

Modelación matemática del comportamiento de varillas sismorresistentes sometidas a tratamientos de temple mediante el método de elementos finitos

Mathematical modeling of the behavior of earthquake resistant rods subjected to quenching treatments using the finite element method

1	Carmen del Rocio Moyón Moyón (D) https://orcid.org/0000-0001-8798-7060 Maestrante en la Universidad Nacional de Chimborazo (UNACH), Investigador	
2	Independiente, Riobamba, Ecuador. <u>carmy 111@hotmail.com</u> Cristina Estefanía Ramos Araujo Dhttps://orcid.org/0000-0002-8644-5814 Ecuador Logical Company de Estedáctica Ecuador Delitácica de Chimbergano	
	(ESPOCH), Riobamba, Ecuador.	
3	Natalia Alexandra Pérez Londo (D) https://orcid.org/0000-0001-9068-879	Check for updates
	Facultad de Ciencias, Carrera de Estadística, Escuela Superior Politécnica de Chimborazo	
4	(ESPOCH), Riobamba, Ecuador. <u>nperez@espoch.edu.ec</u> Luis Stalin López Telenchana https://orcid.org/0000-0001-7548-0406	
	Facultad de Ingeniería, Carrera de Ingeniería Industrial, Universidad Nacional de Chimborazo (UNACH), Riobamba, Ecuador.	
	luis.lopez@unach.edu.ec	14.1
	Articulo de Investigación Científica y Teci	nologica
	Enviado: 14/	06/2023
	Kevisado: 22/	01/2023
	Aceptado: 04/	08/2023
	Publicado:25/	/08/2023
	DOI: https://doi.org/10.33262/concienciadigital.v6i	5.2.2666

Digital

www.concienciadigital.org

Palabras claves: Varillas, temple, tracción, modelación, elementos, finitos, fractura, dúctil.

Resumen

En el sector de la construcción las varillas sismorresistentes pierden gradualmente propiedades mecánicas cuando son sometidas a tratamientos térmicos, esta pérdida es diferente, y está en dependencia tanto del porcentaje de los elementos constituyentes como del espesor del material. Por lo tanto, aplicar modelación matemática para simular el grado de afectación en los materiales sismorresistentes frente a la tracción se convierte en una herramienta que permite de forma rápida y precisa establecer el comportamiento de cualquier material bajo este tipo de esfuerzos. El método de investigación aplicado fue inductivo, con un enfoque cuantitativo, mediante diseño experimental y de tipo documental. La población está constituida por las varillas corrugadas, considerando 90 unidades experimentales como muestra. El ensayo destructivo de tracción y la simulación mediante métodos de elementos finitos arrojaron como resultado que el esfuerzo máximo para la ruptura del material sismorresistente está entre los 690 Mpa y los 700 Mpa, resultado que se constituye fundamental en la fase de diseño y de selección de materiales al momento de construir nuevas edificaciones. Mediante el análisis de varianza se concluyó que la dependencia del mecanismo de fractura está en función tanto del diámetro del material como del tipo de fabricante. Además, se pudo establecer que el mecanismo de fractura de los materiales sismorresistentes sometidos a procesos térmicos de temple es de tipo dúctil.

Keywords: Rods, quenching, tensile, modeling, finite element, fracture, ductile.

Abstract

Typography: In the construction sector, seismic resistant rods gradually lose mechanical properties when subjected to thermal treatments, this loss is different and depends on the percentage of alloying elements as well as on the thickness of the material. Therefore, applying mathematical modeling to simulate the degree of affectation in seismic-resistant materials under tensile stresses becomes a tool that allows to establish the behavior of any material quickly and accurately under this type of stresses. The research method applied was inductive, with a quantitative approach, by means of experimental design and documentary type. The population is constituted by rebars, considering 90 experimental units as sample. The destructive tensile test and the simulation using finite element methods showed that the

maximum stress for the rupture of the seismic-resistant material is between 690 Mpa and 700 Mpa, a result that is fundamental in the design and material selection phase at the time of constructing new buildings. By means of the analysis of variance, it was concluded that the dependence of the fracture mechanism is a function of both the diameter of the material and the type of manufacturer. In addition, it was established that the fracture mechanism of earthquake resistant materials subjected to thermal hardening processes is of the ductile type.

Introducción

El Ecuador se encuentra ubicado geográficamente en el cinturón de fuego del Pacifico, lugar en donde la actividad sísmica es continua, esto hace que el país sea propenso a sufrir terremotos, puesto que en cada década hay doscientos terremotos de gran magnitud en promedio alrededor del mundo (Coburn & Spence, 2002).

Las distintas alternativas para disminuir los daños que provoca la ocurrencia de un terremoto son de sumo interés para la protección civil, debido a que un terremoto tiene un impacto negativo por el número de víctimas y heridos que puede ocasionar y por el nivel de destrucción en viviendas y edificios (Modirzadeh et al., 2012). En este contexto, la simulación mediante elementos finitos del comportamiento de materiales capaces de soportar es esfuerzo por tracción al que se someten durante el desarrollo de un evento sísmico es una de las alternativas más investigadas.

Las viviendas y edificios son construidos con distintos materiales sismorresistentes, siendo las varillas las más utilizadas, mismas que en la etapa de construcción de las edificaciones sufren procesos térmicos de temple, debido a que son soldadas y enfriadas rápidamente con agua, esta práctica es muy común y provoca que las propiedades mecánicas iniciales de las varillas sufran cambios significativos. Los cambios de las propiedades de los materiales sismorresistentes llevan al deterioro prematuro de las infraestructuras de hormigón (Wakjira & Ebead, 2018).

Es muy común en nuestro país usar agua como medio de enfriamiento después de realizar un proceso de soldadura, esto aumenta en gran proporción la dureza del material, puesto que la velocidad de enfriamiento es muy alta en otras palabras se lleva a cabo un proceso de templado rápido. Hay que tener en cuenta que los aceros se agrietan fácilmente cuando se enfría en agua (Li et al., 2023). Es por ello por lo que varias investigaciones se han enfocado en la relación entre la tensión interna que se genera por un enfriamiento

acelerado y el agrietamiento de los aceros (Toshioka et al., 1972), para corroborar esta dependencia se desarrollan diversas simulaciones mediante el método de elementos finitos. La relación entre la tensión residual real y simulada después de realizado el enfriamiento o tratamiento térmico de temple, es utilizada para la validez del método de simulación (Şimşir & Gür, 2008; Huiping et al., 2007; Wang et al., 1997).

