHyrARkwAhswPiSQAQPAAUSO K0Amdz4Gd8yOZMaiA4WMuP/g4mUexg6gZPUkRKfOY+u8ZoYMLpPqwZzwDgM6gAEiggAUABx4EAVO QDKOov5AivngiEPU5+C8BtumDQBTy1xCKXV8zrz0byPuIa+Y7/4wBRwewB3sYQu7kAu9MAzdoQPs YQzLsAO2EA0JwAu5sA0T4QOITOWGC88MCSwOS+w6T9YYi/seh2vKq4IKhtmWblae7/9aYv0YLQEM QAMUoCAcwADmwQAKIBEcYpASjuMEKouUB45aasWCooW655Zuzr5+79TC5QCprukGDyIOYQ0o4BVh sQimABYpQBZp8RZxMRcjgGP2DJGywpnqUMgUq0ZexrcgBkx+bUzyj0LEi1b/VsrJ0kTnvMsBUMAe UOAB4I/2qq3p8iZdzqyToM5ryGx8eI8vXkuf0E/pJosvlk3rfon8PgcCsOAADsB2/iEf/gE68DEf qyIfrwkfweAfBFIg8bGAbOea/qEI4BDsWIRGQoaAZG1PnEiSIqgefklnViNvBA/OvKUj+COuZixr 7s6z7mEBFgAFHEAhHK00Us8Sz6dfriscRazpfCPG0AzDOIKbOG4vPE51IOaiwsMuDiEDMg9tTM7k 5tDkpEM7DiAhPwApF2m4zk4EZ0RZmMhkelEiD6U7JOMEXUwFc8boKuYZCXBSSGc0pJHKCqAgEmKs 8sm8BHEbxRKOXIoJJwvx/9jqvFiPniQrL0uHzSQm1f4GC4IRogzTLHznAIqgHVTkZMTubBKoLNbt iaZSK8viAjiAkvzhHn6l7WgIHWPq6MSko9gu/HYFEfFu9sjKXhJOAXXtewYJdYRtrbbOE0GihUgD 4khFlqpkNnyqKHKIMnrtEJrB1aASgAJSIYHM80JmKVHOqPqsBCcpJBLAp3jK2dgLps6yEzWsfU6H BlNTMS6s4O6NzIqOV9QqCN/njoatvDDqa7Cw6aTtaRxkflJxhVjFW+SRKJmzuAhL+xJSHJ6pkZCD BMfuT7Svd5rzKkwwy5DPXhpE7qbtpZJQVMySIiBiJMPTcU6vyfoP33DPyf8K5hSHCS+DJJyWMDdf 8icC4B23ZDdcByUOgbkApRezoikXczkxj1qcA6k4sIhIzjj+gQImqWgi4iJHrDfd7kQltMwqJzTS MjxNqe0C6jYvVK00qrRcT0cACZbcKkW5at4IEXCaECeQL2LKsuYEYkYZsrDQRjEXMiIJVA/f5iqe hSyQKlngRscE4B9uJIJQIgDmpw+KRLJ2UsUuq07+Yv68U0NT86ReaiYFxOFEw0BWabqmkE5sjFzk LGAIzl+sSkjMg6eM1K6EAguK07/4tCidsuwwDyo3rwhIjkbV4jjphoroaodkRlMrAhRhSBWhEFwQ T0mjNDXLiETbkUggLJP/cAnkLC394jOktlEu13PLds/iADFpIGAotQ/skuN/TCQhI+AA8DA6XbVb DWsswNUqDDQqvWJbpqqS3CQ3XIUZ9SuPZuWlzpPpUDM8G0cbr4s/VmxZ+yLwTOwt34pTnRTwDBbm bNO+5lViIG1FUbUh+YyR+lEh2zXH3PXdgBFdPTBkjoeSPsIrGcWWmHGrTmWoxsM7n+R6/FUl7eMF ibD+wsdlzfE252kZb8+lcKhmfa6jFNYkfgmrpkZOtjUDyqbHslJanBJbso9OMVYPyW5Hg8xPIWi2 OFMOmpQmvi8uPYRWbs8kHBXvTKmmYooUW3afFBZpaKlpUA2DOm26eAvO/3KiD5bhFt7yy1CiYvtT TjtWAHBUHJCIITHvYzHWRMw1bXCVnCwCATOxIxJGFLuK8rjqI4rVbCsxWZmiJeMS+jp3vAbnPIXI UNlxCKUNS1PrzT4CNywNRFWiZ7j187x1yJSz1VbVY+DGXCHyXDGvoigpPQLA4i6r7d52afgNvXK2 X2OWaLBzUvJl3iZFpSjmUHFPS7eqMia3q17ljib2Q/CCeGVKuhYPC/ChaWmXK/7hAzKwKAGXqfjk KuPQcOnQcJcIXr3TS+yAD5SRqypJ9ahEtuwFwzSiZ2A2ZhECvKJ1+ESnnnblgnTkzAyRgR0W8vbi zZZm6D7iHm7hTeTP/v/w4kmGckCZVk/D9XYXNOXSFU+tNjqmQAowACgDg4OXoQ9Ayp3sKWx3c47c SyiY11/nJZgor40EbvV+TlKrU4BF5Xj9xUk2VURbwjr5ACV8KvEy6ySQwm9V+JCMCEc/oG1SOFB8 J1bnUAPnNCrBuE/xV4ImYnjt4DwctzdaMGGFONg+LXN3zi3hsq1oduv2Lcs0zqww9YKF7gXnqqwE Az4BJq90ZUz89yaS1jHDWHCLQEC7VXHN7n8CbGOrMmWMAzPpgqsQx3UtK3bKj51QV47No2zz+FMC RqjsqUusJLcG9sT2Em5xky5pqtQ+YtdQoyhejmB4w0SDhE3NmCoxLzn/4/RitRIsSka53NfzSo5E bNVGJil5C6KP7g3TahMuk4c1LFXU8PjfkI1XhnZFcza1tJPBlu2KYyMQL6adXQuzfEkO+CGu4Ake K0JQzTfzYs0rCEx3HDItxJVc23RQhLEqJnM6OBaRgLfqmg8mOrMQx20Ir8Zv/Ml6QQIjWPnfxpNp kE5tN1Kd+3cKvXmOg3ITrS418BY/+6XvSMOY+axleuyfPcYpOVkEbdVEPhZQjhKT0yYr2EKqPpg6 b+Jx3oSCqXOpx2eFWJPTRuWAEdggOJSQ+xKkYW6erw7LqLVCz2rjzPmUV7QnpI4P1JlZZ66XsYA/ +ySnsaJVy26Mz6Jd/wXI+uq0hQVXLrqFcCR4/EYt+aCXItKFQ9JlXRyYZpLVgYG2JMKIpKY6AFbS wWT5hZ4U/Hh5LClbJv14NgYNRRHZNS3SKHDSNo9YKIayz6YlK3GUMf/TVvOQXb/imYcRXReXqbQF CzjAHR5gt3cbHHSbt3v7ASxgGX4bDYN7C4H7AbRQAdaSPuc2jWbSPWAPgfU4voqJXNgTCtNU2Zqs +EYDwrCMzOiSj2q46rbo2hJZPw/hA9m7W+G0Mdv7fbVv3dCXY6mZAhjAFWdxFingAl5xv1/Rv6fA ArQgHv6bAgAcwRV8Fi9gAhQAHi1p3zrXb1yio42NaEoNeW0WaZZxYP9QT0y1LWUzYjYjdbSoa3+p c46Dc67iVovjuz+To6Dl22qTS6Fq+86Cp24ioIHosSnzUSB7HMjp0RaWoYDyscd9PMh7fAoeYGf6 N7Axa5yNDVLfTs2AlvlmhoLLUssPG5bGERwp+B0ja9vIByNtJZIHzBeXwynhO30rcyoXGq+rIgso AAsugFyjpSz0XDv4XGSsRXD3HAyuI9C/ogjAQWLhazScTjwsnNECDja1TsbKLNKDcga3qIq9tsZG MXDQq72KQvkMDUw9IsZkxcV3bMYJWiGzIo1r+2Se85jTXGqRMy7aYQqA7CvMYmS+gi2ioBFaJlts Jynzuskn9tmGz4f/pztmT2q82O6izjqRjU9tX+s84+hc6M1cXucIF0XqFmH5olCPPBOHTntd2ZXA /tNFKllHJVmwDpSF3Zp++3QK7NygT+YOaiEMFEHdtaIIHiBmhBa+hITRHXuqyxmHSsyScCm7O2NO QjV5JAhLSFyYNIdWEqAzaS6LBk5CIYIw5VwPnxbe131k7gBxz7XVgfQCEOEComVqteIf7sBa8iGa lGNIweF9tEk0iSlTkh2I9w6+sMouHbhJmQ8/s3tnRkyXU3RKjgJvbyEwC2cbNR4n0NzcA7fVZdyT P6aEfVcyQxChX7zl67yB6pfADiALcEFGgqwrKODQwRqewVoKJS4B/xqdysDLLsuSfD/tYELxdHTz lqinmFQvBU2P13Bj4nIpplCam0+boVvYKZMDbpDyzowqqRDUP2n71AUgC8BgCmrdRq0iA2zBLVY1 IR8Ab5oizDoNYQ1OyhnNlJZRWl9LYY/iewojzLz2u6tVN8GPJhVush7vcwlKwjdRHtH4fWsUseA0 2N89Qbcizl+VY+Oin42KKrzAmlw1LsCBSqN1XfT5Tn44POPPdDS8FBf+ihAk6hdOt+Du15KN4S/D QpTPm2BM6HmfOEdOx3QsIdthOQsrdwWF5AFCgEAwAgsOPGgQYcF8YA5MwXLhQEKDBBUKuCPgAL4w Xi5OFAAmH4UHCf/4lUxwMoG/kytNmlyZ0uTJl/UgPFgQIKfOnTx7+vwJ1Kc9AgFkvjxZ7x7KlfVg HuUHIUFTlEapqrTqEmY9pE5RxkzZcunXmWRXhnXpVeZVf/762OmjdOzWp2mtkjU5tSQELBkKYpxY UWC+hHcqhvx4oMiHfyA/Nn5seLDfwBMjFPkXmLJjih8p/6MQYQpBw5st3rElxJZEiwKKPKh6FKxY srRlwgSnIaju3bx7EiCKVepa2TQh+NtqliXy5bKvHk1u1Lhzu2aRq5xrd6ztuyyl2uEjHG3YsNjF g906feWhgwxLcxaQT3JCw/8Uu79fUb7FdkVWOya9mWYGZXEBRIz/AXafQAfYEoYifyX0GTi0HReT ccx1VRVZCuDUW4ce9uQOUdslp51Y0FE33HB4+ROVWVHBJpVW040IwVRh1RYjV3apxc8idtQTwFVf wUSiTHmZx2MCe/WF4HwJTpRPfeL4l9mTT1qGmX7uPVhaRQdQgAU+h/3XWUJRRKFZRRSAo1RVJ87W FXdVKZDbh3Z6+FtR1y1lHVoZpnReStJl2BWFMKZ3nHQnsWPijmORGKdtPS5j3Y1oWTjjWtiJ5WcC hzTTpXsCUnbAP2u045+VZD52EH8HOvlRe6wWlKZDiEyRaqgf3ZEFR1wWNAVJhDp6Fm2zmXSPTRze yaxuBPQTZHdX/+XFVLHcCYmWShAg6dWbzR2b43YZdmrkiSuqdIsdi1Q1VZIuUttiptgqydesopaJ YGIf5PoegAK6hyVrBv1KWJcPRQQgwVuilsVHRYATZKft6ugoP0mNhVuzGgM1VJDQSVddiuNVaC1e 0w65qXjYFVsoep1m9xKmsh0nB3jmoTwzc0nuidZ6TcKqqkD1fQCgvfi5J05/A3Mm67+yKpTFZ+1c 0HBCT4NBMEEPHuBFGPhA9qWEj9aVKYVvogXOHBuvzZM7JwRgXYXgnptjic9ZZS2GeOOIY6RfbZee VXz8qJRWes8rcnA2irXX0fgCPZCU/D75L0IVYTmm0QGWhtGXYf8mOFjlAt2Rz5marQn3vNna9iK4 051EJ9uyB5AnzxUDWqijuPfp+qEmKSqu7qtzF3LIJ93jVh/Fq8jp63q9aelJn9L6HuVADz0555t/ xF/2urrHkEMQpSq6Qk9f1GtHC62pkqF/471yifdsFfvsa+dZZI56xyxnd9stfiTnSYw8+YueTOJS rqtsKz1uWUS0XpekvEysXK1LkkuWZKXCBC0jRYjAAapkOcvJR4MAu0zmNkg9hXwmNP8q32ZOEwZb PGgkgKtWcFI0sSElIGP221jtcme2uLnPb+/Tltlu+LIRzWZlLnufeIDXrevUjFzECpwOAfUy9WSA MqLTT9GgBIb/oWkpaGP0S0GSdgDJgNBfVmLIZ8K0GtFpRmEKqkUYskA6MLCPLubi096Cs50N9XA3 CSiAAsAhgXvwpB/ACeBw4tSVxf3tOPcwScTYwg8/WZIfSilKJTXpD35gMgER01OQPEnKVAZgJXDj R8QyeRI+yAFI87tHsdCSF2nRpVMwmUnjtufC0f2rPhHI0tLuBavIgCRgKPziRP5xsBNWjyKh21UG zpSRfLjmYinJZbZGNjwN1WmQQNEAASDgAA4oCQMYkIBNiNJHv0HlRsXbFATuiU8M5BOf/NwnBPTZ T34C9J/3BOhAC+rPhOLTRxoQ6D1ddziaYPF2V5meqirnxYIM/+1Af7maR1aFtCKcD4XTzEc6KICI r0FumvP5yz94FYWORKhsxjKW7xIwP2WRkzcQAEdPpcCBRHBgHwaIljdjJB0J3qhRLYGAAqRAhKhK lQNSrSoRqGrVqGL1qlH9RlWBcIisclWsY83qN94hhHeINRFzGB6LWKdEXO5PL/ViVTA/qrnIKSaO ZQzhBpkJmWMKc1eOEd8FpIlC/fBqGV64Aw0nCsj3BRBwPNwpUBJgAAwohZ3ufICI5EVPad3SKvfQ gDgqcIHUqjYDqlUtBS7A2taqlhmrlS0FMhCBCMh2t7uNrWzjoYgYNmO38YhAMFbJRE35cWeHS4lF tTerkdqrVP9FEMddHYeY7pWmafA55kgr8pmUHoiLKXyc1e4AgxjuEUc3reH7BGnZn8xhHqTkyT1q N69e4s4qOYxJABbwDYSBhLsg+ccB4jjgkCj4VQM+8AE+sC8wZOGD+Tiwghum4GqOpsLp68sHC3zg DxTAY3DS39z8VxdLYhBfiEVsYRXDYBCCNJkGwZx5AVPN0nypHaLpK41/5hcGVeEBcSkLRakoFVta pX7x3ck9MADWB0CMJz9MGfHi17K1YEAKERmMj6Pb3fhACT4EgXCqpFtGyeADmx2FT/gmsIFVLrdR 89wTkZr4TU+l8LorpU8HvaeQUelKuyTtDJfS8RBcFazQrOL/mgU6wDduNeeId9Zpk+0rlaiACJ6I c6uQmlKj5BhOA1ymMKPLKxgBQPjUAogCLlTqGBFHjHkomQq16kZArCzJxSu1Evb4TFJmOtOu4EvI lyJwg1excXvaG8IyrrUz7iwudzsc56V5UzvblAd+fzTeS/ihgQB/+THS3d4/IBxMGR/gDl6IwoQ3 8+A4z6V1zyPS8wKXv4rCmrCAeVCaIFSEdpQRo1hr0r+SBmxmM+QvhrWewmRskClYADwG7F+jbIcW +F4b28DpTi/dxBJFsWhkASA1wnLswmXH+gNqFBhhu6YIBNtrAvSQc4maA6+4dWpJuVJmrPJKvY26 nDXjxqsA/xBBgXf/2OA/VxCYLoAZK92VMg+rGQJveFS4CqkrTN64s4AzvJcp6c6yETkGxM1sqRt7 1QGiowBQoxq3C0TWzQuneSidXOnBWkAe/V5BqOvBaZZv2GQeCBov6neQiA8fgK7cdb/0gD7UbNbu ujKg7FyTm3idNw+A1s6O0i4bMs/WbBEFESgAaFQnKDBm3m5gLwJ3tzMcznrKuu5YlF8600vuJC2M ZPRlamS+UGABIzzQRTWFW43J+IQNDJdCgroG7tJ1uvT4Vbq++Z9k284zE05XZEaikgc4jdeFuOjY TuwXMkiGVDLI0z4Q57qn+H2i9uNVgnSIfY9OV+RdiGDCqP8YYyR3TlM5B4BwjsF7LFURUYNSjKd2 LFV4EUcSAdBA80Md21Z5JsEoe6Jx2ad9HQd61AEyCyRpLlEPJkc+Q4dCq8ZrEwFDtXAAGTBGmnEA NKcnmTIutaYtAZQcU8FzmZFjx3cfkjMfQUhHvFcRSPcPWkJ4zOcX/3ADWCAa2+N7wpcQDwM3yKMu SjYyOpKD5lFZHugTjDRrRPIcTTQWOlRaRHBY2HVjmfFgHwBMQcYRGWEldOc+t5NFwQEyendqzmcR Q2N85UZghXWA95KAlNEeyYcPSwhx/qd6ZAJ51dFA0dMcSRRFCdCBYtg2n1U3OkJEL9MuC8BlDNZr eUVH6Hf/Hy8Yg5E4MPFGYqNVRaJHN02FBQmogrSSUYlRTBtER18EBsW3ejcGIU/3h/exTcmxCELQ B2FXfXXTKdjHiTqBXy4SSifGS90nfhewZzMGElxSbujWa+vGIDC4KkVDe9pGUSHTh4CzHflXXo/4 eu6BPWnHHsCWNKZ4V24Hh1MQGo0HgeY1U07BDxUYWrbzSNaRecsyjTuRJ3anLTnYTWRhHOBWaiTl Y5QBYeOlfhzRiqoCi8RBFqQHQXvjJzx3alWIGNX1YS6XcCmEdFUDZEUohCARTa83eKeoJhATE8iz DItQLNMWcovDSZpobQ2ZEx0jT8JTReISbhcgXfJIjAqi/4pOghHlmDUJMgEjhkRRRCLNoxxjcQhb RDkKM4N6tS/HmFcGWAT+lngzKQAMKF5FN3VQwj55WJDq0n2Yt3XosRKbiJQhMmt2E1mxIVeldZHW E2irUpUfAXcxuBq/4nYPVnMgNyFUkWtqESm/5Fd8t3/2IiDEFHwK8XzDSBFY4j0v+Rh3AIWfQ1JT hzrMk5d8oGSPEi/29jthiJS0A4LsdUNkpxZroQFs2H+FJiDiWD3sFkNn1n/LRnuBIlF5WCldeRTP ZY/l5hhDI5OxImh5tXBnVASjcYoCQ4AC4I8UAHRp8ivdCR8j4ZfhQUq3sAx8UJEosjpQpHm7SY2e R1FfQf+S0GGGpAiVLMZqG2kaAgBzd8AkKBSSefZIzkEkoRaRO7JiiqmTCrJXg+WKqiIfSqhYxMie GgUmjdiNm1F0V/gaNlQt82MHsyQvFHMpuomU+AWRDmpvSDETTylz5+hXTRKHu5IFUeA1EjE51yVr mxIyvxMn1udEnkKWLrhBmuFGAQeJ3phM68mWiqia3Nlwpjl0BWcQA/k6vVQPciAHt1BxfblkDLmb HdNewTEeEpoiJcdlrKaCjXkaMeWAGwqlf0d7kZQ/k1VrNpRAUIEF3YWTkXhd9ZhBxTYRt7KdvRai RrdCuPIvJDR8VgMZIsEm0DgdQTI4ykN/KFZt+qkTgrn/KV1pf+44KCUxnG0IK7jYa8jpEQyiPlZK Gu3xF/BXhinijkYmJExqnXY6K0PTL6hGYI5nEPzhllPpGLISPg8hJot2lu43iI+Fm/A5Pw1UkiUC mA2ZJ0qGiXkmaTbCDwJqitRkdFzyiwVhoOjjBanRrFY6ETVYc9kRP+GUO9mSZBXqOMX5Yh60pVMJ WA/ofC2UfJaKcm7oHsk4LfWXHG4xS5ZYFUEijeDacdQJp2oaG646fvOIINyFnVQph+gjpEo3nglC dxfEFgj5TdiBKW6iRVpjj203H0Lnpc4KEvkoaKVpoi7IgGFyQtVqoQIwU9yHOMdhMaFKU8WRn6aq lM8o/5FIqjqIyY2icqKpmJa2ig8L+pbxmBG8+if5lmddeJ+HQDqdaYWp5hn2wXR2ClgDC28UwGMZ CZfbE5suwjda4SPrMi+3drHTuH3uAyPgpFzP8arKarApBGFZMAQxdAe5sp41WxDPCRtRcS1haUF7 45pPIqt/Vx/tEHU1maiPQ2j2CKYgSxDROj6sNmwi8Rr55Ze8U0mSd6YHSSHfOo2CaWJ8I0ksMp3I ca6lKFjEegcfwAFh4G4LihFOGEwPxpVJIYvX0kcQBAFjaZqHAbAppC/pmrKEUTk2FpDupzknRCAp JZ551ZwJkoxyCrF7AzeDsy5tsnWlaqq8SWJ/ZJlYJv9yVKGjJXqsIFuvWRAOy/m5n5l2z7mkN3Vv RVSdT2qnWiqa/Da+Vcqu+fiAIAkmU4CoVvmaQsM+tKaB3HZ/bsEHyqM3usuJzyJn2XIx3BKKM2G1 a/s9Bdc1FrAvGcCRIHVCmFqvH1CZhdlpOSJJdGOoAZxuQwhja+Rj7Jo52lsQwrZ0USo1J5d2vLee U8CTgmosljI/8kuCwhG4Kwx2ugdZ+qpzT5mLQXOVZ2ILE5CWVlN+HWw0W0l5mUi4D8oUIqkeoELD VmisWyLH7HEfp4t4AExmhhWpQPdd92gQiUESLTtRMJIh94A8cvAWOHUVT6ufnhUt55I/holiXUGn EaH/lhexIF1TCxXGdorbTFQZf9IWqPo1cmNKFf6KTJNKK0Q4Ywesi5gjGT48GQ/IEIxYwaD5JGsi qAkkkikBNxJ7C0nhVEc5o58lak1kgXmYh/fmD4n7fz1auqNzAIrQblGwp40pfP8Wa/HHXElbFmg4 RE5aOUiYgIzqncZHeIdXpZqqs/DxRhHBj6cGyRHFPHgpFvNTDz7CB7eQAJy8myz8ifhmxtbSFMM7 oH9sRo6rvA3zIFXZQoUWuWJ7Lfk6fyPTgyxyqCU6JmYJNIHBiy3Jp8dMGTGJas50qZ0BTRDRgh9c EMocw913LndTD7IkB2Mshj8UWQ7MlC3xv733dl0T/wVx98joPBC4uL6VO2Lw7HF4tjv2lxzYex8j S3CC+LVBcwCGrJb5AQYXkFLbaX5I7HIjUXGEotX1iyxDnQhsipSePK72aZK4Rkoml6kF8xe2IKRe IEOROxFmhlHVA2ywWJugfJswM8oVktKH7GsBeKI1rSuWAdPk2dKlkdOmnMGO47BfyKQDRDb2a6pk SDYZiDMijIIhVIh/kQW1cCZewHiK/cMlK3hFOxHP6ddN+quOcr1+bEbj6cqAl4JGk8SswhBJQ6yO kQEnpXxrTFIzhdopsYH6GllG7YEPaXEmI3oUWxKlFWA7PTq8YtgcYQv5cITu6tu+KCB/4dJArCd5 lv9DIBfUOFIvypRwFVGaG5WTGB3FJhSErCFH5RUlUzA1+ojIi/aIsUkXerixb2UVQSKjGBstSxla iTIi1lFaHHC1w5cFtgDVXqAIYV0R6Le9tA1GH2HH3Bc8gXKJ1JEswwo0/maWoRmAPJ0grrKKb8ul F8AA+DCym5PkRusaZDfeFzhnHKjXDdl5tUdEIVd9RdzNH7t/GIERimDYuW0LqLxoF6EZVB3TRxOS Jz3JKBYzogxqdYUf8pHg8MaSCn63CVKwoLnZnZF8hyWAeb45YXNr252Nd3MU4J191fibNpKqdxNF 4PYNqOcRIYEPKI4LYRAGtfDeRufpqfZ3tKq+c+j/GH/6nnOFOLKBZfJ8yoARuj3nhmuEEDzbp/3G bKv7RiQ6xQhM5O0pLL4ZKL20pHtsaaYq3s6oLSKMFStyD1swflkA5meyDDFlCxy9bhK+oRDW5x+1 4FMdf0s1LP0Nyg+rLYfacrOizvb4a6QebJfB2U0X04Z1GML87qTrGhLpabJoHgEwzfcbAK49xM2c jWaRLAn9DkNwJmL+NX2RAamnK60cwAuhmukof0kKUe6sLTqO3X0mNG7r1Lw+EWiNugmSDmytaKA+ 3UbLPhN0eS+7qi/v0Hv9WURZ0O3TskwBAbfQB4sgS3bg8xaA2O99B5G7GtmjkjfWeoJMr432AQ4w /2uOJMoYXi0Serlynnh8xovGtJo8HDpGSD3iq4uK+jOkMqLqHfaQ07wHQUNFBhs5aLjB01PUzOEq UTh0zxYeUxM10Qd7z/N80PNm6veL0Acn+A3rsG5E+iQZpTk/mty77qwUL7uqIxZCVERjSbPNREdT Gsf9vF0ujcEpb60Ju6MqB4F8F8LkOmfDrkMmkTYe6ADgQACJtEhEUQ+Dr/N7v/N80Pc1A/h+H/iD Xw9AwhNnp8MOlhEfZGAf5GDL72BhZGBGi/zRH4cW9g8GFkbRHyVpFP0NkRHX7/3J3xAP5vSuRP5F 4UnlX/7mb/7lH0rqXxSHWv3bb/3yH/3dH/8N8f/9pbJR1E//+G/9/w8QBwQcAPOPoMGCAg8cQETB 4EGICSUiNDgQjMKJCv9NaXejIsWPAilCzBfx30mIB/5RIBDA5UuYL++55McvgE2cN1/mDJAAnIaY QYUOJRpUAzh4BjokcGCgwDwHUoxYSNEpRTgLFvxo5RpsnrNkDpw5cKAG3hyyadU2PTSBQoUiFd7G hVuhbly8cte8rft2b4U1cisgaig37ly7h/sWufBXsV7BjxGBU6svbYHLZDFjJmt5LWfNaZXZlUuB rl8KfwNTYN13tePIFeJFQLROsWrWe1cDhowaMOrdRRBFiFckte/Xdo+3Vnw7drwJyv767us6NnL/ wbApTDiUWS1nz5zRggbv3cGhBUXVrx9aAFyAegogEHigwD44dx0eEHBHAJw9d+whwJ5+ACTgECD2 eyC//Aigb8AOHvRPQAIitNBBBzs4AUIOL9Swwg8jrLBCezrwMMQMNbRQAQbAEdFEEGOMMcIS6esg vxofiHC/BnG8sQN7wHnQxwaFzHBGGUccEYVEjkRSRhNVlPKEF0UEccMXK6TSySM1LNHKF7f0kIBE UIDRRDFTTLNGNC0UM0sYr3SzzRFhrFFI/WDUsUj+WMQPyB8b5DFCcAxIgD1EEXUvgHsOSXQoA957 dFJKK4UJgkMOtXRTTtXjQJ9OQxX1pQIUGPVU/04xhQBVVgNwwJ0AIDCV035mbfXW9TQAYlVceyWK AwN8FTYoAxTQdNhhNTgEKGQtTaADBTgooFMCjG022UMwuHbYRILd1tdij/22VQyWHXfSBCTQttNI z8VVAyl4dZdVBaadl9ViZ7r3VAzOWXdfZBMQF+BQMdCX4FA1GBhhZ+VleNN6MPDnYV8hgOBgitHF wOGMHz0WAoU7TvTjkEVmb+CFTa60nlKBVRnR+R4o9OX1EqjWJXg4UAAcjml26Z6bAyhVZmZ9hume DTiAKVqjLZ0DnHsgmKNpouB5DwIOUm466VnlC+ABB6gmVYFEXJqjngAI6Edsl9xz1OxElGY70f/z ai16bpeeVUCKefB+KQEN5D5kVQK8FRsCCeTO24Cp2U4AAilcgqCfOWz1u6hSeyr78gDUeC8BDia+ fA65s07bcLEx2LwnB+4+/O1owUGhcc6H0oAADRx4oPYFwMGgcq2bJt2lwp+mXWxlza63ZLYxlXwO AxjouXaYjupnerafJiD4pjHoO1ZwKPMbAm/nUaADcI6nOoENYErge+rjl39++uu3/37889d/f/77 9/9/AAZQgAMkYAENeEAEJlCBC2RgAx34QAhGUIITpGAFLXjBivVDbRt0HadsBg9kFQB1GCRhAB2A ABSmcIQeZEAHRmUzrR0CAdzLGAZaQqwOFgX/eiW84BwQYK+/tS5WBYAAUzSwAAccKwFq0Me6jLgA NRgxAGiBABGXSDumOMCJrcvd1Mr1w6lVUYgBSAQCjOIAqakhALmDwBjRUjQHNA4tsXKABNQQtpiw MY4Ha2MSXyJGoCjrh0V7FgLA5pLcwQNtiCTLquawDwZokYcU9OEh7GOfOfBDCgxYQCIYADgEMIAB CBhcrBSAQhRMCwKhJKUGEGAqGaKAlKf8oSlRGTYMhFKW+3BAAVLIgS+GclocmCFM5jBKGTIgACdg 5e4IkMLdBQABKHCJDIXGyleKqx/YXEoAFiDLaQLlmyjkJDNRqLhVplBq4OTAqhwwSlJigJgo/7zh JCOoBl0eAgUoCBumUGAuVy7LAAhoyTMJcJ5PrhIFC/CHBBDwnjLO4Zkd8KGp3EHQ82DhcdOcgw85 wI9TKowfIGPme6Rgxr+hgJMnpOZAH4CBelQUA6ecmjLeRkxXIQCY4KjlSwYKjsQhYGonRQsCIufL B8zBYAkoYxEhsIAFaMCXhoIAA/g50JbwlHLaSoBVE4AxezrQh3iMyQYMiUiC9kSnAaBlCjGQgLPG 6qEBOGlO0/PKAMzTrXC9ISkDwNND3cMAaptrGZW41gCgAAsBGCizGrvGWjLgpmY8YdhcWU/GCrVz CAjbPibbEwLskwNAwWkA7IHCQ4xVrik0av+sHrDPB6xKsmGdID6p+riZSIBJDJiaKxdq1oIaUjP1 gKsL5QpRymoWrx3AaC9HmlZpKi2k9/BlP074ntLSRJRInGZmmXXCl9I0AFaVwAmVecLRPqCnxHul PDVbRu7KTQJz8KWpiKkwkCn1hFS16WamBrgFnDZYXhUdbcXKWhQagB+HwEJQIZBLLIzSdLLaRyjt sdFornJ3QDCjL9W4VqwpI5Tbc+h77uHXedBTA6OUbKYMWz0ZKmAfi30m7ZhLT/ZOE4U5BSc4FumS gYLTuLpCIRACWcZQhu2ZCEDdiv2qD3AeQo1EDidbUQhEAzOwj71s5D30AZQqghJ3fswbWs6Rxqgv 502IuaPjocaYADPPpB51dIkD0nOPN9JRA3j2BxLdZ58CrBgIbYYJEu9GxTlWdgHqC8A256CG42VR iWRZ1z2Y6LouuqS8knQJBsiiqSxiL8sVXAB0KWYToRCTAcpQBvwo5UuyxuSZORx1rYeVAAPQ2mRN YVyqrmc7Q9la2MMmdrGNfWxkJ1vZy2Z2s1kVEAA7 ------=_NextPart_01D5E037.E5F59E00 Content-Location: file:///C:/6A8530EF/12EnfoquedeaprendizajebasadoentareaseneldesarrollodelahabilidaddelhablaCorregido_archivos/image018.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAoHBwkHBgoJCAkLCwoMDxkQDw4ODx4WFxIZJCAmJSMg IyIoLTkwKCo2KyIjMkQyNjs9QEBAJjBGS0U+Sjk/QD3/2wBDAQsLCw8NDx0QEB09KSMpPT09PT09 PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT3/wAARCABVAKIDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD2RHWR dyMGU9wc0teEW17dWTh7S5mhYd43Ir2LwveT3/huyubp980iZZsYzyRXVXwzoq97nNQxCqu1jzyT xlrWnardJHd+bEkzgRzKGGNx4z1/Wuw8LeM18QXDWk1sYblU35U5RgP1HWvM9T/5C15/13k/9CNd F8N/+Rmk/wCvdv5iuyvQp+y5ra2OSjWn7Tlvoep0jMFUsxAAGST2payfFVw1r4W1KVDhhAwB+vH9 a8k9Q878RePtQv72SPTJ2tbNCVQx8PJ/tE9voKz1vfFbqGSbWGU8gjzOak8B2MV94rtkmUMkStLt PQkdP1NezUwPPvCl3ryaLrc12b17mOMNbi4VmO7DdAevatLwTq+u6lc3a61HIiIimPdB5fOTntzW 94hmkt/D2oSwu0ciQOyupwVOOorjfh3rd7dz6k+pX008UMKv+9fIXrk/pQB6HRXkt34u8QeJNWMG jvNEjE+VDBgNtHdm/wAir9hpnjdNRtmuZrswCVTIDcqRtzzxn0osB6XRXkviXWtZXxdeWdjf3Sgz BIokkwMkDAH4mq97d+MNFWOe+ub+FC2FZ3DKT6HqPzosB7FRXJWnjT/ihzrFzGpuIyYSg4DydB+B 6/nXFwa14t8Q3MjWM925Xllt8IiegosB67MWWCRk+8FJH1xXF+D9b8RajrBh1iKRbfySwLW3ljdk Y5x9ag8LQeKINSmfWWvPswt3x5sgYbuMd+vWqXw91rUtQ8QtFe39xPH9nZtkjkjORzQB6ZRXm2pa Z42fU7prSa7Fu0zGIC5UDbnjjPpWTeal4u8N3EL311coX5QSuJEfHUd6LAev0Vydt8QdMktYXmyk rIC6jopxyKKQHllex+C/+RR07/rmf/QjXjlex+C/+RR07/rmf/QjXq4/4F6nmYL436Hk2p/8ha8/ 67yf+hGui+G//Iyyf9e7fzFc7qf/ACFrz/rvJ/6Ea6L4b/8AIyyf9e7fzFbVv4D9DKl/GXqep1me I7Rr7w5qFugy7wNtHqcZH8q06K8Q9g8S8HatFo/iS2ubg7YGBjkb+6GHX8DivY11OxdQy3luVPII lX/GuF8RfDeae9kutGkiCSsWaCQ7dpPXafT2rC/4Vxr3/Pvb/wDf4UwPSPENxDceGNU8mWOTFs+d jA44PpXnfgtXfSvEax53Gy4x9Grf8OeEtU03QtbtbiKJZbyILEFkBBOGHJ7daseBPC+o6FcXralF EEmjVVCuGzgnOfzoA4Hw9b6pd3zRaJOYrkx5O2URll7gHv8ASuw0jRfGUOsWcl9czNapKplBugwK 9+M81X1X4b6hb37T6JMhiLbkVnKPH7A96NP8LeLYdRtZLi5kMKSq0gN4TlQeeO9AGZq3/JTW/wCv 6P8A9lrsPib/AMiqv/Xyn9ay9Q8H6tceNzqccURtftSS7jIM7RjPH4V0XjbR7vXNCFrYqrSiZXwz bRgZ7/jQB586sfhjER90akd3/fNdb8LpYT4fniUr5y3BZx3wQMH9Kn8P+E5E8HXGj6wiq00rN8jB tvTBB9ciuWm+HWv2dw32KWKRegkSUxkj3FAHqV1/x6zf7jfyryj4auIvEcrt91bR2P5rW94V8M69 puqSy6k5aFrd0ANwX+Y4xxTfBXg/VNG1l7jUIYhC0DRnbIG5JHb8KAMBNd8SeKdZkj026mQtl0hj k8tUQe/5VV8Sad4hsoIG12aSSNnIjDz+Zhsc/Tite7+HmtWOou+kSoYsny3EvluoPY1BceB/FV2q rcsJgpyBJdbsfnQByFFdR/wrrxB/zwg/7/CimBgV7H4L/wCRR07/AK5n/wBCNeOV7H4L/wCRR07/ AK5n/wBCNenj/gXqeZgvjfoeTan/AMha8/67yf8AoRrovhv/AMjLJ/17t/MVzup/8ha8/wCu8n/o Rrovhv8A8jLJ/wBe7fzFbVv4D9DKl/GXqep0UUV4h7Bjap4r0nRrv7LfXJjm2h9vlseD9B7VU/4W B4e/5/j/AN+n/wAK4j4l/wDI1f8Abun82q9p/wAMzf6bb3Y1PZ58SybfJzjIzjOaYHb6Z4n0jWJf Ksr2N5f+eZyrH6A9a0bi6gtIvMuZo4Y843SMFGfqa8P1nR7vw3q32eZ8SpiSKaPjI7MPTpXe6pdW viT4f2dxqd6tkryL5kvll/nXIIwPXFFgOyt7qC8j8y2mjmTON0bBhn0yKmrm/AtrZ2egvHp98L2H z2PmiMpzgcYNWrzxfodhO0NxqMQlXhlXLY+uAaQG1Va51Gzs2Vbq6ghZhkCSQKSPxrGPj3w6Bn+0 V/79v/hWJ47s9J1K7sZr7V1sswExgwM+9Sc546UAdrcX1vbWD3sko+zInmGRfmG3rkY61T0jxHpu uvKmnTmUxAF/kK4z06j2rC1vVdN03wSmnG8DvPYbbc7CPNG3APtn3rl/h9rmn6JcXzajcCESogQl Sc4Jz0HvTA9ZorKuvE2lWVlbXdxdhILoZhfYx3Dr6VT/AOE88O/9BFf+/b/4UgOhrFsPFukanqAs rS5L3B3YXy2HTryRWjYajaanbC4sbiOeI8bkOefQ+leU+Bf+R8j+s38jTA9fooopAeAV7H4L/wCR R07/AK5n/wBCNeOV7H4L/wCRR07/AK5n/wBCNerj/gXqeZgvjfoeTan/AMha8/67yf8AoRrovhv/ AMjLJ/17t/MVzup/8ha8/wCu8n/oRrovhv8A8jLJ/wBe7fzFbVv4D9DKl/GXqep0UlLXiHsHknxM /wCRq/7dk/m1ek+Hf+Rc03/r2j/9BFebfEv/AJGr/t3T+bVp6b8S7ew0y2tTp0ztBEsZYSAA4GKY DPiqF/tDTiMb/KfP0yP/AK9Z7Z/4VSuen9ocfrWP4g1y48Sat9pkj2kgRxRLztHYe5JNdd4j0ttH +GVlaSjEqzI0g/2jkkfrigCnpepS6Z8LbuS3YpLLdtCrDqN23JH4Zqn4N8Gp4jinuLmeSK3ibYoj xuZsZPJ+oqzYWEl/8K7sQqWeG7M20dSBjP6E1H4I8Y2vh+3uLW+SQwyP5iPGN2DjBBH4CgDM8Z6D b+HdTS1tZJZEeHzCZCM5yR2+lanxD66N/wBeQ/pWf441y01/VY7mx8zy0gCHeu05yT/WtD4h9dG/ 68h/SgDb1fw9aaj4Is9RmaUT2enAxhWAU/KDyMVzfgjw3Z+I57tL1plEKqV8pgOuevHtXcyo0nwz 2oCWOmjgf7lcR4E8RWXh+7u2vy6xzooVkXdggnr+dAHZ+IdC0GHQ7G31a8lt7WzGyFt43Nxj056d hXI3On+CjbyfZ9VvFm2nYWUkZ7ZG2l+I17/aF7ptzAzG1ltfMiJBGSWOePXpTIE8EfYk82S/+0eW N2d33se3HWgCX4YXUsXiCa3DHypoCzL2ypGD+pqt4F/5HyP6zfyNP+Gn/I1j/r3f+YpngX/kfI/r N/I0Aev0UUUgPn/cPUV6l4R8RaTb+HLK1m1C3jnjQhkd9pByfWugGi6YOmnWn/flf8KRtD0txhtO sz/2xX/Cu2tiYVlZo46OHlSd0zjZ/AdlqNzNPaa5EzSuz7QFYDJz2NVD8P8AXNOlE+n3kLSL91o3 MbV2reFdEc5OmWoPqqY/lSp4bsYebY3Nuf8AplcOP0zipWKktL/ekN4aL1t+Jz1n4o1vRsReI9Mm aIcfaYkzj644P6V1un6laapbCexnSaI91PT2I7GoF0+7hGIdSlYf3Z0Vx+Ywf1qsNBRrk3Colpd/ 897Q7d3syng/jmspyhLW1n5GsVOOm4zV/B+l65e/a75JTLsCZSQqMD2/GqP/AArfQf8Anncf9/jX RW7zr+7ulUt2kT7rfh2NWaxNjD0rwfo2jzie1tAZl+7JIxcr9M9Ku6xo1rrtl9kvlcxbw+Ebacj3 q/RQBmadpdj4a0uWO2DrbJumfcxY9Of0FcTeTeAL6czMZImfk+SjoCfpjFeiXECXVtLBJnZKhRsH nBGDXLD4Z6EBj/S/+/3/ANamB5zrselyaksPh8TNAyhR5mSWcntnn0r1XUPCGn6zDaf2isjSW8Ii GyQr9aTSvBGjaPdrc28DvMvKNK+7afUDpmugouBBbWkVpZRWka5hijEahuflAxzXPS/DvQJZWcW8 se452pKQB9BVjxZqM1vZx2lg8n2ydwdkIzJ5QPzsPTjvTP7WfTMKqsYZIvPSOdiGgjVfmLk5OSSA B71aptq5DqJOxcufDGl3mk2+nXFv5kFuoWIljuT6N1rL/wCFb6B/zzuP+/xrG+1XEsV0kt5cQSXT 5l2uNkYYbpOMZ+RAo69TW3/bc9tpouIIpG2bCYpiSzqy/IM4wGJK+tVKi0RGsmXNI8H6Vod99rsk lEu0pl5Cwwfb8Kbpvg3StJ1MX9qkwnG7BaQkfN14/GqqeJ8T3Usas6/NJiSTCJFGMFhgZ+ZsgeuM 1PpN1JrGti8lQwrbW4jWLdn942C+fp8o+ual05JXZSqJ6I6KiiiszQKKKKACiiigApKKKACloooA KKKKACiiigAooooA5HxEseneIIL2WMXMd5GLd4WJXG1twIP8x3rbTSLO7to2uYI5CyHjGAFbkrj0 6flRRW02+SLMYJc0kSf2Jp+7d9kiyS2eOu4YP51J/ZloLVLbyV8mNgyqc8EdDmiisuZ9zXlXYhbQ dNZAhs49oUrjnoTnH58+1Wrayt7MOLeJYw7Fm29yaKKG2wUUuhPRRRSGf//Z ------=_NextPart_01D5E037.E5F59E00 Content-Location: file:///C:/6A8530EF/12EnfoquedeaprendizajebasadoentareaseneldesarrollodelahabilidaddelhablaCorregido_archivos/image019.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAoHBwkHBgoJCAkLCwoMDxkQDw4ODx4WFxIZJCAmJSMg IyIoLTkwKCo2KyIjMkQyNjs9QEBAJjBGS0U+Sjk/QD3/2wBDAQsLCw8NDx0QEB09KSMpPT09PT09 PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT3/wAARCABVAKIDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD2RHWR dyMGU9wc0teEW17dWTh7S5mhYd43Ir2LwveT3/huyubp980iZZsYzyRXVXwzoq97nNQxCqu1jzyT xlrWnardJHd+bEkzgRzKGGNx4z1/Wuw8LeM18QXDWk1sYblU35U5RgP1HWvM9T/5C15/13k/9CNd F8N/+Rmk/wCvdv5iuyvQp+y5ra2OSjWn7Tlvoep0jMFUsxAAGST2payfFVw1r4W1KVDhhAwB+vH9 a8k9Q878RePtQv72SPTJ2tbNCVQx8PJ/tE9voKz1vfFbqGSbWGU8gjzOak8B2MV94rtkmUMkStLt PQkdP1NezUwPPvCl3ryaLrc12b17mOMNbi4VmO7DdAevatLwTq+u6lc3a61HIiIimPdB5fOTntzW 94hmkt/D2oSwu0ciQOyupwVOOorjfh3rd7dz6k+pX008UMKv+9fIXrk/pQB6HRXkt34u8QeJNWMG jvNEjE+VDBgNtHdm/wAir9hpnjdNRtmuZrswCVTIDcqRtzzxn0osB6XRXkviXWtZXxdeWdjf3Sgz BIokkwMkDAH4mq97d+MNFWOe+ub+FC2FZ3DKT6HqPzosB7FRXJWnjT/ihzrFzGpuIyYSg4DydB+B 6/nXFwa14t8Q3MjWM925Xllt8IiegosB67MWWCRk+8FJH1xXF+D9b8RajrBh1iKRbfySwLW3ljdk Y5x9ag8LQeKINSmfWWvPswt3x5sgYbuMd+vWqXw91rUtQ8QtFe39xPH9nZtkjkjORzQB6ZRXm2pa Z42fU7prSa7Fu0zGIC5UDbnjjPpWTeal4u8N3EL311coX5QSuJEfHUd6LAev0Vydt8QdMktYXmyk rIC6jopxyKKQHllex+C/+RR07/rmf/QjXjlex+C/+RR07/rmf/QjXq4/4F6nmYL436Hk2p/8ha8/ 67yf+hGui+G//Iyyf9e7fzFc7qf/ACFrz/rvJ/6Ea6L4b/8AIyyf9e7fzFbVv4D9DKl/GXqep1me I7Rr7w5qFugy7wNtHqcZH8q06K8Q9g8S8HatFo/iS2ubg7YGBjkb+6GHX8DivY11OxdQy3luVPII lX/GuF8RfDeae9kutGkiCSsWaCQ7dpPXafT2rC/4Vxr3/Pvb/wDf4UwPSPENxDceGNU8mWOTFs+d jA44PpXnfgtXfSvEax53Gy4x9Grf8OeEtU03QtbtbiKJZbyILEFkBBOGHJ7daseBPC+o6FcXralF EEmjVVCuGzgnOfzoA4Hw9b6pd3zRaJOYrkx5O2URll7gHv8ASuw0jRfGUOsWcl9czNapKplBugwK 9+M81X1X4b6hb37T6JMhiLbkVnKPH7A96NP8LeLYdRtZLi5kMKSq0gN4TlQeeO9AGZq3/JTW/wCv 6P8A9lrsPib/AMiqv/Xyn9ay9Q8H6tceNzqccURtftSS7jIM7RjPH4V0XjbR7vXNCFrYqrSiZXwz bRgZ7/jQB586sfhjER90akd3/fNdb8LpYT4fniUr5y3BZx3wQMH9Kn8P+E5E8HXGj6wiq00rN8jB tvTBB9ciuWm+HWv2dw32KWKRegkSUxkj3FAHqV1/x6zf7jfyryj4auIvEcrt91bR2P5rW94V8M69 puqSy6k5aFrd0ANwX+Y4xxTfBXg/VNG1l7jUIYhC0DRnbIG5JHb8KAMBNd8SeKdZkj026mQtl0hj k8tUQe/5VV8Sad4hsoIG12aSSNnIjDz+Zhsc/Tite7+HmtWOou+kSoYsny3EvluoPY1BceB/FV2q rcsJgpyBJdbsfnQByFFdR/wrrxB/zwg/7/CimBgV7H4L/wCRR07/AK5n/wBCNeOV7H4L/wCRR07/ AK5n/wBCNenj/gXqeZgvjfoeTan/AMha8/67yf8AoRrovhv/AMjLJ/17t/MVzup/8ha8/wCu8n/o Rrovhv8A8jLJ/wBe7fzFbVv4D9DKl/GXqep0UUV4h7Bjap4r0nRrv7LfXJjm2h9vlseD9B7VU/4W B4e/5/j/AN+n/wAK4j4l/wDI1f8Abun82q9p/wAMzf6bb3Y1PZ58SybfJzjIzjOaYHb6Z4n0jWJf Ksr2N5f+eZyrH6A9a0bi6gtIvMuZo4Y843SMFGfqa8P1nR7vw3q32eZ8SpiSKaPjI7EenSu91S6t fEnw/s7jU71bJXkXzJfLLjeuQRgeuKLAdlb3UF5H5ltNHMmcbo2DDPpkVNXN+BbWzs9BePT74XsP nsfNEZTnA4watXni/Q7CdobjUYhKvDKuWx9cA0gNqq1zqNnZsq3V1BCzDIEkgUkfjWMfHvh0DP8A aK/9+3/wrE8d2ek6ld2M19q62WYCYwYGfepOc8dKAO1uL63trB72SUfZkTzDIvzDb1yMdap6R4j0 3XXlTTpzKYgC/wAhXGenUe1YWt6rpum+CU043gd57DbbnYR5o24B9s+9cv8AD7XNP0S4vm1G4EIl RAhKk5wTnoPemB6zRWVdeJtKsrK2u7i7CQXQzC+xjuHX0qn/AMJ54d/6CK/9+3/wpAdDWLYeLdI1 PUBZWlyXuDuwvlsOnXkitGw1G01O2FxY3Ec8R43Ic8+h9K8p8C/8j5H9Zv5GmB6/RRRSA8Ar2PwX /wAijp3/AFzP/oRrxyvY/Bf/ACKOnf8AXM/+hGvVx/wL1PMwXxv0PJtT/wCQtef9d5P/AEI10Xw3 /wCRlk/692/mK53U/wDkLXn/AF3k/wDQjXRfDf8A5GWT/r3b+Yrat/AfoZUv4y9T1Oikpa8Q9g8k +Jn/ACNX/bsn82r0nw7/AMi5pv8A17R/+givNviX/wAjV/27p/Nq09N+JdvYaZbWp06Z2giWMsJA AcDFMBnxVC/2hpxGN/lPn6ZH/wBes9s/8KpXPT+0OP1rH8Qa5ceJNW+0yR7SQI4ol52jsPckmuu8 R6W2j/DKytJRiVZkaQf7RySP1xQBT0vUpdM+Ft3JbsUllu2hVh1G7bkj8M1T8G+DU8RxT3FzPJFb xNsUR43M2Mnk/UVZsLCS/wDhXdiFSzw3Zm2jqQMZ/Qmo/BHjG18P29xa3ySGGR/MR4xuwcYII/AU AZnjPQbfw7qaWtrJLIjw+YTIRnOSO30rU+IfXRv+vIf0rP8AHGuWmv6rHc2PmeWkAQ712nOSf61o fEPro3/XkP6UAber+HrTUfBFnqMzSiez04GMKwCn5QeRiub8EeG7PxHPdpetMohVSvlMB1z149q7 mVGk+Ge1ASx00cD/AHK4jwJ4isvD93dtfl1jnRQrIu7BBPX86AOz8Q6FoMOh2Nvq15Lb2tmNkLbx ubjHpz07CuRudP8ABRt5Ps+q3izbTsLKSM9sjbS/Ea9/tC9025gZjay2vmREgjJLHPHr0pkCeCPs SebJf/aPLG7O772PbjrQBL8MLqWLxBNbhj5U0BZl7ZUjB/U1W8C/8j5H9Zv5Gn/DT/kax/17v/MU zwL/AMj5H9Zv5GgD1+iiikB8/wC4eor1Lwj4i0m38OWVrNqFvHPGhDI77SDk+tdANF0wdNOtP+/K /wCFI2h6W4w2nWZ/7Yr/AIV21sTCsrNHHRw8qTumcbP4DstRuZp7PXImaV2faArAZOexqofh/rmn SifT7yFpF+60bmNq7VvCuiOcnTLUH1VMfypU8N2MPNsbm3P/AEyuHH6ZxUrFSStf70hvDRetvxOe s/FGt6NiLxHpkzRDj7TEmcfXHB/Sut0/UrTVLYT2M6TRHup6exHY1Aun3cIxDqUrD+7OiuPzGD+t VhoKNcm4VEtLv/nvaHbu9mU8H8c1lOUJa2s/I1ipx03Gav4P0vXL37XepKZdgTKSFRge341R/wCF b6D/AM87j/v8a6K3edf3d0qlu0ifdb8OxqzWJsYeleD9G0ecT2toDMv3ZJGLlfpnpV3WNGtddsvs l8HMW8PhG2nI96v0UAZmnaXY+GtLljtg62ybpn3MWPTn9BXE3k3gG+nMzGWJn5Pko6A/hjFeiXEC XVtLBJnZKhRsHnBGDXLD4Z6EBj/S/wDv9/8AWpgec67HpcmpLD4fEzQMoUeZklnJ7Z59K9V1Dwhp +sw2n9orK0lvCIhskK/Wk0rwRo2j3a3NvA7zLyjSvu2n1A6ZroKLgQW1pFaWUVpGuYYoxGobn5QM c1z0vw70CWVnFvLHuOdqSkAfQVY8WajNb2cdpYPJ9sncHZCMyeUD87D0470z+1n0zCqrGGSLz0jn YhoI1X5i5OTkkgAe9WqbauQ6iTsXLnwxpd5pNvp1xb+ZBbqFiJY7k+jday/+Fb6B/wA87j/v8axv tVxLFdJLeXEEl0+ZdrjZGGG6TjGfkQKOvU1t/wBtz22mi4gikbZsJimJLOrL8gzjAYkr61UqLREa yZb0jwdpWh332uySUS7SmXkLDB9vwpNN8G6VpOprf2qTCcbsFpCR83Xj8aqp4nxPdSxqzr80mJJM IkUYwWGBn5myB64zU+k3Umsa2LyVDCttbiNYt2f3jYL5+nyj65qXTkldlKonojoqKKKzNAooooAK KKKACkoooAKWiigAooooAKKKKACiiigDkfESx6d4ggvZYxcx3kYt3hYlcbW3Ag/zHettNIs7u2ja 5gjkLIeMYAVuSuPTp+VFFbTb5IsxglzSRJ/Ymn7t32SLJLZ467hg/nUn9mWgtUtvJXyY2DKpzwR0 OaKKy5n3NeVdiFtB01kCGzj2hSuOehOcfnz7VatrK3sw4t4ljDsWbb3JooobbBRS6E9FFFIZ/9k= ------=_NextPart_01D5E037.E5F59E00 Content-Location: file:///C:/6A8530EF/12EnfoquedeaprendizajebasadoentareaseneldesarrollodelahabilidaddelhablaCorregido_archivos/image020.