MIME-Version: 1.0 Content-Disposition: inline; filename="document.html" Content-Type: text/html; charset="utf-8" Content-Transfer-Encoding: quoted-printable Content-Location: document.html </title= ><style type=3D"text/css">@page Section_1 { size:595.3pt 841.9pt; margin:12= 7.6pt 85.05pt 70.9pt }div.Section_1 { page:Section_1 }body { line-height:10= 8%; font-family:'Times New Roman'; font-size:12pt }h1, h2, h3, h4, p { marg= in:0pt 0pt 8pt }li, table { margin-top:0pt; margin-bottom:8pt }h1 { margin-= top:12pt; margin-bottom:0pt; page-break-inside:avoid; page-break-after:avoi= d; line-height:108%; font-family:'Calibri Light'; font-size:16pt; font-weig= ht:normal; color:#2e74b5 }h2 { margin-top:18pt; margin-bottom:4pt; page-bre= ak-inside:avoid; page-break-after:avoid; line-height:150%; font-family:'Tim= es New Roman'; font-size:12pt; font-weight:bold; color:#000000 }h3 { margin= -top:10pt; margin-bottom:0pt; text-align:justify; page-break-inside:avoid; = page-break-after:avoid; line-height:150%; font-family:'Times New Roman'; fo= nt-size:12pt; font-weight:bold; font-style:italic; color:#000000 }h4 { marg= in-top:2pt; margin-bottom:0pt; page-break-inside:avoid; page-break-after:av= oid; line-height:108%; font-family:'Calibri Light'; font-size:12pt; font-we= ight:normal; font-style:italic; color:#2e74b5 }.BalloonText { margin-bottom= :0pt; line-height:normal; font-family:'Segoe UI'; font-size:9pt }.Bibliogra= phy { margin-left:36pt; margin-bottom:0pt; text-indent:-36pt; line-height:2= 00%; font-family:'Times New Roman'; font-size:12pt }.CommentSubject { margi= n-bottom:8pt; line-height:normal; font-family:'Times New Roman'; font-size:= 10pt; font-weight:bold }.CommentText { margin-bottom:8pt; line-height:norma= l; font-family:'Times New Roman'; font-size:10pt }.Default { margin-bottom:= 0pt; line-height:normal; font-family:'Times New Roman'; font-size:12pt; col= or:#000000 }.EndnoteText { margin-bottom:0pt; line-height:normal; font-fami= ly:'Times New Roman'; font-size:10pt }.Footer { margin-bottom:0pt; line-hei= ght:normal; font-family:'Times New Roman'; font-size:12pt }.FootnoteText { = margin-bottom:0pt; text-align:justify; line-height:normal; font-family:Aria= l; font-size:10pt }.Header { margin-bottom:0pt; line-height:normal; font-fa= mily:'Times New Roman'; font-size:12pt }.ListParagraph { margin-left:36pt; = margin-bottom:8pt; line-height:108%; font-family:'Times New Roman'; font-si= ze:12pt }.NoSpacing { margin-bottom:0pt; line-height:normal; font-size:11pt= }.NormalWeb { margin-bottom:8pt; line-height:108%; font-family:'Times New = Roman'; font-size:12pt }.Title { margin-bottom:0pt; text-align:center; line= -height:normal; font-family:Verdana; font-size:14pt }.paragraph { margin-to= p:5pt; margin-bottom:5pt; line-height:normal; font-family:'Times New Roman'= ; font-size:12pt }span.AsuntodelcomentarioCar { font-size:10pt; font-weight= :bold }span.CommentReference { font-size:8pt }span.Emphasis { font-style:it= alic }span.EndnoteReference { vertical-align:super }span.FollowedHyperlink = { text-decoration:underline; color:#954f72 }span.FootnoteReference { vertic= al-align:super }span.Hyperlink { text-decoration:underline; color:#0563c1 }= span.Mencinsinresolver1 { color:#605e5c; background-color:#e1dfdd }span.Men= cinsinresolver2 { color:#605e5c; background-color:#e1dfdd }span.Mencinsinre= solver3 { color:#605e5c; background-color:#e1dfdd }span.Mencinsinresolver4 = { color:#605e5c; background-color:#e1dfdd }span.Mencinsinresolver5 { color:= #605e5c; background-color:#e1dfdd }span.Strong { font-weight:bold }span.Tex= tocomentarioCar { font-size:10pt }span.TextodegloboCar { font-family:'Segoe= UI'; font-size:9pt }span.TextonotaalfinalCar { font-size:10pt }span.Texton= otapieCar { font-family:Arial; font-size:10pt }span.Ttulo1Car { font-family= :'Calibri Light'; font-size:16pt; color:#2e74b5 }span.Ttulo2Car { font-fami= ly:'Times New Roman'; font-size:12pt; font-weight:bold }span.Ttulo3Car { fo= nt-family:'Times New Roman'; font-size:12pt; font-weight:bold; font-style:i= talic }span.Ttulo4Car { font-family:'Calibri Light'; font-size:12pt; font-s= tyle:italic; color:#2e74b5 }span.TtuloCar0 { font-family:Verdana; font-size= :14pt }span.UnresolvedMention { color:#605e5c; background-color:#e1dfdd }</= style></head><body><div class=3D"Section_1"><div style=3D"clear:both"><p st= yle=3D"margin-bottom:0pt"><span style=3D"height:0pt; display:block; positio= n:absolute; z-index:-65537"><img src=3D" RgABAQEAYABgAAD/2wBDAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEPERETFhwXExQ= aFRERGCEYGh0dHx8fExciJCIeJBweHx7/2wBDAQUFBQcGBw4ICA4eFBEUHh4eHh4eHh4eHh4eHh= 4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh4eHh7/wAARCARfAzMDASIAAhEBAxEB/= 8QAHQABAQACAwEBAQAAAAAAAAAAAAECCAUGBwMECf/EAFQQAQABAwIDAwUMBAkJBgcAAAABAgME= BREGByESFzETQVFVkQgUFSJUVmFxkpTR0jeBobIWIzI2UnR1scEkMzRCYnKCs+EYQ0RGZKIlJzU= 4ZZPi/8QAGwEBAQADAQEBAAAAAAAAAAAAAAECAwQFBgf/xAA0EQEAAQQBBAEDAAcIAwAAAAAAAQ= IDBBFSBRIUITETQVEiMjRhcYGRFSU1QqGxwdEz4fD/2gAMAwEAAhEDEQA/AOgSiyj9Lh8VAAAAg= AC/YAFgAFSUWUEkAFgRUQnX3BaKK65imimqqfREPt7zzNv9Ev8A/wCuUmqIn3LKKZn7PgPpdsXr= MRVes3bcT03qoml89pWKok1P9BJVJVigAEosoACRv5xY+N/hUlUkVAAAASUWUUAECUWUIAAkEnw= VJ8AQBQARUk+slaaZqqimPGVhJn7vtiWvKV7zHxYfvYWqIt0RTH62aw47le5AFYgCSqSiyiAAAS= EiwgAgAMgAAAIABUqQnxGMs49ACMkY1SynpDCrqwrlsphEmF8Dfdg2bQXYiOqBEbQLKMoY7AElY= NkUkVE2UNG2IqAPldneX0rnal8ZY1SsQgDWy2Sikml2i0RvP0I+tunanqtMblJn0zgNht7YYPvK= LKOmHPAAAAgAC/YA8+wsB5t37NG0vUNY1C3gaZiXcrIuTtTRRH7foh7Hw37njWsvGi9rOrWMCuq= neLdqiblVM+aJ8I9m7lyMyzY/8lWm+1j3Lv6kPD58XeuEuVfFPEvDWTruDjxTYtUzVZoriYqyNv= HsO2anyZ1XhLV8TVsqzGuaLYuxVlW7E7XexHnmmfN9Utj+F8/SNS0XGyNFuWqsPsRFumiNuxER/= JmPNMeGzys7q/ZTE2ff7/8Ah3YvT+6qfq+mhuTYu41+uxft1W7tuqaaqao2mJjzPm2q548psfiT= Hua5oVqm1q1Eb124jam/H+FTVvLxsjEybmNlWa7N63VNNdFcbTEx5no4WdRl0bj5+8OTJxqrFWp= +HxZ49mvIybdi3G9dyuKKY9MzO0MHYuWePRlcfaNZuRvRVlU7x9XX/B13a+yiao/DTRTFVcRLaD= lPyv0LhjQce9m4OPmapdtxXeu37cVzbmY37NO/ht4dHKZfGvLnFyK8e9q2jU3Lc9mYiqidvofTn= Nn5Gm8tdYyMauaLnkJoiqnpMdrp/i0lqqmqqaqp7Uz1mfTL5XBw6s+arldUvbyMiMXVFNLY3nXx= HwPrUcM2MDO07JtUavbryqbU0z/F7TE77eZ1/n7HLmOHMP8AgzbwaNQm/O04tO3xem/a26fVu8u= 5eU01cdaLFURMTnWomJjff40Nk/dK6VTmcH4OFh49qm9fzrdunaiI6zP0Ou5RTh3rVvcz8/dpoq= nJt11ahqfTE1TEREzM+HTxfSvGyKYmqqzciIjeZmmejczQeGuGOXPCPl/g+b9VmiJvXaLHlLt2r= 6odf1bmrwzVpmTR/BXXqZm1VHaq0yIiOn1tlPWKq6tW7e4/i1z0+mmN11alqlTj36qYqps3Ko9M= U+KXLN23G9dqunfw7VOzdLlNRhRyq0bMu4trsxhzcqmbcb7bzL5cGcecE8Z593S9MtU13qbc1VU= XceI7VPhLGet1z3TFv1H7/wD0y/s6mdR3fLS4opqrnaimZn0R1bCcUcq9KzeeWLpuLajH0vIxvf= eRao6RG0zE0x6N9v73qPEWtcCcucDExM6zj4dFyJizaosxVMxEeP8Ah+tur6xT+jFunumY+Gunp= 8+++dRDTXT7Fu3n49WpWblOJ5Wny3xZ/k79fB7fzojln3f0fwetabTqPlrfYnHpiK9uzO++3+Ll= +YHMvgvijSMXSNGt1++7mfj1U9qxFMbRXEz1+p2T3R2Nj2uU9dyjHt01RetdaaIifCXNcy67l21= NdM0zvWt/wb6MemiiqKZiWp0Y2RMRMWLkxPhPZlhct3Lc7V0VUz9MNouDubHCdHDWm4lvh/WMq5= j4tq1crs4FNdM1U0xTPWJ9MO8cMavw3x1g5linQsmzbtxFNy3m4fkpmJ3229PnbrnV7lqZ77XqP= 3tdOBTXEdtXtpCO4c4+G8fhXmBqGkYkTGPTMXLVM/6tNXWI/VDp72bVyLtEV0/EvPuUTRVNMgDY= wSUWUUAECUWUIAAkEnwVJ8AQBQARUl+vCtbR5SY6+Z8LNublyIhyMREUxTEdIWGi7Xr0oCw5gBV= AElUlFlEAAAkJFhABAAZAAAAQJKsSWUADGVASqfMm2UJPikg0y369IjJNghOqwQpBMpKLKMtIAI= sBISKgAgDGuemySyh8653n6GExLOeiNUsmAymEmA0QlSwTG/gKtuN53fUpjanoNsRphsAFfeUWU= dMOaAAABAAF+w/boemZes6tj6ZgWpu5ORXFFFMeeZfiexe5R0/HyuOcrMvU01XMXH/i4mPPVvvP= 7HNl3vo2aq4+0N+Na+rcin8vcOVfL/TOCNCt24tWrupV075OVMdap9EeiIdc5i87tE4az69N03H= +FMu3O1yaa9qKJ9G/nl9/dH8YZfDPCNGLp1dVvK1CvyPlInbsUbTMz+zb9bUqqqqqqaqpmapneZ= mfGXz/AE7AnNmb9+dw9fLypx4i1abU8tOdulcUahGk6vi0adlXelqrtb27n0dfCXL67ouocF6td= 4m4VsVX9Ouz29R0ynwmPPct+ifPMNPqKqqLkV0TNNVM7xMTtt9L3flpz1+DOHb2BxPTdysjGtf5= LdpjebvTpTV+LbmdLm1PfjxuPvDXj5sXP0bk+4+73/hzWtP1/SrWpabepu2bkfrpnzxMeaXnHO/= lRj8V4tzWNHt02NYt071UxHTIj0T/ALX0vGeBeaOo6Nx/kat2YtadqORvk4lEbUUxPSJpjzS28x= b9rJx7eRYriu1cpiqmqPPE+d5l6ze6ddiumfn/AO07bd23l0TS/n9mY1/DyruLk26rV61VNNdFX= jEw/dwln/BfE+nahvtFnIoqmfRG/X9j2X3VPBmPhZOPxXgWaLcZNXk8rsx41+ar65jaP1PBZ/Y+= rxr9OXYir8+nhXrc493X4b3cR6di8XcG5GDTdiLOoYv8Xcjr2e1T8Wf2xLV/M5G8e2cq5btYVi9= bpqmKa4uxtVHpfXlnzo1rhLT6NKzLEalg0f5uKqpiu3HoifQ75HukdP8Am/lfbp/F4dnHzsKqab= cbiXp13cbIiKq51LznTeX/ABLwhxbw7ma3iW7Fm9qVq1RVTX2t6t99v2Pf+d+XZwcHQczImItWd= Ws11zPoiYeN8w+cuLxRd0OuzpF+xOmahRlzFdUfHiImJiOvj1fk5vc3bXG+gWdKxdKuYvZuxcqr= uVxv08NtpbbmNlZNyiu5TrW9sKL1mxTVFM/htFr2oX9P0e5nYmBd1Cq3TFXkbVW1VUfR47vLuKu= aGXf4b1KxXwPrVmmvGuUzcrp6Ub0z1no885f8+dU0LSbWm6xgzqVuzTFNF7tbXNo807+Ln9W90V= h5GnZNizoF+Lly1VTRNdcbRMx032nwcVHTL1uvU0d379uirMt10+qtPSeWNU1ck9Mq2mN9Mqn9l= Tw73Kn6Rr39VqclwzzywtJ4Jx+H7mi37ly1jVWZuRVTtMzv18d/O8+5S8Z08EcUfC9zDqyrdVuq= 3VRTO0xv54dePg36bV6mafdXw57mTbm5bmJ9Q2ezMuzY54YmPdmIrv6VMUTM+eKqun7XQfdQcF8= Sa/q2l6homn5OoW7dqq3XRZo7U0TMxPh6OjzXmPzQyeIeMNP4i0ixd069g26aaJmqJqmYqmfN02= 6u96N7pC5Rh0UaroM3MiIiKq7FcbVfT1lqt4OVj1UXaI3MfZsrybN6KrdU6h5fpnBXFmiaxp2oa= tw/qGFi05lqmq7etTFMTNUbRu2T5+49GXy5x8a5O1F3MsUVfVO8PKOYXPLF4m0CnTsfRb9m7Rk2= r8VV1R2Z7FUVbdJ8+z8vMvnTZ4q4To0bE0m9i3qb1u55WqqNo7MT1jafS6LtrLybluuunUxMtdq= uxZpqppq22CzIwOBOEaZ0nQ7uTbxqKLdNjEt/Hr8I3mf27sOA+Lb/ABPcy6L3D+oaV73ppmJyY2= 8p2t/DpHht+14xwx7om/iaTZxtY0evJyLVEUTetVx8fbpvMTPi5SPdJadH/l7K+3T+Lzq+m5Ebi= qjc/nbspy7MamKtPPPdQ/pdzd/k1j9yHl7tfNfiu1xpxlf16zi141Fy1bo8nXMTMdmnbzOqPqcK= 3VbsU01fMQ8O/VFVyZgAdTSkosooAIEosoQABIJPgqT4AgCgePgP0Ydrt1dqfCEKp7Y3L9GNb8n= RHpnxfVFVxTO52ALCACgAkqkosogAAEhIsIAIADIAABJCCUBGQAGyfBh4sqp8zFrqbKYAGGmzYA= aXYAyY/KSjKYSYFQBJZQEhKKgAxSekPnM79Wdc+ZgxqlspSUWUYKEwBKpsztx55Y7bzD6xG0bMq= YSqRJVJZtYAMn3lFlHRDngAAAQAPoFIiZnaImZew8p9F4t4FvYvHGTp0zo97e1kW4mfKxbnb+Mm= nbwj63U+TGRwrj8bYtziujfFidrNVU/xdNzzTX9G/wD1bnU04+RiRRTTbuWLlEbRERNNVMx/ds8= Dq+dVamLU0+p+f3vV6di01x379w6TzJ4U0rmZwbb96ZdE3Ijy+Dk09ae1t4T9ExMx9Hj9DUPiPR= dS4f1e/peq49VjJs1bVU1U9JjzVRPniW1ebhahy31C7qWkWbmXwvfr7WXh07zOHM/95bj+j6Y8H= Ae6Iy+CNX4DxtVv5Fq5n3bfa0y9YmO3X/sz/s7+Po6+Dj6Zl12K4tx+lRV/o6s2xTcjvmdVQ1hl= Fnx+pPP+p9X/AAeDMPthWbmTmWbFqiaq7lcU0xHjMzLfHhPDvadwzpuDf/zuPi27df1xTEPBPc5= csMi7mWeLtbsTbx6PjYdmuP5c/wBOY9HobH/rfI9ay6b1yKKfen0HTceq3RNVXzLzL3TFNqeVWZ= N2Ina9bmn692oHn33bH+604ltU6dhcMWbkTduVeXv0x5oifi7/AK4lrhPj4PV6JbmjH3P3lwdSr= iq96er8oeUdvjvQL2p3NZqwpt35t9iLHb36b779qHdf+zZj/Oi590//ALc37kr+YOZP/rJ/dh1H= m1za4z4e4+1HSdMzrVvFsV7UU1WaJ2j65jdw13su9l12rNWtOum1Yt2aa66X5+Kfc86rg4FzJ0X= WKM+5bp38jcs+Tmr6p3neXmPBnBuq8UcUVcO4nk8fMoprqqi/M0xT2fGPBtJyK49v8c8N3ruoW6= Kc/EueTvTR0pr36xMR9TqWrcN5OL7oyi5oebGmXM7Tq79V2m1TVHa6xMbTEx4RBZ6jftzXauz+l= EepSvEtV9tdHxLxLmRwFq/AmThWNWvY1yrLoqro8jVMxEUzETvvH0uoy9t90jo3ENfEPDuBmalX= q+VkW7lOPEWaaJj41PTamI3/AOj9mje5z1C/p9i9qWtW8fJrmma7VFG/Zp36xv6dnpWeo0U2Ka7= 9Ubn8OOvErquzTbj4eCu8ct+Weucd4OVl6TkYlujGuxari9XMTvMb9No9D1j/ALN2B84cmY/3Kf= wXkRw3rmFXxPpmj8Q1YVrC1ObFX+T0V+U7MbRVPapnbpDVkdVoqtzNir3H5bLODVFcfUj1LxrG4= KyKOZtngjPyaLd+rLoxrl63Happ3iJ3iOm/i7Pzj5TWuAeH8XVLesVZs38mLE0TY7G29NVW++8/= 0XoHBvL7I1TnHq/EepazN7I0nUrcz2bcUzeqiimeu0bRG0xHR6RzY4Gs8faFjaZfzbmJTYyYvxV= RETM7U1U7df8Aecd7qdVN63qr1ERtvowt26vXv7NIt+sq9l4d5MYuqcecQcOVavet29K8l2bkUx= 2q+3TFXo+l2ufc3YG07cQ5O/8AuU/g9OrquNTOpqcdODdneoa541vy2Tbs9rszXXFO/o3nbf6Xs= HHfJS1w3wRd4jo16q/Vbt01+RnG233jfbftOA5icsdX4D1TBv371GZg3simm3fopmNp7XSmY9Oz= 3/nf+hPK/q1v91zZedM3LU2avUy6LGLHbXFce4acgPceYAAkosooAIEosoQABIJPgqT4AgHnUZU= UzXVER53JW6It0RTH63wwrUxHbq/U/SOW9X3TpABrAFgAFABJVJRZRAAAJCRYQAQAGQAAALCSjI= RWJKywqlJkphAGtugAF2ACSAGlgAFJTZQWJYkstmJpdiT0XZhX6GMkQwnxF2NmHy2IipKaRAZUR= vJpVojzsl2RshrkSVSVkgARX3lFlHRDRAAAAgAC/Y3nfd7XyK5u3dEu2eHeI79VzTap7NjIq6zY= n0T/ALP9363ihH0dHNlYtGTb7K26xeqtVd1L+gkVWMrHiqmq3esXaekxMVU1RP8AfDwHnFyUycj= JuaxwjT5SKt6rmDNW20+eaN+n6ujrfI/m5d4aqt6Hr9dd/Sap2tXZnerHn/Gn6PM2e07NxNRw7e= ZhZFF+xdpiqiuid4mHyNdOR0y7uPj/AEl9BRVazLftpRY5eca38unGo4dzZuTPZ6xERv8AXM7PZ= OVnImnCv2dV4uqtXrlE9ujDo600z/tT5/qe90x06r02bMjrORdp7Y9MbXTrVuru+WFq3btWqbVu= mmiimNqaYjpEOu8wuL9M4O4evalnXafKRTMWLO/xrtfmiH4eY3MTQODMKa8y/TezKqZ8ljW6t6q= p+n0Q1K4+4w1bjLWq9R1O78XfazZpn4lqPREMen9Mrya+6r1T/uuVmUWY1HuX4OKdczuItdytX1= C5Nd/Ir3/3Y80R+pxXnVPS+zopiimKYj4fOzVNU7ltP7kv+YOZ/XJ/dh4r7oD9K2sf78f3PZfco= ZFi1wJmUXL9u3VOZM7VVRE+EO+avwXwJq+oXNQ1LTcDIyrs713Kr07zP6qnynlRi51dcxuHu/R+= vjU07ea+5Cwsm3oWrZtyzMWL1+mm3XMfyto67T6N3atTu26vdGaVaprqmuNFuTMb9I+NV+12jUN= a4T4J0DarIxMHDs0z2LNuqOv0RHnmXh3Kniqrin3QN/W79UWrNeNdos01VbRTRERtHX2/raKory= a7mRrUabN02aabcTuXqnFuFYy+dHCld6mJnHwsm7b3/pdqiP7pl1b3T/GGu8O4+l4eh5t/Aqv1T= Xcv2atqpj+jv+o53cV2uGeZnCGsU3KbmPbtX6L8UVRPxJmmP+v6nddc0/gfmVoWPXlZGPl2Int2= rtF2Ka6Jnxj/AKMbcfS+lduU7p1/zLKufqd9FE6lwXuadb1fXuCcjK1jUcjPv05VVMXL1c1TEbR= 