Los efectos que tienen los procesos de enfriamiento y otros tratamientos térmicos sobre los aceros han sido simulados por métodos numéricos, especialmente por los métodos de elementos finitos (FEM) (Mackerle, 2013). Para simular los efectos de los tratamientos térmicos es necesario conocer diversos campos de la ingeniería como resistencia de materiales, transferencia de calor, metalurgia, y por supuesto modelación matemática. Es por ello por lo que la predicción del comportamiento de los materiales puede ser validada mediante una correcta simulación matemática (Carm et al., 2023).

Mediante modelación matemática se puede predecir los cambios en el comportamiento de las varillas sismorresistentes, dado que permite conocer y establecer si los materiales intervenidos son capaces de soportar las tensiones generadas en eventos sísmicos. El emplear elementos finitos permite la aplicación de ecuaciones matemáticas y principios físicos en cada elemento, obteniendo una solución aproximada del comportamiento global de la estructura (Tantideeravit & Kamaya, 2020).

La presente investigación tiene como objetivo principal predecir el comportamiento mecánico de distintas varillas sismorresistentes sometidas a tratamientos térmicos de temple mediante modelación matemática, basada fundamentalmente en la aplicación del método numérico de elementos finitos, método que es reconocido en otras investigaciones como una herramienta capaz de predecir comportamientos mecánicos de distintos materiales ante la exposición de esfuerzos (Alshoaibi & Fageehi, 2021).

Varias investigaciones emplean modelación matemática basada en resultados de experimentos o ensayos, con la finalidad de poder pronosticar el comportamiento de un material que por condiciones de uso cambian de propiedades, la modelación permite simular el cambio en cuanto a propiedades mecánica de cualquier tipo de acero, lo que en la fase de diseño de edificaciones es fundamental, pues permite una adecuada selección de materiales. La modelación matemática es utilizada para obtener resultados de forma rápida, eficiente y eficaz del comportamiento mecánico de cualquier material (Verma et al., 2022).

En la presente investigación se utiliza el software Ansys, este programa puede simular el comportamiento de distintas estructuras o componentes permitiendo analizar la fuerza de tracción y elasticidad que pueden soportar. En general, los usuarios de Ansys dividen las estructuras más grandes en componentes más pequeños, cada uno de los cuales se modela y prueba individualmente (Asif et al., 2023). Además, una vez realizada la simulación

con los datos del ensayo destructivo de las varillas, se puede predecir el comportamiento de cualquier material únicamente cambiando el tipo de material en el software empleado, esto debido al método de elementos finitos, que es el método numérico con mayor eficacia para analizar, simular y predecir el comportamiento de la tracción de los materiales (Zhang et al., 2020; He et al., 2023).

Metodología

La presente investigación se realizó con un enfoque cuantitativo y de tipo experimental. Las variables empleadas en el estudio fueron: variable independiente el temple y como variable dependiente la tracción (Hernández-Sampieri, 2018).

La unidad experimental son varillas de acero que se comercializan en el mercado, y que son fabricadas bajo la norma ASTM A706 con la composición Fe-0.39 C-0.28 Si-0.59 Mn-1.01 Cr-0.17 Mo-0.022. Las especificaciones A706 contienen límites mínimos y máximos de resistencia a la fluencia, así como mayores requisitos para elongaciones, al mismo tiempo que cumplen con los requisitos de composición química que permiten que el acero sea soldable (Overby et al., 2017).

Se utilizaron varillas sismorresistentes de tres diámetros diferentes (8, 10 y 12 milímetros), además de tres fabricantes diferentes que cumplen con la norma anteriormente citada. Cada varilla tiene una longitud de 50 centímetros, esto para cumplir los requerimientos del ensayo destructivo para evaluar la tracción según la norma ASTM E8M. Previo al ensayo destructivo, las varillas fueron sometidas a un proceso de temple, bajo condiciones controladas. Después del ensayo destructivo, con los datos obtenidos se procede a crear un modelo de simulación de elementos finitos mediante el software ANSYS, y de esta manera comprobar los resultados obtenidos en el experimento industrial y predecir el comportamiento de otros materiales utilizados en las edificaciones de forma rápida y de manera más eficiente.

Para la recolección de información cuantificable procedente del ensayo destructivo en el laboratorio fue la técnica de la observación, esta permitió simular el comportamiento de la tracción en varillas que han sido sometidos a tratamientos térmicos, el instrumento de recolección de datos se desarrolló mediante guías de observación generando una matriz de información, la cual se utilizó tanto para el análisis estadístico y la modelación mediante elementos finitos (Mangai & Eswari, 2023).

El universo son todas las varillas sismorresistentes que existen en nuestro país. La población son las varillas construidas bajo la caracterización del acero A706. Para la investigación se trabajó con todas las varillas sismorresistentes existentes en el mercado local; como muestra se ha considerado las 90 unidades experimentales, con el objetivo de lograr que la muestra sea representativa, en el sentido de que tengan los aspectos clave

que se desean analizar en la población. Una forma de lograr representatividad es diseñar de manera adecuada un muestreo aleatorio, donde la selección no se haga con algún sesgo en una dirección que favorezca la inclusión de ciertos elementos en particular, sino que todos los elementos de la población tengan las mismas oportunidades de ser incluidos en la muestra (Gutiérrez y De La Vara, 2008).

Para el desarrollo de la investigación se emplea un proceso metodológico de tres etapas. La primera etapa consistió en la selección y preparación del material sismorresistente, para lo cual se investigó los fabricantes de varillas sismorresistente en el país y se seleccionó a las empresas que fabrican este material bajo la norma ASTM A706, después se establece los diámetros de varilla más utilizados, en este caso de 8 mm, 10 mm y de 12 mm, una vez establecidas estas condiciones, se procede a preparar las probetas para el ensayo destructivo bajo la norma ASTM E8M.