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAoHBwkHBgoJCAkLCwoMDxkQDw4ODx4WFxIZJCAmJSMg IyIoLTkwKCo2KyIjMkQyNjs9QEBAJjBGS0U+Sjk/QD3/2wBDAQsLCw8NDx0QEB09KSMpPT09PT09 PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT3/wAARCAB0AOwDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD2aiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA CiiigAooooAKq6jptrq1k9nfRebbyY3JuIzg5HI57VaooA8J8Q2MGh/GnR7HTQ9vamW2YxLIxGS3 PU17tXiPjf8A5L1o3+/a/wDoVe3UAFFV2v7RJvJa6gWXpsMgDflUk00VvC8s8iRxINzO7ABR6kmg BTLGsixs6iRwSqk8kDrgfiKratPNbaVcy2y7pkjJUD1rzvQfGEXi34xt9ibfYWVhLFC398lk3P8A jwPoBXp9KSumhxdmmeVr4vv9ET7Y1w9wDIivFISd25gMD3weK9UrFk8H6JLrCanJYI91G29CzMVV v7wTO0H3xW3WVCm6cOVu5rXqqrPmSsFFM82PzPL8xd/93PP5U+tjEK8l+M/hyy0/QI9Y05Gtbr7S ElMTsBIGBPIzjOR1+tep3F7a2hAubmGEt0Ejhc/nXA/G5g/w+DKQVN3GQR0PDUAbPwvdpPhzo7Oz MxjfJY5J+dq6yuR+FZB+G2j/APXN/wD0Y1dW8sceBI6rnpuOM0APrGufFel2WtnS7u48icKrBpOE Oegz2P1rZrznUPAeoeJPEd9f3cy2ls8u2PI3OygYBx26d6mTa2OjDQpTb9q7Kx311e21latc3U8c UCjJd2wKqaH4gsvEEM8tgzMkMnlksuM8ZyB6GuVn+FyS2scP9tXjLF9xZFDIv0GeKz7K21X4bXFx cT232/TpwA0kLY2kHgkHp1x6e9TzST1WhtHD0ZwahO8ui2PTaK5LSPiLpmrXsFmtvdRXEzbVBUEZ +oNdZVpp7HLUpTpO01YWiiimZhRRRQAUUUUAFFFFABRRRQB4j43/AOS9aN/v2v8A6FXU/GbxNf8A h/w7bQaazwtfSNHJOhwUUDJAPYnPX0Brl/Gg3fHzRR/t2v8A6FXefELxjpvhjT4obqzj1C9uT/o9 o6hgSONxyDgZP1NAD/D3hjw3qfhCzYaFbpDd26uyzRhpfmHUv1J9815/8PjFrXiHVPB+uh9R02ze SS2WaRsxlH24yDyCD0PQiu3stL8eahDHPe69ZaUWGfsttZLL5Y9CzHrXnvwjEg+K2piaTzZRDcb3 xjcfMXJx2zQBD4H8P6be/FvWNNntgbOH7QI4ldl2hZAByCD0r0bxF4P8OaLoN1fR2kkUsQHlOt1L kOSAvVvUjiuK+Hv/ACXHXvrdf+jRXT/GLVvs1jo+mq2Hu71XYf7Cc/zK/lUz+FlQ+JFfwno9trUV 6NREsqom6PEzrtPrwRXCfDQeItd1S+03T9Tmt4JkX7Xds5Z4oweiZPDNnGa9Q8FR+Ulyp6/ZiT+d cR8A/wDkPaz/ANcE/wDQjXPg3ekn6nTjVas16G54t+Emk2Xh271HSri9i1GziacTPOWMm0ZOfQnH UYrP0b4p31p8KZ725bz9UguBZQyyc7iV3Bm9SAD9cDPWvT/Ff/Io6x/15Tf+gGvmoNj4bMvrqwP/ AJBP+NdRyHqnw08Gab4j8PnX/EUZ1S+vpHy1wxYIoYjAHrkE/lWF8V9Cm8JaTHZabK50K+mDi2kY v9mmXP3CeQrAnj2rvPg7/wAk20//AH5f/RjVhfH0/wDFM6YM9bz/ANkagCjD40k8HfBTRTZ4/tC8 EkcBIyEAdtz474yPxIrqPCngHSrjQbW/163GqalewrNPPeEyEFhnaM9AM44rxnxUX/4RDwgDny/s k236+c2f6V7XYfDTQH0+2dhfktEp4vpQOg9GoA5zWbuPwL4st9BvXlufC+rKpWGaVibVt2PlbOdo ODjPQ+3OB8RNEk8E+KrLUoBcT6FcOC1s07lQR95M5zyORz6+leiz/CrwrNhrm0uJdnRpbyVsfm1X /HlrpVz4Jv4tYfy7RYsq4GWVx9zb6tnAx3zigDM17UtKfwfptlpFst6+pBV0y2MjYJxncxzkKucn n2rQ8O+BNN0OxgWYPeXojKTXEsjN5hYfN8pOMdgMdK8n+GOqnwl42Gl+JLZ4JpYhBA85ObYsdwAB 4AbPPvj3r36gDzPR9EtfDvxN+zzSqkPltJab/wCItwFz6j5h+FemV5f8V8f2vp23PmeS3Tr97j9c 12vhEauNBh/tvH2j+HP39vbf/tVnB2biehi4upShXk9WrfcblFFFaHnhRRRQAUUUUAFFFFABUF5d xWNpJc3BcRRjLbELn8gCT+FT0UAeH+KJjf8Axf0rWrS0vpNPhaAyzCzlAXaxzwVzwKi+KsdzqOv2 XiXSYrm5tLVUjfdbyJ5TqxYZDAHBz16cV7rSUAefWfxXg1+2W28PaXfXGrSjasTx4jiY/wATv02j 9a4rwfAPAPxWvY9fneONoJEW6eJgszMVYEYz1wf5V7qkaR52Iq564GKUgHGR0oA8I0K/Twp8YLzU dWjntbDUDM0U00TKCjtuVsdQOPw74pfidqX9teNtEurWK4fTlVUjmaFlSRt+W2kjntzXuxVWxuAO OmRQVDfeAP1pNXVhxdmmeUrJazFV1LUH03TiQ0gOVa5I5WPPULnk+uMVzXwc1ez0HWtUl1eb7Ik8 SiNpEYBjuz6V72AB0ApayoUvYw5Lmtet7afPaxy3jTxFpdpoOp2E92q3c9lJ5cQViW3KQuMDua8e 8K6XY6r4B1TR9QuUstQku0mshOpXc4XAHTockfjX0FHewS3s9pG4aaBUaRR/CGzj/wBBNVlfUptc YARRaZEmDuXMk0h9OeFA/M/StjE8y+G/jG08H6VJ4d8VCXTLq2lZ4zPGdrKTnGQPXPsc1lfFHWrn xtpcV1o1pM2iWEu37S6FftErcfIvUgAHn3r04Xctx46m0e9S2ubVbEXce+EbkYybcZ5yMCujVVRQ qgKo4AAwBQB4V/Y1p4s+GOi6VZzr/wAJDYLK8dqylWdSzFl5GM4AI+nvXd+EPiHpTaFbWeuXcema naRrDPDeHyiSoxuG7rnFd5UE9nbXWPtFvDLjp5iBsfnQBxHiDxHaeKLU2OnzN/Ygdf7S1IIwj8vI /dIcfMzHAJHABNRWOt6b4t8XxG7m8uxsJdmnWbxsDPKB/rmGMADooPueK76QRxWzgqFiVDkLxgYr y6w+ImoaJcSWd6gv7eJyqOzbZNvbnvxjrUyko7nRQw066fJ0H/G3QbG90y2v1cR6rFlY1CMTOmeV 4HUZyM+9XPh38Q47rQorPxG8ltf2+IxJNGwEy9mzjGexz9e9W5/ihHDbrIdGvF3/AHTIwVT+NZdj qOp/EXVWsrmU2mmRoXljgPX0BJ68/hxSdRbI1jgaiTlU0it2P0jXbfX/AInrcSRq8GxorXePu7Rk MPc8/nXplctpnw80jS76C7he6aeFt6lpOM/QCuqogmlqTi6lOcl7LZKwUUUVZyBRRRQAUUUUAFFF FABRRRQAUUUUAFFFFABWb4i1J9H8OajqESB5LW2klVT0JCkitKo54I7mCSCZA8UilHRhwwIwQaAO bsrHUV0rRr+yvJJbl/KkvftExKTRsuXwOgIzlcY6Y6VzF9rd3a6fFf293dXUzaysYvowVt3iMm0x YJ+YAZGQuMjr3rubPQRaQW9r9suJLO2AEUD4xgfdDHGWA7Z9BnNZK/DvT108WH23UDZxTCe2hMil bdw27K/Lzznhs8E0AU/D1jb2njXxdKkjxCF4H3PM5UExEktk8/j0rMs9YvLebwq6XF3PJe3hiuLx gVhvEZWOVRjnHQg4HTjg1148LWwv7+6a4uWGoxLHdxFl2zbVKgnjI4OOCKpQ+ArSGGwjOo6jIdOk V7JpJFPkAcbQNuCMcc5PAoAy9f1KTR/G2r6hCoeS28OmVFPQkSsRS315daL4c8OavHdXEtzPPbJd B5CwnWUYYbeg5ORjGMV0EnhiGbW5dSmuZZWltvsckLqpRos52njPU9c0y38JW8KWEM13c3NnpziS 1t5SuEZRhMkDLbc8ZPp1oA4z7VqOreCta8Vf2re29/byztbJHKRFCkZwEMf3WyAckgnmrXglZ7nX ZtPub++mshYxagkUszblefBILA5YLjj3JrnrTXvC3l3ltr+sX9l9su2mvtJjgZYVfdyuQpbBwM4b n26V6auk2WpT2utaRdm3ka3ESTW4Vklh6qCCCOO3cc0AYem69cf8Ih4jF5K0z6Zc3FnHM/LOo+5k 9z8wGe+K82/tORVjMcUSTKioZsbnOBgHngcDtXd+OorXw54Vh0iyLbry4aaV3OXkOdzMx9SxFecV z1XrY+gyuivZOT6stR3N1EjXHms6yMUcSfMHIGfmB69a6LwTrMVr4nsokhFvFMWSQByQzsPl69Bw Bjnqay47TzPBU1yBzFqCjPsY/wDHFZKl42V0baykFWB5B7Gs03FpnZKEa0ZR+R9FUtYXhLxHF4i0 dJcgXUQCTp6N6/Q9a3a607q58rOEoScZboKKKKZIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAU1wxjYIdrEHBx0NOooA8/wBESTTNHbT9V8L3l/qrFxPN5KSR3bEn5zKxxg8denTH FdR4T0d9A8MWOmylTJAh3bTlQSSxA9hnA+lbFVNTt7i706eC0nEE0q7RKVzsz1IHrigaV2eO+ONZ Gs+JZ3jbdBb/ALmL0OOp/E5rn69XsfhbpFvg3c1zdMOxbYv5Dn9apeNvA1rBo4vNGtRE9qCZY0yd 6dz9R/LNc0qct2fQ0cdh48tGG21zJ0ey+0fC3WHxytx5g/4Dt/8Ar1h+GvDk3iTU/s0LmOJF3Sy7 chB2/E16B4J043Hw6kgwCbsTYz3zlR/Ktrwp4ej8OaLHbcNcP888g/if/AdBVKnexzzxvsvaqO99 DD0j4eT6Hfpd2OtyK44ZTANrr6EbuldsOlLRWyilseVVrTrPmm7sKKKKZkFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhAIIIyD2paKAK9lZQafaR21rGI4Y87VHbJ z/WrFFFA27u7CiiigQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//Z ------=_NextPart_01D5E037.E5F59E00 Content-Location: file:///C:/6A8530EF/12EnfoquedeaprendizajebasadoentareaseneldesarrollodelahabilidaddelhablaCorregido_archivos/image021.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAoHBwkHBgoJCAkLCwoMDxkQDw4ODx4WFxIZJCAmJSMg IyIoLTkwKCo2KyIjMkQyNjs9QEBAJjBGS0U+Sjk/QD3/2wBDAQsLCw8NDx0QEB09KSMpPT09PT09 PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT3/wAARCABEAMMDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD2aiiq 99f2+m2j3N3KI4k6k/yHqaEr6ITaSuyxRXnupfEa4dymnW8cSdnm5Y/h0H61lHxxrZOftqD2ESf4 V1RwlRo5JY6knZanq9FeUDxtrh/5fl/79J/hW34S8Sapqmurb3lyJIjGzbfLUcjGOgpSws4pyY4Y 2nOSik9TvKKyvEmrtoehz3kaB5FwqKem4nAzVaws9cV4bm+1iJ4cb5YVtlUYx03dfxrmOs3qK53/ AITS02C4+yXn9nl9n2zyx5ec4z1zjPfFLd+Lo7W6vI1068misyPOmiClVBGc9c9DQB0NFYN34rt4 rlLeztLu+maJZmS3TOxSMjOaj/4SEW2pXb3sksNtDZRztC8YzGWPTI5LdsUAdFRWA3ihotPuL250 m+gghjEgaQKN+SBgc9ec80618Uwy3LwXlpc2LrCZx54GGQdSCCaAN2iubj8VNfW00ltp9/FB5Mkk d28Q2cKSD19uKdb+ILpNLsZf7PvL7zbdZWmjVFBJ7EZ6/T1oA6Kiqel6nBq+nx3ltu8t88MMFSDg g1coAKKKKACiiigAooooAKKKKACvL/HGrtf601qjHyLQ7AOxf+I/0r06R/LjZz0UE14fLIZpZJWO WkYsfqTmu3BQTk5djgx82oqK6nXjULXw1o+mBdMt7qS7hM0kknXPHsfWof8AhOLf/oBWX5j/AOJq r4m/5Begf9ef+FdX4LsLSfwzbvNawSOWfLPGCT8x71cuSMOeSvd9zKHtJVPZwdkl29DCj8YaVdDy tQ0KDyieTEFJH4YH862dF0Gyg1i21bRpd9lLG6lCc7CfTv2xg9Kk8XeHbKbRZ7m3t4obi3XzA0ah dwHUHHXisb4c6gyXlzYM37t081B6MOD+YI/KodpU3Knp3RorxqqFTXszstb0mPW9JmsZWKCQDDgZ Kkcg1nWen+IEMcF9f2U1oF2SBYmDsuMdc4zSeOmZPClyVYqdycg4P3hXmumWOo6xctb2LSSSqpcg zbeOB3PvXEegd8PC2p/2ONEa/tv7N3/fEZ83ZnO3rjr3q6fDs3la4izRgaioWLg/IAm3muIPg3xK gLeS/HPFyM/zpNH8WapoN95N680sCNtlgmJLJ64J5BHpQB2cfh7UtPuxdaXd2yySW8cM6TxllJRc BlwQaL7wtNqk1495cRg3VpHETGp+WRTu3AHtntV3X4ZdY8Mzppp8ySdFaIhtuRkHr9Kx/BOh6ppF zdvqSFVkRQmZQ/IJz3oAX/hELltKvLTFhFJPCIxLH5mSQwPIJI7dq0b/AMONqGpxTSSqIBZPauoB 3Hd3Fb1FAHO22ka1Fp7adNeWUtoLdoFYRMsmNpCk849Kz5PBl2TaMJbK48m1S3MdzG7IpX+JcEda 7KuW8b6PqOrwWa6YpZo3YviQJwRx3oA1PDeky6Lo6Wc0iSOrs2UBA5Oe9atYnhHT7zTNCS31Bds4 kckb93BPHNef6LNKfHECmWQj7Y/BY46tQB63RRRQAUUUUAFFeTeOJpF8WXgWWRQAnAYgfdFeq2// AB7xf7g/lQBJRRRQBHOnmW8if3lI/SvDyCuVPBHBr3SvIvFGmtpev3Me3EcjGWM+qnn9DkV3YKVm 4nn5hFuKkWvE3/IL0D/rz/wrsvA3/Iq23+8//oRrkfEFvNc6ToLW8MsoFpgmNC2OnpTNO1vxBpVk lra2sgiQkgNasTyc9aucPaUlFPr/AJmUKip1nJrSy/Q9B1+dbfQL+R8YEDDn1IwP51wfw+iZ/ERc D5Y4G3H6kCor++8SeII1tpradkBzsSAoCe2TXUeGNMTw4Ibe5ZTqN8SzKpzsVQTj/Pc1nb2VJxb1 Zrze2rRklZIsePP+RSuv95P/AEIVyXw4/wCRjm/69m/9CWut8ef8ildf7yf+hCuS+HH/ACMc3/Xs 3/oS1xHoHp9eZ/EizSHWre4RcGeL5/cqcZ/Ij8q9MrzT4k3aTazbW6MCYIiX9ix6fkB+dAFu0vJJ fhVc4dg8BMQIOCAHBHP0NJ8NZpZb2/EksjgRpjcxOOT6020tmt/hRdMwx5zGQfTeAP5U34aZ+16j jr5SY/M0AVvF/i66u7+aysJ2htIWKM0ZwZGHXn0qC08IeI7u3SZWaNXGQJbghsfTtWJYCMaxbC64 jFwvmZ9N3Ne4UAeI3YvbDUJLWe4l82F9rbZWIzXbfEqWSK007y5HTMj52sRngelcl4l/5GvUP+vj /Cur+Jv/AB6ab/10f+QoAqafpOo694Ls0srjbLHcyMzSSsCRyOorlLSxuLnV0soXC3DSmMMWIG4Z 5z17V6T8Pf8AkVY/+usn864jRP8AkeoP+vx/5tQB2nhDw9qWi3F0+oTrKsqKECyM2CCc9frXPSeB /ETSuwuY8FiR/pL+v0r0O+u47Cxnupc7IULnHfArzNfFHiTW9R8uwldXbJWGFVwo9yf5mgBL3wl4 h0+0kuXlLpENzCK4YsAOpxWz4C8SXV3dNpt9K03yF4ZHOWGOqk96pXEHjcW8pnebyth3/PF93HNU PAGP+Est8dPKf+VAEfjr/kbbz6J/6CK9Yt/+PeL/AHB/KvJ/HX/I23n0T/0EV6xb/wDHvF/uD+VA ElFFFABWR4h8Pwa/ZiOQ+XPHzFKBnafQ+oNa9FOMnF3RMoqS5ZbHm3leLfD0P2WAStboTtMSCVfw 4yPpUX/CQ+K/+nr/AMBB/wDE16dRXR9YXWKOb6q18M2keYHxB4rIIzdc+lr/APY1P4Tj1GXxbDc3 8d0zFH3STI3931NekUUPELlaUUrgsK+ZSc27HP8AjeGSfwtcpDG8jlkwqKST8w7CvN7GPWtNnM1l b3sMhXaWWBuR1x09q9oormOs8pGu+LQpG6+57/Zuf/QaZpfhLVtbv/MvIp4YnbdLPOMM3rgHkmvW aKAMDxTZiPwbdWlnCxCRoiRopJwGHYVgfDi0uba8vzcW80QaNMGSMrnk+td9RQB5x4v8G3SX8t9p kLTwzEtJEgyyMeuB3Bqjaa74rsrdYIku2jQYXzLUsQPqRmt3xL4r1jS9dntbK3R4EClWMLMeQCeQ ayj468REEfZYx7i2f/GgDmrye4udSlmvARcPJmQFdpz9O1d78R7We5tdPFvBLKVd8iNC2OB6Vzmh +HtS8QawtzeRSrCZPMnmlXbu5zgZ6k/pXrFAHN+A4ZbfwzGk0TxP5rna6lT19DXF634f1XRtdkuL SCd084ywzQoWxk55x0Ir1iigDj9Eu9U8TabqNjrEBgDRBEcwshJOeeevQdK5G3stf8MamZILSYTA FNyRGRHX8O3SvXqKAPMZfE/iqaF4ntJNrqVOLNuhpngawu7fxRA81pcRoI3G54mA6epFeo0UAeVe NbC8n8U3ckNpcSIQmGSJiD8o7gV6jAMW8YPB2j+VSUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9l= ------=_NextPart_01D5E037.E5F59E00 Content-Location: file:///C:/6A8530EF/12EnfoquedeaprendizajebasadoentareaseneldesarrollodelahabilidaddelhablaCorregido_archivos/header.htm Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="us-ascii"





   &nb= sp;            =             &nb= sp;            =             &nb= sp;      ISSN: 2600-5859 =

Vol. 3, N°1.1, p. 181-193, f= ebrero, 2020

Creatividad, Diseño e Innovación        &= nbsp;                       =             &nb= sp;            =             &nb= sp;      Página 103

------=_NextPart_01D5E037.E5F59E00 Content-Location: file:///C:/6A8530EF/12EnfoquedeaprendizajebasadoentareaseneldesarrollodelahabilidaddelhablaCorregido_archivos/image001.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAHgAAAAqCAYAAAEPJa+4AAAAAXNSR0IArs4c6QAAAARnQU1BAACx jwv8YQUAAAAJcEhZcwAAFxEAABcRAcom8z8AABbISURBVGhD7ZsFlBXH0oA3CSS4S4AQXIIHWByC BXd4uDtBggRJcJfFLbi7w7LALvaQuLufuAtxT/qfr+bWbN/ZWYGf985LTuqcunemu9q7y7om4vXX Xzdp06W9Jozg5+T5U0Zhzea15mDModCbMfuO7Zf/p556ypz6d6zJnz+/eeONN0xERIRbeOXKleau u+6SBKBSlcomJiZGno+fiTE5cuQwmTNn9vIVpHCmTJnMli1bzKlTp8zjjz8uraVKlUqIeea/VKlS 8rw/+oCZPHmyORJ7jPQIE3fpjBDceOON5tCJw/Lcrl0707FjR3m+8847zf333y/PPkyQkHLUmbsW jNAxATfffLOMq1atWl7tZcuXMz/99JM5f/68jFdByp389ymZ+j179gjxjPkzJVMrXLFihSldurTp 0aOHad2+tXnttdck74SzvBH2mgJH46LN5t1bzAMPPCCTt/foPjNgwADTq18vb+bB0HOEqVGrhunf v7+XATZo0MB7rlmzpvfcp08f79lB7+HqkVmjCyAT0qVnV5MuXTpTo3ZNE33muJcHRp8+7hWs36iB DEnzxj4w1stjHjX9yKmjXnrlqpFeGa9hMoKAdOa0Wctm8r5+/XqP9vPPP3d26VFZCNLmzp0r6QDv g4cP8Z7t/5izJ9yGY86dMG+99ZYpWLCgZPihd//ezihizTvvvCPvdkV2p/nX59UbHzTHz8aYs2fP mkuXLiUsky59OpmaAgULmO+//14ybYCQCqC5nujU6/YS7De4vzlw/KA55mxP1nvDtg1enuLChQsT pIEjR470zsYNN9zgpcMfvvrqKxkE7EvTI9hIejT/W1i5cqSJ4MAx5+BRh53lvjW3yZI1q1m5fpWX rjh01DCvxzBgTaecpteuWztst0+YEs/12Eukbdm9Nb7hDBkzCONWuHLlihBrJYWKFJL01q1by//h w4edtYqVpYHFAEw1QDnK1KpTS95/+OEH+X/22Wdlfb2G125Zay5evCiZfmAGqGT8+PHyTqVFihSR Z9ava89uZtCgQZKuAKM8djraNG3a1HzxxRfmjz/+MF27dpU86LyGtRD/YPbs2U3ZsmW9NDba7t27 5R3p07NnT3kmr/Zdtb3nkiVLyj+AzJw6daq3seLi4uSf/AQNlyhRQv71HeCZEWsaMlIBxkwDzz// vPn44489GhUZ+s5/ixYt5Dlq+cL4hrPnyC6JnOOPPvpInvft2yf/2jBrzfPgwYNN0aJFhSuRDu48 uEvyJk2aJP+HTx4JK9O7d2+ZwX916Sjp0vDpy2eEJULgB6buaNyxsIN/TejMiv3OhnTac9f1xLmT 8l++fHlTv359eabHiC6ladu2rfds40033eQ9582bNyxPxVzVqlXD0h2Mf4m9ECfTBOOHTbJr7XzW cdmyZTIbdnratGnNe++9J+nwezuPtY2MjDSrV68OS3cw7OW/h6lvTi1njk2WGMKZ0PygY0aCaBLD E+dPmjMPnTWnL5+VGT10MpjORpbdLXPGxF50VyGIzkZErZaJu3g6sMzuw44sgWfzoicDhKXWrBOv 7rBs7KvatWuHzRZ8xWbLimzijJkyimrMtrABBZayeuIU6fCteW41GTJk8LaLQq9evaTMAV97KEgF ChUQnvbmm2+GqF0YOnSolNlxYKdXRk6xPWBOc9HiRYUQDpscFC9eXGhZfe2EshIbGIAtfoBKlSoJ l6dM6FSLavz111+bKVOmyHvu3LnD6oLzN2/dQsocc7iLnVehQgV5V0QbBmDuNR3tcV+0b8AMNlfu XHIgbTh58qT55ptvQm/GPP300+by5cuhN2POnTsnDUQ7g6bjRYoWESVLAftGO0GnbCCNLV+hYgVz 9OhRSYO3Kj3IoG0gDVncsHFDs2rVKkl76aWXJP3PP/+Ud0xC3hV4RnkIG7Com04GxABCoFixYvKs YFdiA+loocw82obKaoUgi2/nzp2mYOGCMkmzomabnDlzhnLc+rAiAQbx3XffmerVq0t6jpw5ZHGW r1lh0qVNJzS///675E2fPl00ZZ4LFXKVlueee86kSZNGjlDYgBEYEG7YsEEIH330UXnXM0cHb7nl FjkvjRs3ljQFnqfOnioD5rxs3LFR0tgNwPLly01UVJQ8A+Q1bdFUeABlwO37dkj6xUvBShAyCL7C BGkZylPm+PHjIapwyJgxo2M1lvWObIIzvHLdSqngmWeeCRVJHqDPkiWLV4eNcNsVTp0dOnUwrdq1 NtPmTJeJ3Xc0nM5GdtqDm9aYDp3/ZVq2bWmmzJoq9QTRKsJD1m5Z5/CErk6ZVmbyzClyVPx0MmA6 rLj70B4hRLvnfdOmTaFhhQNbjG0CzSpH8Yar2/X8j2PCxBhm1OFqrFprZ2UQFaSnSp3KlC5b2ixa sVg0E2beFl9+5FigIi9atMi8//77plGjRmb48OGBtKAyTJ5hlpzf1KlTx7uJApD86Oho4TeVK1c2 S5Ys8epIBAMTPcxfIL/p0qOLGTdxnBl4zyBTpVqVQLogBGAiM2bM8N79NDayszBCu3XrJtwfLRnx 8vPPPwfSgwwYgDl17tzZTJw4UfgM4i2IPoJZ4Rz/3ZHJFHG15/Be2bqJIewcFw+MASU7iCYxxM1z +tIZUfdQ+6gniM5GysRdOu2Vod0gOhvpY1gZ57j5aWgbNToCzuXnZiCMKGpZlKlYuaLJlDmTwTGT 77Z84huxNasgRDTRiWLFi4VtJ+pYsmppmGixy+BvKVWmVFgZRCH9QPYGlaEv5e8sH1aGLT1z3sww 9ZVBs9IJBkwlW/du8wpjMmG3tWnTxuTLl89Lb9WulcyaXVbLz1k0V2jmz58v50vhkUcekXRcI3TA LoMrjDyUBxvwWJAO72D17TIbtrvyfty4cSFqF15++WVJL3FHCZlE6AMHTCXY6BBnzZrV/PLLL6Eq wmHWrFlCg0fEv9qqF3/77bchapdR2V4VlIiBQwd6ZdRP9MEHH4QojKivhw4dMj/++KO8w8E7d+/s lVFRCFNUeOWVV8L6jPbWpHkToQ8c8EEnkUqqVKkSKpI44MiEtmr1qp7GRKXZsmczW7duDVG50K9f v9BTPFD25AXXP5X/9vzi/sNo1jwQq17FDEAaOjHtsfVHjRol6Rg6WgYsXLiwpAO8MzkJBgxD4ryw hVMKOGSocO8R1/xCqefdBu2EPx3ZjtKiKi1bl10VRKuQL28+5zwvFPNTaZDV6OoVK1aUd4A8de5h sEyaMSnhgPcc2SuE9hbhjsi2jABudtRHBlAGxqYr7O8s74o2NGzYUGS7OvkBtXJs/PLLLyUPYKcM uGegKEZaBsAdp/4+ALdanTp15Hn06NGmY9eOCQfcb3C/sErQkHgvU6aM/Ou2oSL+dftxqcI7Z9nu vILaqWxPNd8A/D7T5swI6/yJE+65RJm444475GqMd87vww8/bJo1a2ZGjh3p7QqFF154QTQ5BfI6 dOggz927dzf9hwxIOOBqNavLlgY4+HaFAI3TCT+g1kHLNlNG8uuvv4Zyjfn0008lDaPeBtIOnjgk Xgue0YwA9UHaXo/NmzdLGrjr0G5xLXL03n33XclHeeKdHaLllWnCGzbt2hw8YNVl8S1TyAa2Tbly 5UJv8cBtJ7QMmHqYTVw7CjhgyefyUmHOnDniAlI5OXr8aNGEFJo3by5lQMQhcODAAVEc4OiUmTZ3 unB7hRo1XDcniwY/AI4cOSIDVoUnbMB9BrjXdAoIb7bW3XffLenKldU+Vu45bJh7JYF2Qz04+nLm yun51PE6ox8rL2Cw0LMboAcZBEpNYldca9askTIqU0GcgRgyHL0gwH6nDAMVev+A2SoQqEscwGLZ v9+95AaQibhsbHnJVqJh25jHpmXHUB9nHuOhU6dO8s71ClYWMl/pQbZ2vYb1hIbVogw3FryrZ9Vf hq3donULoWFbc2w4s7zTLxQVLZNgwMxyamdV4XApBWUyeAbtjoBMAHWOmXCfON76Duxrtu/fIeLP T6tIGbYfV7CU4YZ5y56tYSsbhDBMXEst2rQwPfr0NJt2bpYJsmm8ASP44XrMFhkMAFUyOdAtjgtF 6whEvXfQ/5TgtZRRTKQMhgW6vNNnlzngHIOJzF7onjG/t9AG7qGhQXXj7C5YGiXvfxGMf+nRt6ds q8274l2rcD3kH7EHiCVNb9aquWw/9Xb6ES9jly5dxPupXBdNinc/rSL3MvyrrEcqJOUhUZw5c6ZJ nz69PDdp0iRBvg/DE7r16i7bG9/WDMfEKl6yhLB/2HvWbFlFgWegcjai3SMQhHgs+Qf4R3HQ58QQ 5WH79u0So4No4zlXrlzCOIPoQRWhMFj+YaxMtE3jw4SJmbNklnsYDj7nE+YD4+DgY5eiwLdq2ypB ORsRQ3BaFAjekYl2tEoQcom9dOlSkaOsNpfepFerVi0BrSLik4n57bffxJfdt2/f5CY2MNHDuvXr mqH3DhXO2aFzB5MrdP2RHKKHY65p46iiuHP9dDYqrf2PmPTfadnIyhKp9Nlnnwk9ugN2t3pVAzAw 8e+LhKB179NdtjAyD7n8l8W/ev+vBzpzgJ+yW+/uEl4YkSZdGslQlTOlqEoRMh1+xgZBweHGA6Qh 6BDT0IjO7zB1fz1Xi2iKouc4+gX8c+GKReYeh8VwX9CkhXubyi3sxOmTpD9osX6lK6XIGBFWqCdL Vi81I8aMMG3at5FrseaOVO7UrZMoeOu3rRfp7Amvq0Rpx+knwpGbqVHjRpk2Hdx2CM9r37G9sFBu oFAqmVPKBNUFspasaZq0DhtDu0zJAjOxEvrhNDBpxmSJ5AxkCYkgvJOgxgVLF8iC057fFEgKoWVR 8W2WcZRZrTdbtmyi1hAIu3jxYrNgwQJxSXDdrjRoET369JAFYLGSapc87Dg2R6R1x5IhfQa5KBo7 dqxcHNHOkCFDEsTMtOvYTtqwzZYgJA9zCSukVt14GYSaRzzOfffdJ+MBR4wYIaqYHfTXqFljqSfI pNIFFsshuQWmMAuyaOViCcDQBkD0Pi59udTh8scPGMJPPvmkBIoVKFAgrGzJUiXFqcxkJjcRbKpV G1Z7N3poL/6ADhxfSxwDHfPND2vXrhXthLL1764vp23/8fATQDtwoo07NnuKBlFbjC2lgNdQ9dsq 1asK1wq6PTh86ojY4gULufFOOAEeeuihUC3JQ2xsrBgxlC1esrjZf+yAOAe0/hQtMANmh3FiUDOp DMQhh1f/WgF9Gp+x1oc/etfB3WE3CjaeuhBrevd3PTHo1B9++GGopnDARat1osIGAZuRfBwQGEfq XgLhDsNHu0YKixQ0RvxquLm0HUUNy1TAJ086XIuNqWY3yIZ+YNpEycfvoPaFAhv13nvvlUXHgQEN xhaeV3yDNuA91j7MXTRP1os2UrTATCwyRivgBPrDrf4/8Oqrrwp71fpHjh0lk2z3Ae8tbmvyiY7C NvADLnRYMuwSKxJ2hhXLqQ0CdXMVcE4PDlPkORxi5nz35ogJZWK1X2xGbBF9v/322yWgFwcrTtEn nnjCfPLJJ6Ha4+HMGff7Ci5hOK2cZBZ66YPLhNWyiWwvGaAxuiAhNLjZaQtXvKYjeuybJKJcqQ/W vnHHJtm0yS4wi4ss0UqZwP8UqD8URInRRUaJQL5UinRlqX2nYIPtrbaRONXEAPc/NITXsLhsJGKR SeNDDwWiW+w6QewvDFX6DRLhmxhonJNcGzjjQtQRokMaRrMCG5cbMm0DLqF2n8Lp06e9fFyUNqjL Euc4H6QkucAc8zkLXWcVqDHONmDk+q14draGxAG4OuzPa0DuWQjWsoFoMg3uTp8hvbBO+sLJ4r9I MdcXZIf12aAff/jRH01nAxda0IyfNF60V5QvwgBJ01BAAA8lyo5dbxAyrgkTJiTQC/TkcRHGDSNt ETpImj8GE4ATJBalz3UK3IWy+K9t0M3B5RlemSQXmF3WqGkjKQDyQYoNGgMJG8OlArBIBG/Cyt5+ +20zZswYoYF17NixQ2j4BICvbqDh0ssGBqvtDR05THah25dYcRKSjvaaGCCbNKwRRKlLDPgCCGWN /nNNi2XAmLv3ck8BfVSgz8SXEkJJHhOsShf3Zpw8PDHz5s0L0ytATjf+OJ652oUb0Q4mHWlo5DYQ BKhl/XkAEU2av27dulCqC3Ar0rFujjsKZKILDFvExqpaw/WVMWm2nGByCFskz753tgH5QDwnNJyU lABaIfRgd8dAZyJYYOQWQYG4ysnjtAYBk2wvsH1f5wc1n7CV2UC0o9wCuUwe3l4bWGRxGoTqpy3u KFhEFt9PT2iZ3jJjl+vXP8wv3KJcBdfEJJTbBlxw3GNqO2j+qv2DtOvXtpU9Ey6j13TJnmBlIyCN 2qDfWWBb2toqMoWvivBPDhw40KOxWR40rVq1kkBEG1CItL0hI+7xTrBMfowz+Y7igFlFPgvkl09s Qi0PwkH8ALfRfE6RTrqiTn5kVdf2RXOFG/mBxSPGD0WOBUIs2bESjBftmTrw7PvbAZHHDRu7ugen XC91bUDEMb/4Ygm49AMLrb5fwnV1s4JJLjBKx4y5bkAkqPECNjAIZVuKaMS2fKVjyEGbhg75A7YA PR0oMOu3bQgzX0BMNmzXletWmTx58wgtO52PWDWK3Q/Y5QRP6zfKIF4hNFm0Z7t+ux3Gv2HHRvkc kjKIGTTzF198MVRzOMCm0Zjtm/s69erIGEDqDGoHmxvtukw5N44ERPxpYLkfEBeYVPqVM0hADR5E 7G27nSQXGGTXtWzjansgisZ/CthA2s6gYYM89hyEDILBoAhOmHx/gjBDP7LpcC2u27pednhS7j0b aQdnBJuKoPSKkRXNTanivwTzIyEbjZs1ETcjcwfLD1pYP0LDvHOisWP5Ik0VqSBM55hWcNfFq5bI eBBhQe0ku8AgHW3bIf6zNwJ3NLjmegAaqv3J3MChg8Q8s/uQHLJgLDiyh7JMFP1mk3AS/WO6VqQd HDFeO079LsaKznK92gGlHWdj6TjsdvycLTEMW2DkRbuO7UXp4LYXVXt21GyRR5wUPh9WFyGIeWTL nKuFxx57LIy9E5KKaQTLgn1iM9IH+vIPXhuylqxpSBdwJ9qPxAyxW/HZspuII+ZTNZtGvxP1238K yCdMIuKL/TK7cNEicuvEbmVnckr4BNym+QevCwYmesg32HyOilzR26SxE8dJrEcQfWKIshJZNdKR NXM9b4sr52IkaDuoTGKomj3hE7gLietAmULpAtRTdfDgQXn3K3spQUIfiQ+hfnXso2jpF3pYCgAa PaEZmFI4IOw6UorY7SiFuB0xM1EctU2CeYErV66EcdKrwMDEBMhV38adm+R7ZQLlOXEsNjKCE0je sjXL5aRzR4sTYdvebSIjkSEY+iLLnHfqWLAsyhQpFn6qU4p4ewjRxokSFxcni8DNFnl8YQuw6PiJ 2Vj+8ilBtHQ8SxcuXJD66tatK859Ng0uSMC2jbWM/Z5S5BYMgBNyPaiePepjYVFy+fqBcfvLpgAD E5NE5CafPvIBHouGC06VHBQRkIWHtaMc7Dq0Rz6iadyssbgjg+q8GsSUIAhK3/G2cYL0nfhcxEMS cTvJIpPLCeaeGUe+xuFzWXHbbbfJ87Jly4QWWQc3IZrMX09yiKLJwmqorQZaT5s2TTxW9AGdR21h PHr+OpLBwMT/acQ/jm3KNR1Yr54bY6wIq+QSgIWx068G8SD179/fY/cgzo2WLePNxwYNG4ibEk+W RsxdC9IWrl4CCagLt2eePHnMyJEjw27c8B7id86UKVNY+STRNlX+wb8X5s2b1/wfwqTu9MTyProA AAAASUVORK5CYIJ= ------=_NextPart_01D5E037.E5F59E00 Content-Location: file:///C:/6A8530EF/12EnfoquedeaprendizajebasadoentareaseneldesarrollodelahabilidaddelhablaCorregido_archivos/image003.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAnEAAAIOCAYAAADX+VssAABHOElEQVR42u3dD3hU9Z3vcbYUoktd 16eUIrKUpZdlKZdLuVJE0ChcFCgKVaQiCg2IVLAsICIWESpSLl6kSCkiiig81GJRlEKWfwUqjZil uGlEZIFSEXjyKCCGUqSA7Pf6+Y0nTibzP/PnTOb9ep7zJJlkJiczk8w7v3PO79QzAAAA5Jx63AUA AABEHAAAAIg4AAAAEHEAAABEHAAAAIg4AAAAEHEAAABEHAAAAIg4AAAAEHEAAABEHAAAAIg4AAAA EHEAAAAg4gAAAIg4AAAAEHFALvwC1asXc/HrOvvJ9u3b7frrr68TP0tdkuzjku3bBog4AEScz9eJ iMvd5wqPHUDEAQRRHt+P3P9EHEDEAUjrC9Hu3butfv361qxZMzt16pS7TG/1cYMGDdzng29vzZo1 1r59e/e5du3a2bp162rcpi5r27at+xp9ra4Tbt10+aWXXmpdu3YNu87ex8XFxVXf85prrrGKigrb smWL+/4FBQXWo0cPO3LkSFLrsHPnTrfp7OKLL3bL0KFD7ejRo9W+Jtzo5dSpU61p06bu9nW9W265 pdo6xHP/a520jvoZevbs6a4f6T4Iva9k79697vt66z5gwADbv39/XM+DaN8n1uMb6bGMdr1oP0es xyrS9wz3uMS6rePHj9uIESPskksucV/TuHFjGzNmTNVzPxdGrAEiDiDiqkyZMsV97YQJE9zHo0aN ch9Pnz69xu0p+EJf5LQPkaesrCzm14TeVv/+/aOGRejSuXNnFy3BlymCklkHBVTo1w0cODDqC7oC LtznCgsL477/S0tLa1y/devWEe+D0Pvq0KFDLkBCb6NJkyZxxWSs7xPpfot0O8k+5vE8VvFGXDy3 dfPNN4e9/n333UfEAUQc4K+Ii2efuDNnzlirVq3cC+CiRYvc5zp06BD29jTac+LECTt58qR7IQ5+ QRZ9Xpdt2LDBffy73/2uWhgF39bEiRPtwoULVaNHkcJCUXn+/Pmq29Ki0RRdppEWfayoS2Yd9KKu 6NF6zJo1q8ZthXsh1yilLlu9erX7+MCBA3FdL5h332lddV/qPg0OjFj31ciRI93lffv2daNLWvS+ LtPnko24WI9vpNuJdb1IP0c8j1W8/6TEc1te5B08eNB9rMdQHzdq1Cipf4AAEHFAViNONm3aVHV5 8GbU0NvTpkyP3tdl2jTl0fvhvlfw13iXaTQpnrBQGIRe5m3yVBCEXi+RdQgetfJuSy/0sV7Qz549 6wJAUdKxY8e4rxe6jsH3p8Ii0n0Qel9pxC30cu/6l112WdIRF+vxjXQ7sa4X6eeI57GKN+LiuS39 c6LL9E+LYveVV16x06dPx7xtAEQckPGIS0SLFi3cdRQl8d6eF32x4jFc4Cia4gmLWOsR72bYeCIr nnXQCE+4TZmxrhfv/RnudkLvK93niTweyfyc4W6vts+LSI95PI9V8PeK9jyIdlt79uypCrngyHv1 1VeJOICIA3Iz4rzNqN7ywgsvhL09bTr0fPDBBzVGOrRZSpdppCpVAZNoxKV7HbTjvC6bNGmSO+hC mxETjbhER+JCeREZbiROn4sWTxrFjPR9Yj2+ke6vWNeL9HMk8ljFirh4bsuzY8cOty+ot+lXm8iJ OICIA3Iu4hQhXhSMHz++agd5XR56e7169XIRoE1QgwYNcpcNHjy46uu8F0Ud8adwUOToYx0pmKmI S+U6ePtQ6ehF7whGbxRMO9Lr9hcsWJBwxHn7b2l/Ld2Xuk9138Z7O0VFRVX7xOlx0uL93NqHMDQW 58yZ49ZV0agjWiN9n1iPb6T7K9b1Iv0c8TxW4YR7XOK5Le963v6MGpnzDnCJdtsAiDgg4xEXzz5x 3tGoOlhAvBfhsWPH1ri90KNC9eIXvP+cjgQM971WrFiRsYhL5Tp4BzFo0f0iwbHlLdoPLXgfu1gR p5Gg0NvQtBvxRpwODAi3D5jiWyNhHk2ZEvo1wUfkJvr4Rrq/Yl0v0s8Rz2MVTrjHJZ7bUjSH+5rh w4dHvW0ARBzgu4grLy+v2pzkHUCgUR3vhUyjTcG3t23bNrdPkUYrtO+c9g8LpSNG9Tlv/rmFCxfG NUqYqohL5Tpox3dvzjxvbjONOGkkTaGikFLsKqrCTVURjfbD8o4K9o7uTOQoV0WSRtW0Hlp0G6EH Dug2FSje12hOvJKSkoj3dTyPb7j7K9b1ov0csR6rcMI9LvHclkbWNJWO5vjz4luPn47QjnXbAIg4 IKejEKnhbbLzYkfTpXj7JWqfu1x5fHleACDiACIur3j7xIVbZsyYQcQBIOIApIa3OQ6poc16OohE 07p4963enzx5ck49vjwvABBxAAAARBwAAACIOAAAABBxwXRYu2bGZ2FhYWFhSecSPH8gQMSlgH6p vvzlL7vZ11lYWFhYWNKxfP3rX4855x9AxCURccETewIAkGrXXXcdEQcijogDABBxABFHxAEAiDgQ cUQcAABEHIg4Ig4AQMQBRBwRBwAg4kDEEXEAABBxIOKIOAAAEQcQcUQcAICIAxFHxAEAQMSBiCPi AABEHEDEEXEAACIOIOIAACDiQMQRcQAAEHEg4og4AAARBxBxRBwAgIgDEUfEAQBAxIGIi8/Ro0et efPm1S4rKSmxDh06WIMGDax9+/ZWWlpKxAEAiDgQcX6hX4a2bdtavXrVV7N169a2bds29/6yZcus TZs27v39+/fb9u3bayxr1661iy66iEcbAEDEgYjLhF69etmePXtqRFwob5Rt6NCh7mvDLRq1AwCA iAMRl8mVjBJxGmkbMWKEe//EiRN25MiRGktZWRkjcQAAIg5EnF8i7uTJkzZgwAA7depU1OuzTxwA gIgDEeeTiNMIW1FRkVVUVMS8PhEHAMh2xF155ZW2ZMmSapdpv25dnsxrYqxdjRKl19PQXZFClZeX u/XVLkrt2rUjWom4xCNu06ZN1qNHD3fkajyIOABAtiNOr2UKoPPnz7uP9VYH5iUaY6mON8+KFSvc 4Eg0CrdXXnnFva8DDBs3bswDT8Ql9oTVlCOx/lsg4gAAfou4mTNn2quvvuo+1tvx48dXvYZpJKyw sNCNcin2NOOCHDp0yDp37myXXHKJrVmzpsZInKbZ6tixo7tekyZN3OheMhRwXqDFQ+uiab5AxKUV EQcA8EPEHThwoOpgPL3VvKdejN1yyy1WXFzs3t+yZYsLOunfv7/NmDHDvT99+vQaEaepuPT1snfv Xrv00kvDfu9Ygx+avktbuRSDisLdu3eH/Tk0gqig1G0kG4wg4og4AEBORZzcfPPN7q03iuVdXlBQ EHZqLF1+4cKFqoAKjbjjx4+7yBs0aFDYuVWTof3OY42yKTg18gcijogDAORFxM2ZM8defPFFGz58 eI2IO3PmTI3r6XJvP7qzZ8/WiDhtatX+bNpfXJtew0VcPCNx4b5vLMzBSsQRcQCAvIk4jXJpBMvb N867vE+fPm5zqSjKunTp4t7XVFpTpkxxm2JbtmxZI+IUW9qMqum2tIk22ZE4bU719sPTOmrTariv 0RGqok3B4b4GRBwRBwCokxEn119/fdXoWnDcKdwUZdqUqTMWiQ54uOaaa9yRrAqo0IhbuHChNWrU yO0LN3/+/KQjTpPna3OsRtf0/bQ+oeuugyh0hKq+RvvsxTPNF4g4Ig4AkNMRl8u8gzFAxBFxAAAi LodMnTqVB5iII+IAAESc32nTqjb55sv3JeKIOAAAERf5BTdk+pB169al/kU9yf3hQq+nAxYUVOmk +e9CJft903UWC50ZSicYiEXTrQSvg44y1uTJ2r9RB6PoyOFolxNxRBwAwOcR51HA6XUpHSGXK1IZ XumIOD2W8cy7pwNUOnToUO3rtPlZc/dpfj+FWqtWraJeTsQRcQCAHIk4L+S8edYinXJLIzy6rH79 +u6IVe/2dUYFTSsimnqkadOmLgxinYpL36dnz55uJEhHu3qjXt71NM9c165d3fX0Vh97n1d8aPQo 0ihiIj9D8MTG0dY30veNdCqyaLezYMECd2RtvHr16uWOEI4VcZoWZtasWdW+Tt9n165dNb420uVE HBEHAMihiAu+LNIptxQ73txxGzZsqBq5mT17tgsH0eTBEydOrHZ7kU7Fpe8zefJkF3yKH31d8PU0 V513ii+9Vch4n9f31PWC4zNYoj9D8P0RaX0jfd9IpyKLdjtaN+/MF4lMfhztcwcPHnTRGBzQovXU 46L20M+7c+fOqJcTcUQcACBHIy7SKbcWLVrkRpTuu+++aucy1RxuGokSxZI3uhPrVFzBp/CKtB7e 5/XWO2uDPh98vXA/S6I/Q/BtRFrfSN830qnI4r2dhEIpSsQpJr1oDP46jTrq5xb9zAq9aJcTcUQc ACCHIi54ZCnSKbdEo1cKE0XJ4sWLqy5XvOmsCdp0Gfo9Ip2KK5GIUxx5r52h6x4p4hL5GYJvI9L6 Rvq+kU5FlsjtpGIkLtLthJ5T1nucI11OxBFxAIAciTht2tPrkrf5MdIptxQ93tcsWbLEGjduXHUb OlODbnPevHlhIyfcqbhuvvnmqu+jEaTQzanafBq8mTJ4c2qssEn0Z9ColBd9kdY30veNdCqyeG8n oVCK87rBXzdq1Chbvny5e19n2fDui0iXE3FEHADA5xEXaYqRSKfc8k5zpeDRdbwYkhMnTriv1ybE 0JCIdCouHXygedh0W7pdb5+s4AMbNJoVeuqteCIu0Z/BO8Ai2vpG+r6RTkUW7+3UNuJiXabHRpta 9fNqk6l3X0S6nIgj4gAAPo441B1+OQ0ZEQcAABGHBPjlNGREHAAARBxyEBEHAEAGIk77TL344os1 LkuG9gPTUanevm3e99X+Z82aNau6XEeFgogj4gAAqGXEaYd/HTlZ24hToL3yyivu/W3btlUd8amj NnUEqOio1YEDB/LAEHFEHAAAtY04zZE2YcKEWkdcMJ15QXEoijlvnjfNnxbPydtBxBFxAAAiLo55 4jQ1hnfmgkhTVcQzEa0mu9W5Q/V57xyhoZPH1nYyWRBxRBwAgIj7PMYUcAq5SBGXKM275p0JQHOx BfPmYQMRR8QBAFDLiBNtUtWm1dqMxAULPq2TNqOK3oae5glEHBEHAEAtIk4HN3To0CHpkbjWrVu7 I1RF50/t0aOHe18nfvfOTaq3OtABRBwRB+SAlStXuheFbzT5um8Wrc/cuXN5cEDEhQSbphtJNuK8 U1lpBK6wsNCdhkr0/Zs2beo2q2qqEQUeiDgiDsgBzz//vF3/tSZW3r6jb5bBX/2aTZs2jQcHeR9x ABFHxAFRI+7Of2phH1/ZxTfLpMubE3Eg4gAijogDiDiAiAOIOICII+IAIg5EHBEHEHFEHIg4gIgj 4gAiDiDiACKOiAMRR8QBRByIOCIOIOKIOICIAxFHxAFEHEDEAUQcEQcijogDiDgQcUQcQMQRcQAR ByKOiAOIOICIA4g4Ig4g4gAiDkQcEQcQcUQcQMSBiCPiACKOiAMRBxBxRBxAxAFEHEDEAUQcEQcQ cSDiiDiAiCPiQMQRcSDiiDiAiAOIOICII+JAxBFxABEHIo6IA4g4Ig4g4kDEEXEAEQcQcQARR8SB iCPiACIORBwRBxBxRBxAxIGII+IAIg4g4gAijogDiDiAiAMRR8QBRBwRBxBxIOKIOICII+JAxAFE HBEHEHEAEQfkWMQdPXrUmjdvXu2y0tJSa9asmTVo0MDatWtnGzZsIOIAIg4g4kDE+YV+Gdq2bWv1 6lVfzQEDBtiSJUvc+/PmzbOBAwcScQARBxBxIOL8olevXrZnz54aEde4cWO7cOGCe//s2bNVI3Vj x461K664osZy+eWXW8OGDXm0QcQRcQARByIuoysZEnHajBru4/Xr19vcuXNrLNOnT7eCggIebRBx RBxAxIGIy2bE1a9fv9rHsQKNzakg4og4gIgDEeeDiGvSpInbjCp6q4+JOICIA4g4EHE+j7hBgwbZ 4sWL3ft6qwMdiDiAiAOIOBBxPo84/ZI0bdrUbVbVVCMlJSVEHEDEAUQciLi6hogDEUfEAUQciDgi DiDiiDiAiAMRR8QBRBxAxAFEHBEHIo6IA4g4EHFEHEDEEXEAEQcijogDiDiAiAOIOCIOIOIAIg5E HBEHEHFEHEDEgYgj4gAijogDEQcQcUQcQMQBRBxAxAFEHBEHEHEg4og4gIgj4gAiDkQcEQcQcQAR BxBxRByIOCIOIOJAxBFxABFHxAFEHIg4Ig4g4gAiDiDiiDiAiAOIOBBxRBxAxBFxABEHIo6IA4g4 gIgDiDgiDiDiACIORBwRBxBxRBxAxIGII+IAIo6IAxEHEHFEHEDEAUQcQMQBRBwRBxBxIOKIOICI I+IAIg5EHBEHEHEAEQcQcUQciDgiDiDiQMQRcQARR8QBRByIOCIOIOIAIg4g4og4gIgDiDgQcUQc QMQRcQARByKOiAOIOCIORBxAxBFxABEHEHEAEQcQcUQcQMSBiCPiACKOiAMRBxBxRBxAxAFEHEDE EXEg4og4gIgDEUfEAUQcEQcQcSDiiDiAiAOIOICII+JAxBFxABEHIo6IA4g4Ig4g4kDEEXEAEQcQ cQARR8QBRBxAxIGII+IAIo6IA4g4EHFEHEDEEXEg4gAijogDiDiAiAOIOICII+IAIg5EHBEHEHFE HIg4Ig5EHBEHEHEAEQcQcUQciDgiDiDiQMQRcQARR8QBRByIOCIOIOIAIg4g4og4EHFEHEDEgYgj 4gAiLsyyr+tttvrGJ2z2gNdt+vffsvsHH7ZHbt9lc2/daEv7LrXya4fZ8U7diDgQcQARR8QBfoi4 HYWjXagVFX1qw4rO2sO3v2u/6L/Wnu230l64abnNuXWzTRh80IYMMxs95Li93Hu+TfynNkQciDiA iCPigGxE3KGr+rp4U5xpxE0xd6xTYcSvf6fbEHu63yobMfQTKxp02CY99BwPDog4gIgz27Rpk7Vt 29YaNGhg7dq1i/lLQ8SBiEt+Kb1ujIuxMXd9aJt6/iSh6x64+ha7p+96Gzrsgr28yuzTCzxGIOKA vI64xo0b28GDB937etu8eXMiDkhDxL3ae67bbKpRuMNX9U76wIYJD6y04SPN5jxpduZvPE4g4oC8 jbhWrVrZkSNH3Pt6q4/ll7/8pY0bN67GMnLkSCsoKODRRkrt37/fRZOflrvvvtsGNbsiJQG3sP9q t/lUIecdpFCbo1P3/8ls9BizByebHTvG8wdEHJCXEVdaWupG1urVq+febt++3V0+ffp0u/rqq2ss nTp1soYNG/JoI6UUTXoOauTLL0vBl75ktzZukrKAK75hZkqnGFG8PTDJ7MdTzP5yiucQiDgg7yLu yiuvtF27dlUFXefOnaN+PZtTka6I89ucbEM+C7gBX/t6rW5jRZ9F7ujTku4T0jJP3OnTZlMfNXt4 GptWQcQBeRdxOqAh2sdEHIi45K6vAxcUcOtveCytk/1+dMLsR+PMZs02O3eO5xKIOCBvIk4jb+Xl 5e79srIyNzJHxIGIq13ElV07wh3EoJG4TJyx4f33zX5432f341KeSyDigLyJuL1797pw0wic3upj Ig5EXPIRV9G5pzvrgibrzeRpt3a+ZVZ0d+AtQMQBeRBxiSLiQMRFXnTkqSbwHXtnhYu5TJ87VSNx 99xrVlHBcwpEHEDEEXEg4uJelvdd4vaDe6vwh2lZp1gRpwmAdbTqw9PYPw5EHEDEEXEg4uJa9na9 3e0Hp5BL1zrFijjRKJxG41a9xvMKRBxAxBFxIOKiLh907u72g5v2/T9GPQ9qJiJOiteZO6vDBx/y 3AIRBxBxRByIuIjL0r5L3TlR3+vSL63rFG/EyWMzzWY+zjlWQcQBRBwRByIu4onptRn15d7z075O iUScRuE0GrethOcXiDiAiCPiQMTVWGbe9qY9dMe+Wp0TNR0RJy+vCswfpwmBASIOIOKIOBBxny86 nZbOi5quo1FrG3He0apznuQ5BiIOIOKIOBBxVXPCTRh80J3gPlPrlGjESfnb5kLz3T08z0DEAUQc EQcizlb2ecrtC5fugxlqG3Ey+2dmUx/lIAcQcQARR8QhzyNOBzPoaNR0zgmXyojTuVV1Si5NPQIQ cQARB+RtxD3bb6WNHnLczQ+XCxEnzz1vNnqM2enTPN9AxAFpjbjLLrvMunbtart377YzZ84QcSDi fBJxh67q60bhMjGlSCojrrKSMzmAiAMyEnH16tWrtjRt2tQGDx5s+/fvtwsXsrdjCxGHfI84Hcgw 5q4PMz4KV9uIk1+9FJhyhNE4EHFAGiPu5MmTVlpaau3bt7dGjRrViLpWrVrZsmXLiDgQcRmMuH1d b3MnuN/aY3JW1qm2Ead4+9E49o0DEQekNeJClZWV2aBBg2rEnC4j4kDEZSbiNAr34B0HMjKxbzoi Tjb+NhByZ/7G8w5EHJCWiDtx4oQVFxdbu3btXDSFxlvLli2tWbNmbpSOiAMRl/6I8/aFW3/DY1lb p1RE3LlzZmPvN1u/kecdiDggLREXaZ+4vXv32vnz593XaN+4TAcVEYd8jThvX7hsjcKlKuJkTbHZ +ImBoAOIOCDFEde4cWPr1asXR6eCiPNBxHn7wmmC32yuU6oiTvvG6QAHjlQFEQekIeL8iohDPkbc 0/1W2aghH9vhq3rXiYgTHamqeePYNw5EHJCGiJsyZYobkfNo/7e77rqLiAMRl8GIq+jc00YOPZX1 UbhUR9yxY4GzOOhAB4CIAxGXQn379nX7wtWvX/+Lb/D5/nEDBgwg4kDEZSjiVt/4hDs7w7FOhXUq 4mTB02YPTOKcqiDigJRGXIMGDVywHTlypOqyAwcOuMv0OSIORFxmIm7snRW+GIVLR8Tt/5PZkGFm 