0+pnyN/8Ar3Hcf/nK/wDF27gPhfROE9Ir0/Q6qqseq5NczVXFXX64dM5JX7NrX+Oou3rduZ1yvb= tVRHpab1dNyq5VRHqWdFM0xREvN72o5+H7qe9i4uXes2cnVbVF+iiram5T2Kek+nxl3/3U+rano= /BWnX9Lzr+Hdr1CmiqqzX2Zmnydc7fsh5LxdquJpPulb+rZFyJxsbU7d2uqJ3jaKad5bE8b6Bwv= zA0HHxNRzoqxqbkZFquxepid9pjfrv5pl35Orddi5VHrUbc1rddNymJ97a/8kOFOJ+NtR1DWZ4j= zdOs9qm3kZNFUzcvVRETFP1RGz2fSOWepYGXj5NXHmtX67VUVTFXhX9Exu4/lDl8N8LcQ8Q8D4u= bFEY2XRcx5vXI3u01WqJnrG0TO+7lMvlzw9la1Vqs8T61Rcqu+V8nRqMRbid99ttvBpysqq5cn3= qn7emyxappojXufv7Ye6Ms26+Wt67XTvVay8aaJ9G96iGHO/wDQnlf1a3+6vuhcrFucscqm3kWq= p99YvSK4n/v6Hw52ZOPXyWyqKL9qqv3tb2piuJn+S58aJ3b3+f8AptuTH6f8Gn4D7t80AAkosoo= AIEosoQABIJPgqT4Aj649ublyI26Q+cdZ29jkMa35O39M+KtdyrUPrHSNo8IJVJHHvcoAMgBYAB= QASVSUWUQAACQkWEAEABkAAABAAjNKmMwsjCWUMdkZ7JsisRdiRZQBSABFACFAEWBJVKvAVKvBg= syjXMs0mEZSiMmMiykwIM6Y2hjRT16voyphJElUlkxRJUBA2EV95RZR0Q0QAAAIAAv2ABYHaOCu= PeJuEbn/AMI1G5TYmd6rFfxrc/8ADPTf6XVxruW6LlPbVG4bKa6qZ3EvcLHujdeosxTe0HAu3I8= avKVRv+pwfE3PfjPVrNVnDnH0uiqNp8hG9X6qp6w8qnxRyUdLxaJ7u1vqzL1Uamp9s3KyM3Kryc= u/cv3q53qruVTVVM/XL4g7oiIj05dzM7kSfFUlRnbvXrdMxbu10bzvMRVsz99ZXyi79uXxGPbH4= Zd9UMrlddyZmuqqqfTVO5brrt1dqiqaZ223pliLqE3Mv36PbjUNbwcXLvVzau36LdczV1imaoie= rZmnkly7p2mM27TPjvGX/wBWq8TMTExMxMTvEvvObm7/AOmZHp/zk/i4cvEuXpjsr7YdWPkU299= 1O5blafc4P5Y8JX7VvVLNGPRVVd2uX+3crqmPCI3mZ8PM1A4g1i/qmv6jqdFVyz78yrl+aIqnp2= qpnb9W+z8F7Iv3Y2u3rlcR1iK65nZ8mGF06Meqaqp3MssjLm9EREaiFrqqrmaqqpmZ6zM9d1t3b= lure3XVRP0TsxR6HbTMamPhybmGVVddVfbqrma/HeZ67s6cnIppimm9ciI8I7XR8gmIn5haZmPU= S+lzIv3KezXdrqp9E1dEuXr1dHYru11UxMdKp3YJPgvbETs7qvykgKnr7AAJKLKKACBKLKEAASC= T4KtFFVdcUx13CZ17fbCtdqrtz4Q/cxooiiiKI8zJXHcq7pElUGtABkALAAKACSqSiyiAAASEiw= gAgAMgAAAIElWKSygAYaZwAGlRJUNLLEXZNl0gAml2AIuwBJUY1z02ZT4PnV47pMsqYQBgzJRZR= FgTbdWVMLEbSSI2hQZ60mxJVJUQAAAH2lHJzoeq/JZ+3T+KfAWq/JZ+3T+LXGZY5QkY13i40cl8= Bap8ln7dP4nwFqvyWft0/ieZY5QeNd4uNHJfAWqfJf8A30/ifAWqfJf/AH0/inmWOUL413i40cl= 8Bap8ln7dP4nwHqnyWft0/ivmWOUL413i40cl8Bar8ln7dP4nwFqnyWft0/ieZY5QRj3eLjRyXw= FqnyWft0/ifAeqfJZ+3T+J5ljlDLx7vFxko5OdC1T5JP26fxPgLVPkk/bp/E8yxyhjOPd4uMHJ/= AWqfJJ+3T+J8Bap8k/99P4nmWOSxj3eLjElyk6FqvySft0/inwDqvySft0/ieZY5QvjXOLjByfw= DqvySft0/ifAOq/JJ+3T+KeZY5QePc4uMHJ/AOq/JJ+3T+J8A6r8kn7dP4nmWOUHj3eMuMSXKfA= Oq/JJ+3T+KToOq7/6JP26fxPMscoPGu8XFjlPgDVvkk/bp/E+ANW+ST9un8V8yxyg8e5xcXKOUn= QdW+ST9un8U+ANW+ST9un8TzLHKDx7vFxg5P4A1b5JP26fxPgDVvkk/bp/E8yxygjHucXGJLlPg= DVvkk/bp/EnQNW+ST9un8TzLHKF8e5xcUOU+ANX+Rz9un8T4A1f5HP26fxPMscoPHucXFjlPgDV= /kc/bp/E+ANX+Rz9un8TzLHKDx7n4cVKOV/g/q8/+Dn7dP4n8HtY+Rz9un8TzLHKDx7nFxQ5X+D= 2sfI5+3T+J/B7WPkc/bp/E8yxyg8e5xcUjlv4Pav8in7dP4p/B7V/kc/bp/E8yxyg8e5xcUOV/g= 9q+/8Aoc/bp/FynD/L3jDX67tOk6LcyZtRHbmLtFMRv9MzCTm2OUHj3OLqz92Fa7NPbq8Z8HdrX= JfmR5SO3w1ciP6zZ/O/b3Qcw46fwcufeLX5kjPxucNV3Hva9Uy6HI75PKDmJP8A5cufebX507oO= YvzcufebP5jz8bnDn8S/r9WXREd87oOYvzcr+82vzHdBzF+blf3mz+c8/G5weJf4y6EO+dz/ADF= +blf3mz+c7n+Yvzcr+82fznn43OF8S9xl0Md87n+Yvzcr+82fznc/zF+blz7zZ/OsZ+Nzg8O/xl= 0Md87n+YvzcufebP5zuf5i/Nyv7zZ/Ov8AaGNzg8S/xl0Md87n+Yvzcr+82fznc/zF+blz7zZ/O= nn43OFjEvcZdClHfZ5P8xfm5c+82fznc/zG+blf3mz+dPPxucHiXuMuhDvvc/zG+blf3mz+c7n+= Y3zcufebP5zz8bnC+Je4y6EO+9z/ADG+bdz7zZ/Odz/Mb5t3PvNn855+Nzg8S9xl0Ed9nk9zG+b= df3mz+dO57mN827n3mz+c8/G5weJe4y6GO+dz3Mb5t3PvNn869z3Mb5t3PvNn855+NzhfFvcZdC= HfO57mN827n3mz+de57mN827n3mz+c8/G5weLe4y6EO+9z3Mb5t3PvNn86Vcn+Y0R14bufebP5z= z8bnB4l7jLoUo753P8AMb5uXPvNn853P8xvm5X95s/nPPxucM4xbvGXQpWHe55Qcxfm5c+82fzn= dBzF+blf3mz+dPOx+cL4t3jLog753Qcxfm5X95s/nO6DmL83Ln3mz+dPOxucL413jLoWw753Qcx= fm5X95s/nJ5QcxPm5X95s/nXzsfnB413jLoY733P8xfm5c+82fzndBzF+blz7zZ/OnnY3ODxrvF= 0PZNnfe6DmL83K/vNn853Qcxfm5X95s/nPOx+cL413jLoQ75PKDmL83Ln3mz+dO6DmJ83bn3mz+= c87Hn/PB413jLog733Q8xPm7c+82fzpVyi5h0xvPDte39ZtfmSc3H5QsY13i6HVLGfB3meU3MH5= vV/eLX5k7peYPzer+8WvzMZy7HKGcY9zi6MO8d03MH5vV/eLX5jum5gfN6v7xa/Mnl2OUMvoXOM= ujju/dNzA+b1f3i1+Ze6bmB836/vFr8x5djlB9C5xdGiOrOno71HKHmHMb/wdr6/+otfmXuh5h/= Ny595s/nZRmY8f5oYzYucZdFTZ3vuh5ifNy595s/nO6LmH83a/vNn86+Zj8oTx7vGXREl3zui5h= /N2v7za/OxnlFzE+btf3mz+ZPMx+UL49zi6IO990PMT5u1/ebX5jui5ifNyv7za/MeZj8oXx7nF= 0Qd77ouYnzcr+82vzB5ljlB49zi5UB8G+oAAAAADcgAbkADcgAbkAOvok3IAG5AA3IAG5AA3Ie0= 9oG5AA3IAG5AA3IAG5AAAAAA3IAA+uLYu5OTaxrNM13LtcUURHnmZ6NmOXnDtrhvhyxh9mn3zXH= lMiuI/lVT/ANNnnPIrhWMnIniPMtb27UzTjRVHSavCZ/V1e0Rvuou0G0AAbAAABsbAAABsbAAAA= AAAAAAAAAAAA+Vyd5+hnXO0PmDEZJsCbQxmGQDGFWU2BNkZAMRZhATZGQDEmF2AYTGz8eRX2qto= 8IfryKuzR08ZfimkGExEsZjqzmEBgSymEmA0w2fTHt9qvfzQx8+3nfus0RRRt6fEGW3RJZTCAxG= UxCGxJhFDYxmEZ7JJsYi7BsarAMQAAAAABnatXbszFq3XcmmJmezTM7RHnXyN7yPlvJV+S37Pb7= M9nf0buW4Jz40/iPGrrn+JvT73u+iaa/iz+yXffemFcuVcC+VtdmLfvqLu8RHlYqnpv/u9kHl13= GybVFNd3Hu0U1fyZqomIn6icXJi9Fmce95SY3ijsT2pj6npeHl4fFGpatgXLlFGLiZFOViRM9It= 2527Mf8ADMrl6liZmkZPF1qq3RlYtq5g0UxP+tMz2KtvoiafYo8z965Plos+973lZjeKOxPamPq= YeSu9iqvyVfYonaqrsztTP0vS9Nz7FrRMTjC7XRXlWbHvKaap6zXvExVt/uxW/PxTptMY+No+kX= LNVzWsj351riIimrrFMz5tpB59j42Rk1TTj2Lt6qOsxbomqf2P02sO3Tj5fvujMtX7VMTTRFjen= rMR8eZmOzHX0S7do2PqFHCGTp2i1xTq9rMqjKps1fxtVvaOz2Z8dt+14Mpp1S1w5xFa1q9TXlRh= WY2mae3H8bb2iraN9/rB0mzg5t615W1h5Fy3H+vTamY9sJYxMq/G9jGvXY32+Jbmrr6Oj1f4t63= pWRpFrVLmHbs0x/kuTbt2Kaoj43biaJ8+/jLgtR1ScbhPWb+lTTiU39Voppi1cirs0zTXPxao+q= OsA6Fdx79q75G5ZuUXfDsVUzE7/U/Tb0+/byLUZ2Lm2LVdW01RYmZ2+iJ23l3+xk4tzUdBy825Z= 9+XtKuRbvXtpjy0VV025q+npT4vwYtjizG1GxVrN+5TjVZVPS/VE9qevWnfrt9WwOmVYV27mXrW= FYyr9NFcxH8TPb2jwmYjfafofKcfIpv+QqsXIvb7eT7M9rf6vF6DgYN2/l67k42RqNyv3/VTVj4= FdNFzbtT8aapiejk9R8hb4ooixXbt6je0mPe1y/VTVPlu1XHWdojtdIjfbzIOj6ToXb0bWcrPxs= mzdxMaLlntUzRvPbpp6xMdeky4vPxbNF2zbw/fdya6ImYu2exPanximImd4+l3vEx+I8bgjiKNd= uXIoqx6fJ0ZFW9yZ8pR1jfrs+tm7Zp4hxYi7Zt5lWk004ldzaaabvY+L49N99tt1Hnd3AzrNM1X= cLJtxEbzNVqqNo9Pg5TB4evapft2dKpya5jGm9dm/YmmmJijtTFMxvvvt08N+jteBj8T2OF+Ivh= uq95GcSezF+d65ntR1pmfM/TpeXdt69pWPZyq6PK6LVTTTTcmIqrmxPZj699tgeb04GdVfrsU4e= RVdo/lURamZj642cvwpptrIr1S3nY89uxh1XKaa42mmqKqY8P1uxaDpWqe8My9lX9YuZcZXYvY2= Lcim9G0RMVVVzEzt18Poclq1NujiHUaon41eiUTVVNUVTVV8XfeYiImfp2NDyyImZimImZ9EPve= wc2zb8rew8i3R/SrtTEe2Ydl4Q06NN1nSdR1ScWnGy4qmxNdUVRFUTMR2o83WHOada1/FydUv8T= XqqtLqtVxV5aqJouT/q+T/wCgPPacLMqteVpxL9VvbtduLczG3p3ZU6fn1Wou04WTVbnwqi1VtP= 69nbdW1K7Y0XhfFnJrow6rc1ZFNFW3ap8pMTE7ebbzObt2OKLvGljKwb01aTM0+Srpqj3vFvbw2= 8N/2oPMK6aqK5orpmmqmdpiY2mJYuV4w/nVqnX/AMVc/elxQAAAAAADl+EdFv6/r2Pp1imfj1b3= Ko/1afPMuI2326b+hsByZ4YjRtDjUMq3tm5kRVPajaaKPNCju2kYGPpmnWcHFtxRZs0RRTH1ed+= ogUAAAAAAAAAAAAAAAAAAAAAAAAAY1z02BKtqpYKoMRlMQxATZQGIylNgTZJhQERdjYE2TzsgGK= TttvPmZbPjfr2jswD4XKu1Xv5mDI2BhMMZpfTZAfKY2R9Zphj2O1O0Azxrfaq7c+EP0lFMU0xEK= CJK7EgmyMkBJhjMMgGJKzCAbAA1UAYgAAAAAAu8oAAAebbzLvPpQAABd59KAC7ybygCxMx5zdAF= 3n6Zh+3Rr+n2c2KtTxasrHmJiqmivs1U7x4x9MPwgOyV6vo2Do+bh6PYzar+ZEUXb2T2Y7NH9GI= iZ+j2OtgC7z6ZTzbAATIAyoqiLlM109qmJiZp38Y+t2fE1PhXEz7epY+BqMX7VMTTj1TT5Lt+nf= ffb9TqwD7Z2TdzMy9lXp3uXq5rr+uZ3l8QAAAAAB+jT8S9nZtnDx6Jru3q4ppiPpB2/lDwvOvcQ= U5ORb3wcSqK7noqqjrFP9zYiimKaYpiIiIjaHB8E6BY4d4fx9PtU73Ip7V6vz1Vz1mXOsgAAAAA= AAAAAAAAAAAAAAAAAAAAAYyylAY7JMMtk2BiLsAmyKs9QYizCAmwoDEXZAJhFAY1T2aZl+Wqe1V= MvrfneezD5TAMdkmGR4gwJhkkgx2fbHo6dqWFumaqtn6YjaNgSYYzDMBgMphiBMIoCIuwDEZJMA= gbSA8f7nNb9YYnsk7nNb9YYnsl7nsbA8M7nNb9YYnsk7nNb9YYnsl7nsbA8M7nNb9YYnsk7nNb9= YYnsl7nsbA8M7nNb9YYnsk7nNb9YYnsl7nsbA8M7nNb9YYnsk7nNb9YYnsl7nsbA8M7nNb9YYns= k7nNb9YYnsl7nsbA8M7nNb9YYnsk7nNb9YYnsl7nsbA8M7nNb9YYnsk7nNb9YYnsl7nsbA8M7nN= b9YYnsk7nNb9YYnsl7nsbA8M7nNb9YYnsk7nNb9YYnsl7nsbA8M7nNb9YYnsk7nNb9YYnsl7nsb= A8M7nNb9YYnsk7nNb9YYnsl7nsbA8M7nNb9YYnsk7nNb9YYnsl7nsbA8M7nNb9YYnsk7nNb9YYn= sl7nsbA8M7nNb9YYnsk7nNb9YYnsl7nsbA8M7nNb9YYnsk7nNb9YYnsl7nsbA8M7nNb9YYnsk7n= Nb9YYnsl7nsbA8M7nNb9YYnsk7nNb9YYnsl7nsbA8M7nNb9YYnsk7nNb9YYnsl7nsbA8M7m9b9Y= Ynsl2vlty5r4e1SvUdSu2si9RG1jsx0o38Z+v8XpGxsAAAAAAAAAAAAAAAAAAAAAAAAAAABMAgA= AAJsksgTbCYJhlMIKgTCAbIyTbcECY2ASYY1z2aZZvhdmapB8/HxRlt0TYGMwjNPEGBtv5mUwyt= 071byDO1R2ad/OymFAYjLZNgQ2gAYzCMyY3BgLMSgJsKAx3F2AciAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkwoCCpMAAAACaSYRkCsJhGe3oQGJKz= CT0gGFydofNlVO89WOwJMMdpZoDDZGcwm2wMfHo+1NO0bedhap876gxmBkkwCAAbJMKCMRlMJsK= hMQAMZhGaTAMRdpAfvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAATZQEF2SYAAARQRNnzuTt0fSqdofGeorFNmUwAxSWWxMAwNt2UsqI2A22joKA= gTACGygMRSYBAANkUEYi7AqBuA/aAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAmygILsxr6QDCud+jHZQGJMLsAxFNgSI3VYhQYi7AITAAmw= oCBMAIbKAxGW26TAIC0x2p2jzgm30SP000xERGwDIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYAYVdWUpMAwmEZpMAxFmEBNiI6qyjbYG= Isx6EAABJhGQDEXZNgCYAEFJgEABJfWzRtHalhRT2p28z9EdIAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJAkARJhGSBtEmGWyCsRlM= JMAIAEwjI6SDEWY2QA23AEmEZEgxF2QBNlZ243ncGVqnan6ZZgAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABKLKAAAAAAAmyMkESYTZls= grEZbJMAHSUAJjZGW5MAxCYAElQE26vtRG0MLcb9X0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2RQECYQFAAAARQRjsMk2F2xmB= lMIDEXZAVJgATYpiZnZkyop26gyiNoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJgU2BAAAAAAEmFBGIyTYVjMCgFMbyzSm= NoUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAkAQU2BAAAAABAiOooQACgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABsAJIqTAmwAUiFAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAADY2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAEAmTdwfGvE+m8I6LVq+rTdjGprponydHaneqdo6Py8I8c8M8VTVRo2o0Xr1NP= aqsz0riPTMM4tVzT3RHprm9RFXbM+3Zt4O1DUbVuZ3GfD3HWsWsPVq7mNa1HIiMe9TFVExFyqIj= 07R9EtgeS3GGbxtwfOrZ+PZs36MiuxXFreKZmmKZ3iJmf6TsyenXce3FyZjUuPG6jbyLk24idw7= xvC7uK4p1ixw/w9m6zlUTXaxLc1zTE7b+aI3+mZhq3pmpczuZuvZ1/Q9Qybdq3VNUURe8nRapme= lO8R1nZwPQbc7m7XrhXhfmrw1VqWq6xrVFqxRg1xRcuZnbpormqnaZiY2jwnq7dyH4j1TL4V1bU= eKuI8TUIx8mIpv03KZotUdiJ2maYjz9QerwOlV80+Aqb1NqOJcGuqZiI7Ne/X0Ms7mhwNhZl7Ey= uIMS3es1zbuUzV4VRO0wDuZu4Thnizh7iSi7Vouq4+Z5L/ADkW695p+txuqcyOCNNybmNmcR4NF= 63V2arflImYkHbImN9l3eF8zuN9Ty+JuH73CHF+DiaZlWo8pTXdojys+VmmZjemfRs9BzuZPBul= ZVen6lr2LazLG1N6iausVbdQdzHBcMcW8O8S+UjRNWxs2q3G9dNureafrc6AAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAigPK= /dRfouv/1i1+9DyT3K0/8AzNu/2dd/eoet+6i/Rdf/AKxa/eh5J7lb9Jt3+zrv79D38Wf7trfN5= cf3jQ6Dx9/PnX/7SyP+bU2P9yf+jTI/tK7+5ba4cffz61/+0sj/AJlTY/3J/wCjTI/tK7+5bdnV= f2Gn+Tl6T+31fzdm58WLuRyl161ZiZrmzRO0eiLlEz+yHl/uRtW02xi6xp2RkWbOVN2m9EXKop7= VMxEdN/HrEtgM/FsZuHew8mjylm9bm3XTPnpmNpeA677nfJjU7t/QNfixj1zNVNuuiYqtx6N4nr= +x8o+uesczcrFv8vtbt2MmxcqjFmdqK4mdt49DUuznZNnlLfwrVVVFjJ1mPKxHSKtrUTEe2N3tP= CHJLXNMyM6c/iGi5ayMKuxERFVW1UzTMTMTP0P3cOcj6LfAeo8N6zqNFV2/lRkY+Rap38lVFMR4= T4+APFOGMKJsYU3eXGdqEzXTPvuKsmKa438Yin4uzsXD3DGkcS8/dZ0XVLNyvCnOyfi03JomNqq= tusfU7jg8lOM8Cu1axOMIpx7VUdmiIqp6RPo3l2rg3lZn6NzRz+L8rVbV23fvXblFumj40zXM+M= +bxB4hgVXOE+P+KMPQ7l2xbx8DKpt/HmeztR0mZ8+ztHufuXHC/Gmi6hn675XJv2r0URbovTR2I= nfrO0+fZ6FpvKK5a5l6nxDnZtnI07Ot3bddjs7VTFdMRMOqZ/ufNWx8+9Oh8TTaxa6t4pmKqaoj= zRO09frBwHPPh3S+FuM+E9I0i3XaxLViJoprrmqYmb9Uz1n6Zfg5gajwvqXG+bZ0zgnJ1nN7UVX= q4yb29yqKYiaoponpHh5nfMnkhrOVPD3vjXrVdWm0zTerqpmqat71VfTefRL6cT8jdSucT39Y4c= 4gjCi/G9VNVMxVTPniJjxjoDzvkPdvYvO7BsUYN3S6LvlqbmJXNe9MRbqmKZ7XXpMR4+ht3Hg8P= 5dcndc4e4/wuJtS1qxl+QmubkRE9qrtUVU/3y9wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAeWe6i/Rdf8A6xa/eh5J7lb= 9Jt3+zrv79D1r3UX6Lr/9YtfvQ8l9yt15nXf7Ou/vUPfxf8NrfN5f+I0Og8ffz61/+0sj/mVNj/= cn/o0yP7Su/uW2uHH38+tf/tLI/wCZU2P9yf05aZH9pXf3Lbs6r+w0/wAv9nL0n9vq/m9d2jdqj= rvGPMjVOZGo6HoWr5NdyMmuizZoppiIpjzR0bXQ1Y5df/crkf1m8+UfXPzZvHPNjgTWMWeIb+R2= L29UWci3TNN2mNt9p2+mPB6JxfzK1yrV+FMjQM/TcfB1OxauX7ORcoiZmbm1URv16dY6Pxe68yM= P4E0rFqronLm9NUU7/Gijbr+2YeT6hbvWsXl/Tf37U26pjf8AozlVTH7NgbeapxBo+kY1q9rGqY= eDFdO+967FMT9W/mcZZ494Qy65x9O4n0fJy6qaptW6cqme1MRvt0nwa5abpt3mfzmv6drWfet2K= Lc9mInfs0UbbUU+jxmXy1HhnC4S54WdDwK7lzHtUdqmbnjPatTIPUOAOY2rX73Et3ijXdJt4uHE= RjVUXbe1FU1VRETt9UeLivc/8yLuVl6pY4t4lsUzVcojEpya6aJqmZmNqfDfzOm8n+HMDii7xpp= uoeUizFNF6OxO09qm5XMJ7nzgfReKNQ1DJ1Wq9T8G3Ldy12K9vCZnr7AbF5HMDgjGyLuPf4r0e1= dt1TRXRVlUxNNUTtMTG7j+YHE2Pc5X65rXDerWL9dnGmq1fx7kVxTVvH6mu3GF3l/e4s1SjB0TW= 8+v3zcqu3LdzpNU1TM7RE+G+7iuBNSv4+l8Y6RaiacTJ0m5cqpu0fHiaK6ez9X8qQbA+5r4j1ni= ThHLyNazq8u7ayezRVVERMRtM7dIeqvFPcj/AMydQ/rf+EvatwUIAAAAAE36+Kz4Ohc3eMK+HtO= t4eBdinUMid4n+hRHn/uB30a2d43F3rWv2HeNxd61r9ibGyY1s7xuLvWtfsO8bi71rX7DY2TGtn= eNxd61r9h3jcXeta/YbGyY1s7xuLvWtfsO8bi71rX7DY2TGtneNxd61r9h3jcXeta/YbGyY1s7x= uLvWtfsO8bi71rX7DY2TGtneNxd61r9h3jcXeta/YbGyY1s7xuLvWtfsO8bi71rX7DY2TGtneNx= d61r9h3jcXeta/YbGyY1s7xuLvWtfsO8bi71rX7DY2TGtneNxd61r9h3jcXeta/YbGyY1s7xuLv= WtfsO8bi71rX7DY2TGtneNxd61r9h3jcXeta/YbGyY1s7xuLvWtfsO8bi71rX7DY2TGtneNxd61= r9h3jcXeta/YbGyY1s7xuLvWtfsO8bi71rX7DY2TGtneNxd61r9h3jcXeta/YbGyY1s7xuLvWtf= sO8bi71rX7DY2TGtneNxd61r9h3jcXeta/YbGyY1s7xuLvWtfsO8bi71rX7DY2TGtneNxd61r9h= 3jcXeta/YbGyY1s7xuLvWtfsO8bi71rX7DY2TGtneNxd61r9h3jcXeta/YbGyY1s7xuLvWtfsO8= bi71rX7DY2TGtneNxd61r9h3jcXeta/YbGyY1s7xuLvWtfsO8bi71rX7DY2TGtneNxd61r9h3jc= Xeta/YbGyY1s7xuLvWtfsO8bi71rX7DY2TGtneNxd61r9h3jcXeta/YbGyY1s7xuLvWtfsO8bi7= 1rX7DY2TGtneNxd61r9h3jcXeta/YbGyY1s7xuLvWtfsO8bi71rX7DY2TGtneNxd61r9h3jcXet= a/YbGyY1s7xuLvWtfsO8bi71rX7DY2TGtneNxd61r9h3jcXeta/YbGyY1s7xuLvWtfsO8bi71rX= 7DY2TGtneNxd61r9gbGyYCgAAnnVCR5X7qL9F1/8ArNn9+Hj3uYsvGwuZVy5lX7diidPu0xVXVt= G/ao6Npdf0XTddwKsDVcS3lY1UxVNFcbxvHg65PK7gaY68PYn6qHqY2bboxqrFUT7eRk4Ny5k03= qfs1v434A4qyeK9WzsLTJzLGRnXrtuqxXFW9NVczE+Pol23lJxxnct9Oq0DiPhzOtYt3IqvTfpp= 