En la segunda etapa se realizó el ensayo destructivo bajo el Método Estándar para la tracción en materiales metálicos y de las probetas antes preparadas, con los resultados obtenidos se hace un análisis de ANOVA Multifactorial, además se determinó los datos que serán útiles para la simulación mediante el método de elementos finitos.

La tercera etapa consiste en la simulación mediante el método de elementos finitos del comportamiento mecánico de los materiales en dependencia de las variables diámetro de varilla y grado de tracción que soporta el material. Esta etapa y con la finalidad de que el estudio sea replicable, se han establecido 5 fases como se muestra en la figura 1:

Figura 1

El análisis por el método de elementos finitos empieza con la fase de modelización, donde se diseña el objeto o la probeta motivo de análisis, así como las condiciones del entorno. La segunda fase es el análisis de los resultados, colocando las condiciones numéricas al modelo de elementos finitos. En la tercera fase se realizó el análisis de la simulación del ensayo mediante los datos obtenidos, con la interpretación de los resultados se decide si el análisis es admisible o se procede a optar algún cambio, con la finalidad de poder volver a modificar las variables iniciales, la modelización o incluso hasta una nueva interpretación de los datos.

Finalmente, con el Método de Elementos Finitos se desarrolló predicciones cambiando el tipo de material en el software ANSYS obteniendo mejores materiales sismorresistentes para la fase del diseño.

Resultados

Se seleccionó y preparó varillas sismorresistentes de tres fabricantes diferentes (A, N, X) dado que en el Ecuador solo tres empresas que fabrican varillas lo hacen bajo la norma ASTM A706. Se preparó las probetas para el ensayo destructivo de tracción bajo los estándares de la norma ASTM E8M, empezando con el corte a 50 centímetros de cada probeta como se muestra en (a), de la figura 2.

Figura 2

(a) Probetas de 50 cm de longitud. (b) Elevación de la temperatura en las probetas hasta el punto de fusión. (c) Enfriamiento rápido de la probeta en agua. (d) Varilla sismorresistente sometida al proceso de Temple

(b)

ISSN: **2600-5859** Vol. 6 No. 3.2, pp. 47 – 76, agosto – septiembre 2023

www.concienciadigital.org

Se tiene como resultado un temple rápido controlado en las varillas, se eleva a la temperatura de las varillas hasta el punto de fusión como se muestra en (b) y posteriormente se enfría en agua rápidamente (c), consiguiendo el proceso térmico de temple en las varillas sismorresistentes (d).

El Ensayo Destructivo bajo el Método Estándar para la tracción en materiales metálicos ASTM E8M muestra datos de resistencia a la tracción. Para lo cual, se utilizó la máquina universal del laboratorio de Ensayos Destructivos de la Carrera de Ingeniería Civil de la Universidad Nacional de Chimborazo como se indica en (a) de la figura 3, se midió cada probeta, en la parte superior e inferior (b), posteriormente se colocó cada probeta en la máquina universal (c), y se sometió cada probeta al ensayo de tracción (d), consiguiendo como resultado una fractura de tipo dúctil como se muestra en la figura 4.

ISSN: **2600-5859** Vol. 6 No. 3.2, pp. 47 – 76, agosto – septiembre 2023

www.concienciadigital.org

Figura 3

(a) Máquina Universal Laboratorio de Ensayos Destructivos. (b) Medición de cada probeta. (c) Colocación de las probetas en la máquina universal. (d) Probetas sometidas al ensayo de tracción

(a)

(d)

Figura 4

Probetas con fracturas de tipo dúctil

En la tabla 1, para un diámetro de 8 mm se observó que se alcanza un esfuerzo máximo para la ruptura de 770,02 Mpa en la probeta 1; además una deformación máxima porcentual de 16,09 en la probeta 3.

Tabla 1

Resultado prueba de tracción varilla de 8 mm de diámetro

	Universidad Nacional de Chimborazo						
Ficha de recolección de d	latos						
DATOS NEODMATIN	26						
DATOS INFORMATIVO	5						
Fecha	11/01/2023	Ciudad	Riobamba				
Lugar	LABORATORIO DE EL	NSAYOS DESTRUCT	TVO				
Maquina	Universal						
_							
Realizado por:	Ing. Carmen Moyón	Revisado por:	Ing. Cristina Polo				
-	- •		-				

Tabla 1

Resultado prueba de tracción varilla de 8 mm de diámetro (continuación)

PARAMETROS DE ENSAYO								
Tipo de ensayo			Tracción		Norma	1	ASTM E8/E8M-16a	
Tipo de	probeta	l	Cilíndrica	a (Varilla)	Estrati	ficación	-	
Dimensiones			500 mm ((longitud)	Longit Calibr	ada	200 mm	
Orientación			Ran + 0°	+ 0°		uuu		
Temperatura Ambiente			24,6 °C		Numero de 90 probetas		90	
Resultad	los vari	lla de 8 n	nm de diám	netro				
D Princi	pal		8	mm	D Sect	undario	7,5	mm
Área Pri	ncipal		5,02656E	2-05 m ²	Área Estudio		4,41788E-05	m ²
Probet	Tei	mple	Max.	Max.	Longitud	Longitud d	le Longitud	Esfuerzo
а			Fuerza	Deform	Inicial	alargamien	to Final	Máximo
			kN	ación	(mm)	Deformació	ón	para
				%		(mm)		ruptura
								(Mpa)
	SI	NO						
1	Х		34,0184	15,45	500	77,23	577,23	770,02
2	Х		33,5441	15,95	500	79,77	579,77	759,28
3	Х		33,1722	16,09	500	80,44	580,44	750,86
4		Х	32,6092	15,47	500	77,35	577,35	738,12

En la tabla 2, para un diámetro de 10 mm se observó que se alcanza un esfuerzo máximo para la ruptura de 713,23 Mpa en la probeta 1; además una deformación máxima porcentual de 18,99 en la probeta 2.