5W/zHAQRByIuZbwJfoOfxFu2bHGXZXpaESIO+Rpx3/+fRW5Tqjap1sWIk8dmmk19lNE4EHEg4lJm 0aJFNaYZ8ZaFCxcScSDiMhBxd97yR1vad6lv1ikdEbfjD4HROI3KAUQciLgUWb16tTVv3twKCgrc osl916xZk9UfkohD3kTcv9xsQ35w3k0vUpcjTiNw2i9u4TM8D0HEgYir04g45E3E9fl3G/zdf/fV OqUj4kST/w4faVZZyXMRRByIOCIOyOGIe6fbEDcK9/1v3ZEXEae54nQ+1WXLeS6CiAMRV2v79+93 m081xUjoPnHB044QcSDiUr/oFFtDBuyxAV+/Ii8iTl77jdk99wbO5gAQcSDiakHnSg0NN29hihEQ celbPujc3R2ROqTzlGrnTq3rEadNqdqkunkrz0cQcSDiandjn8dbSUmJr35IIg51PeI0ue+worM2 pNm/5lXEyTOLzR6exvMRRByIuFrR6bYUcX5DxKGuR9yEwQfduVKDz52aLxG3d19gupE/v8dzEkQc iLikbdiwwUXc+PHj7bSPdlIh4lCXI25H4WgrKvrUneg+HyNOHpwcGJEDiDgQccneWISJfjmwAURc +pY5t262ubdurHbarXyLuPUbOcABRByIuFoJPpAhdOHABhBxqV80+qZ94UqvG5PXEfeXUxzgACIO RFydRMShrkbcy73n2/2DD9vxTt3yOuKEAxxAxIGII+KAnIg4hdvYOyvsxe8urnbu1HyNOO8AB86n CiIORFySysvLrU2bNtaoUaOq/eA6duxIxIGIS/GyuccjLloOXH0LEfe5qY+a/XwBz00QcSDiElZc XBz2YAa9379/fyIORFwKlxkDd9isASXVz52a5xH3xnazorvNPjrB8xNEHIi4hHhnbNi1a1eNiNPI HBEHIi41i0bfNK3I690fJOKCnDtnNnqM2arXeH6CiAMRl9iNfT4C572viLtw4QJTjICIS/Gyss9T NmrIx3asUyERF2L5i2bjJ5p9eoHnKIg4EHFxu+yyy6pOu+WFm/d+kyZNiDgQcSk6oEFHpD7bb2WN zxFxgTM3aF/Bd/fwHAURByIubsuWLYs42e+KFSuIOBBxKTqgQZtSgw9oIOKqe/izb/f8Up6jIOJA xCVk27Zt1qJFCysoKHAT/DZr1sxWr16d1R+SiENdiriZt73plnCfI+IC1hRzBgcQcSDi6gQiDnUl 4nSGBo3CaTSOiItMZ3DQUapvlvI8BREHIo6IA3wQcTpDw4ihn1hF555EXAyzfxZYACIORFw8NxZh fziOTgURl5rloTv22S/6r434eSLuCxqF0wEOx47xXAURByIupuAT3odGnPaPI+JAxCW/vNttsIsS 72T3RFx0mjPuh/cxZxyIOBBxSTlz5oxNmjTJRdwrr7xCxIGIq8WytO9SG3PXh1UnuyfiYnt5FXPG gYgDEZc0b7Jf5okDEVe7RQGnkIv2NURcyO/+h4EDHMrf5vkKIg5EXMIBpyc0+8SBiKvdsv36cW5T 6jvdhhBxCXp0htmT83m+gogDERf9xqIc2KC544g4EHHJLfO+t86dpSHaplQiLrzNWwOjccwZByIO RFwUwQc2BC8KuLNnzxJxIOKSWA5d1ddNK7L6xidifi0RV1NlZSDi3tjOcxZEHIi4nEPEIZcjbu2N j7sJfjXRLxGXHM0XN2s2z1kQcSDiiDgggxH3yO27bO6tG+P6WiIuPG/OOJ3JASDiQMSFu7Eo+8Rl c+JfIg65GnF7u97u4kMHNhBxydMUI5ozrngdz1sQcSDiwgo3yW9wuHlLpif+JeKQqxH34ncX2+gh x2Me0EDExfF4LTV7bCbPWxBxIOLCmjVrlgu2yZMn26lTp+z48eM2dOhQd9kLL7yQsu+jSYSLioqs oKDAWrZsaZs2bSLiUCcjTkekPnfTiri/noiLTHPFaVRTBzoARByIuBCKKgVbjW/y2WWpjKipU6fa jBkz3Dx0CrhWrVq5y/fv329vvPFGjWXNmjV20UUX8WgjpyJOc8IpOsquHUHEpYA2qY4eY7ammOcu iDgQcREjbsyYMXbixAk7efKkTZw4MeUR165dO9u1a1eNy71Rv3BLNs/dCiIumeWFm5bb2Dsr4t6U SsTFpvOo/mgcp+ECEQciroa5c+dGjKh58+al7PsoyObMmePCUKNwO3fudJcrHI8cOVJjKSsrYyQO ORdx2hcu1mm2iLjEfHQiMGfcO7t5/oKIAxFXw4oVK6x58+YutDQy16xZM/v1r3+d0u+hgyMWLVrk 3t+9e7d17Ngx6tezTxxyLeLeKvyh25T6brfBRFyKzXzc7JnFPH9BxIGIy4omTZpU+zjWplIiDrkW cc/2W2kTBh9M+HpEXGybt5rdc6/ZuXM8h0HEgYjLuFGjRtny5cvd++Xl5dalSxciDnUm4rQPnDal ruzzFBGXBprwV5tUy/7IcxhEHIi4ahRVbdq0sUaNGlVN6htrc2eitO9b//793QicbnvPnj1EHOpM xBXfMNOGFZ2197r0I+LSRKfgWvgMz2EQcSDiqhQXF4c9M4PeV3RlCxGHXIq4GQN32OwBryd1XSIu Ppu3Bjapnj7N8xhEHIg4p2nTpi7YNP1HaMRpZI6IAxEXfdFJ7nWy+5LuE4i4NDrzN7PhIwPnVAWI OBBx9sW5U733FXGakDcb50sl4pCLEbf2xsdtxNBP7FinQiIuzeY8afbkfJ7HIOJAxDmXXXaZC7aS kpKqcPPeDz2ilIgDERd+U+q8761L+vpEXPze2B4YjWOTKog4EHGfWbZsWcTJfjV/HBEHIi59m1KJ uMSwSRVEHIi4ENu2bbMWLVq4iX519Kgm+129enVWf0giDrkQcS/3nl+rTalEXOK0SXX2z3gug4gD EedbRBxyIeIeuX1XrTalEnGJ0+m3dGaMigqezyDikOcRp9NttW7dOua8bUQciLjqi+aEq+2mVCIu OT8aZ/byKp7PIOKQ5xGnAxm8o1OJOBBxmd2USsQlZ9lyswcn83wGEYc8j7jFixe7iBs/frydPHnS TS9CxIGIy8ymVCIuOXv3BTapHj7CcxpEHPI44iIdmco8cSDiIi/7ut6Wkk2pRFzy2KQKIg55H3EK tUiLjlQl4kDE1Vye7bfSxt5Z4U58T8RlB5tUQcQh7yPOr4g4+DniRg85bsv7LklJMBFxyWGTKog4 EHFEHIi4hJa3Cn/o4uHdboOJuCxjkyqIOORdxGV7fzciDrkccdqUOmHwwZQFExGXPDapgohD3kec H6OOiINfIy6Vm1KJuNrZ/6fAJtU/v8dzG0QciDgiDkRcBjelEnG1N/b+wIgcQMSBiCPiQMRlbFMq EVd7r/3GbPxEs08v8PwGEQcijogDEZehTalEXO3pHKpFd5uVv83zG0Qc8iTi4lmY7BdEXHo3pRJx qfHjKWxSBRGHPIm4aBP8MtkviLjwy9K+S1O+KZWIS43idWajx5idO8dzHEQc6njE5QIiDn6LuDF3 fZjyTalEXGp8dCKwSfWd3TzHQcSBiCPiQMRlYFMqEZc6j8747PFdynMcRByIOCIORFzQ8nS/VTbt +39MSzARcanhbVLlKFUQcSDiiDgQcW451qnQRg352IpvmEnE+flvxoeBiX/ZpAoiDkQcEQcizi2v d3/Qioo+tcNX9SbifO7haWxSBREHIo6IAxH3+TL31o0287Y30xZMRFx85s6d66Y++kaTr0dcru06 ywbd+ZG1bHpF1K9L1aL1WblyJb9YRBxAxBFx8FvEaVPqyKGn0rYplYiLn9Zn8Fe/ZuXtO0Zctn7n FrdJ9Tfd7o36dalarv9aE/ecAhEHEHFEHHwWcduvH+eiIF2bUom4xCJO6xVr3R+6Y587ECUT95Oe S0QcEQcQcUQcfBhxC/uvTttRqURceiJuRZ9F7kAUjaIScSDiQMQRccjDiDveqZuLgVd7zyXiciji Dl3V14YVnbXNPR4h4kDEgYgj4pCPEedtSn2vSz8iLociTsvsAa/bnFs3E3Eg4kDEEXHIx4h7tt/K tG9KJeLSE3Gbev7EjcZ90Lk7EQciDkQcEYd8ijjvqNS1Nz5OxOVgxFV07pmRTapEHBEHEHFEHHwW cZrgV5tStX8VEZd7EZepTapEHBEHEHFEHHwWcZrgV1NVZCKYiLj0RFwmNqkScUQcQMQRcfBRxOlF X5tSV9/4BBGXwxGnuf10urR0blIl4og4gIgj4uCjiPNGcNI5wS8Rl/6I0zJj4I60blIl4og4gIgj 4uCjiNML/7zvrctYMBFx6Ys4HZiSzk2qRBwRBxBxRBx8EnE6kEGb4HRgAxGX+xHnPZ7p2qRKxBFx ABFHxMEnEaeRmxFDP8nIKZuIuPRHXLo3qRJxRBxAxBFx8EnEpXsfKiIu8xHnbVLV3HFEHIg4EHFE HOpgxKV70xsRl52IU7zpaOOXe88n4kDEgYgj4lAXIy7dO8ETcdmJOC0L+6+2h29/l4gDEQcijohD XYy4bGxKJeIyE3Hbrx/nzsCxr+ttRByIOBBxRBzqUsRla1MqEZeZiDveqZuNGvKxrezzFBEHIg5E HBGHuhRxOjtDNjalEnGZibh0bVIl4og4gIgj4pDliJsw+KD9ov/arAQTEZeZiEvHJlUijogDiDgi DlmMuPJrh7kX97JrRxBxdTji0rFJlYgj4gAijohDFiNuad+lNuauD92LPBFXdyMuHZtUiTgiDiDi iDhkMeIevOOAPXfTiqwFExGXuYhL9SZVIo6IA4g4Ig5Ziri9XW93L+pvFf6QiMuDiEv1JlUijogD iDgiDlmKuBe/u9gd1JDNYCLiMhdxWp7tt9KNvqZi8zkRR8QBRBwRhyxF3Ng7K2x53yVEXB5F3Dvd hrjR1x2Fo4k4EHEg4og45GLEeS/m2ToqlYjLTsRpuX/wYTciR8SBiAMRR8QhByMulZvViLjcijht RlfI1faxJ+KIOCCvIq64uNjq1Yv9IxBxSHfEaVqRbG9KJeKyE3E6OlWnWSu9bgwRR8QRcSDi4nH+ /Hnr0KEDEYesR5yORtWmVG1SJeLyL+K0PHL7Lpv3vXVEHBFHxIGIi8f06dNt1qxZ1SJu7NixdsUV V9RYLr/8cmvYsCGPNtIScdqUmu2jUom47Ebcq73n2sihp+xYp0IijojjjgARF83BgwetY8eOduHC hWoRt379eps7d26NRcFXUFDAo43UR9w3r3Qnu9eLOBGXvxF34Opb3CbV17s/SMQRcdwRIOKi6d+/ v23ZsiXwA7A5FVmMuLuunuwi7oPO3Ym4PI44b5Pq3Fs3EnFEHHcEiLioK/1ZuIUuRByyEnH9f29z bt3sm2Ai4rIXcWtvfLxWQU/EEXFAXkRcaNAxEodsWLRohQ35wXnb3OMRIo6Is0NX9XWbVJN9PhBx RBxAxBFxyJDpM/7Dhgz5q282pRJx2Y04LTMG7kh6ZJaII+KAvIu4eBBxSIcfjT1qd/Ve5atgIuKy G3HeJtWKzj2JOCIOIOKIOPjRsWNmQ4ddsDv/9z1EHBFXtRy+qreNGPqJvdx7PhFHxAFEHBEHP1pT bDb8njN25zdaE3FEXLUl2XkDiTgiDiDiiDhkwI+nmD00+b+qTrtFxBFx3pLsGTyIOCIOIOKIOKRZ RYW5F+mfzV1HxBFxYZf7Bx+2F25aTsQRcQARR8TBT15aaTZ+otmS55cScURc2GVp36U25q4P7Xin bkQcEQcQcUQc/ODcObOx95v96qUvzp1KxBFxocu73Qa70drS68YQcUQcQMQRcfCDnW+ZFd1tVllJ xBFx0ZeH7thnT/dbRcQRcQARR8TBD+Y8afbk/MD7RBwRF21Z2ecpN93IsU6FRBwRBxBxRByy6czf zIaPNHuzlIgj4mIv73Xp507DtbXHZCKOiAOIOCIO2bR5q9k995qdPk3EEXHxn4Zr5m1vEnFEHEDE EXHIppmPmy185ouPiTgiLtayqedP3GiczuRAxBFxABFHxCELdJotHdBQ/jYRR8TFv+gcqiOHnnL7 xxFxRBxAxBFxyILXfmM2eozZpxeIOCIusUVHqOpI1VhzxhFxRBxAxBFxSIMHJwfmhgtGxBFx8Sw7 CkfHNWccEUfEAUQcEYcU2/+nwGm23n+fiCPiklsmDD5oC/uvJuKIOICII+KQSctfNHt0Rs3LiTgi Lt7l5d7zbVjRWbePHBFHxAFEHBGHDNA+cNoXTvvEEXFEXLKLjk7VUarFN8wk4og4gIgj4pAJOs2W NqXq6FQijoirzTL31o1R54wj4og4gIgj4pBCP18QONVWOEQcEZfIUtJ9ghuN05kciDgiDiDiiDik kQ5k0CicDmwg4oi42i6aYmTsnRVu/zgijogDiDgiDmmkKUU0tUgkRBwRl+jy3E0r7P7Bh8POGUfE EXEAEUfEIQW8AxrWFBNxRFzqlne6DXGju2XXjiDiiDiAiCPikA47/hD5gAYijoir7Zxx8763jogj 4gAijohDOjw532z2z6J/DRFHxCWzrL/hsbAHOBBxRBxAxBFxqKWPTgROdr+thIgj4lK/HOtUaKOG fGwr+zxFxBFxABFHxCGVvJPdnztHxKViueOrX3Mvbgonvyxan2xFnJan+62yB+84UO0AByKOiAOI OCIOtfTApMCptmIh4uJbun3lH6xevXoumvyyeOuTrftEBzZon8sdhaOJOCIOIOKIOKTC3n3hT3ZP xNUu4rIZTH5dp4fu2Ge/6L+WiCPiACKOiEMqPLM4cFBDPIg4Iq42iyb9HTH0E6vo3JOII+IAIo6I Q2385ZTZ8JFm5W8TcURc+pfDV/W2YUVnrfiGmUQcEQcQcUQcamP9RrPxEwMT/RJxRFwmljm3brZH bt9FxBFxABFHxKE2fjzFbNVr8X89EUfE1XbRgQ3aB1NnciDiiDiAiCPikIR3dgcOaPjgQyKOiMv8 GRw05QgRR8QBRBwRhyTo7AwzH0/sOkQcEZeKRfvE6QwOd7YpJOKIOICII+KQCJ0fVWdo0PlSiTgi LtOLJvzVGRzu+j+LiTgiDiDiiDgk4uVV8Z2hgYgj4tK1vHDTchty50f23HPL+IUk4gAijohDPBRu CriXViZ+XSKOiEvVsq/rbTbkB+dt5qzf80tJxAFEHBGHeLyxPTA3XCIHNBBxRFw6lrv6/95+NPYD fimJOICII+IQj0dnxHeeVCKOiEt7xHUcFvcp30DEAUQc8tr+PwWmFamoIOKIuOwvei7dM+qUO/Ub iDiAiCPiEIVeLBOdVoSII+LSGXGPPvYHu+des9On+f0k4gAijohDWJWVgX3hdr5FxBFx/om4Z579 lXte6hRwIOIAIo6IQxjLlid2nlQijojLRMTpOfX8UrOx95ud+Ru/p0QcQMQRcajmL6fMbbKq7WgH EUfEpSPivFHijb/ld5WIA4g4Ig7VFK+zlOx3RMQRcemIOFnwtNkDk2o3UgwiDkQcEYc6R5tRtcmq tog4Ii5dEecdOV3+Nr+vRBxAxBFxcHQgQ22mFSHiiLhMRJxoDsNZs/mdJeIAIo6Ig6MpRZ57PjW3 RcQRcemMOJ1NRP9wHD7C7y0RBxBxPNp5TjPhp2oUjogj4tIdcdofTpv+mfyXiAOIOCIu72k/uNk/ S+HtEXFEXBojTtYUB45U/egEv79EHEDEIU9p9E0vhqncUZyII+LSHXE6gvqH95n96iV+h4k4gIhD ntLkvg9PS/HIHhFHxKU54rzROIUcp+Ii4gAiDnnngw8Do3DaUZyII5hyLeK8yalf+w2/y0QcQMQh z2jH8NqeYouII+KyFXGy6rX0PIdBxIGII+LgW8eOmRXdnZ5TGBFxRFymIk6n4tJo3LYSfqeJOCDH I66kpMQ6dOhgDRo0sPbt21tpaSkRh7C0Q7hOJn7uHBFHMOVuxHnP5R9PYTSOiANyPOJat25t27Zt c+8vW7bM2rRpQ8Qh4ujF5q3puX0ijojLZMRpmhGNKq/fyO82EQfkcMSF8gLtl7/8pY0bN67GMnLk SCsoKODRzsNROO1HlK6j+og4Ii6TESfp2r8TRByIuKzYvn27jRgxwr0/ffp069q1a43lO9/5jjVs 2JBHO494R/Slcx8iIo6Iy3TE6UhrjcaxbxwRB+R8xJ08edIGDBhgp06div6Hj82peWf5i4F94dI5 YkHEEXGZjjhvNO6BSYzGEXFADkfckSNHrKioyCriOBEmEZdfvNGK4nXp/T5EHBGXjYjTvnGa/JfR OCIOyMmI27Rpk/Xo0cOOHj0a34s6EZdXNFLxo3FmZ/5GxBFMdS/iRPPGMRpHxAE5GXHNmze3evXq VVuIOGRyFI6II+KyGXHeOVUZjSPiQMTV/Rd2Ii5vLHg6M6NwRBwRl82I80bj0nn0NYg4EHFEHDLm /fcDo3Dv7M7M9yPiiLhsRpzibfQYs2XL+d0n4kDEEXHIcU/ON5v5eOa+HxFHxGUz4kSnk9M/LtqN AEQciDgiDjnp3T1mQ4aZ7f8TEUfE5U/E6XRymkpHuxGAiAMRR8Qh5+iFTEfqaSQuk4g4Ii7bEeeN xukfmD+/x98CIg5EHBGHHPPab7KzSYmII+L8EHHy2MzAwpQjRByIOCIOOUOn19JUC9nYuZuII+L8 EnF79wX+kdnxB/4mEHEg4og45Ijnng9E3F9OEXFEXP5GnGi/OE05ot0LQMSBiCPi4GvelCKbt2bn +xNxRJyfIs47HRdTjhBxIOKIOPiephPJ5n5ARBwR56eIE/1Do39sDh/h7wMRByKOiINPad+fTE8p QsQRcX6POHl4mtnsn/E3gogDEUfEwYd0Si0/zI1FxBFxfow4zZmo0biyP/K3gogDEUfEwWdeWhnY 96eykogj4oi4cDRnog5yyMQ5hEHEgYgj4hDfY/mh2fCRZus3Zn9diDgizq8Rp39w9I/Oy6v4m0HE gYgj4uADOoBBBzI8PM0f0ygQcUScXyNOitcFNqvqKG4QcSDiiDhklXdmBr+8KBFxRJyfI050BPfU R5k7jogDEUfEIYsUbtqMuqbYP+tExBFxfo+4Y8fM7rnX7Fcv8TeEiAMRR8QhC7QZ9eFpgREFP50b kogj4vwecbJ5a2A6Hp2aC0QciDgiDhmlzajaSbuiwl/rRcQRcbkQcaJ54x6YxNGqRByIOCIOGeRt Rn2z1H/rRsQRcbkScd4pudisSsSBiCPikBGnTwcm9Z3zpD/Xj4gj4nIl4mTz1sBm1fK3+dtCxIGI I+KQZpqwdPSY7E/qS8QRcXUh4uTnCwL/GPn1d4qIA4g4Iq4O2Fbi/1EDIo6Iy7WI0z5xP54SiDk/ HSRExAFEHBFXVx6vDwPTIix/0d/rScQRcbkWcfLn9wLzLWoyYBBxIOKIOKR0pODhaWazZvt/glIi jojLxYgTHfHN/nFEHIg4Ig4pteDpwIm7/3LK/+tKxBFxuRpxorM56IhVjXyDiAMRR8TVldGwM2ds 69atGV/+7+NH7AfD/9tWvPSfYT9fVlZGxBFxdXadbm56uU2aNCljv2/r1pfYff/2if3b+L/axk3b wn7N0qVL7ZVXXsnK34Noy8cff0zEAUQcwnnvvfesXr16dm2zKzK29On8gNu807frtLCfv7RhgbW8 4goijoirs+v0z3//9xn/vev+zS42ePBRu7XPa3Zt82/U+HzBl76U8XWKtWh9FHJEHEDEIULEfeMf /zFjL15l146wYUVnbd731tnxTt3Cfs2af/mWXXfllUQcEVdn16ntV75iC1p+M+Pfd0fhaCsq+tSW 9l3qm3WKtijkiDiAiIMPIu7QVX1tzF0f2oyBO+yDzt0jfh0RR8QRcelbNvX8iQu5lX2eIuKIOBBx RBwRF3tRtD18+7s2YfBBq+jcM+rXEnFEHBGX3mX1jU+4XRpe7/4gEUfEgYgj4oi4yMuxToU287Y3 beydFXbg6ltifj0RR8QRcelfnu63yo3IaRcHIo6IAxFHxBFxYZfZA153m1H3db0trq8n4og4Ii4z i343Rw49ZeXXDiPiiDgQcUQcEffFogMXvBeJvV1vj/t6RBwRR8RlZtHv6KwBJTZ6yHH7dtP/RcQR cSDiiDgi7osXB++//ESuS8QRcURc5hZvd4dBtx+xOW17EHFEHIg4Ii6fI642AUfEEXFEXHZCrn+f jTb8rhNJ/c4ScQARR8TVgYjTUajTvv9HdxBDvPvAEXFEHBGX/aXdpY1tTP/Xk/7ni4gDiDgiLocj TlOHaA64eI9CJeKIOCLOX+s0v9W33Ci6JuQu6T6BiCPiQMQRcfkQcYq2h+7YZ/cPPuwm9a3NbRFx RBwRl911euGm5W4eubU3Pk7EEXEg4oi4uhxx+o991JCPXcTVZgSOiCPiiDj/rNPLvedXnaIr0iny iDgiDkQcEZfDEfdq77nuD/3C/qujnkqLiCPiWKfcijgtpdeNcf+gTf/+W7UeYSfiACKOiPNJxCnY 5ty62e07o5BL5R9uIo6II+L8s04aXdduEppLbkfhaCKOiAMRR8TlcsRtv36cOwODzoP6brfBKf/D TcQRcUScv9bJ+6dNo+7P3bQiZaPuRBxAxBFxGYo4/eHWH3D9If9F/7Vp+0NOxBFxRJw/12lzj0fc FCQP3nEgI9OQEHEAEYcURJz2jdHIm/6Ar7/hsbT+4SbiiDgizr/rpPkfNZWQ/pl78buL03rQAxEH EHGoRcQdvqq3G3XTH2ydmicVR58ScUQcEZe7Eect+mduxNBP3P5y+iePiAOIOCLOJxGn0/Dov2yN vKXzjzQRR8QRcbm7TvqnTv/caU65ed9bl/RZWog4gIgj4lIQcdo0ov+wFW76L1shp6DL5IsJEUfE EXG5tU462Onh2991I/ZP91vlzt5CxAFEHBGXoYgLjjdNG6I/xKn+r5qII+JYp7oZcd7yevcHq/4B 1EFQ73XpR8QBRBwRly67dh2y7tf83J3vVJtOl/ddkpH93og4Io6I+2adXKfQfwi1T22yR7IScQAR hzDef9/s5wvMht3z33bHXZVus2mqNoEQcUQc65S/ERccc5qSRJtZtc+czvqwtcfkhHbPIOIAIg6f O33abFuJ2dRHzf1R1duXVx23b37tG756MSHiiDgirm6tk/aZm3vrRjcypxF/naav7NoRRBxAxBFx 0Rw7Zrbxt2aPzTQrutvsnnvNFj5jtv9Pgc/X9typRBwRR8QRcfEumrJoZZ+n3GTB+kdSZ37RvnMl 3SeEnTyciAOIuLxy7pzZzrfMXloZGGlTuP1onNmT8812/CEwGheMiCPiiDgiLhvrpFP2eUGno1pH DfnYndpr9Y1PuM9pcywRBxBxdX6k7Y3tZsuWmz08LTDSpv9wx95v9quXzMrfNvv0QuTrE3FEHBFH xGV7nQ5d1dfFmyJOm1z1N0ybXQfctMl+/os/2Z/fi/53jIgDEUfE+dqZvwU2gWqftueXms183Gz4 yECwKdx+PCWwmXT9xkDYxYuII+KIOCLOT+ukzaqaXFxHyg/83n9Y0YgL1f7OPfe8WfE6s737zP5y iogDEUfE+YQ2deqoUW0OVYxpJE1HkD44+Ytg06I/ZNo86v0h0ybUZBFxRBwRR8T5dZ28zan6x/TN 0ppbHLRod5FHZ5gteDqwG4m2TLy7x+zwkcA/v0QciLgsKi0ttWbNmlmDBg2sXbt2tmHDhpyIuMrK wB8R/THRJk2NoG3earbqNR0RGvhvcs6TgSAbPzGw75r3R0mLok1/mJ5ZbPbabwLXV+CF7tNWW0Qc EUfEEUx+j7hQ2rT60YnAP7E6cGv5i2azZtf8h1fL6DGB8NPWC22t0Nfqn2T9TX1nd+BvdEVFYAtG Iv8QE3Eg4uIwYMAAW7JkiXt/3rx5NnDgQPf+/v377Y033qixrFmzxi66qJGtW18Z9/LiisrPfrEj L089XWnz5n+x/HRWpU199IvlgYcqbfS/Vdqweypt0J2Rl8FDKu3e+wJf+/DUSpv1/yo/i7RK+/XL lbZla6X9x45K+6//qrRDhyo/i8DMLG+//bb906WX2vvf/o5vlhX/41+t27e/nbH7IJ7lqaeesu9f 0dxX99Ogr37N+n0Wcn5apy6NLrFxTZuxTjGWNo0a2RMt/pl1irFc3fRyW7t2bcK/r/ob+p9llbbp t5W29t8Df8effuaLv91jxgX+DutvcrS/2SN+GPi6ST+u/jdff7u/1e4aIg5EXCyNGze2CxcCe7Se PXvWmjdv7t4fOnSo1atXL+zSoEEja9Dw0phLw4b/8NnbyEvDhpe4pUGDr7ilYUMtjUKWvw9ZLv58 uejzpeDzpaEvF41wRrofs7n83d/9na/upy9/+cu+vJ9YWOr6ot+9VPz+1q9fP8rXeH+nvb/b3t/x 0L/vX/ztLyhoZL///e8pCxBx0Sgywn184sQJO3LkSNjlr3/9a0rXoXv37nbvvffyDIqhRYsW9sQT T3BHRHH+/Hn3wvTqq69yZ0SxZ88edz9ppBiRaZRK99Mnn3zCnRHFk08+aZdffjl3BIi4TNN/T8EK Cgoyvg5EHBFHxBFxRBwRBxBxCWrSpInbjCp6q4+JOCKOiCPiQMQRcSDifG7QoEG2ePFi977e6kAH Io6II+KIOBBxRByIOJ/T0T9NmzZ1m1U11UhJSQkRR8QRcUQciDgiDkQciDgijogj4og4Ig4g4uqk 5cuX27p167gjYpg/f76bnBmRabqcn/70p7Z3717ujCiOHz/u7qejR49yZ0Sh+TJ1P+mfA0S2Y8cO N88oQMQBAACAiAMAAAARl1KJnrc1X+lgkw4dOrj7qX379mxSjaG4uNjtx4Twzpw5Y0VFRW5OyJYt W9qmTZu4U0LoPmnbtm3V3yZO/1SdNsN7Z/fh7zmIuDwV6bytqK5169a2bds29/6yZcusTZs23CkR aN8lBS8RF9nUqVNtxowZbv9BxUqrVq24U0LodIQHDx507+ttaLDkMwWtAjf0d4y/5yDi8vAPZbjz tiK6iy++mDshgunTp9usWbOIuCg0SrJr1y7uiCgUtjrFoOgtofuFXr16VR3dzN9zEHF5LNJ5WxHZ 9u3bbcSIEdwRYWjEpGPHju6FhIiL/ns3Z84c98+A4mTnzp3cKSG0aVD3j55HeqvfO4S84IX8jvH3 HERcnvHDeVtzycmTJ90mi1OnTnFnhNG/f3/bsmVL2BcYVP+9W7RokXt/9+7dLnxR3ZVXXlk1Wqmg 69y5M3dKjIjj7zmIuDzjh/O25gpt0tHO6BUVFdwZUV5UQheE/70LxohJTYwqJR5x/D0HEZdn/HDe 1lygnc979OjBxKy1eIHBF0aNGuUm2Jby8nLr0qULd0oIjbzpvpGysjI3Mofov2P8PQcRl2f8cN7W XKAdhBlhIuJS5cSJE27Ts0aXtClVO6mjOp3xQ+Gm+0hvOQNI7N8x/p6DiAMAAAARBwAAACIOAACA iAMAAAARBwAAACIOAACAiAMAAAARBwAAACIOAACAiAMAAAARBwAAACIOAAAARBwAAAARBwAAACIO CDwp69WLuvhtPXP5PgYAEHEAEZcl27dvt+uvv56Iy6H7P5u3C4CIA+p8HNXl+4v72P/PVx4jAEQc 6uSL4u7du61+/frWvHlzu3Dhgp09e9aaNWvmLtPngm9n8eLF1qRJE7v00kttwYIFNW5r+fLl1rp1 a2vQoIG1b9/e1qxZE3Z9XnjhBbvkkkusa9euYdcz+Ps1btzYWrZsaXv27HG3r+u1aNHCSkpKkvre ulyf19ddeeWVVl5eXu3zoSOVBw8edKM4F198cdV1NLKTyH2s+8r7OUpLSyP+vKH3i/z617+2du3a ue/dpk0be/XVV2M+xtHuz2iPX7jbiHadaOsd6/GI9P3CjRTHui09T6+55hr3eT1OerwOHToU83YB gIiD7yMu1ubUiRMnuo+XLFlic+fOde9Pnz495u0oMDzFxcVhvyZc8HjLLbfcEjU6gpcOHTq4sPQ+ 1ot5bb63tyjKor3Y6/Ohlyum4o24FStWVLuuYjnWz+vdL+vWrQu7Xlu2bEkq4qI9fvE+d4KvE2m9 43k84o24eG5LkRv6+c6dOxNxAIg41P2IO3PmjBslatu2rRuF04uiRuVCb2fMmDHuY70NDiApLCx0 lyk85He/+537eODAgTVuZ/z48e7jAwcORI0OjcDoa4JHfPbu3eve16hLMt/7vvvucz+bRrT0cUFB QdxB5q1LItfp0qVLtZ/Zu+/C/byh94tGlHT5yJEj7fz58+6tPtbPm0zERXv8Ij13ol0n0nrH83hE +57B4rktL+690bd4bhcAiDjkRMTFQ5uovK/fuXNn2NupqKhwHx85csR9rE1XHoVNuFDUZrbQ2wl9 sY0UHV5IRvo4me996tSpmN831I4dO9xoZceOHeO+jkexqc/rPhNtno10G6H3i/dzaRO36G3o/Z5I xEV7/CI9d6JdJ9Z6x/N4BK9ruJ8lntsaPny4u0wxp026P/nJT+zEiRNEHAAiDvkRcXPmzKn6+oUL F4a9He2XFukF3YuV0EUvrLHWJ1YYxfo42e8dT5BpPzBdNmXKFPfzJxtxijdRXMR7G8lEnPc14W4/ 2uMX6TGJdp1I653I4xEr4uK5LY1SKtz69u3rRpL1+R49ehBxAIg41P2IO378uF122WXuhU/7nul9 XRZ6Oxrx0GiYNp/p4+Ad2b19x7QPU6LrU9uIS/Z7R7pdbV72Ruy8kFKEbdiwIeGI0/3pbXLUfTd2 7Ni4b8PblBi6OTV4ugwvcrS5UbevzcWRbj/a4xfp/op2nUjrHc/jEe17Bt//id6Wnrehm9vD3S4A EHHIiYiLtU+cFwerV6+2ZcuWufdHjRoV83b09Z7QHfi9pVevXmmPuGS/d+hlilfvskGDBrnLtK9g 8G02atTIvT158mRcEaejO4Ovr/0O4404b7+90GXbtm1VX6OjMmM9vvE8fvE+d4KvE2m943k8wgl3 /8dzW95+h8FLcGyGu10AIOKQ8xFXVlbm3te0HaJRF+8ISn0u+Hb0gtq0aVM3XYYOMgilo1sVKdrU pSkpNCoUz75JtY24ZL936GW6Df18GsXxIkBHQXpTfPTp08f279/vrjNhwoS4Ik4UPrpPtX7egRnx bGYWHQ3qTYmi64eOSGlzp0ardHs6alZfH+n+ivX4hbtvol0n2nrHejwiXSf0/o/ntrTf3oABA6qm gVHgefsgRrtdACDikDcxiMR5R05689F5B5Aoivz8+PGYAyDiACIur2lUKNwoqDd1BxEHAEQckDba uT94bjTE7+jRo1ZUVOSmxNB9qBE4BVwmd7BP5vHjMQdAxAEAAICIAwAAABEHAABAxHEXAAAAEHEA AAAg4gAAAEDEAQAAEHEAAAAg4gAAAEDEAQAAEHEAAAAg4gAAAEDEAQAA5F/EAQAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAECV/w8VdPb8vHQy/wAAAABJRU5ErkJggk== ------=_NextPart_01D5E037.E5F59E00 Content-Location: file:///C:/6A8530EF/12EnfoquedeaprendizajebasadoentareaseneldesarrollodelahabilidaddelhablaCorregido_archivos/image005.png Content-Transfer-Encoding: base64 Content-Type: image/png iVBORw0KGgoAAAANSUhEUgAAAnEAAAIOCAYAAADX+VssAABHlklEQVR42u2dD3RU9Zn3OcWYsqzr y1lkMWZZlvewHJaXl7JYRJQUOChSFIoRwWjYgNkgYDZgCiIi1hQVqyyiAuUVEXNAU1lKKSBgKpUY Y5riRkqRRoqNMaL82dQQIAkhPK/Pj97sMJnJ3Ezmz70zn8853zMzNzN37tyZZD75/Xl+nQQAAAAA XEcnTgEAAAAAEgcAAAAASBwAAAAAIHEAAAAASBwAAAAAIHEAAAAAgMQBAAAAIHEAAAAAgMQBAAAA ABIHAAAAgMQBAAAAABIHAAAAAEgcAAAAACBxAAAAAEgcAAAAACBxAE77ZenUKWCcesxOoqSkREaO HBkTryVWsPueBPvehfNzAYDEAQAS5/BjQuKi/56E8z3g/QVA4gDiSoji6Txy/pE4AEDiAML6JXPo 0CHp3LmzJCUlSV1dndmml3o7ISHB/Nxzf9u3b5eBAweanw0YMEB27drVap+6rX///uY+el99jK9j 0+1XX321DB8+3OcxW7d37tzZ8pw333yzHDt2TPbu3WuePzExUUaPHi3V1dVBHcP+/ftNt1iXLl1M pk2bJidOnLjsPr5aL5csWSI9e/Y0+9fHTZo06bJjsHP+9Zj0GPU1jBkzxjze3znwPldKRUWFeV7r 2FNTU+XIkSO2PgdtPU+g99ffexnocXaO99SpU5KZmSlXXXWV2Vf37t0lOzu75bNpt0W5rfsF+myE 6hgAAIkDCHtLweLFi819c3Nzze1Zs2aZ23l5ea32p8Ln/QWm44MsysvLA97He18TJ05sUyy8M3To UCMBnttUgoI5BhUo7/tNnjy5zS9rFThfP0tJSbF9/ktLS1s9vm/fvn7Pgfe5qqqqMnLhvY8ePXrY kslAz+PvvPnbT6DH2T3eO+64w+e5nTNnTkgkzs5nI1THAABIHECHJM7OmLj6+nrp06eP+XJbu3at +dmgQYN87k9bT2pqaqS2ttYIhadYKPpz3bZnzx5z+913371MjDz3NX/+fGlubm5pjfEnFiqVTU1N LfvSaEuJbtNWFL2tUhfMMegXtkqEHseyZcta7cvXl7S2Uuq2bdu2mdtHjx619ThPrHOnx6rnUs+p pzwEOldZWVlm+/jx403LkUav6zb9WbASF+j99befQI+ze7yWYFVWVprbeo71dteuXdv9D4qv+9n5 bITyGAAAiQMIq8QphYWFLds9u1G996ddmRZ6Xbdpt5OFXvf1XJ73sbZp64wdsVAx8N5mdXmq2Hg/ rj3H4NkKZO1Lv8QDfVk3NjaaL3eVq8GDB9t+nPcxep5PlQZ/58D7XGkLlvd26/HdunULWuICvb/+ 9hPocXaPV/950G36T4XK3ZYtW+Ts2bNBtTL7up+dz0YojwEAkDiAoCWuPfTq1cs8RqXE7v4s6Qsk j74ER6XJjlgEOg673bB2JMvOMWjrja+uwUCPs3s+fe3H+1zpOW/P+xHM6/S1v2A/F3aP9/Dhwy0S 5SlYW7dutfUZ8PyZnfv5+mwEewwAgMQBREXirG5UKxs2bPC5P+06tPjqq69atWJol5Nu05aqUAlM eyUu3Megg+J128MPP2wmXWg3Ynslrr0tcd5YEumrZUt/1pYEaiumv+cJ9P76O1+BHmf3eC3KysrM WE2ra1a7sEMhcXY+G8EeAwAgcQARlziVEOtLdt68eS0DznW79/7Gjh1rJEC7l6ZOnWq2paWltdzP +sLT2XwqDio5eltnAUZK4kJ5DNb4KJ2ZaM1OtFqVdJC87n/VqlXtljhrbJaOxdJzqedUz63d/WRk ZLSMMdP3SWO9bh1D6C2Ly5cvN8eq0qgzRP09T6D319/5CvQ4u8drnW9rvKG2ilkTUNp6T3zh6352 PhuhPAYAQOIAgpY4O2PirNmoOllAsb6Ec3JyWu3Pe1aofrF5jp/TWX6+nqugoCBiEhfKY7AmMWj0 vCiesmVFx3V5jrELJHHayuO9Dy0fYlfidIKDr/FdKt/aEmahJVO87+M5I7e976+/8xXocXaPV6XW 13s3Y8aMNt8TX/i6n53PRiiPAQCQOICwSdyBAwdauoqsCQTaSmJ9SWlrk+f+ioqKzHghbYnQsXM6 PswbnTGqP7Pqz61Zs8ZWK2GoJC6Ux6CD2q2aeVaNNm1x0pY0FRUVE5VdlRRfZSjaQsdYWbOCrdmd 7ZnlqpKkrWp6HBrdh/cECN2nyod1H62JV1xc7Pdc23l/fZ0vO4+zc7zaqqWlbrQGnyXHen51BnVb 74kv/N0v0GcjlMcAAEgcgGOkEEKD1R1nyY6WS7HGJeqYO7e8v3wuAACJA0Di4gprTJyvLF26FIkD ACQOAEKD1QUGoUG77HQSiZZ1sc6tXl+0aJGr3l8+FwCAxAEAAAAgcQAAAACAxAEAAAAAEhcIncau 1fIJIYSQcMazRh8AEhcC9JfqiiuukHvvvZcQQggJS7TQcqA6gABIXBAS9+1vf1u+/vprQgghJCy5 +eabkThA4pA4QgghSBwAEofEEUIIQeIAiUPiCCGEECQOkDgkjhBCCBIHgMQhcYQQQpA4QOKQOEII IQSJAyQOiSOEEILEASBxSBwhhBAkDpA4JI4QQghB4gCJQ+IIIYQgcQBIHBJHCCEEiQNA4gghhBAk DpA4JI4QQghB4gCJQ+IIIYQgcQBIHBJHCCEEiQMkDokjhBBCkDhA4uxx4sQJSU5OvmxbcXGxDBo0 SBISEmTgwIFSWlqKxBFCCEHiAIlzCvrL0L9/f+nU6fLD7Nu3rxQVFZnr+fn50q9fP3P9yJEjUlJS 0io7duxA4gghhCBxgMRFirFjx8rhw4dbSZw3Xbp0MZfTpk0z9/UVbbXjjwwhzoi/31M3ZPXq1byH BIkDJM72QbYhcdrSlpmZaa7X1NRIdXV1q5SXl9MSR4iD0uuaa+TAwMHy5yHDXJW05F5IHEHiAIkL hcTV1tZKamqq1NXVMSaOECQOiSNIHCBxbpA4bWHLyMiQY8eOBXw8EkcIEofEkWhL3JAhQ2T9+vWX bdNx3bo9mO/EQEONgsHXZEKdPJiUlGSGJQ0YMED27NnT6nGFhYVmDLt1H+s8HDhwwLw+7+0QxxKn H5bRo0ebD5sdkDhCkDgkjkRb4vS7TIWmqanJ3NZLnZjXXhkLh7wp/iYTao+XJZ8rV66UyZMnt3ps 9+7dpbKy0lzXS0sEVdy2bNliruuERL0fxLnE6YfDe7AxEkcIEofEEadL3FNPPSVbt241t/Vy3rx5 Ld9h2rOUkpJiWq1U9rTiglJVVSVDhw6Vq666SrZv396qJU5bygYPHmwe16NHD9O6F8rJhCpezc3N 5npjY2OrljqlT58+pofM6inT297osWtZMIgziesoSBwhSBwSR5wgcUePHm2ZjKeXWvfUkqZJkybJ zp07zfW9e/caoVMmTpwoS5cuNdfz8vJaSZy2nun9lYqKCrn66qt9Prfdxg/vn6kctnXbEkmtFKGP 1UuddGihLY4qoPqzYAUTkDj+yBCCxCFxJKoSp9xxxx3m0mqVsrYnJia2Ko1lbbdawlSIvCXu1KlT RvKmTp3qszu0o71fnTt3vuy2Ho+v8X4HDx5sETptOfRGBVVbCgGJQ+IIQeKQOOJKiVu+fLm8/vrr MmPGjFYSV19f3+pxut0aR6fdmd4Sp8JUUFBgxotr16svietIS5yKlz6v9fy+RMxOa11b2wGJQ+II QeKQOOJ4idMxYypC1tg4a/u4ceNMd6miUjZs2LCWiQWLFy82XbG9e/duJXEqedqNquW2tIs21C1x 2sK3bt06c10v9Xi8UZHUmaiK1ma1ZtzqCkvWdu061kmJgMQhcYQgcUgccaXEKSNHjmxpXfOUOxU3 lTLtatVJBtaEB923zmRVIfKWuDVr1kjXrl3NWLgXX3wx5BKnr6lnz56mW1VLjaiMed9XJdIqJaKX etvqWtUZqrpdx/jZKQsGSBwSRwgSh8QRiv2GGWuSBiBxSBwhSBwSR5A4F7FkyRJMColD4ghB4pA4 gsQ5BS0Rol2+8fK8SBwSRwhB4ggS1+ZYM8/yIbt27Qr9l3qQ4+G8H6cTEDxrvYUDrX/nTbDPG65V LHwtQ+aJjvHzNevXe5tVpsXfdiQOiSMEiUPiiEsmNqjAaVHccIica1qRQihe4ZA4f8uQeaKziHUd 97bQJct0uTK725E4JI4QJA6JIw6WOEvkrLpp/pbc0gK5uk1bbHTGqrV/XWbLmgGqpUd09qgWBA60 FJc+z5gxY8wMWJ3tarV6WY/TOnPDhw83j9NLvW39XAsKa4kTf62I7XkNnoWN2zpef8/rbymytvaz atUqM1PWLv6WIfNEBc5aG9YX+t5YK2/Y2Y7EIXGEIHFIHHGBxHlu87fklsqOVTtuz549LWuSPvvs s7Js2TJzXYsHz58//7L9+VuKS59n0aJFRvhUfvR+no/TWnXWEl96qSJj/VyfUx/nKZ+etPc1eJ4P f8fr73n9LUXW1n702KyVLzpS/NgTrYOnXcB6XCqPhw4datVl7Kt72N92JA6JIwSJQ+KIyyTO35Jb a9euNS1Kc+bMuUwQtKactbSVypK15FWgpbg8l/DydxzWz/XSWmJLf+75OF+vpb2vwXMf/o7X3/P6 W4rM7n7C0VWr74m1lJqirXi+lh/ztx2JQ+IIQeKQOOLC7lR/S25ZrVcqJiol1soJlrxp4V1rdQTP 5/C3FFd7JE7lSMft+Tp2fxLXntfguQ9/x+vvef0tRdae/YSiJc7XObDQ8ivaSuqNv+1IHBJHCBKH xBEXSJx27akgWd2P/pbcUumx7qMD4bt3796yD12pQffpOTg+0FJcd9xxR8vzaLejd3eqdp96dlN6 dqcGEpv2vgYdI2dJn7/j9fe8/pYis7ufULXEaXeqNfZPW+I8lxXTMYVlZWWtHuNvOxKHxBGCxCFx xIUlRvwtuWUtW6XCo4+xZEipqakx99cuRG/h8LcUl04+0Dpsui/d7/79+1tNbNDWLP25vh49LrsS 197XYE2waOt4/T2vv6XI7O6noxJnbdNxbSqp3uerrVZPf9uROCSOECQOiSMU+4Uw45TlxpA4QggS h8QRJA7agVOWG0PiCCFIHBJHkDhwIUgcIQSJQ+JIhMbEvf7660HPfPREx4HprFRrbJv1vDr+LCkp qWW7zgoFJA6JI4QgcUgc6aDE6YB/nTnZUYlTQbNWCigqKmqZ8amzNnUGqKKzVidPnozpIHFIHCEE iUPiSEclTmuk5ebmdljiPNGVF6wisypz1sxHrZ/W1uLtgMQhcYQQJI6QdtSJ0/tZKxf4K19hpxCt FrvVtUP159Yaod7LYflaHguQOCSOEILEERKExKnA6X1D1RKnddd0WStFa7F54rmCACBxSBwhBInj PSQdXLFBu1S1a7UjLXG+WtxU5rQb1epOteQOkDgkjhCCxCFxJAQSp5MbBg0aFHRLnC73pDNUFV0/ 1VruSRd+t9Ym1Uud6ABIHBJHCEHikDgSIolTtNxIsBJnLWWlLXApKSlmGSpFn79nz56mW1VLjajg ARKHxBFCkDgkjlDsF5A4JI4QJA6JI0gcABKHxBGCxCFxBIkDJA6JI4QgcUgcQeIAiUPiCCFIHEHi AJA4JI4QJA6JI0gcABJHCEHikDiCxAESh8QRQpA4gsQBIHFIHCFIHBJHkDgAJA6JIwSJQ+IIEgdI HBJHCEHiCEHiAIlD4ghB4pA4gsQBIHFIHCFIHBJHkDhA4pA4QggSh8QRJA6QOCSOECQOiSNIHAAS h8QRgsQhcQSJAyQOiSOEIHFIHEHiAIlD4gghSBxB4gCQOCSOECQOiSNIHAASRwhB4pA4gsQBEofE EUKQOILEIXGAxCFxhCBxSBxB4gCQOCSOECQOiSNIHCBxSBwhBIkjBIkDJA6JIwSJQ+IIEgeAxCFx hCBxSBxB4gCJQ+IIIUgcEkeQOEDikDhCCBJHkDgAJA6JIwSJQ+IIEgdInFM5ceKEJCcnX7attLRU kpKSJCEhQQYMGCB79uxB4ghB4pA4gsQBEucU9Jehf//+0qnT5YeZmpoq69evN9dXrlwpkydPRuII QeKQOILEARLnFMaOHSuHDx9uJXHdu3eX5uZmc72xsbGlpS4nJ0euu+66Vrn22mtNqx1/ZAhB4pA4 gsQBEhfJg/SSOBUyX7d3794tK1asaJW8vDxJTEzkjwwhSBwSR5A4QOKiKXGdO3e+7LYKGt2phCBx SBxB4gCJc7jE9ejRw3SjWt2pehuJIwSJQ+IIEgdInMMlburUqbJu3TpzXS91ogMSRwgSh8QRJA6Q OIdLnP6S9OzZ03SraqmR4uJiJI4QJA6JI0gcIHGxBhJHCBKHxBEkDpA4JI4QgsQRgsQBEofEEYLE IXEEiQNA4pA4QpA4JI4gcYDEIXGEECQOiSNIHCBxSBwhBIkjSBwAEofEEYLEIXEEiQMkDokjhCBx SBxB4gCJQ+IIIUgcQeIAkDgkjhAkDokjSBwAEkcIQeKQOILEARKHxBFCkDhCkDhA4pA4QpA4JI4g cQBIHBJHCBKHxBEkDpA4JI4QgsQhcQSJAyQOiSMEiUPiCBIHgMQhcYQgcUgcQeIAiUPiCCFIHBJH kDhA4pA4QggSR5A4ACQOiSMEiUPiCBIHSBwSRwhB4pA4gsQBEofEEUKQOILEASBxSBwhSBwSR5A4 ACSOEILEIXEEiQMkDokjhCBxhCBxgMQhcYQgcUgcQeIAkDgkjhAkDokjSBwgcUgcIQSJQ+IIEgdI HBJHCBKHxBEkDgCJQ+IIQeKQOILEARKHxBFCkDgkjiBxgMQhcYQQJI4gcQBIHBJHCBKHxBEkDgCJ I4QgcUgcQeIAiUPiCCFIHEHiAJA4JI4QJA6JI0gcABKHxBGCxCFxBIkDJA6JI4QgcYQgcYDEIXGE IHFIHEHiAJA4JI4QJA6JI0gcIHFIHCEEiUPiCBIHSBwSRwgSh8QRJA4AiUPiCEHikDiCxAESh8QR QpA4JI4gcYDEIXGEECSOIHEASBwSRwgSh8QRJA4AiSOEIHFIHEHiAIlD4gghSBxB4pA4QOKQOEKQ OCSOIHEASBwSRwgSh8QRJA6QOCSOEILEEYLEARKHxBGCxCFxBIkDQOKQOEKQOCSOIHGAxCFxhBAk DokjSBwgcUgcIQSJI0gcABKHxBGCxCFxBIkDJM5NFBYWSv/+/SUhIUEGDBgQ8JcGiSMEiUPiCBIH SJwD6N69u1RWVprrepmcnIzEEYLEIXEEiQMkzun06dNHqqurzXW91NvKpk2bZO7cua2SlZUlV155 JX9kCEHikDiCxAESF01KS0ulS5cu0qlTJ3NZUlJitufl5cmNN97YKtdffz0SRwgSh8QRJA6QuGgz ZMgQOXjwYIvQDR06lO5UQpA4JI4gcYDEOR2d0NDWbSSOECQOiSNIHCBxDkRb3g4cOGCul5eXm5Y5 JI4QJA6JI0gcIHEOp6KiwoibtsDppd5G4ghB4pA4gsQBEhdjIHGEIHFIHEHiAIlD4gghSBwhSBwg cUgcIUgcEkeQOAAkDokjBIlD4ggSB0gcEkcIQeKQOILEARKHxBFCkDiCxAEgcUgcIUgcEkeQOEDi kDhCiKMlruqG8fLJ8Lvkw5SZUpYy2+RPwyYgcQSJAyQOiSOEOEniVNIKxq2VvLs/lNnppyR9uvhM 5rRz5j4/nfBz+fXoRfLV0FFIHEHiAIlD4gghkZQ4bWnbcPtGybn3mBG0BfcclZcnbJadtzxlWuB+ f1O6aZE7euMkE91WOOZH5jGPTvlYMjIuyKz0P8tLE3eY+yJxBIkDJA6JI4SEUeJKv5ctj9/9kUzP aDQCt3H8eiN07ZUsFbutt62Qhfd8YiRQL1XyTl1/ExJHkDhA4pA4QkioJO7jm9Jk6eQy04L22JSD sm/UgpAJl7bEaYucte/yEZlIHEHiAInzR7du3WT48OFy6NAhqa+vR+IIIT7T+++S5cXb1hvB0m5Q Hf8WrnFs2qK34s63Tcucjps7NnQMEkeQOEDiWu2sU6fL0rNnT0lLS5MjR45Ic3MzEkcI+eafvDq5 867DkpX+Z9l263Mha3kLlOJRuaarVidJBCuNSBxB4iBmJa62tlZKS0tl4MCB0rVr11ZS16dPH8nP z0fiCInT7Ck8JzOyRMbf/o6U/MuYiNd501Y4bY3TsXc6GeLk9SlIHEHiAInzRXl5uUydOrWVzOk2 JI6Q+Ml/13wtr7zaIBn3ixS8WS//8HfXRrXY7+5bfmxETsfKfX7DbUgcQeIAiaupqZGdO3fKgAED pEuXLq3krXfv3pKUlGRa6ZA4QuIjX35ZK4/nNUnmzIvyzt6zjlmxQSc6aDkSLWOis1qROILEAWPi fIyJq6iokKamJnMfHRungofEERL7OfyHOlnwyAXJmn1RfnewznHLbumkh4fSPjdj5eyUNEHiCBIH MStx3bt3l7FjxzI7lRBiJjDMevCiLFx8QSo/O93hZbfCOU5Ou1WzptVJyci5SBxB4oAxcU4CiSMk 8i1wlsBVf1Eb1LJbkYxOcFj5g12m5InOYkXiCBIHcSlxixcvNi1yFjr+7b777kPiCImTaKtbTm6z PP2TJjl+orZdy25FO1ocWCc8+GuRQ+IIEgcxK3Hjx483Y+E6d+7capxcamoqEkdIjOfTTy8J3JIn LsjJk/aX3XJKtGbdU3d9YERO12VF4ggSB3EjcQkJCUbYqqurW7YdPXrUbNOfIXGExG601e2HC5v9 dqG6QeKsrlVdx1WLAnvPWkXiCBIHMStxVoFfzw/x3r17zbZIlxVB4giJrMAtfbrJtMJ5T2Jwm8RZ kx1y0ypNPJfpQuIIEgcxK3Fr165tVWbEypo1a5A4QmI0zzzXJNlzm013qp37O13iNNoKl33fcVk6 uUy+GjoKiSNIHMT+xIZt27ZJcnKyJCYmmmhx3+3btzOxgZAYTf7GBlPIt6LitO3HuEHiNL+/Kd0U BNZxcjpeDokjSBzEtMQ5ESSOkPBkx1vnJH26SPH7Z9r1OLdInObAiOmSOe2cbBy/Xm7vea3MnTtX duzY4br87ne/4zOLxAESh8QRQr42LW/aAqdrobb3sW6SOGutVZXV7/zDWDM85OZrk1wVPeaFCxfy uUXiAInzz5EjR0z3qZYY8R4T51l2BIkjxN3R9VB1JqrWgtPF7WNd4jQr7nxb7kk7JSv63eSq49Y8 fG0yEofEARLXNrpWqre4WaHECCGxE5W3OTkXpaqqNqjHu1HidHJD6qQDMmdSqSlDgsQRJA5iSuIs eSsuLqY7lZAYzS9+WW+6Fv+r/EzQ+3CjxGm+0+OfZca9J+SnE36OxBEkDmJL4nS5LZU4xsQREpvR Re1nZElQ4+BiQeL6d/1refo7aWaN1XdGP4bEESQOYkfi9uzZYyRu3rx5cvbsWSSOkBgr6PvQ/GZ5 /sXzQY2DixWJW9X7f0vBuLWSNa1OPhl+FxJHkDiIre5UX2FiAyHuztqXG82KDP4WtY8nidOacY9O +dis6GAVAkbiCBIHrpY4z4kM3mFiAyHuzbbtl+rB/absTEj253aJs1Z00PpxG27fiMQRJA7cL3FO BYkjJPgc+eOlenCb3mgI2T5jQeI0O259xsjthykzkTiCxAESh8QR4rxyIgseuSAnT36NxHlJnEbX Vn0o7XNHd6sicUgcIHG2OHDggPTr10+6du3aMg5u8ODBSBwhLszmLfWScX/oulFjUeKsbtVXbi9A 4pA4JA7cK3E7d+70OZlBr0+cOBGJI8SF5URU5EK971iSOM9lucpHZCJxSBxmAe6UOGvFhoMHD7aS OG2ZQ+IIcU8ez2uSR5dc6HA5kXiQOM3KH+yShfd84sjVHJA4JA6QuMA7+0sLnHVdJa65uZkSI4S4 dDZq+Ud1Ydl/LEpc1Q3jTe24lydsRuKQOAD3SVy3bt1alt2yxM263qNHDySOEBek8rNLs1E35DeE 7TliUeKs2aq6msPvb0pH4pA4AHdJXH5+vt9ivwUFBUgcIS7IS6sbJXtuaIr6xpvEaR6/+yN5bMpB