3miZimJ6bdfCPPD1zuq4MoqicbT8jDnfffGyrlrr/wAMw+lXL6zat3KMHXdYtRXG3Zv5NWTRH/D= cmYdFzqVu7ai1cjcf0/7c9vplyzc+rROp/q53hjibROJMOMrR9QtZNHnimfjUz6Jhr7xPyW4+y+= L9Q1fTbuDZov36rlquMyaK4ifqjo9Qs8rox9Tq1HC1KMHOpo/i8zEtRZqmd4nau3TEW6qZ+mHdu= H6tapxpsa1bs1X7c7RkWpjs3Y9PZ8Yn0vJu0UR+pO4evZrr1q5HtrzpHIXjHUtTsXOJ9Ws+96Ko= 7dUX6r1cx6I38N3ceaHKrWNX4k4bvcO28SjTtKsW7VUXb3Zq2pr36Rt16fte1UrLS6GsHNjhXTN= I44r1PQOMtN0nUuzTVexr96bdVu5t1mKojwnp02dQ4Qt6pqfNvBt5WpWdXzLkzTOTZuduir+Lq8= +0eDYvjLlFwpxTrt3WNRt5MZN2mIrmi7VETt9G79vBXLHhLhLUJz9JwKqcrsdmLt25VXNPTrtvP= Tf6DY6lyW5ca9wrrPEGRrnvX3vqNEUWvI3e3P8AKqnr0jbpMOoaZyh5icP67dq0PV8S3p12/E3q= 4vdiqu3v13jaeu0y9e5wcRX+HuDr9eDTdq1DL/yfEm3403KukVfqeSXNe43wOHMvSNLsaxqV7Ii= bVzIrsX7ldmumY7XYmYmYid+u/h02ddnDqvU929OK/m02au3W3yzeTfHml8RZubwtquD5LKuVVR= VXXFNUUVVTMRMTE77b+L58P8meO8e7rd7UKtNru5+nXcemqMjfe5VVRMb/ABekdJYcAZXMXBz7t= dWBxHN6MWum3XmW7k0WoimfNX8Wdp+NEeM+EdXO4nMDmRbzsjU6uDtRrpu2KbU2qse/NEVUTO1d= NMR07Xanf6oba+nV0zMRVE/zaaOpU1REzTMT/B3XkFwdq/BnDWXgazONN67kdunyFztxtt6doek= +Z03lLa1P+C3vvVrWZZzM3Ju5FdrI33t9uqaopiJ/kxG/g7jEdHDco7app/D0LdffTFX5WAGLMA= AAkH5NY1HG0rTb2fl1xRZs0zVM+n6Gr/FWs5Gva5kajkz1uVT2Kd+lNPmiHf8AnnxVTl5UcOYdc= +SsTFWTMeFVXjEfTt0eVpIAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAAAAAAAAAAAAANwAGQAAAAAAAAAAAAAA/BrOlafrGHVhanh2srHqneaLkdN4Z6VpuDp= eJRiYGNbx7FHSmimOkP1yQRVOtbY9sb3o2jwmOhERttsoMtAAAAAADrPMfiS3w1w5dyoqj31c/i= 8emfPVPn/VG8uyVTtEz6I3a4c1eI7uv8TXqY7VOLi1Tbs0+naf5X1ySOqZF65kX7l+7V2rlyqa6= 6p88z4vmDEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA= AAAAAAAAAf/Z" width=3D"819" height=3D"1119" alt=3D"Imagen que contiene Inte= rfaz de usuario gr=C3=A1fica Descripci=C3=B3n generada autom=C3=A1= ticamente" style=3D"margin-top:-35.18pt; margin-left:-84pt; position:absolu= te" /></span><span style=3D"height:0pt; display:block; position:absolute; z= -index:-65536"><img src=3D" IAAABPCAYAAACeRMz2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAADrlJR= EFUeJztnX+sV/V5x9+nP8zcdrdm7Ui6uJqSlSY21YWNzKRxWdwMMcYY48o6Qlc2M6KNq1kXBbup= rdYOWjsnRarir4l2jNZag6jMabV0astgprMtiqICVVEQ2BW4XMTX/nieL/dzP9/zPT++98KF8bw= Scr/n8+P5POccvs/3nM/nnOctBUEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBNUAax= jNkJefCawFdgN7gB8AFwG3Zv17tgO+lNjdA3wq63tnNvaSBv6eAawD9gKDwIoe7SYBi4FngZ3Aw= 0ndSuAt9/mhfuxnfWYDz7i9fcAm4MqsTdWYTfpvopvL63wLgqABwADwj/7FehKY7OXPAi8B5wNn= AdcDrwO3Z/1r23kdwAvAQNb/POBN4JyG/j5bEhDuyNqcC7zodT8F/hmY5nXf8/JFwC3+eUUb+9l= YU4DtwH7gH4BPA/+LBdIz6sZs2H9OiU9bmxyvIAgaApzjX67vJmXDwOKs3QXAbVlZbTsPhP+DXR= HdWzL++oZ+Xgo8DJwGzMeunkj7A1OxQHwAuCnrPwm76gI4AZjmn/d4Xa39Ep8u8zaDeJDHrpDBr= ojrxqzs79uPAF9pcoyCIOiTHoHw58Bm4JM1fWvbeSB8AljggfNvs/qmgXB6tv1j93tdUvYDL/th= Sf+5Xvd2UtbhC03sl9j8TGLjIS97Dgv6pzUYs67/ALDLj9vrwH8Cc5ocryAIWtAjEH4CmysbAh4= CTuvRt7ZdJxD651XAVuCkpH591n4psA2YUuN3Z35zkW9Pcz8AXsWu6LYB13n9bV63P7HxjpfdVm= e/wo91STDb4vt3UdMxa/pfSzf7yeZqgyAYI2WBMKm7Ervi2w0sq7DRs10WCAewucLVSX2jK8KSM= bcBLybb85Ng8RngZv88jM29Le9sJ306QWl5nf0KP6ZhgTcNVDd4Xe2YVf29firwN8A9wI6kTeXV= ehAELagKhEmbO7F5t1U1trrapYHQt8/FFgS+6tutAyG28DAIzEjKlvp+HEjKdnnZMkZWqdOg1CF= fBOqyX+HL57Grus8mAW0YmNFkzKr+JWNNAzZ6m66r2CAI+qQsEFJ+hbQau90caNMuD4Re9hXssZ= bpbQMhtjq9DZiblS9Jgsx0L9vs2yuBK/zzfq8bSNpf1sD+WkYz7Ps2DKxN+u71+m/VjVnXv8f+f= 87rF5fVB0FgvGscbEyje45um/89vo92oyiK4guSnpD09TZOAZMkfVXSjUVRLMBWYr8DzJb0iCQ6= fmVdN0q6S9JeSe/B5ig/4nV7JS2ts18Uxe8VozlO0p9Ieq+kd/t+rZS02e2+1WDMuv5lPCZpSNL= djQ5aEAT1ANf4FcYTwMleNojN5c3D5qiuxm5nn8z61rYDFmIroSdnfQeADbR4Jg54lG72JPU/8r= J12DzhELba2nk+coXXfxO4yT+vbGq/xJ9LsKmAPdgt7kXYPOkO4I/qxqzrj817DvlxWgCcCjwI3= Nj0mAVBUAO93yxZ7l/CjdjE/E7sebaTsv6V7YCnM/v5IypnA89nZf+K3ZpOy8qXUM4LSZvJwPex= x0+GgZ8xeh5xAPh3Dzx7gPvb2O9xDBcBr/h4u7G3RP6qyZh1/YFZ2A/NPv/3PPDFKn+CIDgKwd+= gCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgOKwwktapwwNZ/e6k7s4G9s7AXgHb1Y= cv465xcjjBUmVVvoUyBtvXAm/grwq27DsDeBx4pR97VW3LbPfrF/AYcHNbO0EwZhgRX8JfA5uc1= c/GXle7Azihgb17sVft3q5rW2Fj3DRODhdYPsZdwDcm2pccLKv128D2I8l23heTeNhK8u53EBw2= sJTwQyRKb0ndScCPWtpbOg6BcMwaJ4cLLHXWIJ5f8UgEyww+7oFwrLbzvsAn/bxfN34eBscqrdJ= wFUWxWtIaSX9Qcvvzd5Iqk7GWMNSyfRmDkm6QdBaZxskRyDxJ24qiuHSiHalgPM7JobA9qm9RFN= +W9KCkWVhKtCDom37yEd4i6Vck/X1W/tGiKK5IC7BkqmuxBKL7sAwvM/t1thdFUcyV9H1J88iy3= iS+dNLeP+7bz/j2L3z781gGnP/Csry8ic0/3uxzer/wW/meAk1V+A/H70t6Oin7MrDepxqewLLK= bAe+lrSZ4b7uwdKW3efllwI/8SviDX6l/m+YHsyupH/lOfCr/LXef4ek38r65vbOxlKX7XabPwZ= O7tG2p22vf8j36YAf72ub9nVWSvqApIvbnY0gGAf8i7kl2f4cWZZkLKXUJuApvyWc6//ZX8fnEL= F0VmO9NW6kcYItzuxIAuFJvh+dQPiyB8YtWF7E0z0wvoUlXD0X0z2GTFS9oa8dOc40yO3xso1Yv= sFzfR/2esCZ5EHuSiz1fidH4fXAa/55K3Ce27ufZN614Tn4uY85w+t3MjIXl9s7AUsDthrLgbjI= A9X8vG0D29N9P6/B8lOuZfQiTc++2XHdBzzS9nwEwZgBLvcv4RW+/TDdOQEXeJuzkrKFXtZRkxu= 3QOjblRonWDr+x5PtR/FA6NvPAekV2xJGq8pNSv1v6euN3ndeVr6D0botF3q7JYwkws15ytu+AK= zJ7B2cd607B8l5nJPU53Nxqb3rPHiVLoZlbWtte9lnsUA9xEiQbNQ3OX7/XX7Ug6AZfaXqL4ria= klbJP2pB8ADRVGsyZr9jv8dTspW+N8P9jNuA7/ulbRI0hyyxK4NGc62D0gqEvuvj8G9TsAfyMpH= jVkUxTd93PdL+pCkV4puTvXm+9VNOpdWdw5O8c/po1D5PF66/duShoqi2KJy0ra1trEruaslvSh= pdVLVxK+DZjQ+khPBMcxY/gM9IOljkq6SVKZq19HTOC8p+1X/e8hWcxtonOT7/N5D5UvGJv9bNr= H/ns4H7Db33bLg8KqkSWTzqjR/LrLuHAz657/o5U/Ga5J+HdN9qaPStl+1/6GkWUVR/LmkPU37Z= vySpDcb+BME44/fJu4Anquofw17Zu6L2JzSU8DLSZv7sUWMWX360ErjBFuY2ILNF84HXvJbsJ3Y= nOEWbL5uitu4z/2b6f07t63fo+VKpdvbTXf6/a3YnN0c7FnNZ/y4TXKf3sDm5S7DFhAewPRKpmI= LOE9n9jrHdGbdOcDm6Xa7D5dg84g/8X3c6/1Te1OxOcbNfkt7KnbLf13J2HW2l2GLJPOw5wLXY4= 8WDTTxy8eb6WX/1OZcBMG4gj0UvbCi/lPYpPew/wdex4h85jJGcz42Yd5ovof+NE6u8S/bICaC/= ggWSK9iZLEETDN4VWZ/UbZ9dxt/ffxHgZeysq3YSvUb2DzZT/HFD6+f7T7uw/RZvp706wSGF73s= u/kxqToH3mcu9gOwH9M5eQz7MfhaD3sXev0wFhTvqRi7yvYn/JgPAU9iP2p78WdUq/omvi/Hfox= rH+APgmMWjjCNE2wlehdwU1K2lWSxJGgGdnW8E7hhon0JgqAl2PN/u7DnE8/AVrnXxFVNc7C7hy= 2UvOEUBMFRAvDX/kVO2TDRfh0tYAkYbp9oP4IgCIIgCIIgCIIgCIIgCIIgCIIgCIIgOKbAMp2kH= PA3AV4EvjyO4/StuTGR0ECDpWrfGKNeSD9jNtmHo/V8BMEhAXsHtCOKtAiYjOXJ2+6vQV0w0T5O= JIxRg4VDqBfSwocx68gEwf97GMkTtygp6yQLfXAC/JnGESTgQ6bB0tY/DqFeSAsfxqQjEwRHI73= SLbXheP97YBxsNQZTrbtVo9M3TTQHc+b16d+h1AtpypHgQxAcVvrOR4iljFoiy3W3X9J3svourQ= 1GayP/h7frZHnZQbnuxYPJXOTNwPletVrSx2VCUmDZmHtqYJT430qjhBrNkxJy/5aX7FtbvZBex= 6KTbSfXErkgtUEDjZTsGE3P+s/DNFKeAv7Fj/VbjNYaKT0HlGuszO91foLgiIWRW+OUDXSnn++l= tXE7Fvg2MaKZMYALwtOtkTHHv6gzgVnYPFr65d/ASNr6Sg2Mkn1ppVFCjeaJl42SHsj8a6vp0fh= Y0FtL5PnMRqVGSr4PJT686v1fBRb7WBuATXXngBKNlSA4KmEkEC7GrsDe6QSxrF1PrQ3/suzCk6= n69gVJ31T34hz/8t5LSUqtNNAkZV0aGBX700qjhHrNk56BsGTf2uqF9DwWVGiJ0D1v2VMjpcc+5= P1fItFJwRLFbsvGLD0HlGisBMGRQL+3xu+4hObjkv4MuDCr76m1URTFKknPSrrE2/5uURQ3Jn0P= zlEVRXGfTAt4sqQVWALPqb2corcGRi8OpUZJGa00PdT8WFRpieQ2qzRS6nyWunVS3lFyzGrOQZn= GShBMOGMVvTlf0nZJVzA6XX6d1sZSSaf75zwYjaIoioVFUZwi6dOyAFuqRUK1BsZ4Ml6aJ231Qq= qORRstkVFjMFojZUwcxnMQBONK41VjbBV0im+eCEwqimIjcJWkhZJWAXdJukfSHZL+UtK1wImSf= ijpMvnVT1EU3wAuxnLKXZ4N9UFJ7/Ig+iFJZ0u6S6aaNyjpuKTtAUnvBy6RdKYsSJ3iY35U0nHA= QFEUg8rAhODfJ2kYmCIL3gfHLoriW8mV7gmYTsZuSR/2W9M/ll2d/SawsyiK9yX9ZxVFcVfm3we= yfVsmaYaki/12/GeSPizp14C9kk5scSxukzRT0tXAL0taJ2m2pL35Pnn7j/st+WZJX5K0VdKC7P= h39iH14RmZCh/YA9ZvyK4kjwdOlwlTlZ4DSR/xvrEqHRy90P1mydak7u68nB5aG0mf64EHsrJc9= +JWbOL/BWyFcz1wZtL+Fp8bW0uNBkbJ/vSjUVKleVKmwZL611bTo+2x6NIS6TFmT42Ukn1Ym21v= Sz6/nNUPUXEOKNFYCYIgmBAIjZQg6CKEsY8hsFv64yX9BqGREgTBsYbfFqeERkoQBEEQBEEQBEE= QBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEFwzPJ/mF= D7KUN7Uq0AAAAASUVORK5CYII=3D" width=3D"322" height=3D"79" alt=3D"" style=3D= "margin-top:-17.45pt; margin-left:239.7pt; position:absolute" /></span><spa= n style=3D"color:#ffffff"> </span></p><p class=3D"Header"><span> = </span></p><p class=3D"Header"><span> </span></p></div><p style=3D"lin= e-height:115%"><span style=3D"font-weight:bold"> </span></p><p style= =3D"margin-bottom:0pt; text-align:center; line-height:115%; font-size:18pt"= ><span style=3D"font-weight:bold">Sistema de actividades mediante la integr= aci=C3=B3n de PhET interactive simulation en el aprendizaje de fracciones e= n adultos</span></p><p style=3D"margin-bottom:0pt; line-height:115%; border= -bottom:0.75pt solid #5b9bd5; padding-bottom:1pt; font-size:14pt"><span sty= le=3D"font-weight:bold"> </span></p><p style=3D"text-align:center; lin= e-height:115%; font-size:14pt"><span style=3D"height:0pt; text-align:left; = display:block; position:absolute; z-index:0"><img src=3D"data:image/jpeg;ba= se64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQ= EBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBA= QEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCAAx= ADADASIAAhEBAxEB/8QAHQAAAQQDAQEAAAAAAAAAAAAACAAFBgcCAwkKBP/EADQQAAEFAAECBAQ= EAwkAAAAAAAMBAgQFBgcAEQgSITEJExQiFUGhwTVRcRYyQmF0dbO04f/EABwBAAEEAwEAAAAAAA= AAAAAAAAgBAgMHAAQGBf/EADARAAICAQIEBAQFBQAAAAAAAAECAwQFBhEAEiFBBxQxURMicbEIF= RZhgWJyssHh/9oADAMBAAIRAxEAPwD3P8bVdXbcf4m1tRfXWVplM9Y2E2TIOSRLmzaqLJlSTPUv= dxDHK8jl9E8zlRqInZEkd3ExWeqbG8ukrqyoqYh7CysJsokeJDhxRuMeQcxDtYMY2MVznKvt7d1= VOqw4vuPl8bYEaOX7MbmWJ6r6I2mhNT09O3t+/f36oTxXw5fJOezfFYbmZTxdZdwnWEiK5FQ4Y0= yM2NGlj8zVNEWQVJLxI5vmJHC7zfZ5V5/UeqsDpDGjNajsT1MSt/F0J5q9Z7c6yZbJVMXWEdaI/= EmJs3IgVQEhSzbEKRxL5DNZFLlbT9KLIZgUb9mjTnsJTgsS06k1rklsy7JFGRCeZyQB2I3BAn80= fE646ydoeuwGNqpsEL3jDeamdOiuskY5zfnwKSI5ZyRX+ijLJIErkVEfHE5ey/Bw/wDFBwWmtwQ= N3h6kVcUg2ntspYWBZVcNzkYsiRSWD2yTRh+ZFI4BVKjUVGCKRUGvLf4l+ay2G8RsLE5WNGr6yi= 40xwIsEasQzxolh8ydI8qIppMw3zTypCtVxTuer/VyJ1H/AIdOco9d4q8VnNJXR7WitqDfQ7KDK= YwgSANibxjXIi91YUJlEaOZnYgDsGYT2PG17efk8U6y6zGmk01QfDjKJi/N+at/mxVpUiNxZRL5= YSAtz+WNYoSBGXXcODMofgDuXfwtt47yeNuq4vEQ+H1rX4wCYTTreH8UtXHzZNdNtjjV/O3rsIh= RbLHNCzuxtrUJ2rceufMrg9dR1ukzz6+2pbiKObXWESSUgJMcqI5r2K03oqL3aRjuzxkRzHojmq= nWrX0lLEyujlw4zY0uLR2siNIDIkDMA4IJyCKIjTI4ZBka1zHtVHNciKioqdc7/BXfWeD13NnAs= uwPOqMHolsswQ5Fe4NfNmSo0obfVWDYXyQJaCZ9qSDy39kc93c59hcq/JadquX7qC4aiovui18h= Pb/P9f16svJV1oXJK6v8SPZJIZNti8M0aSwsR2JSRQR0+YEbewGaQzz6kwVLKTV/K22exUyNRWM= iVshQsyU7sSOQOaMTwO0RPUxGMt8xIFNcd2qswOKYrm/ZlM+339u1VFT19kT2/T+fUM5bbLKKj0= 0DsSVnJzZDmonm8glKEzCuaiL3YI4Bo/v7MI5yq1EcvUdxVq4eOyrPMqIzPUzfz9PLXx0X8/X/A= MX2XpgrOceLtDPLSVfIGPtrFZ7qV9ZFvq2TJJYuFZFdXJHZIc4pnCp7ZVG1H+ZK2enr9IdGVf4h= aPh19pDNaWltvQbIV4Xp5GJQ8mNydGzDexl+NCRztTv1q85QMvOkbJzLzcwsDT+ZOAzFPKpAthK= sjrPXfcJZqzxvXs12IBC/FryypzbfKWB5WA24D3lvwN53xb+JyJztudi6v4+rMnmaluQoZDwaa3= tKtZpJsWznuY1tRUo4wx+eL8+ZPGpEG+I3yndIMp4M8t4avEHQc68f33fDVddq2T8TZHWRexJVn= nrGHAj5yW7v+KgNLMEHyJzxSIrHNKWXIY0j2E/Ny1Z9QSXVWZqZ/fzkQJWqIaPX0VOxRPExy+qI= r1b2+1rUT0RtranOWEidKmaVL91PKNEsGfVjcOFKiiEeRGnOQxiDKIJglIJ7xOYMg3ETyvb1R9S= DxfquKcnhLpm5qkZCK5Lr5tZQRabs245EIy0mKSP9QxQuBzyYeCFFLEothTtKpIr48Z+LT8unav= ilmamh5NGWtEfoRMAsgjwduk9OSAFycbLlFEhePOyS+aVx13g3rsx+E2o0J7rlPmLWVxqiy5Fv3= srq+Wx45EashSpRyuVpGtd8l0g4ooVVrXESApU+wjVUt9VbKuY0SK5vrSWrff8AnBOn7+qdv26q= PP7TPX1NX2+Zt6q0oZsVkissKmZHlVsqEqqwZ4ciMR4DRl8vYZQucJyJ9rlTrPQ26vz912J3a6p= sOytXuio6IVE7L37Knr379/6L0Vdi7bvtHZuiulpoKyTJVEi1Y3igjiZKwlZpFhBQ/DEjM/LtzM= TueA505g6mm8ZDiac1izFHNbne1aEYs2rFy1LbnsTiELEJZZZnZhGqovyqoCqOKXz9owuTqITjP= G0lDCjOcNyNIxr4AxK5jk7q1zUVVav+FyIv5d+gVm8JVsaq4/x/JvKfFj8nw1ErKumrX5yHS2tl= Q0nH+6qYMzY2U28KX8TdVTG30sUNkamd/Zy3tGxESSqVhL1N7HiVcCJIkMAeLEjxjAKQQyhKATR= kEUb1Qgyie1wyDe1Hse1zHIjkVEF/mzgCg5amai7jbu3o7e9zljWBrWkojZxbmRithhoN1OaapP= cqsKp2dm76SLZhiGkCilKB/kI0uspCk9up7EgenTbb6djt29j7q9Dt7ncdCR1IAHQEfx/ziqzcb= 0eVjUlnd+JrHbFb61wlHXQbZbK5iclz0uaDKDp9hAq9R9Vd0kC8Ix1ecbpL6QjxnnObDjWYZ9w8= XwOMcDtNW6z55xOuByfgdFGk0hisLR0sTMRMzW30qhmyby1DXVskc8RtLW3E+dYWzW00hs4g6eW= 8rLN8MWGnS5NhI5H2S2Fzoc5ptXMC7EAJpbTI6WHp8454xZdA0Aa6bBCF7MuOmWfGRfrnnkOcdW= KL4Q+NwQ5UU3IeynPmDnskSpTsWpzPmswZGFKg8ywBSR7LjfL2jlIFyT5ArANmkyJZSY6vDKehZ= uu2+yj9iOnKe537dD07DhxIB6kdR7H03H9P0P7/AMjfVlvDbm5iZ7C0HOmLsotfncwd0OiQ6ae/= zdZWYmDIopg4WoLHTCySUEq/gBBF+oDbXySXyXtZKLa9K59hGg5uZXw2sjw4tPIhxY4mtYMEcMN= 4ghG1P7rBja1jE9kaiIidvToIOPeC8JxvsqvZ0eotfq66nk1kiAMGSqINweYFAyLC5/AKCqk2D0= VFkRokg74cSU9TRxMRoxsIew0UU8CYEckTyFinGxjTDc57iDc1rGtRfM5zlVGta1PMqr2RFXphI= LDYdOnbbqSv7dunXv09+E3U+xPr6H2Hcj6d/uNzt0P8ZuP9ymf9knTH0ul1MfRvq33Xhqeh+v8A= ocZu9mf0/ZOsOl0usT0P1X78SH1/hfsOF04VX8Shf6qP/wAzOl0ulHqf7j/knCcf/9k=3D" wid= th=3D"48" height=3D"49" alt=3D"Interfaz de usuario gr=C3=A1fica, Aplicaci= =C3=B3n Descripci=C3=B3n generada autom=C3=A1ticamente con confian= za media" style=3D"margin-top:88pt; margin-left:403.5pt; position:absolute"= /></span><span> </span><span style=3D"font-style:italic">Set of educa= tional activities using PhET interactive simulation for learning fractions = in adults</span></p><p class=3D"Default" style=3D"line-height:115%; font-si= ze:14pt"><span style=3D"font-style:italic"> </span></p><table style=3D= "width:396pt; margin-bottom:0pt; border:0.75pt solid #000000; padding:0pt; = border-collapse:collapse"><tr><td style=3D"width:3.25pt; border-right:0.75p= t solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.03pt; ve= rtical-align:top"><p style=3D"margin-bottom:0pt; text-align:center; line-he= ight:115%; font-size:10pt"><span style=3D"line-height:115%; font-size:6.67p= t; font-weight:bold; vertical-align:super">1</span></p></td><td style=3D"wi= dth:171.95pt; border-right:0.75pt solid #000000; border-left:0.75pt solid #= 000000; border-bottom:0.75pt solid #000000; padding:0pt 5.03pt; vertical-al= ign:top"><p style=3D"margin-left:7.1pt; margin-bottom:0pt; text-indent:-7.1= pt; text-align:justify; line-height:115%; font-size:10pt"><span>Manuel Rodr= igo Faic=C3=A1n Pauta</span></p></td><td style=3D"width:10.5pt; border-righ= t:0.75pt solid #000000; border-left:0.75pt solid #000000; border-bottom:0.7= 5pt solid #000000; padding:0pt 5.03pt; vertical-align:top"><p style=3D"marg= in-bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span s= tyle=3D"height:0pt; text-align:left; display:block; position:absolute; z-in= dex:1"><img src=3D" YAAACNiR0NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAA2lJREFUOI21l= EtoXVUUhr+197n3nNzbJN6omdTWRmwbikVq4iMxk0ZU2oGgA1FnQcQiUhUnFqo4cGIRQUGd+KDY= +Jp25ouiGCOxElqjhba0URPzsPQmuY9zzj1nLwcnuU1iQ0f+mzXZe///Wv/aiy1cBV/83NNOPr/= VWHunqO5OVNuNlQVjmZCGjCVhcPHR3q8XrsaVNUITu/KSlu7LFeSpNNZ+57RTjDTvqFM1IvNiGX= WJvD/9x8yXB/efizYU/Hy8/0W/aA/Xq43r1P3nOCNIFsW2XLleTd648Z/863v3nkjWCL59dp/fW= SsfzOXNkShKacvfgnMRlXjqqqIrwr5vkihyhxbT+K2ne082AAzADZXyPj+wL8ehQ1NH700v0N35= OAroutW0rxDF6rUUvddaJfdwM9HwqYFSa0GO1SrpfucUVUXEZCQcqQtZ0VEU1QTPtmAkDygiEBT= sTxq6hx65fWTOy7l0exjKgGrGcjTo2/oKS9EUZ2aPcf/Oo1iTI9UGqFJrzDF5+Sv+Wvg+y+IEVX= aGibsbOO5hGBSkbUUQdRT9zaQuBhE6Ct2MT7/D9OIIVnw6Ct3csfk52oNtTMwcBbE0YteeC7we4= LinSI9Z03dBNUVxTdu1eI7FcBIjHvPVU1Tjv7nn5sNMXv6WSjyFiIg17AAwqpRW9fqayNkiM0tj= qDrag67mDCi0ARiB6gaTsSEEg4htusj2qGeCIr9dW0JR3PKrR2zreIDURZTrZ7NTBYdeBPAU+cY= 59zxCkFlXjHiI2GY1pZbtRMkC1gZcX9hFV+lBTs98SDWexYjFGqkldT0J4EkY/ZovBb+klbQ/G1= zDYvQntXgWFC5VJ9hSGmRLaRCnCZeqE3x34SXK9XMY8bK+BvZ8JUzGAEQV+Wy87xm/xbwZ1lwew= GmCIIhYnCZXjKvDaQNrfIzkAKXYZl11wR16omfkyHIP0RB/2CV8GrRkNldbNmKbYU2enC0uV6bk= fUNUd8P1ury3ktQADO05UV6azx1IE/dRULDomjGSVXEFhVbrXMoncTV99smBH5ZW327igzP3trY= 2ONCyyQ6FtbRLUw2yZ8p+FwARifyCvRDV048rcfXdoT3j5fXp1+BVxdx2um+HGnuX9egX4dY01U= 0iVK2R80nMaELy42O7R39fz/1f8C/hZ5YvjpSKGwAAAABJRU5ErkJggg=3D=3D" width=3D"20= " height=3D"20" alt=3D"" style=3D"margin-top:0.25pt; margin-left:-0.3pt; po= sition:absolute" /></span><span> </span></p></td><td style=3D"width:16= 6.35pt; border-left:0.75pt solid #000000; border-bottom:0.75pt solid #00000= 0; padding:0pt 5.03pt; vertical-align:top"><p style=3D"margin-bottom:0pt; l= ine-height:115%"><a href=3D"https://orcid.org/0000-0002-6620-698X" style=3D= "text-decoration:none"><span class=3D"Hyperlink" style=3D"line-height:115%;= font-size:10pt">https://orcid.org/0000-0002-6620-698X</span></a></p></td><= /tr><tr><td style=3D"width:3.25pt; border-top:0.75pt solid #000000; border-= right:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt= 5.03pt; vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:cent= er; line-height:115%; font-size:10pt"><span style=3D"font-size:6.67pt; font= -weight:bold; vertical-align:super"> </span></p></td><td colspan=3D"3"= style=3D"width:370.4pt; border-top:0.75pt solid #000000; border-left:0.75p= t solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.03pt; ve= rtical-align:top"><p style=3D"margin-bottom:0pt; text-align:justify; line-h= eight:115%; font-size:10pt"><span>Maestr=C3=ADa en Educaci=C3=B3n con menci= =C3=B3n en Entornos Tecnol=C3=B3gicos</span></p><p style=3D"margin-bottom:0= pt; text-align:justify; line-height:115%; font-size:10pt"><span>Universidad= Bolivariana del Ecuador (UBE), Dur=C3=A1n, Ecuador.</span></p><p style=3D"= margin-bottom:0pt; line-height:115%"><a href=3D"mailto:mrfaicanp@ube.edu.ec= " style=3D"text-decoration:none"><span class=3D"Hyperlink" style=3D"line-he= ight:115%; font-size:10pt">mrfaicanp@ube.edu.ec</span></a></p></td></tr><tr= ><td style=3D"width:3.25pt; border-top:0.75pt solid #000000; border-right:0= .75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.03pt= ; vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:center; lin= e-height:115%; font-size:10pt"><span style=3D"line-height:115%; font-size:6= .67pt; font-weight:bold; vertical-align:super">2</span></p></td><td style= =3D"width:171.95pt; border:0.75pt solid #000000; padding:0pt 5.03pt; vertic= al-align:top"><p style=3D"margin-left:7.1pt; margin-bottom:0pt; text-indent= :-7.1pt; text-align:justify; line-height:115%; font-size:10pt"><span>Elio W= ashington Yagual Mor=C3=A1n</span></p></td><td style=3D"width:10.5pt; borde= r:0.75pt solid #000000; padding:0pt 5.03pt; vertical-align:top"><p style=3D= "margin-bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><s= pan style=3D"height:0pt; text-align:left; display:block; position:absolute;= z-index:2"><img src=3D" AAUCAYAAACNiR0NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAA2lJREFU= OI21lEtoXVUUhr+197n3nNzbJN6omdTWRmwbikVq4iMxk0ZU2oGgA1FnQcQiUhUnFqo4cGIRQUG= d+KDY+Jp25ouiGCOxElqjhba0URPzsPQmuY9zzj1nLwcnuU1iQ0f+mzXZe///Wv/aiy1cBV/83N= NOPr/VWHunqO5OVNuNlQVjmZCGjCVhcPHR3q8XrsaVNUITu/KSlu7LFeSpNNZ+57RTjDTvqFM1I= vNiGXWJvD/9x8yXB/efizYU/Hy8/0W/aA/Xq43r1P3nOCNIFsW2XLleTd648Z/863v3nkjWCL59= dp/fWSsfzOXNkShKacvfgnMRlXjqqqIrwr5vkihyhxbT+K2ne082AAzADZXyPj+wL8ehQ1NH700= v0N35OAroutW0rxDF6rUUvddaJfdwM9HwqYFSa0GO1SrpfucUVUXEZCQcqQtZ0VEU1QTPtmAkDy= giEBTsTxq6hx65fWTOy7l0exjKgGrGcjTo2/oKS9EUZ2aPcf/Oo1iTI9UGqFJrzDF5+Sv+Wvg+y= +IEVXaGibsbOO5hGBSkbUUQdRT9zaQuBhE6Ct2MT7/D9OIIVnw6Ct3csfk52oNtTMwcBbE0Ytee= C7we4LinSI9Z03dBNUVxTdu1eI7FcBIjHvPVU1Tjv7nn5sNMXv6WSjyFiIg17AAwqpRW9fqayNk= iM0tjqDrag67mDCi0ARiB6gaTsSEEg4htusj2qGeCIr9dW0JR3PKrR2zreIDURZTrZ7NTBYdeBP= AU+cY59zxCkFlXjHiI2GY1pZbtRMkC1gZcX9hFV+lBTs98SDWexYjFGqkldT0J4EkY/ZovBb+kl= bQ/G1zDYvQntXgWFC5VJ9hSGmRLaRCnCZeqE3x34SXK9XMY8bK+BvZ8JUzGAEQV+Wy87xm/xbwZ= 1lwewGmCIIhYnCZXjKvDaQNrfIzkAKXYZl11wR16omfkyHIP0RB/2CV8GrRkNldbNmKbYU2enC0= uV6bkfUNUd8P1ury3ktQADO05UV6azx1IE/dRULDomjGSVXEFhVbrXMoncTV99smBH5ZW327igz= P3trY2ONCyyQ6FtbRLUw2yZ8p+FwARifyCvRDV048rcfXdoT3j5fXp1+BVxdx2um+HGnuX9egX4= dY01U0iVK2R80nMaELy42O7R39fz/1f8C/hZ5YvjpSKGwAAAABJRU5ErkJggg=3D=3D" width= =3D"20" height=3D"20" alt=3D"" style=3D"margin-top:0.5pt; margin-left:-0.3p= t; position:absolute" /></span><span> </span></p></td><td style=3D"wid= th:166.35pt; border-top:0.75pt solid #000000; border-left:0.75pt solid #000= 000; border-bottom:0.75pt solid #000000; padding:0pt 5.03pt; vertical-align= :top"><p style=3D"margin-bottom:0pt; line-height:115%"><a href=3D"https://o= rcid.org/0009-0001-8644-0108" style=3D"text-decoration:none"><span class=3D= "Hyperlink" style=3D"line-height:115%; font-size:10pt">https://orcid.org/00= 09-0001-8644-0108</span></a><span style=3D"line-height:115%; font-size:10pt= "> </span></p></td></tr><tr><td style=3D"width:3.25pt; border-top:0.75pt so= lid #000000; border-right:0.75pt solid #000000; border-bottom:0.75pt solid = #000000; padding:0pt 5.03pt; vertical-align:top"><p style=3D"margin-bottom:= 0pt; text-align:center; line-height:115%; font-size:10pt"><span style=3D"fo= nt-size:6.67pt; font-weight:bold; vertical-align:super"> </span></p></= td><td colspan=3D"3" style=3D"width:370.4pt; border-top:0.75pt solid #00000= 0; border-left:0.75pt solid #000000; border-bottom:0.75pt solid #000000; pa= dding:0pt 5.03pt; vertical-align:top"><p style=3D"margin-bottom:0pt; text-a= lign:justify; line-height:115%; font-size:10pt"><span>Maestr=C3=ADa en Educ= aci=C3=B3n con menci=C3=B3n en Entornos Tecnol=C3=B3gicos</span></p><p styl= e=3D"margin-bottom:0pt; text-align:justify; line-height:115%; font-size:10p= t"><span>Universidad Bolivariana del Ecuador (UBE), Dur=C3=A1n, Ecuador.</s= pan></p><p style=3D"margin-bottom:0pt; line-height:115%"><a href=3D"mailto:= ewyagualm@ube.edu.ec" style=3D"text-decoration:none"><span class=3D"Hyperli= nk" style=3D"line-height:115%; font-size:10pt">ewyagualm@ube.edu.ec</span><= /a></p></td></tr><tr><td style=3D"width:3.25pt; border-top:0.75pt solid #00= 0000; border-right:0.75pt solid #000000; border-bottom:0.75pt solid #000000= ; padding:0pt 5.03pt; vertical-align:top"><p style=3D"margin-bottom:0pt; te= xt-align:center; line-height:115%; font-size:10pt"><span style=3D"line-heig= ht:115%; font-size:6.67pt; font-weight:bold; vertical-align:super">3</span>= </p></td><td style=3D"width:171.95pt; border:0.75pt solid #000000; padding:= 0pt 5.03pt; vertical-align:top"><p style=3D"margin-left:7.1pt; margin-botto= m:0pt; text-indent:-7.1pt; text-align:justify; line-height:115%; font-size:= 10pt"><span>Janette Santos Baranda</span></p></td><td style=3D"width:10.5pt= ; border:0.75pt solid #000000; padding:0pt 5.03pt; vertical-align:top"><p s= tyle=3D"margin-bottom:0pt; text-align:center; line-height:115%; font-size:1= 0pt"><span style=3D"height:0pt; text-align:left; display:block; position:ab= solute; z-index:3"><img src=3D" AAABQAAAAUCAYAAACNiR0NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAA= 2lJREFUOI21lEtoXVUUhr+197n3nNzbJN6omdTWRmwbikVq4iMxk0ZU2oGgA1FnQcQiUhUnFqo4= cGIRQUGd+KDY+Jp25ouiGCOxElqjhba0URPzsPQmuY9zzj1nLwcnuU1iQ0f+mzXZe///Wv/aiy1= cBV/83NNOPr/VWHunqO5OVNuNlQVjmZCGjCVhcPHR3q8XrsaVNUITu/KSlu7LFeSpNNZ+57RTjD= TvqFM1IvNiGXWJvD/9x8yXB/efizYU/Hy8/0W/aA/Xq43r1P3nOCNIFsW2XLleTd648Z/863v3n= kjWCL59dp/fWSsfzOXNkShKacvfgnMRlXjqqqIrwr5vkihyhxbT+K2ne082AAzADZXyPj+wL8eh= Q1NH700v0N35OAroutW0rxDF6rUUvddaJfdwM9HwqYFSa0GO1SrpfucUVUXEZCQcqQtZ0VEU1QT= PtmAkDygiEBTsTxq6hx65fWTOy7l0exjKgGrGcjTo2/oKS9EUZ2aPcf/Oo1iTI9UGqFJrzDF5+S= v+Wvg+y+IEVXaGibsbOO5hGBSkbUUQdRT9zaQuBhE6Ct2MT7/D9OIIVnw6Ct3csfk52oNtTMwcB= bE0YteeC7we4LinSI9Z03dBNUVxTdu1eI7FcBIjHvPVU1Tjv7nn5sNMXv6WSjyFiIg17AAwqpRW= 9fqayNkiM0tjqDrag67mDCi0ARiB6gaTsSEEg4htusj2qGeCIr9dW0JR3PKrR2zreIDURZTrZ7N= TBYdeBPAU+cY59zxCkFlXjHiI2GY1pZbtRMkC1gZcX9hFV+lBTs98SDWexYjFGqkldT0J4EkY/Z= ovBb+klbQ/G1zDYvQntXgWFC5VJ9hSGmRLaRCnCZeqE3x34SXK9XMY8bK+BvZ8JUzGAEQV+Wy87= xm/xbwZ1lwewGmCIIhYnCZXjKvDaQNrfIzkAKXYZl11wR16omfkyHIP0RB/2CV8GrRkNldbNmKb= YU2enC0uV6bkfUNUd8P1ury3ktQADO05UV6azx1IE/dRULDomjGSVXEFhVbrXMoncTV99smBH5Z= W327igzP3trY2ONCyyQ6FtbRLUw2yZ8p+FwARifyCvRDV048rcfXdoT3j5fXp1+BVxdx2um+HGn= uX9egX4dY01U0iVK2R80nMaELy42O7R39fz/1f8C/hZ5YvjpSKGwAAAABJRU5ErkJggg=3D=3D"= width=3D"20" height=3D"20" alt=3D"" style=3D"margin-top:0.45pt; margin-lef= t:-0.3pt; position:absolute" /></span><span> </span></p></td><td style= =3D"width:166.35pt; border-top:0.75pt solid #000000; border-left:0.75pt sol= id #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.03pt; vertica= l-align:top"><p style=3D"margin-bottom:0pt; line-height:115%"><a href=3D"ht= tps://orcid.org/0000-0002-0225-5926" style=3D"text-decoration:none"><span c= lass=3D"Hyperlink" style=3D"line-height:115%; font-size:10pt">https://orcid= .org/0000-0002-0225-5926</span></a><span style=3D"line-height:115%; font-si= ze:10pt"> </span></p></td></tr><tr><td style=3D"width:3.25pt; border-top:0.= 75pt solid #000000; border-right:0.75pt solid #000000; border-bottom:0.75pt= solid #000000; padding:0pt 5.03pt; vertical-align:top"><p style=3D"margin-= bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span styl= e=3D"font-size:6.67pt; font-weight:bold; vertical-align:super"> </span= ></p></td><td colspan=3D"3" style=3D"width:370.4pt; border-top:0.75pt solid= #000000; border-left:0.75pt solid #000000; border-bottom:0.75pt solid #000= 000; padding:0pt 5.03pt; vertical-align:top"><p style=3D"margin-bottom:0pt;= text-align:justify; line-height:115%; font-size:10pt"><span>Universidad Te= cnol=C3=B3gica de La Habana Jos=C3=A9 Antonio Echeverr=C3=ADa,</span><span>=  </span><span>La</span><span> </span><span>Habana,</span><span>&#= xa0;</span><span>Cuba.