Tabla 2

Resultado prueba de tracción varilla de 10 mm de diámetro

D Principal	10	mm	D Secundario	9,5	mm
Área Principal	7,85E-05	m ²	Área Estudio	7,09E-05	m ²

Tabla 2

Probeta	n Temple		Max. Fuerza kN	Max. Deformaci ón %	Longitud Inicial (mm)	Longitud de alargamiento Deformación (mm)	Longitud Final	Esfuerzo Máximo para ruptura (Mpa)
	SI	NO						
1	Х		50,5556	17,2718	500	86,36	586,36	713,23
2	Х		48,9646	18,9961	500	91,98	591,98	690,79
3	Х		49,8885	18,5289	500	92,64	592,64	703,82
4		Х	47,5404	17,5780	500	87,89	587,89	670,69

Resultado prueba de tracción varilla de 10 mm de diámetro (continuación)

En la tabla 3, para un diámetro de 12 mm se observó que se alcanza un esfuerzo máximo para la ruptura de 707,32 Mpa en la probeta 3; además una deformación máxima porcentual de 18,22 también en la probeta 3.

Tabla 3

D Principal		12	mm	D Secund	lario 11,5		mm	
Área Prin	cipal		1,13E-04	m ²	Área Estu	idio 1,04	·E-04	m ²
Probeta	Tem	ple	Max. Fuerza kN	Max. Deformaci ón %	Longitud Inicial (mm)	Longitud de alargamiento Deformación (mm)	Longitud Final	Esfuerzo Máximo para ruptura (Mpa)
	SI	NO						
1	Х		72,7624	16,1355	500	80,68	580,68	700,52
2	Х		72,4041	16,7024	500	83,51	583,51	697,07
3	Х		73,4683	18,2217	500	91,11	591,11	707,32
4		Х	71,7705	15,4470	500	77,24	577,24	690,97

Resultado prueba de tracción varilla de 12 mm de diámetro.

Análisis estadístico

Para el diseño experimental factorial 3^2 , se obtuvo un total de 9 tratamientos diferentes (tabla 4).

Tabla 4

Tratamiento	Tipo de fabricante	Diámetro
1	А	8 mm
2	Ν	8 mm
3	Х	8 mm
4	А	10 mm
5	Ν	10 mm
6	Х	10 mm
7	А	12 mm
8	Ν	12 mm
9	Х	12 mm

Matriz del diseño experimental factorial 3²

Los factores para el estudio fueron:

FACTOR A: Tipo de fabricante (TF)

FACTOR B: Diámetro (DIAM)

FACTOR DE INTERACCIÓN AB: Interacción entre el tipo de fabricante y el diámetro.

Los niveles para cada factor:

Tabla 5

FACTOR A: Tipo de fabricante (TF)

Nivel bajo	А
Nivel medio	Ν
Nivel alto	X

Tabla 6

FACTOR B: Diámetro (DIAM)

Nivel bajo	8 mm
Nivel medio	10 mm
Nivel alto	12 mm

Digital

www.concienciadigital.org

Variable Respuesta

Tracción.

Objetivo

Minimizar la tracción.

Unidad Experimental

Varillas de acero.

Planteamiento de hipótesis

 H_0 : El efecto producido por el tipo de fabricante no influye en el tiempo de tracción H_1 : El efecto producido por el tipo de fabricante influye en el tiempo de tracción H_0 : El efecto producido por el diametro no influye en el tiempo de tracción H_1 : El efecto producido por el influye en el tiempo de tracción H_0 : El efecto producido por la interacción entre el tipo de fabricante y el diametro no influye en el tiempo de tracción H_1 : El efecto producido por la interacción entre el tipo de fabricante y el diametro no influye en el tiempo de tracción

Modelo estadístico

$$Y_{ijkl} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijkl}$$

Donde:

Yijkl: Observaciones de la tracción

μ: Tracción media.

 α_i : Efecto producido por el nivel i-ésimo del factor **A**

 β_j : Efecto producido por el nivel j-ésimo del factor **B**

 $(\alpha\beta)_{ij}$: Efecto producido por la interacción entre **AB**

 ε_{ijk} : es el error aleatorio que se supone sigue una distribución normal con media cero y varianza constante $\sigma^2 N(0, \sigma^2)$.

Tabla 7

Estadísticas descriptivas del tipo de fabricante

	Tij	po de fabricante		Estadístico	Desv. Error
Tracción	A	Media		37,859493	2,1370757
		95% de intervalo de confianza para la media	Límite inferior	33,488683	
			Límite superior	42,230304	
		Media recortada al 5%		37,786743	
		Mediana		36,319950	
		Varianza		137,013	
		Desv. Desviación		11,7052454	
		Mínimo		23,6649	
		Máximo		53,3374	
		Rango		29,6725	
		Rango intercuartil		27,1294	
		Asimetría		,204	,427
		Curtosis		-1,548	,833
	N	Media		39,229517	2,2932419
		95% de intervalo de confianza para la media	Límite inferior	34,539310	
			Límite superior	43,919723	
		Media recortada al 5%		39,152641	
		Mediana		38,009200	
		Varianza		157,769	
		Desv. Desviación		12,5606033	
		Mínimo		24,1364	
		Máximo		55,8516	
		Rango		31,7152	

Χ

Tabla 7

Estadísticas descriptivas del tipo de fabricante (continuación)

Tipo de fabricante		Estadístico	Desv. Error
Rango intercuartil		29,6587	<u>.</u>
Asimetría		,151	,427
Curtosis		-1,549	,833
Media		37,669987	2,3431392
95% de intervalo de confianza para la medi	a Límite inferior	32,877729	
	Límite superior	42,462244	
Media recortada al 5%		37,418559	.
Mediana		33,500100	
Varianza		164,709	
Desv. Desviación		12,8339018	.
Mínimo		24,0474	
Máximo		55,8366	
Rango		31,7892	·
Rango intercuartil		28,9454	<u>.</u>
Asimetría		,474	,427
Curtosis		-1,542	,833

El análisis exploratorio (tabla 8) de la tracción, mostró un promedio de 37.85, 39.22 y 37.66 Mpa para los fabricantes, A, N y X respectivamente, con una desviación de 11.70, 12.56, 12.83 Mpa; el valor mínimo para cada fabricante fue de 23.66, 34.13 y 24.04 Mpa; su valor máximo fue de 11.70, 12.56 y 55.83Mpa; con relación a los intervalos de confianza se observó que el promedio de la atracción en función del tipo de fabricante presentó medias homogéneas.