UxAYiUPiAFwjcUpRUZH06tVLEhMTTYHfpKQk2bZtW1RfJBJHiL0UvXfWzEbVy3A+TyxLnLbCaWvc tlufQ+KQOAB3SZwTQeIIsbc26pyci2Z5rXA/VyxLnEZXcdDxcTpODolD4gCQOCSOkLAmf2ND2LtR 40XitPBv9n3HZVlqMRKHxAG4Q+L8jYdjdiohzl9aS2vC7Sk8F5Hni3WJ05SlzDbdqiUj5yJxSByA 8yXOc8F7b4nT8XFIHCHOTN6TTbLkifDUhItXidO8NHGH5KZVRn2SAxKHxAES127q6+vl4YcfNhK3 ZcsWJI4QB+bdfWfDWhMuniVOx8TpklzRnuSAxCFxgMQFhVXslzpxhDgv2vKWk9ssz794PqLPGy8S p3n9++tkekaj/GnYBCQOiQNwj8SpwOkHmjFxhDgzr7zaYMbCffrpaSQuTBKny3Dl3HvMdK0icUgc gGMlrq2JDVo7DokjxDk5/Ic6UxNu0xsNEX/ueJI4zTujHzNd1gdGTEfikDgAZ0qc58QGz6jANTY2 InGEOChP/6QpYiVF4l3iNE/d9YEsvOeTqExyQOKQOEDiXAsSR8jl+U3ZGdMyFKmSIkjcMDMmLlqT HJA4JA6QOCSOkBiZzLBw8QVZ+nRTxEqKIHGXsnH8epmdfsoUA0bikDgA14yJi2bhXySOkP+Jtr7p WLhIT2ZA4obJsaFjZFb6n6Vg3FokDokDcN6YuLbEzUqkC/8icYRcysmTl0qKrFvfGNXjiFeJ02h3 qq6rqkKHxCFxAI6RuGXLlhlhW7RokdTV1cmpU6dk2rRpZtuGDRtC9jxaRDgjI0MSExOld+/eUlhY iMQRYiNv/KxBsmZflOovapG4KEmclhzRdVVfub0AiUPiAJwjcSpVKmy+ulm7dOkSsudZsmSJLF26 1NShU4Hr06eP2X7kyBF5//33W2X79u1IHIn7aPdp5syLRuSifSzxLHGa3bf8OKIFgJE4JA6QONsS l52dLTU1NVJbWyvz588PucQNGDBADh482Gq71ernK9qFyx8ZEs95aXWjzMm5GJWSIkjc5dEyIwvu OSrPpu5D4pA4AGdI3IoVK/xK1MqVK0P2PCpky5cvN2KorXD79+8321Ucq6urW6W8vJyWOBLXqag4 bSYz/OKX9Y44nniXOI0W/s3IuCCl38tG4pA4gOhLnFJQUCDJyclGtLRlLikpSd58882QPodOjli7 dq25fujQIRk8eDBj4ghpI1pOZMEjF6JWUgSJ850Vd74dkQLASBwSB0icY+jRo0erljkkjhDf+e3+ S4V9/6v8jGOOCYm7lE+G32Va4349ehESh8QBxIfEzZo1SzZu3GiuHzhwQIYNG4bEEeIneU82yTPP NTnqmJC4/8nLEzbLQ2mfh7U1DolD4gCJs4VKVb9+/aRr164tRX0DdXe2Fx37NnHiRNMCp/s+fPgw EkdIG8tr/e5gHRLnUImrumG8WY5rx63PIHFIHED0JG7nzp0+V2bQ6ypd0QKJI/Fa2FcXuNeWOKcd GxIX2eW4kDgkDpC4gPTs2dMIm5b/8JY4bZlD4giJXLZtP2da4co/qkPiHC5xunqDruLwn7e9iMQh cQDRkTirBc66rhKnBXmjsV4qEkdohWuWF1add+TxIXGts3ncatOtGo4CwEgcEgdIXEC6detmhK24 uLhF3Kzr3jNKkThCwhetBzcjK7qL3CNx7c+jUz42Ex2QOCQOIOISl5+f77fYr9aPQ+IICX++/LLW rI8a7UXukbj2p3hUrlmO6+iNk5A4JA4gshKnFBUVSa9evUyhX509qsV+t23bFtUXicSReFzkvqqq FolzmcRpctMq5aWJO5A4JA4g8hLnRJA4Ei+p/uJSK9yWrfWOPk4kzn923/JjUwBYCwEjcUgcQMQk Tpfb6tu3b8C6bUgcIeHJpjcaHLPIPRIXXLTor7bG6ZJcSBwSBxAxidOJDNbsVCSOEFrhkLjgx8aF sjUOiUPiAIkLyLp164zEzZs3T2pra015ESSOkMhkzdpGV7TCIXH2Z6qu/MEuJA6JA4iMxPmbmUqd OELCmyN/PC0Z94srWuGQOPutcVqs+cOUmUgcEgcQme5Uf9GZqkgcIeGJlhNxSyscEte+1ri8uz9E 4pA4gPBLnFNB4kgsR0uJZM68KHsKz7nmmJG49rXGlaXMRuKQOAAkjpBYy4b8Blm4+IL8d83XSFyM SVyoWuOQOCQOkDi/4+CiOd4NiSO0wl2Ud/edddVxI3H2UzJyrmmNKx+RicQhcQDhlTgnSh0SR2I1 r7zaIAsecVcrHBLX/mhL3LLUYiQOiQNA4giJhRw6VGdmpLppLBwSF1x0TJy2xh0YMR2JQ+IAkDhC 3J7lz5+Xh+Y3u64VDomLfGscEofEARKHxBFCKxwSFyWJs1rjgqkbh8QhcYDE+ZU4O6HYLyGhywur zktOrjtb4ZC4yM9UReKQOEDifNJWgV+K/RISvtUZ3tp9zrWvAYmLbN04JA6JAyTOtSBxJJby0upG 19WFQ+Ki2xqHxCFxgMQhcYQ4pBXObXXhkLjQt8a1p24cEofEARKHxBES5ax92f2tcEhc5GeqInFI HCBxSBwhUczhP9TJjCz3zkhF4qJXNw6JQ+IAiUPiCKEuHBLnAIlrb2scEofEARKHxBESxVY4N9eF Q+KiWzcOiUPiAIlD4giJ4ozUWGmFQ+JCl8emHLQ1UxWJQ+IAiUPiCIlCPv300ozUHW+di5nXhMRF tm4cEofEARKHxBEShWzIb4iJGalIXPjqxi2dXIbEIXGAxCFxhDgpVVW1kjnzouvrwiFx4W+Na2um KhKHxAESh8QREuHkb2yQHy5sjqlWOCQu9Hn87o9k+Z3vIHFIHCBxSBwhTkjlZ6cla/bFmJmRisSF d6ZqRsYF+WT4XUgcEgdIHBJHiBNmpGbPjb1WOCQufHXjXpq4A4lD4gCJQ+IIccIaqVu21sfk60Pi Qp+SkXNNa1zF8ClIHBIHSBwSR0i08sKq8zLrwYty/EQtEofEtWumqq9VHJA4JA6QOCSOkAjOSC14 sz5mXyMSF568M/oxnzNVkTgkDpA4JI6QCGTty5dWZzh58mskDolrV05df5M8lPZ5q5mqSBwSB0gc EkdImPPll7UyI0tickYqEheZ7L7lx2Zs3NEbJyFxSBwgcUgcIZHKGz9rkJzc2JyRisRFtjVuzcRt SBwSB0gcEkdIJKKTGHQyQ6zOSEXiIpd9oxZcVjcOiUPiAIlD4ggJ8xqpsTwjFYmL/EzVn074ORKH xAESh8QREokZqdqdGg+vF4kLf349epFMz2iUPw2bgMQhcYDEIXGEhCub3mgwS2zpxAYkDokL5dg4 XcUBiUPiAIlD4ggJ04xUFTgVuXh5zUhcZGeq5v7TWCQOiQMkDokjJNTZvKXeSJwueI/EIXGhzMnr UyT7vuOSNXYLEofEARKHxBESymhBX13kPh5mpCJx0cnOW56Saf/aJPPnP8PvHBIHSBwSR0iosm37 OZmTEx8zUpG46I2Nmz7lTzJrTgm/c0gcIHFIHCGhiBb01cK+8TIjFYmLXrK/O0+mzWiS6i9q+d1D 4gCJQ+IICdVYuHiZkYrERS8Lrust0zNPxeU/DEgcIHFIHCFhmZGqBX7j8fUjcZGNlhj597mb4/af BiQOkDgkjpCQrpGqC93H04xUJC66EvfwwkVmEk28/uOAxAESh8QREpI1UrVFZN36xrg9B0hc5CVO S4zoRJp4/ucBiQMkDokjpMMzUjPuF/n009NIHBIXUYnjHwgkDpA4JI6QDtaFi6fVGZA450gcXflI HCBxSBwhHWiFY3A5EhdNiYv3STVIHCBxDmHnzp3SqVMnJI64pi6ctsJR5gGJi6bEaX7xy3r+mUDi AImLHk1NTTJo0CAkjrgm+sWp3VgUXEXioi1xVrc+/1AgcYDERYW8vDxZtmzZZRKXk5Mj1113Xatc e+21kpCQwB8ZEvW6cKEeUN7rm8/3zd8Z7Lr8zRUJSFwUJY6ufSQOkLioUVlZKYMHD5bm5ubLJG73 7t2yYsWKVlHhS0xM5I8MiVp0gftwDCbXz//2f/pn16XrtzojcVGWOCbZIHGAxEWFiRMnyt69ey+9 ALpTiQtmpOoaqeEYSK6ff7cJheZvrrgCiYuyxFlLvzFTFYkDJC6yB/3NF5d3kDji1Ox461JduHCM hUPikLiOSFy4uvmROAAkzrbQ0RJHnDwj9aH5zfLKq+HpskLikLiOSBx145A4QOKQOEKiVBcOiUPi OipxtMYhcYDEORokjkRzdYZwlnFA4pC4jkqcZ/kbWuOQOEDikDhC/jIWLtwlHJA4JC4UEmd1+9Ma h8QBEofEEerC/aWLKtzFVJE4JC4UEqfZU3iO1jgkDpA4JI6Qgjcjs6wREofEhUrirGXhaI1D4gCJ Q+IIY+EisKQREofEhUriNO/uO2vK4Rz5I61xSBwgcUgcidPVGSK1nBESh8SFUuI0OjbupdW0xiFx gMQhcSROx8JFaikjJA6JC7XEvbX7HK1xSBwgcUgcib9oF+qsBy9GbHA4EofEhVrirOEAtMYhcYDE IXEk7lrhtDs1Us+JxCFxoZY4a6YqrXFIHCBxSByJm+RvbJA5ORfl+IlaJA6Jc7XEaR5dcoHWOCQO kDgkjsR+tMVCWy60wG8knxeJQ+LCJXHF75+hNQ6JAyQOiSOxH22x0Fl9WmsLiUPiYkHirNa4F1ad 53cciQMkDokjsd0Kp+OIIv3cSBwSF06J09a49OkiJR+c4XcdiQMkDokjsRdtqYhGKxwSh8SFW+I0 eU82ycLFF6Ly+UbiAJA4JI6ELYcO1ZlWuGi1VCBxSFy4Je63+y+1xulqDvzOI3GAxCFxJGay/Pnz pqUiWs+PxCFx4ZY4WuOQOEDikDgSs61w2lKBxCFxsSxxvztYJzOyRAp/RWscEgdIHBJHXB5tkVj6 dFNUW+GQOCQuUhKn2ZDfELWxn0gcABLHHxkSsuhMVB0npC0USBwSFw8SV1VVK5kzL0ZlFjYSB4DE 8UeGhKwVTlsknnmuKerHgsQhcZGSOKs1Lie3OaKrkiBxAEgcEkdCFl2VwQmtcEgcEhdpibNa4155 tYG/BUgcIHFIHHFXTp78WrLnOqMVDolD4iItcZo3ftZgJjlUfsZyXEgcIHFIHHFRNm+pl6zZF6X6 i1okDomLS4n78sta8zuwbn0jfxOQOEDikDjijlhfXtoS4ZRjQuKQuEhLnPXPjJbX0SXn+NuAxAES h8QRx0cHdavEqcwhcUhcPEucTu7R4r+65Bx/G5A4QOKQOOLoHP7DpWKnW7bWO+q4kDgkLhoSp9Gl 5pwywQeJAyQOiSPEb7Swr05ocFppBSQOibOTe/72GiMYKnKhTObMo/JvDxwO+X49s2nTJiQOAIlD 4khwsRYAd2KRUyQOibOTm/76b8xnRVvkQpl5/SfItH9tkn8fPDvk+9b0ujJRxo8Zg8QBIHFIHAku jy65IAsecebi30gcEmdX4lSKwrHv5Xe+Izn3HpOvho4K+b71XKdNuhOJA0DikDjS/hS9d9bMwvtN 2RlHHh8Sh8RFW+Iqhk+RjIwL8p+3vYjEIXGAxCFxxFnLa6192bn1sJA4JC7aEqf56YSfS9a0Ojk2 dAwSh8QBEofEkehn2/ZzZokhJ1emR+KQOCdI3Oc33Caz00/Jhts3InFIHCBxSByJblTcdDaqkwr7 InFInFMlTlM45kemW/WT4XchcQBIHBJHopfnXzwvc3IuOq6kCBKHxDlV4jSPTvnYTHRA4gCQOCSO RCXlH9WZyQxv7T7n+GNF4pA4J0lc6feyTTmeX49ehMQBIHFIHIl8ljxxwSwp5MSSIkgcEudkidO8 NHGHZN93PCQlR5A4ACQOiSO2887es65aSgiJQ+KcJnE6yUFnqr42/jUkDgCJQ+JIZKLj33JynV1S BIlD4pwucZrXv78uJJMckDgAJA6JI7byyqsNMuvBi/Lll7VIHBKHxHUgWi9uVvqfZcWdbyNxAEgc EkfCX1JEa8JpbTg3HTcSh8Q5UeI0+0YtMEMTylJmI3EASBwSR8KXZ55rkh8ubHbFZAYkDolzg8Rp 8u7+UBbe84mcvD4FiQNA4pA4Evq8u+/SZIaSD8647tiROCTOyRL38U1pMj2jUQrGrUXiAJA4JI6E fn1Unczw9E+aXHn8SBwS52SJ6+gkByQOAIlD4ojfbHqjwYyFq6g4jcQhcUhcGKJdqQ+lfS5P3fUB EgeAxCFxJDT59NPTMiNLZE/hOde+BiQOiXO6xGlKRs69NGThm0skDgCJQ+JISCYz6OoMbpvMgMQh cW6TOM2y1GLTIteelRyQOAAkDokjraKtb9oyoOukuvl1IHFInFsk7uiNkyRz2jkzRg6JA0DikDgS dDeqjoPT8XBufy1IHBLnFonT6CxVFTkVOiQOAIlD4ki7s/z582ZG6smTXyNxSBwSF+FJDgvuOWpq x526/iYkDgCJQ+KI/RS9d6kmXPH7Z2Li9SBxSJybJE5TMXyKKTmy7dbnkDgAJA6JI/YXuH9ofrNp iYuV14TEIXFukzjNa+NfM92qgWrHIXEASBwSR0w25F+qCafrpCJxSBwSF91u1dy0Snk2dR8SB4DE IXGk7Rw6VCcZ94vseOtcTL0uJA6Jc6PEaUq/l226Vd8Z/RgSB4DEIXHEd3QCgy5u/3hek6trwiFx SFwsSZxmzcRtMiv9z1J1w3gkDgCJQ+JI6xS8WS+zHrwoVVW1MffakDgkzs0Sd2zoGMm595i8NHEH EgeAxCFxxPfSWm/tPheTrw+JQ+LcLHGaspTZpltVu1eROIA4kLji4mIZNGiQJCQkyMCBA6W0tBSJ Iz67URcuviCPLrkQc92oSBwSFysSp3l5wmbTIue9JBcSBxCDEte3b18pKioy1/Pz86Vfv35IHGmV /I0NphXu8B/qYvY1InFIXCxInMqbrqu6/M53LisCjMQBxEF3apcuXczlpk2bZO7cua2SlZUlV155 pWv+ELz33nuyevVq1+WJJ56Q3NxcRxzLT57dLNOmN8tjjxfZuv9rr72GxCFxSJwDulV33vIUEgcQ LxJXUlIimZmZ5npeXp4MHz68Vb773e+6SuIWLlxovpzTknu5Konf+pYzjrv3/5H77vlc7rv9V5LW q0/A+4/sfo05biQOiUPiot+tqkWA/zRsAhIHEOsSV1tbK6mpqVJXVxdT3akqcW74g+ud9O49JPWa Ho4oW6BdM97ja/xFZaLXNdcgcUgcEueQbtWn7vrAdKsicQAxKnHV1dWSkZEhx44dC3hfJC5+JK54 VK7pkvkwZabtxyBxSBwS55zo2qpZ0+pk87jVSBxALEpcYWGhjB49Wk6cOGHr/khcfEjc729Kl+kZ jbLh9o3tehwSh8Qhcc5K4ZgfmX/Gnh0wDokDiDWJS05ONl9enkHi4lvitOtl4T2ftKsbFYlD4pA4 52ZZarH825Q/Stqd6UgcQCyOibMLEhf7Evf699e1uxsViUPikDjnRpfimnHvCbnvvhIkDgCJQ+Ji VeKs0gTbbn0uqMcjcUgcEufMPPkv0yX9m9/td/aeReIAkDgkLtYk7vMbbpPs+46bGanB7gOJQ+KQ OGdGz/V9aW9J5syLcuSPp5E4ACQOiYsVidNxcFqKIDetst3j4JA4JA6Jc4fE6cSGpU83yZInLpil 9JA4ACQOiYsBifvphJ+bblSdldqR/SBxSBwS52yJq6qqley5zfLCqvOOXgcZiQMkDolD4mzk16MX GYHbceszHd4XEofEIXHOljj9rP/uYJ1k3C/yi1/WI3EASBwS51aJ0yV5tBjoSxN3hGR/SBwSh8Q5 X+I0m7fUS/p0kd/uP4PEASBxSJzbJE7HvukYuLy7P5ST16cgcUgcEhdHEqd59j/Oy6wHL8qnn55G 4gCJQ+KQODdJ3Mof7JLZ6adMDalQ7ROJQ+KQOPdI3PETtbJw8QUTvY7EARKHxCFxLpC418a/ZsbB lY/IDOl+kTgkDolzj8RptBVOW+Oef9FZEx2QOEDikDgkzkfeGf2YEbidtzwV8n0jcUgcEucuidP8 puyMmejwyqsNSBwgcUgcEudUidMVGXRh+5cnbA7LcSNxSBwS5z6J85zoUPirs0gcIHFIHBLnNInT mag6Bm7FnW+b4r5IHBKHxCFxntEu1RlZIuUf1SFxgMQhcUicUyTu2NAxsvCeT2TBPUc7tCIDEofE IXGxK3G6isPTP2mSrNnRX5oLiQMkDolD4v4SXVJL10U9euOksB43EofEIXHulThL5B5dckEWPBLd GatIHCBxSBwS9010QXsdB3dgxPSwHzcSh8Qhce6WOE3lZ6flofnNplUuWjNWkThA4pC4uJc4S+BK Rs6NyHEjcUgcEud+ibNEbk7ORXlpdWNURA6JAyQOiYtriXv9++tMKZHiUbkRO24kDolD4mJD4jT/ VX7GTHSIhsghcYDEIXFxK3FaAy5cteCQOCQOiYsPidMUvXfW1JCLtMghcYDEIXFxKXHhLOaLxCFx SFx8SZxmT+E5I3Lr1jcicYDEIXFIXLgkTgUuc9o52Xbrc1E5biQOiUPiYk/iPEVu0xsNSBwgcUgc Ehdqidt9y49NC5yOhYvWcSNxSBwSF5sS5ylyb/ysAYkDJA6JQ+JCJXFOEDgkDolD4mJb4iIpckgc IHFIXFxInCVw0epCReKQOCQufiTOU+TyNzaEbbIDEgdIHBIX8xL32vjXojaJAYlD4pC4+JQ4TckH ZyRzZvjqyCFxgMQhcTEtcVrIN326OEbgkDgkDomLH4nT/KbsksgtfbpJqr+oReIAiUPikLhAEnfq +pvk2dR9jhM4JA6JQ+LiS+I0v91/RmY9eFEWLr4QUpFD4gCJQ+JiTuKODR0jj9/9kWRNq5OylNmO O24kDolD4uJL4jSHDtWZJboWPHJBjvzxNBIHSBwSh8R5S9yfhk2Qhfd8Ijn3HpOPb0pz5HEjcUgc Ehd/EmettfrokguSPbdZKipOI3GAxCFxSJx1u3xEppG3vLs/lKobxjv2uJE4JA6Ji0+J03z5Za3k PdkkWbMvmm5WJA6QOCQu7iVOS4dMz2iUlT/YJV8NHeXo40bikDgkLn4lzsorrzbIjCyRzVvqg565 isQBEofEuVvi/i5JXrm9wExgKBi31kxocPpxI3FIHBKHxFm15FTknnkuuJmrSBwgcUiceyXu74fI vZP2y+z0U7Jv1ALXHDcSh8QhcUiclfKP6iQntzmoCQ9IHCBxSJwrJU7LhqSnn5F7Uw86evwbEofE IXFIXKBoK5zWkdN6cto6Z7d7FYkDJA6Jc5XE6Xg3Hfem3afpY96Q1Gv/0XVfFEgcEofEIXG+omut 6lJdy58/byZAIHGAxCFxMSNxWjIkN63S1H/TtVDbs3YqEofEIXFInNMlzioMrPXkHprfbJbtQuIA iUPiXC9x2n2aOe2cKeJ79MZJ7Vo7FYlD4pA4JM4tEmeVIXn+xfOmx2FDfoMcP1GLxAESh8S5T+K0 9ttjUw4agdtx6zOXzT5F4pA4JA6Ji0WJs1L4q7NmuS5tldMJEEgcIHFInCskTmXtP2970dR+09a3 iuFT2rV2KhKHxCFxSJzbJc6a9PDsf1xqlXth1XmpqqpF4gCJQ+KcK3ElI+fKQ2mfm7FvKnL+ar8h cUgcEofExbrEWSl676wpRaIrPex469IMViQOkDgkzjESpxMXtOtU/+N8NnVfwNIhSBwSh8QhcfEi cZqTJ7+WgjfrTSkSXYN1yJARSBwgcUhcdCVOZW3D7RtN16nOPrVbuBeJQ+KQOCQuniTOihYFfvon TZL899+TtwuROEDikLgo/ME9NnSMkTedtKAL1+sMVN0WzNqpSBwSh8QhcfEicVZuHE5LHCBxSFyE JU5FTdc5zb7vuBn39vr31wW1aD0Sh8QhcUhcPEscY+IAiUPiIiZxKm8qbCpuut7p5nGr29XyhsQh cUgcEofEIXGAxCFxEZS439+UbpbKmpX+ZzPrVOu9BdPyhsQhcUgcEofEIXGAxCFxYZY4LQtSPCrX zDbNyLhg5E2XyvJXLgSJQ+KQOCQOiUPiAIlD4qIocVqU97Xxr5nuUi0Vsiy12Mw2DaW8IXFIHBKH xCFxSBwgcUhcCCTuT8MmmC5Sq8abtrptHL/e5yoLSBwSh8QhcUgcEgdIHBIXRYnT2m5bb1sheXd/ aLpLtUzIijvfNqstnLw+JSJ/cJE4JA6JQ+KQOCQOkDgkzsYf3E+G32Vquam4aWFezdLJZWasWygm KiBxSBwSh8QhcUgcIHFIXAgkTst/6Hi25Xe+0zLGTcuD6EzTX49eFHBZLCQOiUPikDgkDokDJA6J C7PELbiutxwYMd20qr08YbM8OuVj002qeequD0zXafmIzLBMUEDikDgkDolD4pA4QOKQOJuLKFdU nJY9hedk0xsN8m8PHJZp6bWmpU27SLW7VIvylqXMjtj4NiQOiUPikDgkDokDJA6J80hVVa38puyM bNt+Tl5YdV6WPHFBZmSJETbNDxc2ywOzy+TBGx6RD1NmOlrakDgkDolD4pA4JA6QuJiRuP+u+Voq Pzst5R/VSeGvzkrBm/Xy/IvnZcEjl8varAcvGoFTkduytd6IXfUXtVFZOxWJQ+KQOCQOiUPiAImL WYnTFrRPP70kZyUfnJEdb52TN37WIGtfbjQilvdkk+TkNkvG/f8japkzLxp5U4nbkN8gb+0+Zx6v 3adOWDsViUPikDgkDolD4gCJiyilpaWSlJQkCQkJMmDAANmzZ48NifsrM+7st/vPGAnT8WdWVK60 xUzHo61Z2ygvrW6UpU83ycLFFyRr9sUWKfOMtqQ9NL/ZyJtKXP7GS5JW9N5Z8xz6XIFkDYlD4pA4 JA6JQ+IA4kriUlNTZf369eb6ypUrZfLkyeb6kSNH5P3332+V7du3fyNx/0um3vv1ZUlL/1pmzqqR Bx6skYWLTsmix07JM8+dlGeXn5Cf/r/j8sqrx+Vnm7+Sn//iK3m78Ji8V/yFHDr0uVRVVYU18+bN k7k9k+Sz73zXVZn6t9fIhO7XuO643//n/yvJ3buH/X0NR1Ti3Ha+NVd9I3F63t123P3+qqs81+sf XXfcw7pe5cq/KXquJ99+h2t+H2+88UYkDpC4QHT/5gu3ubnZXG9sbJTk5GRzfdq0aeZLzVeuuCJB Eq78tiQkJH5zqbnStOQFm86dO3+zzys6tI+29u3vdZDwJRzvZbjD+0ZiPd/61rfC8rujf7/1b20o 96nDdt577z3MApC4ttBfFl+3a2pqpLq62mfOnDkT0mMYNWqUPPDAA3yCIsSqVauMvENkOH78uPkC 3bdvHycjQowYMUKys7M5ERHi+eefl2uvvZYTAUhcpNH/njxJTEyM+DEgcUgcEgdIHBIHgMS1kx49 ephuVEUv9TYSh8QBEofEARIHSJzDmTp1qqxbt85c10ud6IDEIXGAxCFxgMQBEudwdPZPz549Tbeq lhopLi5G4pA4QOKQOEDiAIkDJA6JQ+KQOCQOiQNA4mKSjRs3yq5duzgREeLDDz+UFStWcCIixNmz Z+XJJ5+Uzz77jJMRIfLz8wMWLofQUVZWZuqMAiBxAAAAAIDEAQAAAAASF1Lq6+slIyPD1Kbr3bu3 FBYWclLCiJ7f/v37t6yTy5I24ePEiRMtq59YtHedYujY+dZJWoMGDTLne+DAgeb8Q/jOt8XOnTvN GFAAJC7GWbJkiSxdutQs+6WC0adPH05KGNHJDJWVlea6Xvr7IwwdQ+VYZdn7i8zfOsUQnvPdt29f KSoqMtd1jFy/fv04WWE830pTU5MRZyQOkLg4QFsjDh48yImIECrJumyaopdIc3gYO3asHD58uNUX mb91iiE859ubLl26cLLCfL7z8vJk2bJlSBwgcfGAdnMsX77c/HFVodi/fz8nJYxod5Kea/0Dq5cl JSWclHD+QfD6IvO3TjGE53x7op/1zMxMTlIYz7e27g8ePNj8o4LEARIXB2iB4bVr15rrhw4dMn8A IHwMGTKkpeVThW7o0KGclAh+yTlhneJ4lLja2lrTlV1XV8dJCuP5njhxouzduzegUAMgcTGC9zqt tEyEF1qCovsl54R1iuNN4nTYgE6eOnbsGCcozOdbb3sHAImLYWbNmmUK/SoHDhyQYcOGcVLCiLa8 6XlWysvLTcscRO5LzgnrFMfT+dbJUqNHjzYzKSEy0mznZwBIXIxQU1NjmuC1RUi7UnWwLISPiooK I256vvVSb0PkvuScsE5xPJ1vnThCyxASB4DEAQAAACBxAAAAAIDEAQAAAAASBwAAAIDEAQAAAAAS BwAAAABIHAAAAAAgcQAAAABIHAAAAAAgcQAAAACAxAEAAAAgcQAAAACAxAEAAAAAEgcAAACAxAFE 4oPYqVObcdpxuvkcAwAAEgeAxEWJkpISGTlyJBLnwHMezHsTrvccAJA4gLiRo1g+X5zjyJzzcJ1n 3j8AQOLAtV+Qhw4dks6dO0tycrI0NzdLY2OjJCUlmW36M8/9rFu3Tnr06CFXX321rFq1qtW+Nm7c KH379pWEhAQZOHCgbN++3efxbNiwQa666ioZPny4z+P0fL7u3btL79695fDhw2b/+rhevXpJcXFx UM+t2/Xner8hQ4bIgQMHLvu5d0tlZWWlaanp0qVLy2O09aY951jPlfU6SktL/b5e7/OivPnmmzJg wADz3P369ZOtW7cGfI/bOp9tvX++9hHoMYGOTz9DN998s/m5nkM9l1VVVW2ec3/H4ut+gd73UDw/ ACBxAFGTuEDdqfPnzze3169fLytWrDDX8/LyAu5Hv8Atdu7c6fM+voTHyqRJk9qUDs8MGjTIiKV1 W7+wO/LcVlTK2vpC1597b1dZsStxBQUFlz1WZTnQ67XOy65du3we1969e4OSuLbeP7ufHc/H2Dk+ FTzvnw8dOjQkEmfnfQ/F8wMAEgfgWImrr683rUT9+/c3rXD6xaetct77yc7ONrf10lOAlJSUFLNN v9iVd99919yePHlyq/3MmzfP3D569Gib0qGtLHofz5aqiooKc11bVoJ57jlz5pjXpi1GejsxMdG2 kFnH0p7HDBs27LLXbJ07X6/X+7xoq5Fuz8rKkqamJnOpt/X1BiNxbb1//j47bT3GzvFZ4m21fgXT Wuzvfnbe91A9PwAgcQBRkTg7aDeUdf/9+/f73M+xY8fM7erqanNbu6csVGx8iaJ2D3rvx/sL1Z90 WCLp73Ywz11XVxfweb0pKyszrZWDBw+2/RgLlU39uZ4zRbtn/e3D+7xYr0u7uBW99D7v7ZG4tt4/ f58dO+95W8c3Y8YMs01lSruJf/SjH0lNTY2t4/f8ma/72Xnfg3l+AEDiAFwlccuXL2+5/5o1a3zu R8el+ftCt2TFO/rlGeh4AolRoNvBPrcdIdNxYLpt8eLF5vUHK3Eqb4oKhN19BCNx1n187b+t98/f e9LWY+wcn7bQqTiNHz/etPLqz0ePHh0SibPzvgfz/ACAxAG4RuJOnTol3bp1M19uOvZMr+s27/1o q4a2hmm3n972HIBvjR3TcUrtPZ6OSlywz+1vv9q9bLXYWaKiErZnz552S5yeT6urVM9dTk6O7X1Y 3YXe3ZWeJTEskdEuRd2/dhf7239b75+/89XWY+wcn/fnzLsr3Nc5b+t4PO9n530P1fMDABIHEBWJ CzQmzvry3bZtm+Tn55vrs2bNCrgfvb+F9wB+K2PHjg27xAX73N7bVF6tbVOnTjXbdKyg5z67du1q Lmtra21JnM7u9Hy8jju0K3HWuD3vFBUVtdxHZ14Gen/tvH92Pzuej7FzfNaYQM94iqCvc+4LX/ez 876H6vkBAIkDcJzElZeXm+tatkPRVhdrBqX+zHM/+qXZs2dPUy5DJxl4o7NbVVK0O0tLUmirkJ3x Rx2VuGCf23ub7kNfn7bUWF/0OtPRKqExbtw4OXLkiHlMbm6u7dZOFR89p3p81sQMO93Mis4GtUqi 6OO9W520u1NbpHR/OmtW7+/vfAV6/3ydm0CPCXR8OqYuNTW1pUSLCpY1PtDfOfeFv/sFet9D9fwA gMQBuFoGof1YsyOtenTWBBKVIie/f7znAIDEASBxcY22/PhqBbVKdyBxAABIHEDY0MH9nrXRwD4n TpyQjIwMU/ZCz6G2wKnARXIQfTDvH+85ACBxAAAAAIDEAQAAAAASBwAAAABIHAAAAAASBwAAAABI HAAAAAAgcQAAAABIHAAAAAAgcQAAAACAxAEAAAAgcQAAAACAxAEAAAAAEgcAAAAQ3xIHAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAADQwv8HJfXd3eHko2AAAAAASUVORK5CYIJ= ------=_NextPart_01D5E037.E5F59E00 Content-Location: file:///C:/6A8530EF/12EnfoquedeaprendizajebasadoentareaseneldesarrollodelahabilidaddelhablaCorregido_archivos/image007.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCADEAXMDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKb 5hNG/wBBQA6g9OlNycZAp1G4Hjf7e3xq8Z/s6/sqeLPjN8Pxa/2todvBLZreQ+ZGS1xGhDDIyCrH vXwp8Lf+DhzX7YR23xp+ANvcLnEl54b1Axtj1Ec24Z/4GK+v/wDgrcuf+CfPxF/68Lb/ANK4a/BX Z6Gv1ngPhvJ88yeq8XTvJTsndppWXY/L+Nc+zTJ80prCzsnG7WjT1fc/eD4Cf8FZv2Jvj0kFtpvx PXw/qU2B/ZXiiP7LIG9N+TE34Oa+kLDU7DUrWO/069iuIZlDxTQyBldfUEdRX8x5jB7169+zv+3b +1F+y5dxf8Kr+KV8mnxyBpNC1CQ3FlJzyPKc4XPqu0+9dWbeFseVzy+r/wBuy/Rr9UcuW+I9RWjj qf8A29H/ACf+Z/QwrfNUleCf8E7/ANrzVP20f2foPi1rfhOLR76HUptPvLe3m3xySRhCZEzyAd/3 TnGOpr3uvyTFYWtgcTPD1VaUXZ+qP1LC4mjjMPGtSd4yV0FFFFc50BQTgZNFcL+0h8ePCf7NXwU8 RfGrxtMFsdB09p/L3YaeT7scS/7TuVUfWgDmf2vP23v2fv2LvBH/AAlvxm8U+XcTKx0vQ7FRJe6g w/hjjyMD1diFHc1+bfxh/wCDjX43a1ezWvwP+C+h6HZ7sQ3WuSSXlyR6kKURfphvrXwz+0n+0Z8T P2qvjBqnxj+KmsNc6hqUxMNupPk2UGSY7eIH7qIDgDqepySSeFAxXRGnHqB9qf8AD/X/AIKEkk/8 JB4TUdl/4RlOPb71H/D/AG/4KE/9B/wn/wCEwn/xVfFW45wRS1XLHsB9qf8AD/T/AIKFE/8AIweE /wDwmU/+Lr9AP+CNn7bXx3/bb+HXjPxN8c77TJ7rQ9at7axOmacLdRG8RY7gCdxyK/Cuv13/AODb Nz/wpr4lHH/MzWf/AKTtUTjHl0QH0J+03/wV7/ZT/ZJ+L998E/inY+KX1nT7eGW4bTNJjmh2yoHX DGVecHnisD4T/wDBcL9jP4z/ABN0L4UeELHxguqeItUhsLBrvRY0jEsjBV3ETEgZ6nBr83/+C5p3 f8FF/FQP/QK03/0lSvI/+CfBC/tw/Csf9T1p3P8A22Wl7OPLcD+kSiiisQCiiigAooooAKKKKACi iigAooooAKKKKACiiigDm/i58TPD3wX+F/iD4ueMEuG0nw1o9xqWoi0iDymGGMyPtUkZbC8DIya+ O/8AiIQ/YRzxpvjj/wAEEX/x+voT/goYx/4YU+MAI/5pzrH/AKSSV/N+AnXHNaU4xkrsD+j/APY8 /bd+Dn7cnhHVvG/wXg1iOz0bUlsbxdYslgfzTGHG0B2yMEd+teyjgYr84f8Ag28JX9nP4gEf9DpH /wCkkdfo8OlRJcrAKKKKQBRRRQAUUUUAfhV4A/4LJ/t9eBGjE/xWt9cijxmHXtJimDD0LKFf8mz7 19H/AAf/AODhy/XybP48fAeJm4E2oeGL0qp9xDNnH08w1+ZtNfd0C5+tf05jODOG8dfnw6T7x938 j+dMLxXn+Da5K7fk9fzP6Dv2YP2/P2Zv2t4Ps/wm8fxvqqR759B1BTBeRjuQjffA/vIWFe15yARX 4H/8EnHmi/4KD/Dfyn2Z1K6DbW+8PsU/FfvegwM1+HcYZBh+Hc1WHoSbi48yvutdj9j4TzzEZ7lr rVopSTtofOX/AAVt/wCUfPxE/wCvC2/9K4a/Bav3p/4K2/8AKPn4if8AXhbf+lcNfgtX6X4Wf8ie t/18/RHwHiP/AMjal/g/VhTZAMZJp1NfpX6cfnR+zn/BBBf+MKLg/wDU5Xv/AKBDX29XxH/wQS/5 MluP+xxvP/RcNfblfyzxR/yUWK/xs/o/hn/kQ4f/AAoKKKK8E90K/Mv/AIOPvjTc6L8N/AnwF0y/ 2/25qNxquqQq2CYrcKkQPsXkYj3j9q/TSvxE/wCDhHxZPr37dFn4eeUmPRPBdlDGvYeZJNMf/Q/0 FaU9ZAfCwAHIFfSH/BMX9hC5/bs+Pv8Awi2t31zZeE9BhS98TXlqv7xo92Ft0Y8B5CCM87QGODgC vm9unSv2q/4N6fhjp3hr9jXUviKloovvE3iy48242/MYbdEijX6BjKf+BVrN2iB9OfC79hP9kH4P 6FH4e8C/s9eFoIVUK01xpMdxNL/tPJIGZz7k11X/AAzf+z5/0Q/wn/4T9v8A/EV2g4GKK57sDi/+ Gb/2fP8Aoh/hP/wn7f8A+Ira8KfD/wAC+Abaa28D+DtM0eO4cPPHpdhHAsjAYBYIBk49a2qKVwPj D9sD/gol/wAE+/2ffjtqXww+Pvwlk1bxLZ2tvJdXn/CKwXW5HjDIPMc5OFIHtXMfBL/gqN/wTK+J fxg8N/D/AOHHwUey17WNYgtNIuj4Lt4vKuHYBG3rymDj5h0r4P8A+C5//KRjxT/2CdN/9JUryH/g nz/yfF8Kf+x50/8A9HLWyj7twP6RAcjIrN8V+LPDXgrRZvEni7xDZ6Xp9qhe4vtQukhhiX1Z3IAH 40njDxXoHgfwrqXjLxTqUdnpuk2Ml3f3UxwsUMalmY/QCv5//wDgop/wUW+Jf7cvxOuv+JrdWPgX Trth4b8Oq5VCg4E8wHDysOec7c4HvnCLmB+rPxO/4Lef8E/PhrqsmiwfE+88RTRPteTw7pMk8Ofa Vtqt9VJHvXI/8RB37C//AD4+MP8AwSr/APF1+IKsMbR2pdy5xmtvZRA/b3/iIN/YX/58PGH/AIJV /wDjlfT3wU/ag+HXx6/Z/h/aS8Epfr4fmsrm6jW6twk3lwFt/wAuTz8hxzzX80pI6A1+63/BMUhf +CQ2n8f8yvrf/oVxUSpqIGI3/BwX+w1HK0TWPjDKsQf+JKv/AMXR/wARB37DH/QP8Yf+CVf/AIuv xIu/+PqT/ro386jzVeziB+3f/EQd+wx/0D/GH/glX/4uur+E3/Bb/wDYH+KviKLwvP8AEHUPDdxc OEgm8SaY1vblj0BlG5U+rYHvX4M5B4pvDGn7OIH9Tmj6vpeu6XBrOjalBeWtzGJLe6tphJHKp6Mr Dgg+oq1mvx7/AOCDX7d/ivwv8UY/2OfiDrc95oGupJJ4VNxMW/s+7UF2hXPRJFDHaMAMOBya/Vr4 2/F7wf8AAf4U678XvHt20Ok6Bp8l3eMuNzBRwi+rMcKB3JrGUXGVgLvxA+JXgD4V+HpvFvxI8aaZ oWl24zNf6reJBEvtuYgZ9upr5U8e/wDBdX/gn94I1STSdP8AHesa+0TENPouhyvC30d9ufw4r8if 22P24fjF+278ULnxr4/1aaDSIZ3GgeHY7gm306Ak7QBgBpMY3ORlj6DAHi4YDjmtI0u4H7fD/g4N /YX/AOfDxh/4JV/+OUf8RB37C4/5cPGH/glX/wCOV+IYYHiin7OIH9K2sftBfCrW/wBk2f8Aac1z TLi68F3Xgk+ILmzuLNXkl09rbzyjRE4LGM4Kk47V8Xr/AMFfv+CSfUfACT/wg7WvWp9v/DisAj/m 29e3/UIFfg+ODwtTTipAf0UfsHftQfs0ftReB9c8U/sx+CW0TTNN1ZbXUIG0WOy8yfyg4bbHw3yk DJp37Zf/AAUO+BX7C9zoNt8Z7fWXbxCk7WP9l2Im/wBUUDbssMffGK+Xf+DbvH/DOXxAz/0Osf8A 6SR15/8A8HKjg6v8KR/076p/6FBU8v7ywHuZ/wCDg79hcf8ALh4w/wDBKv8A8XSf8RB/7C//AD4e MP8AwSr/APF1+IucdaNw9a19lED9wtM/4OA/2Dr+7S3u5PFlnG3DTy6DuVfrtcn9K+nP2f8A9q39 n/8Aah0A+IPgZ8UtN16JFBuLe3l23Fv7SQuA6fiAPSv5oAwbpXY/Ab48/Ev9mv4paX8XPhR4hm0/ VNMmD/u5CI7iPPzQyrnDxsOCp4/EA1LpLoB/TmpyuaK8w/Zq/ah8DftEfAfwv8atMuYrOPxBpSXE lm8uTBKCUljz32yKy59qKxtID+deg9aKD1r+xD+Uz6G/4JPjP/BQX4bH/qJXX/pHPX74p92vwP8A +CTv/KQT4bf9hK6/9I56/fBPu1+B+KH/ACPqf+Bfmz9q8Of+RRP/ABfoj5x/4K2/8o+fiJ/14W3/ AKVw1+C1fvT/AMFbf+UfPxE/68Lb/wBK4a/BavrvCz/kT1v+vn6I+a8R/wDkbUv8H6sKa/SnU1+l fpx+dH7Pf8EE/wDkyW4/7HG8/wDRcNfblfEf/BBP/kyW4/7HG8/9Fw19uV/LPFH/ACUWK/xy/M/p Dhn/AJEOH/woKKKK8E9wK/CP/gvCsi/8FEdc8zv4f00r9PJP/wBev3cr8Uf+DiDwTcaB+2jovjDy WEOveC7Zll28GSKaaJl+oUL/AN9CtKXxAfBLdK/eL/ghXJC//BOnwyIiMrrGprJ/vfaW/pivwdbn tX7Kf8G7Pxj0nxH+zJ4j+DEl6v8AaXhnxI92sG7k2tyilWA9pI5M+mRWlT4QP0QooB4ornAKKKKA PwZ/4Ln/APKRjxT/ANgnTf8A0lSvIf8Agnz/AMnx/Cn/ALHjT/8A0etevf8ABc//AJSMeKf+wTpv /pKleQ/8E+f+T4/hT/2PGn/+j1ro/wCXYH66f8F1vjPffCr9hTUvDuk3HlXXjLVrfSNynB8k5llx 9Vj2n2Y1+FKKB0NfsB/wcjzTj4FfDu3GfLbxdMzf7wtXx/M1+QNFP4QP0n/4It/sWfsuax4Uk/aZ /ag8QeEb65nvGh8L+G/EGp2/l26ocNcywyNhmLZCBhgBc4yQR+mNt4m/Y9s4lt7XxJ8NY441xHHH eaeqqPQAHgV/NQJHUbVkYfQ0vnS95pKHTcne4H9LD+MP2Re3in4b/wDgdYf41qfEeLw8vwD8SP4V SzGnyeFb6S0OnhPJdGt3IZNnykHOcjrX8yLyy9RM9f0UfAE5/wCCZ/hfd1/4Uzb/APprFZyhy21A /nbu/wDj6k/66N/Ov0U/4N+vgX8FvjX4h+JUHxh+E3hzxSlhZ6e1iviDRYLwW5ZptxTzVbaTgZxj OK/Ou7/4+pP+ujfzr9Pv+Dav/kZvir/146Z/6HNWtTSDA/QLUv2AP2H9T0+bT7n9kr4drHMhV2g8 I2kTgEdQ6RhlPuCCPWvwz/4KW/s7+Dv2XP2zvF3wj+Hcbx6FbyQXWl28khdreOaFJPKyeSFZmAzz gDr1r+iw9K/BT/guL/ykX8Wf9g3Tf/SVKyp35gPL/wDgnHdXFn+3j8KJ7aRlb/hNrJdy+jSbSPyN fpP/AMHFXxk1Twn+zn4T+D2k3jRf8JZ4gebUArf6y2tUDbD7GSSM/wDAK/NX/gnb/wAn1/Cf/seL D/0aK+2P+DlKec+LfhTAD+6Gn6o2P9rfB/StJfxEB+YGCDxX6j/8Ec/+CTvwi+Kfwltf2oP2l/DK a5HrE7nwz4duXYW628bFTPMoI8ws4bCn5dqgnOePy3c4Oc1/SB/wTxs9Osf2GPhLBpqKsbeAdMch f77W6M3/AI8WoqXsBci/YJ/YjhjWKP8AZG+G+1Rj5vBdkT+Zjp3/AAwd+xL2/ZG+G3/hFWP/AMar 1iiue7A8P/bp8NaB4Q/4J7/FPwx4W0e103TdO+F+qW2n6fY26xQ20KWTqkaIoCqqgABQAABgV/OV k4yK/pD/AOChf/Jifxg/7JzrH/pJJX83fb862p7AfsV/wbef8m5fED/sdo//AEkjr9DNZ8K+GvEB R/EHh+xvvKz5f2y0SXZn03A4r88/+Dbz/k3L4gf9jtH/AOkkdY//AAW2/wCCm/xB+D2vD9k74AeJ W0vU5rFZvFeuWcmLm3SQZS2iYf6pinzMw+YAqARk1Mo3qWQH31rlx+zb4XufsniV/A+nS/8APO+a zhb8mwao/wDCYfsiHr4p+HH/AIHWH+NfzW6p4g17XLyTUdd1u8vLiRt0k93cvI7n1JYkk1X86TvK 1V7LzA/Yv/gst8A/2Nfib+zBrHxe+Hmr+CbPxr4X8q4tLjw/fWiTX8JlVJIJFibMvytuXIJBXjjI P44Ab+TTmlcjaXbH+0aBjtWkVyqwHtnwh/bk+LXwf+Hmn/Dnw1rs0Njp3neRGshwPMmeU9/VzRXi eB6UVQHWUHrRQetf1wfymfQ//BJ3/lIJ8Nv+wldf+kc9fvgn3a/A/wD4JO/8pBPht/2Err/0jnr9 8E+7X4H4of8AI+p/4F+bP2rw5/5FNT/F+iPnH/grb/yj5+In/Xhbf+lcNfgtX70/8Fbf+UfPxE/6 8Lb/ANK4a/BavrvCz/kT1v8Ar5+iPmvEf/kbUv8AB+rCmv0p1NfpX6cfnR+z3/BBP/kyW4/7HG8/ 9Fw19uV8R/8ABBP/AJMluP8Ascbz/wBFw19uV/LPFH/JRYr/ABy/M/pDhn/kQ4f/AAoKKKK8E9wK /On/AIOJ/gTqHjX9n/wv8ctGsGmk8G6xJb6k0a8x2l0EG8+wljjHtvr9Fq5/4p/DPwp8Yfh5rXwx 8b6et1pOu6fJaX0LAco64yPQjqD2IFVF2kB/L0G5xivY/wBh39svx5+w98crX4u+DrKO/tZIfsuu 6PNIVS+tSclMj7rgjcrc4YDIIJBsft0fsQfFD9h74w3fgTxfYzXOh3FxI/hnxCsJEOoW275TnoJF UgMmSQfUEE+KAbutdGkkB+9Pw2/4Lff8E/vHOgQ6rrPxOuvDt00YM2na1pcqyRNjldyBlbnuDzXS f8Pg/wDgnZ/0cbp//gFcf/G6/nxC85Ap2AeoqfZRA/oM/wCHwf8AwTs/6ON0/wD8Arj/AON16n+z 1+1d8Bv2qdK1DXPgR4+t9etdKuEgv5reF08qRl3BTvUdhX80HToK/Xj/AINsUx8GviVn/oZbP/0Q 1ZzpqMbgfIv/AAXP/wCUjHin/sE6b/6SpXkP/BPn/k+P4U/9jxp//o9a9e/4Lnf8pF/FR/6hWm/+ kqV5D/wT5/5Pj+FP/Y8af/6PWtvsAfqt/wAHBPwt1Dxv+xXZ+N9Otmkbwn4qt7u62j7sMqPAWPtu kT86/EhW3DgV/Tz8cvhF4Z+PPwi8RfB3xgjNpviLSZrG5ZR80e9cCRf9pWww91FfzlftT/sx/E39 kf4x6p8H/idpUkdxaTMbC+8krFqFsSfLniJ6qw+uDkHpUU5aWA+1f+CPv7MH/BOn9sj4e33gH4z/ AA2af4iaHO80+PEl5b/2hZMw2SpGkyr8hO1sDj5T3zX2sv8AwRB/4Jstx/wo28/8KrUf/j9fg74b 8SeIfCWsW/iTwpr15puoWzb7a+sLloZYjjqrqQR+HrXqUP7fn7bNvEsMP7VPjoKi4UHxHOf5tTlG Td0wP2Qb/gh9/wAE2s/8kOvP/Cq1H/4/Xu3ivwR4a+Gf7M2q/DrwbYNa6Tofgi4sdNt2maQxQRWj Ii7mJZsKBySSe9fz9n/goJ+2+Bx+1V45/wDChm/+Kr9jf2A/HvjX4o/8Errfxx8RfFV9rWsXnhjW vtWpajcGWaXb56jcx5OAAKzlGUdwPwWu/wDj6k/66N/Ov0+/4Nq/+Rm+Kv8A146Z/wChzV+YN3/x 9Sf9dG/nX6ff8G1f/IzfFX/rx0z/ANDmrSp8DA/WI9K/BT/guL/ykX8Wf9g3Tf8A0lSv3rPSvwU/ 4Li/8pF/FvH/ADDdN/8ASVKzpfEB5Z/wTt/5Pr+E/wD2PFh/6NFfoV/wcifDu/1H4XfDr4q2tqzQ aXrV1p15Iq52efEHQn0GYWH1Ir89f+Cduf8Ahuv4Ukj/AJniw/8ARor97v2x/wBmrQP2sv2cvEnw M1qWOFtWs86feSKWFrdId0UnHOAwGcc4JqpPlmmB/NXgMK/bT/gh/wDtt/D34sfs1aP+zlrviG3t fGPguBrWLT7iYK17YqxMcsWT8+1TsYDkbQehr8cfjH8HfiJ8A/iRqnwp+KXhybS9a0i4MV3bzLw3 o6N/GjDkMOCDXPWN7eaZdx6hpt5Nb3ELbopoJCjI3qCOQa0kudAf1OrKhH3hS70/vD86/mJT4+fH ONQsfxo8WAKMAf8ACQ3PH/j9L/w0B8dz/wA1p8Wf+FFc/wDxdZexfcD+hL/goU2f2FPjAP8AqnOs f+kklfzft90H2r959Zv9Q1j/AIIeTavq1/NdXVz+zp5tzc3EpeSWRtIBLMx5JJ6k8mvwYYZAA7Cq orcD9iP+Dbz/AJNy+IH/AGO0f/pJHX5r/wDBQjxRq3i/9uP4ra1rEzSTf8J1qNspbtHDO0Ma/gka j8K/Sj/g28/5Ny+IH/Y7R/8ApJHXxV/wWi/Zv1r4E/tv+IvE40+RdF8cTnW9LuvL+RpJAPtCZ6bh LvP0YGlH+IwPPv8AgnD+zl4B/as/a88M/Bb4najc2+i6gLiW8Wzm8uScRQtIIlb+EsV6jnGcc1+v UH/BDz/gm0kSqfgletgY3N4s1Dn3/wBfX4P6Dr+u+FdZtvEfhjWrrTtQs5RJa31jcNFLC46MrKQQ fpXqcf8AwUA/bcijWJP2qvHW1RgZ8RT/APxVVKMpdQP0r/4KCf8ABJf9hT4G/sc+PPiz8M/hJdWO vaHo4n026k8RX0wik81FzseUq3BPBBFfjmhzk5r07xn+2d+1j8RPDN54L8dftEeLtW0nUIvLvtOv 9alkhnTIO1lY4IyBXmYGKqMXHcAoooqgOsoPWig9a/rg/lM+h/8Agk7/AMpBPht/2Err/wBI56/f BPu1+B//AASd/wCUgnw2/wCwldf+kc9fvgn3a/A/FD/kfU/8C/Nn7V4c/wDIpqf4v0R84/8ABW3/ AJR8/ET/AK8Lb/0rhr8Fq/en/grb/wAo+fiJ/wBeFt/6Vw1+C1fXeFn/ACJ63/Xz9EfNeI//ACNq X+D9WFNfpTqa/Sv04/Oj9nv+CCf/ACZLcf8AY43n/ouGvtyviP8A4IJ/8mS3H/Y43n/ouGvtyv5Z 4o/5KLFf45fmf0hwz/yIcP8A4UFFFFeCe4FFFFAHJfGT4HfCb4/eDJvh98YvAWn+INJuOWtNQgDb Gx99G+8jjsykEetfBHxc/wCDcj4KeItUn1L4O/GjWvDsUjFo9N1K1S9ji/2Q+VbA9yx9zX6SUVSl KOwH5Ln/AINrvHIb5P2oNK29t2gSf/HKB/wbYeOif+Tn9J/8J+T/AOLr9aKKftJdwPyX/wCIa/x5 nj9qLSf/AAn5P/i6+xv+CY//AAT513/gn74K8UeE9Y+Itr4ibxBqkN3HNa2LQCEJGU2kMxznOa+o qKTlKWjA/Pv9vP8A4IreK/2yv2lNW+PWm/HLT9Dh1KztYV0640l5mTyoljzuDAHOM9K439nX/ggJ 4z+Bnx48JfGO7/aH03UI/DOvW2ovZR6JIjTiJw2wMXOCcehr9NqKOeVrABG4YNeZ/tMfsjfAP9rf wh/whnxw8AW+rRRq32G+X93dWTH+OGUfMh9uQe4NemUVPoB+X/xD/wCDbXwhd38lx8LP2jb+yt2b MdtrWkLMyD03xsuf++a5cf8ABtf46/6Of0n/AMEEv/xdfrRRV+0kB+S7f8G13jo/83P6T/4IJf8A 4uvvj9lv9kvU/wBnb9je3/ZbvfF8OpXFvpV9Z/2tDalEY3BkIbYSTxv9e1e4UUnKT3A/JeT/AINs vHU0zy/8NPaUu5s4/sGXj/yJX1V/wTE/4Jk+IP8Agn1qvi3UNY+Kdp4jHiWC1jjW109oPJ8ppDk7 mOc7/wBK+vqKHOTVmAjZ28V+fX7eH/BFPxZ+2P8AtKav8edN+Oen6JDqlraxLp9xpMkrJ5UQTO4O Ac4z0r9BqKUZOOwH5l/s3/8ABAjxl8B/j54R+Mt3+0NpuoReGdet9QksY9FkRp1jcNsDFzgnHpX6 aMoYYNFFOUnLcDxn9rP9g79m/wDbN8PLpPxm8CxzX8Ee3T/EFi3k31n7LIPvL/sOGXvjIBr4Z8bf 8G2Glzag8vw6/aYuILZmzHDrGhiR0HoWjcZ/75FfqZRRGUogfkuf+Da3x12/ah0n/wAEEv8A8co/ 4hr/AB3/ANHQaR/4IJf/AIuv1oop+0l3A8Vk/ZW1N/2B/wDhjP8A4S2H7V/wrMeFf7c+zny94s/s 3n7M5xn5tuc18Ar/AMG2HjvqP2oNJ/8ABDL/APF1+tFFJSlHYD5l/wCCZn7A2tfsBfDbxF4B1j4h W/iJ9c1xdQS5tbFoViAhWPYQzHJ+XOa9K/al/ZJ+C/7Yfw4m+Gnxp8LLeW+7zLC/hOy6sJsf6yKT qp9RyGHBBr1Cipu73A/Kvxf/AMG2G/VJJPAP7TRjs2b93Fq+h7pFHoWjcA/XArLH/Btf46xz+1Bp P/hPyf8AxdfrRRV+0kB+S/8AxDY+Ov8Ao57Sf/Cfk/8Ai6P+IbHx1/0c9pP/AIT8n/xdfrRRR7SX cD8l/wDiGx8df9HPaT/4T8n/AMXRX60UUe0l3A/mHoPWig9a/sE/lM+h/wDgk7/ykE+G3/YSuv8A 0jnr98E+7X4H/wDBJ3/lIJ8Nv+wldf8ApHPX74J92vwPxQ/5H1P/AAL82ftXhz/yKan+L9EfOP8A wVt/5R8/ET/rwtv/AErhr8Fq/en/AIK2/wDKPn4if9eFt/6Vw1+C1fXeFn/Inrf9fP0R814j/wDI 2pf4P1YU1+lOpr9K/Tj86P2e/wCCCf8AyZLcf9jjef8AouGvtyviP/ggn/yZLcf9jjef+i4a+3K/ lnij/kosV/jl+Z/SHDP/ACIcP/hQUUUV4J7gUE8UUEZGKAMXxR8QvA3gcQv428a6To63G4WzapqE dv5pXG7bvYbsZGcdM+9ZP/DQfwH/AOi2+Ef/AAo7b/4uvzn/AODlkY8P/CEf9Pmtf+gWdflH+NaR p8yuB/Tp/wANB/Af/otvhH/wo7b/AOLo/wCGg/gP/wBFt8I/+FHbf/F1/MXj3ox71Xsl3A/p4svj t8FNRuVtNP8AjD4WnmY4WOHxBbMzewAfJrqIbiO4jWeCVXjYZV1YEMPXNfyvqXV9ytjHQ169+zf+ 3l+1X+ynqcN18JPi3qkGnxS+ZJ4fvrprjT5uckNA52jPdl2t70ez7MD+kagnHWvmf/gnD/wUe+Hf 7efgGaS3s10bxho0aDX9AeTOM9J4T1aInjnlTwexP0wCGGaxa5dGAA56UEgdTX4p/tTf8Fjv28fh