</span></p><p style=3D"margin-bottom:0pt; line-height= :115%"><a href=3D"mailto:jsantos@tesla.cujae.edu.cu" style=3D"text-decorati= on:none"><span class=3D"Hyperlink" style=3D"line-height:115%; font-size:10p= t">jsantos@tesla.cujae.edu.cu</span></a></p></td></tr><tr><td style=3D"widt= h:3.25pt; border-top:0.75pt solid #000000; border-right:0.75pt solid #00000= 0; border-bottom:0.75pt solid #000000; padding:0pt 5.03pt; vertical-align:t= op"><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%; fon= t-size:10pt"><span style=3D"line-height:115%; font-size:6.67pt; font-weight= :bold; vertical-align:super">4</span></p></td><td style=3D"width:171.95pt; = border:0.75pt solid #000000; padding:0pt 5.03pt; vertical-align:top"><p sty= le=3D"margin-left:7.1pt; margin-bottom:0pt; text-indent:-7.1pt; text-align:= justify; line-height:115%; font-size:10pt"><span>Arian V=C3=A1zquez Alvarez= </span></p></td><td style=3D"width:10.5pt; border:0.75pt solid #000000; pad= ding:0pt 5.03pt; vertical-align:top"><p style=3D"margin-bottom:0pt; text-al= ign:center; line-height:115%; font-size:10pt"><span style=3D"height:0pt; te= xt-align:left; display:block; position:absolute; z-index:4"><img src=3D"dat= a:image/png;base64,iVBORw0KGgoAAAANSUhEUgAAABQAAAAUCAYAAACNiR0NAAAABHNCSVQI= CAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAA2lJREFUOI21lEtoXVUUhr+197n3nNzbJN6= omdTWRmwbikVq4iMxk0ZU2oGgA1FnQcQiUhUnFqo4cGIRQUGd+KDY+Jp25ouiGCOxElqjhba0UR= PzsPQmuY9zzj1nLwcnuU1iQ0f+mzXZe///Wv/aiy1cBV/83NNOPr/VWHunqO5OVNuNlQVjmZCGj= CVhcPHR3q8XrsaVNUITu/KSlu7LFeSpNNZ+57RTjDTvqFM1IvNiGXWJvD/9x8yXB/efizYU/Hy8= /0W/aA/Xq43r1P3nOCNIFsW2XLleTd648Z/863v3nkjWCL59dp/fWSsfzOXNkShKacvfgnMRlXj= qqqIrwr5vkihyhxbT+K2ne082AAzADZXyPj+wL8ehQ1NH700v0N35OAroutW0rxDF6rUUvddaJf= dwM9HwqYFSa0GO1SrpfucUVUXEZCQcqQtZ0VEU1QTPtmAkDygiEBTsTxq6hx65fWTOy7l0exjKg= GrGcjTo2/oKS9EUZ2aPcf/Oo1iTI9UGqFJrzDF5+Sv+Wvg+y+IEVXaGibsbOO5hGBSkbUUQdRT9= zaQuBhE6Ct2MT7/D9OIIVnw6Ct3csfk52oNtTMwcBbE0YteeC7we4LinSI9Z03dBNUVxTdu1eI7= FcBIjHvPVU1Tjv7nn5sNMXv6WSjyFiIg17AAwqpRW9fqayNkiM0tjqDrag67mDCi0ARiB6gaTsS= EEg4htusj2qGeCIr9dW0JR3PKrR2zreIDURZTrZ7NTBYdeBPAU+cY59zxCkFlXjHiI2GY1pZbtR= MkC1gZcX9hFV+lBTs98SDWexYjFGqkldT0J4EkY/ZovBb+klbQ/G1zDYvQntXgWFC5VJ9hSGmRL= aRCnCZeqE3x34SXK9XMY8bK+BvZ8JUzGAEQV+Wy87xm/xbwZ1lwewGmCIIhYnCZXjKvDaQNrfIz= kAKXYZl11wR16omfkyHIP0RB/2CV8GrRkNldbNmKbYU2enC0uV6bkfUNUd8P1ury3ktQADO05UV= 6azx1IE/dRULDomjGSVXEFhVbrXMoncTV99smBH5ZW327igzP3trY2ONCyyQ6FtbRLUw2yZ8p+F= wARifyCvRDV048rcfXdoT3j5fXp1+BVxdx2um+HGnuX9egX4dY01U0iVK2R80nMaELy42O7R39f= z/1f8C/hZ5YvjpSKGwAAAABJRU5ErkJggg=3D=3D" width=3D"20" height=3D"20" alt=3D= "" style=3D"margin-top:0.45pt; margin-left:-0.3pt; position:absolute" /></s= pan><span> </span></p></td><td style=3D"width:166.35pt; border-top:0.7= 5pt solid #000000; border-left:0.75pt solid #000000; border-bottom:0.75pt s= olid #000000; padding:0pt 5.03pt; vertical-align:top"><p style=3D"margin-bo= ttom:0pt; line-height:115%"><a href=3D"https://orcid.org/0009-0001-8605-491= X" style=3D"text-decoration:none"><span class=3D"Hyperlink" style=3D"line-h= eight:115%; font-size:10pt">https://orcid.org/0009-0001-8605-491X</span></a= ><span style=3D"line-height:115%; font-size:10pt">   </span></p><= /td></tr><tr><td style=3D"width:3.25pt; border-top:0.75pt solid #000000; bo= rder-right:0.75pt solid #000000; padding:0pt 5.03pt; vertical-align:top"><p= style=3D"margin-bottom:0pt; text-align:center; line-height:115%; font-size= :10pt"><span style=3D"font-size:6.67pt; font-weight:bold; vertical-align:su= per"> </span></p></td><td colspan=3D"3" style=3D"width:370.4pt; border= -top:0.75pt solid #000000; border-left:0.75pt solid #000000; padding:0pt 5.= 03pt; vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:justify= ; line-height:115%; font-size:10pt"><span>Universidad Bolivariana del Ecuad= or (UBE),</span><span> </span><span>Dur=C3=A1n,</span><span> </sp= an><span>Ecuador.</span></p><p style=3D"margin-bottom:0pt; line-height:115%= "><a href=3D"mailto:arian.vazquez@ube.edu.ec" style=3D"text-decoration:none= "><span class=3D"Hyperlink" style=3D"line-height:115%; font-size:10pt">aria= n.vazquez@ube.edu.ec</span></a></p></td></tr></table><p class=3D"Default" s= tyle=3D"text-indent:36pt; text-align:center; line-height:115%; font-size:14= pt"><span style=3D"font-style:italic"> </span></p><table style=3D"widt= h:436.35pt; margin-left:0.25pt; margin-bottom:0pt; padding:0pt; border-coll= apse:collapse"><tr><td colspan=3D"3" style=3D"width:156.4pt; padding:0pt 5.= 4pt; vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:right; l= ine-height:115%; font-size:10pt"><a id=3D"_Hlk92186133"><span class=3D"Hype= rlink" style=3D"text-decoration:none; color:#000000"> </span></a></p><= p style=3D"margin-bottom:0pt; text-align:right; line-height:115%; font-size= :10pt"><span> </span></p></td><td colspan=3D"2" style=3D"width:258.35p= t; border-top:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:top">= <p style=3D"margin-bottom:0pt; text-align:right; line-height:115%; font-siz= e:10pt"><span style=3D"font-weight:bold">Art=C3=ADculo de Investigaci=C3=B3= n Cient=C3=ADfica y Tecnol=C3=B3gica</span></p><p style=3D"margin-bottom:0p= t; text-align:right; line-height:115%; font-size:10pt"><span>Enviado: </spa= n></p><p style=3D"margin-bottom:0pt; text-align:right; line-height:115%; fo= nt-size:10pt"><span>Revisado: </span></p><p style=3D"margin-bottom:0pt; tex= t-align:right; line-height:115%; font-size:10pt"><span>Aceptado: </span></p= ><p style=3D"margin-bottom:0pt; text-align:right; line-height:115%; font-si= ze:10pt"><span>Publicado:</span></p><p style=3D"margin-bottom:0pt; text-ali= gn:right; line-height:115%; font-size:10pt"><span class=3D"label" style=3D"= background-color:#ffffff">DOI:</span><span class=3D"label" style=3D"backgro= und-color:#ffffff"> </span></p></td></tr><tr style=3D"height:6.55pt"><= td colspan=3D"3" style=3D"width:156.4pt; padding:0pt 5.4pt; vertical-align:= top"><p style=3D"margin-bottom:0pt; text-align:right; line-height:115%; fon= t-size:6pt"><span class=3D"Hyperlink" style=3D"text-decoration:none; color:= #000000"> </span></p><p style=3D"margin-bottom:0pt; text-align:right; = line-height:115%; font-size:6pt"><span class=3D"Hyperlink" style=3D"text-de= coration:none; color:#000000"> </span></p></td><td colspan=3D"2" style= =3D"width:258.35pt; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; = vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:right; line-h= eight:115%; font-size:6pt"><span style=3D"font-weight:bold"> </span></= p></td></tr><tr><td style=3D"width:37.8pt; padding:0pt 5.4pt; vertical-alig= n:top"><p style=3D"margin-bottom:0pt; text-align:justify; line-height:115%"= ><span style=3D"font-weight:bold"> </span></p><p style=3D"margin-botto= m:0pt; text-align:justify; line-height:115%"><span style=3D"font-weight:bol= d">C=C3=ADtese:</span><span> </span></p></td><td style=3D"width:1.55pt; pad= ding:0pt 5.4pt; vertical-align:top"><p style=3D"margin-bottom:0pt; text-ali= gn:justify; line-height:115%"><span style=3D"font-weight:bold"> </span= ></p></td><td colspan=3D"2" style=3D"width:358.55pt; border-bottom:0.75pt s= olid #000000; padding:0pt 5.4pt; vertical-align:top"><p style=3D"margin-bot= tom:0pt; text-align:justify; line-height:115%; font-size:10pt"><span> = </span></p><p style=3D"margin-bottom:0pt; text-align:justify; line-height:1= 15%; font-size:10pt"><span>DATOS REVISTA</span></p><p style=3D"margin-botto= m:0pt; text-align:justify; line-height:115%; font-size:10pt"><span>DATOS RE= VISTA</span></p><p style=3D"margin-bottom:0pt; text-align:justify; line-hei= ght:115%; font-size:10pt"><span>DATOS REVISTA</span></p></td><td style=3D"b= order-top:0.75pt solid #000000; padding:0pt; vertical-align:top"></td></tr>= <tr style=3D"height:0pt"><td style=3D"width:48.6pt"></td><td style=3D"width= :12.35pt"></td><td style=3D"width:106.25pt"></td><td style=3D"width:263.1pt= "></td><td style=3D"width:6.05pt"></td></tr></table><p class=3D"Default" st= yle=3D"line-height:115%"><img src=3D" SUhEUgAAAjcAAACMCAYAAACAuogxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSs= OGwAAIABJREFUeJzsnXd4VFXe+D93ZpKZZNIrIRB6TQhdEOngUgSkClIUEGUJUlR4URcVVBTQVR= BFRBSR3gOhJjQDIQXSJ5n0RnqfJJM6M/f3R8hds7q7rovu6/ubz/PAA7ecc+655575nm87giiKI= mbMmDFjxowZM/9HkP23G2DGjBkzZsyYMfMoMQs3ZsyYMWPGjJn/U5iFGzNmzJgxY8bM/ynMwo0Z= M2bMmDFj5v8UZuHGjBkzZsyYMfN/CsVvX4XY6l8CSH8jiiCA2HJUFBGFh8dbjgnCj27+23EzZsy= YMWPGjJmf4/fR3IjQLLVI/wHAJDT/U0QEUcQkCpgQQBAwic3XiaKx+fzf3WvGjBkzZsyYMfNz/A= 7CjYCkhREFQIYoglEEEwKiICBDRMCEIEBWSRXHbyeTW1GLIAiYBBETBhCamssRzZobM2bMmDFjx= sw/5vfR3AgiYKJZTWNqPoSIDCMCpocCi0BOWQ2f+sew9aSGHefiyCmvQxDlCKK8+VbRhOl3abAZ= M2bMmDFj5o+K8HtkKBZFEwIiiILkXyMKzcYmuWhCFOSkFlex7dQ9QlL0NIlKFDQwqqc962YPopu= rGkE0AgImQY7MrLwxY8aMGTNmzPwDfnvNjanZHCWKzT42gkwAmYBMEJALzQapvHI9Hxy7zY1kHS= YskMlEDDJLbiXq2Hr6HukV+od6H6FZ0/N/kMbGRnx8fHB1dWXSpEns2rWLVatW4erqiqurKyNHj= uTTTz+V/v/jP7t372bAgAG4urpy8OBBAMrKyhg5ciS9evWioKAAgHv37jF06FBcXV3p27cvAQEB= jB49WirHz8+P2traVu1av349NTU1rY6dP3/+J2146623pPPu7u7S8TNnzkjHP/zwQ+n4qFGj+O6= 775g0aZJ0bMOGDYSHh/+kbA8PDz755JNWbQgMDJTK/uCDD6RrV6xY8eheyn+J2tpaXn75ZbRa7e= 9e98yZM8nJyWl17Ny5c+zevRuT6W/fnlarxc3NDYCTJ0/y1Vdf/aLytVotH3zwASUlJT97Piwsj= O3bt1NdXU1UVBQvvfTSr3yS5nZv3br1V9//90ybNu0XP+ejprGxURrnAQEB/5U2/FqamprYtWsX= ly9fbnX81q1bvPnmmwBcvXqVTz75hPr6+l9VR0ZGBhMnTiQ2NvY/bu//Nmpqali0aBGFhYWPpLz= vvvuOZcuWYTQa/+E1p0+fZsOGDf9RPSaTiW+++Yb9+/f/R+X8asTfGpMoGkyiWFnfKGqLq8QToW= niZwGx4q4LceK5+9liVoVeLKisFTcfCxN7rz4ldll1Sey6+rLYdc0lscvqi2K31f7iy/tui5kl1= aLRZBKNRqNoMpl+82b/XtTV1YnfffedqFKpxLfeeksURVFMSkoS27VrJ0ZHR4sTJ04Un3vuOVEU= RbGoqEh8+umnxTfffFO6/8iRI2JMTIxYUFAgdu/eXRw/frxYUlIimkwmMSwsTIyIiBAbGxvFb7/= 9VrS3txf3798vGgwGMT09XZwzZ45479490cXFRZwxY0ardjU1NYknTpwQPT09xcrKyp+0+5133h= GffPJJMTs7W7xy5Yro7OwsvvLKK2JDQ4OYnJws2tjYiF9++aXU7nHjxok+Pj5iQkKCKIqiePPmT= XHFihViUVGRCIizZ88WRVEUT506JYaHh4vPPPOMuGzZMlGn04mXL18Wo6KipLrT09PFxx9/XNyz= Z48oiqJYXl4uPvHEE+LatWtFvV7/qF7N/0qKiorEzz777Dcpe+3ataK3t7eYkZEhhoSEiEePHv2= H1y5cuFB81NNHbW2tuHDhQnH58uWiTqd7pGX/EnJycsSDBw/+wzG0ZMkS8eDBg4+kLpPJJIaHh4= shISG/+J7Q0FCxR48e4smTJx9JG34vbt++LXp7e4v+/v7SsYKCAnH+/PniwoULH0kdGo1GTE9Pf= yRl/VbExcWJu3bt+rfvO3nypGhnZyfm5eX9ousLCgrEffv2iQ0NDT85V11dLUZERPxm35fRaBT3= 7dsnZmdn/ybl/zs8slBwybYlij8K+RZpNIlo83UERGRxN6GA/JJa6kwWiAhYKcDbS8WMIZ147k9= 9sFQqOBqcR61B0ew7LAOTScmN2HLkxLHmaV86OKubQ8VFEwjCw4qao6z+iEl7rl27xhtvvMGLL7= 7Iu+++C0CPHj347LPPUCgUFBYWMnPmTAAKCwvJzMxkwYIF1NfXEx4ezrPPPgtATEwML7zwAp988= gl37txh8uTJNDU10aVLF4KCgvDz82PDhg08++yzyOVy2rRpw5tvvklVVRUGg4EJEya0aldKSgon= Tpygpqbmb+H4P0Kr1eLp6YmDgwMTJkxgyZIlhIaG8uDBA+Li4nBxcaF3794ALFu2jKysLL7//nv= pWJ8+fXBzcyMvLw+FQsGIESMAGDduHBYWFiQkJLBkyRKsra2ZOHGiVG9xcTEHDhwgMTERS0tLAO= rr60lPT2fVqlVYW1v/yz6vqKjg4MGDWFtbs3DhQgICAlCr1fTs2ZMOHTogl8spLi4mMDCQ7t274= +LiwoULF5g2bRpKpZLw8HDs7OzQaDS8/PLLVFdXc+XKFYqKiujTpw9jxoyR6jKZTJw8eRJRFGnT= pg3Dhw9n9+7dqFQqZs2aRXBwMIWFhYwaNQpBELh16xYTJkwgOzub/v37o1QqOXz4MN26daNjx47= s3LmT4OBgvL296d69u6S9evLJJ+nVq1er96PX6ykrK6OkpITBgwfzww8/YG1tzZgxY7h27RqDBg= 1CJpMRHBzMpEmT+PTTTxk/fjxpaWns3r0bW1tb2rZti5OTE6Io4uPjQ0lJCf7+/owYMYLDhw9LY= 8/CwoLevXtz4cIFrK2tcXNzo0+fPmi1WoKCgrCxsWHp0qUUFRWRkZHBgAEDiI+Pp6KigtzcXGxs= bJgzZw7Lly/n2rVrAGRlZZGTk8PIkSP5/vvvefLJJzl58iSDBg1iyJAhaDQa6ZmeffZZDAYDAQE= BmEwm+vfvjyAIGI1G+vbty/HjxykqKqJDhw6MGzcOGxubn4yLnTt3EhoairOzMyUlJTQ2NtKlSx= cyMzPp1KkT/fr1o2vXrly9epXk5GS6d+9OdnY23bt3x9bWloiICEaMGEGfPn0wGAyt3rMoihw5c= gSA8ePHU1lZybvvvourqyuOjo4EBQXRpk0b7OzsSEtLY9myZZw5c4bS0lJsbW1ZsmTJvxzXAMHB= wcTGxkpa4PT0dCoqKpgxYwbnz5+nU6dODBs2DK1Wy/Xr1+nYsSNTpkxBJvvb7Hnw4EHUajUDBgz= Aw8OD7Oxsrly5gpeXF+PHj5f6rr6+Hn9/f/r160dgYCADBw7EwsKCe/fuMWnSJFJSUsjPz2fRok= U899xzpKamsnfvXuzs7Jg3bx6LFy/mwoULQPN8o9PpGDhwIJmZmVy8eBFnZ2dmzJiByWTi6NGj1= NXVMXr0aHr06EF0dDQpKSmYTCamTZvGxYsXkclkzJ49m44dO7bqk5MnT1JQUMC4cePo3bs3t2/f= xsLCgqSkJDp06MDYsWNbXX/gwAHatWtH9+7dad++PaGhody7d08aw+Xl5SQnJ5Obm0tRUREjR47= E19eX+/fvc/fuXezs7Bg/fjzt2rXj4MGD2NnZkZ2dzdWrV1Gr1fTp04dOnTpx9epVTCYTTz/9NG= 3atJHqLysrIygoiOLiYqZOncqECROkOcVgMBAWFkZUVBS9evXiySefJC8vj2vXrqHT6Rg3bhznz= p3j9u3bAEydOpXr169TX1/P0KFDEQSB69evExoayqJFi1CpVERHR2NlZcXt27fp0aMHEyZMIDo6= GlEUGTBgANHR0dy9exeAxYsXI5fLpbHZvn17Jk+ejFKpRBRFoqOj2bt3L2lpaSxdupSamhqsra3= p0aMH8fHx3Lx5k65duzJu3DjS0tIoKSmhrKyMqqoqlixZgk6nIygoiPz8fMaOHYuPj88vGvc/xy= OSB5pDtE3NazlanIeNgsANbRFbjt7jcHABacUW1GGLKLdGVFhSjSX3s5r45Hwqp0PSeG6iL4vHd= MJGYQKxuXEmQUY9SgJjivjwWDhpxTWIgoCIiAkRURRAbHZQ/qOh1+u5evUqBoOBTZs2tTo3Y8YM= 8vPzKSgooF+/fgCUlpaSn5/Pp59+yrx587h+/bp0vUajYdGiRUybNo033niDxsZGqqurcXV1Zev= WrTg6OrJgwQKUSiUA1tbW9OvXj/j4eOrr6xk+fLhUVnFxMadOnWLIkCG4uLj8rHCj0Wjo0KEDar= UaAKPRSH19PU1NTZw/fx4nJye6du1KfHw8AQEBjBkzhsGDB0v3Ozs707t3byIiIpDL5QwZMgQAB= wcHCgoKqKiowMvLC4Xib/J3VVUVX331FVOmTMHFxQWVSgVAcnIy1tbWeHh4/Ms+LykpYdWqVTg4= OHD58mViYmLQaDRERERw7NgxSVVraWlJbGws169fRxAELl++zN27d1m0aBGvvvoqMTEx+Pv7k5i= YSHh4ODdv3sTGxoYXXnihVX3vvvsuGzdupKCgAEdHR1avXg1Abm4u3377LY6OjoSFhdHQ0IBara= ampoYffviBtWvXUlxczMWLF6XnTklJoU2bNqjVapycnPj6668pLCykoqKCS5cu0dDQAEB2djZvv= /02zz//PMnJyQQGBrJx40YcHBzYuXMnubm5hISEEBERAcCVK1dISUmR2mxtbY2NjQ3Ozs7U1tay= YcMGbty4AcCXX36JwWCQTFfZ2dls2LCB4OBgioqKCA8PJyQkhJMnT9LU1MQHH3yAs7Mzhw4dIjg= 4mO3bt/Pdd98REhLC888/z1//+lesrKzYunUrYWFhUhtKS0tZuHAhZ86c4ciRI6xevZqVK1fS0N= DApUuXqK2t5f3330ehUBAUFERUVBR+fn58+umnGI1GCgoKWLZsGbdv3yYpKYn9+/fj7OzM9evXS= U1N/dmx0aZNG2xsbHB0dKSqqoqXX36ZvXv38tFHH5Gfn8/mzZu5fPkyer2eNWvW8NFHH3Hnzh1W= rFjB9evXOX/+PIcOHaKuro733nuPO3fuoNVqOXnyJAEBAdy9e5fc3Fy0Wi1ZWVn88MMPODs7o1a= rCQkJYcWKFRw/fpxNmzYRGBjIZ599RkJCAq+//jppaWn/cmxHRkZy48YN2rRpQ3BwMEePHqWxsZ= GPPvoIhUJBUlISV65coaCggE2bNuHl5cWJEye4deuWVIZGoyE9PZ20tDS+/vprkpOTWbduHV5eX= ty4cYOrV69K1x47dowVK1Zw9OhRBEHgm2++oaamhu+//57MzEyqqqr44osvANDpdMTFxeHo6MiH= H34ojT1o/q5XrlxJUFAQRUVFrF69Gi8vL06fPk1YWBg3b94kMjKS+vp6du/ezcWLF1m8eDFpaWm= 0bduWc+fOUVRURHl5uWSWb+G7774jISEBuVzOjh07OHXqFEuXLuWLL76gtLSUt99+u9X1d+7cIT= 