Tabla 8

Estadísticas descriptivas del diámetro

	Diá	imetro		Estadístico	Desv. Error
Tracción	8	Media		24,672577	,0991983
		95% de intervalo de confianza para la media	Límite inferior	24,469693	·
			Límite superior	24,875460	
		Media recortada al 5%		24,670085	·
		Mediana		24,731250	<u> </u>
		Varianza		,295	·
		Desv. Desviación		,5433315	
		Mínimo		23,6649	<u>.</u>
		Máximo		25,7384	<u> </u>
		Rango		2,0735	
		Rango intercuartil		,7691	·
		Asimetría		,125	,427
		Curtosis		-,746	,833
	10	Media		35,997670	,3552720
		95% de intervalo de confianza para la madia	Límite inferior	35,271057	<u> </u>
		media	Límite superior	36,724283	·
		Media recortada al 5%		36,004289	
		Mediana		36,319950	·
		Varianza		3,787	·
		Desv. Desviación		1,9459051	·
		Mínimo		33,0169	
		Máximo		38,8031	

Tabla 8

Estadísticas descriptivas del diámetro (continuación)

	Diámetro		Estadístico	Desv. Error			
	Rango		5,7862				
	Rango intercuartil		3,8405				
	Asimetría		-,186	,427			
	Curtosis		-1,512	,833			
12	Media		54,088750	,2190464			
	95% de intervalo de confianza para la media	Límite inferior	53,640750				
		Límite superior	54,536750				
	Media recortada al 5%		54,103633				
	Mediana		54,167100				
	Varianza		1,439				
	Desv. Desviación		1,1997667				
	Mínimo		52,0376				
	Máximo		55,8516				
	Rango		3,8140				
	Rango intercuartil		2,0959				
	Asimetría		-,310	,427			
	Curtosis		-1,120	,833			

El análisis exploratorio (tabla 9), de la tracción, mostró un promedio de 24.67, 35.99 y 54.088 Mpa, para los diferentes diámetros, 8 mm, 10 mm y 12 mm respectivamente, con una desviación de 0.54, 1.94, 1.19 Mpa; el valor mínimo para cada diámetro fue de 23.66, 33.01 y 52.03 Mpa; su valor máximo fue de 25.73, 38.80 y 55.85 Mpa; con relación a los intervalos de confianza se observó que el promedio de la atracción en función del diámetro presentó medias homogéneas.

Tabla 9

Variable dependiente: T	racción				
Origen	Tipo III de suma de cuadrados	gl	Media cuadrática	F	Sig.
Modelo corregido	13339,946ª	8	1667,493	4701,123	,000
Intersección	131696,273	1	131696,273	371288,131	,000
Fabricante	43,450	2	21,725	61,249	,000
Diámetro	13208,562	2	6604,281	18619,290	,000
Fabricante * Diámetro	87,934	4	21,983	61,977	,000
Error	28,731	81	,355		
Total	145064,950	90			
Total corregido	13368,676	89			
a. R al cuadrado = ,998 ((R al cuadrado ajustada	a = ,998)			

Pruebas de efectos mediante el análisis de varianza

Con base al análisis de varianza (ANOVA) se obtuvo un valor p menor al nivel de significancia (0.05). Por lo tanto, los dos efectos principales (Tipo de fabricante y diámetro) y el efecto de interacción (tipo de fabricante * diámetro) tuvieron un efecto significativo sobre la tracción del acero.

Tabla 10

Medias para los grupos en los subconjuntos homogéneos

		Subconjunto		
Tipo de fabricante	Ν	1	2	
XinLong	30	37,669987		
Adelca	30	37,859493		
Novacero	30		39,229517	
Sig.		,438	1,000	

En la tabla 10, se observó un grupo homogéneo entre las fábricas X y A lo que indicó que sus medias son iguales, es decir la diferencia de medias es no significativa.

Tabla	11
-------	----

MOD TO 1 ab				
HSD Tukey ^{a,b}				
			Subconjunto	
Diametro	Ν	1	2	3
8	30	24,672577		
10	30		35,997670	
12	30			54,088750
Sig.		1,000	1,000	1,000

Medias para los grupos en los subconjuntos homogéneos.

En la tabla 11, como resultado se evidenció una diferencia de medias significativas.

En la figura 5 se analizó gráficamente las interacciones entre los dos factores. La significancia de la interacción de los factores indicó que el tipo de fabricante y el diámetro se interrelacionan en cuanto a su efecto sobre la tracción del acero (26). Por lo tanto, las fábricas A, N y X, con un diámetro de 8 mm son efectivas para minimizar el tiempo de tracción del acero.

Figura 5

Interacción entre el tipo de fabricante y diámetro con base en la tracción del acero

Finalmente, en la tercera etapa al simular mediante el método de elementos finitos el comportamiento mecánico de los materiales en dependencia de las variables diámetro de varilla y grado de tracción que soporta el material se obtuvo como resultado que el esfuerzo máximo de deformación varía según el fabricante y por supuesto según el diámetro de la varilla.

Se constató que, mediante la simulación, los resultados del esfuerzo máximo coinciden con los obtenidos en el ensayo destructivo desarrollado en la etapa 3. En la figura 6 se introdujeron los datos iniciales para que la simulación sea la adecuada, datos que son el resultado del proceso destructivo de tracción, la utilización de ellos garantiza que la investigación pueda ser replicable y que los resultados sean confiables.

Proceso inicial para simular mediante elementos finitos

Figura 6

Nota. Esfuerzo máximo para ruptura:770.02 Mpa

Los resultados del proceso de simulación mediante modelación matemática se obtuvieron en Ansys, como se muestra en la figura 7.