h+0p46+HXg/4k6fb6Vofiq+stPhfQoHZIY5mVAWK5JwOpr1L/glP/wAFP/2wv2pP2ytH+EPxi8dW WoaHeaTfzz20OjwwsXigZ0O5QDwRVezkB+rQOelFIuQvIpakAooooAKKKKAAkDrRXg//AAUn+NXx C/Z2/Y08YfGD4W6nHZ65pMNu1lcTW6yqpe4jQ/K3B+VjX5Hj/guR/wAFFAP+Sp6Z0/6F23/+Jqow lLYD96KbK4jjLlgoXkk9q+UP+CPH7UHxk/a6/ZY1L4ofG7XbfUdYt/Gl3p8U9vZpAogjtrV1XamB kNK/Pv7V9T64M6Lef9esn/oJpWs7AcuP2hPgTnDfGzwkP97xFbf/ABdanhj4nfDzxvdSWfgrx9ou sTQoHmh0zVIrhkXONxCMSBnua/l9vAftcxz/AMtW/nX6Of8ABt2D/wAL8+IH/Yqw/wDpQKuVO0bg fsJnPSiiiswCiiigAooooAKyfFfjnwd4Gtkv/Gni3TdIt5ZPLhm1O+jt0d8Z2guRk4BOOta1fnP/ AMHIQA/Zl8B4/wCh7/8AbK4qormdgPudv2hfgOoz/wALs8I/+FHbf/F10+jazpev6dDq+i6nb3lr cJvt7q0mWSOVf7yspII9wa/ljIOOtf0Yf8EyBj9gP4Uc/wDMn239aqUOUD3aiiiswP5h6D1ooPWv 7EP5TPof/gk7/wApBPht/wBhK6/9I56/fBPu1+B//BJ3/lIJ8Nv+wldf+kc9fvgn3a/A/FD/AJH1 P/AvzZ+1eHP/ACKan+L9EfOP/BW3/lHz8RP+vC2/9K4a/Bav3p/4K2/8o+fiJ/14W3/pXDX4LV9d 4Wf8iet/18/RHzXiP/yNqX+D9WFNfpTqa/Sv04/Oj9nv+CCf/Jktx/2ON5/6Lhr7cr4j/wCCCf8A yZLcf9jjef8AouGvtyv5Z4o/5KLFf45fmf0hwz/yIcP/AIUFFFFeCe4FFFFAH5cf8HLf/IB+EP8A 1+61/wCgWdflFX6u/wDBy3/yAfhD/wBfutf+gWdflF1rop/w0B9Hfsw/8EsP2tP2uvhinxd+Dmj6 HNo0l9NaK+oa0sEnmRkBvlIPHIr0R/8Aggf/AMFCkGf+Ec8K/wDhTJ/8TX3v/wAEBVX/AIYBteP+ Zs1I/wDjyV9tkA9RUyqS5gP5w/2lv+Ce37Xf7JdqNY+M3wivLXSWcKuuafIl3Z5PADSxEiMk9A+0 ntXi5B6E1/UZ458E+FviN4U1DwL420S31HSdWtHtr+xuow0c0bjBBB/yK/nH/bZ/Z4uv2Wf2pPGH wQkD/ZtI1Mtpkjnl7OUCWBj6/u3X8RVU582gEX7Gn7SviP8AZG/aM8OfG3QLibydPvFj1i1iYj7V YuQJoj65Xp/tBT2r+kXwt4h0nxb4csfFOg3S3FjqVnHdWc6HKyRyKGVh9QRX8tL9M1/Qh/wSM+Jz /FT/AIJ8fDvVbq58y60zTZNJuiWzhraZ4kz7+WIz+NTVXUD8/f2nv+CJ37c/xW/aN8b/ABK8I6D4 bfS9e8UX1/p7XHiBEcwyzM6ll2/KcEcV6d/wS3/4JRftd/smftgaP8Zvi/o2gw6HZ6XfW80lhraz yb5YGRMIF5GTz6V4/wDtTf8ABZH9vD4X/tJeOvh14P8AiNpsGl6H4qvrHT4ZNBgdkhjmZUBYrliA BzXqH/BKn/gqJ+2F+1J+2Ro3wh+MfjixvtDvNKv55re30eGFi8UBdDuUZ6iiXPygfq0DkZoppbbH 1r4q/bx/4LTfBX9kTXrz4XeA9F/4TbxnaLturS3uxFZ2EmPuzSgNlh3jUZHQlTWSTewH2vRX4Y+L f+C+v7fviS/kudG1XwvocLNlLXT9BDBB6bpndj+dY/8Aw/L/AOCimP8AkqOlf+E7bf8AxNX7KQH7 zUV+DI/4Ll/8FFf+ioaX/wCE7bf/ABNdJ8HP+C1X/BQDxd8YPCnhHXfiVpsljqviWxs7yNfD8ALR S3CI4BC8fKx5o9nID9UP+CjHwL8f/tMfsfeLvgt8Lra1l1zWYbdbGO8uRDGdlxG5y5HHyqa/J8f8 EDv+ChXQ+HPCv/hTJ/8AE1+rX/BSP42/EL9nT9jbxh8YfhZqcdnrmkQ27WNzNbrKqF7iNDlW4Pys a/JD/h+X/wAFFQcf8LR0r/wnbf8A+Jp0+e2gH6f/APBIn9lH4v8A7Gv7MGo/Cj412Wnw6tc+MrrU o006+FwnkSW9rGvzADndE/Hpj1r6d1tx/Yt4R/z6yf8AoJr5Y/4I+ftS/GP9rn9lXUvin8b9cg1D WLbxnd6fHcW9kkCiCO2tXVdqDBO6V+ff2r84vir/AMFq/wBv/RPiD4k8Kab8SdMWzs9ZvLSCNtBt yREszoozt6hQKSjKUgPi67/4+pP+ujfzr9Hf+DbsgfHv4gEn/mVIf/SgV+bxdpHaRjyzZNenfsu/ tjfHf9jnxJqXir4FeIrbT7zVrRbW8kubFJw0YbcBhwcc962lG8bAf0rfSgHNfgyv/Bcv/gokXVW+ KGl7SwB/4p23/wDia/Zn9pX4j+Kvhx+yn4u+KXhS8SHWNJ8IXF/ZTyQhlWZYd4O08EZ7GudxlED0 2ivwZ/4fmf8ABRX/AKKhpf8A4Ttt/wDE0f8AD8z/AIKK/wDRUNL/APCdtv8ACq9nID95qK/Bj/h+ b/wUUBBPxP0rr/0Ltt/hXqv7O/8AwcQ/tC+GPEdvZftG+BtF8TaHI224utHtTZ30P+2vzGOTHdSq k9mFHs5AfslX5z/8HIf/ACbN4D/7Hr/2yuK+5vgL8dvht+0h8L9L+L/wo8RR6lourQ74ZFOGicHD RSL1R1PBU8j8q+Gf+DkP/k2bwH/2PX/tlcVMfiA/HM9K/ov/AOCZP/Jgfwo/7E+2/rX86B6V/Rf/ AMEyf+TA/hR/2J9t/Wtq3woD3WiiiucD+Yeg9aKD1r+xD+Uz6H/4JO/8pBPht/2Err/0jnr98E+7 X4H/APBJ3/lIJ8Nv+wldf+kc9fvgn3a/A/FD/kfU/wDAvzZ+1eHP/Ipqf4v0R84/8Fbf+UfPxE/6 8Lb/ANK4a/Bav3p/4K2/8o+fiJ/14W3/AKVw1+C1fXeFn/Inrf8AXz9EfNeI/wDyNqX+D9WFNfpT qa/Sv04/Oj9nv+CCf/Jktx/2ON5/6Lhr7cr4j/4IJ/8AJktx/wBjjef+i4a+3K/lnij/AJKLFf45 fmf0hwz/AMiHD/4UFFFFeCe4FFFFAH5cf8HLf/IB+EP/AF+61/6BZ1+UVfq7/wAHLf8AyAfhD/1+ 61/6BZ1+UVdFP+GgP3K/4IC/8mAWv/Y2aj/6ElfbVfEv/BAX/kwC1/7GzUf/AEJK+2qxl8Q5bhX4 n/8ABw74btdL/bV0fX7eIK2qeB7Vp8D7zRzzpuPvt2j6KK/bCvxW/wCDiTW7a+/bM0DRYn3SWHgW 3Mw/ul7icgfkM/jVU/iEfAg+90r9sf8Ag3o1We9/Yk1LS3fK2fja8CfN03RQtj86/E4HBzX7W/8A BvDps9n+xRq2osPluvG92U99sMIrSp8IH5Tftz/8nmfFD/setU/9KXr3L/gg/wD8pGfDv/YA1X/0 lavDf25/+TzPih/2PWqf+lL17n/wQe/5SMeHc/8AQA1X/wBJWofw/ID9O/8AgrX+1/e/sgfsl6l4 h8K3Bj8TeJLhdI8OyK2DBJIrGSf/AIBGGI/2yn1H8/8Ad3d5e3UmoajcyTzTSF5ppnLO7E5LEnkk nqf/ANdfp1/wcm+OLiXxz8M/hok7eTb6Te6lJH2LSSLGCfoIz+Z9a/MNs4xRTVo3A7b4Gfs5/HH9 pTxK3hD4H/DXU/EV5Goa4FjDmOBT0aSQ4RB/vEfoa93X/gid/wAFIXXePgNH+PiSw/8Aj1frb/wS 4/Zv8Ofs4/sZ+D9D0/S4YtT1rSodX126WMeZcXNwgk+ZupCqVUA9AtfROAEwKmVWXQD+Zb9ob9m3 4xfsr+PF+Gnxw8LLo+tNZx3a2q3kU/7lyQrbomZex4zmq/7ORz+0R4DP/U56X/6VxV9Z/wDBwQoH 7dcJ/wCpNsf/AEOWvkz9nHj9ofwHj/oc9L/9K4q0Um4gfuh/wWZ/5RyfEP8A697T/wBK4q/n97D6 V/QF/wAFmf8AlHJ8Q/8Ar3tP/SuKv5/e34VNH4QP2y/4N4QW/YT1pR3+JGof+kdjXyD8UP8AghF+ 3Pr/AI78ReL7AeEPsd9q95eQ79fIby3ldxkeXwcH86+v/wDg3d/5MX1n/spOof8ApHY19y62oGjX XH/LvJ/6Caz5nGbsB/LOyNG7I3VWxXr37IP7EXxr/bd8U6t4Q+Co0n7Xo1it3ef2tfGBfLZ9g2na 2TmvJbvi6kH/AE0b+dfo5/wbdru+PfxBz/0KkH/pQK2lK0bgefp/wb9/t87ldk8G4DA/8jEf/jVf r5+0Z8MfE3xP/Ze8WfCLwz9n/tbWfCc+nWfnzbY/OeHYNzYOBnvivSO2KjuJ4rZDNMyqirl3ZgAB 65rnlKUgPw/H/Bv1+31j7vgz/wAKI/8Axqj/AIh+v2+v7ng3/wAKI/8AxqvvD9oz/gur+xv8CfEl 54M8OPqnjbUrCZorlvD0aC0SRTgr9odgGweMoGHvXkn/ABEofCYk7P2YPEJHY/2/B/8AG605qnQD 5K+JX/BDX9vr4b+E7zxg/hHRNaisYWmns9D1kTXBQDJKoyqXOB0XJPYGvj+eOW3ke2niZJEYrIjD BUjqD6V+uT/8HJfwmY/N+y/4g5/6j0H/AMar8t/jv488O/FH41eLPiR4T8OvpOm694gu9Qs9LkkD G1jmlaQRZAAON2OAOlVGU+qA+7f+DeP9o/WvC/xy139mfU7xm0nxJpkmpafEzcQ3kG3dtHbfETnH XyxXuv8Awcg8fsy+Ax/1Pf8A7Z3FfD//AARSmlh/4KOeBTG5G6PUFb6fY5a+4P8Ag5CGP2ZfAY/6 nr/2yuKmStUuB+OZ6V/Rf/wTJ/5MD+FH/Yn239a/nQPSv6L/APgmT/yYH8KP+xPtv61Vb4UB7rRR RXOB/MPQetFB61/Yh/KZ9D/8Enf+Ugnw2/7CV1/6Rz1++Cfdr8D/APgk7/ykE+G3/YSuv/SOev3w T7tfgfih/wAj6n/gX5s/avDn/kU1P8X6I+cf+Ctv/KPn4if9eFt/6Vw1+C1fvT/wVt/5R8/ET/rw tv8A0rhr8Fs19d4Wf8iet/18/RHzXiP/AMjal/g/VhTX6U6mueOlfpx+dH7Pf8EE/wDkyW4/7HG8 /wDRcNfblfEP/BBKQH9iS4YD/mcrz/0XDX26HBGa/lnij/kosV/jZ/R/DP8AyIcP/hQtFAORnFFe Ce6FFFFAH5cf8HLf/IB+EP8A1+61/wCgWdflFX6u/wDBy3/yAfhD/wBfutf+gWdflFXRT+BAfuV/ wQEI/wCGALXn/mbNR/8AQkr7aJA6mvwU/Yy/4LBfGr9in4MR/BTwL8NvDeqWMepT3outUafzd0pG V+RgMDHpXrDf8HHf7TrDA+CngvP+9df/ABys3TlzAfsPrWr6foOm3Gt6tfR29paQNNc3E0gVIo1B LMxPAAAzX85//BQj9oyP9qn9r3xl8Y7CfzNNur8Wuit2NnAoiiI/3lTd9W967f8Aa1/4K4ftdftd +F5vAHinXrHw/wCHbni80bw7btCt0v8AdldmZ3X/AGchfavmDOBzWlOPLqwA9M5r+gL/AII3fDNv hp/wTz8BW9zbGO41q3uNXuAVxnz53aM/9+hFX4b/ALM3wG8UftN/HXw38EfCSN9p13Uo4Zp1XP2a DOZZj7IgZvw96/pU8BeD9G+HvgjR/Anh23EVho2mw2VnGP4Y4kCKPyFTWlsgP5xf25/+TzPih/2P Wqf+lL17p/wQe/5SL+Hf+wDqv/pK1eF/tz/8nmfFD/setU/9KXr3T/gg9/ykX8O/9gHVf/SVqp/D 8gPVf+DkTS7mH9of4f6yUPkzeD5YlbtuW6ckfky1+cQbYyvj7rZr9jP+Din4G6p4x/Z+8LfHDRdO eb/hEdae21Ro1yYrW6VQHb/ZEqRrn1kFfjkWyNmKKesUB/TL+yp4q0nxr+zR4B8U6JcpJa3vg/Tn jZOn/HsgI/AgivQO1fi//wAEvv8Agsxpn7Kfw+g/Z/8A2hfDmoal4XspnbQ9a0sCS4sFY7jC8TEb 4wckFTlc4wRjH2gP+C9n/BPLZz4s8TdP+hZl/wAaxlGVwPhH/g4LGP264QP+hNsf/Qpa+S/2cf8A k4fwH/2Oel/+lcVe2/8ABWn9qn4R/tf/ALUcfxV+C+oXlxpC+HbazMl9ZNA/mozlhtPb5hzXiX7O P/Jw/gP/ALHPS/8A0rirePwgfuh/wWZ/5RyfEP8A697T/wBK4q/n97fhX9AX/BZn/lHJ8Q/+ve0/ 9K4q/n97fhSpfCwP2z/4N3f+TF9Z/wCyk6h/6R2Nfc+t4/sa7z/z7Sf+gmvhj/g3d/5MX1n/ALKT qH/pHY191anA91p1xbRj5pIWVfqQRWMvjA/lmu/+PqT/AK6N/Ov0c/4Nuz/xf34gf9ipB/6Uivzl 1CCa21C4t542V45nV1bqGDEEV9Sf8Eiv23vAX7Ev7RV94h+Kltdf8I74i0n+z769s4vMezYSCRJS nVlyCDjkZyAcYreS90D9+q+I/wDgu5+094n/AGf/ANky18HeBtWex1Xx5qjaY11C22SOzRN8+09i 2UTPo57mu+g/4LHf8E6Z0Vl/aJs1LAfK2m3QP0/1dfK//BypbXeoeDPg94gs9zWK32sRySfw75I7 Jk/NY3P4VhFe8rgflB1+duT1zXd+Af2Xf2l/iroS+KPhn+z5428QaazFE1HRfC91cwOwOCBJHGVJ B6gGuFI445r9wv2Uf+Cv37AGj/s8+D/DOv8AxNXwvfaT4etLG80e60qYeRLFEqNtMaFSpIJBB5z2 NdEpSjsB+SY/YS/baH3v2RPiX/4Q99/8arzPxH4a8Q+DtfvPCvi3QbzS9U0+4aC/07ULdoZreRT8 yOjAMrA9QRkV+/w/4LE/8E6f+jjLL/wW3X/xuvxG/ba8feFPil+1z8RfiL4F1Vb7R9a8W3l3pl4q MomheQlXAYAjI9RUxlKW6A9b/wCCK3/KRrwJ/u3/AP6Ry19xf8HIf/Js3gP/ALHr/wBsrivh3/gi t/yka8Cf7t//AOkctfcX/ByH/wAmzeA/+x6/9srilL+IgPxzPSv6L/8AgmT/AMmB/Cj/ALE+2/rX 86B6V/Rf/wAEyf8AkwP4Uf8AYn239adX4UB7rRRRXOB/MPQetFI2euK/sQ/lM+h/+CTpP/DwX4bD /qJXX/pFPX74p92vwO/4JPnP/BQj4bH/AKiV1/6RT1+925duM1+B+KH/ACPqf+Bfmz9q8Of+RTU/ xP8AJHzn/wAFbv8AlHx8Rf8AsH23/pXDX4Lmv6LP2tfgCv7UH7PniL4Gv4kbSRr1vHF/aCw+b5Oy VJM7cjP3Mde9fntrf/Buv42SMnw3+0lpszfwi80WSMf+Ou1ehwBxLk+TZfUo4upyyc7rRvSyXRHD xxkObZpmFOrhafMlGz1Xdvqz83Ac9Ka+AwOK+4vGf/BAv9sTQI2m8K+J/COtqq52R6hLBI30Dx4/ UV4z43/4Jd/t5+AjI+rfs461dRx5zNpLRXikDv8AuXY/oDX6dh+KOH8Tb2eJh83b8z87r8O55h0/ aUJL0Tf5XPpb/gkL/wAFL/gH+zb8NZf2e/jU17pH2rXJr218QiHzLQeYqLskC/MmNv3sEc84r9TP Anj/AMF/Enw/B4q8A+KbHWNNuF3Q3un3Cyxv+Kmv5uvF/wAM/iF8P7trDxz4E1jR7hfvRapp0kLL +DgV0/wD/at/aA/Zm11dc+CfxMv9HbzQ89irCS1uMdpIXBRh26Z9CK+M4g4BwucVZ4zAVUpyd2m7 xb8n0v8AcfW5HxvisppxwuMpXhHRNaSS9Ha9j+jlN235qWvz2/ZC/wCC7fwv+I8tv4P/AGntGj8I 6m6hRr1lvfTpX/2wcvDn33KO5Ffevhrxb4b8Z6Hb+JfCevWmpafeRiS1vrGdZIpVI+8rKSCK/IM0 ybMsnrezxdNx7Po/R7H6nlucZdm1HnwtRS8uq9UalFRhwxzTh9zivLPU3Py6/wCDlv8A5APwh/6/ da/9As6/KKv6bPi9+zh8D/2gksIfjb8LtI8TJpbSHT11a1EotzJt3lc9N21c/wC6K4n/AIdtfsH/ APRq3g3/AMFK1pCooxsB/OTRjNf0bf8ADtr9g/8A6NW8G/8AgpWj/h21+wf/ANGreDf/AAUrV+1i B/OQSR0rsPgx+z78av2h/E0fg/4M/DnVPEF87hWWxtiY4s93kOFQepYgV/QbYf8ABO39hzTLgXFl +yv4LVlOVZtFjb9GBr1Dwf4C8F/D7TF0TwN4R03R7NPu2ul2KQRj/gKACk6vYD5T/wCCV3/BMDQv 2G/Cs/jfx9NZ6t8QdatVS+vIFDR6ZCeTbQsevON78bioxwBn7EA2jAowPSg7u1Yybk7gfzX/ALc/ /J5nxQ/7HrVP/Sl69z/4IP8A/KRfw7/2AdV/9JWr9evEf7AH7GHjLxDeeK/Ff7NXhO+1LUbp7i+v rjS1aSeVzuZ2PcknJNafw0/Yv/ZY+DPi6Hx38KPgR4d0HWIInjh1LTdPWOVEcbWUEdiODWjnpYDs viT8OPCPxY8Bat8NvHWlJfaTrVjJa39tIOHjcYP0I6g9iAa/CL9vn/glN8ev2PfF+oa14c8OX/iX wE0hk03xFY25la3jJOI7lV5jdem7G1uoPUD9+QcJ8w+tNnht7uBraeFZEkUq0brkMPQj0qYy5QP5 XtpP3qXHGK/pO8X/ALD/AOyH491CTVfF/wCzb4NvbqVt0lxJoMIdz6kqASaxj/wTe/YOC/8AJqvg 3p/0CVrT20ewH85QGDkV2X7OP/Jw/gP/ALHPS/8A0rir3T/gsP4V+CHw9/bX1T4ffATwzpOkaXo2 j2kF9Y6NGqwpdlS8gOP4gGUH0PHY14/+yD4bvPGX7WXw08M6fEWlvPHekphRnC/a4izfgoJ/CtdH G4H7ef8ABZj/AJRzfEIf9O9p/wClcNfz+544r+ob4g/DbwR8WPCd14D+JHhe01rR77aLzTb+LfDM FYMNy98EA15f/wAO2/2D+/7K3g3/AMFK1hGfLGwHz5/wbu/8mL6z/wBlJ1D/ANI7Gvu+TO3Irl/h R8Fvhb8CPDcng74PeAtN8O6TLeNdyWGl24jjaZlVWkIH8RCKM+iiuqqJO7uB/P3/AMFW/wBi7x3+ yt+074i1weGp18H+KNWm1Hw7qkUX7j98xke3yOFdGLDacfLgjivl4LlQ/rX9SHjDwV4S8faLJ4b8 b+F9P1jT5hiax1KzSaJ/qrgivKrz/gnV+w3qM7XN5+yx4LLN126LGv6KAK1jU01A/nHgUecg/wBo fzr+gz/gol+xmf21/wBkA/DjRZo4fEGmww6n4Zml4X7VHFjyieyyKWTPYkHtXTn/AIJufsIqMp+y t4Nz/wBgla9rtreO3iWGONVWNQsaj+EAYxUyqc1gP5efiL8NvH3wj8YXnw/+JnhO+0XWLCVo7qwv 7cxuhB64PUehHBHIzWKBjmv6c/id+z/8E/jRGsPxZ+E/h/xEI/8AVtq2lxTMn0Zhkfga4L/h25+w iTk/sreDfw0lar2yA/nJIB4IpAgByBX9G/8Aw7c/YQ/6NX8Hf+ClaP8Ah23+wf8A9GreDf8AwUrR 7RAfjn/wRW/5SNeBP92//wDSOWvuL/g5D/5Nm8B/9j1/7ZXFfYfw+/Yj/ZO+Efi218e/DL4AeGtF 1iz3C11LT9PWOaLcpVsMOmVJH0NdH8XvgL8IPj5o1r4e+M3w50vxJZWN19ptbXVbYSJFNtK7wD0O 0sPxqXP3rgfzGnpX9F//AATJ/wCTA/hR/wBifbf1qY/8E2v2EO37K3g3/wAFK16z4J8GeGfh54Ws fBPgrQrfS9J023EGn6faR7Y4Ix0VR2AolPmA1qKKKzA/mJEUxOFib/vk1INL1VhldNuCPaFv8K/p mtdI0mzXZaabbwr/AHY4Qv8AKrH2W2xlYF/75r9el4r1ebTCr/wL/wC1PyuPhnHriP8AyX/gn82f wm+I3xL+BHxG0v4tfDuWSx1vRZml0+7ksxII2ZGQ/K4IOVZhyO9fV3g//gvH+3B4cVU8Qab4S15V +81/okkTH8YJEAP4Gv2cNpbsPmgX/vmq114e0O+XF/o9tN/12t1b+Yrycdx1lubTUsZl8ZtaX5ne 3a9j0MHwXmeWrlwuNcV2tpf7z8vPC3/BxN4xhCp45/Zs0+b+/JpeuSR5+iyRt/6FXpnhH/g4S/Z0 1Jo4/F3wh8VaWzH55LcwXCL7/fVv0r7c1X4JfBzXwU134UeG7xW5YXWhwSZ/76Q1zOr/ALF37JGt Bl1D9mnwO27q0fhm2Qn8VQV49TNOEKz1wMo+cZv9dD1qeW8VUdsZGX+KH6o8p8Df8Fkf2BfGyp53 xffR5G4EesaXPFz9QrL+teteDf2vf2W/iHtHg/4+eE75pMBY01yFWOe21mBz7YzXH63/AMEyP2Ed eBF3+zV4djZurWtu0R/8dYVxPiL/AIItfsB68jCH4W3mms3/AC00/Wp1YfTczfyrikuFK3wOrD1U ZL80zsi+KKa95U5+jlH/ADPpjV9A8F+ONJ+xa9pGm6tYzDPl3MCTxsPXDAivDPit/wAErP2GPi6k smrfA6w0y5lB/wBM0CRrOQH1xGdufqprzqw/4IyfD7wA7XHwC/ab+J3gl2bcsWma6DCW/wBpNq7v xNadl+yj/wAFLvhq+fh/+3rYeI4V5W18Z+Fw272LozN+tOj7HCyUsFj+V+anD8romt7TER5cZguZ eTjL87M+f/jR/wAG8tuxmvvgB8cmUdYdO8U2YbHoPOhA/wDRdeJeFPCf/BUz/glz4gbVtJ8Kapce G7ebzLy3t86hpNymeSyoSYsj+LCEetfoXY/F7/gpX8NIVT4lfsw+FfHVvH/rL/wL4m+yzEepguwN xPopFbnhn/goP8M5Ln+yPjN8N/Gnw7u84f8A4Svw7KtqT3xcxb4se7Fa+go8TZ/7F0cXGGKpdU2m /vXvJ+qPDqcP5LKsquFlPD1Fta6X46W+ZxP7FX/BXf4AftSCHwh4vmj8F+LpCqf2VqlyPIu3/wCm EpwDz/C2G9M9a+tkl3rwd1fMXxg/4J//ALCH7bGkT+M9J0bShf3mWXxN4Nuo45PMP8beXlHPruBJ 71xfgbQ/27/2AIl07Wbu4+Nnwzt8JG1r8uvaTEOhCOT56hcfKGJ4/hFfPYzCZTjpOeBbpz6059/7 sv0dj3sJi81waUcalUh0qQ/9uj09UfahcdqcDkZrjfgz8c/hn8ePDCeLfhp4ljvrf7txCymO4tJO 8c0TAPE47qwBrsgc9K+eqU505uM1Zrue/TqQqRUou6YUUUVJYUUUUAFFFFABRRRQBleOrie08E6x dW0rRyR6XcPHIpwVYRsQQfUGv5yLv9uL9saO8mjj/ab8bKqzMAP+Ein6Z/3q/pA8R6U2u+Hr7Q1m 8s3lnLB5m3O3ehXOO+M1+V8v/BtbrNxO8x/aytvmcnH/AAiTcf8AkxWlNxW4HwX/AMNy/tkf9HO+ Nv8Awop//iqbP+29+2FcwtBP+0z42ZXGGX/hIp+f/Hq+9f8AiGl1j/o7G2/8JJv/AJJoP/BtNrAG R+1lbf8AhIt/8k1pzUwPy8v7+/1O+m1PUryW5ubiRpLi4mkLPK5OSzMeSSe5r76/4IJfsf8AiL4n ftB/8NQeINLaPw34LEi6dcSr8t3qLoVVU9fLQlmPYslfQnwT/wCDc/4J+Etfh1v42/GbVvFkEMm9 dL0/T10+GT2dt8jkf7pWv0E+HPw18C/CfwbY/D74ceF7PR9F0uHyrHT7GERxxrnPQdSSSSepJJOS amVRWsgN5elFFFYgDHAzimeZtHzClY4Jr5g/4Ks/tg+If2Qv2am1/wAESCPxF4h1BdM0e6ZQwtWK M7zYPUqiHH+0RXXgcFXzHGQw1H4ptJHLjsZRwGFniKvwxV2fTn2uMPsLLn03U9JQ4yPyr4C/4J0/ sP8Ah7xz8FrX9rz9pbx1r2ueMvFdjJe2ms3WvTxyaVaEkqUdXBDcbic4AOAMZz7P/wAE5P2rbz4+ fAzXNY8aa+t03g/xJeaTJ4juCI01C1iO6K5YnADGMjd7jPeu3HZT9WdX2M+dU2oydrau607q6t+h w4PNvrEabqw5PaJuKbu7LXXtoz6Vkk2rkCuT+Hfx0+FPxY1XXND+HXjmw1e88N6i1jr1taSZeyuA SCjggY5VhkcEqeeDXm3x2/bo+Bngb9n7xn8VfBPxO0XWrjw7pbmKHT75JM3LkxwrweQZMDIyODX5 2/sn/Cn9rmH4deHovgz8UdH8I+KPi5rb+IdT1fUtWWHUL21gm8uOOKM581f3txOQeHBxnsezLeH5 YzBVK9afs7NKPNom7NyvpeyWpy5hn0cLjKdGjH2l027au2yt0u2frR49+Knw/wDhZoqeIfiR4w0/ Q7GS6S3jvNSulhjaVz8qBm4yewrchvYbiFZ4ZFZHUGORTwwPQ1+T/wC234a/as+M37S3gn/gnlrf 7R0fji4uLmDUtSvo/C8dkNPbDkyS7JD5gSHc+Mr1UdTX2zpXhPxdob6X8JPix+29Zx3UKQxw6P4d 0210q6njVlEaZeSWQAjauVIJzweazx2SU8HhaNT2qcppysk/hvaL2vrrvYrB51UxWKqw9k1GDUbt rWXVb20+Z9FrJkZYUGT5ScV4Dc/t0eGPDX7X2s/steOPDf8AYlnpHhdNXTxdqmopFb3AIQsoVgOB uxuDHlSMV03xj+N/hTWP2Zdf+I/ws+NHhqxju9Lmt9D8VXl8psYbxgUjLOuekhA7kHseleXLL8VG UFKLSlaztp7221/8z0o5hhZQk4yTcb3XXTc9XSXf0FO3e1eHfsq3njv4D/spaNqn7XXxr03UtUhi kuNS8RXV8nkLG7lok844EgCEfN3zx0Fdlo37Tv7P3iCfSrbRvjBoFxJrl01tpKR6khN3MoUtGgzy wDLx/tD1qamDrQqSjBcyTauk7O3mXRxlGdOLm1FtJ2bV1c2Piv8AGb4a/A/wt/wm3xX8XWmh6SLi OA316xCCRzhV4B6mug0zUrTVrGLUrC5SaCeNZIZY2DK6sMggjsRX54f8Fbtfvf2nf2lPhd+wF4Kv WkN1q0eq+IlhY/uchlXdj+5D5r/8DFfoR4Z0Sx8M6BZ+HdMi2W9jax29uv8AdRFCgfkK68bl8cHl 9CtKT56l3btG9k/nr8jmweYTxeOr0or3KdlfvK12vloX6KKK8o9QMD0ooooAKPwoooAKMZ6iiigA wPSjA9KKKADA9KCAeCKKKAGhAOg/Oo7qytLqMw3VvHIrcMkihgR+NTUEZ6ijbYLJ7nF2XwD+Euke Lv8AhO/Dngey0jWGb/SNQ0dTaSXI/uzeVtEy+zhgO1dcsI8vB/WpdvuaTbjvTlKc9ZO/qTGnCHwq x5v4x/Z08Map4tf4oeA5m8L+LzCI31zSo1X7YoORHdRfduU/3vmH8LKa6rwlq/ieWH+yvGelx2+o RRjzJLUlre4H99CeRz1RuRn+IfMd/bxgmkMeWzn9KqVWpOPLPWxEaMISvHT8hU+6KWgcDFFQahRR RQAUUUUAFFFFABRgelFFABRRRQAUUUUAFBOOtFB6c0ARTywwq0k7hVVdzMewr8uf+CgfxvuP+CoP xP0/9i/9lX4enWpvDOtveXvi64uvLtY2RGikI4I8obsbzyxxtB4J+6v299b8V6B+xx8StX8EGVdT i8I3n2d4c70BTDsMcghCxz2xXwB/wRw+Hni7x1+yl8WrL4C+O7Lw78RdQ1W2tIdZu4yz2dn5YYMu PmUsTKA3YgHqOPtOGaFLB4Krm8rc9OUYxveycvtStq0l0PjeJK1TF4ynlSXu1IuUrWu0vsq+l2e2 fsC/A/8A4Kj/AAe8a6J8NfjV4o8LN8M9Dsms5tJe4guZHtwrBFi8tQ4OccuQNvBBrM/4KdateeI/ ih8Of+Cc/wACba18O2/jzU0vfFUOjW6W6valyPmCAZGI5JG9fLHWvUL79k3wt+y98GdL+IFj411y 6+JFjdWQk8ST6/dSPrN/LNGjwNE7lXik3MBGV4HIwQTXQ/tK/sN+Ifij+0p4L/a4+EXxGtfD3jHw pbNZv/a2mm7tbq1ZZVwVV0IYCeXHODu7YzRDNMLLOPrlXlStK3LHli5pe7JpN9Xe/wCASy3FQyv6 rT5m7xveV2oNq8U9Omlj5S/bx+CHwi8fftLfCv8AYA/Z98Kw2M1jplsvjLULVmH2fS4XeVIpTnBY AzzFiMlpUJPOBnaH448BfF3/AIKCat8fLK5jt/hL+zj4b+zaTJb/ACW7PbxvHBDF675txAGcqg9Q a+mtG/4JmX+i/tKap8covjZd3Fv4o8Pix8YLcWA+3XspYGYxShtsCSgKpCqSq5VSM5GZ8Pv+CUNl 4Q+E3jb4LX/xJgm0LW9R1C98OwWmlmJrWedCkUty28+eYV+VFAVV5bkkbfQp51lcMLGk6rdoct7O 95v94/W2i8vuPPqZLmU8RKoqaV5X6WtBfu16X1fmfMXwK+NWofCf4afFT/gq18U4lm8W+OdQuNJ+ HOnzHJQs20suf+WcYCL/ALsBHVhnuPhp8PfH/wAGv2XfAPxo8R/C6D4ieNvi58QNP1Xxh/aEMl3q P2ASfaY0t0WRXZ40TzMA7Vb7w2jj2s/8Er9P8W/shL+zv8T/AIgw3OsWOiw6foGraXYGO10wRSiU OkLMSzyyLumckF84G0ACvUf2Z/2XvHPw6tdB1r45fEe38Ua34X0UaR4d/s+xNtZ2NqFClxGWJad1 VQ0hxwNqgDOefH55l06M5U2m+e1tdYRjaEVtZJ6vbXU6cHk+YQqQjUVly3vppJu82+76LfQ+cf8A gpp4svPB/wAAfE3xj8f/AA7t7fxV48az8L+BdI1KKG5u9LtNrvK3y7lSZy0jHYTt/dgkla+ffjB4 N8aeHvgv8I/+CUPw6Am8SeIryLXfHUiy5W0lmYyLbt2CxoS757xqe9foT+2f+yBrX7TurfD/AMUe GvGVlpGo+BPEh1KBdU003dtOrBQQ0QZdzqURlycdQetcRc/8E0Y7X9pe2+OXhr4pTWtvdeGZdL8S edal9Qu5ZZA81xFPuAhkkGULBTsViExwVWV53l+FwNOM370eadtWlJLlgvRK703e4sxybHYjGTlB aPljfS/K3eb9W9PJbHzufs/7d/7ePhn9kjS7iS6+E/wZ02MalbNMfK1aW2VIyzgH5laQhB1yiseN 2Bi+Lbf4XfGv/gqBda94H0uz0H4c/BuRtb8X6xDuW3kvIFUSSdSAS0UUSqoGRCSB1r6h0r/gnBrn wt/aV8Q/GT9nj4tw+FdF8aaWll4k0n+yvOnt1G3c9nIWCxu23IZ1bazE4PAGD4L/AOCSWl+FPD/x K+HEvxUk/wCEV8bXUt1Y2NvZn7TFMYysX2iYsTPHEzF1QbdzHLE9K6IZ1ldN3hUaXs1GKs95P95J 6WctXbp5mMsnzOpG0qd3zuUndaqK9xLrbRXPKP8AgnjLqXjX4q+Nv+Cg3ivw59q8RfELxQ2hfDjT 7zJYwlh5soxkhI4YwrOOiwuO/P6TW+duW698V4d+xx+yHdfs2+B9E0Lxl4xt/EGqaDo50zS57Ww+ z29lbGTzHEaEsfMkbDPITlsAYAGK9ziGK+UzzHUsfmEp0/hWkf8ACtEvkvxbPp8jwVTBYFRqK0nq /V6u/wA9vKw6iiivHPZCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigCvfWFlqNrNY39rHNDNGY5YpF3K6kYIIPUEV+TP7dHg4f8Evv jXD8XP2OvEuqeHbjXpmTUNHmmSfT2Q5bYIimdoPQFjt7Yoor7bgf95j50Z6wlF3T1T9Vs/mfG8Zf u8LTqx0kpKzW69Huj7W/YxtdQ/aE8N6L+0H8ZvEN7r2tWsW7S7W58tLLTpGXDSwwxoo8wgkeY+5g CQCAa+lIlVo8kUUV8/nkY08znCKslslsvRdD3snblgYzlq3u+r9WP2L/AHaTy0/u0UV5CPUDy0DD C0BV447UUUuwC7VznFII0HRaKKYA6KB92kCqzciiigGOCKOi0oAHQUUUwCiiigD/2Q== ------=_NextPart_01D5E037.E5F59E00 Content-Location: file:///C:/6A8530EF/12EnfoquedeaprendizajebasadoentareaseneldesarrollodelahabilidaddelhablaCorregido_archivos/image010.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCAGhAh0DASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAoorx7xl/wUN/YD+HPiu/8CfEP9uH4QaBrmlXLW2q aNrfxK0q0u7OZfvRywyzq8bjurAEUAew0V4Uf+Cof/BNAf8AOQ/4Gf8Ah2tG/wDkmt/4aft3fsQf Gjxhb/D34Oftj/Cvxbr94rtaaF4Z+IWm395OEUsxSGCdnYBQScDgAk0AerUUAg9KKACiiigAoooo AKKKKACiiigAoopryIgJY4wMmgB1FRx3VtNzFOjDOMqwNPBB6Uk09g6i0UUUwCiiigAooooAKKKK ACiivIfHX/BQX9gr4X+Lr/wB8S/22/hF4d17S5vJ1PRNc+JGl2l3ZyYB2Swyzq8bYIOGAPIoA9eo rwv/AIeh/wDBM/8A6SIfAz/w7Wjf/JNbPw8/b7/YT+LvjKx+HXwn/bT+E3ijxDqbsmm6F4d+I2mX t5dsqM7COGGdnchFZjtBwFJ6CgD1uikVgwyKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr4Z+O3/BuV/wSg/aS +MfiX48/F74EanqXibxbrE+p65fL4svohNcysWdgiyBVGTwAAAMV9zUUAfy4/wDB0l/wSs/Yx/4J oal8Hm/ZF8AX2gp4xi1k63Fd61PeLIbY2nlbfOYlMec+cdcj0ryL/g1gw3/Ban4Zgj/mG610/wCw dPX3R/wfFf8AH/8As6/9cfEv89Pr4X/4NXv+U1Xwy/7Butf+m6egD+upQAPxpaB0/GigAooooAKK KKACiiigAornfAfxe+FvxSvNa0/4b/ELR9dn8Oao+m6/DpWoRztp14n3reYISY5B3VsGuioAbIxR dwx171+ZX/BQj9vT4j+J/iDqXw4+HniKew0XTrmS1SPT5ijXbKQrSSMpyRuBwOmK/TO5QSQNG2cM CDivxW/am+Ffin4PftCa/Z+ILKR1g1CV03g4eNm3I4PcEEGvyrxVx2YYbLaFKjJxhOTUmtL2Xuxv 2er87H6x4TYHLsVmlerXipVIRTinra796ST6rReV2S/Bb9pz4/fCnxLFruneNtRglEgbynuGaKUd SroxIYH0xX6HfsKf8FLvhP8Atk+LPEnwVht30T4g+DIIbjXfDt0c/aLORU8u+tmH34WZgpH3kYhW 6qT+X+m+I/8AhLL0SR2xRI+CeleU/wDBLX4y6x43/wCDjjQpfhFetPp1v4c1DRNfmtiGjntIbOR5 t56bVnEeD/ejXFcPhLLHOhiPaXULqy6J+X6noeL8MBHEYf2SXPZ3el2vP06ep/RhRRRX7Gfi4UUU UAFFFFABRRRQAV8zftM/8Ecf+CZP7XV9rPiH46fsa+C9S17Xpmm1TxTZaWLLVp5iu3zWvLfZK7AY +8xHAyDivpmigD+NT/guv/wS+sP+CVX7ct38EfB+q3uoeDfEGjx6/wCC7rUWDTpZSSSRtBIygBni kidN2ASApI5rV/4Nr+f+C3PwGXpnWdVH/lFv6/QL/g+D8OWMXj79n3xikarcy6Rr9nK4Xl41lsnQ E56As/H+2a/Pz/g2t/5TefAX/sNar/6Zb+gD+xZBgEZ70tIvf60tABRRRQAUUUUAFFeZ/tj/ABWm +B37Lnj34sWt2YLjQvCl7c2kwbBWcREREe+8rj3xX5h/sW/8HD3jrwp9m8Dftk+G38QWW4IPGGjR JFeRDpma3UBJR6lNh9mNceIx+GwtWMKrtfr0+Z9dkXA/EHEuV1sdl1NTVJpON7Sel3yp6OytdXvq rJn7EUVwfwE/aU+B/wC0x4Nj8efA/wCJWm+IdNcDzHs5f3kDEA7JY2w8Tc/dYA13BuIcH94OldcZ RnHmi7o+Wr0K+FrSpVouM4uzTVmn2aeqJKK+MP24f+C1H7M37JYvPB3g28Tx34zhBT+xtIu8W1pJ j/l4uQGVcd0Tc3GDt614d/wSL/4KufG39rb9rzxP8Nv2gfEVsLfXtEN14R0qyt1it7GW3fLwJgbm LxOzFnZifJ9wBxSzHCRxEaKleT002Xqz6/D8AcUV8grZxKjyUaceb3tJSV1dxja9ktbuysnZs/UC iiiu4+LCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig D+fz/g+K/wCP/wDZ1/64+Jf56fXwv/wavf8AKar4Zf8AYN1r/wBN09fdH/B8V/x//s6/9cfEv89P r4X/AODV7/lNV8Mv+wbrX/punoA/rrHT8aKB0/GigAooyD3pCwHU0ALRSb19aXIxmgAryv8AbY/a o8FfsVfsreOv2oPiBPGuneDfD8995TyBTczhdsECk/xSStGg93r1GWaKKMyyyBVUZZmOAB65r+a3 /g6w/wCC0fhb9qLxhF/wT5/Zl8Yx6h4L8Kap9o8e63p8weDWNViJEdtG6EiSGA5JPIaXGP8AVgkA +xP+DNzx94o+K37N3x9+J/jXUPter+IvjM2papc9PMuJrKKSRsdssx47V+yNfil/wZIf8mV/GP8A 7KjB/wCm2Cv2toACAeory79pT9lP4a/tKeFrjSfEtilrqwtXj0vXYYszWjnoSMgSoDjKNwQTjBOa 9RJA60h2g8gflXNi8HhMfh3QxNNTg91JJp/JnThMZi8BiI18NUcJx2cW0180fhr+1B/wRQ/4LeeL NVu/h18K/il8Ih4WvZWi/t3Q7m5025kgbALTLKsrxHBOVhZuhwxr7G/4Ijf8ELPBX/BKzSdW+Jvj zxpa+L/ip4lsxZ6prdjAyWenWhZJGtLXf87BpFVnlYKX2J8q4wf0E+U8cUKVI+XH4UsHgsJl+HVD DQUILZIrG47GZjiHXxM3Ob3bFooorqOQKKMj1pNwPQ0ALRRRQAUUdKQyIOrUALRSb1PO6gMCcA0A fz+f8HxH/H9+zz/1x8Q/zsa/Oz/g2t/5TefAX/sNar/6Zb+v0T/4PiP+P79nn/rj4h/nY1+c3/Bt 5f2+m/8ABbP4C3NyxCnX9RiXAzlpNJvUUf8AfTCgD+xxe/1paRRgf40pIHJNABRSb19aN6+tAC0U Ag9DSPnacUAfEf8AwcAfE9PAn/BPvUvCUdwEn8X6/Y6cq7sFo0lF0+P+/Cg+xr8HMHoxz6n1r9l/ +C5fwm+PP7YfxU+Fv7LH7P3gq61e4tLe/wBZ1ycAraWQkMcFu88p+WPiO4wDy27gGof2Wv8Ag3N+ DPhPT7bxB+1L47v/ABRqgAaTRdCnNrp6HrtMhXzZfTIMY9q+WzHB4rH5g1TWkUld7dz+m/D7i3hn gbgWlLHVf3taU6nJFc07X5VddLqKacmlqfkt8IPjX8WPgJ4wh8e/B34gap4f1eD7l3pt0Yy4yDsc fdkUkDKsCD3Fe/ftE/8ABY79uH9pH4dW3wu8TeP7bRtPW18rVpPDNqbOXVefvTOrEgEcFI9iHJyu Div20+HH/BPX9iH4WWyW/g/9lPwNE0Ywl3e+HYLu4/7/AE6u/wD49XX6p+zP+zjrNkLDVv2fvBF3 AkZRILnwpZyIF9ArR4x7VpTyXGU6bgq1k91rb9Dz8x8YeEcdmNPFVMp9pOHwzk4cy/B/LXR6rU/l 2JYks5+Ynk46++a9D/ZM+N+ofs3/ALSngn422EzBfD3iK2ubxFbHm228LPH/AMCiZ1z/ALVfux8a P+COH/BPz402syXXwCsPDV1KDtvvB2NOeM+qpGPK/NCPavzx/bS/4N+fjh8GNPvPHP7NHiN/HeiW ytJLo9xGI9WhjGT8qqNlxgf3drHjCHtwVsoxuEfPD3rdt/uPu8p8WOC+KKUsDiW6LqJxtUSUWpKz Skm0t/tcp+0vh3xBpvinRLPxFotyk9nf2sdxazoeJI3UMrD2IINXq/n2+DP/AAWa/wCCgf7NOh6f 8MLXxXp97p/h22j0+30jxRoKyPbxwqEWJmXy5RtChcFsjFfQXw9/4OXfjBY+XD8Vf2cPD2oD/lrP oGp3FofwSYy/+hV7dLPcFNLnun6f5XPxbMfBTjPCzk8NGFaPTlmk2umkuXX0bP2Hor8+fg7/AMHE X7LPxL1/TfB/iH4T+OdF1PVb2K1tlt7a3vYTLI4RV3LKr8sQOENfoHbsXTJz1/ir0qGJoYlN05Xs fnmdcO53w7WjSzKhKlKV7XtrbezTaY+iiitzxQooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKAP5/P+D4r/j//AGdf+uPiX+en18L/APBq9/ymq+GX/YN1r/03T190f8Hx X/H/APs6/wDXHxL/AD0+vhf/AINXv+U1Xwy/7Butf+m6egD+usdPxrmPi/8AGT4ZfAP4b6x8XvjH 4z0/w74Z0G0a51fWdTuBHBbRrjlie5JACjJYkAAkgHpx0/Gv5s/+Dw//AIKO+L/H/wC01Yf8E5/B esy2fhjwHaWuqeL7eCTA1LVbqBJ4Elx1WG3kjZR03TsTyowAfRfxA/4OXf23f29f2kJ/2XP+CIn7 JFt4j8rcx8Z+MIGJMIbabtomeOKzgyRhp3LNkDap4r3nw1+zB/wdJeI9CHiLxZ/wUT+Cnh7UZIxI dBtvBQuoo2xnZ5ot+eeM818of8GbP7b37MmieH/Ff7CV74Ni0T4m67qc+v2XiEnd/wAJDaRxIv2X J5R7cB3VM7WV3YfMGz++yLtQL6CgD8H/ANpv/guH/wAF2P8Agjr8U9N8Jf8ABRb9nT4efEPwvqsr DSPFHh1JbGHU0UDcsNzFlYpRuBMc0G7HQY+av0Q/4Jsf8FyP2RP+CnPwo1vxH8F/7RsfG3hjRpb/ AF74a6iq/wBpoqITut8fLcxswCB05DEBgpIzW/4OJP2fPCv7Qn/BID4yaVr2lxS3fhnw7/wkmh3L KN9td2MiThkPGC0ayRnn7srV/Jf+xv8AtWfE39in9pjwf+0z8I9cmstZ8K6zFdqsL4W6gDYmtnHR o5IyyMp4IagD9e/+Cp//AAUr/wCC/v7demap8HvgJ+wN8VfhP8N75XgubbSfDN4+r6rbkMClzdBB 5aMD80cQUdizjOfxR+J/wz+Inwc8fal8NPix4N1Hw/4i0mZY9U0bVrZobm1dkVwro3KkqynB7EV/ d98L/HWj/FL4b+HviZoBBsfEWh2mp2RHeKeFZU/8dcV/Hl/wcOAf8Ppfj+Mf8zhD/wCkNtQB9P8A /BvH/wAFPf2zP2Dv2e/Hngf9mf8A4JjeJ/jtpuueMo7/AFDXNB1i4tk02cWkcYt2EVlcAsVUPksv DdO9ffGof8HJ/wDwVE0qc2t9/wAG9fxHSQAEqPEOot+o0Yisf/gyRO79iv4xbuf+Lowdf+wbBX7W bV9KAPxtvv8Ag5J/4Kiadoj+I7//AIN7/iJFZRx+Y8zeI9QO1fXaNHz+ldf8K/8Ag5E+IvxX+GWj fECP9kjTdDn1KBpLnTLzxVLcNbsHK+WW+zRnIKnOQOvQY5/WKYZTg8g8V+AX7aHjbwf8RP2tPiP4 t8BQxLpc/jG/jgaBQEkaKZopJBj+/Ijv/wACr43jXNcflOX06mEnyycrPRPSzfVM+34FyjLs4zGr SxkOeKhdK7Wt0ujR9h2H/BfL416lBeyeG/2Ml8V3trYyT23h7w3rEzX1+64xFCDE2WJI4x615v8A Fv8A4Oh/2jfgH4Tn8d/Gj/git8WvC+i2237Tq+tai9vbRbmCLukazCrliAMkZJFc3/wSe0UH9qDw 94hdOf7Zht4zj2Zm/wDZa+u/+Dk7SrPU/wDgi78aRdpkW+l2M8eOzpf25Brm4FzvH51hsRLFT5nC fKnZL7MX0S7m/H2SZdkmMw8MJDkU4cz1b+1JdW+x+fL/APB8RpJnKQf8E67kpuwhf4kqCR6kfYTj 86/WT9pr/gqV+yh+xb+yr4e/ao/am8bxeGrLxNoNvf6PoMBNzf6hNLBHKba2iUBpmXzFUvhUXILF Qc1/ErCT5oJbHua/UT/gnD/wTt/bQ/4OMv2jIvjH+0x8S9U074Y+BtO0/RNR8SC2wqW1tAkcWl6b GfkEhRAzvyEMhd9zOA33Z8CfQP7UX/B6p+0H4g8Q3Olfsefss+GtA0dJCLbVPGtzNf304zw/lQNF FF/ukyfWvH/DP/B4/wD8FUND1yK+8R+Dvhhq9rG377T5vDc0Ik55G+O4DDj0r+hL9lP/AIJb/sE/ sZeBbXwD8Bv2XPCemwwQhJ9SvtLS9v7tsDc81zOHkckjJy2OwAAArwf/AIKpf8G+/wCw5/wUG+Eu rP4U+Emg+AviXb2ckvhvxn4Z0xbQm4AJWK6ih2x3ETtgMWBdc7lYHIIBxX/BIX/g5d/Zc/4KWeIb H4FfEbw0fhn8UruMDT9Bvb7z7DWnCsWWzuSq/vAFz5UgVjnCl8Gv0uRtwzjFfwTavp/j34IfFO60 Wa5utF8SeE9dkgeS1mKS2V7bTFSVdTkMrpwR6V/ZD/wSA/b+tv21f+CXngf9r74l61bW2o2+h3Nv 45vHIRIbvT2eK5ncDhQyxefjHSQYoA9m/bF/bL/Z9/YR+BWr/tEftKeOYdC8OaSoXeyl57y4ZSY7 a3jHMsz7SFUehJIUEj8Bf2tf+DxL9tP4xePH8DfsGfArR/COmXF19m0i51ixbV9Zv2Y7VxEpEUbN xiMLIQf4jXxX/wAFxf8Agrf8Q/8Agqn+1bf+Io9TubX4beFLyex+Hfh/ftRbYOR9tlUcNPOAGYnJ VdqA4XJ/Uv8A4M7/APgmp8NIfg9q/wDwUl+JHh221PxTqOt3GjeBJLmLcNJtYVC3NxGDwJZXcpux lVjOD85oA8V8N/tIf8HmPiDSk+LOm+DPHT6Uief/AGZd+BNEhMideLd4VuCMdhzXqX7B/wDwdufG T4f/ABot/wBnH/grf8B4/Dci3iWWoeMdK0mewutJlZgu+90+TJMYzuZ4tpVeQj5r97UACgAYx0zX yD/wWA/4JFfAP/gqf+znqvg7xR4asNP+IWm6fLL4D8bR24W5sL1UcxRSuuGltXY7XiYkYbcMMoIA Pyn/AOD1Pxn4V+I2gfsz+PfAviC01bRdZ0vXL3StUsJxLBd28gsGSSN14ZWUggjsa/Or/g3f/wCU 0nwA/wCxvm/9IbmvD/2jPiN+0r4a8NWH7DXx/wBRuli+DfibWLPTtF1AbpdHuZZI0u7ZWPPl+Zb7 gvQFmI+9XuH/AAbv/wDKaT4Af9jfN/6Q3NAH9llfMf8AwUl/4K1/sb/8EuPh/F4q/aS8cOdZ1GJ3 8O+DdGQT6nqhGRlI8gRxbhgyyFUB4yT8p3P+CnH7fHw+/wCCbH7HHiz9qbx6i3UulWvkeHdHMm1t U1OUFbe2B7Atyx7IjHtX8immeI/2kP8AgsX/AMFHvD9j8WPHV1qvjL4s+N7TTp9Ql+aPT7eafBWK MEBIYIi5WNcAKh7mgD9fPBf/AAc4f8Fav+Cg3xNu/h5/wTC/4JwaPe29u+GuNUkn1GW3Q52vcXAe 2tbbIB+VifZjXrHiP9sD/g7f/Z/0H/haPxL/AGEPhj4y0e1h83UtD8PXFtc3cSDO4COzvjKxwP8A lmJB7Gv1I/ZB/ZG+BX7EXwH0T9nf9nzwTa6LoGiWyRgRRjzrybYA9zO/WWZyMs7ZJ+mK9NkQOpXH XrQB+XX/AATZ/wCDpT9kX9sXx9afs/ftIeDrz4L/ABHurv7Fb6fr12ZdNurwME+zrclEMEpYkBJk QZG3cWwD9bf8FIf2yf2jP2Ovhjonjf8AZs/Yf8R/HS+1LVmtdT0XwzqBgk06ARlhcMRDLuUthcYH Jr8zf+DuT/glF8Mdd+BLf8FL/g34Pi0zxj4e1O2tviCbKPYmq6dKTEl3Io48+KUxKXxlkc5J2LXM /wDBr1/wXu8VfEDXtI/4Jr/tk+MZtRv3gMPwt8YajNullWNP+QVcORl22qTFIxydvlkk7KAO+/aA /wCDpv8Aah/ZRt7XXP2kP+CK/jTwRDqc/wBns73xF4se2S5kVd/lrI+n4YhSTtz3Nef+H/8Ag9sl 8T65ZeGPD/8AwTZu7u/1C6jtrK2h+JKlppZGCoi/6D1LEAfWv1W/4K1f8E+/Cf8AwUu/Yf8AF37M utrBDq9zbC/8IanKP+PDVoPmt5M9lY5if/Ylbviv4ufiJ8PfH/wX+Jer/Df4gaDeaN4i8N6tNZap Y3CGOW1uYZCrqfQhl6j6igD+rH9n7/gtJ/wUj+MHxt8KfDHxp/wQv+JXhLRdd121s9X8VX+vu8Gk W0kqrJdupslDLGpLkbhkL1FfpSrbk3AfhX59f8G5P/BUKx/4KOfsIaZpXjvxBHP8SvhrFBoPjOKZ x516iRKLbUccZEyDDH/nrFJ6jP6BzTQQwNLNKqxqpLMzYAHuaAPyV+MX/Bw//wAFFv2fPh5qHxa+ Nv8AwQc+IHhnwzpMXmanrmreM/LtrZSQAXf7DgZJAHuQK5L4A/8AB0P+2F+1f4Zu/G37N/8AwRP8 c+NdIsbz7Jd6j4f8XPcQxT7QxjLrp+N21lOPcV4N/wAFMv2qPjV/wcU/8FC9H/4JY/sKeIJI/g14 R1X7V428Z2wL2l68JAm1CQjG63hO6KBM4llbfyCpX9x/2QP2T/gz+xJ+zt4Z/Zo+A/hmPTPDvhqw WCEYzJdy9ZbmZv45ZXy7N6tgYAAAB+cfxD/Y8+JX/BXf9mnWv2sfEn7EWrfs+fGTStYntbXwrrl3 vPie0jijdZJWMUIV2Z3RJCucxYYkEFfyw1rRNX8N6xdeH9f02ezvrK4eC8tbmMpJDIhKsjA8gggg g+lf1aSoCuNmeeRivx6/4OFv2HrHwN4u079sr4e6MIbLxDcCx8ZxwphUvQo8i5/7aKrK3T5o1JyW r5vOsvhyPEU1qt/8z+hvBvj/ABMMZHIcfPmhL+E3vFpX5L/ytfD2ei0at8w/8EfPg4fjP/wUI+H+ mT2nnWmg6g2vXi44AtAZUz/21Edf0R24Ij5HU561+Rn/AAbQ/CBLrxj8Rvj1fwDFlp1todhI3Yyv 5836RQ8+5r9dhgj5cfhXXkVL2eC5n9pt/ofL+Nma/X+M3h09KEIx+b99/wDpSXyCiiivZPyEKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+fz/g+K/4/wD9nX/rj4l/ np9fC/8Awavf8pqvhl/2Dda/9N09fdH/AAfFf8f/AOzr/wBcfEv89Pr4h/4NS9MbU/8AgtT8Owsu