8/H39/f65fv05hYSHnz5/Hy8uLe/fu8d5777F3714WL15MZmYmAFu2bOH+/fsEBwfj5eVFaWkpe= /bsYfv27axdu5aYmBi8vLywt7fH0dERo9HI4cOHUalU6PV6/vrXv1JXVwdAQ0MD/v7+FBUVYWVl= xZo1a6iqqpLaFx8fz7Fjx/Dy8mLbtm3cunWL06dPU19fT35+Pjt37sTe3h57e3s8PDzw8/Pj888= /Ry6Xo1ar2bNnDz179qSqqop58+YRGBjIkiVL+Pzzz/Hy8mL79u3cv3+f9evXc+PGDTIyMjh37h= wODg5cunSJwMBAzp07R0NDA56enly+fFkSUAHUajVqtZo2bdpQUFDA8uXLuX//Punp6bz//vvSm= Dt58iSLFi3irbfekgT9/Px8zp07R1ZWFl5eXrzyyiuSS8Wv4RFpboTmgG/hYWCUKNIkyLimKWDL= gTBK6ixBZoEoN2BEQGaoRSGKCCYRUW5BaYOMvYFZNDQZWTLBB4PRxIHrmTRiiVwQMcnlNIlW3Ey= uhlNRvDFvEO2cLDEhR4GA/KE3zh+NpqYmdDodHTt2xMnJqdU5URR58OCB9EGYTCbS0tJwdnbmq6= ++wtXVldDQUOn6xMREFi5cyOLFizl37hz79u2jW7duKBQKHjx4gEqlomvXrj9pQ3p6Ok1NTa1W/= XPmzCEsLAyFQoG9vf1P7snOzqasrAxfX1/kcjkA4eHhtGvXDgcHByIiInB3d8fDw4OkpCQEQcDb= 2xsLCws+//xzNm7cCMCmTZvIzs5GJpPh5eUllZ+ZmYm9vf1PVmBffPEF27Zt4+OPP0b8kR98UlI= SHh4eeHp6/ss+37BhA8uXL6egoABXV1d69+7NtGnT2LRpE0uWLJG0QQ4ODnTp0oXKykpcXV3p3L= kz9vb2bNiwgS+++IKXX36ZuLg44uPjmT17Nm5ubixfvlya8Fp49dVXuX//PjNnzsTS0pKvvvoKt= VqN0Wikf//+vPLKK6Snp2MymaisrGT27NlYWVlx584doFnIOnHiBDt27GDQoEHY2toSGxtLv379= 6N69O8XFxfj4+PD8889jMBhQKpW0a9eO8ePH07t3b5YsWUJubi7e3t7MmTOHU6dOoVAo8PLyQia= T4eHh0arvAdq2bUunTp3o3r07f/rTn0hJScHCwoKsrCyuX7/OzZs3iY+P54MPPpDqsrCwwMXFhb= Nnz+Ln58fSpUsJDw/H09OT+fPnM2PGDCwsLIBm/4o+ffowZ84cnJ2deeaZZ6isrOTcuXM89dRTA= Dg5ObFmzRpCQkKYOXMmb7/9Nu+//z41NTUcOHCAxsZGvv76a/bv38+5c+eYO3cu//M//8OWLVuY= NWsWarWaxMREALp27crp06d5+eWXuXPnDnPnzv3ZsTFq1ChSU1Px9fXFZDJhb2/PrFmz2Lt3L1Z= WVpIPQrdu3QCYOHEiCoWCU6dOsXr1atLS0njw4AHp6el88MEHyOVyZDIZgwYNYseOHfj5+bF161= amTZtGZWUlcrmcgQMH4uXlRY8ePcjMzGTdunXs3LkTlUqFp6cna9asoaSkhKSkJFxcXP7huG5qa= iIoKIgePXowZ84cvv/+eyIiIujTpw8KhQK1Wk23bt3IzMzk7t27nD17lqCgIOrq6vD29pa0F46O= juzYsYN33nmHv/zlL1y4cIFLly4RHBxMQ0MDzs7OzJo1C4AJEybQoUMHXn/9dYxGIxqNBltbW1x= dXbGwsKBbt27S4sfW1pZp06Yxa9YsKioquHHjBgMHDpTOzZ8/n4KCAu7fv0/v3r2ZPn06EyZMQK= FQIIoijo6O0qJk8+bNTJs2jaeeeoohQ4bQ0NBAYGAga9asYfTo0a36Zffu3ZJwU1dXx7Zt2/jTn= /7E9OnT8fDw+Ilw4+7uzjfffMPHH3/MpEmT2L17Nz4+PkyfPp1Jkybh6OjI3bt3KS0t5dlnn8XV= 1ZW0tDT279/PyJEjmT59OiUlJezcuZMpU6Zw8OBBZs2ahY+PD/Hx8Tg6OuLg4MDx48fJzMzEZDI= xbNgwqqqqsLKyora2lhMnThASEoJcLsfW1pbi4mKpfcHBwXz99dccOnSImpoaRowYQVNTE2vWrM= HBwYHGxkbCw8MpKSmRtGwHDhxg1qxZJCQkYDKZmD59OlOmTOH27dtYW1vz1FNPMXfuXIYMGcK77= 76Ls7Mz48ePB5rnYgsLC+bPn8/MmTOprq5mz549zJ07lx49euDu7k54eDh6vR61Wk379u3x8vJi= 7NixdOvWjRkzZgBw+/ZtTp8+zdWrV6mrq6Nv374sXboUnU7H4sWLef/990lKSuLy5csEBASgUCi= wsrIiLy/vFy1af45HasmRiSZAoEmUcU2Tx+b9IRTXKxAVckTBiAID/T1krJ3amV1+g/ngOV+GdV= ZhJa+lCTlHAzM5FpTAtJHdeGZkOyzFRmRGEzLRAIIJBBXB2ip2+EeTW16PHJAhgmhs1uI8yof5H= WgZvE1NTej1eqDZcTAtLQ2DwUBMTAw+Pj44ODhgMBhISEjA19eXtm3b0qZNG0aPHk1eXh6VlZWS= hmPYsGEsXryYzZs3S8fc3d0xGo1UV1dLdSckJFBcXExSUhKTJk1CJpNRU1PD3r17+eabb6ivr+e= 9995rJUS0EBISgkqlwsPDg5qaGrZv305ubi4vvPACdXV1pKamMnr0aARBwMvLC1tbW5KTk6mvr2= f58uXY2dmxYMEC/Pz8uHPnDv369Ws1gIOCgnB3d5eEG5PJxM2bN+nbty8VFRVoNJpW7QoKCsLT0= 1NS7WZkZFBQUEBiYiKVlZXSdS2akDVr1hAWFsa6desQBIGIiAhp9diygmqhqakJo9FIY2MjhYWF= WFtbY2FhIQlBoihy8+ZN3nzzTXbu3PmTvrK2tpZ+5BQKBTY2NqSnp6PX6zl9+jQKhYKuXbsSFRX= FgwcP6NSpExYWFpIgMHToUL755hu2b9/OoUOHWpW9YcMGli1bhr+/f6v+k8vlKJVKVCqVNAaUSi= WCILQyPzQ1NWEymaitraWoqKiVw3ALMplM0vZZWFhQX19PXV0dTU1NQLOptKVso9FIQEAAlZWVz= J8/H6VSSVZWFg0NDVhbW1NRUYFKpZL6QqlUYjQakclk1NXVtTIVyWQyycTYck/LeVEUaWxsZOrU= qcjlclatWiX9gMtkMmQyGXK5HCsrK6DZbDZw4EDmzJnD/Pnzf/KM/whBELC0tMTW1raVBrEFCws= LSavZ0keiKCKXy7GwsGDFihVUV1dz5MgRPD09CQ4OJiAggG+//fZny2t5b3Z2diQlJbFixQqeeu= opHBwcfvJu8vPzpW+qpa2CIFBdXY3JZJLGJzTPKaIo0tDQIDmltggTNTU1rbSN9vb2JCcno1QqW= b58OWVlZcycOZOCggJ0Oh1r1qyRrlUqlcjlckwmEyaTCYVCIT2XwWCgsbGR+vp6cnNzkclkUn9V= V1fToUOHVv3cooW1tLQkJSWFhoYGLCws0Ov1HD58mF27dvHWW2/h5OSEpaWlVDfA9u3buXTpEu+= 8844kTLWgUqk4efIkVVVVkvZUqVSiVCqRyWQ/6VcXFxcCAwO5ceMG77//PpaWlqSmpmI0GjGZTD= g4OEjvuuV7amxsxMrKStJ+iqKISqWSxmNLO3/8nseOHUtCQgI6nY4TJ05Ii1tBEOjTpw+BgYFUV= lai0Who3759q/fz1ltvUVxcTG1tLU8//TQ6nY7Kykrp+/wxarUauVyOIAgolUrS09Opq6tDoVBg= MplQq9XSXPHj9rWMnxYTfU1NDSqVivr6esrLyyWBSy6XS/Pb3yOXy1u91yVLllBYWCiZoKysrLC= 0tGzVP127duXs2bNUVFSQmpoquTH8GuSb/t4e8isRaRZsTCJE55Sy83QcWRWWIJchiiYcVCbmPN= GOtdP7Mr5PO7q629OrvRP9urehtq6erIIqarEiOb8UpUJg+ohuWMpEUh6U02QUEQU5CAJG5OQUV= 1NaWU3vzq7YqRQtbjcP0wX+cTQ4SqUSNzc3bty4QWJiIlqtlvDwcDQaDeHh4Zw9exZRFBk2bBhH= jhzh6tWrNDY2UlVVRUREBP7+/kRHR3Px4kUKCwsZO3YsVlZW9OrVi6tXr7J06VJcXFzw9vYmMjK= SyMhIUlNTCQ0NJSwsjNjYWIKCgrC3t8fLy4udO3fS0NDA1KlT0Wq17N69m8zMTAYOHEiPHj0A8P= f359ChQ2RnZ2Nra0tAQABxcXGsWrUKX19fvvzyS8LCwvDx8aFv37507NgRZ2dngoKCSEtLIzQ0l= EuXLvHcc89x7949Ll68iLu7O/3798fKyoqjR4+yb98+GhsbGTt2LB4eHmzbto3Lly8zdepUZDIZ= 27dvJyIiAnt7e9LT0yUfgZqaGkJDQ9myZQvt27dn/fr12Nvb07dvX6B50rlx4wazZ8/GxsaGsrI= y6uvr+eyzz1Cr1ahUKkaNGiUJFoWFhRw6dIiKigpCQkKoq6sjJSWFhIQEnJ2duXz5MsXFxahUKk= pLS2lsbCQoKIjHHntMWt2fPn2as2fP4u3tTd++fTGZTOzbt4+8vDwSExMZOnQooihy5coVPDw86= NmzJ7GxsRw8eBArKyvu3buHRqPBaDTSu3dv2rVrx9dff03btm25dOkSQ4cOJS4ujsTERAYMGICb= mxulpaUcP36cmJgY2rVrx7Fjx6ipqaG+vp6zZ8/i7u6OWq3m4sWLFBQUcPfuXWxtbdHpdJw+fZr= u3buj0+kIDw+nurqa8PBwEhMTmTlzJnfu3CE0NJSUlBRCQ0Px8fEhPDycpKQkevbsyXvvvYerqy= sGg0ESvKKiooiPj6empgaNRsONGzfo168f6enp3L17l/z8fKKionj55Ze5du0aP/zwA7169eLYs= WOSJiwgIAClUkllZaUk/F67dg1fX18iIiLIz88nJSWFsLAwRo0aBTRr+nQ6HVZWVpSXl6NQKLh/= /z5yuZzk5GSys7Pp2bOn9D0WFxdz9OhR7OzsuHv3Lrdv38bHx4eBAwcSExPDvn37cHd3R6/XExg= YiIuLCzqdjqioKNq2bcuVK1coLi5m3rx5QHNUoV6vJzc3l/DwcLRaLdXV1fj4+EjPp9frGThwIF= 9++SXZ2dmMHj2aTp06sX//fsLCwrCyskKj0WBnZ4eNjQ3+/v7Y2NgQHR3Nxo0bGTJkiKSFq6+v5= 8iRI2RnZxMdHY1cLmfixIlSpFtwcDBpaWm88MIL3Lp1i3v37hEeHo5SqaRz584A3L17l7179wJI= viNBQUHEx8cTFRWFIAh06dIFgLq6Og4ePEh9fb1kYhs/frw0f2VkZHDv3j369euHnZ0d4eHhxMf= Hk5aWxpw5cwgKCuL27dv07NkTf39/NBoNCxcu5OrVqyQkJBAWFoaNjQ1JSUno9XoqKyuJiIhAr9= dz9+5dHBwc6Nu3L+fOncPCwoLc3FxiY2MZPHiwFMnn7OzMzp07KS0tJTg4GJVusl1QAAAgAElEQ= VRKxcGDB1EqlSQnJ3P9+nUGDBhA9+7dpXfWUp6rqytTp07l+PHjpKamEh0dzcKFC3FxcSEgIEDq= Z0EQWLRokWRSiY2NpVevXpSUlHD8+HE6dOhA3759iY2NlfqpvLycO3fuoNFoyMnJoXv37pLAlZO= Tw8WLF0lJSSEyMhKj0cixY8dQKBSMGTOG06dPEx8fT3BwMB4eHpSXlxMcHCz9hnh6enLlyhWysr= KIj48nNDSUsWPH4u3tzY0bNwgNDUWj0eDl5UWHDh04dOgQtra2xMfHc+HCBTw8PAgPDyclJYUxY= 8YQFRVFZGQksbGxGI1G2rZtK32bOTk5DB8+vJWWvcUnTaFQSH6bU6dO5dy5cyQkJHDv3j1qamo4= f/485eXlNDY24u/vj4ODA507d5aePTw8nK5du/6s9eCX8Mjy3IgP/WzK9QY+9o/CP7wUA1aYhEZ= clU28OLE3c4Z1xFb50FlYBBkmjKKM/Kp6vrwQw/HQAoxyFY5KI8+O8GLReG8O30ji0M1Mqg2WCL= JmzxqZwYicRsb3d+EvzwzG3doCQdZimvrjCDctJCQkSJO4Wq3mscce4+bNm9L5lg/j71Gr1bRt2= 5acnBxJCGpZ3UZFReHj4yNJ4ElJSa3s9uPHj5d+vAA6d+5MRkYGnp6e+Pr6UlBQQExMDABeXl74= +voCzeHkRUVFrdrRv39/PD09yc/PR6PR0NjYKPn0tKxIfnyfIAj4+PiQk5ODTqeTzFZubm5ERER= Ioefe3t506tSJCxcuYGtrK/ketTjLWVpaYjAYfrL6srKywsfHh7Vr17J+/XoGDBggnWvpB0dHR/= r27YvBYCAxMZHy8nJ69uxJly5dpNV4TU0Nt2/fllaWXbp0IT4+HrlcjoODAzqdTgrh12g00srG0= 9OT/v37A0gq4i5dukgC4qVLlwDw9fXFy8uLpqYm4uPj8fT0xM3NjZycHOLj43FycsLV1ZWCggKq= qqoYPXo0FhYWBAUF4eHhgUqlIjMzU1ot9+3bFw8PD6qqqoiNjUWn09GlSxfS09NRKpXY2tpSWlp= KmzZtaN++PdHR0UCzWaBHjx5kZWVRWFiIl5cXNjY2aLVabGxsMJlM6PV6Ro8eTVlZGfHx8Tg4OF= BZWcnIkSOJjIxEr9fz+OOPo9VqqayspHv37nTv3p2MjAzJPDR69GgSExMpLi6mb9++HD58mKqqK= oYNG0bnzp3p0aMH9+/fp6SkhN69e5OYmCitKqurq5HJZLi5uZGfn0/Xrl2pqKigrKwMpVIpaSda= xqNarebOnTvY2trStWtXSUBsMbXW1dURFhbG66+/Lo2NqqoqwsLCcHBwQK/Xo9fradeuHd7e3uT= k5KDVanFwcACgsrISlUqFUqlEp9NhbW0tpVF44oknsLCwkHxZRowYQUlJibTiHTlyJGq1WnrWIU= OGEB4eDjQ72nfo0IHs7Gzi4+NxdnZGp9Mhl8vx8vIiNTUVKysrXF1dOXToEFOnTpWc8RsaGoiOj= qa0tJSbN2/S0NDA559/zu3bt6mursbKygpPT0+6desmCQIAkyZNklbPZWVlpKenU1xcTMeOHenV= qxdFRUVERUVhYWHBkCFDpD4oLy/nySefZPfu3ZSXl+Pt7Y2Xlxe5ubnExMRgY2ODIAiMGjWKqqo= qYmJiqKqqYtCgQdjb2xMXF0dJSYnkmN3Q0MCYMWMoKSlBo9EAMHbsWHQ6HZGRkT95zy1zVXZ2tj= RWGhsb8fX1baXtCAkJoaKigvbt20vj2tnZmYaGBmpqavDw8JBMZPn5+WRkZFBZWSnNa8nJyaSmp= uLg4MDw4cPRarXs3buXxx57DHt7e4YMGYKzszNpaWkkJSVJc1VOTg7Z2dm4uroycOBACgoKiI2N= pW3bttL3ZzAY6NGjhyQwAlRXVxMTE4NOp6N9+/Y4OjoSFxeHlZUVo0ePJiUlhfT0dACmTJlCUVE= RcXFxNDQ00LNnT1xdXYmJiaG6ulqakx577DHc3NwoLCzk/v37AEyePJkHDx4QHx+Pu7s7NTU16P= V6nJycqKurk5yQS0pKSEtLQyaTMWTIEOzs7AgNDaWqqgp3d/dWvpTwt9+zTp06kZmZia2tLY899= hjFxcXEx8djaWlJnz59iIyMxMbGBktLS0mrO3DgQGk+dnFxYejQofxaHo1wIz78SzARkl7O+q9D= KamzQBRMWAgGlo7uyJ8n9sbaEkRBjpxmKxMIGIVm21iVwcR7h+5w/l4xRrk1KlMNy8d1YsGk/nx= 9OY6DP2RRJ9gie2iAEhBQGWp4aWJXXpzYB5VMjvDHlG3MPGIaGhrYtWsXHTp0YPbs2T/rEG3mv0= +Lo/vy5ct/97oXLFjAk08+yeLFi3/3uh8F+/fvR6fTsXr16p81CRw6dIiwsDA+//zz36wNLcJNZ= GTkb1bH/0a0Wi2HDh1i5cqVtG3b9r/dHDP/gEfjUCy0rJzlRKWXUqE3gUyGzGhkYGcbnhnRFZuH= go2sxfn3oSQiF0yYkGGrkPOXRSOwsIzg0r18nG1UdG7vioNKwZI/eVNaVce5+2UIcgUmmQJBNNE= o2HDpXgGP9/BkYFdXyTRl5v9vlEol69at+283w8w/ISwsjLNnz9K5c2dGjRrVyjz0e9ASxv5H5Z= +FhhcWFrJr1y7UajWhoaE8/vjjv0kbTpw4gUKhYO7cuRw/fvw3qeN/GyaTiTNnznDt2jW6dOnC0= qVL/9tNMvMPeHTbL4giCALrvw/jTHgRgkKFzFjNOwv6M29oJ+SIiKIM4eHel80mpOawcRMyBFNz= 9uHsqnrO3U6gSztXxvdrj4UoIAgiySW1vPZlMEllAsjlyDFgMilQ0sDike1YOcUXa+UjS9tjxow= ZM2bMmPmD8kiipUT+tlm3wSg+NFPJsBSN9OnohFwEk2jCKDTvLSU8zE3TcpPQnKgGEGlvr2TJk3= 0Z5+uBpdjYLAKJAt3dbJg4tAOiqaHZAiaKCIJIvSjnbnIxRdXNUS6PSlb7/42tW7dKOSn+nlmzZ= rVamW3evBk/P79W0Ve/JyaTiXPnznHp0iVKSkpYuHDhL7rvxIkTBAYG/up6P/300/8ovfuWLVuY= NGlSq60qfktaHK9b2Lp1689GdP0z6urq2LVr129qerh48SIzZ85kzpw5raLbfo7Q0FCOHz9OY2P= jf1Tn7NmzKS0t/Y/KMPPPKSwsbOXT9GPS0tL4/vvvpRwucXFxbNy4kbKysn9Zrk6n45tvvvnJNi= G/JWfPnv2XW3lkZGTg5+f3O7Xob9TW1rJx40auXLnS6vidO3fYvXv3796e/y08EuHmoVwCgIejF= QqZiAkTiAaMJhFREEBQIAoiCH+/n4UgCTdGmRyQY21pgaXcAkFQgiDDJMgQEHjCpx3OKhkyUcQk= yh4m75OTXd5IXvmv25PETDOxsbGS4+ffc/36dTIyMgAoKioiMjKSHTt2YGtr+5u3a9u2bT85JpP= JmDJlipS588dJyP4Zs2bNYty4cb+qHWfOnGHr1q2/aPL9OQICAjAajRw/fpzIyEiSk5N/VTn/Dq= +++iqDBg0CmiOBunTpwsqVK/+tMjQaDa+88spvJgikpaVx584d/vrXv1JbW0twcPA/vX7IkCHMn= j27Vajzv8vq1avx9/f/1fsY/R7U1dVx4cKFnzjv/zNCQkKIior6DVv17+Hu7s577733s+e6dOnC= /PnzsbW1xWg00tDQwKJFi36S7+vn2LZtG/v27ZPSZ/zW6HQ6XFxcfnafs6amJvbs2QNAp06d2LF= jx+/Sph+TnJzM/PnzpWzFLVnLhw0b9h/tzfZH55GFgjcLKCL1JhmhCbnUGWUYAEcrgb6d3VDKZM= gEIwLG5rBuQBAebtQgCg+dPkVpRwVBkDUfE0QERGRAXZOcS+G5VDeIIGuOulIgYDKZeKybC73b2= T8s94/jeVNbW4tGoyErKwsLCwtsbGzIzMxEq9VKqdctLS0JDw9HoVAQFxeHSqWioKCArKwsKU9B= YWEhcXFxFBYW4uLi0iqPRmRkJLm5udTU1EgJ2fLz88nMzMTGxga9Xk+XLl0YN24cSqWS6OhocnJ= yaGhooLq6mqeffpohQ4bg6OhIbGwsw4cPp7KyEicnJ7KyskhKSqKuro709HTq6+t/MkFVVVURGR= lJSUkJ9vb2UrbU1NRUamtrcXFxoaamhsLCQoqKikhNTUUul3P9+nWOHz9Oz549sbCwICcnh8zMT= ARBQK/X09TUxNy5c/n666+ZMWMGWq0We3t7CgsLycnJQaVSodFoKCwsxMPDg5ycHARBQC6Xk5aW= Rk5OjhQd0EJERATZ2dnU1dVhb28vOWv26tWLpKQk+vbt2yqCoiUL9D+jqqqK06dPU1VVhZubG2v= WrKG0tJS0tDT0ej0uLi4UFRVRWFhISkoKBoMBnU5HTU0NCQkJiKJIcXExycnJuLm5YTQaSU5OJi= 0tDZ1Oh5ubG3V1dcTExPDgwQNkMhm2trYkJCRI0QgajQZra2vKyspwcnKiqamJxMREZDIZsbGxq= NVqKS9MCzExMdTU1GAwGPD19aVr164kJSWRkpKCQqFoJdzW1tYSHx9PbW0tSUlJODg4YGlpSXx8= PIWFhVJ/tmzRoVQqsbKy4tatW0RGRuLu7s6GDRtQq9VotVqMRiP29vbk5uZSWFhIdXU1jo6OlJa= WotPpsLW1pby8XHrmltDf3NxcqqqqSEpKoqGhAScnJ3Jzc0lISKCwsBAbGxtmzJjBp59+ip+fHy= qVisTERNLT05HJZNjZ2aHVaikpKcFkMkk5dqA5C3dGRgZJSUnSe6+oqCAhIYGsrCypT5KTk7Gws= ECj0aDX62lsbJSif+zt7dFqtZhMJinCxd7eHpPJRGRkJNnZ2bi4uBASEsKOHTvo3bs3bdu2RavV= ShErtra2ZGVlUV1dTUZGhhTmv3PnTqqqqujZsycNDQ1ERUVRXl6Oq6srDQ0NxMfHYzAYpJwnLTQ= 0NBAREUFBQQG2trYolUoyMjLQarVUVFTg7u5ObW0t+fn5lJSUkJycjJWVlZSHSBRFIiMjKSoqws= HBgZycHPLy8rC0tCQvL08KfU5KSsJgMKBSqaitraW0tBQbGxuampqk3FXW1tZYWVmRn59PVVUVK= SkpFBQUtHLc9fX1JS8vD1dXV4qLizGZTNK17u7uJCQkUFZWhr29vZQzLDU1Fb1eL/W7IAjY2dlJ= c215eTn29vbU19eTkZGBTqcjKSmJ9u3bYzAYaGhokFIcxMXFUV9fjyiK7N+/nytXrkgpHfLy8qQ= UAS1h3tbW1giCQGxsLFlZWdTV1eHs7CyNqZZ36+rqik6nIzk5GRsbG+kdNTU1SfNNY2OjlCursL= CQ3NxcXFxcMJlMNDY2snnzZpqamvDx8ZHmEDs7O3JyckhMTKSsrAxHR0f0ej3R0dHk5eVJY+rHa= DQaKbq2vr6etLQ0KioqUCqVxMbGSnmlWso1GAw4Ojq2KiMqKgqdTodCocDS0lKK6qqtrZUiEiMj= I6VktS1h8BUVFdI39HPbpPxSHomTiig2xy9V6Ovp6eXAKN+2nLtfTKPMmkv3HtCljT2T+nfEyqI= 57Z4AzVqch3FPICCIIBNajoggCj/yzWkWVgorqqmqa0QULJAhIgogmkSMQNXf7Wb9R6C+vp7Tp0= +j0WikUNfVq1dz+vRpKa+Dt7c3arWal156idWrV5Oeno61tTU9e/YkMjJSivr47LPPkMlkZGZmM= mrUqFYS+969ezl48CAzZ84kLi6Ojh074uvry/nz59m4cSPe3t7MmzePUaNGMWvWLD766CP69++P= SqVi8ODBLF68mBdeeIGXX36ZN954g8cff5zQ0FDWrl1LSUkJK1euZNy4ccjlcgwGA1euXJF+EGp= qali3bh1ubm5oNBqWL19Ou3btOHr0KDKZDK1Wy7p167h79y4XLlxg2LBhJCUlSZNFQUEBFy5coK= ysjNTUVAYOHMjAgQM5ePAg8+bNY/jw4ej1eo4ePUpERATDhg2jZ8+eHDx4kPXr13P06FEuXLjA1= atXWblyJX5+flRUVLB3714GDx7MyJEjpczNycnJvPbaawwaNIj6+npef/31VsnGWkhPT+e9997D= y8sLf39/KaTxH1FRUYFWq0Wn03H58mWMRiOXLl2SJryVK1dy5swZiouL6dOnD7W1tdy/f58RI0Z= QXFxMVlYWjz/+OOfPn+fjjz/Gzs6OPXv24OrqSnBwMGfOnOH8+fNkZmZSX18v7bfz0ksvceLECe= zt7bl8+TKNjY3k5+czbNgw9Ho927dvZ9WqVYSFhTF79mwWLlwovbcffviBw4cP4+TkJG1XEB4eL= jni1tbW8vXXXyMIgpQr6OOPP+bVV18lLCyMiRMnYmdnx4cffsikSZMYPXo0d+/e5d69e9KPxQcf= fEBcXBxpaWlcu3YNFxcXDh8+jK2tLRqNho8++kgyh0ZFRUnvtFevXrz22mvStgJpaWkMHjyYwYM= H88477+Dj44MgCKSkpHDq1Ck+/vhjLC0tpVxQLRFSRqORq1evEhwcjFKppKioCD8/P86cOYOlpS= X5+fls2bJFEn7j4uL4/vvvUavVkomzJWcINIeHP/XUU7z99tsMHDgQS0tLsrOzGTBgAIWFhTQ1N= bFs2TL+/Oc/88QTT6BQKCgoKOCTTz7h5s2bREREUF5ezsiRIykqKiIvL4+YmBj0ej0BAQFSIrxp= 06bxl7/8hR49emBra0t6ejrvvvsuKSkpVFVVMWXKFClXTUFBAS+++KK0H1BNTQ0LFixotZ/Spk2= bqK2tJTc3l5kzZzJy5Ei++eYbBEEgOTmZpUuXkpaWxqlTpxg2bBjJycmMHj1a2krEZDJx6NAhys= vL+eijj4iLiyMqKgq1Ws3t27c5f/48V65cISoqiszMTLZu3cqpU6coKSlh06ZNUr6uhoYGKdvuu= nXrcHFxoVOnTpw9e5bg4OBWi5D8/HwCAgKorq5GEASmT5/Oli1buHz5MhcvXiQiIoIlS5awceNG= +vfvj62tLRkZGQwfPlwKT37jjTd47rnneOKJJ0hNTWXlypWcOHGC0NBQZs2axYkTJ7h8+TJpaWn= s3LmTLVu2EBMTQ1RUFMXFxTz//POEh4e32s4kLy+PAwcOcOzYMbKyssjNzaVHjx4MGTKE7777Dg= 