Figura 7

File Edit View Units Tools Help	
P show vertices by close vertices size-look (Auto scale)	• Standardina Supervised Process Process A Construction and Constructio
	Assembly Center = acage Cooling * , , * , * , * , * , * , * , * , * ,
Result LU (Inue scale) • @ • @ • @ • ?	IS BUYTOR POWER Superbades *
Outine	A: Explicit Dynamics
Hitter: Name	Equated See ANSYS
[] [] (] (P 田 副 計	Type: Equivalent Own-Miles) Stress R19-1
Project	Timus 1,3122+-001
E Seconetry	Cycle Number 8014
a @ Part 1	wing a cost of the second s
ASTM A706 - 108	7.6916e8 Max
	6.057e6
Coordinate Systems	
E Mesh	4271148
Explicit Dynamics (AS)	3,415%
- Jal Initial Conditions	4,050%80
Analysis Settings	556067
Displacement	0 Min
E F Solution (A6)	
Solution Information	
Details of "Equivalent Stress"	9
Display Time 1,2e-003 s	_^
Calculate time history hes	X and X
Suppressed No	
Integration Point Results	0,000 0,100 0,200 (m)
Display Option Averaged	
Results	0,050 0,150
Minimum 2368,9 Pa	Geometry (Print Preview) Report Preview/
Maximum 7,6905e+008 Pa	Graph B Tabular Data 9
Average 4,3458e+008 Pa	Lamonation be by be minimum (Pa) V Assimum (Pa)
Maximum Occurs On Part 1	1 Mi2/2-1
Minimum Value Over Time	27.6016+-8 8 7,0005+004 2114 7,0016+008 4,3424+008
Minimum 0, Pa	9 8.0002e-004 2061,8 7.6898e-008 4.0929e-008
Maximum 97178 Pa	v 2,5e-4 5,e-4 7,5e-4 1,e-3 1,3851e-3 10,9800e-004 1645,3 7,5228e-008 3,3555e-008
- Maximum value over time	1 1 1 1 - 000 30(2) / //302+000 0,0/102+00/ 12 1 1 - 001 354.8 7 24506-008
Maximum 7,6916e+008 Pa	1 12 1,2e-003 5153,2 7,3921e-008 8,084e-007
Information	14 12e-003 5288 7,5719e-008 4,2337e-007
	12 (Japielous 2/1/8 / Joerius (Japielous 2/1/8 / Joerius
Note Val	lon determined a non software none mentures 760.16 Maps $0/16$ amon < 1
Inota: val	for determinado por software para ruptura: 709.10 Mpa ; % de error < 1

Resultados de la simulación mediante elementos finitos

El porcentaje de error de los resultados obtenidos tanto de forma experimental y mediante la simulación del método de elementos finitos se muestra en la tabla 12, en donde como resultado el mayor porcentaje de error es de 0,78 en la pobreta 4.

Tabla 12

	_					
Varillas de 8 mm de diámetro.						
Probeta	Temple	Esfuerzo Máximo para	Esfuerzo Máximo para	% de error de		
		ruptura (Mpa)	ruptura (Mpa)	los resultados		
		ENSAYO	SIMULACION			
		DESTRUCTIVO	ELEMENTOS FINITOS			
	SI NO					
1	Х	770,02	769,16	0,1109 %		

Comparación de resultados obtenidos en las varillas

Tabla 12

Comparación de resultados obtenidos en las varillas (continuación)

Varillas de 8 mm de diámetro.						
Probeta	a Temple		Esfuerzo Máximo para ruptura (Mpa)	Esfuerzo Máximo para ruptura (Mpa)	% de error de los resultados	
			ENSAYO DESTRUCTIVO	SIMULACIÓN ELEMENTOS FINITOS		
	SI	NO				
2	Х		759,28	756,05	0,4258 %	
3	Х		750,86	749,13	0,2304 %	
4		Х	738,12	732,29	0,7898 %	
			Varillas de 10 mm d	le diámetro.		
Probeta	Τe	emple	Esfuerzo Máximo para ruptura (Mpa)	Esfuerzo Máximo para ruptura (Mpa)	% de error de los resultados	
			ENSAYO DESTRUCTIVO	SIMULACIÓN ELEMENTOS FINITOS		
	SI	NO				
1	Х		713,23	710,92	0,3239 %	
2	Х		690,79	688,06	0,2808 %	
3	Х		703,82	700,34	0,4944 %	
4		Х	670,69	665,71	0,7425 %	
Varillas de 12 mm de diámetro.						
Probeta	a Temple		Esfuerzo Máximo para ruptura (Mpa)	Esfuerzo Máximo para ruptura (Mpa)	% de error de los resultados	
			ENSAYO DESTRUCTIVO	SIMULACIÓN ELEMENTOS FINITOS		
	SI	NO				
1	Х		700,52	696,93	0,5124 %	
2	Х		697,07	694,31	0,3959 %	
3	Х		707,32	704,29	0,4283 %	
4		X	690,97	685,75	0,7554 %	

ISSN: **2600-5859** Vol. 6 No. 3.2, pp. 47 – 76, agosto – septiembre 2023

www.concienciadigital.org

Discusión

En función a los resultados obtenidos se puedo comprobar que el método de elementos finitos utilizado para la simulación matemáticas es el más adecuado, puesto que permite generar aproximaciones acordes con la realidad, lo que valida que la presente investigación es reproducible y que a la vez es repetible, con ello la aplicabilidad en el análisis de otros materiales sismorresistentes es muy extensa.

Las investigaciones desarrolladas por Moreira et al. (2018), y Batista et al. (2019), establecen una metodología que en primer lugar realiza pruebas experimentales para evaluar de forma adecuada los materiales sismorresistentes, con los datos obtenidos del esfuerzo máximo para la ruptura se puedan describir enfoques analíticos y numéricos que permitan construir simulaciones mediante el método de elementos finito, esta metodología fue empleada en la presente investigación para generar datos útiles de los materiales sismorresistentes que se encuentran en el mercado nacional llegando a determinar que el esfuerzo máximo para la ruptura oscila entre los 690 Mpa y los 700 Mpa.

El estudio publicado por Daniyan et al. (2021), demostró que el ensayo de destrucción de tracción pudo ser simulado mediante el método de elementos finitos teniendo pequeñas diferencias en los límites de tensión, que en comparación con los resultados obtenidos evidencias relación entre el método destructivo y los resultados obtenidos mediante simulación, llegando a determinar un error menor al 1% en todas las probetas.