wwaFrs3TO7bps3FAH9cI6fjX86P/AAdA/wDBEn9sv4p/tw6n+3F+yr8DNe+IOheN9LsV8Rad4SsH vr/T7+0tYrTJtYgZHjeGGEhkVsMH3Y4z/RavSsP4kfEX4ffCDwNqnxM+J/i/TdA0DRrR7rVdY1a6 WG3tYVGWd3YgAf570AfgN/wa8/8ABEL9sP4J/tej9t39rn4Pav4A0rwvot1b+GNE8SW5ttQ1C9uE 8oyG3Yb44o4jJy4UszLgEAkf0KryAfavxE/bq/4PLfgV8ONZvvAf7BPwMufiBfQSNCnivxYz2WmS ScgNDBGfPnTOMbjCTzjjBPz34V/4LWf8HTX7Wdr/AMJL+z5+ytdWukXg3Wlz4e+D0os3U8jyri+M gcYxyHP1oA/ab/gs7qFrpf8AwSi/aCvb2TbEnwr1fcwGetuwH6mv4nl4YfWv2a/bo+OP/B03r37D 3xGX9tT4byaZ8KbzQlg8a3F/oOk280Vo80a/L5TeYMuUU7RnDEV+Mp+/x69qAP7if+CY97dal/wT c/Z81K9l3zXHwR8JyzORyzto9qSfzNfyi/8ABw7/AMppfj//ANjhD/6Q21f1bf8ABLn/AJRnfs6/ 9kL8I/8ApltK/lJ/4OHf+U0vx/8A+xwh/wDSG2oA/X//AIMj/wDkyv4x/wDZUYP/AE2wV+1tfil/ wZH/APJlfxj/AOyowf8Aptgr9raAPM/2zvjxpn7L/wCyZ8R/2hdWkQR+DvBmo6pGsjYEk0Vu7RR5 /wBqQIv1av5uP2Rtf1bxX+zn4X8Ua/ePcX2pWkt1e3Ehy0ksk8jux9yxJ/Gv1I/4O5v2nv8AhR// AASquPhRpWp+VqnxS8WWWioivtY2UJN3ct7j9zFGR6TV+WH7CdlNq37M3gHTLYnfcaesS/VpnFfn niO0sppN/wA//tsj9J8MU3nFZLrD/wBuifo9/wAE09Kj8O/Ff4emcbXu9dSZwe5ckL+m2vpf/g5A /wCULnxwProVp/6XW9eEfsjWUWn/ALQfgLT4UxHDr9miD0AYAfyr3b/g49/5QufHH/sB2v8A6X29 eF4PVZV8rxc31q3++MT2PGOkqObYSK6UrfdJn8dSEBhmv7f/APgl18Fvhn8BP+Cevwd+H3wo8KW2 kaUPh9pV89vbpzLc3VrHcTzOeru8srsWPJJ9q/h/XqPrX91X7DX/ACZR8H/+yW+H/wD02wV+wH48 epUjjPHr60tIfvCgD+Ib/gq7YWmlf8FNfj1YWUWyGL4s66EQHoPtstfph/wTx+OXiX4Rf8GlH7S2 oaPqskM9146vNDsWViDGmoR6ZbzgEcjMUkv4nNfmp/wVv/5SgfH/AP7K3rv/AKWy19z/ALMl3a2v /BpF8eEuZdpm+ONrHEP7zZ0w4/IGgD8kicPk9jzX9bP/AAahalLqP/BGHwNHJGqi18R63CpUfeAv XbJ9/m/Sv5JSMHGK/rS/4NMv+UMvhD/sbNc/9KzQB+lVIy7hilooA/kx/wCDsf4O+HvhT/wWG8T6 x4dtYoV8Y+F9K128SLvcvE0Ejkdixg3H1znvXkP/AAbwf8ppPgB/2N83/pDc173/AMHf7P8A8Pgb wbjgfDrRce3yy14J/wAG8P8Aymi+AHOP+Kumwf8AtxuaAPvL/g9O/a61TxV+0X8OP2K9H1Bv7L8J +H28Sa1bJJ8sl9eM8UO4d2SGJiPQXB/vV8B/8EDvi78B/gH/AMFVfhj8Z/2kviHpnhXwp4cnvry7 1vVy3kQSiymWLO0E5LsoHHU12v8Awc6eL9Q8Xf8ABa74xTXkjlbCTSdPgVm4WOHS7VMD0BILfVj6 1U/4N4P+Ce37Pn/BS39vq6/Z4/aVttVm8NWvw/1HWfL0XUTazvcQz2saDzADhf37EjHOBQB/SKv/ AAcDf8EaAOf+Cgngb/vu5/8AjNL/AMRA/wDwRn/6SCeBv++7n/4zXg1j/wAGiP8AwRwtblZ7jwN4 9uUXOYZvHU4VuO+xQ35GtD/iEo/4Iuf9Eb8Yf+HAvv8A4ugCp/wU4/4LJ/8ABH39pb/gnh8bPgZ4 c/bj8E6tq/iP4Y6zbaBpkbXBa41IWcj2armLG77QsOPfFfys/D34geK/hV4/0b4k+AtYl07WvD+q wahpN/bSbXguIZBJG4Psyg1/V9pf/BqJ/wAEXdMjaP8A4UL4inJOd1z45v2I+h8wVZP/AAaqf8EX M7h+zrrOc/8AQ6X/AP8AHaAPsf8AYr+Pa/tW/si/Db9pA2iW7+N/BWm6zNBGPljkngSR1UegYtj8 K/FL/g70/wCCTAja3/4KgfA7wuW3GHTfirZ2cP3cAJbamQo7/LDI3r5R/vGv3P8AgD8C/hv+zN8G /DvwC+D+iPpvhfwnpcen6FYSXLzGC3TO1C7ks2M9Sav/ABX+FngL42fDTX/hF8TvDdtq3h7xNpM+ m61pt1GGS5t5kKOhB9icHscHtQB/Gn/wRv8A+CkHir/gmB+3F4c+PtrLcz+GLxhpPj3SIm4vNJld fMIUkAyRFVlTOPmjxkBjX7V/8HFn/BaRbr4V+Hf+Ce//AATt8TN4q8e/GjTLR7/U/Csnnz2uk3oU wWsPlnP2i7RwPVYmJ4Lgj8RP+Cuv/BOrxz/wTD/bW8S/s5eIEnn0N5DqXgfV5U/5CWjyyOIJCcAF 12tE+OA8bdsV7t/wbK/tG/ssfAP/AIKjeF/EH7V+j280msWD6P4K8T6pOrQeH9VkAjhlcPwN6Zt1 k/5ZmQdBkgA/oR/4Ib/8EnfB3/BKv9kay8DX8NpffEXxPHHqHxE8QW+GE11glLSNuvkQK2xf7zb3 43YH2qoIGCaFCAZTHPpS0AFeO/t8fA6w/aK/ZF8f/Ca8tRNJqPh2aSwXbkpdwDz4GX3Ekafy717F TXijkzvXORgg96ipBVIOL2asdOCxdbAYyniaTtKnJSXrF3X5H82f7C37dvxh/YN+LEXjbwJeSXej 3Mix+JvDM8pEF/CD83HRJVGdsgGVxzkZFfv9+yl+1p8If2wPhHZ/F34P60Lm1nAS/sJXAudOuMAt bzKCdrrkexBBGQa/mt+KulWmhfFLxHoliCILPXryCAHqESd1H44Ar0H9i39tH4wfsQ/Fy3+Jnwu1 Ey2shWPXNAuJW+y6nb5GY3UdGH8L4yp6cEg/GZbmc8DP2c9YX+7zR/X3iF4cYTjLB/X8GlDFpXT2 U1bSMvPtLps7rb+mEHIB9aK85/ZX/aJ8PftVfA3w98dPCmi6lptlrtp5qWOqWxjliYEqw5GHXcDh 1+Vhgg16NX2kZRnFSi7pn8f4nDV8HiJ0K0eWcG4tPo07NfeFFFFUYBRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAFFFFABRRRQB/P5/wfFf8f/7Ov/XHxL/PT6+Lf+DTL/lNZ4E/7FfxD/6b Zq+2P+D4ywuEX9nLVGUeVJ/wk8SHPO5f7NJ4+jCvif8A4NMv+U1ngT/sV/EP/ptmoA/rRubqCzhe 4uZVSONC8jscBVAySfav5JP+C+n/AAW9+LP/AAUp/aA1n4S/Dbxjcab8EfDOrPb+G9GspCi628RC nULroZSzAtGh+WNCMDcWY/0u/wDBVzxX4o8Ef8E1fjp4p8F+b/adp8LtZNqYThlLWrqzA9iFZjn2 r+IhGYuMevpQB/RP/wAGsX/BET4D33wA0X/gpN+0r4KtfEvibX72eT4faNq9uJbPSbSGXy1vvLbK yXDvHIVLAhEwQNzZH7nxQrEAqAAAYAAwAK+Mv+Der4leDviZ/wAEdfgdqHg26hePS/Cp0m/jibPk 3dtNJFMh9DuUn/gQPevs9jgcHmgD4r/4OKRn/giz8fDn/mVbb/04WtfxsgENg+tf1K/8Hdv7aHhz 4Qf8E7V/ZA0bUY7jxf8AGPWrS3h0yBt06abZXUN1NMEHIDSxQRA9/MYDpx/LW3Eh7c96AP7hP+CX P/KM79nX/shfhH/0y2lfyk/8HDv/ACml+P8A/wBjhD/6Q21f1af8Euz/AMazf2dsMMj4F+EuM/8A UGtK/lP/AODiazubP/gtT8forqFkZvFdtIA3919PtWU/irA/jQB+vf8AwZH/APJlfxj/AOyowf8A ptgr9rT0r8Sf+DI7WbCT9kn40+HY5P8ASbf4jWdzKvoklgiqfzif8q/bbI9RQB/NF/wei/tNHx5+ 2t8Pv2XtH1EvZeAfBZ1HU4VbhdQv5WOCPVbeCAg/9NTWZ/wSu0T+2fgx8PpWQslnozzycccO4X/x 5h+VfDn/AAWz+ON1+0P/AMFXvjv8Rpbgy28fxF1DSdOYtkG1sJDZQkegZIA2P9o1+iP/AASH0Zo/ 2SPDfiCQAeZpiQRE+gkdm/Ur+Vflni3W9hw3GXVzt98Wj9W8IaXtuJJxe3Jf7pRZ92/srHH7SHgj /sZLX/0MV7R/wcfanpyf8EbvjZo0l/Ct3P4eglhtmlAkeNNQtQ7hc5KqXQEgYBdc9RXyyn7Q/g39 k5h+0t4+trq40fwQDrF/bWChpp44AXMaAkDc2MDPAzntXxh8VvE//BQ3/god+yr+1H/wWD/al0Q+ Hvhnqnwfk8HfC3w7M5RY7aXxDpV2GtY8DfGotWEly2DLI425CYXzPBZf8IuJf/Txf+ko9Hxr/wCR 3hv+vb/9KZ+Mw6j61/dT+w1/yZR8H/8Aslvh/wD9NsFfwrD7341/dT+w1/yZR8H/APslvh//ANNs Ffsx+MHqVIfvClpD94UAfxF/8Fb/APlKB8f/APsreu/+lstfZPwb/tI/8Gl/xY/s9XK/8NH2P2nY M4j8qyzn2ztr42/4K3f8pP8A4/8A/ZWtd/8AS2Wv2F/4N8v2QNN/by/4N3fjz+yreukdz4q8c6pH o1zJ0t9RjsbGa0kPsJ448+q7h3oA/n0YYbGfxr+tH/g0yx/w5l8HkH/ma9c/9KzX8o/xF+H/AIw+ FPxA1r4Z+P8AQp9M1zw9q0+navp9yhWS2uYZGjkjYeoZSK/pq/4Mzfi9a+M/+Cafin4Vm4X7T4L+ Jd2jQ7huEN3bwTo+MdC3mge6GgD9eKKKbI4VN/mKoHVj0AoA/lG/4O7tVF5/wWP1uzEJQ2XgPQoi 277+YGfPt9/H4V4b/wAG8RA/4LRfADP/AEN83/pDc1Y/4OGf2pvDX7XX/BWz4rfETwTexXei6NqU XhzS76AgpdJp8YtnlUjhlaVJCrd12nvUH/BvAAf+C0nwAz/0N03/AKQ3NAHo/wDwdT/DW/8Ah/8A 8FpfiNqE9r5dt4l0jRNXsX248xH0+GF2/wC/0Ewz/s16P/wZvXNvb/8ABXDUIpplVp/hDrKQgnl2 +1WDYHvtVj+FfXv/AAeifsMav4k8J/D79vzwVoMlwugI3hjxpLChJhtpJDLZTv6IJWmjJ7GVPWvz X/4NrP2itE/Zt/4LCfC3W/E+ora6d4nnuvDNxNLIFTffQNDACT/038nHvigD+wmikRiwyR+dLQAV Q8SeKfDfg7Q7vxP4s16y0zTbCBpr7UNQukggt4x1d5HIVFHck4q+SB1NfkD/AMHRf7a3ibxN4Y8I f8Eev2YZG1X4mfG3V7KPXbKwkzJZ6WbgeXE+PuefKoJzjEULk8MDQB+t/hnxR4b8aaJb+JvCGv2W qabdpvtNQ066SeCZckbkkQlWGQeQT0rg/wBr39rD4N/sS/s8eKP2lvjt4hXTvDvhfTXubkrzLcyY xHbwr1eWR8Iq+rdgCaofsgfs/eCf2Hf2P/A/7O2i6jBBpHw/8JQWVzqEzCONjFHuuLly2NoZzJIS f7xz3r8Vv2jvHHxZ/wCDpD/gpRB+y58C9c1DS/2Wvg7qS3PifxJbqVTVZQxR7hTxummAeK3Uk7I9 8xHLLQB4r8LP+Cf/AO27/wAHQXxY+LH/AAUI+K/iqbwZ4U0/TbvS/hRaXUfmQSXUO57XS4t2MW8e 8me4A5llJAyWC/kh8TPhv48+C/xI1r4X/Efw/caN4j8NatNYavpt0NstrcwuUdD7hlPI9iK/uu+C HwU+Gn7PPwo0H4IfCHwla6J4X8MaXDp+i6VaphIII12qCerMerMSSxJJJJJP4rf8HbH/AARyTxz4 Zm/4Ke/s9eFSdY0W2jg+Kum2ceWvLNdscOpBR1aIYSTA5j2sf9WxIB9E/wDBsj/wWTj/AG/v2dW/ Zo+OniTzfiz8N9OjjmurqXMviHSgdkV5/tSx/LHL1JOxz984/U1W3LuAIz61/Cn+x3+1h8Xf2Iv2 kPCv7T3wU1prLxB4U1Fbm3Df6u5iPyy28o6NHJGWRh6NkcgGv7P/APgnt+3N8Iv+Cin7KXhj9qL4 NX6/Y9atQmq6YZA8ukaggH2izlx/EjHr/EpVhwwoA9uqh4j8Rab4W0O+8Q6vMI7XT7OS6uZGOAsc aFmP5A1fJA6mvkv/AILRftLWX7Ov7Dfia3tL0R634xi/sHRUBG4mb/XuP92ASH6layr1Y0KMqj6K 56eS5ZXzrNqGBpL3qs4x+96v5K7fkfgH4x1u48TeLtU8TXABl1DUZ7lwo6tJIznH4mv0W/4JK/8A BGG++MT6Z+0p+1f4fkt/CmUuvDnhW5Xa+sDhknnGcpB6IRuk74X73Pf8EDv2M/gL+0t8U/EXxJ+L 8Q1e78CSWk+l+GZ0/wBHkkkLlLmXn94FaMgRkbc8nPAr9t4YIY4wkcQUAYAAxwK+byjLIVksRV1X Rfq/8j+ivFbxKxOUVJ5DlV4TSSnPZpNX5YebTV5dNlrqodJ0jTtEsINL0iyhtbW3iEcFtbxhEjQD AVVHAAHYVaoAwMCivqdj+Y223dhRRRQIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAK+NP2vv+C+H/AATP/YX+Oepfs5/tHfGHU9I8V6Tb2819ZW3hm7uURJoxJGRJGhU5VgeDxX2X XPa78JPhV4p1J9Z8TfDLw/qN5IAJLu/0aCaRgBgAs6EnA4oA/mi/4OlP+CsH7E//AAU30L4KWP7I PxGvdek8GXfiCTXxe6JcWYhW6TTxDt85Rvz9nlzjpgetfK//AAb8/ti/Ab9g3/gpt4U/aQ/aU8T3 Gj+E9L0LWLa8vrbT5bl0knspIogI4wWOXYDOOK/r5/4UF8C85/4Uv4T6dvDtt/8AEUf8KD+BX/RF vCf/AITtt/8AEUAfn943/wCDnr/gh38SPCOq/D7xb8cdVv8ASNd02fT9UspvBN+UuLeaNo5Iz+76 FWI/Gv51/wDgqT/wTM+K/wDwTn+OD6VfaHqOofDfxOi6n8M/HDWji21fTJlWWFWcqAtxGkiLJEfm DDP3WUn+yn/hQfwLzn/hS/hPj/qXbb/4in/FL4F/Bf44eBJvhf8AGT4UeHfFXhueMJLoXiDR4bu0 YD7v7qVWUYwMEDIxxQB/Iz/wSJ/4L1/tU/8ABJGPU/AvgnQNK8ZeAdbvReah4Q1yaSMQXO0K09rN GcwuyqqsCrK20cAjNfoN8Rv+D3DxJq/gGXSfg3+wfDYeLJ4zHaXuueLzd2cUhGFbyIoI3fDY+XeM 9M96/QT4jf8ABrv/AMEXviLqU2p/8Mu3GhNM25ovDfim+tY1Oc/KnmkL9BgV6P8Assf8EGv+CU37 H3ia38c/CT9kjQrjXrOQSWWt+KHk1W4tXBBDxfamdYnBGQ6qGHY0AfCX/BEn/glv+0v+2T8eJ/8A gsj/AMFePt2s+KdUQt8N/B3iOyMQs4WRkW8e0ZQsESo3+jwgDGTKfm2mv5/f2xP2a/HH7I37UXjj 9nL4haXc2eo+FPEt1Yj7ZEUaeBJWEM4yBlZI9rhhwQ2a/usWKNMBFwAMADpivEP2r/8Agmr+wh+3 E8N3+1T+y94U8YX1vH5dtrF9YeXfxJ2RbqEpME/2d+32oA+Lf+CXX/Be3/glx4e/4JqfCjQPi9+1 f4b8IeIvAnw60vw/r3hzWmkS9Sews47YtHEFLTK4iDqY92d+OCCB+Kv/AAXt8KfE79qL9oLWf+Cs PgX9nvxNofwX+JmsLpvhXxRq1k0Z1RrK3itxeyRkZt47gITDv++ImxyCK/oj+Fv/AAb6/wDBHX4Q eLIPGvhb9hbwndX9rIHtjr7XGpwxsDkHybqWSIkEAglTjHFfUvjz4NfCX4o/Dq5+EPxH+Gmha74V vLQWtz4c1XSop7GSEDCxmF1KbQAMDHGBjFAH8s//AAbF/wDBXD4Sf8Ezf2jfFvgX9pDVJtN8A/E6 xsob3Xo4WlTSL+0aYwTyKuW8plnlRyoJHyEjCmv3D/ai/wCDjf8A4JkfArwcJ/hH8aLX4x+MdSUR +GvA3wxzqV3qFy4xFEzxgpDlioOSXGThGOFMmr/8Gyv/AARZ1fXpNeb9j63tvNl3tZ2fiTUI7cH0 CCfgewr3n9lz/glp/wAE8/2L75db/Zo/ZH8GeGNVVQo16LSxcaiBxwLucvMoyAcBwM9qAP4yP2s/ DfxU8MftJ+NbX42/DbU/B3ii78R3V/q3hrWbdormwe5ka4EThgDwsq8kcgg1+p//AATN+MU/gP8A ZD8H6FJoz3qS6dvtxDJhg5dwR0Oc8dOa/c/9sr/gj/8A8E6f2+vE8Hjr9p/9mjR9c8Q28CQL4htp ZbO+kiXO2OSaBkaVRk4D7sdsU34Tf8Egv+Cf3wQ8LWHg/wCG/wADIrGy02HyrPfqlxLJGuScB3cn qT3r43jfhyvxNlcMNS5bqXN7zaWzW6TfU+14G4kw3DOaTxNfms48vupN7p7NpdO5+Zfgjwl4T+JX i3S9b/bFvNM0v4bxX0UniXTNWuBBZrpwcfaGu3YgLEIt24sRxnpXtf8AwW+/4KJf8E0Pil/wSB+K /wAAP2dP2y/hFqmqSeGbW28O+FfDPi+ykkkSK6tyILeCFyTtRThVGAF9q+7PEX/BNn9jbxfoF74U 8WfCGHUtL1K1e21HTru/naK5gdSrxON/KspII9DXmH/EP7/wRqPX/gn54GP1S5/+O1zcCcN5lw1g 61HGOHvSTioXsla3VI6OPuJst4nxtGthFNcsWpOdrt3v0bP4yFU7sZH51/YJ+xF/wWz/AOCTlh+y n8MPA+tft7fDrS9W0j4f6NYanY6zrQsnt7mGxhjljbzwgyrKwz044Ndl/wAQ/f8AwRn/AOkfXgX/ AL93P/x2j/iH7/4I045/4J+eBj7lLk/+1a+7Pgj6db41fCRfhC/7QB+I2jf8IPH4fbXX8W/2jH/Z 40xYTO155+dnkiIGTzM7doznFfPUv/Bcj/gkKjsjf8FEfhblc5x4niI/DHWvfofgF8Grf4Fn9mZP h3pp8At4Ybw6/hWSIvaNpTQG3azZWJ3RGElCpPKkivAB/wAEL/8AgkAP+cd/wwPufDqE/wA6AP5H P+CjvxG8I/GP9vv4yfFPwBrMGoaJ4h+JOsX+k39tJvjuLeW7kaORT3VlIIPoa/bb/g0+/wCCgX7D /wCy1/wT38VfDz9o/wDay8AeBddufibeXtvpPivxRbWM8tu9naIsqpK6llLIwyO6mv0t/wCHGH/B ID/pHd8L/wDwnEpk/wDwQq/4I/XEDW0n/BPH4ZBXUqSmgKrAH0YEEfUGgD8pf+C7/wDwTP8A2dP+ CpOva5+3h/wSD+Lvgr4neOdCsYm+LHgX4f67Bf3GoQ4fytQhigLFrnC7Gj4MoQFQXVg/5u/8Eiv+ Csvx7/4I2/tI6j4isPCk2p+G9aaOx+IXgXUd1vJcJEzbXTdgw3MRZ9pYEYZlYc5H9Y37Kn/BPD9i r9h681i//ZO/Z40LwNN4giij1mTRRKDdrEWMYbe7fdLNjHrXnv7bn/BFz/gm3+39dSa/+0P+zXpM viGVNreLdAzp2qMO2+eDaZsdvMD47YoA8l+Gv/Bz3/wRl8e+BIPF2pftSt4auZLbzJdB8QeHb1L2 FucxsIo5ELD/AGXIPY1+d/8AwVe/4OpNc/ad0a7/AGN/+CUngfxI0/i1v7IuPHFxpzLqV952Y/s+ mWqEyI8m4KJXxJyQqA4evpuX/gzC/wCCXMmuHVk+MHxoW23ZGmr4k00xD23HT/M/8er6/wD2Ff8A gh1/wTa/4J5a9H43/Z/+AVvJ4qgjZIfF/iW6bUdRhBxnypJflgJxyY1UkZGccUAfzJ/8FKP+CO3x Z/4Jj/sz/CP4pftEeJVHjn4oXV/PqPhW3+ZNEgiigdIZZCMvckyt5gHyrgKCxBNct/wQ8+Lnwy+A n/BV34K/F/4y+ONO8N+GND8Tyz6xrmq3Ait7SM2dwgZ3PCjcyjPqRX9fH7TP7DX7If7Zcekw/tT/ ALPfhnx2mgtKdHTxHYC4W0Mm3zCgJwN21c/QV5P/AMOMP+CQP/SO/wCF/wD4TiUAc98VP+Cnv/BF f9r/AMA6n+y/46/bX+FniXSfHtqdEu9CPiGNnvPtB8tUQdpNzKUYcqwUjBAr+cX/AILC/wDBF39p L/gkX8df+Er0a11PWfhjd6v9p8D/ABB06JyLXEheG2unUAQXSBQeyvt3Ieqr/SvoX/BCr/gkX4Y8 W2Xjrw5+wb4GsdV02/ivbC7tLaaP7PPG4dHRVk2qVZQRgY4r6c8aeAvBHxI8M3ngr4h+ENM13RtR iMV/pOs2MdzbXKHqskUgKuPYg0AflN/wRi/4Oef2Wf2l/hFovwe/bq+Kmk/Dv4o6Rax2d3rviW6S z0nxBsUKLlbmRhHBK2MvHIVBY/ITnA/SST9tH9j2Lw03jOX9qz4bLo6R731VvHOni2VcZ3GXztuM d818d/tDf8Guv/BHn4+anPrVp8Ar3wLeXDl3k8A63JYwhicnbbsJIVH+yqBR2FeJWP8AwZe/8Ev7 bWV1K4+NfxruIA5Y2EviPSxER/dyunB//Hs0Adr/AMFDv+Don9ir4DaJc/DL9iTVP+F4fFPUibLw 7Y+EoHutLhu3yqNJcR/8fA3YxHb7y5wMqDkeFf8ABKj9ljw7+w38TLz/AILHf8F3vjponhL4u/FG 8uU8E6d47vlgk0tJIw0rsjj9zc+URGkK/wCph+U4LFV/RX9h/wD4Iv8A/BOH/gn1dp4g/Z2/Zv0q HxEibR4u14nUdVUHGQk82TCDjkRhM984Fev/ALRv7I/7Mf7WPh6y8PftLfAXwn48s9Jne40q28Wa HDfR2kzrtaSNZVYKxAAJHUCgD8Rv+Dhb/gvn8P8A9pnTNJ/4Jz/8E+/jroU2g+NJYoPiN8Tf7RNv p0du8iBbNLk42xdWuJAMbAEGcvX2N/wTD/a9/wCCFf8AwTG/Zf8AC37Kvwr/AOCgXw11DU5JEm8Q 65b6kHl1vVZdokmkZFO1d2EjViAiKo7EnnP2XfA//BFHxl8Wtd/ZV/aU/wCCeXwP8IfEXw3r1zpS S3XgKxisNZMcrKjxO6YjkZQpMbEZLfKT0H2Np/8AwRx/4JPQSQ6lYf8ABOz4ORyRuskE0XgGxBVg chgRH1yAc1lRr0q8eaDv+nqenmuTZlkmIVHGU3FtJp9JRe0ovZp9189T6UtLu3vrdLu0lEkUqB45 FPDKRkEexFeQ/to/tbfsefsk/C/+3/21fifofhrwp4gkfSj/AG/byTQ37PGxe3McaOXzHuyNpBGa 9ftra3s4EtbWFY440CRxoMBVAwAB2GK4P9oH9lb9mz9q7w7Z+Ef2mPgZ4W8eaXp939rsdO8V6LDf Q28+0r5qJKpCttJGRzg1qeYfxb/8FHvhf+y98Jv2ufFfhv8AYu+NGn+OvhhcXn27wjrFis6mC2lG 77JKJ40bzIWzGTghlVWzzgfT/wDwbt/8FiL3/gl/+09/wiPxY1u4/wCFQePp47XxdF8zrpFxuAi1 REHeMZWQAEtGx4JRRX9KB/4Iy/8ABJg4Df8ABOX4NHA7/D+x/wDjdcr8Xf8AgmX/AMESfgN4Nu/i J8W/2G/gVoOj2SFpr3UPA9gi9Cdqgx5djg4VQST0FJyUVdmlKlVr1FTpxcpN2SSu2+yS3Ot+CP8A wWA/4JmftMeIz4L+B37ZvgvXtXWxnvjp0V80Mq28ETSzSlZlQhUjVmY/wgHNfjx/wVk/bzn/AG5P 2i3vvDF1J/whPhUSWXhOF8r5yttMt2y9mkZRj/YVOhzXO/ty/Gr9irxl8QBpX7B/7HHgP4ZaBp5m hbxL4f8ACVtp+q6wjqUcPJEoaO3ZSR5Wfm6v2A+fVBY7VGSewFfI5vmccT+5pP3er7/8A/qzwo8N a3D/APwrZpG1eStCP/PtPdv+81p/dV1u3b7v/wCDef4tL4A/bnn8C3VwVtvGXhW5slQtwbiFkuIz jPJ2xyAf75r90EcOMgHr3r+aL9hHxV4u+FH7YPw3+JWj6DqMy6X4usnvBa2cjs1q0ojnHyjvE7j8 a/pbgIZNw7816WQVObCuD6P8/wCmfnvjtl8MPxRRxcNqtNX9YNr8nEfRRRXun4iFFFFABRRRQAUU UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUVkeN/Hfg74beGrzxn4+8VaboukWEXmXup6tepbwQLnG55JCFUcjqe9AGvRXg3w+/4Kgf8E8/ it4ps/BHw6/bN+HWr6tqM5h06ytPE9uWvJAcFIiWAlbOBhSete7o28ZyPwoAdRXjvxw/b8/Y/wD2 cfGEfw6+MXx60XTPEctt9oTw3bebe6l5P/PQ2tqkkwTp8xXHvWn8BP2zv2Wv2opr6y/Z++O/hvxT eaWxXVdN02/H2uxOcYnt2xLCc/31FAHps0sUETTzSBURSzsxwAB1NY/w8+Ifgr4seC9O+Ivw68RW +r6Hq1uJ9N1K0bMVxGSQGU9xkGvzl/4L2/8ABcj4HfsW/AXxd+zV8GPiDZa38ZvEWmT6RHp2kziQ +GUnjZHu7l1yI5VRiY4vvlirFQvJ7v8A4Ip/txfsfWn/AATs+APwRvv2pPAa+NT4I0/T28LSeKrU ah9sIx5Hkb9/mZIG3GeaAPveZgsTMxAAUkkngV+Tl3+zb+0P/wAFvP2/bj9o3XPij4r8EfssfDu4 bR/Blt4f1y4sJ/H00MpF1cIYXR1tnmUqJyPmjRRGclmH6T/tHfFn4BfCP4T6r4g/aX+IWh+G/CNx CbPU77XtUW0hkSUbTFvLKSzAkbVOTnivM/hv/wAFM/8AgnXrGsaP8K/Bn7R3hfSLq8RLXw7pGqwT aQt0qhVSK1F3FCsoA2gCPcMYxxQB71o/hnRfD/he28H6RaeRp9nYpaW0CSN+7hVAiqGJ3cKAM5z3 zmvwj/4OhP2d/AP7Bvwv+FvjH9k7XfG3hDUvFHijUIdcuYfiZrt39pRIEdV23V5IqYZiflA/Kv3q Vg8YcMCCMgg8GvxQ/wCD0L/khPwO/wCxw1P/ANJY6AP2M+C881z8HvClzczPJJJ4asWkkkYszE26 Ekk9SfWulrl/gkcfBfwif+pXsP8A0mjrifip+3v+xl8EfGrfDf4q/tMeDtG8RJF5kug3GtRtexpj O5oEJdVx3IA5oA9eorg/gf8AtO/s+ftL6HP4l/Z7+NHhnxnY2sgju7jw7rEV0Ldz/BII2Jjb2YA1 295eW1hbPe3k6RRRKWlllYKqKBkkk8AAdzQBLRXzJr//AAWY/wCCV3hjx4fhnrn7fPwwg1lZzBJb DxRCyRyZxseVSYkbPGGYGu2/aZ/4KAfsh/shfAy3/aP+Pfxz0PR/CF8UXSdViuftP9qO67kS1SHc 1wzDJ+QHABJwASAD2WivJv2a/wBt79mH9rb9n6H9qH4F/FzTNW8ESCb7RrU7NapZtCcSpOs4Uwsn UhwOCDyCDXLJ/wAFVv8AgnGZEB/bV+HQie6+zLeHxJCLYzdNgnJ8vdnjG7rx14oA+gqbKcRscZ46 VX0PW9I8SaTb69oGqW99ZXcKy2l5aTLJFPGwyroykhlIOQQcGn6nciz06e8YgCKFnJJ6YGaAs3oj +f8A/wCC0/h/Q5/2yLn4z+D0C6X49sBeIVHAu7SWTTrpfqJbRifUsfWue/Zg/wCCuH7bn7LVrb6B 4W+J767oEGAmg+KIvtcKL/djZiJYh7K4HtzT/jV4lT9oj9i+8+IcchmvPh78XtTWZj1XTtc3XMRO P4RcWs2M8Au3rXg/wu+D3xT+NXiJPCXwl+H+reIdQfGLbSrF5SgzjLEDCL6sxAGOTXwFWrVjivaU W05a6ee/43P7pyvK8pxHDMcBm8ITjh7037S1ko/C7vZ8jg7767n6d/Dz/g5kQ2kcHxV/ZVc3CgCW 68P+JPkc9yIposp348xvrXV6j/wcvfAn7Gz6T+zV4smmPRbjVLWND/wJdxH5V+fUf7KHwO+CKfbv 2vP2hrKDUYRmTwB8PPL1bVCw/wCWc9wG+y2pzkEF5GH93vU8B/4J8/HqP/hC9E8P6z8GNXg/d6N4 j1bWZda07UByQNQwivbOTx5sKlADynBJ7lmWZxVnUV+ztf8A4HzsfG1vD3w3xFX2tHA1ZU1vKDqc i80nLmmvOmpJH0t8Z/8Ag5E/aD8VWkum/BP4KaB4TDKVj1DU719TuF91G2KMH2Kt+NfC/wAdv2l/ jz+014lPi346/FDVfEd4GJhF9cfuYAe0cS4SIeygVP8AHb9mL4x/s8X1uvxB8Ng6ZqALaN4i0yZb rTdUj7Pb3MZMcgxjjO4HggUfsu/BeT4//HXw/wDDV7r7NptxdfaNf1BjhbHTYAZbu4Y9gkKO31xX DXxGNxU1Tqyd+234H3OSZDwVw5gXjstowjBRbc170rJa++25eqT30sfqV/wRR/4JkfBPW/2XIvjl +0h8GdE8Sap4vvPtegxeIdOS4Fnp6DZGyq+QDI29845Up+P3r4b/AGVP2a/B8ax+GPgD4NsQuNv2 bw3bLj/xz2rE/Yb+LPgv42fsv+EPiD8OtEXTNCn0+S20jTlP/Hva280lvEh9wkS/nXrlfZYPDYel hoKCT0Wttz+PeLOIc9zPP8VPE1JwfPJcnM7Rs7KNk7aJJee5U0rRNJ0OIW2j6XbWkX/PO2hVF/IA Vboort2Pkm23dhRRRQIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigBJBlcZI9xX4zftgfGyb/gp3/wAHC3gb/gmF4uvHu/g1 8K2n1Txj4aVz9m1/U7fTmvCLlQcSxpK1vDsbgfvu7c/sxJ93/wCtX4N/sS6BqXww/wCDvn4qeH/F ySQ3GtyeIrvTfOH+tiubGO9i2nAyPJz06bcdjQB+vf7VH7B/7On7VH7Nus/s1eM/hZoUGj3umPBo 72WmRQNo9wFIhubYooMMkbbWBTHTHQkV8Mf8G737f/7Qfx7+B3xX/Y0+N2sPrnxL+BN7Npej6tqL ky31ovm28Edy5yWkjnt3Rn6lSmclSW/VCT7h4rwX9p39pn9nL9iH4a/En4v3fhrTYtU8IeBpvFGu 2OkackU97EZHjt1klVQA01wGRS5yTvboGIAPz/8A+DZz4Xft9eEfi9+0H42/bm/Zs1nQNT8Ta9Dq Evjbxn4fntNU1PUGeVZYIJZlHn2aqNymPKKThSQePGv+CyHjJv2S/wDg44+APxm+C94dG1bxLbaH F4uGnp5Y1KKW+ksnSYDAl3wfIc84Ve6gj0b/AIJjfCf45/8ABfrw/wCJ/wBtn9vP9pTxxp3gZfFF xpXg34Q/D3xPPpOlWyxIjPJMYiHmI8wICTuO1iWwQtfGf/BWn9lv4Jfsgf8ABcn4JfB/4FRanFpi XPha7uodX8QXGozrPJqjAkyXDu65VVO3OOc45oA/Rz/g6+8AeBdN/wCCV2r+LtP8FaRb6tP4+0Yz anBp0aXEhaR87pQu4575POK92/4ImfAL4HT/APBMP4AfECf4MeFH14/D/T7ptafw7am7M+CfM84p v3/7Wc+9eQf8HZv/ACiO1H/sftE/9GSV9Hf8ERv+USv7P/8A2TXT/wD0E0AfDf8AwVa+Gn/BR74i f8F2/gD4i8B/s06r49+EnhSaxm003Wgz3nh2zlmZ49Qub2RVMUE8aFXjaUggxRFd3Svdf+DoL4fe BvEv/BInxl4l8QaXbNqHhrVtJvPD14YR5ttcG8jiPlsOUzHJIDg8j868J/a5/b4/aZ/4KSf8FfW/ 4I5fsrfG/VvhR4F8MXF4nxG8deFZjFrOoNa24kuoYZeDCqyYt124JZmdiygLXHf8F8f+CTf7IX7G n/BMXxH8WfAOseOdR8Upr+l20WreLfiDfag1y0s4Em6OSTy3YjJ+7xjIxigD7s/4N+/jh47/AGgP +CTHwo8b/EbXLnU9VtNOuNKnv7x90syWlzJBGWYkliI0Rdx5O3nnmvh7/g9C/wCSE/A7/scNT/8A SWOvq/8A4NiBj/gjX8N/+whrH/pwmr5Q/wCD0L/khPwO/wCxw1P/ANJY6APsj/grB+3hr3/BPX/g kQfjP4Du0h8Xan4c0nQ/CErrkQXtzAimfB6mKISyAdCyKDxmsr/g3P8A2e/CHgv/AIJoeD/jfq2n Q6t41+Kct34l8X+LNSQT3+pTzXMioJZ3y7KqIoAJxkserMT8+f8AB0b4J8QeI/8AgjT8NPE+lQO9 p4f8R6DcamVBOyOTT5IVY46DfIoye7Ad6+yf+CEGvWniL/gkV8CLy0aL914JS3lWHorxzSowPvle fegD89/+C8PjPV/+CRP/AAVB+DP/AAUT/ZptF0a38c2s9h8TNA08iG115LaaLzGmjUBHkkgmxvPI eBH65Jzf+DrH/gpx8R7zSvhn/wAE9/2WPFV1ap8VtItda8TX2nztHNf2V1KiafZKyNkJKwd5F/iA jXkFxU3/AAej6xZ3Phn4CeC4I1e/udW1m4iUH5ygS2jxj0LOo+tfHX/BdX4deLf2Xv8AgpN+yx8R PirbzQ6bYfDDwM08k6sAraZOi3aZPdSBkdRkHuMgH7J/Af8A4Nyf+CZXw+/Y3sf2afHv7OOgeI9X u9BWHxH47vLRTq89+8Y825guSN9vtckoiYUAAEHnP4n/ALE37HngK+/4Kr+PP+CMX7aPiLV/Eeja dY+LfC/wfuNU1ec2fh7WpYhJZarHbBgoZ4YlfYBje44I5r+qfTby31Cxiv7OVZIZ41kikRsh1YAg g9wQetfzZ+HtOuf2jP8Ag8XvL/4ZK09voHxUlm1K4tv4I9N0/wAq6YkekkTRnn+dAHEaJ+y18eP2 T/2kvhR/wb+fE74y2GpaH4w+K9l4i+KcPg++n+yX/wBrMCQWJeRInaNba2ErKVA8y4zzsVq/pS8Q /s5fA3xN8Ibr4C6v8JPD8ng670ltNl8OLpcS2gtWTZ5axhcKAOmMY6jmvwk/bT0XU/hl/wAHdXgD xR4phjSz13xb4au7Ca5U7DC9kltuU+qyRvj/AGhX9CTY2n0xQB+J/wDwbt/tUfED9nX/AIKA/Gf/ AII2/ELxfd6r4Y8La5rVx8N31GcvJafY7zY9shJyEkt2E+wcK0chH3uf1e/bZ+JcXwl/ZE+JHxB+ 0GKTTfBt+1tIDjbM0LJGf++2WvxD/wCCcGlXvxS/4Oxvip4v8JxFrDQPEHiy51OaJcrHHGhsySR0 zNIi/U1+k3/BwF8YE+Hf7CFz4ItrrZeeM/EFppyIGwfIjY3EpHqMRIp/3658XV9jhZz7Jnv8K5c8 24lweDSvz1IJ+l05fck2fkH+y/8AtI+FPgbo3jXwj8RfhPF418P+MtJtYLvQ7jUpLSL7Ta3SXFvK zx/PhSrKQCCVdhkAmpvih+3H8dviF4dfwB4bvdO8D+Em4HhDwHZDTbFlxjEvlnzLk+pmdyf0rx6i vgFWqqHInof3hLJMrnjJYqdNSm2nrdpNJJNRbcVKyS5kk7Ja6Csd7F2JJJyxJ6mppdMvY9Li1d7c i2nuJIIpexdFRmH4B1P41BXsOl/D7+2v2CtX+I0dsSdE+KdraSS4zhLmwkOPbLQr+VRGHPc6MZio YOMHLaUox/8AAnZfjYzfgR+1v8WfgTZT+FbCay8QeE79v+Jt4J8U232zS7wdyYmP7p+4kjKODzni vTNY/aC/ZH8E/A/xnrP7NHhDxH4a8d+P7SLQdU8P6pOtzZaPpjsZrxrK5GHZZmSGLZINyqXGWGSf mSg9K0jXqRjbf16enb8jixWQ5fia/trOLbTlyuynZprnW0tUtWr9L2bT/cP/AIN2fi5beOP2LdR+ HE1wGvPBvimeAxlssLe4VZ42x2BczKPdDX37X4Wf8G/n7TUPwZ/a/n+Euu34i0r4h6abOPe/yLfx EyW59PmHmp65cCv3RjYuu4ivssnrKtgI946fdt+B/H3ixk08n42xDt7ta1SP/b3xf+TKQ6iiivUP zYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAMA9RXwv/wUd/4Jb/EL4rftT/Dv/gpb+xLrWi6N8b/hrNsksNdZotP8 VaeUaJ7S4lQMYX8mWeMSBWyspU4wpH3RRQB8s+IP2nP+ClWueEDoXgD/AIJkXOj+LbnbCmq+LPil ob6BZOcBp2ezuZLyeNckhBbIzYwdmc1Cn/BNaT4lfsa/E34AftN/FSXxX41+M+nzf8J943trFYFj uWjC20VpDk+Xa2m1BFET821mfLSOT9WUUAfiT+wX/wAE8f8Ag4h/4JQzeIvgD+y/YfCPxp4A1vWm vLfU/EetbILWZlEZulj3JPGSqIWjw4yoxk5J1v23f+DfT9tL4hfED4VftpeBfiboHxK+OOj+KV1r 4r3HiG/Ol2msPHNbyWlvYkKy29vbxwmBUIBK4fBbK1+0FFAHwl+37+wn+1z/AMFSv+Cffjj4KfHC Dwn4A8V6pd2Oo+CPDOlaxJqdrptxZ5fbd33lRGYzszKdkO2JQpHmHJrm/wDgmR8Ff+CxH7Pv7Jvg n9iz4l/DX4ceD7XwZKLIfEoeLjq1xJpSXBkEUOmxwqhnKExrJJOFVdrGMkba/RGigD8a/wBt7/gi N/wUN+Dv/BUG4/4Kkf8ABKvxZ4bvdY1nVZtU1Twx4l1BbYwXdxCYbxMy/u54Jt8jlSysjOdvKqa9 K+MX/BMH/gpf/wAFUfgP4l0//gpr498FeFb608OXMfww+HfgZnk06x11oyseq6jNuYzMozGkasyo ssjD5sCv1KooA/PT/gjN+yx/wUr/AGLv2ePCP7HHxm+GvgLw/wCG/COu3t7qHjTTfGDanc6zayyy yi0hshboLdmeQZneU7UTiPc3y+If8F6P2Gf+CmX/AAVf8J+CvAPws/Y2tPDsfgnxHe3f9pav8StL dL+KRBGhREcMmQobDcjOK/XqigD5Y0b4S/Ej9s/9mjXP2Nv23P2Op/CHhLUPBcGlXF8fG9hqJu5U WNQ0S2pLQujIsqu3AZBXzN+wl8Af+Csv/BHvwpqX7Jvgn9mSw/aL+ElvrV1d+Bte0Dx/puhaxpEM z+Y0E8GpSRxupYs3ySEq7tglSAv6gUUAfmXN/wAEuf2l/wDgpB/wUO8Mft2f8FJvh/pPgnwZ8N7C KH4e/Byz8QQ6vcSTpMZvtF/cwDyBmTa7RxFw3lxqW2qd3Bf8HQukfAP9qTwj4D/YJ8L/AAc1/wCI X7SPiCefUvhTpXhSSKKbSYBt+1T3c037tLWRIiChI3GDduTZur9ca/AT/gtT+198bv8AgkV/wcCe Hv8AgoC3wj/4Srwt4h+F0ekWVld3LW8V7bhWjuYYZ9jiGaOQRSfdbhxkYbNAHrv7MN5/wdj/AAi/ ZG0v9lD/AIZI+Hpv9P0saTonxI8S+PtLlv8AR7YLsiaSO3vJEneJMBW2OcKNyua+mv8Agib/AMEO fDn/AATGttc+Ofxi8cR+Ovjb44SRvFPivyj5NnHK4mltrYv8zb5RvklbDSMBwoGD8L3P/B8J4dFq 66f/AME37xZdvyNN8VUZQfcDTRkfjX0T/wAE8f8Ag7V/ZC/bM+MekfAX4xfBzWPhRrviG9Sy0K/v tai1LTLm5dlSOF51jieFnY7RujK5xlhmnawHvH/BZz/gj/P/AMFEbDwr8c/gN40g8HfG74aXMdz4 J8S3AIt7lUnWYW1wVBICuN6PhtjFvlIY1Po37VX/AAWwm+HE3gXX/wDglLpUXjsWTWkHja1+Muin w49ztwt60Bk+2rEGO4wiJmONuQOR9xRsXXJFOpAfDv8AwRp/4JCwf8E3/C/ib4p/Fvxhb+LfjL8S bx73x34lt4yIIvMlaZrSDdgsnmsXeQgF3wcAKAPkH/g5A+Oi+K/2h/CfwG0y9zbeE9Ca+1CNWP8A x93T8Bh/sxRoQf8ApoRX7K65rNj4f0u41rU7hYba0t3nuZX6RxopZmPsACa/mV/bI+Ot5+0v+1D4 4+N1zMzRa94huJtPVjnyrRW2W6D6RKg98Zrws+r+zwqpreT/AAWv+R+2eBuSPH8T1MfJe7h4Oz/v z91f+S8x5pRRRXyB/XAV9u/sv/DmHx7/AMEV/wBoC7gsw93ovjnStTgkx0EAtw/5RSTfnXxFX6yf 8EZfhhJ8T/8AglT8c/AZjVzr+qapDbp1y/8AZUAQH/gYFehltP2tdw7xl+R8F4jZh/ZeRUsVf4K9 B/JVIt/gj8m6KvnRLYHjxFYY9d7/APxFH9i23/QxWH/fUn/xFefZn3PtYf0mJ4X8Ta54K8S6f4w8 L6lJZalpV7Fd2F3C2HhmjYOjg+oYA1/SX+wX+1p4W/bK/Zm8P/GfRZ40vp4fs3iCwQnNlfx/LLGR 2BPzr6q61/NVdQJbTGFLqKcAffiJ2/qBX1V/wSY/4KF337C3xzNp4tuZZPAXil4rfxPbKu77Ky5E V4g9Y9x3AfeQnuFr1cpxqwmItJ+7Lf8ARn5d4rcGS4syJV8LG+Io3lH+9F25oersnHzSXVn9CVFU PDfiXRPF2i2fiTw1qlvfaff26z2V7ayh45o2UMrKw4IIIOav19unc/jGScZNPdBRRRQIKKKKACii igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/Fn/grF+0V45/4Kx/8ABTmw/wCCDHwV 8P8Ahew8MaQPtvxO8f65oEOo3lj5dql1L/Z5kBFs6I8cO9QHaWUKWVFbd+01fhx/wU6/Zs/a3/4J U/8ABYyL/gtn+zP8GtT+JHw+8TwlPiP4f0ON5LjTw9pHa3IdY1ZkjcRpcJNhlWRGD7VxkA+vPhV/ wa+/8Eb/AIb+E4fD2ofs03Pii5SAR3Gs+JvEl3NdTtjlz5TxxoTjOERQM8AV+Y3/AAcif8EG/wBm b/gnv8HPD37a/wCxMuq+HbL/AITC20jX/ClzqT3MMMsySyQXVq0mZEw8OxkLMPnQqBhq/Q7wz/wd of8ABJPVvCkWr6zrPxE0jVDFul8O3XgK5kuVfGSgeItExzwDvA9cV5V4vg/ad/4OPP2gfh/Bqv7P Hij4X/sifD7xJB4kvrnxxafZdT8dXsORDGkGflgaORlyMqqySnzCxRQAfqr+zZq/iLX/ANnnwJrn i8yHVr3wdpk+pmViXNw9pG0hYnvuJzXbEhRkniorK3gs7WO0tYUjiiQJHGihVVQMAADoABT5mCxl iR+NAHx7/wAFu/2n4v2eP2IdZ0XR9UEOuePGPh7TljbEiwzIxuZBz0EIZcjoZFr8AzwcV9p/8Fz/ ANrFf2if2w7r4f8AhrVfO8O/DyJtJtgjZSW93Zu5B2zuAiz/ANMveviz6DHsK+GzfE/WMY7bR0X6 n9seE/Dj4e4SpurG1Sv+8l3V/hXyjbTu2FFFFeYfpgV+4P8AwbraUtr+wxql6Yk/0zxveMcHrtig Xn8q/D6v3o/4IGaK2k/8E6dEunX/AI//ABHqdwD7eds7f7lezkSvjvk/0Pxzxyq8nBKj/NVgvwk/ 0PxG/aA8BH4V/HTxj8NRCyJoXia+solbskc7qv8A46BXIV9V/wDBYvwJoPw2/wCCi/xF0+XR7zbq d5bapFJDeJGsgubWKVyAYjj94zjqfu18x/avDXfS9Q/8GSf/ABmvLxFN0q8odm1+J+k5DmDzLI8L i+Vv2lOEunWKfcz8jPT9KDtPUfpX6o/8EdP+CRPwl+MXwxuP2iv2q/hu+qaX4ghEfhDw/f3ksYEC kbr1mhMbHeQQg6bQW53A19qf8Oav+CZ//Rqulf8Ag41D/wCSK9KhkuLr0lUTSv3v/kfnmd+M/C+S ZpVwMqdSpKm7NwUHG/VJuavZ6Ppc/N//AIJC/wDBXm7/AGXru2/Z1/aH1W4ufAN1Pt0fWJGLvoEj HkHJ5tSSSQOUOSAQTX7XeHNf0XxTolt4j8Oaxb6hYXsKz2d7aTrJFPEygq6OpIZSCCCOtfN7/wDB Gn/gmkR+7/ZY0pTng/2vqH/yRXt3wQ+Avwt/Zz8Dp8Nvg74dk0nQ4p2lt9ObUbi5SAsBkR+fI5Re M7FIXJJxkkn6PLsPjcLT9nWaaW29/TbY/nvj3O+EOI8b9fyqjUpVpP31JQ5Jf3lyzbUu+lpb6Pfs KKKK9I/PAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApBGi9FApaKAMY/D n4fNq/8AwkB8C6N9v8zzPt39mRedv/vb9u7Pvmtjav8AdFLRQAAAcCvnr/gph+1/ZfsZ/sn+IfiV b3iLr97EdN8KwE8yX8oIVvpGu6Q+yY719C18A/8ABRv/AIJn/tRf8FGPj5ZTap8V9A8I/Dvwzb+T oVs8ct5dzSyBTcXDRKEQEkBBmTIVB/eIrkxsq8cO1RV5PRf5n0vCOGybEZ9Slm1VU8PB8073fMlt FJJtuTsnZbXfQ/EK+vr3Vb+fVNSuHmuLmZpZ5pGyzux3MxPckkmom+Xlhj61+23wg/4NzP2PvCPl XfxY8b+KfGE6EGSD7Wthbt6giH95j6SA19S/CH/gnv8AsYfAkRSfDH9nTwvZXEIGy9uNNW6uAR38 2fe+ffOa+ZpZDjJ6zaj+L/r5n9I5n468K4NOODpVKzW2ihH75a/+Sn89Pwm/ZF/ad+Oksa/CT4Ee KNcSUjZc2ekSeTj181gEx15Jrh/EvhzXfB3iG98KeKdKmsNS067ktr6yuU2yQTIxV0YdiCCK/qsi sYYUEcMaIq/dVEwBX5O/8HAX/BPs210P23fhVoRKyFLbx5a20f3TgLFfYA78RufXYf7xq8bkv1bD e0hLma39Dl4P8Z48QcQxwGMoRowqaQak37/RSbS+JbWW9lrfT8p29A2M+tf0P/8ABGvw2PDv/BNb 4YRNH813pt3dt7iW+ndT/wB8Fa/nhPXBHfnnFf0z/sIeEn8CfsWfC3wlNHtksvAemJKPVzbozH8W JP40cPRvipvsvzf/AACfH3EKPD+FofzVb/8AgMGv/bj8qf8Ag5C8ALoP7WHhT4hRw7U17wasMknY vbzyDH12yL+leE/8Er/2DdX/AG5P2i7XSNatpYvBXhxo7/xbehSBJEHG20U/35cFcj7qh26gV+gv /Bwp+zz4v+Nvhr4On4daBNqOuT+M59CsraBCWka8iV1yR0UG2JyeACSeM19XfsAfsZeE/wBiT9nH SPhFoXkzao+LzxNqaR4N9fuo8x/XauAig9FUdya6XlrxGbTlJe4rN+d1t/n5HgUvEX+wvCnB0sPL /apqdOPeKjJpz+UbKPm79Gey6DoeleGtJtfD2habFaWVjbJb2dtAm1IYkUKqKB0AAAA9qu0UV9Kf zq25Nt7sKKKKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABTfKjznYOOlOooAAAOlFFFABWX4z8G+GfH/AIT1PwT4w0eG/wBL1exltNRs7hNyTwyKVdGB 6ggmtSkYEqQO4pNJqxUZShJSi7Nar1P51f25f+CfvjD9k39su1+A1lZz3eieKNYhbwRqDIWF1az3 HlpExAwZY2Oxh9DjDDP9DnhXRLXw14Y07w5Y/wCp0+xitof92NAo/QVwvx5/ZY+FP7RGq+D9f8f6 MsmoeB/FFtrmg3sajzIp4jnYSQcxscZX1VT1Ar0eNCiBDjj0FedgcBHBVajjtK1j77jLjivxflmA pV1+9oxmpvpKT5UpL1UbvzuV73RdI1Ka2uNR0yCeSzm820eaIMYZNpXehP3W2swyOcMR3qyFCjAF LRXpHwDbYUUUUCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q== ------=_NextPart_01D5E037.E5F59E00 Content-Location: file:///C:/6A8530EF/12EnfoquedeaprendizajebasadoentareaseneldesarrollodelahabilidaddelhablaCorregido_archivos/image012.