8PD0pLS/n0009xdHSkqamJS5cuceXKFQ4ePEhhYSHffvstGzZswNbWVkpgGhgYiEqlIiQkhD//+= c988MEHPPXUU9jY2NDY2EhFRQXTp08nJSWFsrIy7t+/zxdffMHjjz/O3Llz+e677zAYDGi1Wtas= WUNsbCyRkZGoVCratm3L66+/LglT9+7d48CBA1Ly2I4dO5KSkkJqaiq7du3i9ddf59lnn2Xs2LH= s3LkTOzs7EhMT2bVrl5QlPj09nT179qBWq+nevTsTJkzg448/xsnJiezsbNauXUtUVBTXr1+nrq= 6OZ555BoDPP/+cJ554ggcPHtCrV6+fbEv07/CrhJsWkUQUH+adAdKLa/ji3F3GDe3NvDHdySvWE= ZJRy4MqGV9d0mJpIWdS/47NvjIyEZnYrLERZS3amebNL5uNVOJDv5rmwkXAJAhEJOdQ1dSEoLAE= TIjIMMoEFKJJSrz2R6K0tJSsrCxWrFiBq6srSUlJBAYG4u3tzbRp00hKSuLgwYMMHz4cuVzOU08= 9RVFREcePH2fp0qWo1WqKi4u5fv06NjY2vPnmmxQWFjJx4sRWws2UKVM4evQoTz75JIIgEBQUxN= atW7lz5w6pqanMmDFDSsFva2tLWVkZlpaWrFq1SsqW29TUhL+/PzU1NWzevJnVq1dz6tQpVqxYg= Uwmw9fXl3bt2rFr165Wz5iQkEBRURF79+6V8q288847LF++nMceewx/f3++/PJLJk+ejKenJ889= 95y0Mdzzzz9PdHQ0b7/9Nnv27EGhUPDGG29gMBha5QGysrJi6dKlzJo1S0o0FxISglqtZsGCBVy= 4cAEHBwecnZ2lrMkdOnTAz89PSt4FzSn/9+3bx44dO0hNTUWn0/3se2vbti1+fn4cOXKE1NRUqq= qq/qlw06FDByZPnkx1dTUrVqzg448/Zs6cOfTr1w9/f3/8/f1xd3enTZs2bNq0iR9++IG8vDymT= JmCQqFgzZo1PP/889IK7plnnmHVqlVs27aN/Px8tFotqamprF+/XtIctOzxYjAYuHXrFgMGDJCS= Mx44cIAuXbpgbW3NzJkzpVxJLdmC9Xo9O3fu5JNPPsHOzo7c3FygeeIJDw/H3d2d2NhYNm/ejKe= nJwqFgs6dO2NlZcULL7zA5MmTeeedd9i4cSNt2rThxRdfxNnZmcmTJ3Pnzh2MRiMbNmwgJiaGmT= NnYjQaWbNmDYcOHeLMmTP06NGDsLAwoqOjpazNr7zyChYWFpKwGRoaSk1NDZ9//jmlpaVMnTqVQ= YMG0a5dO0aPHk3//v2ZMGECdXV1LFu2DK1Wy4cffthqC5IWoSEiIgIXFxdycnIYMWIEaWlpjBgx= ggkTJrRa0UZFRTF48GDmz5/PmDFjKC0tJS8vj9deew0HBwe2b99OTk4OdnZ29OnTh/Hjx/P+++8= zcuRIfHx8mD9/Pvb29tja2jJkyBDmzZvHG2+8QWxsLOvWraNDhw4YjUbi4uK4ceMGaWlpzJ07lx= UrVki5WVJTU3nmmWdwd3dn6NChDB06lKlTp9K7d2/GjRsn5XT66quvGDRokKQ5+dOf/kR+fj7z5= s2TklpC81YqwcHB3LhxQ0pEeeDAAQYPHsz06dMJDw9n9erVvPHGG7Rt25YFCxYQHx8v7TUGzZlo= /fz8uHXrFkqlEicnJ1577TVu3bpFREQEJpOJ/Px8GhsbeeGFF2jbti2enp7odDpKSkr49ttvCQw= MxGAwsHbtWrRaLV5eXnTt2pW1a9dy9epVsrKyWgk3arWaGTNmoFKpWLFiBe+//z6dOnUCmvflS0= hIwM3NDQcHBwYMGMDIkSNZv349kyZNkvrHaDSyefNmcnNzpY05e/fuTUZGBi+++CLJyclERkbSu= XNnSSuh0+nIz89n/vz5DB48GJlMxpEjR5g9ezaVlZXk5eWRm5tLWVkZr776KjKZjLy8PJycnNi2= bRsLFy7E0tJS0qCoVCr8/Px48OABBoMBmUzGiy++KOXpqa+vR6PRMHXqVEaNGsXt27eRyWS4uLi= wbNky2rdvz7Fjx9BoNDz++OOMHz+enj178thjjxEQEAA0mys7dOgg7YfVkiepJRWCyWSivr4epV= KJXq/H39+fWbNmMXr0aDZt2oQoikyePJmdO3fSsWNHKa/NpUuXOHPmDD179iQiIoLo6GhJuGlqa= iIqKoqXXnqJMWPGEB4ezpEjRxg0aBBJSUkMGzaMsWPH4ubmxpYtW9BqtUyYMAF3d3dmzpxJcXEx= +/bt+4dz6i/h3/O5EaUtMpt35X64fWVWRS1bT4ZxMaaWvx6NRldVx4ZnB9PTxYRoNJFRBlsPR/B= DUj6CTCbFSImCCUEUH+pymhsj7VHV8g+xec/vgppGAsOzQKaSzFmi6WHqcxn/j73zDo+qTPv/58= wkk5n03kM6IXRC74ggKogga0XhpyjosthW1rUgiii6r7CAiHVpiqKIiEqXAKGkJ6SQ3id10jOTM= plyfn+Eeda8uvuuu66+7pvvdXldkjkz55kzp9zPfd/P94OPm9OvDr9gNpvp6upClmWcnJwYO3Ys= XV1d4qHq6uqKk5MTw4cPx87OTiyX9fPzw9fXV5SeWlpaRHOvv7//D9ai7e3tReperVYLTo3ZbO7= XhD1x4kQBg3zppZdEX4LVahWzJEBcCDZYo5+fnyh3fVe28hH01dmDg4Opq6sTmIPw8HDa29uJiI= ggPDxcjNH2uYBAFHh6eorUv81R1fZ6QEAAXl5ef7Nm7+XlhZ+fH5IkERUVhY+PTz/LcegjE0+YM= EGU4f6WbAygBx988HvW6v+TZFkWxGno4xTJskxwcDD+/v4oFAqCgoIICwsTAae7uzve3t5iZpWb= m8uDDz7Iq6++iq+vLyaTie7ubmRZRqPRMHr0aKKjo3FxcUGWZRoaGujq6kKSJDw8PHBxcSE8PBw= XFxdxTtl+I+g7J9ra2vD19cXe3l484FtbW9mxYwfnzp2jtbVV3Mjs7OyIjY1Fo9Hg5+eHh4cHvb= 29jBo1SpzDRqNRkNw1Go0wG/yujEYj69at4+TJk7S3t3P77bfz9ttvo9FomD9/PiqVSjg/NzU1i= XPeVob18PAQx02pVCLLMnq9nmeeeYbc3FzWrl3bb39WqxU/Pz927tzJyZMnKSgo4L777mP//v30= 9PTw0EMP9TufDQaDAKva6PXNzc1YLBYkSSIwMBAPDw88PT2Ji4tDpVLh6OhISEiIKPkFBQXh4eF= BTEwMDg4OuLm50dnZicVi4auvviI1NZXs7Ox+42xra2PPnj2cP3+e2tpaJk+eTEhICKGhoWg0mu= 8hQ9rb25k+fTrx8fEUFhayfft2brnlFl5++WVef/118dCDvuvTVm4ICgoiPDxcnC/QZ+DZ0tJCR= EQEoaGh+Pn5id/quwoODsZgMKDT6WhsbMTd3V2Mz97ent///vcsXLiQhx56iNzcXMLDw4XBXGFh= oThWtvJTVFQUERERqFQqZFnud35CX3nPz88PhULxvbHYFBQUhLe3NzExMWg0GhwcHBg8eLDIgKl= UKm655Raqqqr4zW9+g4ODA2PHjsXLy0vgTHp6esT9FuCRRx7h+eef56WXXuoX4Gk0GmHSaTKZxH= 3dy8uLkSNHcvnyZcaMGcMXX3zR794FfzVujY+PJykpqV/waTPQtBmVTp8+ncjISPz8/HBzc8Pe3= p5BgwZ9r6RsY+PZvoPtPh4ZGUlgYCAff/wxixYt4s033+wXwJvNZnp6esRk7e/1tnV2dvLss89y= 8uRJWltbBRcOYMiQIVy4cIH8/Hz+9Kc/UV9fz6pVqzh58iSVlS5tlvQAACAASURBVJU8/PDDfPj= hh+zbt4/ly5fj6OhIdHQ0ISEhBAYGCsftf0U/KnMjSxZAiUJWXMuuWClv7mT711lcKuoCO2dqDR= Y2f57BE78Zw59WXc+rHyWRqe1BZ9Tw7K7LPH9XHHNGDEJtJ9lilx/aU1/aRlYCEp1mOJBwlaImK= wp7FRK9yLICpdw3Bg9XBX4eDmJx+a9FtlrpwYMHmThxIo2NjURFRQnLbp1OR3R0NA0NDWJGV1NT= I6zmS0pKcHBw4J577uHdd9/lyJEjAKxZs6bffkpKSjCZTJSVlaHX64WTqW0W0tDQQEdHB+3t7Wz= duhUPDw9Wr17NuXPnBNSxs7OTqVOnCsv00tJS5s2bh8ViQZZl6uvr8fLywmq1UlxcLC70UaNGUV= FRwZ49e/Dx8cHOzo577rlHlDRyc3N5/PHHqayspLKykoqKCgoLC0VvhV6vJyEhgZycHCorK2lvb= 0etVlNWVobZbAb6bsAJCQmkpKSwYsUKcWFcvHgRnU5Hc3Mz7733HjqdjtzcXJycnKipqaGhoYGQ= kBARsGVkZPDoo49iMpmor6+npqaGESNGIEkSjY2NNDc3k5WVha+vL5MmTaKzsxO1Wk1+fv7fNfN= qb2+ntLSUjo4OMSs9fPgwPT09FBQUiBmy7Teoq6tDq9UKp9eWlhZyc3Opqamho6ODnp4ebrrpJr= RarbiRKhQKdu3axcSJE+no6CAoKAiDwSBKeQcPHsTT05POzk68vLzo7e3FYDCQk5ODVqulsrJSQ= ELd3NyEw/OCBQsoKCjggw8+4J577mHTpk2o1WqysrJYsmRJv+9dU1PD0aNHKS4uZuHCheTm5ors= xvjx41m4cCEvv/wyM2fOpKKigj/84Q8cOnSIqqoqMjIymDFjBps2bcLHxweDwYCHhwfx8fHcdNN= NLFiwgOzsbEpLS6mrq+P2229ny5YtfPzxx3h4eDBz5kxUKpXo99BqtXR3d3P58mUGDRrElClTSE= 9Pp76+XljaV1RUEBAQwN69ezEajeI66OzsFKWktrY2kS0aMmQI+/fvx8vLi46ODtzd3TEYDBw7d= oywsDC6urqIiYmhra2NrKwsent7qauro7y8nNLSUtra2gTb6fjx4+Kcmjx5Mvfddx8bN27kzjvv= JCEhgVWrVtHZ2Ul2djZ33HEHa9euZePGjWRkZDB37lxqa2sFt8vmcG27npYtW0Z3dzfbtm1j3Lh= xJCcni76bZcuW9QvYhg4dipubG1u2bGHcuHHU1tayaNEi/vSnPxEcHExlZSUbNmygoqICrVZLRU= WF6FHR6XTioe/o6EhwcDC7d+/m3nvvxWw2o9Vq0el05OXlcezYMcLDw7nvvvuoqqqit7eXyspKH= B0dmT17Nq+99hpTpkyhqqqKNWvW8Nxzz6FUKsnJyUGv11NVVUVcXBz29vZotVpxzlZXV9Pd3U1d= XR16vZ6LFy9SUVHBqVOnGD9+PE1NTRQWFmK1Wmlububq1asUFxdTU1PDmTNnGDVqFFOmTGHXrl1= kZ2fj4OBAa2srOTk5ok8oKipKfPedO3cye/Zs7rjjDoxGoyh35uTkUFhYKBYc1NbWcvLkSYKCgm= hpaSExMZHnnnuO5ORkmpubqaurIyIiQpSBFyxYwB133CEySzZpNBoCAwM5fPiw+A5Wq5XGxkaBb= 6murqayshKdTockSeTl5VFUVER5eTmyLDN+/HjeffddYmJiRCB45coV3n77bXJycmhoaBA9ShqN= Bm9vb/bs2SMm2p6enri7u5OTk8OpU6fIy8sTGJ7169fj7+9PV1cXgwYNYsaMGeL8Tk5OZurUqeT= n5zNp0iTWrFnDJ598glqtxsXFhdTUVJYtW0ZJSQm1tbUkJSVRU1NDeXk5BQUFdHR0UFNT8w8BkX= 9IP6qhWEJGkm02fBJWSeIvx7I4nNSASeGIrJCwKKCp00yRtoWRYW7MHBNCbWMLtS0m9CY1RVU1B= Hk6EOrrgUJxrd/mew3A1/psJBmzbOV8YR1/OVGA3tTXmKUAkKxYkJBkExMiXVk4MQxH+75Y7dfS= UKxSqRg8eDBFRUUUFhYSFBTE4sWLcXZ25uLFiyiVSm6++WZSU1PFiens7CyAY21tbbi5uTF79my= mTJlCQkICVquV5cuX92sYTE5OZsyYMTg6OhIeHs7QoUPR6/WEhYUREBAgZkBDhgxh8ODBeHl5kZ= eXJ8CEwcHBREREMHfuXPz8/Lhy5QqjR4/mvvvuo7S0lMGDBwu6dExMDGq1WpR7HB0dmTFjBomJi= dTW1nLDDTcwdepUjEYjaWlpDBs2jOuvv56srCxkWcbd3Z36+nrCw8NFqSMvLw+TyYSbmxtDhw5F= lmUKCgrw8PBgwoQJjB8/nlOnThEYGMidd96JRqMRjaKhoaFMmTKFG264gfb2drq6ulCr1eJ7DRo= 0SJwvAQEB5OfnU1dXh5+fH+7u7mKmZ2sy1uv1zJs3j5qaGoqLi5k/fz7d3d0Ct/BDsjUD29vbY7= VaWbJkCU1NTWRmZjJs2DDi4uJEWjo2Npb6+nrRaJ2fn09UVBRmsxmVSoWTkxOTJk0SN95Jkyah0= WhYsmSJQEsEBATg4OCAo6MjFouF2267DehrLDeZTCxdupTs7GyCg4MxmUwCEBkTEyMyX+PGjaOk= pITm5mZGjRrFww8/zMyZMwXvatCgQUyePFkcO51OJx7yNmO3xMRE3N3dBQR10aJFnD9/nvLycla= uXIm7uzuJiYnY29vT0dHBkiVL8PLyIj09HavVyl133SWaqkeOHMm0adPIysrCwcGBWbNmMWvWLB= ISEmhra+Pxxx9Hq9XS3NyMj48PRUVFjBo1iuDgYAICAsjKysLZ2RkvLy8aGhoE5+vee++lvb2d7= OxsVCoV8+fPR6/Xk5qaSkRERL+HTUBAAAqFgitXrtDU1MSDDz5IVFQUV65coaioSGxryxi5u7sj= SRIuLi5kZmYyePBggoODuXDhAqGhoVRXV3PTTTcxfPhwrrvuOoqLiyksLGTu3LkMGjQIvV5Pc3M= z9957L2q1mszMTCIjI7G3t8dgMODm5iZYVSaTidGjR1NcXExAQAB33XUXqamplJeX88ADD6BWq6= mqqqKpqYmVK1f2K6POmzePpKQkysvLmTZtGlOmTMHT05NLly7h6+vL3XffTWZmJrIs4+bmRl1dH= VFRUQQGBorgBvqyo1VVVdxyyy0YjUYKCgoEQDIgIICSkhIsFovI3litViIjI1m2bBkJCQmUl5fz= 6KOPYrFYBO6gra2NwMBA3N3diY6OFs3xXV1deHh4oNVqGTVqlODT2fpI7rnnHkJDQ7Gzs0OpVIr= MnsViQafT4e7uzpQpU7BarVRXVxMQEEBnZyddXV1ER0fT1dWFl5cXZrNZ4AhcXV0ZNmwYOp2O7u= 5uFi1ahI+PDzU1NYL5FxISIowpbT1Gw4YNE9iGqqoqwsPD8fLyIjQ0VGR+1Wo16enprFy5EldXV= 3FMFQoF4eHhtLW1iYbwwYMHiwzikCFDKC4uxmw2ExISQlBQEKWlpeIc8fHxYerUqfj5+Qm0zcyZ= M4mJieHixYt0dnYSGBgosnJKpZKYmBgRlKalpTFkyBBuvfVW2traaG5uZvDgwTz55JPExcXh5+d= HWloaZrNZMNUAAUgtKipi1qxZTJ48mXHjxpGUlERnZycLFy4kIiKCzMxMsZjBdt+1tUYMHjwYb2= 9vgoOD/+Fn6nf140z8rm1plfr6XSQrnM7V8vqhHCpaZBQKCYUkI8tKrLJMiKuRP9w+Fh93DVsOZ= pBc2kmot8wf74hjduwg+mKR71fGZLmvqViWrOTWd7LpkzQyy3r6lopLMsgKZIWMCXBR9LJ2QTR3= zojBXqFA8euIawY0oP8o5eTksGTJEkFGHtDf1i233MJzzz33L3FzBvSfJVvp8fHHH/+lhyIkyzK= vvvoqnp6ePPLII7/0cH60flzPjdQX3UhIKGRQyDKzhwfxxOLhBDj3lScUVjskqxJJUlLdpuKNTz= Lo6jLz7NLxxAUaeeK2McwePgg7xd8GQcnIyJKFlh6ZHYeySCvpwSzZYVXIfYGVZAWrEkm2EuXjx= OTYQFTKa306AxrQgH5Wtba2snLlSkpLS3nmmWd+6eH8r9Z7773HhQsXuPnmm3+Uh82A/jPV3d3N= mjVrGDJkiMiw/m/RhQsXeOGFF9i6dSv5+fm/9HB+tH5U5kbGiiQrQJKRhcOwlV4ZjqZVsOVIDnV= 6JZLCro8jJZuQrCYG+znw5JJRDA/1xF2tQoWMVQRKiu+VkcxWmZJGPVsPZXD2ajtWpQZJIV8Leh= TIshWFFRwlA0/eNoK7pg9GJVmRpB/X3DmgAQ1oQAMa0ID+8/SjMjcSCmFHLEtgVQCSFZUEN48N5= fe/GUOol4RkNSJhxiopsSjtKWjoYcuhbHIrW68thVIAsi0RJKDiyDI9ZiuJhfVsOpDCmbwWzHZq= 4XcjXfPDQVYgWXqYO8qfG8cNwk4hIzEQ2AxoQAMa0IAGNKB/2qG4L9BQcK15V5awU0iE+bvh7+l= IcVkjbV19y7UVEkiSHS16K1cKK3BxVRHq64aDXd+KK6sEMhIKSaK118qBC4W8fbyIq7UmFJIdSN= cWikt9SAdZlpEsZsaGqXnmnkkEujmIwGcACf7TaN26dXR3d/fzgBnQ31diYiLffvvt320s/u965= plnsLOzIyws7Eft6+LFi5w9e5ahQ4f+6KXo/4gqKyt55513mDBhwo/+fIPBwDvvvCOWr//cys7O= 5ptvviE2NvZHe1+ZTCbef/990tLSiIuL4+rVq9x222189dVXVFdXCyfvn1t33nknM2bM+JfcWhs= bG9m3bx8BAQH9GlZ/Sf3lL3+hrKyMqKgoPv74Y7q7u/s1j7799ttUV1cTGxv7C47y/642b95MTU= 0NISEhPPLII9x6662/9JB+lH4CtpSEpOgLcBwwc+MIXx5dPBJ/Jysylj7TPuyRFHZo9Uo2fpLBK= wdSSatox2hVYLJK1Hf08HlyBau2nuK/vsilpBWsOCBLqmtuxiYsmMEqozCbiPKS+f1d4wj1dABZ= gUKWrgVJA/pX9fXXX7N161Z0Ot0vPZRfjWpqatiwYQPJyckAFBQUcOzYsb/7niNHjrB79+5/itk= 0bdo0li9f/i/xlf67ZFnmySefBPpMB//4xz/+w58vyzKbN28GwNnZmUcffVRYAfzcGjlyJCtWrP= ie78ffkizL7Ny5E6PRSHNzM7GxsTz88MMoFApef/11du7cSW9vLxMnTmTu3Ln/5tF/X+vWrePLL= 7/8m14u/6h8fHx45JFH/umVJz+1rly5wvbt26msrESlUnHffff1a7BOTU1lx44dwkByQD+vzp49= yx//+Efq6upwdXVl165dP+r9H3zwAZWVlf+m0f1j+knYUjZjP4UkAQpC/FzxcFeRV9qA3gggIUs= KrEqZHquaq9V6zqZXcTqzmiPJWj6OL+Xr5Gq0HRKynRqlBJJCxtr3VmQUfQ3MVgtRPnY8ettIJk= f6oZT6CON9hn/Wa6iGX5dsy04LCgqwt7fH0dGR5ORk8vLyhJFaRUUFLS0tZGdno9PphD/Ot99+S= 2lpKU5OTri4uFBXV8fly5cpLS0lKiqK3t5esrKyhCmYq6srWVlZwgDtu4Z3ZrOZvLw8LBYLjY2N= xMTEMGLECDIyMsjJycFkMvVjKJlMJq5evcqVK1dQKBQYDAaSkpIwGo1otVqKiopwcnIS/KLLly8= L1g/AqVOnKC0tRa1W4+rqKnxnbMypoKAgZFkmMTGRwsJCJEnC2dmZy5cvC98LLy8v7OzsMJvNZG= RkYDAYMBgMaLVaqqqqcHBwIDk5maamJry9vYWVvY2LZZNWq6WgoECwZKqqqkhJSaGnpwdvb29qa= mooLCzEYDCgVCpJTEwU1vpXrlwhKioKf39/9Ho9gwYN4uWXX6a3t5cRI0ZQXl5ORkYGTU1NYrxX= r15FoVBQWFjI2LFjiY6OJjc3l6ysLLFUtKOjg6SkJFQqFe3t7f1m23V1dcIoLTk5WbiB2tnZ0d3= dzaVLlzCZTHh6enLmzBmsVitWq5WkpCS0Wi2enp6YzWYuXLgA9DUEf/HFFxw5coTY2FgcHR3Fdg= aDgUuXLlFUVERpaSkWiwWTyURqaipFRUU4ODiQkZHBtm3bCA0Nxd3dnerqanHsy8rK0Gg0NDY2k= paWhre3N6WlpWRmZlJZWUlwcDC9vb0kJSUJPyXbd9VqteLvHh4enD59GrPZLDJCVquVkpIS0tLS= hKlgU1MT9fX1uLm50dXVxdmzZ6muriYoKEgwcmpra8nOzkaj0Qi7fldXV6KiooS/zrlz5zhw4AB= RUVH88Y9/pLOzUxjNpaamkpubK/bZ3NzMhQsXBB/Ozc2NsrIyioqKsFqtODg49GO9ZWRkkJ2djc= FgwN/fn/T0dFQqFSkpKYJ1ZvM/mT17Nnv37mX58uUolUrS09PJy8ujp6en3zLszs5OCgoKqKmpI= Ts7Gzc3N8HT8vPzw2g0UlZWhrOzM83NzWRkZCDLskBA1NfXC68pLy8v4uPjMZlMYun8pUuXqKqq= wtPTs5/5ZVZWlmDf2TyYUlJSkGUZT09P9Ho9586do7a2FhcXFzQaDSUlJeh0OvR6Pf7+/owbN46= ysjIkSUKj0VBcXExzczNtbW0EBQUxevRoMjIyyM3Npbu7WxgJ2lRRUUFycrJYflxZWUlNTQ0ODg= 4kJibS3t4ulqKnpaXR0NCAv7+/yEra2FZ6vR6dToePjw+lpaWkpqZSV1fXD8EiyzJXr14Vx9nOz= g6NRkNpaangP/n7+5OZmUlubq74jauqqgT/qrKyEkmSyMjIoKGhAUdHR1JSUlCr1YKX5uLigqOj= IwkJCRQUFODk5ERbWxtJSUl0dXWh0Wi4dOkSFouF1tZWUlNTKS0tJTg4uN+5VlBQIPhnBoOB3t5= eEhMT8fDwwNHRkdbWVhISEqiuriYsLEw8B9ra2nBycsLb25uRI0eSnZ1NYGAgra2tJCYmUlRUhI= uLC/b29pSWltLV1UVycrKYJKxatYro6Gj8/Pyoq6sTDKnvZqnNZrPwMWpubqa2tlYwAW1+QH/PP= +x/0k8S3AgzYQlAgZ0EEQEuBHs5U1jZRGu3uc8tUJKQFEokpYJui0x9Ry/17SY6jGBVqpCUdtfA= mXJfwCQpUWBFYQGL1UKEt8SaW0cyc1gwauU13x3owzdIf3v11f9WdXd38+mnn5KZmUl+fj5nzpz= By8uLt99+G5PJJG66L730EkeOHEGWZT799FMGDRokjNXKysrQarWMGTOGbdu2UVFRwfvvv8/w4c= MpLCzk6NGjtLe3s3//fnx8fIQx365du/r5EmRkZLBv3z5aWlqIj49n6tSptLe3c+jQIfR6PUeOH= GHEiBEiKEhKSuLTTz9Fr9ezdetWQkNDef311wU1vK6ujpaWFtasWUNbWxuVlZUcP36cuLg4Dh8+= TFZWFmVlZRw5coQpU6awYsUKvvrqKxQKBVu2bOG6664jISGBM2fO0NzczNmzZyksLOS3v/0t/v7= +WCwW4XtRVVXF7t27yc7OprCwELPZzK5duxgxYgQfffQRBw4cIC4ujpMnT1JUVMThw4dFilWr1f= Lggw9y6dIl4XS8efNmenp6+PTTTxk5ciT79++nqqqKAwcOMHXqVF577TUUCgVms5lbbrmFO++8k= 46ODmprawkICODrr78WsMlly5bh6urKoUOHGDFiBLW1tezZs0fcVK677jokSeLgwYO0tLRw8OBB= NBoN5eXlpKenk5GRQWlpqZjVGgwG1qxZQ2NjI9XV1axYsYK2tjbS09MpLy8nIiKCbdu2ARAXF8d= bb72Fk5MT8fHxVFVVCThjVVUV+fn5pKSkCO5VRkYGISEhJCYm8sUXX7BgwQK++uorvvnmG6qqqn= jppZeYOXMmZ8+eFUGvDbp56tQp/P390el0vPHGG0ycOJGUlBQ++OADJk2aREdHB59//jm+vr4cO= 3aMxsZGTpw4QUtLCx0dHSQnJwsm0cyZM4E+88k///nPKBQKxowZw9NPP01sbKyw2S8tLWX79u10= dXWxceNGZs+ezc6dO8nIyGDatGlilceFCxcE8+zll1+mp6eHo0ePCm+StLQ0nJ2daWho4MMPP2T= 8+PGcO3eOxMRE4aT88MMPM378eOrr68V5v3//fsaMGcPhw4cFnDM5OZnRo0ezceNGWltbOX/+PM= OHD8fNrQ/qm5yczKeffkpLSwunT5+mqamJp556iry8PKqqqkhNTWXSpEkCSgmwfft2li9fLvhaP= T09bN26lTvvvFNk155//nk2bdqEQqFg//79ZGZmUltby+7du1m8eDH79u3j448/ZurUqezcuZOG= hgYRwLz44oscO3aMnp4edu7cSWVlJYWFhVy+fJlJkybxzDPPoNVqOXv2LG5ubiIrl56ezgMPPEB= GRoY4LnV1deTn53PixAlmzpzJ66+/TltbGxkZGSLgePPNN+ns7CQlJYXo6GisVivr168X/jLbt2= 