Para caracterizar el comportamiento de plasticidad de materiales metálicos dúctiles, incluidos los aceros estructurales, los estudios realizados por Yao & Wang (2022) y Zhu et al. (2021), utilizan ensayos de tracción en probetas como método principal, el tipo de falla que se desarrolla en el fenómeno de estrechamiento de la sección transversal del material, esto también sucede en la parte experimental del presente estudio, en donde se determina que las probetas sufren una reducción de la sección transversal antes de fracturarse.

Las investigaciones de Enami (2005) y Mackenzie et al. (1977), determinaron que, si las estructuras de acero sufren un proceso térmico de temple, es posible que se produzca agrietamiento dúctil en el sitio templado por compresión debido a la carga de tracción inversa. Por lo que estableció que el mecanismo de iniciación de la fractura es el proceso de temple rápido y que los aceros sismorresistentes analizados sufren una fractura de tipo dúctil, teniendo similitud en el tipo de fractura acotada en las investigaciones antes citadas.

Mediante el uso de ANOVA varias investigaciones han establecido la dependencia de distintos factores que aparecen según los ensayos a los que son sometidos los materiales

sismorresistentes, en el estudio publicado por Balaji et al. (2016), se encontró que la velocidad de avance es el factor más importante que afecta a la rugosidad superficial y la velocidad de corte afectaba al desgaste del flanco. En la presente investigación mediante ANOVA se pudo determinar que la significancia de la interacción de los factores indicó que el tipo de fabricante y el diámetro se interrelacionan en cuanto a su efecto sobre el esfuerzo a la tracción de los materiales sismorresistentes.

La técnica estadística ANOVA en la investigación desarrollada por Singh et al. (2018), ayudó a encontrar los factores significativos e insignificantes, en este estudio esta técnica determinó que tanto el tipo de fabricante como el diámetro del material sismorresistente son factores significativos en el análisis del comportamiento de las varillas sismorresistentes frente a mecanismos de fracturas de tipo dúctil producto del sometimiento a la tracción.

Conclusiones

- Mediante el análisis de varianza (ANOVA) el factor tipo de fabricante y el factor diámetro del material se interrelacionan en cuanto a su efecto sobre la tracción, determinando que tanto las varillas fabricadas por la empresa A, N y X, con un diámetro de 8 mm tienen mayor efectividad para minimizar el tiempo de tracción de las varillas sismorresistentes estudiadas.
- Con respecto al porcentaje de error entre el esfuerzo máximo para ruptura obtenido por el ensayo destructivo y la simulación de modelos de elementos finitos fue menor al 1%, validando la parte experimental ejecutada en la presente investigación, y generando una modelación matemática que puede establecer el comportamiento de cualquier material frente a un proceso de esfuerzo de tracción.
- Se determinó que los materiales sismorresistentes existentes en el mercado local que han sido sometidos a procesos térmicos de temple y esfuerzos de tracción tendrán como resultado un mecanismo de fractura de tipo dúctil, mismo que fue evidenciado tanto en la parte experimental como en la parte de simulación mediante el método de elementos finitos.
- Los resultados como el mecanismo de esfuerzo máximo y el tipo de fractura obtenidos en la presente investigación son una fuente de información vital para el campo de la construcción, tanto para el proceso de diseño como para el proceso de selección de materiales de las nuevas construcciones y edificaciones, ya que dichos resultados han sido comprobados mediante modelación matemática.

Conflicto de intereses

Los autores declaran que no existe conflicto de intereses en relación con el artículo presentado.

Referencias Bibliográficas

- Alshoaibi, A., & Fageehi, Y. (2021). Simulation of Quasi-Static Crack Propagation by Adaptive Finite Element Method. Metals, 11(1), 98. https://doi:10.3390/met11010098
- Asif, A., Dhanapal, M., Megha, U., Nazar, S., & Rose S. (2023). Analysis of steel– concrete composite beam using Ansys 18.1 Workbench, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.05.285.
- Balaji, M., Murthy, B., & Rao, N. (2016). Optimization of Cutting Parameters in Drilling of AISI 304 Stainless Steel Using Taguchi and ANOVA, Procedia Technology, 25, 1106-1113, ISSN 2212-0173, https://doi.org/10.1016/j.protcy.2016.08.217.
- Batista, J., Sousa, M., Ésio M., Lima, F., & Oliveira, X. (2019). Beam-tendon finite elements for post-tensioned steel-concrete composite beams with partial interaction, Journal of Constructional Steel Research, Volume 159, 2019, Pages 147-160, ISSN 0143-974X, https://doi.org/10.1016/j.jcsr.2019.04.009.
- Carm, M., Sharmila, S., & Kumar, P. (2023). Finite element analysis of Steel Concrete – Steel double skin tubular columns under axial loading, Materials Today: Proceedings, 2023, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.06.070.
- Coburn, A., & Spence, R. (2002). Earthquake Protection, Second edition. John Wiley & Sons, Ltd. ISBN: 0-471-49614-6.
- Daniyan, I., Mpofu, K., Muvunzi, R., Fameso, F., & Ramatsetse, B. (2021). Model design and finite element analysis of a traction link of a railcar, Procedia CIRP, 100, 37-42, ISSN 2212-8271, https://doi.org/10.1016/j.procir.2021.05.006.
- Enami, Keitaro. (2005). The effects of compressive and tensile prestrain on ductile fracture initiation in steels, Engineering Fracture Mechanics, 72(7),1089-1105, ISSN 0013-7944, https://doi.org/10.1016/j.engfracmech.2004.07.012.
- Gutiérrez, H., & De La Vara, S. (2008). Análisis y diseño de experimentos. (2ª ed.). McGraw-Hill/Interamericana Editores, S.A. de C.V. http://construccion.uv.cl/docs/textos/TEXTO.13.pdf
- He, T., Mitsume, N., Yasui, F., Morita, N., Fukui, T., & Shibanuma, K. (2023). Strategy for accurately and efficiently modelling an internal traction-free boundary based on the s-version finite element method: Problem clarification and solutions

Digital

www.concienciadigital.org

verification, Computer Methods in Applied Mechanics and Engineering, Volume 404, ISSN 0045-7825. https://doi.org/10.1016/j.cma.2022.115843.

Hernández-Sampieri, Roberto. (2018) Metodología de la investigación: Las rutas cuantitativa y cualitativa y mixta. México: Mc Graw Hill- Educación.