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQEA3ADcAAD/2wBDAAIBAQEBAQIBAQECAgICAgQDAgICAgUEBAMEBgUGBgYF BgYGBwkIBgcJBwYGCAsICQoKCgoKBggLDAsKDAkKCgr/2wBDAQICAgICAgUDAwUKBwYHCgoKCgoK CgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgr/wAARCACbAb8DASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9/KKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigA ooooAKGYKMmvJ/2nv20PgL+yR4cTWfi54tMd5dKTpug6cqzX9715ji3DavykeY5VAeN2SAfzh/aG /wCC2H7TXxOmk0n4M2dj4D0kt8stvGl5qEq7SpDTSpsQEkMPLjV1IHznv9BlHDObZ0uehC0P5paL 5dX8kz5fPOL8kyF8led5/wAsdZfPZL5tH633eo2en20l7f3cUMMa7pJZpAqoPUk8AVwWrftdfsq6 DdNY61+0t4BtZ1+9DceMLJXH1BlzX4QeP/ih8S/itqia38T/AIg634ivI0KQ3OuapNdPGhOSqmRj tXPOBgVghFHIFfbUPDWPL++xGvlH9W9fuR8BiPFipzfuMKrf3pa/cl+rP3y/4bV/ZA/6Ol+Hn/hY 2X/x2j/htX9kD/o6X4ef+FjZf/Ha/A6jFdP/ABDbA/8AP+X3I5P+Ir5l/wBA0PvZ++P/AA2r+yB/ 0dL8PP8AwsbL/wCO0f8ADav7IH/R0vw8/wDCxsv/AI7X4HYoxS/4hvgf+f8AL7kH/EV8y/6B4fez 98f+G1v2QP8Ao6X4ef8AhY2X/wAdr0u3uIrqJZ4JFeORQyOpyGB6Ee1fzh4r+i7wkqr4Z07A/wCX GH/0Ba+R4q4aocPRounUcufm3SVrcvb1Pt+DOLcTxPOsqtNQ9mo2s273v39DSoLAdTRXwX/wW5/b Z8afAjwpoPwC+EXiifSdd8U28l7repWNw0VzaacrbI0jYDKmaQSDerBlEDDo+a+PPuz6+8Z/tK/s 5/DjV28P/EP4/eCtBv0+9Y614qtLWZfqksit3HbvVLRf2uv2UPEms2nh3w7+098PNQ1DULqO2sbG y8aWMs1zM7BUijRZSzuzEKFAJJIA5r84P2PP+CIA+PHwL0X4zfFb4v3ugzeJLVb7S9J03TUmMdm4 3RSSO7YLSIQ4UD5VYZJJIX3P4Rf8EKfhn8I/ix4X+K2n/HvXry48MeIrLVobSbSYVSd7adJgjENk AlMEj1oA+7wcjIorhfjn+0f8E/2ZPB3/AAmvxv8AiBZaDYbtlv55LzXT5A2QwoDJMw3AkIp2j5jh QSPmUf8ABeb9iM+JP7CbRvHa2vmbf7ZOgwfZsY+9t+0+dj/tnn2oA+1KK4z4G/tC/Br9pPwXH8Qf gj49s/EGltI0ck1ruWSCQdY5YnCyQvjBCuqkqQwBUgn5o+Jv/BcL9k/4U/EnxD8LfEXw9+Ik2oeG tcu9KvprLSbBoZJreZonaMteqxQshIJVSRjIHSgD7Kor4z8Bf8F1v2IfGfiOHw/q9t4y8NRzyKi6 lr2iQ/Z0Jzjcba4mZRkdSuBnJ4yR9beJfHng3wd4RuvH3irxPY6folna/abrVru6VLeOHGfMLk7d pBGDnnIx1FAGtUdzc29lbSXl5OkMMMZeWWRgqooGSxJ6ADvXxj4w/wCC8f7EXhjX5tF0fSvHPiCG I4XU9H0GBIJf90XVxDJ+aCvRv2bP+Cg/wM/bo8I+OrL4beG/Fmmw+G9GVtWbXLC1jZ47iOcDyhFc SBmAhfIbaOV5OTgA9k+HXxx+Cvxfmu7f4S/F/wAL+KJLBUa+j8O+ILa+NuHJ2lxC7bA21sZxnacd K6ivz1/4Ie2P7NVp4j+IzfADxH45v5WstM/tT/hMdFs7QIu+58vyjbXM27nfndtxxjOTj6C/ar/4 Kh/so/sieJW8C+Ptf1PWPEUSxtdaD4Ys0ubi1VxlTKzyRxRkr82xnD7SrbcMpIB9EUV8b/C3/gt9 +yj8XPiZ4d+FXhv4ffEKHUPE2uWulWM19pNisMc1xMsSNIVvWYIGcEkKxAzgHpXRftOf8FdP2bv2 UfjJqXwQ+IngnxxeatpcNvLcXGi6bZyW7CaFZV2tLdxsSFcZyo5z160AfU1FfEej/wDBfL9i3U9T hsL7wf8AEPTYZX2yX15odm0UI/vMIrt3I/3VY+1fX3wz+J3gP4x+BdN+Jnwz8S2+saHrFqLjT9Qt c7ZEzggggMjKwKsjAMjKysAQQADeor5T+O3/AAWV/Yp+BnimbwYde1vxbf2k5hvl8H6dHcQ2zgcg zTSxRvjofLZ8Hg4IIEf7On/BYj9mb9pv4z6J8DPAXgbx1Z6tr0kyWdxq+mWUduhigknbe0d27D5Y mAwp5I6DkAH0Bpf7QnwD1zx83wp0T44eELzxQtxNbt4btfEtrJqCzRBmljNushk3IEcsu3KhGJxg 12FfmT+zzp37J8f/AAWSvrnwz4p+Iknjr/hOPE5ksb7QbCPSRcG2v/tAEy3TTeWF8zYfKyxC7guS R9CftD/8FjP2ZP2afjLrnwO8d+BfHd3q2gSxR3lxpOl2Ulu5khSYbGku0Y/LIAcqOc9RyQD6yor4 r8Kf8F5v2I/EOtxaVrOjeO9Bt5Pv6nq2gwPBFyPvC1uJpPfhD09cA/YnhXxV4c8ceG7Hxj4Q1m31 HS9UtI7rT7+0kDx3ELruV1I6gg5oA0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo oAKKKKADIHU184/8FFP28fDv7GHw5jj0u3h1LxprySJ4c0qQ5jiUDDXc+OkSEgBchpGO1cAO6e/e KvEWjeD/AA5f+LfEeox2mnaXYzXd/dTfdhhjQu7n2Cgn8K/BT9rL9orxN+1R8eNe+MWvyzrDfXPl aPYzSlhYWMeVggUZIXC/M23CtI8j4y5r67g/II51mDlWX7qnZvzfSP8An5ep8Nx1xLLIctUKDtWq XUf7qW8vXZLzd+hyXxD+Injf4r+MtQ+IvxH8TXWr61qk5mvtQvZNzyN2HoqqMKqqAqqoVQAAK6z4 E/skftHftNNcP8EfhNqOt29q5S41BWjt7VJAATH587JHvwynZu3YIOMVwuhaLqPiTW7Pw5pMJku9 Quo7a1jHVpHYKo/Miv27+I3xW+BP/BMP9mnwvaap4Z1aTw7Y3VvoVpHoFjA88tw0EsrXEgeSJSzm GR3bOS75wckj9O4izytklOjhsFSUqlTSMbaJK3RW7pJK34H5Fwvw/R4gqV8Vj6zhSpq85X1bfm79 m22n+J+Z3/DoX/goGvH/AAo2P/wqNN/+SKP+HQ//AAUD/wCiGR/+FTpn/wAk19rf8P3P2Qf+hD+I n/gnsf8A5Mo/4fufsg/9CH8RP/BPY/8AyZXzv9vce/8AQGv/AACX/wAkfV/6t+G//Qc//A4//IHx T/w6H/4KB/8ARDI//Cp0z/5JoP8AwSG/4KBn/mhkf/hU6Z/8k19rf8P3P2Qf+hD+In/gnsf/AJMo b/gu5+yDj/kRPiJ/4J7H/wCTKP7e49/6A1/4BL/5IX+rfhv/ANBz/wDA4/8AyB8F+OP+CY/7dfw9 05tW1r9nbWLqFeo0O4t9Rk/792skj/8AjteI6xo+r+G9VudC8Q6Vc6ffWczRXlnewNFLBIpwyOjA MrAggggEGv2r+Gv/AAVa/YU+J8trYQfGeHRb66XP2TxNYzWQiOejzuv2cH6Sn+dek/Fj4C/s7/tV eDYbf4k+BtE8Uabd2ySabqi4aRImKur291ERIitgHMbgMDg5UkGafHWa4CqoZphXG/VJxfyUrp/e iqnh3k+ZUXUyjGqTXRuMl83GzXzTPwDJwcGv6MPCn/Is6d/14xf+gLX5A/8ABRX/AIJjeIf2Rv8A i6Xw1vrzXPANxOsc01wgN1o0jEKqTlQA8bMcLKFUAkIwDFGk/X7wp/yLOm/9eMP/AKAK8/jzMcHm mCwmIw0uaLc/VP3NGuj/AK21PS8Ocrx2T5hjcNiocskqfo1edmn1T7/qaFfj1/wX5t72H9sbw/cT hjFN8OrP7Ox6DF7fZX8+fxr9ha+Vf+Cqn7A+p/tq/Cew1T4dTW0Pjbwm802ix3Unlx6jBIF86zZ+ iMxRGjdsqGUqSiyM6/m5+sHsX7HN/pupfslfDC80mVWt2+H2jiPa4bbiyiG3I7gjB6cg9K9IJIGQ K/HH4JeP/wDgsh+xp4bk+CngL4FeNLjR7K4ke1s5vAc2q29ozOS4gnhR12M2W2q7JkllALMW9e+B f7aH/BYbxV8bvBvhj4m/ADxFZeG9S8Vada+ILyb4V3dukFjJcxpPI0rRgRBYyxLkgKBk9KAPE/27 p9Q/at/4K1x/Bfx9rt9a6I3jDSfC1rGkyq1nZu8KymLcrKHdpJZFJVss65yAAP0w1r/gnP8AsQav 8O5Phu37MvhC3s2sFtFv7PRIY9QRVAAcXgXzzLwCZC5ZjncWyc/H/wDwVW/4J0fH7V/j0v7Z37LV jqGrX00lpc6tpujzbdQ0++tUVIry2UENIu2KL5UzIsg3AEElHXP/AAU6/wCCoF78KG8C237A/iSH xtJGYP8AhLY/COpGFMjAkFg0BAlAIbJlMe7kx7fkoA8Z/wCCTOs+LfgF/wAFNLj4AaN4la60vVLr WtB1rGViuxYxXM0VwEyQHD23yk5KrLIAfmOdT9k/4d+Avif/AMFofiB4X+JPgrSfEGlyeMPFzyaZ rmmxXdu7LczlWMcqspIPIOMg17h/wSM/4JrfFb4K+O7j9p/9o7S/7P1ySxkg8O6JdTLLcwmcDzbu cqSI5ChaMJktiSTeFOBXJ/sZfAf45eGP+Cw3jb4meJfgx4s07w3deKPFUtr4gvvDl1DYzRyzzmJ1 naMRsrggqQ2GBGM0AR/8Fzv2XvgB8Jfhp4L+I3wp+E+heGNSn12TTbr/AIR3S4rKGeAwvKN8USqr OGXh8bsEgkgDHG/8FHfi14103/gm9+zN8MrXVpI9L8ReFEudWSNypuBYWlnHBG+PvIPtBbacjdHG 3VQa+jv+C5nwp+KXxc+Bfg3RvhT8NfEHie8tfFrTXVr4e0ae9khj+yyDeywoxVckDJGMkVV+LP8A wT88U/tY/wDBNH4V+A4LJtB8feCfDNnNpltrlu9uwkNuqXFlMGXdDv2oeVyHiQHA3EADf2Bf+CUH 7I2o/sv+EfiL8YPAK+LvEHizRLfWbq8vr6eOO2juY1ljt4o4pFUBEZQWO5mfechSqL9HeEf2Tf2e f2Z/AfjC4+BfwztfDraxoci6mbW5mk+0CKKXy8+Y7Y2+Y/TH3q/P34I/tE/8Fh/2NvAsH7P1l+yL qniSx0OR49PuNS8F6jqhtoc5EEdzYzCOSJTnby5UHaG2Kir9V/sX/tKftq/tJeEviNp37Uv7Okng r+z9FiXw8qeEtR05tQkmjuRIo+1yP5pXZFwmCN/OdwoA+RP+CL/xB1H4S/C/9or4qaRaxz3fhnwH DqtrBNnZJJbw38yq2OcEoAfavn/9jP44/s3eBPj/AKp8Z/22/Aes/ECO6tbia3tRYwX/ANo1KaVW e5uUuZ40l+Uy8PvBZ92MqGH2T/wRA/Z2+KPgyX4saB8dvgl4j0LTdf0fTrT7P4p8O3FpHfRk3azR Dz0USDa4DAZwGGetecab+yb+17/wTJ/abvvFvw0/Zub4weCdTWS1to4dGa/kmsvNSQK6wo8lrcqF C+a0bRnLEK44UA9g+CX/AAUD/wCCUnjH4xeE/Bnw1/YgOkeIdW8S2Nnoeq/8K10KD7HeS3CJDN5s U5kj2uVbcgLLjIBIArxH9uXQdE8T/wDBbXw74c8S6Pa6hp994y8H299YX1ussNxC/wBiV45EYFXR lJBUgggkEGvpT4TfttfGXxX8U/DPhfVP+COvifwvbal4gsrS48Sz6bcrHpMck6I12xOlIAIgTISX QYXll6jyP9rD4BfHbxH/AMFlPC/xQ8O/BTxdqHhmDxp4Snn8R2Xhu6lsI4oWs/Nka4WMxhU2tuJb C7TnGDQB7R/wVf8A2Pv2XPCf7Dni/wCIPgn4A+EfD+taE1hNpupeH9BgsZUZ7+3hcMYFXzFMcrja +4ZIYAMAR8+fsnfF7x38M/8AgiF8XPFPhfX7i3vrLxtLpmm3CyNusoLtdLil8o5zGcXMzAqQQ77h g819u/8ABU3wb4v+IH7Bnj7wh4D8K6lrerXkWnfZNL0ixkubifbqVq7bI4wWbCqzHAOApJ4BrwH/ AIJj/sh+JfHH/BOP4ifs3ftAfD/XvCr+KPGF55cOvaNNaXES/YtPMF2kUwQuEniDA/dLREZ4NAHj v/BG/wD4J6fAT9pfwJ4j+OHx40mTX4bLXG0bSfD7XEsEMMiQQzyXMjROrSMROiKpIVdrkhyy7Pvz 4Yf8E9/2Ovgx450/4l/C/wCB+n6Pr2lNI1hqUN5cs0ReNo2wHlZTlHYcg9a/O/4Q+DP+CrX/AAS5 8Ya/4R+GPwPuPGmi6xIGCWOi3esabO6nCXcSWjrLbylQUYPsLLt3q22Jh9Gfsj/tz/8ABS/4tftD eG/h38ef2PD4X8J6lJcjWNe/4V/rNl9lCWsskZ864maJN0qRr8wOd2ByQaAPnH9l44/4L1akcf8A NRPGH/pJqVe1ftn/APBQf/gnt8OPj7rXgzVf2LvDfxK8UWd6bXxJrt34d07m6jCx+SJpYZJJ3Tb5 bZAClAoLYOOC/Zz/AGf/AI9aL/wWs1D4qaz8EfF9n4Xk8eeKriPxJdeG7qOwaGW11BYpBcNGIyrl 0CtuwxZQM5FcZ8T/ANmv9uv9iP8Ab31n9of4M/APUvHUM2vapqHh3UbfQ7nV7eeG9EuROtqRLHKi zsp3FCXQkFkILAHC/thftcfshftB/Cp/Dnw0/YOs/h74gs7mKfTfEGhra2qIN6iRJ0gt4/ORkyAG OVfaQR8wb7z/AOCGetapq37C1tZX920kOl+KtRtbGNukURKTFR7eZLI31avlf9pb9qj/AIKtftTf BnWPgZ4+/YS1Sy0fXPs32u40f4Y67Hcp5NxHcLsaSR1GXiUHKngnGDgj63/4Iu/Dn4h/C39j2bwt 8TvAWteHNT/4S69m/s/XtLms5zG0cAV9kqq20kHBxg4NAH1tRRRQAUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABRRSOSBkUAfH3/Ban46S/C39lEfD3R9V+z6l461JNP2xzMkv2GL97csu0 jKkiGFwcgrcEEc1+QI6V9vf8F2viHd+If2lfDfw6W/8AMs/DvhNZ/IGP3N1czOZOnQmOK3/AD8fi Gv3rgnAxwfD9OVtal5P56L8Ej+bPEDMJY7iarG/u07QXy1f/AJM2dR8Dzj41eDz/ANTTp/8A6Ux1 +n//AAXfP/GInh0Y/wCajWf/AKQX9fmB8EP+S0+D/wDsadP/APSmOv0+/wCC7/8AyaL4d/7KNZ/+ kF/Xn8Sf8lRlvq/zR6fCv/JI5r/hj+Uj8maaWIOKdX6Hf8EE/CPhTxQ3xWbxL4Z0/UDD/YXk/brN JvL3f2hnbvBxnaM464HpX1WdZpHJstni3Hm5baXte7S3+Z8fkGUSz3NqeCjPl5762va0XLa67H54 7hSEiv6IV+FHwtx/yTXw/wD+CeD/AOJqvqnwV+DusWEmmat8JfDN1bzLtmt7jQbd0dfQqUwR9a+E /wCIlUP+gZ/+BL/5E/Rv+IT4j/oLX/gD/wDkj+eVcNXtf7HX7dfxl/Y48XQ3XhXU5tS8MTXAbWPC d3cH7NcKSAzx5z5E2OkijqBuDqNtfZP/AAVB/wCCXnw/tvh3qn7RX7N3hO10O+0OE3fiLw7p6iK1 ubNATLPDEBtikjXDFV2oyKxA3/f/ADMHzCvrsvx+V8VZbL3bxekoy3T/AK1TX5nw+ZZbnHBubRXP yyWsZRekl/WjT/Lf9+vD/iL4Uftl/s5/2ppLHUPCvjjw/NDIkgCyLHIrRSRtgnZLG25Tgna6HB4B ru9BtZbDRbOxmHzQ20aN9QoFfl//AMEMv2lLnwx8T9Y/Zh129/4l3iaF9T0FWf8A1eoQoPORRt58 y3XcSWwPsoABLGv1MxzmvxTiDK6uS5jPBttwT5o+af66Wfmj9/4Yzajn+WQxySU2uWXk49PTW68m FYfiv4n/AA18CXUVj44+IWh6NNPHvhh1bVobdpFzjcokYEjPGRW5X5P/APBwmAfjz4BJ/wChRm/9 Knrwz6M/S7/hof8AZ+zn/heXg3/wprT/AOOUv/DRH7P/AP0XPwd/4U1p/wDHK/nMwPSjA9KAP6Mv +Gh/2fun/C8vBv8A4U1p/wDHKP8Ahof9n7/ouXg3/wAKa0/+OV/ObgelGB6UAf0neF/HngbxvE9x 4K8ZaTq8cf8ArJNL1CK4C/UxscVqhkPQiv5noZZbaeO6tpGjkjYNHJG21lYHIII6HNfRv7PP/BVn 9tD9n7V4WHxSvPF2jiQNdaH4xuHvlkXGMJM5M0OAcgI4XONysOCAfurgZzigDHQV4r+xR+3L8JP2 2/h5/wAJV4FkbT9asEjXxF4ZvJla406Zh2Ix5sJO7ZKANwHKowZF9qoAz/Evizwt4M0z+2vGHiXT 9JsxIE+16leJBFuPRdzkDJ9M1zx/aH/Z/wC/xz8Hf+FNaf8Axyvm3/guXz+wldZ/6GrTv/Qnr8Xt o9KAP6TfCnj7wJ48imuPA/jXSNaS3YLcPpOpRXAiJHAYxsdpOD164rXwPSvzm/4N4lH/AAr34mnH /MZ07/0VNX6M0AFGB6UUUABGeCKMD0oooAMDOcUdeooooAMAdBWb4p8Z+D/A2npq/jbxXpuj2skw hjutUvo7eNpCCQgaQgFiFY4znAPpWlXwz/wcBEj9jfwyR/0Uyz/9N2o0AfWv/DRH7P8A/wBFz8Hf +FNaf/HK3vC3jPwd44sG1bwV4r0zWLWOYxSXWl30dxGsgAJQtGSAwDKcdcMPUV/Ndgelfr9/wb/A f8Mc+Jjj/mpl5/6b9OoA+5s45NcpqHx4+B2k38+lar8ZfClrdWszRXNtceIrZJIpFOGRlL5VgQQQ eQRXVt0r+ef9tJR/w2N8WeP+ama9/wCnCegD97tK+OfwT13U4NF0P4w+Fby8upBHbWlr4gtpJZXP RVVXJYn0AzXVV/P9/wAE9QP+G4fhX/2O1j/6NFf0A0AFFFFABRRRQAUUUUAFFFFABXHv+0N8Ao3a OT44+D1ZThlbxNa5B9P9ZXYV/NP4iVR4i1Dj/l+lP/j5oA/ox0X42/BnxJqsOheHfi54Yv765bbb 2dlr1vLLK2CcKiuSxwCeB0FdPX4N/wDBK8D/AIeA/DMY/wCYxP8A+kk9fvJQAUUUUAFNcZFOpGOB zQB+In/BVXVrbWf2/fiHd2jsyR3VjB8w6NFp9tGw/wC+kNfPdezf8FEIJLf9t74mRyxlWPiiZsH+ 6yqwP4gg14zX9LZLGMMnw8V/z7h/6Sj+Tc+lKeeYqT/5+T/9KZ1HwQ/5LT4P/wCxp0//ANKY6/T7 /gu//wAmi+Hf+yjWf/pBf1+YPwQ/5LT4P/7GnT//AEpjr9Pv+C7/APyaL4d/7KNZ/wDpBf18nxJ/ yVGW+r/NH2XCv/JI5r/hj+Uj8ma/SD/g326/Fv8A7gP/ALka/N+v0g/4N9uvxb/7gP8A7ka9Ljj/ AJJmv/25/wClxPL8Pf8AkrcP/wBv/wDpEj9IB0ooHSivwM/pQhvLa2vLaS0vLeOWGWNkkjkUMrqR ggg9QRX8+Xx8+Htt8JPjj4w+F1i8jW/h7xPfafavK2WeKKd0RifUqAfxr+hFzxX4d/8ABT3TrTS/ 28viNbWMIjRtUt5mUd3ktIJHP4sxP41+keG1aUcwr0ujin800v1Z+U+K2HjLLMPW6qbXylFt/wDp KPP/ANl/4kXPwg/aO8D/ABKt72a3j0nxRZzXklu21mtfNVZ48+jwmRD7Ma/oEU7jX84O5l+ZTgjk Edq/o402R5bOGWQYZo1LD0OK28SqUY1sNU6tSXyTTX5s5/CetJ0MVR6Jxa9WpJ/kixX5P/8ABwl/ yXjwD/2KU3/pU9frBX5P/wDBwl/yXjwD/wBilN/6VPX5ifrx+fdfTP8AwTq/4J1f8N9nxgP+Fw/8 In/wif8AZ/8AzL/2/wC1favtP/TxDs2/Z/8Aazv7Y5+Zq/TL/g3V6/GH/uX/AP3JUAH/ABDqf9Xh /wDmPv8A74Ujf8G6pCkr+2Dn2/4V/wD/AHwr9M6KAPxw/aa/4IgftH/BLw1ceNfhd4ks/iDp1jAZ Ly10+we11FVAYsyW5aRZVAUcJIZCWwIzgmvirOelf0yEAjBr8Xv+C037LOk/s/8A7T8PxD8H6Ytr ofxDtZdRWCMAJDqMbhbtEH9074Zv96dgAAoFAHz5+zB+0h4//ZR+NGkfGf4eXkonsJgmo6esxSPU rNmHm2svByjgcEg7WCOPmRSP6A/hP8TfCXxn+Guh/FbwJfi60fxBpsN7YS5G7Y6g7XAJ2upyrL1V lZTyDX83lfrJ/wAEB/jxd+Lfgf4m+AWs3Ekk3g/Vo73SmkmBAsrzeTEi4yAk8UrsckZuVHGOQD6e /bl/ZP8A+Gz/AIES/BT/AIT7/hG/N1W3vf7T/sv7Zjyix2eX5sXXPXdxjoa+L/8AiHV/6vD/APMf f/fCvp3/AIKvfHf4r/s6fslXHxI+DPi1tF1qPxBZW63y2cM5Ebl9y7ZkdecDnGfSvzC/4e8f8FE/ +jjp/wDwm9L/APkWgD9Rf+CeP7Aa/sFeH/E3h/8A4W3/AMJX/wAJHe21x5n9g/Yfs/lI67cefLvz vznIxjvX0bXxT/wRj/aq+Pv7U3g7x3q/x5+IMmv3Gj6pYxabI+n21v5KPHKXGII0ByVHXJ4r7WoA KMgdTXlf7WP7Y3wR/Y18BL42+L+vus14zx6LodiokvtTkUAssMZIGFDLudiqLuUE5ZQ35h/HP/gu n+178QdalX4P22i+A9JWTNrHa2MeoXjLtAIlmuUaNvmBI2Qx4DYJYjcQD9kAQRkGivwr/wCHuf8A wUQzn/ho64/8J3TP/kaj/h7n/wAFEf8Ao4+5/wDCd0z/AORqAP3Uor8K/wDh7n/wUR/6OPuf/Cd0 z/5Go/4e5/8ABRH/AKOPuf8AwndM/wDkagD91AQehrwv/goF+xf/AMN0/BrTfhIfiV/wiv8AZ3ia HV/7Q/sf7d5nl29zD5WzzosZ+0bt2442YxzkcL/wR5/aI+Mn7TH7MmtePfjh41k17VrXxzdWFveS WcEBS3Szs5FTbCiLw0rnOM/N16Yb/wAFif2jPjP+zH+zLofj34GeNX0HVrzx1bafcXiWMFxvt2sr 2Ro9s8bqMvFGcgZ+XrgkEA+ff+IdT/q8P/zH3/3wr6+/4J//ALGA/YW+DmpfCQ/Ev/hKP7R8TTav /aH9j/YfL8y3t4fK8vzpc4+z7t24Z34xxk/lD/w94/4KJ/8ARx0//hN6X/8AItfpD/wR7/aI+Mv7 UH7NOu+Pvjp41fXtWtPHVzp9vePZQW+y2SyspFj2wRopw8shyRn5uuAMAH1ixwuTX88/7af/ACeN 8Wv+yma9/wCnCevRD/wVy/4KIEYP7R1z/wCE7pn/AMjV4B4w8W+IfH3i3VfHfi7UmvNW1rUp7/VL xo1Qz3E0jSSPtQBRudicAADPAAoA9T/4J6n/AIzh+FY/6nax/wDRgr+gCv5sfAPjvxZ8MPGul/EX wJq7afrOi3sd3pl6sSSGGZDlW2uGVsHswI9q96/4e5/8FEf+jj7n/wAJ3TP/AJGoA/dTOKNwztzz Xwn/AMEWf2t/2h/2qm+JX/C/fiPJ4g/sH+xjpPmafbW/2fzvt3m/6iJN27yo/vZxt4xk57z/AILD /tE/GX9mP9mjQ/H3wN8ayaDq9546tbC4vI7OCcvbtZXsjR7Z0dRl4ozkDPy9cE5APrCivwr/AOHu f/BRH/o4+5/8J3TP/kaj/h7n/wAFEf8Ao4+5/wDCd0z/AORqAP3UoLAcE1+Ff/D3P/goj/0cfc/+ E7pn/wAjU+D/AIK8/wDBRK3kEi/tFSt/syeGdLYH87WgD90aK/Lb9ln/AIL2+NLPXLXwt+1n4Lsb zS5XjiPijw5atFcWv3t0s9vuZZ1yUz5XllVViEkJC1+mvgzxn4U+InhTT/HHgbX7XVNI1S1W40/U LOTfHPGwyGB/p1B4OCKANSv5p/Ef/Ixah/1/S/8AoZr+liv5p/Ef/Ixah/1/S/8AoRoA91/4JX/8 pAvhn/2GJ/8A0knr946/Bz/glf8A8pAvhn/2GJ//AEknr946ACiiigApG6dKWkbkYxQB+Jn/AAVm 0VtG/b+8ebbFoYrptOuIcrgSbtPtt7j1zIH/ABBr5zr7u/4L1fDu50b46eDfikmwW+u+GZNPwv3j NaTl2Y/VLuMD/dPpz8IjOOa/ovhnERxWQYaa/lS/8B939D+WeLMLLB8SYqm/53L5S95fmdR8EP8A ktPg/wD7GnT/AP0pjr9Pv+C7/wDyaL4d/wCyjWf/AKQX9fmD8EP+S0+D/wDsadP/APSmOv0+/wCC 7/8AyaL4d/7KNZ/+kF/Xz3En/JUZb6v80fTcK/8AJI5r/hj+Uj8ma/SD/g326/Fv/uA/+5Gvzfr9 Hv8Ag33OD8XOf+gD/wC5GvS44/5Jmv8A9uf+lxPL8Pf+Stw//b//AKRI/SIdKKaH91/OjzPcV+Bn 9KBJ0r8E/wBtzxmPH/7XnxI8Tx3SzxSeML6G2mQjDwwymGMj22RrX61f8FC/21fC37JHwW1Cex16 3/4TTV7OS38K6Wrq0yysCou2Qg4ii5bLDazKE6tx+IS9OfXJr9W8OctrQ9rjZqyaUY+et2/TRfif i/inm2HqOjgKck5RblK3TS0U/Ozbt6dzZ+HXhG/+IXxC0HwBpkO+41zWbXT7dd2N0k0yxqPxLCv6 JYYxGu1RwvGPSvxo/wCCQHwCufjJ+2Bpni6/0nz9F8CxHWL6aSFmjFyMraJuAwsnnETKCeRbPjO0 1+zVed4jYyFbMaWHi/gi2/Jytp9yT+Z63hXgalHK62Kkv4kkl5qKev3tr5BX5P8A/Bwl/wAl48A/ 9ilN/wClT1+sFfk//wAHCX/JePAP/YpTf+lT1+dH6kfn3X6Zf8G6vX4w/wDcv/8AuSr8za/TL/g3 V6/GH/uX/wD3JUAfplRRRQAV8Kf8F+/BdnrP7KPhvxqmjxyX2ieN4U+2svzwWs9tOsiA+jSJbk/7 g9K+66+SP+C2zWy/sDa4J/vNrmmCH/e+0L/TNAH4pV9q/wDBBzxpbeHP2077w1eXcijxB4JvLW2i U/LJPHNb3Az9I4psfX3NfFVfTH/BHeN5P+Cjfw7ZELbBq7McfdH9kXgz+ZA/GgD9Cf8AguV/yYld f9jVp383r8Xq/aH/AILlf8mJXX/Y1ad/N6/F6gD9TP8Ag3j/AOSefE7/ALDWm/8AomevvP4w/Fbw j8D/AIYa78W/Hl40Ok+H9Mlvbxo9vmOqDiOMMQGkdsIikjczKMjNfBn/AAbx/wDJPPid/wBhrTf/ AETPXQ/8F/PjDfeEv2dvCvwe0u9lhbxh4iee+WNhtntLJFZomGOR501tIOnMQoA/NP8Aah/aU+IX 7Wfxm1T4y/Ea8kM95IY9O0/zS0Wm2ak+VaxZAwqgnJAG9mZyNzsT59RX0N/wS9/Ze0b9qz9rnRvB /i+1W48PaHaya34gtWYD7TbwsipByCCrzSQq44JjMmCDg0AU/wBnz/gmd+2X+0p4ft/GfgH4UNa6 Dd82ut69ex2cM64BDxq58yVCDxIiMhORuyDXrA/4IO/tukZ/tbwL/wCD6f8A+Rq/Y62toLOBbW1h WOONQscargKAMAAdhipKAPwD/a//AGD/AI3/ALEjeHV+Ml3oMv8Awk32v+zf7F1CSfH2fyfM3740 2/69MYznnpjnxev0y/4OKyN3wd/7mH/3G1+ZtAH7A/8ABAP/AJM08Rf9lKvf/SDT6Z/wcB/8mbeG f+ymWf8A6btRp/8AwQD/AOTNPEX/AGUq9/8ASDT6Z/wcB/8AJm3hn/spln/6btRoA/IGv18/4IBO U/Y28TELn/i5l5/6btOr8g6/X7/g3+/5M48Tf9lMvP8A036dQB89n/g30/aOAz/wu3wT/wB83n/x mviT4rfD/UvhL8UfEvwq1i9hubzwz4gvNJurm2z5csltO8LOm4A7SUJGQDg81/SKelfzz/tp/wDJ 4/xa/wCyma9/6cJ6AOb+Cfwr1j44/F3w78H9A1G3s73xJq0Nha3V5u8qJ5G2hm2gnA74Ga+0/wDi H0/aO/6Lb4J/75vP/jNfNH/BPX/k+H4V/wDY7WP/AKNFf0AUAfJP/BLr/gn38SP2ED44/wCE/wDG mi61/wAJUdMFp/Ywm/c/Zvte7f5iL1+0LjGehz2rpf8AgqD+yF8TP21vgLo/wp+FmtaHp+oaf4wt 9Wmm8QXU0ULQpaXcJVTDDK2/dOnBUDAbnoD9I0EhRk0AfkB/xD//ALZH/RSfhn/4OdQ/+QaP+If/ APbI/wCik/DP/wAHOof/ACDX6r+Pvjh8FvhS8UfxR+L3hfw204zCviDXrezMg9V851z+Fc1/w2r+ xv8A9HafDP8A8LzT/wD49QB+Zj/8EAv2yVHHxH+Gjew1nUP/AJBrxf8Aat/4JsftS/sfaJH4w+JX hzT9Q8PtIkUniDw7eNcW1vIxIVJQ6JJHkgYZkCEsoDFjiv2b/wCG1f2N/wDo7T4Z/wDheaf/APHq 5T46ftJ/sL/Ff4N+KPhx4o/ac+GV/Y61odzazWv/AAnGnMzFoztK/veHDYZSOQwUjBANAH4J9RxX 6Sf8EB/2lvET+JPEX7KXiLV5JtMXT313w3HPMMWsiyJHcwJk5Ik81JQg+VTFK2MuxP5tjOOa+mP+ CPd69l/wUV+HpDNtm/tWJgvfOl3eP1AoA/cyv5p/Ef8AyMWof9f0v/oZr+lgZxzX80/iP/kYtQ/6 /pf/AEI0Ae6/8Er/APlIF8M/+wxP/wCkk9fvHX4Of8Er/wDlIF8M/wDsMT/+kk9fvHQAUUUUAFFF FAHy3/wV7+A918af2O9V1fQ7PzdU8F3K69boqrueCNWS5XJIwBA8kuBkkwqACSK/GMHiv6Or20gv raSzu7dJoZoyksMihldSMFSDwQRX4bf8FBv2RtU/ZC/aBv8AwlZ6ZPH4X1Z3vvCN4+5ke1LZMG8l izwk+W247iNjkASDP6t4d5vH2c8uqPW7lHz/AJl8t/m+x+L+KOSTVSnmlNaNKM/J/Zfz2+SPNvgh /wAlp8H/APY06f8A+lMdfp9/wXfP/GIvh3/so1n/AOkF/X5S+HdcvPDGv2PiXTpNtxp95FcwN6PG 4ZT+YFftl+1h+zf4a/4KM/s5eGdF8PfE7+xNLu9Ss/Een6tHpf2rz4TaTKi+WZI9uVuQ2c5G3GOe PQ4urU8FnmX4qtpCLld2btrF9DzOCaFTH8P5lg6GtScY2V0r/Eup+IO4etdF4A+MPxZ+FH2s/C34 peIvDX9oeX9u/wCEf1yez+07N2zzPJdd+3e+M5xubHU1+gf/ABD86b/0dZL/AOEUv/yZR/xD86b/ ANHWS/8AhFL/APJlelPjThepHlnUun0cJNfkeVT4B4wpSU4UbNdVOCf/AKUfD/8Aw2F+1r/0dN8R v/C4v/8A49R/w2F+1qf+bpfiN/4XF/8A/Hq+4P8AiH503/o6yX/wil/+TKP+IfrTR0/atm/8Iof/ ACZXP/rRwX/d/wDBb/8AkTp/1O487S/8Gx/+SPzl1/X9d8V6xceIvFGt3mpaheSmW7vtQuXmmnc9 Wd3JZj7kk1d+H/w+8b/Fbxnp/wAPfhx4ZutY1rVLgRWOn2Ue55Gxkn0VVUFmdiFVVLMQASP0q8Ff 8EC/g/YSSH4ifHvxJqin/U/2Lp9vp5X6mX7Rn9K+qP2fv2Qv2bv2StHnHwk8B2elzPCf7Q1y8kM1 5MmAW3zyEsqfIG2KVQEZCiufH+IGU4ejy4KLnLpo4xXrez+SXzW505b4Z55icQpY6Spwvq7qUn3t a6v5t6b2exyv7Ef7K3hH9g39nWXTfEerWLapJE+reNteU7YfMSMkqrNg+TCgKqTjPzvtUuVHsHwq 8ZSfEb4ZeHfiFJafZzruh2mofZw2RH50KSbc98bsfhX54/8ABVH/AIKceEPG3hK9/Zn/AGb/ABQu pW2ofJ4q8U6bcHyJIQTmzt3H+tVyBvkU7GQ7AXDvt+9P2Xf+TaPh3/2I+k/+kcVfnOcZfmFPCwzD G39pWk3Z6OyS1a6XvouiSP1TIsyyypjJ5Zl9nTw8Iq61V23on1tbV9W2d1X5P/8ABwl/yXjwD/2K U3/pU9frBX5P/wDBwl/yXjwD/wBilN/6VPXzp9Ufn3X6Zf8ABur1+MP/AHL/AP7kq/M2v0y/4N1e vxh/7l//ANyVAH6ZUUUUAFfBP/BwH8QtM0X9mfwj8NhqTR6hr/jJbtLZUOJrW1tpRKSeg2y3Ftx1 OfY192avrWkeH9Mudb17VLexsrO3ee8vLuZY4oIkUs0juxAVVUEliQABk1+G/wDwVI/bHsP2wv2k ptU8G3TSeEfC9sdL8NyFWUXQDFprvaT8vmv93hSYo4tyhtwoA+ba+3P+CCnguLxB+2Pq3iq700yx 6B4Jupbe4xxBcy3FvCv4tE04+ma+I6/Xb/ggn8A5vAX7OGt/HTVlkW68easqWSGRSgsLIyRIwGNy s073OckgqkZGOcgHV/8ABcr/AJMSuv8AsatO/m9fi9X7Q/8ABcr/AJMSuv8AsatO/m9fi9QB+pn/ AAbx/wDJPPid/wBhrTf/AETPXP8A/BxMHF98Iyx+Ux69t+udPz/Sug/4N4/+SefE7/sNab/6Jnrr v+C9/wAGb3xv+y/ofxc0qyM03gnxCPtz71AisbwCF2weWPnraLgdAxPQEgA/IWv0a/4N5NK8Oz+O PihrV0Y/7Wt9K0uCxB+99nkluGnx7b4rfP4V+ctfRn/BLj9q3w9+yV+1Zp/ivxzK0XhzxBYyaJrt 0q7vscUrxulxjI+VJY4y55IjMhAY4BAP3YoqDTtT07WLCDVNJv4bq1uoVltrm3kDxyxsMq6sMhlI IIIOCKnoA/M3/g4r/wCaO/8Acwf+42vzNr9Mv+Div/mjv/cwf+42vzNoA/YH/ggH/wAmaeIv+ylX v/pBp9M/4OA/+TNvDP8A2Uyz/wDTdqNP/wCCAf8AyZp4i/7KVe/+kGn0z/g4D/5M28M/9lMs/wD0 3ajQB+QNfr9/wb/f8mceJv8Aspl5/wCm/Tq/IGv1+/4N/v8AkzjxN/2Uy8/9N+nUAfcx6V/PP+2n /wAnj/Fr/spmvf8Apwnr+hhulfzz/tpEH9sb4skH/mpmvf8ApwnoA2P+Cev/ACfD8K/+x2sf/Ror +gCv59f2DNYsdC/bU+Fmo6nN5cK+OtNRpD0UvcKgJ9Blhk9hX9BQIIyKACvh/wD4K+/8FFPE37Lu k2PwM+C2oi18ZeIbH7XeauE3NpNiXKKYwwKmaVkkUE5KKjHAZkYfcDfdNfgT/wAFJfGV948/bt+K Guajt8y38US6cu1cfu7NVtE/HZAufegDxvXNd1zxPrF14j8TazdajqF9cPcX1/fXDTTXEznLSSOx LOzEkliSSTzVXNByeBX7i/suf8EqP2QPgn8OtLtfE/wl0Xxj4gksYzrOt+JrNL5bicjLGKGUNFFG CSFCru2hdzOwLEA/Dqiv6Fx+xT+xuBgfsmfDP/wg9O/+M1m+Mv2MP2Prbwhqtzb/ALKXw1jkj02d 45E8C6eGVhGxBBEPBzQB/P1X0j/wSK/5SJfDj/r41L/02XdfNy9K+kf+CRX/ACkS+HH/AF8al/6b LugD906/mn8R/wDIxah/1/S/+hmv6WK/mn8R/wDIxah/1/S/+hmgD3X/AIJX/wDKQL4Z/wDYYn/9 JJ6/eOvwc/4JX/8AKQL4Z/8AYYn/APSSev3joAKKKKACiiigAry39rj9lD4e/tf/AAku/hj45H2W bd5+i61DCGm027CkLKoONy87XQkBlJGVO1l9SorbD4itha0atKXLKLumujMcThqGMw8qFaKlCSs0 9mj8A/2l/wBlv4xfsoeP5PAXxY8OtDvZzperW4ZrPUolx+8hkIG7G5cqcOmQGAyM6nwN/bp/ax/Z x8NyeDfg58Zb7S9JeTzF064sra8hhYkk+UlzFIIsliW2bdxOTk81+4nxS+EXw1+NXhC48B/FbwbY 67pNzzJZ38IYK2CA6H70cgBOHUhlzwQa+G/jv/wQe8Da3dXWufs7fFe50N28x4dC8RQm6tgxb5Y1 uEIliRRkfMszHjJJzX6tl/G2UZlh1h83ppPu480G+9rNp/JrzR+L5p4f55lOKeJySo2uiUuWaXa+ ia+afkfKv/D2/wD4KFf9HBf+WnpP/wAiUv8Aw9v/AOChX/RwX/lp6T/8iV0ni3/giv8AtxeHJvL0 bRPDWvLux5mk+IEQY9f9JWE1zTf8Ekf+ChQYqP2ftwBwGXxTpXPv/wAfVe5GfAso3XsPmoL80fPT p+IlOVm8R99R/kxf+Ht//BQr/o4H/wAtPSf/AJEo/wCHt/8AwUK/6OB/8tPSf/kSk/4dJf8ABQvv +z4f/Cp0r/5KpP8Ah0p/wUJ/6N7P/hVaT/8AJVV/xg3bD/dTI/42F3xP/lQU/wDBW7/goUeP+Ggv /LU0n/5FrzH4w/tV/tIfH1pk+Lvxo17WrW4kWSTTZr4x2W9fusLWPbCpHqEHPPWvTf8Ah0p/wUJz z+z43/hVaV/8lUv/AA6U/wCCg3/Rvrf+FTpX/wAlVvQxHB+Gnz0ZUIvunTT/AAOXE4fjjFU+SvDE TXZqo19z0PnADAr+gf8AZd/5No+Hf/Yj6T/6RxV+Q3/DpT/goRjP/DPrf+FRpX/yVX7C/AXw5rvg z4H+DPB3iWy+zahpPhXT7PULfzFfyporaNHXcpKthlIyCQexNfGeIOYYDHYfDrD1Yzs5X5ZJ223s z73wxy3MMvxOJeJoyhdRtzRcb6va6Vzrq/J//g4S/wCS8eAf+xSm/wDSp6/WCvz3/wCCxv7Dv7Un 7VXxb8I+J/gL8MP7esdL8OyWt9N/bVla+VMZ2YLi4njJ+Ug5AI96/MT9fPyjrqPhx8bfjN8HBej4 RfFrxJ4W/tLy/wC0P+Ed1yey+0+Xu2eZ5Lrv273xnON7Yxk17j/w53/4KN/9G6/+XdpH/wAl0f8A Dnf/AIKN/wDRuv8A5d2kf/JdAHEad/wUI/bi0zyTb/tUeNm8nAX7Rrss2cDHzbyd3/As5rc0/wD4 Kk/8FANLRktv2mtabcct9otrab8i8TY/Ctv/AIc7/wDBRv8A6N1/8u7SP/kuj/hzv/wUb/6N1/8A Lu0j/wCS6APMPjL+2L+1H+0HZNpPxi+OOv61p7eWX0uS88qzdkOVZreILEzA8hipPvXmoGOlfUGm f8Eav+CiuoXq2118DLWxjbrcXXizTCi/Xy7h2/JTXtnwQ/4N/Pi1q2sxXv7Q3xb0XR9LXa8lj4X8 y8vJhu+aMvKkccJx0cCYZ/hoA+Vf2IP2PfHf7aHxss/h34btri30WzdLjxZryriPTrPPPJBBmfBW NMEs3JARHZf3w8HeEvD/AIC8J6b4I8J6alnpej6fDZabZx52wW8SBI0GecBVA554rlv2eP2bvhD+ y38Orf4Y/BrwpHpunwtvuJGbfcXsxADTzyH5pJDgcngABVCqqqO7oA+PP+C5X/JiV1/2NWnfzevx er90f+CrPwD+Ln7SX7Jlx8M/gn4S/trXJPEFlcrY/b4LbMUZfe2+eRE4yOM5PYGvzH/4c7/8FG/+ jdf/AC7tI/8AkugD6z/4N4/+SefE7/sNab/6Jnr79+JHw/8ACvxW8B6x8NvHGlreaPrmnTWOpWrM V8yGRCrAMMFWwchgQQQCCCAa+Rv+CNX7Jn7Qn7KXg/x1pPx9+H/9gzazqdlLpsf9q2l15yRxyhjm 2lkC4LDhsE54719qUAfz2/tifso+Pf2OfjZqHwl8Zo1xbKxn0HWlhKx6nZk/JMuejD7rpk7XVgCw wx8tIzX9Df7T/wCyj8GP2ufh7J8PfjH4b+1wrufTdQt2Ed3p0xGPNgkIO1umVIKNtAZWAxX5n/HD /ggr+0z4P1O4u/gf4v0PxjpYObW3urj+z7/H91kkJhOOm7zRuxnaucAA+fPgD/wUJ/bA/Zm0RPCn wm+Ml5b6LG4aPRdStob61iALHbEs6OYFJdmIiKbjycmvXIv+C5f7dqRqj6p4VcqoBZvDoy3vw9cm v/BHf/go4R837On/AJd2kf8AyXS/8Od/+Cjf/Ruv/l3aR/8AJdAHEftZ/tzfHb9tE+Hz8arnSZP+ Eb+1f2b/AGXpv2fH2jyfM3fMd3+ojx6c+teO16X+0X+x7+0f+ya+jL+0B8Of7AHiAXH9k/8AE4s7 rz/I8vzf+PaaTbt86P72M7uM4OPNKAP2B/4IB/8AJmniL/spV7/6QafTP+DgP/kzbwz/ANlMs/8A 03ajTv8AggEc/saeIj/1Uq9/9INPruP+CwX7Nfxq/al/Zo0P4f8AwI8F/wBu6vZ+OrbULiz/ALSt rXZbLZ3sTPuuJI1OHmjG0HJ3dMAkAH4j1+v3/Bv9/wAmceJv+ymXn/pv06vhr/hzv/wUb/6N1/8A Lu0j/wCS6/R3/gj9+zZ8bf2W/wBmzXPh/wDHbwV/YerXnji61C3tf7StrrfbtZ2Uavut5JFGXikG CQRtzjBBIB9XN92vwX/4Kd/CPW/g5+3J8QNL1azuFg13W5tf025mjZVuYL1zOWQkDcqytLESMgNC wzxX70V4d+3B+wd8Kf24PAkOheMJpNK17TFkPh/xNZwh5bJmHzI6EjzomIBaMsp4yrIeaAPwM57G vtz9nz/gun+0z8KfDtj4Q+KXhPSfHlnp8Ahj1C8upLXUpVGAvmXCh0kIAxuaIu3V2Zsk878Rv+CI v7efg3V/sXhHwfofi61Lfu7zRvEVvAAv+0t40LA47AMAe561z3/Dnf8A4KN/9G6/+XdpH/yXQB+n 3/BPD9vp/wBvPwx4m8RN8Kf+EV/4R2+t7byf7e+3faPNR23Z8iLZjbjGDnPUV+aH/BYj4Aa78Ff2 0te8Tyaay6L46I1rR7sbiskjKouoy20DzFn3sVBOEliJPzYr7r/4I0/snftBfsp+B/HGj/H7wB/Y FxrGrWc2mx/2raXXnRpFIrHNtLIFwWHDYPPFfRP7UX7K3wh/a6+GVx8Mfi7obz27N5un6haMqXWn T4wJoXIO1vUEFWHDAjigD+eM8jFfXnwK/wCC1f7XvwQ+HWn/AA0On+F/E1npNutvp974isbhrqOF VCpEXhnjDhQMAspfHVjxW58Z/wDghL+154F1KZ/hLqGheOdN8zFq0N8mn3hXHJkiuGES88fLM+ev GcDgP+HO/wDwUb/6N1/8u7SP/kugD1X/AIiBf2sv+iT/AA7/APAC/wD/AJLqvrH/AAXz/at1nSbr SJvhX8PVS6t3hdlsb7IVlIOP9L64NeZf8Od/+Cjf/Ruv/l3aR/8AJdH/AA53/wCCjf8A0br/AOXd pH/yXQB8zD6V9I/8Eiv+UiXw4/6+NS/9Nl3Vj/hzv/wUb/6N1/8ALu0j/wCS69t/4J0f8E1P22Pg P+2b4K+LHxW+Cv8AZfh/SJr1tQv/APhI9Nn8oSWNxEnyQ3Lu2XdR8qnGcngE0Afq9X80/iP/AJGL UP8Ar+l/9DNf0sDPevw91n/gj/8A8FFrvWby7h/Z53Ry3Ujxt/wlukDKliQebugDnv8Aglf/AMpA vhn/ANhif/0knr946/JT9gT/AIJlftwfBP8AbB8DfFP4mfBH+zdB0fUpZdSvv+El0ybyUNtKgOyK 5Z2+ZlHyqTz6V+tdABRRRQAUUUUAFFFFABQVB5IoooANoHak2r6UtFACbV9KXA9KKKADA9KTYvpS 0UAJtHpS7R1xRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUE4GcUUUAfPHjX/gqz+wR8O/GWrf D/xl8djZ6voepT6fqln/AMIvqknkXEMjRyJuS1ZWw6kZUkHGQSMGsz/h8V/wTk/6OIP/AISOr/8A yJX5B/tskH9sr4s4/wCila5/6XzV5jQB+5X/AA+K/wCCcn/RxB/8JHV//kSq+p/8Flv+CdtjZyXN r8c7i8dVJW3t/Cepq7n0HmW6rk+5A+lfh7RQB9Cf8FFv29Nc/bt+K1nrtrokmkeE/Dkc9v4V0m52 NcbZHBkuZ2XOJZRHFmMMyRiNVUsd0j/PdAYMQoPLHCj1NfcX/BOT/gkb8SfjN4x0/wCLH7S/hG98 P+B9PmW4h0XUrdoL3XmBysXlMN0VsSAXdgC6kCP75kjAPuT/AII+/CGb4RfsH+Ff7S0yS11DxPNc a/fJI2d4uHxbyD2a1jtm9efwr6epsMMdvEsMK7VUYVR0A9B7U6gAooooAKKKKACiiigAooooAKKK KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo AKKKKACiiigAooooAKKKKACgjIwRRRQB55rf7Iv7KHiXWbvxH4j/AGYfh5qGoahdSXN9f33guxmm uZnYs8kjtEWd2YkliSSSSaq/8MVfsbf9GlfDL/wg9O/+M16bRQB5l/wxV+xt/wBGlfDL/wAIPTv/ AIzR/wAMVfsbf9GlfDL/AMIPTv8A4zXptFAHJ+B/gL8DPhjcfa/hr8GPCfh2X/npofh22tG/OJFr rAoHQUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k= ------=_NextPart_01D5E037.E5F59E00 Content-Location: file:///C:/6A8530EF/12EnfoquedeaprendizajebasadoentareaseneldesarrollodelahabilidaddelhablaCorregido_archivos/image014.jpg Content-Transfer-Encoding: base64 Content-Type: image/jpeg /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wgARCAF/BFEDASIA AhEBAxEB/8QAGgABAAMBAQEAAAAAAAAAAAAAAAQFBgMBAv/EABgBAQADAQAAAAAAAAAAAAAAAAAC AwQB/9oADAMBAAIQAxAAAAK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAfEVGaquMo3ag+e80LPO80LPDQs8NCzw0LPDQs8NCjSa7QdAFeWCh+DQs8NC49gA AAAAAAAAo+5agAAAAAAAAKuMXoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4quxn18RbT74TgAAAA AAABdyY0nPpDkgK6q6/JIkWXpWLMc+j4PtTRDSM13L5Gkhn+JpmZ9NKpbk9fFOXbNeGmZnQkTpVy S3K8sGc+DTMzck1U15pmZGmUF0dStLJnPg0zM2ZI48ohoTOGjZkaZmpxbgAAAAAAAAAAAAAAAAAA AAAAAAAAAcfqjlX7yL6B6eJP1zsRLERLERLERLERL8Ir7+O8AAu5MaTn0hyTz3wzUmNIL4ACivM0 fVzDtyPU30EqdDnLsquvKSTotnwKC9orwgQunc7d5wgzPoZ+TGkk6isq0sbCq+yz+qqcQocyIXHO aM1ZV88k0llWkmdL6EHv3FTElxDQxpNWS1YO9d34F9IiygAAAAAAAAAAAAAAAAAAAAAAAAAARHIE U0ZQ66XUWwpuPELPXg9eD14PXg9DqPIOVcHRc5159Mh203cmNJo0hyQFDwu6Qvu+a6GhZ4aHN3sE 4XmZmlzW/EA+b6rvDPyY0kt+HfgUF5R3hU/U+oNMouxbqizKOTGknWr0VCS+kWUJkOYQIkuIaEGc nwJ59VeioS7752UXColkWJLiFxRX9AWUuq7naqlxC8lRZQAAAAAAAAAAAAAAAAAAAAAAAAAAo7Sj spC2oC878e2bTnBpzAAAAe9OQmzKZCWj9pbeq77qLfm7ykxpPAJAOHcVvlmKxZjn0CFGthUSJ489 Cv6TA59BWTewRpIrfLMVlh9iv6TA59BW+WYrJncRONiAK2RKDn0Ff8WYrJMoRONiEWUKxZisWY49 gAAAAAAAAAAAAAAAAAAAAAAAAAAq6/ryvyhLgF7249s2nODTmAJUqMqtaOdq1oKtYw+x5CXHfg40 X1V2lGn4+znQdAKPkaFnhoWeGhZ4aFnhoWeGhUHcuEGWfYAABnzQM8NCz1oTQAAAAAAAAAAGf8NC zw0KFNACHVGhZ4aFQX4AAAAAAAAAAAAUfI0LPDQq2yAAAAAAHPpERphpzAAXvbj2zac4NOYCysq2 yo0BGYD5+jlHHvqK6jwTh7f5+zrssRVeABn+PbiAAAAAAPr5FrY5meW4AGa0uaPALinuCcAAAAAA AAAADNee+AFxOgzgCFTXNMAfWkzekAAAAAAAAAAAAM/x7cQCytKu0AAAAAAFfYVkoVwvzgAXvbj2 zac4NOYCysq2yo0BGYACluq6VdYL6EiP7xo3nufWABn+PbiAC9KJphmWmGZabwzS9qyMAC2sM3oD oBmtKMy0wzNxOAAAAAAAAAAAGa80wzLTCDOACFTXNMAfWkzekAAAAAAAAAAAAM/x7cQCytKu0AAA AAAFVa1Uq4AvoAAve3Htm05wacwFlZVtlRoCMwAEKbF7GlGjMBoOnHtm1A6Bn+PbiAL2ivSSAAB5 6KGPe0QAsq3oaICPIzReqEX3TO3BOAAIpK50scvVEL1RC9UQvVEL1RC9k5vSAEdReF8oRovuFMOC iFnWAB9XdEL1RC975vQnX4+4wUQvVEL1RC9UQvfaEaLpme5foU0AAz/HtxALK0q7QAAAAAAVdpWy hWi/OABe9uPbNpzg05gLKyrbKjQEZgAIsqF2NQNGYC+7c+mbUDoGf49uIAvaK9JIAAAGf0FQQAAX 0ivsBmtLmjwC4p7gnAEE51YAAAAAAfWkzekAM1574AXEyHMM2AAAABoc9oTrGkxiiAAAAAAsq0aZ FlAGf49uIBZWlXaAAAAAACDOj9jRjRmAAve3Htm05wacwFlZVtlRoCMwAFZZ0Mq+IvofXzK4uhn1 gAZ/j24gC9or0kgAAAV1jBKcAFja09wM1pc0eAXFPcE4HPP2NYAD6E+d3IHs4QU4UMebCAPrSZvS AGa898ALidBnHN0FfU3NMAfWgz+kOboOf36Hx9iMkiMkiMkiN5KEOFcjMpUUAmXWd0QBn+PbiAWV pV2gAAAAAA89OZzyTG0ZQ6Ave3Htm05wacwFlZVdjRf9vlGf0+R9PiI59U/1830BKK1rb+uz6FV4 AGf49uIAvaK9JIAAAEKbAKgAE64qLcZrS5o8AuKe4Jx4UPD3wAWVbfncAAFNCnQQD60mb0gBmvPf AC4nQZwBCprmmAPrSZvSAAAB5CJyoFuqBbqgW6oHaqkRwD3S5nSnoM/x7cQCytKu0AAAAAAAK+r0 NBbR8iysC97ce2bTnBpzAAAAAACfzvec8z6HsWU6DoGf49uIAvaK9JIAAAFZZ0hEABZ2cKaM1pc0 eAXFPcE74+/kzYAGlzWlPQAAVECfAAPrSZvSAGa898ALidBnAEKmuaYA+tJm9IAAPn6pzlGAAAAA ABpc1pT0Gf49uIBZWlXaAAAAAAACqtefY599fOjMBed4c3Ppza6W1Uq6FKuhSroUq6FKuveKTrdd edgziu1A7U067aZDmRmHJAZ/j24gC9or0kgAAA+M9YVoAJJc9AZrS5o8AuKe4JwM58TIYAv6CeW4 AAKiBPgAH1pM3pADNee+AFxOgzgCFTXNMAfWkzekAAOeeuqQAe+Wpw62YrFmKxZikiW1SANLmtKe gz/HtxALK0q7QAAAAAAAAhVGkrLKa4W1d7rPfcJ6FSITu1ILtSC7Ugu1ILtSC7UfMu4FenD3wnC4 mQ5mfSHJAZ/j24gC9ohpmZ9NKzfpo2dGhrqzwAAXNfegDNaXNHgFxT3BOBCptNQkcAFrY5nqaFTf RbqgIHbiAfWkzekAM1574AXE6DOAIdLf0AAvqH7NGru5KRpJDpb+gAFxT/Zo1b0JyCJyCPmpmwgB pc1pT0Gf49uIBZWlXaAAAAAAAAAFdW6OPOqjSY1tIdAAAAAAAAXEyHMz6Q5IDP8AHtxAAAAAAAH3 93J72ABmtLmjwC4p7gnAcewznxfUpzAAAAAB9aTN6QAzXnvgBcToM4A8z2iilG+vkAA+tJm9IKK9 5GedeQAAAAAA0ua0p6DP8e3EAsrSrtAAAAAAAAAABw7nK6PcpQovm/d5QL8UC/GfaB1n2gGeaE5n mhGdaIQ5hXaDoFHy0IzzQjPNCM80IzzQjPNCM99X4ppc4eegAAz+gGeaEZ60mgAB8fYrYl6M80Iz zQjPNCM38zYQB9aTO6IAz/mhGeaEQpoAAcK25Gf80IzzQigvwA+K60FB86EZ5oRnmhGeaEZ5oRnm hGe0HoAo+WhGeaEVtkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAiEtUC3VAt1QLdUC34Vk UfIASb2tsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABX2FeV IAAAAAHZdn39AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhT RRrwUa8FGvBRrwUa8FPJnjz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP/2gAMAwEAAgADAAAAIfPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPA0ggQQQQQWPPMMMNPPPPPP PPPNPPPPPPPPPOPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPBPvPPPPPPPPPfPOFPOPNNPONNPOGON ONPNPPOEOPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPBXPPffffefPPPfLPPPNNKLKDKMPLKHABAHENP LAMAHNPPPPPPPPPPPPPPPPPPPPPPPPPPIv8AwHHHHHHRlff3zyBjAjjCCjyixDSjjTgDwDDTAByD RTzzzzzzzzzzzzzzzzzzzzzzzzzw/wA8r88888MPjEv88888MMscc888c8cs8sc8s888cs888888 88888888888888888888888f88r888++78/4988wwwwww408884w088888888888ww884w088888 8888888ww8888888H888r88888t68q8888888888888888o8888888888888U888888888888888 8888888888Y888r888888j8/888884884888U888s8888888888888c888888888888888888888 8888D888r888888Q88C8888o888sU840sMY8848MMMMM88MMwMc8MMc4MMMMM4088888888888A8 88r888888A88K8888o8888s88888o8488888888888A888888o888888888888888888Q888r888 888m8/c8888o8888o88888o8084Ec8888888EMc8sMM8MMMcs0888888888888t388r88pxx3+85 88888o8888s88c88o8084888888888U888888884wwwc8I88888888888y88r88888888DY8888o 8888s88U88oo88s888U88888U888888s8888888o88888888888A88gwwwww65qRW8888o8888k8 4888o8U8s888U88888U888888s88s88U8o888888888888R88999999/d8W8888s8wwc88g888o8 w88owwU88888U808sw8c84088c8o8888888888888n/888888888W888888888808888o8sU8888 888888U840888o0888888o888888888888885TXOOAAhBjG88MMMMMMcsc88sMc8888MMMU888MM 8888MMc88sMMMMMM8MM8888888888888888888888888888888888888888wwwwo88U888888888 8888888888888888888888888888888888888888888888888888o88888888888888888888888 88888888888888888888888888888888888888888888888MMMMccc8888888888888888888888 8888888888888888888888888888888888888888888888888888888888888888888888888888 /9oADAMBAAIAAwAAABDzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzz+/bPPPPPOfzzjTzTzzzzzzzzzjzzzzzzzzzDzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz bx777777774DzyRzxjjzTDDDTDSDzDDDDzjDBTjDzTzzzzzzzzzzzzzzzzzzzzzzzzzzx/37zzzz zjb74DygjzzCSxADwDSwwDDBATyQhwxSjyBTzzzzzzzzzzzzzzzzzzzzzzzzzxz/AOdNNNNN0O99 A88EU8EwsAA8AU40AsQoU8UswwUEYoU88888888888888888888888888s++3+++++N/zOa88888 88Mcss888ss88sc8c8cscs88888888888888888888888888888e++D++x882++Nt88888888408 888888888888888888888888888888888888888888885+++D++B88V0++888AAAAAAAAE088AU8 8888888888oA88AA8888888888888AAU888888h+++D++B888I+u888AAAMMMAAA888Mc8888888 8888sM88AA8888888888888AAU8888885+++D++B8887++V88AAA8888oAE08w08884wwwwwc84w 8wAAwwkowwwwww888AAU888888u+++D++B888v8AvtfPAAAPPPPKAAPPAFPPEAAAAAAPPKAPAAAA AFKAAAAAAFPPAAFPPPPPPK/vvg/vgfPPH/ufPPAAAPPPPOAAPPAFPOAAJLDKAPPKALDAADDHLPPP POAAPPAAFPPPPPPLffvg/vkwQQ/PvPPPAAAPPPPOAAFPAFOAABPPPIAPPKAPPAAPPPPPOMMMIABP AAFPPPPPPPEfvg/vvvvvvvv7/PAAAPPPPPAAPPAFOAABPPPAAPPKAPPAAPPPKAAAAAAAFPAAFPPP PPPPPvvqfPPPPNrlngfPAAAPPPPIAFHPAFPAAEPPPAAPPKAPPAANPPIABPPPIAFPAAFPPPPPPPPG fjwwwwwwyPHgfPAAAPOMOIAEPPAFPJAEAMMAAPPKAPPAABMNCAFMMMCAFPAAFPPPPPPPPPEtvvvv vvvvvgfPAAAAAAAADHPPAFPLDAAAAAAPPKAPPHAAAPKCAAAAAAFPAAFPPPPPPPPPPHLegQTDDz7W PPPPPPPPPHPPPPPPPPPDPPPKANPPPPPPDHPPPDPPPPPPPPPPHPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPMMMMMAAPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPKAAAAAACHPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPLPHPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP/EADQRAAECAgYJAwMEAwAAAAAAAAIBAwAEEBESFTNRFCAh MUFQUnGBBbHwEzBhIiMyQnCAof/aAAgBAgEBPwD/ACyDZn/FIGRdXfUkJ6eXEou4uqLuLqi7i6ou 4uqLuLqi7i6oJLJKOXO2WDdX9O6GpNsNq7VhPsvYpd151Ky6urWu6BFBSpKNIa6kjSGupI0hrqSN Ia6kjSGupISYa6khFRdqUvYpd15yAKZIKcYbBGxQUonH1I7CbkiqKoqiqKqBIhWsVqhqeMdh7Uht wXEtCsPYpd15z6e3vcXtS5/Ne+sooW9Ick2j3JV2h+XJldu6Jd5Wjr4cYdxC7rzmWCw0g0niL3pO baArJLtjTmc405nOG5htxahWgwQxsluh5pWjUV5y0No0T86h4i96ZzGLx7ako/8AUCpd6UT7doLa cOcyqVvJqHiL3pnMYvHtqSRWXkTOgxtCo585k8ZNQ8Re9M5jF49tSX2Oj3pJKiVOcSi/vJqHiL3p nMYvHtqS6Vuj3pJayVecMFZdFfzqHiL3pnMYvHtqSIWna8qHTsApZc6bK2CFnSeIvemcRfrFs+VR UuUVLlANma1CkS7CMhVxon3ah+mnHnUg5WFheFJ4i9/sOui0NooccUyUlgxskorzlh36RoXCEWtK 0oeSy6SfmNPayWNPayWNPayWNPayWNPayWLwbyWC9QX+qQ44Ti1ksSkuprbLdExil351JzNn9s/F EzKI6todixd7uafPEXe7mnzxF3u5p88Rd7uafPEXe7mnzxF3u5p88Qnp58VSGpEA2ltomMUu/O5e dUP0ntSAcE0rFa/tTGKXfngkorWK1QE68PGuLwcySLwPJIvA8ki8S6YvEumLxLpi8S6YvFen/sGd s1LP/U7/xAA2EQABAgIFCQgBBAMAAAAAAAABAgMABBAREhVRBTEzQVBScYGhExQgITKx0fBhIiMw kUJwgP/aAAgBAwEBPwD/AGyt5tv1GqFZQZGaswcpJ1Ji8xu9YvMbvWLzG71i8xu9YvMbvWLzG71h tVtAVjtt+ZbZH6s+EPTzrnkDUPx/FL6JPAbam5oMioeowpRUbSs8Z4Es8f8AE/1HdXt0x3V7dMd1 e3THdXt0wZZ7dP8AUEEGo0y+iTwG2XFhtBWdUOOFxRUrOaJCXCEdoc5isRWIrEViKxQpCVipQrh7 J6FebfkekONKbVZUIl9EngNs5SdzNjjSzok8B7eIKKfMGG551Gc1j8xLzSHh5eRwiZYDyKteqGNG ngNszLnaOqVS16E8BS3JuuJC0jyjuD+HWO4P4dYclnWxWoUIWpCgpOeJd4PNhQgCoVbYeVYbUrAe Br0J4CmR0CefvSRXnidl+xXWnMaMnO2V2DmO2Zw1MK+6/A16E8BTI6BPP38E+i0yThQ2qwsKw2zP 6A8vA16E8BTI6BPP38EyK2lcKWzWgH8bYnR+weXv4GvQngKZHQJ5+/gmTUyrhS2KkAfjbEym00of jwNehPAUyOgTz9/BlByy1ZxoaRbWE47acRYWUnVS16E8BTIqHYJ88feLQxi0MYceQ2K1GJmYLy69 WqjJzNpZcOYbayi1ZcCxrpa9CeA/gZZU6qymGm0tICU6obXbSFDXtmZZ7Zsp16oIINRol1WmkkYR dr2I+8ou17EfeUXa9iPvKLtexH3lF2vYj7yi7XcR95QjJm+r+oaaQ2LKBE9NBCS2nOekSuhTw21P Slf7iOfzRKzhZFlQrEXk1genzF5NYHp8xeTWB6fMXk1genzF5NYHp8xeTWB6fMHKbepJh3KDi/JP kKJXQp4bbmZEL/U35HCFtqbNShV/FK6FPDbikJUKlCuFyDKswq4RdrepRi7Ebxi7Ebxi7U70Xane i7E73SLsG90i7BvdIaR2aAnD/k7/xABbEAABAgIDBg0PCQYFBQACAwABAgMEBQAGEQcSICExsRMW FzZBUVVhcXJ0gdEQFBUwNDVUc5GTlKGkstIiMkBCg5LBwuIjUlNiZbNDUGCj4SQzY4KiZHCAkPD/ 2gAIAQEAAT8A/wD7ULKHHTydS3gpfDbFLRt0tG3S0bdLRt0tG3S0bdLRt0tG3S0bdLRt0tG3S0bd AQR/rmOmcFLkBcZFMsA5NEWATwDZpG3SZNDEphkPxStgpTep8qsfqpFXTpi4bISBYZH/AJCXD+FI ivVYYgkdkC2n91ttKfXZb66OVgnDp+XNY07wfUB5LaKmcetVqo6JUdsuqP407Ix3hkR51XTTsjHe GRHnVdNOyMd4ZEedV007Ix3hkR51XTTsjHeGRHnVdNOyMd4ZEedV007Ix3hkR51XTTsjHeGRHnVd NOyMd4ZEedV007Ix3hkR51XTTsjHeGRHnVdNOyMd4ZEedV00qM4t2p8Et1alrOiWqUbSf2iqDZwS QASTYBlpWK6WxBvKhpO2iJcSbFPuW6GD/KBjVw5OGkZXSsMaVX8zebB2GbG7MduK9sNNMc83amPp S+mmmOebtTH0pfTTTHPN2pj6UvppVR52IqvLXn3VuurZBUtaipSjtknL9ErLPJxDVnmTTM2jm2kR CwlCIhYSkW5AAcVLm01mUdWKIai5hFPtiEUoIeeUsA36MdhOXGfL9DulTSYy+cwjcHHxUMhUPfKS y8pAJvjjsBpIp9OH6wytp2ax621xbSVIXErIUCsWgi3GP9ADJkoclJzW+UyW+Q49o8QP8FnGoHf2 Bz46Ta6DOJgVIhlJgmTsNY12b6j+FlHXXHnFOOuKccUbVKUSSTvk/Qqh6y5f9p/cVTZwbpdY1wjC JPCuXrj6b6IIyhGwnnx273D1Kt1EmFYIcRSnUwkKTYlxaSor30pxWjftFNSP+ueyfrpqR/1z2T9d NSP+ueyfrpJpd2JlENAaLougICL+9vb7fstNn0SbXM+yk1io7svoXXDpcvOtr69tOS2/FtKq1G0s zRyN7I9c37JavNAvLLVJNtt8f3fX9DrVUnTPHsRPZDrbQmtDvdBv7cZNtt8NukvuYGXzOFjRN9E6 3eQ7edbWX16oGy2/xZP9ATGZQkrg1RMY+lppOyo5TtAbJ3qVhr9HTNSoeAvoSEyWg/tFjfOxwDy/ Rah6y5f9p/cVTZwaxTBU0rFHxhNoW8oI4oxJ9QFJXBKmU2hIJNtr7qW7RsAnGfJRhluGYbYZQENN pCUJGQAYgMGaTWDksAuMjng20nJslR2ABsmk7ukzWPWpuXWQMPbiIsLihvnY5vKaRMfGRptiot98 222uuFWPno064w4FtOLbWMikKIPlFJZXWfStabyOW+0MrUQdESRtWnGOYilV63wVZGy2BoEckWrY UbbRtpOyPWOpWvXbNeUrz9Vp1xlwONLUhYyKQbCOelWq9zGVRbTUc+5EwBISsOEqU2NtJy4trJRp 1DzSHW1BSFpCkqGQg5DSaTOFk8vdjYxy8ZQNjGVHYAGyTSeXQpxM3VIhHlQMNb8lLJsWRtlWW3gs FHn3X137zq3FWWWrUSbOfq1Y1qynkjXuila9ds15SvPS5VroieRK99HUrhX7sa8uXSgpXFI+S6+R als7QGQnhxCkZMY2YulyMi3ohZNtriyqzg2urct1qvcrX7qaXV+/0Dyb8ysCU1rnMoiEusxrriLb VMvKK0K5jk4RjpIpyxPpS1HsWgLFi0HKhQyjqVquiLg4hyAk14pxBKXIpQvgk7SBkNm2cW9s0jJv MZgpRjI6IfvsoccJG3kydW5L/wB2bcVr89Lq/f6B5N+ZVKt66JRy1n3x1Jn31jPHr949ViKiIVd/ DvusqxY21lJ9VKq3QouGiW4OcvF+FWQkPr+e3vk/WG3bjzUBBFo/zewWCk/n8LIIAxEQb5asTbQP ylna3htnYpOZ3GT2NMRFuWgWhtsfNQNoD8dn6NUPWXL/ALT+4qmzgRbhZg33E5UNqUOYdSoLQdrt LgRaAVq8iFEeuzCrvP3J3P3kpWetIZRaZTsYsRVzn1WUl8BETOPZgoVF++8q9SPxO8BjpJahSaVw 6BEQrcbE2fLdfTfAneScQHrpG1Oq/HMltcrh2jZiUwgNqG/8mz10rTVp6rUzDCll2GdBUw7ZYVDZ B3x0Ugox+AjWYuGcKHmVBSCNvopKZg3NZVCx7WJL7YXZtHZHMbRSteu2a8pXnpUGTwE6nr8NMWNG ZTCqcCb9SbFBSRbakg5Caan1V9zPaHfipXGoUvgpS7MZUlTBYALjJWVJUm2wkE2kEZcvUqDEriam QBcNqkBTYO8FED1WUukTtcfPTL21nraDxWA4lOEYzzZOY7dEgqUEpBKibABs0kVzFUVDpfm8S6wV C0Q7SRfpH8xNoB3rKalUi8KmPnEfBTUqkXhUx84j4KQEI3L4CHg2lLLbDaW0lZtJAFgts2aVr12z XlK89LlWuiJ5Er30UrvPVSOrzjjK72KfOgskZUk5Vcwt57KEkkkm0nKaVFqTDzKETNpmguMqJ0Bi 2wKsNhUqzYtGIb2OiatSNKQkSaX2AWY4ZBPlIppcke40u9FR0UhYKFgWi1CQzMO2TfFDLYQLduwb OKl1fv8AQPJvzKpJYdqLnsuhn0X7L0U22tNpFqSoAi0Y8hpqfVX3M9od+KkyubyKJg1ogWVQkRYb xwOKWLd8KJxcFHW1MvLacFi0KKVDfFLk0SspmcKf+2C24BtE2g5h5KV+nSpPV1aWFXsRFK0FBBxp FnyiObFzjqVXqdG1kWpwL63g0GxT6k22naSNk5qJuVSUJAXGTAqsxkLQATwXtNSqReFTHziPgpV2 qkBVlUQqCdiHNHvQrRlJNl7bZZYBtml1fv8AQPJvzKpVvXRKOWs++Oo5UKrTzq3XJbataipR0dzG Tl+tTU+qvuZ7Q78VNT6q+5ntDvxUrtUaElUtM0ll+002QHmVKKgATYCCceUjL1KlRq46qEuecUVL S2WyTl+SopHqA/zebTWGkstdjYlViEDEBlUdgDfNJxN4mdzFyLilWqOJCBkQnYAwGGHYl1LTDS3X FZEISSTwAUh6h1hfSFdZBoHJoriQfJbbTU5n/wDDY86KanNYP4bHnRTU5rB/DY86KanNYP4bHnRT U5rB/DY86KanNYP4bHnRTU5rB/DY86KanNYP4bHnRTU5rB/DY86KanM//hsedFIioNYmMYg0OjZ0 N1J9RINIuWR0Db13BPsjbcbIB4DkOFUPWXL/ALT+4qmzgPtaNDutW2X6CnyiyiklCilQsUk2EbRp UeJTC1zlrijYlThby7KklI9ZGDFuKag33E/OQ2pQ4QOpcsh0OViiX1Y1NQxvd4lQFvkt8vVupMIX Vth4gX7cSkJO8UqtHqHk6lzhxS6mQoUbQhxxI4L4n8aVr12zXlK89LlWuiJ5Er30dSuOtCaeIPUu c6y4Xjue8aTl1T09mDqvnLiXCedRpc8l7UfW1kvJCkw7anwDsqFgHkJB5sGteu2a8pXnpcq10RPI le+il1l5RiJWx9QJcXwklI/D19SW3RJvK5bDwLENAqaYQEJK21lRG/YoU1VZ54JLvNr+OmqrPPBJ d5tfx0qbPoqsUmcjIxDLbiX1NgMggWAJOyTjx0ur9/oHk35lUq3rolHLWffHVmffWM8ev3jS5L3X NOI3nVS606oxcra+qltxXOSno6kml7UrlEJBMgBLTYBs2TZjPObTgXV+/wBA8m/MqlW9dEo5az74 oVBIKlEAAWkmlYbpkQIlyGkqUJaSSnrlab4qO2kHEBw2201Qa0bqeztfDTVBrRup7O18NI+uM+mk E5BRkfosO5YFo0FtNthBGMJBygdS5zrLheO57x/zbYpXasJnM1LDC7YKGJSiw4lq2VfgN7hwJXLY ibzFqChk2uOHKciRsk7wpIavQUhgw1DIBdUP2jqh8pZ39ob3bLKEBSSCLQcopMKoySZgl6BbbcP+ IyLxVu3ixHntpNbmUS1a5KooPp2GnrEq5lZD6qRkDFS+ILEWw4y6PqrTZzjbG/1ah6y5f9p/cVTZ wa6StUqrTGNXtjTq9Ga2r1WPFwG0c1G3FtOodbUUrQQpJGUEZDSrFY4asUsQ82tIikJAfZtxpVt2 bR2DgOIS42pChalQKTwGkVDLg4x6GdFjjLim1cINhpc/mzcqrQ1oyghmJQWFKOQEkFJ8oA5+rdVm TYhYKWJUC4pejrA2AAQLeG0+TqVHg1QNT5e2sELWgum3+YlQ9RFK167ZryleelyrXRE8iV76OpXH WhNPEHqXOdZcLx3PeNK1QSoCtMyYULBo6lp4qjfD1EUqZOG5LWWHiH1XrDgLTqv3QrZ4AbDQKCgC CCDjBGBWvXbNeUrz0uVa6InkSvfRS6vBLXCS+PSk3ra1NLO1fWEe6fL1JNc3TOJPCzBM3DYfRfXg h769NthFt+LcYpqR/wBc9k/XTUj/AK57J+ulVqvaWpUuB6665vnS7f6HeZQBZZadql1fv9A8m/Mq lW9dEo5az746sz76xnj1+8aXJe65pxG86qXWIJSoWXRyU/JbWtpZ4wBHunqVWnLU7kMNEpUC6lAQ 8nZSsDH5co3jgXV+/wBA8m/MqlW9dEo5az74pXyNcgqnxqmiUrdvWrRtKNh9Vo6lR6kyyaSdMymS FRBeUoIaCylKQDZabCCTaDTU+qvuZ7Q78VK21NkMrqtGRkHAaFENBJQvRnFXtq0g4iojIT1LnOsu F47nvH/NclK9z3sTJSw0uyKirW0WZUp+sryYuE4NzKVpbgn5mtI0R1WhtnaSMvlPu9Trlj+M394U 65Y/jN/eFOuWP4zf3hTrlj+M394U65Y/jN/eFOuWP4zf3hTrlj+M394U65Y/jN/eFOuWP4zf3hTr lj+M394UQ4hz5ikq4Db1SabFJjK4KawxYjodD7exaMad8HKDwUrRUiIkwXFwhVEQQxqtHy2xv7Y3 +pUPWXL/ALT+4qmzg12qwKwSy/hwBHQ9qmrcV+NlJO/sb/CaPMuw7y2Xm1NuoN6pCxYQdoijD70M 6l1h1xp1ORbaikjnFNMc83amPpS+mmmOebtTH0pfTTTHPN2pj6UvppVF56JqrL3n3VuurbtUtxRU pWM5SctLo1VnWotc8g0FTDlnXKUj5isl9wHZ3+HqSO6PNJXDoh4ppMcygWJK1FKwNq+x284pF3V4 txkpg5Y0w4RZfuOlyzfsAG/SMjIiYRa4qLdU68s2qUrKaVOqs9WGYocdQpMAyoF5zIFfyjfPqHNR KQhISkAACwADEBSteu2a8pXnpcq10RPIle+jqVx1oTTxB6lznWXC8dz3jSv9VXJxDpmcAgrjGE3r jYyuIy4tsj1jmoQQSCLCMopJ67zqSw6Ydl5t+HRiQ3EJvgkbQIINm9bZTVVnngku82v46aqs88El 3m1/HSTxjkwksFGvBKXH2EOKCRYASATZbsUrXrtmvKV56XKtdETyJXvopNpYxOJZEQESP2bybLdl J2CN8HHScSiLkkwcgoxBC0n5KrPkrTsKG9SrlcplV1KmWQh+FUbSy7bYk7aSMmamq5i7x+1/opqu f0P2v9FKq1i0zyxyN6162vHi1eaJf22JSbbbB+96qXV+/wBA8m/MqlW9dEo5az746sz76xnj1+8a XJe65pxG86qTmVMTuVPwERiS6nEoZUqGMEcBpNpRFySPcg4tspWn5qvqrTsKB2RSVTmYSSJ0eAiF NLOJSbLUrG0QcRom6nPQkAw0vUclpbXaf/umqrPPBJd5tfx0qPWuOrMuOEa1DN9bhBToKVC2+vrb bSdoUur9/oHk35lUq3rolHLWffFK2ytyc1ZjINkWvFIW2NtSTbZz2Wc9FJUhZQtJSpJsIIsIO1SQ 1xmtXmFw8Ipp1hRvg0+kqSk7JFhBHlpqqzzwSXebX8dJtdAm04lj8BEQ8Ell4AKLaFhQsIOK1RGx tdS5zrLheO57x/zU2WWmlb5v2YrDEPIVay0dCasyXoOXnNpwamNoaqlLkpyFsq5ySTno/wBzO8Q5 u1pUUqBSSCMhFIWfTaEI0CYxSAPq6ISnyHFSAukzmGKRFpZi0bNqbxXlGL1UlNf5PMr1t5SoR4/V ePySd5WTy2USoKSCMYNBbZQpCgQQCDlBpXmqyZREiPhEWQT6rFIGRpZ/A7Hk2qVD1ly/7T+4rDnV VJTPhbGQ9j1lgfbN6sc+zz20fuTw6l2w02dbTjxOMhZ8oIpqR/1z2T9dNSP+ueyfrpqR/wBc9k/X SSS0yeTw0BoujaAi90QJvb7GTktNmXbopIUkpUAQRYQaTi5xKJi4p+EUuAdUbSGwFN/d2OYgUiLl M0SoCHmEG4LTaXApHBkBo1cpnBXY7GwKEbaFLUfIUjPSV3LpdCrS5MIp2MUMehpGho4DjJPlFIaG ZhIdDEO0hppAsShCbABwdSbXM+yk1io7svoXXDpcvOtr69tOS2/FtKq1G0szRyN7I9c37JavNAvL LVJNtt8f3fX1JxLjNpREwGi6Fo6Ly/vb6937LRbTUj/rnsn66Vck3YCStS7rjR9DUpWiXl5babcl p29vqTmpcmnjinomHU1EKyvMG9UeHKDwkW0duStFdrM5WhFmRcOFHyhQpqR/1z2T9dNSP+ueyfrp K4LsdKoSC0TROt2UtX97ZfXosts2KTa5n2UmsVHdl9C64dLl51tfXtpyW34tpVWo2lmaORvZHrm/ ZLV5oF5ZapJttvj+76+pNpLL55DdbzCHS6kY0qyKQdsEYxSIuTQ6nLYabOto2nWQs+UFOampH/XP ZP101I/657J+ulVauaWZY7Bdddchbxdv9DvLLUpFllp/d9dK1VJ0zx7ET2Q620JrQ73Qb+3GTbbf DbpL7mBl8zhY0TfROt3kO3nW1l9eqBstv8WTqxNyrrmLef7NXuiLK7OtbbLTbZ8+lUqnGq7sUvr7 rrR0pFmg3l7Zb/MbcvUmcpgZvC9bx8Kl9vKL7Kk7YIxg8FIy5TL3VEwcwiGLcdjiQ4BmPrpqR/1z 2T9dNSP+ueyfrpVKqBqsuLPX3XXXAQP+zeXt7b/MbctK1VJ0zx7ET2Q620JrQ73Qb+3GTbbfDbpL 7mBl8zhY0TfROt3kO3nW1l9eqBstv8WTqT+osrnzyoopXCxavnOtWWL4yTiPDiNNSP8Arnsn66ak f9c9k/XTUj/rnsn66akf9c9k/XSrkm7ASVqXdcaPoalK0S8vLbTbktO3t/5rXCa9iKtRLyFXrzg0 JqzLfK2RwC082FVDWpLfEjOaP9zO8Q5u31crlHSJaGXFKiIK35TKjjSP5TscGTPSWzKFmsGiLhHQ tpXlB2iNg9SawDM0lkTAvWXjqCm3aOweY2GlSGlsVSg2XBYttTqVDaIdWD/rG6bMNEj4WXIPyWUa KvjKxDyAevCqhrTl3iRnNIjuZ3iHN9AqxWSIq9MQ4CpcK4bHmrco2xvj/ikNEtRkM3EMLDjTiQpK hsg9SXw/W8OpFllrzq7OM4pX4/6xrHGmY1ijoq21KnSlJ/lT8keoDCqhrTl3iRnNIjuZ3iHNg1Pq wxWUxgeiXGet9DsvEg2319t8WmpbBbExiPuppqWwW6MR9xNNS2C3RiPuJpqWwW6MR9xNNS2C3RiP uJpFXLXQgmEmSVK2EutXo8oJzUm0hmMkdCI2HKEnElxONCuA/hlwbnFYC0+ZNEL/AGblq4ck5FZS nny8Nu3TFh1kns3h6zzJpmbRzbSIhaUoRELCUi3IADippjnm7Ux9KX000xzzdqY+lL6aaY55u1Mf Sl9NNMc83amPpS+mmmOebtTH0pfTTTHPN2pj6Uvpppjnm7Ux9KX000xzzdqY+lL6aaY55u1MfSl9 NNMc83amPpS+mmmOebtTH0pfTRiuVYocgom0QfGEL962kFdPnkOQIluGik7JUi8V5U4vVSW3UZTE kIjmHoNRyqH7RA5xj9VIKZQcyY0aCimn29ktqBs4drtERWKeJiXQJzMAAsgARS9vhppjnm7Ux9KX 000xzzdqY+lL6aaY55u1MfSl9NLm0ZFR9XYh2MiXohwRakhTzhWQLxGK07GM+X6PEViniYl0CczA ALIAEUvb4aaY55u1MfSl9NNMc83amPpS+mmmOebtTH0pfTS5tGRUfV2IdjIl6IcEWpIU84VkC8Ri tOxjPlwLosXEwNWkvQkS9Du9cITfsrKDZYrFaKaY55u1MfSl9NNMc83amPpS+mmmOebtTH0pfTSA rBOlzGFQubzBSS8gEGJWQRfDf+lVkns3h6zzJpmbRzbSIhaUoRELCUi3IADippjnm7Ux9KX000xz zdqY+lL6aaY55u1MfSl9NLmMxj4+JmQjI6JiQhDZSHnVLvbSq2y04u3TqL6wksbFpNimmVqTw2Yv XZh1Q1py7xIzmkR3M7xDmwblOWbfY/npsYUXCMR0M5DxLKXWlixSFC0GlbKtOVemICL5cE9aWVnK NtJ3x6xz4DD7kNENvsqvXG1BSVbRBtBpJ5k1NpRDR6LAHUAkD6qshHMbRh1r12TXlS8/b4KPi5dE JiIOIcYdT9ZtVh4DtjepVi6Q3FLRBzu8ZdOJMSMSFH+YfV4cnBQEEWg2g4UR3U9xznwLlWteJ5ar 3EfR4jup7jnPgXKta8Ty1XuIwLqGtNHKkZlYEt76QnjkZx9KrXrsmvKl58C5J3VNeI3nV266FFBi qb7dthfcQ2PLfZknDqhrTl3iRnNIjuZ3iHNg3Kcs2+x/PTYw6xSdE7kz8IoDRCL5pR+qsZD+HATR aFNOKbWkpWklKgcoI2MC5hMr9mMli1Y0EPNjeOJXrs8uHWvXZNeVLz/Qaj12VLnG5XM3CqDUb1p5 R/7J2if3c3BQEEYsmDEd1Pcc58C5VrXieWq9xH0eI7qe45z4FyrWvE8tV7iMC6hrTRypGZWBLe+k J45GcfSq167JrypefAuSd1TXiN51duupPXsugGLfnvKXZwJs/Nh1Q1py7xIzmkR3M7xDmwblOWbf Y/npsYZyUr5ACArTEFIsbiAHxwnEfWD5cCpUd1jWuCUTYh1RZVv3wsHrsw6167Jrypef6Fc4rSY2 H7DRa7X2U2sLJ+egfV4Rm4MGI7qe45z4FyrWvE8tV7iPo8R3U9xznwLlWteJ5ar3EYF1DWmjlSMy sCW99ITxyM4+lVr12TXlS8+Bck7qmvEbzq7ddTcti5a3j+ShxXlKejDqhrTl3iRnNIjuZ3iHNg3K cs2+x/PTYw7cdLqUINCl0WBkUttR4bCMxwId5UNEtPo+c0sLHCDbRDiXG0uJNqVAEHeOFWvXZNeV Lz4Nz3WRL/tf7q8JyHZdt0RltduW+SDbSa1HkU1Qq2CRDOnI7DC8I5hiPOKVmqdH1cXohPXEEo2J fQmyzeUNg+o4MFGPQEczGQ6715lYWg74/CkomTM3lMLHs/MeQFWW/NOQjmNo/wAnuoa00cqRmVgS 3vpCeORnH0qteuya8qXnwLkndU14jedXbrqBPZyDFpsEPbZ/7HDqhrTl3iRnNIjuZ3iHNg3Kcs2+ x/PTY7RdLaDlWULxfs4hKvUR+ODIXS/V+XOk2lcM2Tw3owq167JrypefBue6yJf9r/dX2iIh2YuH ch4htLjLiSlaFC0EGlbauLq3NywLVQrtq2FnZG0d8dG3g3LJwUPRModUb1Y0Zm3YIxKHksPMcBVe KtpUUqmjYINhF4vopp5q1uq39xfRTTzVrdVv7i+imnmrW6rf3F9FJZNYKbwyn5fEB9pKygqAIsIA NmMbRHaIydSyXkiMmEMwR9VboCvJlo5X6rLar1U0STtpZcUPKE01Qar7p+zu/DTVBqvun7O78NNU Gq+6fs7vw01Qar7p+zu/DTVBqvun7O78NNUGq+6fs7vw01Qar7p+zu/DTVBqvun7O78NNUGq+6fs 7vw0br7Vp51DTcyvlrUEpGgOYycn1cBVeKtpUUqmjYINhF4vopp5q1uq39xfRTTzVrdVv7i+imnm rW6rf3F9FJZNYKbwyn5fEB9pKygqAIsIANmMbRFHXUNNLcWbEISVKNmQDLTVBqvun7O78NNUGq+6 fs7vw0r1WuSzmr6YWXxujPB9K73QlpxAG02qAGzgQLiGY+HdWbEIdSpR2gCLaaoNV90/Z3fhpqg1 X3T9nd+GmqDVfdP2d34aaoNV90/Z3fhpCxLUXCsxTC79p5AcQqwi1JFoNhx5D1JjMIWVQS42Nd0K Hbsv13pVZaQBiAJykU1Qar7p+zu/DTVBqvun7O78NNUGq+6fs7vw01Qar7p+zu/DTVBqvun7O78N NUGq+6fs7vw01Qar7p+zu/DTVBqvun7O78NNUGq+6fs7vw0arxVt0C9mzQt/eQpOcUhZ1K41QTCz GFeUfqoeST5Lbe0Vr12TXlS8+Bck7qmvEbzq7ddQ7+wnJ/zHDqhrTl3iRnNIjuZ3iHNg3Kcs2+x/ PTYwzS6EBpPit5bfvDBqmu/qtLTZZ/06R5MWFWvXZNeVLz4Nz3WRL/tf7q+013konNW3koQDEQ4L zJsx2jKOcW89mDJJiqUTuDj0k/sXQpVmynIoc4JFEqStIUkgpItBGyOrEd1Pcc58C5VrXieWq9xG FWOu8skBUwCqKjR/gNnEnjK2ODGd6k3rtPJupSVRaodg5GYc3gs3zlPOaEkm09rlvfSE8cjOMCI7 qe45z4FyrWvE8tV7iKTLvZF+JX7p7ZVvWxKeRM+4OpdC1kTD7L+6jtkqrXOpMpPWsc4Wh/hOm/Qe Y5OaylW7oUBN1ohY5KYKLOJNp/ZrO8dg7x8pwq167JrypefAuSd1TXiN51dtOSl1FAE1gFWYyyRb wH/nDqhrTl3iRnNIjuZ3iHNg3Kcs2+x/PTY7RdBIFUIkE5VtgfeGDVVIRVaWAYrYdB8otwq167Jr ypefBue6yJf9r/dX2qssuEqrJHwaRYhDpKBtJV8pPqIwalxxmFU5e6o2rQ3oSuFJvcwB5+rEd1Pc c58C5VrXieWq9xGDXWvhhluSuTOjRRal+JSfmnZSk7e2djYx5CSpRJJJOMk7PbZb30hPHIzjAiO6 nuOc+Bcq1rxPLVe4iky72RfiV+6e2Vb1sSnkTPuDqXQtZEw+y/uo7dUKujmityaZulSVWJhnlnGD +4o5jzbVmBWvXZNeVLz4FyTuqa8RvOrtppdUa+VLHR/5Un/5I/HDqhrTl3iRnNIjuZ3iHNg3Kcs2 +x/PTY7RdMf0OrbTYyuxCQRvAE/hgyZkw0jgGDlbh20G3eSBhVr12TXlS8+Dc91kS/7X+6vtV1OD DNYIWKSLA+xYd9SSfwIwblUVokkjYUm0svhY3gpI/FJ6sR3U9xznwLlWteJ5ar3EYFf619iIbsbB OWRr6flrScbSDmJ2NrLtdvlvfSE8cjOMCI7qe45z4FyrWvE8tV7iKTLvZF+JX7p7ZVvWxKeRM+4O pdC1kTD7L+6jtwJBtBsIpUesBn0hSXl2xcMQ29tq/dVzj1g4Fa9dk15UvPgXJO6prxG86u3XTmNE kEM8BjbiBbwFJ/GzDqhrTl3iRnNIjuZ3iHNg3Kcs2+x/PTY7RdRjQqJl8Ck40JU6ocOIZlYEDDGM mENDDK86lvykD8aABIAAAAyAYVa9dk15UvPg3PdZEv8Atf7q+1XWWL6BlsRZ8x1aLeMAfy4NyZ69 mEyYt+e0hdnFJH5urEd1Pcc58C5VrXieWq9xHVm0xZk8qiY98/s2UW2fvHIBzmwUj45+ZzB+NiVX zzyypR/AbwyYMHBxMdEoh4VlbzqzYlCBaaS25XGPISuYxrcPbj0NpN+rnNoA5raIuVScD9pGxyuK pA/KaalUi8KmPnEfBTUqkXhUx84j4KalUi8KmPnEfBSuUihauztMFCOPLbLKXLXSCq0k7QG1gS3v pCeORnGBEd1Pcc58C5VrXieWq9xFFJS4gpWkKSoWEEWgimlyR7jS70VHRTS5I9xpd6KjopdFlEsg aspdhJdCQ7vXCE37LCUKssVitAwJelK5jCoWkKSXkAgi0EXwppcke40u9FR0U0uSPcaXeio6KaXJ HuNLvRUdFNLkj3Gl3oqOijLKGW0NNIShtCQlKUiwJAyADYHUmMvhZrBLgo1rRYdyy/RfFNthBGME HKBTU+qvuZ7Q78VNT6q+5ntDvxU1Pqr7me0O/FTU+qvuZ7Q78VNT6q+5ntDvxU1Pqr7me0O/FTU+ qvuZ7Q78VDc9qwQQJaU74fc+Kj1zSrrqbENRDJ20PEn/AOraVmufRUlYXGQTpi4NGNYKbFtjbIGU b48mDc2mJg60phiqxuLbLZGxfAXyT6iOfArXrsmvKl58C5J3VNeI3nV26u0L13VKPSB8ptAdG9ek E+oHDqhrTl3iRnNIjuZ3iHNg3Kcs2+x/PTYw1HFStMzE2rFFxKFWtBWhtkYxepxA8+XnwKhQPXta odRFqGEqdVzCwesjDrXrsmvKl58G57rIl/2v91farqibaswyrLSIxIt2gUL/AOMG5Wqys8SkmwKg 1Yts36P+erEd1Pcc58C5VrXieWq9xHVuqTcjrOUNqxEaO6B5Ej3j5MGEhHo2MZhYdBW66sIQkbJN Ks1ZhauS8NNhK4pYBffsxqO0NoDYGFdQ12I5KjOrAlvfSE8cjOMCI7qe45z4FyrWvE8tV7iMC6hr TRypGZWBLe+kJ45GcfQSARYRaDSvFX0yCenQE3sJEguMjYT+8nmPqIwJDEmErDLn7fmRLZPBfC31 YFa9dk15UvPgXJO6prxG86u3RUOiKhnYdz5jqFIVwEWUeZXDvuMuCxbailQ2iDYcKqGtOXeJGc0i O5neIc2Dcpyzb7H8+HbSvNYUyiVKhGF/9bFJISAcaE7KvwH/ABg3NZX1vKXpitNiopdiOIm0es2+ QYda9dk15UvPg3PdZEv+1/ur7VdRUBVRsE5YpAH3VYNy5JNa3CBkhVk/eT1Yjup7jnPgXKta8Ty1 XuI6tcI8zGtkxfttSl0tJ4E/J/C3nwblslStyJnLyLbw6CxbsGz5R8hA5zh3UNdiOSozqwJb30hP HIzjAiO6nuOc+Bcq1rxPLVe4jAuoa00cqRmVgS3vpCeORnH0K6yhJl8tXZ8oOrAO8QLcwwEKKFpU nKkgiiSFJCgbQRaD1a167JrypefAuSd1TXiN51dvrxAdYVqir0WIfseT/wC2X1hWFVDWnLvEjOaR HczvEObBuZRkLBmadcxLLN9oN7oiwm2y/tst4aJm8tWbEx8Ko7QeSfxp2QgvDGPODpp2QgvDGPOD pp2QgvDGPODpp2QgvDGPODpo7N5awm+emEKgbanUj8aTu6JL4Jtbctsi4jIFWENpO2Ts83lpGRsR MItyKinVOuuG1Sj/AP7EMCVS92azSHgWQb91YBNnzRsnmFppCQzMFCNQrKb1ppAQlO8MOteuya8q XnwbnusiX/a/3V9qurOAVeg2tlUWFeRCunBuUtk1hjHMdiYQpyba09HViO6nuOc+Bcq1rxPLVe4j qPOBhlx1XzUJKjwAUcWp11bizapRKidsnBqfBCX1TlrQFhU0HVcK/lfjZh3VEgVphyBlg0E/fXgS 3vpCeORnGBEd1Pcc58C5VrXieWq9xGBdQ1po5UjMrAlvfSE8cjOO0OOIZbU44tKEJFqlKNgA3zSb 3S5RAqU3BJdjnBitQbxFvGOXmBFHrq01Uu1iBgkJ2lhSj5QoU1VZ54JLvNr+OmqrPPBJd5tfx01V Z54JLvNr+OmqrPPBJd5tfx01VZ54JLvNr+OmqrPPBJd5tfx01VZ54JLvNr+OlYK3zCsjDLMazDIS yoqSWUqBJIsx2qODDdzM8RObq1r12TXlS8+Bck7qmvEbzq7fdOlhegIWYoTjYUW1kfuqyHmI/wDr CqhrTl3iRnNIjuZ3iHN9Buf1cVLYIzGJRZExKRoaTlQ30nL5N+lmWjbqHFuJSbS2q9VvGwHMRhVr 12TXlS8+Dc91kS/7X+6vtV1qJF9K4UHGA44ofdA/HBuSw9ippEEZA2gH7xP4dWI7qe45z4FyrWvE 8tV7iOpOFFEkj1JyiGcI+6cKFaDEIyyBYG0BNnALMO6rrohuRJ99eBLe+kJ45GcYER3U9xznwLlW teJ5ar3EYF1DWmjlSMysCW99ITxyM4w42Oh5dAuxkU4G2Wk3ylHNw7FK01wjaxvlFqmYFJ/Zw4OX fVtn1D19vhu5meInN1a167JrypefAuSd1TXiN51dvmsC3M5XEwTvzXmym2zIdg8xsNIhhyFiXWHk 3rjSyhQ2iDYcGqGtOXeJGc0iO5neIc30CpVTVRTiJnMmimHSb5llQxuHYUR+7tbfBlxZKOOIabU4 tQShIJUTsAbNKmR5mcBGxhtsdjHFJt2E2CweSym3g1r12TXlS8+Dc91kS/7X+6vtV0WPEbW55tJt TCtpZFm384+tRHNg3MYMw9VS+RjiX1LB/lFic4PViO6nuOc+Bcq1rxPLVe4jqTFvRpZFtWW37K02 cIOE04l1pDifmrSFDgOHdV10Q3Ik++vAlvfSE8cjOMCI7qe45z4FyrWvE8tV7iMC6hrTRypGZWBL e+kJ45GcYd0asKo+bGVsL/6WEVYuw4lubPkycNv0CG7mZ4ic3VrXrsmvKl58C5J3VNeI3nV2/FS6 PJTDTJuatJ/ZRNiHLNhYGLyjMcGpjgcqlLlDYbKfISPwpEdyu8Q5u3Syr01m5T1pBOKQf8RQvUDn OKlXbn8JLlIiZgpMVEjGEWfs0Hg2Tw+SgpbkpdDrAmDgOxUOv/qIgftLPqN/85OC2lzTWwvlCswp s4Na9dk15UvPg3PdZEv+1/ur7TMo1qWy2IjHj+zYbKzv2bHPkpFRLkZFvRLxtdeWXFnbJNpwACTY BaTSRwHYyRwUDYAWWUpVZ+9Zj9dvViO6nuOc+Bcq1rxPLVe4jqzKFMDNIuEIsLDy2/IojBqfHiZV Vl7wNq0tBpfGR8k28NlvPh3VddENyJPvrwJb30hPHIzjAiO6nuOc+Bcq1rxPLVe4jAuoa00cqRmV gS3vpCeORnGFOY8SyTRkcbLWGVLSDsqsxDy2UWtTjilrUVLUSVE5STs4DLLsQ8hlltbjqzYlCBaS doCkuuXzaKaDkY+zB2jEg/LWOGzF66C5GbBbOwDs2Qv66akf9c9k/XTUj/rnsn66akf9c9k/XTUj /rnsn66VsqXpXhYZ/sh1zoyyizQbyywW2/OODDdzM8RObq1r12TXlS8+Bck7qmvEbzq7fixUm0sY m8sfgn/mOpsCrMaTsEcBpHQT8vjnoSITeutKvVD8RvHLgXNY9MRV1cKSL6FdIs2kq+UPXfeSikha Ck5CLDTU+q54I555fTTU+q54I555fTTU+q54I555fTTU+q54I555fTTU+q54I555fTTU+q54I555 fTTU+q54I555fTTU+q54I555fTTU+q54I555fTTU+q54I555fTTU+q54I555fTRqolXGiCJcFHbU 6s+q2ykNIZRCKCmJbCtqGRQaFvly0sG11CbKVorVC1eh70KS7GrH7Nm3J/MraGf1iKin46KdiYhw uOuqvlKOzS5prYXyhWYU2cGteuya8qXnwbnusiX/AGv91fabpVZEurTJIVwFKCFxJCsVoyI5sp37 NrBqPKTNq0wqVJtZYOjubVicg5zZgRHdT3HOfAuVa14nlqvcR1bo0tMDWtx8CxuLQl1O1bkUPKLe fBuaVgTATBcoiF3rMUq+aJOJLmSz/wBhZzgbeHdV10Q3Ik++vAlvfSE8cjOMCI7qe45z4FyrWvE8 tV7iMC6hrTRypGZWBALS3MYZajYlLqSTtC0YV0d4tVNiUg/91xtBx7F8D+GDcxkjLUtXN3EhT7qy 20SPmJGI2b5Nvkw7rHeyX+OVmwYbuZniJzdWteuya8qXnwLkndU14jedX0GvVV+ykL2Qg2/+tZT8 pIGN1G1wjY8m1gVWnyqvzZMQpKlsOC8eQMpTtjfHTt0go2HmEMiIhXUvNLFqVJOL/g71MdMdMdMd MdMdMdMdMdMdMdMfVmVYZVKwoRcay2tP+HfXy/ujHSd3SnXUqYk7RZGTR3QCrmTkHCbeCjrzkQ6p 15xTjizapSjaSd89S5prYXyhWYU2cGteuya8qXnwbnusiX/a/wB1eHERDEK0Xoh5tlsZVuKCQOc0 rPdIZbaXCSNWiOkWKiiLEp4oOU7+ThopSlrK1qKlKNpJNpJ28G5xIzLJEY15F7ERpCxaMYbHzRz4 zzjAiO6nuOc+Bcq1rxPLVe4jq3RpMZjV7rtpN8/BEuYspQfnDMebBBKSCCQRjBFKo3QmX2m4Cduh t9PyURSvmr4x2Dv5DnQtK0BaFBSSLQQbQcG6rrohuRJ99eBLe+kJ45GcYER3U9xznwLlWteJ5ar3 EYF0xu/qgtWP5D6FZx+ODU+ftz2RsulQMU0kNvp2QobPAcvl2sG6Y2V1RKhb8iIQo4uEfjg3M5k1 E1b6xCgHoRxVqdm9USoHykjmw7rHeyX+OVmwYbuZniJzdWteuya8qXnwLkndU14jedX0KvFTy2py by5u1BtVEMpHzdtQG1t+Xg6sBNY+WOFcFFusE5bxWI8IyHnpp8rLun/sN/DTT5WXdP8A2G/hpp8r Lun/ALDfw00+Vl3T/wBhv4aafKy7p/7Dfw00+Vl3T/2G/hpp8rLun/sN/DTT5WXdP/Yb+Gmnysu6 f+w38NNPlZd0/wDYb+Gmnysu6f8AsN/DTT5WXdP/AGG/ho5XasTnzpmvJZ8ltCcwpEzyaxgIiJjF OJOVJdN75MmDc01sL5QrMKbODWvXZNeVLz4QJSQQSCMYIp1y/wDxnPvGiI2LbBvIp5NuWxwinZGO 8NiPOq6aCdTUCwTOMAH/AJ19NOzc23TjfSF9NH4l+JXfvvuOq23FlR9eFU6rqqwztDbiT1mxYuIV vbCeE5rdqiUpQkJSAABYANjAiO6nuOc+Bcq1rxPLVe4jqqQlxBQtIUlQsIOQilb6vLq9O3GUpPWj tq4dR2U/u8IyeTbwpbWCbyjFAx7zKRjvAbU/dNo9VGrplYUJsUYVw7a2cfqIpqqzzwSXebX8dNVW eeCS7za/jpqqzzwSXebX8dKwVgi6xx6IyMbZQ4hoNAMpIFgJOyTj+UcCW99ITxyM4wIjup7jnPgX Kta8Ty1XuIwK6wpjKnzNsC0pa0Qf+pCvwwZVNo2TRqYuAfLToxHZChtEbIpLbqkMttKJnBONuZCu HsUk79hII8po3dFq0uy+jloxW/KYX+ANG6+1aedQ03Mr5a1BKRoDmMnJ9XqVsgDMaqzGGQLV6Ffp G2Um+A9VmDLZlFymNRGQTymnkZCMhG0RsikBdXb0ECYS5eiAY1Q6gQo8ByeU01VJH4JMfNo+Omqp I/BJj5tHx01VJH4JMfNo+OmqpI/BJj5tHx01VJH4JMfNo+Old64S+ssHCswbMS2plwqUXkpAIIsx WKODDdzM8RObq1r12TXlS8+Bck7qmvEbzq+h1qqEH1Lj5OkJdPynIcYgrbKdo71HG1suKbcQpC0m xSVCwg7RH0W5prYXyhWYU2cGteuya8qXn+gyuWRc4mDUFBtFbzh5kjZJOwBSr0khqvSpuCYF8v5z rllhcXsnoG1gxHdT3HOfAuVa14nlqvcRgVjkMPWKVLhHrEuD5TLtmNCtvg2CKTGXRUqjnYOMaLbz ZsIOzvjbB2+3S3vpCeORnGBEd1Pcc58C5VrXieWq9xGA40h1pbbiQpC0lKknZByik9lLsknMTAOg /s1fIUfrIPzT5MOW99ITxyM46tc6vrkE9dShBEI+S4wbMVhyp5ji4LPoEN3MzxE5urWvXZNeVLz4 FyTuqa8RvOr6HsZaT2qsunzZU+3oURZYl9vErn2xw+qk6qVNpOVLDJioYY9FZFtg305Rm36bP0O5 prYXyhWYU2cGteuya8qXn+gSKrUyrA+EQjJDQNi31ixCOfZO8MdKuVZgauQehQyb95YGivqHyln8 BvYUR3U9xznwLlWteJ5ar3EYNZ6qQdZYWxYDUWgfsogDGN47YpN5LHSOLMPHMFCvqrGNCxtpOz22 W99ITxyM4wIjup7jnPgXKta8Ty1XuIwa4VUbrHAhTNiI9kHQlnIofune2to89IqFfgopyGiWlNPN m9WhQsIOFLe+kJ45GcdWeyKErBLVQkWCPrNuD5zatsdFJ5IY6r8eqFjW7LbS24n5rg2wfw2O3w3c zPETm6ta9dk15UvPgXJO6prxG86vouxSZ1Xk83KlRUGgun/FQL1XlGXntpG3LWlAqgJitO0h9Fvr FmakTc6rAwf2bTEQP/G6B71lHapz5k2KlUQeKm+zUXVydostlMbj2mFHMKdgJzuRH+jL6KdgJzuR H+jL6KdgJzuRH+jL6KdgJzuRH+jL6KdhppubGeYV0U7DTTc2M8wrop2Gmm5sZ5hXRTsNNNzYzzCu ii5XMGzYuAik27bKh+FOx0d4HEeaV0U7HR3gcR5pXRTsdHeBxHmldFDL40AkwkQAMZJbV0U63f8A 4Ln3TS5uhSKtLStJSeuFYiLNgUIwaySKbxFZpk6zKY5xpcQtSVoh1lKhblBAx00uTzcWY+ir6KaX J5uLMfRV9FNLk83FmPoq+imlyebizH0VfRTS5PNxZj6Kvoppcnm4sx9FX0U0uTzcWY+ir6KaXJ5u LMfRV9FNLk83FmPoq+imlyebizH0VfRTS5PNxZj6KvooKtz23vLMfRV9FGamVjfNiJTEDjgI94ik Hcyn8QQYgw0KnZv3L4+RNo9dJVcxlMEpLkc65GuDHen5CPIMZ8tGGWoZlLLDSGmkixKEJAAG8Bhx FXZ4qJdIk0wIKyQRCr2+CmlyebizH0VfRTS5PNxZj6Kvoppcnm4sx9FX0UubQcVAVdiGoyGeh3DF qUEvNlBIvEY7DsYj5MKOl0JMoZUNGMIeZVlSsW842jv0m1yxlxSnJRGaFbjDMRaU8yhjA4QaRdQ6 xwZNsuU6nYUyoLt5gbfVTS3PQbOwsxxf/ir6KaXJ5uLMfRV9FNLk83FmPoq+imlyebizH0VfRTS5 PNxZj6Kvoppcnm4sx9FX0UioOKgXdCi4Z6Hcsvrx1BQqzbsOBLe+kJ45GcYERV2eKiXSJNMCCskE Qq9vgppcnm4sx9FX0U0uTzcWY+ir6KaXJ5uLMfRV9FLm0HFQFXYhqMhnodwxalBLzZQSLxGOw7GI +TCn1VpbWJmyLaKX0ixD7eJad7fG8aTO5nOoRRVBFqOa2L1QQuzfBxeQmjlWJ80u9VJo8n+WHUoe UCmlyebizH0VfRTS5PNxZj6Kvoppcnm4sx9FX0UgKvzpExhVrlEwSkPIJJhlgAXw3sCYS2DmsKqF jYdD7KvqqGQ7YOUHfFJvcscClOSiLSpBxhmIxEcChl5wOGkVUysUIohyUxCrNloBwf8AzbTS5PNx Zj6Kvoppcnm4sx9FX0U0uTzcWY+ir6KaXJ5uLMfRV9FNLk83FmPoq+imlyebizH0VfRTS5PNxZj6 Kvoppcnm4sx9FX0U0uTzcWY+ir6KaXJ5uLMfRV9FNLk83FmPoq+imlyebizH0VfRSHBEM0CCCEAE Hg6tZJFN4is0ydZlMc40uIWpK0Q6ylQtyggY6aXJ5uLMfRV9FNLk83FmPoq+imlyebizH0VfRS5j Lo+AiJkYyBiYYLQ2El5pSL6wqtstGP6OMdD1LKYqYqYqYqWDepYN6lg3qWDepZvUs3qWDapYNqlg 3qWDeokAZP8AMLpy0rrbYlQJRDoSobRtJzEYEia0asEtasBv4poY8mNQ/wD0NWSskHVyBLz6kqiF D9iwD8pZ294bZpHRr8wjXoyJWVvPKKlHf6MCokIYuuUvFlqW1F1R2r1JI9dn+vK7VljatQcK9BtM OKecKFB5KiAALcVhFNVWeeCS7za/jpqqzzwSXebX8dNVWeeCS7za/jpqqzzwSXebX8dNVWeeCS7z a/jpqqzzwSXebX8dNVWeeCS7za/jpqqzzwSXebX8dH7pVYnmylDkMyT9ZtnH/wDRNIqLiI2IXERT 7jzy/nLcUSTg3LJOpDUVOHU2aINBZt2QDao+UAcx/wBeXWO9kv8AHKzduq5IIisM1RCMgpaHynnb MSE9O0KQUIzAQbMJDICGWUBCE7w/15dY72S/xys3bavVZmFYorQ4Vu9ZSf2j6x8lHSd6kikcJV+X Jg4NJsyrcV85xW2f9e3QpJMp5AQTUthtGW26VLF+lNgs/mIpqfVo3L9oa+Kmp9Wjcv2hr4qan1aN y/aGvipqfVo3L9oa+Kmp9Wjcv2hr4qan1aNy/aGvipqfVo3L9oa+Kmp9Wjcv2hr4qan1aNy/aGvi oi57WdSrDLQnfL7f4KpC3Lp48Ro70IwnZtWVHyAWeuksuXyuEWHI992NUPqWaGjyA2ny0h4dmEYS xDtIaaQLEoQkAAcA/wD5tf/+AAMA/9k= ------=_NextPart_01D5E037.E5F59E00 Content-Location: file:///C:/6A8530EF/12EnfoquedeaprendizajebasadoentareaseneldesarrollodelahabilidaddelhablaCorregido_archivos/filelist.xml Content-Transfer-Encoding: quoted-printable Content-Type: text/xml; charset="utf-8" ------=_NextPart_01D5E037.E5F59E00--