Huiping, L., Guoqun, Z., Shanting, N., & Chuanzhen, H. (2007). FEM simulation of quenching process and experimental verification of simulation results. Materials Science and Engineering: A, 452-453, 705– 714. doi:10.1016/j.msea.2006.11.023. https://www.scopus.com/record/display.uri?eid=2-s2.0-33847258739&origin=inward&txGid=7dfbc6bd7e20bd14c026fd876a44ffc4

- Hutton, D. V. (2017). Fundamentals of finite element analysis. (3^a ed.). McGraw-Hill/Interamericana Editores, S.A. de C.V. Ll.
- Li, J., Zeng, L., Wang, S., Song, X., Chen, N., Zuo, N., y Rong, Y. (2023). Evaluation of finite element simulation of water quenched cracking for medium carbon alloy steels using acoustic emission technique, Journal of Materials Research and Technology, 25, 763-772, ISSN 2238-7854, https://doi.org/10.1016/j.jmrt.2023.05.248.
- Mackenzie, A., Hancock, J., & Brown, D., (1977) On the influence of state of stress on ductile failure initiation in high strength steels, Engineering Fracture Mechanics, 9(1), 167-188, ISSN 0013-7944, https://doi.org/10.1016/0013-7944(77)90062-5.
- Mackerle, J. (2003). Finite element analysis and simulation of quenching and other heat treatment processes. Computational Materials Science, 27(3), 313– 332. https://doi:10.1016/s0927-0256(03)00038-7.
- Mangai, K., & Eswari, S. (2023). Finite element modelling and analysis of brass coated steel fibre reinforced concrete beams, Materials Today: Proceedings, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2023.04.654.
- Modirzadeh, M., Tesfamariam, S., & Milani, S., (2012). Performance based earthquake evaluation of reinforced concrete buildings using design of experiments, Expert Systems with Applications, 39(3), 2919-2926, ISSN 0957-4174, https://doi.org/10.1016/j.eswa.2011.08.153.
- Moreira, L., Batista J., & Parente, E., (2018). Nonlinear finite element simulation of unbonded prestressed concrete beams, Engineering Structures, Volume 170, 2018, Pages 167-177, ISSN 0141-0296, https://doi.org/10.1016/j.engstruct.2018.05.077.

- Overby, D., Kowalsky, M., & Seracino, R. (2017). Stress-strain response of A706 grade 80 reinforcing steel, Construction and Building Materials, Volume 145, 292-302, ISSN 0950-0618, https://doi.org/10.1016/j.conbuildmat.2017.03.200.
- Şimşir, C., & Gür, C. H. (2008). 3D FEM simulation of steel quenching and investigation of the effect of asymmetric geometry on residual stress distribution. Journal of Materials Processing Technology, 207(1-3), 211–221. doi:10.1016/j.jmatprotec.2007.12.074 . https://www.scopus.com/record/display.uri?eid=2-s2.0-50949131521&origin=inward&txGid=3c085c35e31f33e928176ef2a53dfe19
- Singh, G., Singh, S., Dhiman, D., Gulati, V., & Kaur, T. (2018). Optimization of EN24 Steel on EDM Machine using Taguchi & ANOVA Technique, Materials Today: Proceedings, 5(14), 27974-27981, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2018.10.037.
- Tantideeravit, S., & Kamaya, M. (2020). An application of FEM in the determination of tensile properties for work-hardened carbon steel by means of small punch test, Results in Materials, Volume 8, ISSN 2590-048X, https://doi.org/10.1016/j.rinma.2020.100142.
- Toshioka, Y., Fukagawa, M., & Saiga, Y. (1972). Calculation of Internal Stress of Steel Induced during Quenching. Transactions of the Iron and Steel Institute of Japan, 12(1), 6–15. doi:10.2355/isijinternational1966.12.6. https://www.jstage.jst.go.jp/article/isijinternational1966/12/1/12_6/_article
- Verma, R., Kumar, P., Jayaganthan, R., & Pathak, H. (2022). Extended finite element simulation on Tensile, fracture toughness and fatigue crack growth behaviour of additively manufactured Ti6Al4V alloy, Theoretical and Applied Fracture Mechanics, Volume 117, 2022, 103163, ISSN 0167-8442, https://doi.org/10.1016/j.tafmec.2021.103163.
- Wakjira, T., & Ebead, U. (2018). Hybrid NSE/EB technique for shear strengthening of reinforced concrete beams using FRCM: Experimental study. Construction and Building Materials, 164, 164–177. doi: 10.1016/j.conbuildmat.2017.12.224
- Wang, F., Chandrasekar, S., & Yang, H. (1997). Experimental and Computational Study of the Quenching of Carbon Steel. Journal of Manufacturing Science and Engineering, 119(3), 257. doi:10.1115/1.2831102. https://www.scopus.com/record/display.uri?eid=2-s2.0-0031212376&origin=inward&txGid=5be3be9cac80d4a32b3fbdbbc808f8ed

- Yao, Z., & Wang, W. (2022). Full-range strain-hardening behavior of structural steels: Experimental identification and numerical simulation, Journal of Constructional Steel Research, Volume 194, 2022, 107329, ISSN 0143-974X, https://doi.org/10.1016/j.jcsr.2022.107329.
- Zhang, J., Natarajan, S., Ooi, E. T., & Song, C. (2020). Adaptive analysis using scaled boundary finite element method in 3D. Computer Methods in Applied Mechanics and Engineering, 372, 113374. https://doi:10.1016/j.cma.2020.113374
- Zhu, Y., Fell, B., & Kanvinde, A. (2021). Continuum damage mechanics based ductile fatigue-fracture prediction in buckling steel braces. Journal of Constructional Steel Research, 184. doi:10.1016/j.jcsr.2021.106812

ISSN: **2600-5859** Vol. 6 No. 3.2, pp. 47 – 76, agosto – septiembre 2023

www.concienciadigital.org

El artículo que se publica es de exclusiva responsabilidad de los autores y no necesariamente reflejan el pensamiento de la **Revista Conciencia Digital.**

El artículo queda en propiedad de la revista y, por tanto, su publicación parcial y/o total en otro medio tiene que ser autorizado por el director de la **Revista Conciencia Digital.**