8Xk6WhQ4fi6urKyy+/THd3N9u3b2fFihXi2Gi1WjZt2oTRaOTixYuUlJRgMBg4cOAAw4cP5/333= +fYsWOMHz+ejz76CJ1Ox+nTp3FychIojurqavbv309xcTGfffYZkyZN4r333qO+vp4DBw70cwv/= 4osveOyxx2htbRX3URcXF9auXUtnZyednZ3IssyZM2doamriww8/RKPR8NZbb3HgwAEsFgsHDx4= kKysLvV7P+vXruf7669m0aRMeHh5i+XVYWBjp6emcOHGC0tJSrl69ipeXF++++y5Go5HY2Fj27N= mDq6srX3/9NUVFRRw4cIDo6GgRQFy6dIlVq1ZRXFxMZWUlW7dupbu7m6+//hqr1cqYMWN44403K= CoqIj4+HqVSKc5rvV4vUEAVFRU8++yzrFq1isOHD3PkyBHy8vLIzc3FbDbz2GOPUV9fj06n4/PP= PyckJITDhw8zaNAg1Go1R48epa6uTmBmbONrb2/nzTffpKysjPj4eBwcHNi9ezfDhw/nww8/5LP= PPmPZsmX/9PP1JwFn9km+Rofqg0FpFBLzRgdjp1Sy+VAWZa3mPuClbEYBmBV2SAoz0FcXl2QzCl= lClpXIkgIJGaXc50ArW42MGaRh7R3jGDPIAztFH5JBskrIir4gx3oN4vBrCm9sTpX333+/yNB4e= 3vz+uuvs3r1anQ6HUqlksjISFQqFU8//TR79+4lOTmZpUuXsmrVKl599VV6e3spKyujpaWFLVu2= 8MADD6BUKtm2bRtHjhzBx8dHcHOysrKYM2cOL730Ur+xfPnll0ybNo1bbrmFc+fO0dPTw8mTJzl= 8+DC+vr40NTWRm5sreg6+/vprPvvsMwIDA0lJSeH5559n8+bNPPPMM8ydO5c1a9ag1+vZvn07N9= 10E1OnTuW5557jwoULvPnmm6SmpmK1Wlm3bh0pKSnExcXR3d3NE088weXLl8nMzOTEiROkpaXh4= uKCyWTioYcewtnZmQcffLAfgdbOzk6A8ubMmYNKpeLixYt4eHhw4403UlBQgMViISUlhaVLl7Jw= 4ULxXg8PD0aPHo2XlxdPPfUUu3fv5sCBA8TExFBUVMTChQtpbGzEzs6OJ554gtDQUKZPnw7A/Pn= zv7fSb+LEiUybNo1x48YRFRXFW2+9RVpaGpcuXaKzs5O3336b22+/nRtuuIFz586JcU2ZMoWbbr= qJoqIiXnvtNSZNmsSpU6d47bXX+s0cHRwcGDlyJLIsExcXh4eHB4sXL6a7u5t9+/YRGxvLbbfdh= kajwc7Ojptvvhk3Nzc2btwI9M3whw8fzqxZszh69Cjr168nNjaWsrIy0tLSePjhhzl+/LgoB9TX= 1zN16lTGjh3L+++/z7x58xgxYgRpaWmsW7eOkSNHsnr1aiIjI3n66afJy8vj3LlzAMJl10bw3rh= xI9988w0xMTHccccdaLVaXnnlFTQaDWfOnGHt2rX9yllxcXGsXLlScK/mzp3bD/hoMxhbvXq14N= IMHjwYrVZLfX09r732GhEREXR0dNDc3MyaNWtIS0vjgQce4NixY5SWlrJ06VKqq6t56qmnyMzMF= MH7U089xbfffsv999+PWq3Gz8+P3t5ekpOTWbhwIddddx0lJSXCNdrWp/b8889TUVFBeXk5VquV= p59+ul+m4ciRIxw6dAgfHx+am5sZOnQo3t7ezJ49mzFjxrBjx46/aTs/duxYPDw8WL9+PZWVlXR= 1deHk5AQgDA5XrlyJ0Wikq6uLVatWkZKSgsViYdiwYeTk5AB9uJb8/HyeffZZAgICuHjxIpIk8c= ADD3DmzBkmT55MbGws77//Pp2dnTz66KOUl5fz+OOPM2vWLDGe0NBQfH19mTVrFtOnT+eVV15hz= pw5DB8+nNtvv53CwkIOHjwoKNkjRowgKyuLCRMm8P/+3/+jubkZhUJBSEiIYCl98MEHjBs3jnvv= vZfa2lokSSIkJIQnnniC3bt3k5aW1u+YfPLJJ0RERPCHP/yBF198EbPZzKxZs8jKysLLy4v58+e= Le+b+/fvx8PCgoaGBwMBA5s2bB/RlEK5cucLixYtZvHgxaWlp7N69m6CgIKqrqzlx4gRTp04FYP= To0YSGhnLXXXcxevRo5s2bR0dHB1FRUSxfvpyYmBg2b97MbbfdxvDhw/nmm284fvw44eHhBAYGs= mrVKpGxsvHpnJ2dGT58OAqFguHDhwskii0D7ODggNFo5Le//S2PPPKIyA7Nnj2bG264gZEjR7Jn= zx7KysqoqKgQxyYyMpKoqCjmzJlDbGwsb731FocOHSIyMpLa2lpqamrYsmULYWFhtLa2Chf6SZM= mcfvtt5OamopSqSQ6OlpkU6+77jrUajVvvPEGTU1N3HXXXURFRbFgwQJGjx7NokWLGD9+PD4+Pj= z44INkZmbywQcfEBAQQGNjI8eOHRPnkNlsJjMzibOFrwAAIABJREFUk7vvvpt77rkHjUbD5cuX8= fT05KabbhLA3n9WP0HPTZ+sfyVD9a2GkuxQSjB7RCCPLRlOsLsVq9UMsoRkdUBhtbv2nxJJBitg= RoFFkjBLElZJgWw1obR2MXuEB6+vmMakcC9UCgklfauj+kz9+vYnyb+uwAb6qMR6vR6TySTYJNn= Z2cyYMYM//elPTJkyBVdXV/z8/ITrrKurKyaTia+++orNmzezYsUKPDw86O7uprm5GaVSKUBvXl= 5e7Nixg6SkJKqrq1m1ahX79++nurqaJUuW9Our0ev1ODo6Csy80WjEwcGBnTt3kpycTElJCQsWL= BDbOzs7s2XLFhITEzGbzcyYMQO1Ws2UKVN48cUXaWhowNfXF2dnZwYNGoRKpUKtVtPV1UVBQQEK= hUJA9kwmk7j4bb0SRqMRV1dXPv/8c1JTU8nIyOD222/HwcGhX2ADfSDLI0eO8O233/L000/3e81= WkhkxYgSHDh3i2LFjLFmyRPC0nJ2dCQ8Px9nZGYVCIQKsxMREcfG+8cYbTJs2jUWLFgmGk+2zAc= GJ+u9SKpVMnz4do9EoPCxaWlpwdHREpVKJm1Zzc7Pggfn6+iLLMkuWLOHs2bM89NBDbNq0SezTx= pIBiIiIwMnJiZCQEBQKBb29vUiSxNChQ6mvrycvLw8fHx/MZjM33ngj586dIy8vjwMHDvDQQw9x= /vx5Xn31Vf7rv/5LjNnOzg5/f39RerDRfCdMmCCyHVu3buXbb7/lnXfe+d539vLyEr+PQqFg6NC= hpKWl0d7ejrOzM21tbbS1tYmyhUqlYvbs2Zw6dYpt27bxhz/8QXxXSZIYNmwYDQ0N7Nu3r9/5B3= 1kchvDZ9SoUbi4uBAQECBAr0FBQaSlpVFWVsbhw4eJiIjA19cXT09PJEn63u8WEBDwg027Nrdqq= 9VKU1OTcIeNjIxEoVDQ1NSELMuo1WrUajVWq1XABxcuXNiv98BoNPLnP/+ZlJQUiouLefTRR3F2= diYmJgZ7e/vvsd6+q/Pnz7N27Vr27dv3vdeGDBmCl5cX7u7u4jxydXUV5a3v8q02b97Mhg0bWLp= 0KQUFBQQHBwtnWICYmBgUCgV2dnbIsszatWs5cuQITzzxRD/nc29vb9zc3ETzti0ItG3T29vL+P= HjuXTpEvn5+XzyyScolUpcXV2xs7NDrVaL0peXlxfQZ2bn6uoqPs9kMtHQ0MAjjzzCkiVLvtek3= traKh68KpXqe5MN2/Xf3d3N6tWrSUxMpKKigg0bNohtwsPDOXToEJcvX2bBggUYjUYefPBBUlJS= qK+vZ/369WLb0NBQ8b01Gg3Ozs7ivNNoNMiyTEtLi2BzBQUFoVQqRcbCyckJhUIhuG3f7Wv77n3= FbDYLtEd2djZXr17Fx8eH6OhodDodJ0+e5Prrr6etrY1HH30UPz8/Qda2yd/fXzw7bM31Nldk2/= 1i2LBhpKWlUVFRwcGDB+np6RHXvg2n4+/vL77b/v37OXLkCI899pg4BwICAkRwKsuyuD6gL4CxZ= cbLy8t59dVX+50/J06cID09neXLl/c7BhaLRRyHf1Y/Weam75RSin/0lYv6MjDXjwjBTe3Ae8eu= kFVtorPXjEK2RSPWa/411wjh1j5elEphIsxLYv6kGBZNjSLARYVVlgViU0a6VsKSvrP/X5dswL9= PPvmEMWPGoNfrKS8v5+677yYvL4+amhoqKiowmUwkJSUxePBgEhISWLZsGbt27WLu3LnU1dVRWV= mJg4MDSqWSnTt3Eh4eTmtrK5GRkXz66ad0dXXR0dGBwWDAaDQKhkx7e7uo20dHR7Nnzx4sFguZm= ZnCItvG3bFYLHh5eYmoe9SoUSLN2tzcjL+/PxcuXOCBBx7Azs6OG2+8kX379okbfUBAALIsM3/+= fDIyMnj++eeZNm0atbW1PPXUU/z+97+nt7eXK1euoNPpaGlpISwsjNdee427774bvV4vbhqXLl0= SMynoa07cu3cvN998M19++SVKpZLu7m6OHz9Obm4u5eXlbNiwAVdXV5YsWYLFYqG+vp6AgABha+= 7s7ExHRwdz5sxh9erVBAUFCevzDz/8kPnz53PLLbdQUlKCk5MTFy9eFFC/t956i3HjxlFUVERtb= S2yLJOamookSYwaNYrIyEgSEhLIyMjghhtuYNu2bbS3t1NcXMw777zD6tWrOX36NJIk0dPTw7x5= 89i7dy+enp6sX7+e5ORkuru7cXR0pLe3l7y8PKqrq0lOTqa9vZ3MzEzq6upoaGigqKiIyMhI/vK= Xv9DW1sbatWupq6sTpbugoCDBKbPNNmtqakSQ9e2331JfXy94SImJiaxcuZLw8HD0er3ASAwePJ= isrCwaGxtpaGigt7eXo0eP4uTkRFlZGYWFhQwdOpTQ0FDee+89fvOb36BQKIiLi+Ptt9/Gzc0NB= wcHYmJiOHXqFCaTiRUrVpCSkkJra6vIoISEhODk5MSZM2d46KGH+l0/Y8eO5eWXX+bjjz/GZDIR= FRUleh80Gg2TJk3iueeeY8aMGeTk5BAZGUlVVRV5eXkUFBRQX18v+E7Hjx/HycmJkpISqqqqKCg= ooLGxkfT0dNGLUVZWxrhx4/joo48wGo0YjUacnJzQ6XTs2rULT09PwsLCCAsLY9q0aWzYsIEZM2= b0C6LmzJnD9u3bsbe3p6WlBZVKRWtrK8nJyYSHh6PVasnPzxeNv4WFhXR3dwvMxKxZs0hJSUGSJ= AoKCkQfXHJyMrW1tYLBZusNamxs5OLFi9jZ2VFeXk51dTXLli3jySef5De/+Y3oN7O3tyczM5OW= lhbOnz9PYGAgJSUlZGdnk5WVxWOPPcbx48dRqVR0dXXh6OhIdXU1TU1NJCYmMmLECKqqqigsLBR= MMXt7e5RKJS+88AJxcXEYjUbGjBnDK6+8gkqlIiMjg4qKCiZOnEhxcTFRUVFMmzaNTZs2oVQquX= LlCseOHcPDw4OJEyfS1dUl+rNsZdpp06bx7LPPEhISIvqLbDiP48ePk5KSQlFREb29vcTHxxMaG= kpPTw8uLi4iWL569Sp79+5l0aJFXL16ldDQUA4fPswHH3xAUFAQra2t3HvvveI3bG5uFg/lnp4e= wsPD+eSTTygsLBSA0S+++ILGxkaqqqqYP38+8fHxGAwGSkpKBBPw/PnztLe3U1BQgKurKxcuXMB= kMnH58mVUKhUrVqzgiSeeEKWlFStW4OnpKXAeM2fOpLOzE3d3d1xcXNDpdBQVFdHe3o6bmxvl5e= VUVFRQVFSEVqvFarWSkJAg+n6WLVtGZGQkGzZsYMKECVy5cgU/Pz8+//xzzGYziYmJos+qsbFRX= JujRo0S3LCLFy9SVlZGQUEBVquVlpYWqqqqUKlUnDt3Dl9fXwoKCjhw4ACurq709vaKIEyn0/H0= 009z++23k5OTI3oGjx8/LjhyFy9e7Jct/DH6SXpu4DvBxQ9EGUpkQrycmRDrj7erEpOxm57OLkx= mC2arBYvVgixbUGHEQ2VhaIAjt0wI4oF5Q7lhVAgeGjskWRIBkSQprgU2PzSAX49sbKn6+npqa2= sJDQ1lzpw54oERHR2Nr68vWq0WBwcHzGYz06dPZ/LkyURGRlJWVoaTk5NgJE2ePJmSkhKamppYt= GgRI0eORKlUUlFRgUql4tZbbxWNhWPGjBHlFYDY2FhMJhNarZYlS5awdOlS5syZI26KSqWSG2+8= UTSrhYaG4uzsLMYwfvx4WltbGTt2LDqdjmHDhuHt7U18fDwTJkygpaWFOXPmMGzYMObPn092djZ= NTU0sW7YMd3d3CgoK+s1y/P39ufXWW7FarWi1Wry8vPD19SUqKgqLxcKIESPE2JVKJZ2dneh0Ou= 677z4GDRqEi4sL1dXVjBw5khtuuIElS5bQ3t5ORUUFc+bMYfTo0UDfzK+6uprQ0FDCw8MJDQ0lN= jaWoqIiFAoFt956Kw4ODmi1WgYPHsz1119PYGAg9fX1ODk5MXnyZB5++GE6OjrQaDSEhoYSEBCA= Tqdj4sSJqFQqkba2t7fn4YcfRq/X09HRwfTp03nssceYPHmyaMxzdHRk6dKleHp6UlhYSHt7O4s= XLxYPO9vvZ3v4Dx48GI1Gg6OjI6GhoXh6ehIRESFm8ZGRkbi4uDBy5EiKioro6OggLi6O4cOHU1= tbi16vZ+7cucTExCDLsrgxurq64uvrS2NjIzqdjvb2dpqamjAYDIwdO5bKykqcnZ2JiooiNDSUo= KAgKioq8PDwQK1W4+XlxZAhQ3BychKZFWdnZ5EhKCkpoauri9/97nei36W+vp65c+cK8rdNHR0d= xMbGinS9TV5eXqL5s7u7m4ULF1JTU4NGoyEqKopFixZRXFxMU1OTeJDbwKCSJBEdHU1kZCRubm5= otVpBXg8JCSEnJ4fhw4eLbIAt4zNv3jwkSRLX1Ny5c5k2bRoZGRn09PRw3XXXERoaipeXF6WlpY= wdO5Zx48aJGXp0dDROTk4UFxfj4uIiZtfw10yIh4eHsGEoKCggLCwMSZKYM2eOAN3OnTsXR0dH0= TeSnJxMWFgYzs7OODk5iYb80NBQLBYLTk5OODk5ERoayuTJk8nJySEkJISRI0fS2dkpsn9hYWH0= 9vaKhtPBgwczc+ZMwSxzdXVl5MiRqNVqtFqtmNH7+PgIdldZWZkI6u+44w6Ki4tpa2tj/PjxLFi= wADs7O5qbm0VJ00YHDwwM5NZbbxWB3+jRo/nd737HpEmTBCR2ypQpAAwbNkyc/x4eHqJHLSgoiB= tuuEEEX3Fxcdx4443cd999hIaGkpubC/QFRbY+KLVajcFgoKKigrvvvpsZM2YIRpPt3LH1QFmtV= o4cOYK3tze9vb288MIL6PV6QQAfMmQIMTExGAwGysvLGTVqFCNGjKC9vR0HBwd8fHyQZZmAgABa= W1sZNmwYHh4eTJ8+XYCCb775ZhYtWsTChQsxGAzU1NQwatQooqKicHBwENeXjb1nb29PZWUlQ4Y= Mwd3dnaioKJycnERp1NfXF6PRKJh+Li4uIls4Z84ccY3ce++9jB49GovFQnV1NYsWLeLWW29FrV= bj4+ODvb09EydOpKKiAhcXF6KjozGbzQQEBODp6UlDQwOxsbEEBwczcuRIGhsbGTVqFGPGjKG4u= JjOzk7mzZsnMoRKpZKuri6qqqpYvnw5UVFRODs7i/v2vHnz+pHGf6x+HFvqn1AfPbyv7iRLEr2y= FV17D8W6DvKrOyirrKOzx4yzRs3gQb5EBzoT7uOCr5sGlZ0CBfR55SAhy33cb+n/GEBq06ZNODo= 6ilTgr0mzZs1i165dRERE/NJDGdA/oZtvvpmPPvoIT09PampqOHfuHEuXLv1Zx/DZZ58xderUf5= oOPKD/G3rllVcAeO655/5t+zCbzaxcuZK1a9cO+O/8L9dP2FD8w5KwXnMzViIBDpKSQZ6OhHg6c= f2QAKC/H4ZMX/9NX3OyDHLfMnIZUEjy/zkzm4SEBPbu3Ut7ezsTJkxg8uTJv/SQ/mG9++67FBQU= MHbsWFpbW3/p4Qzon9B1110nVieFh4dz5cqVn23f6enpzJ49m3Xr1rF48eKfbb8D+vXp8uXLHDx= 4kPLyciZOnMicOXP+LftZu3Ythw4dws3NjZdffvlfMlYc0L9X//bMTV9PzTUH4Wu76lsy3sel4t= oqp79u3ScFgGylL5r5aw1KfNaABjSgAQ1oQAMa0A/oZyhL/bUdRr6Wl5FkCeRrC7WuLbAS29lG8= 92/XQt5rNcWd/1kS7wGNKABDWhAAxrQf5z+7XFCH+jy2v9fI1LJkgKrQkZW9GVxruVzrq2akq+9= yfqd/IyiD7OAjOI/rC6VkZHRbynu/xYVFxcL7w6A/Px87r//frRa7c+y/6KiInbs2EFLS0u/v2/= YsIH4+PifZQw2rVq1ipqamn5/++yzzzh48ODfXLb771Rrayvr16+nrq7u3/L5ycnJvPPOO//jMs= w9e/awZcuWv7uNDU3xXf+N7+pcQRtvnNDSbbL+4Ov/qjIqDeTX9i3LTSzt4HJJx/e2OXW1lf/3Q= eG/vJ/VH/7PvhybT1bz/vk6ekxW1n9ZwcWi9h/cztBjYf3hCpJKvz/e/66l7+ZzNr/tR495QAP6= j5b8C8n6S+34V6YTJ07Iqampv/Qw5KNHj8otLS0/y76MRqO8atUqefHixbJOp/tZ9vmP6OTJk3J= CQsIvOgaz2Szv3LlTDgoKkisqKn6xceTl5cnOzs7yU0899Te3sVqt8ptvvikPGzZMLigo+N7r+m= 6zHPFUkvzkJyVyp9Es/l5Q1yU//VmpLMuyHJ/fKh/Pbv6nxmi1yvLZ/FY5s1Ivy7Isb/zqlztes= izLiSXtcsTaJHnjV5U/6n1dRov80J7CH3zt9aNVssvDF+TD6Y0/xRAHNKD/GP1kS8F/rAa6ZvpU= W1tLdXU13t7e5Ofn09DQQFpaGk1NTdjZ2bFu3Tqam5sJCwvDZDJx5swZcnNzhVFbVlYWV65coaW= lheTkZLHs8+jRoyiVSgwGA+fPn6e0tJTAwECam5spLS0VHh7u7u44OTmRnZ3NhQsX6OzsFDb6pa= Wl+Pv709zcTHJyMvX19Xh4eODi4iLGavNY+a6LLkBeXh7nz5+nra2NkJAQdDodx48fJy8vDz8/P= 8xmM8XFxYKHJUkSpaWlJCUlMWLECEJCQmhsbMRisZCfn49arcbDw4OLFy/i7OyMvb09aWlpJCYm= UlZWJvwrTp8+LRhFNkMzq9VKYWEh1dXVpKSkUF5eTkhICBaLhWPHjpGTk0NnZyd+fn60tbUJW3r= bsksb02jdunVYLBYCAwNpbGwUy8/Pnj0rnESPHj2Kvb09BoOBhIQEcnNzcXV1xdXVlaSkJK5evY= qjoyN2dnbCWKu3t5e0tDSSkpIwm814eXmRnp6OUqnkxIkTtLa2EhAQIMy3wsLCqKioYObMmWg0G= s6ePUtmZqZY9vldffnllxgMBsEty8nJ4cKFC9TW1gozwLy8PBISEqisrCQ6Opqamhrq6+vx9PSk= tbWVo0ePUl5eTlRUFFarldzcXAoKCoiKisJkMjFt2jTOnz8vGFqhoaF0d3dz5MgRoG+FybRp075= nwKayUxDuo6GooRtZhqL6vizh+wl1ZGk7Udsr+DhJR1WzkRBPNeVNPVS1GMmo1NNkMDHIS01lcw= /JZR20d5lxsFNQ1thDeVMP/m4qWjrNZFQamBLlRmOHiYqmHiZEuJJRoSepVI+2xYi/m4rq1l4K6= rsI8XSgqtlIQlE7V2u6CPRQ0WwwUdzQTWWzkSytAY1KiZvGjsTSDlLL+8bh46KiptVIUX03QR4O= pF/7/MrmHlw1SpwclFwu6aC1y0xrpxkfFxVTol1JKzegslPg5KDki/Qm8uu6yK/roslgIsDNgfQ= KAzq9iWc+L6O2rZfYQEfauy1cKm6nqKEbjb2Sm0d5cjijiemD3RgS8Fdkg6HHwsncVq7WdGGVZb= yc7cmp7vv8K1UG1PYK8mo6SaswkF/XRVVLD97O9qjtB4r+A/rP0C8W3Ayoz61206ZNZGVl4erqy= qpVqygqKsJoNLJx40buuusuDh06hJOTE7GxsRw+fJiGhgYuXrxIXV0dn332GYcPH8bb2xuNRsOX= X34pmCkHDx7E2dmZ+Ph49Ho9aWlpXLlyhdOnT/PnP/8ZjUbD6dOncXd3x2g08t5772Eymfjoo49= YsGAB999/PxUVFdx00008++yzuLu7C06Ph4cHq1atIicnB7PZzAsvvMDjjz8uvldpaSlbt25FoV= Dw7rvvMn/+fL788kuSkpLIy8tDp9ORk5PDiy++SG9vL8XFxezZswc7Ozt27NjB5MmTkSSJTz/9F= IVCgVar5eTJkwCsXr2amTNn0tzcLIKO+Ph44Q1UUVFBWloaBQUFTJs2Degzi7r77rvJzs7G3d2d= Dz/8ED8/P+FA2tLSwjfffMOgQYM4cOAAXV1dHDt2jICAAD788EO2bNnCrFmzOHXqFO7u7ri5ubF= +/Xrc3d3x8PBg7969aDQaIiMjOXDgAAEBAaSnp9PQ0EBXVxcff/wxwcHBnD59mtbWVo4cOcLYsW= NxdXVFlmUSEhJEMPr222+jUql49NFHycvLQ61W8/XXXwu3auhz5v3222+ZOXMmpaWlvPXWW4I7d= uedd4rf4cKFC8THx5Oenk5vby9OTk7s378fSZI4efIkBoMBLy8vtm3bhlKpZNOmTYwZM4a33nqL= srIypk+fzmuvvUZrayuXLl0SRoLvvvsuSqWSU6dOCVfpgwcP4ujoyGeffcb06dPZsWOHMMi7evU= qN9988/eCG4DC+m4+SmwgyN2Bd8/X4eygpLa9l9rWXsK81RTUdQES1a1GXv2mivzaLkwWmW3f1j= Ai2JnTV1tJLdfz/vk6Jke5YTRZ6ei2EOatprC+i/YuM2PDXNh8spo7J/hS1tjDBxfqUdspeO98H= TLwl4R6zhW2c/1QD946U0NLp4mTua3kaDs5W9DGtm9r6DRauFTcgcUqo++x8OdT1dgrFXya0kig= u4pnPi8nt7qT8RGurP20jAB3FV9mNKG2V1DX3svO+FrslRIJhe0MCXCkoqmHTUerGBniRFpF3/j= tlBJ7LtYT7achs8rAfx3XEuiuIremi45uC9F+jnycqEMG4vPbaNSbmBrtxvvn674X3Lx7ro7ihm= 4a9SZ2nKnB11XFEx+XkFfbha+LChl4++z/Z++8w6uq0rb/O/3kpPdeSUICIQkthdClyAwtgEiTz= sD42kBHUQRHHQsjI44ooigoAVSQjoICgUBoIaGXBNJI7+UkOTl9f3+EbM2Ajo44M+/75b6uc13J= 2WuvtXZb59lPue8y7NQy/vpNMRYBBoQ7YquS3fd1rhOd+E/gNy8F78SPo51crbCwkPDwcOLi4uj= fvz+JiYmsXLkSOzs7YmJiGDp0KOHh4YwcORJXV1d0Oh25ubksWrQIR0dHFixYgK2tLRaLBYvFgp= OTE/3790ej0bBp0yYsFgstLS307duX4cOHU1tby9y5c1m/fj3FxcVkZmYyYMAAJk6cSGlpKXZ2d= owePZrr16+TlZVFc3Mz//M//0Nrayt//OMfkcvlxMfHExsby7Bhw3j11VepqqoSvQYHDx6kZ8+e= zJs3j4kTJ+Lg4MD48ePRaDS89tpr2NnZ8fDDD9O7d2+mT59OaWkpV65cYdGiReTn54uq5kFBQcy= ZMwd7e3uWL1+Og4MD3t7emM1mrl27Ro8ePRg9ejT5+fmsWbMGpVLJ5s2bWblypUjy1X6eExISCA= sLY9GiRfj4+LB582bc3d156aWXcHBwYOvWrVy5cgVBENi3bx+vvvoqUVFReHl58cUXX9C9e3fCw= sIYP348iYmJpKWlAW1aM1OmTEGr1eLh4UG/fv1EUrqnnnoKtVrNm2++yc2bNzl27BhJSUk888wz= InGbxWIhNTWVTz/9FFdXV0pLS5k4cSIRERFMmTKFpKQknnzySWpra+/J8xIZGckTTzzBW2+9JRK= UtUMQBA4dOsSLL77I4MGDWbt2Lb169WLChAnk5OQwZ84ckfTvySefZNy4cbi4uBAbG0tdXR2lpa= WsXr0aHx8fmpqaqK6uprm5mcjISBYuXEhVVRUmk4nevXsTGxvLgAED0Gg0oocqJSWFgoKCDvID9= 0JsgB0LBnlzKk+L0SLQM8AOi1Vg4WAfGnRmvByVjOvpRlZhEyOinJk30JviOgP7L9ag1Vuo0pp4= b0YYUX62HTwPGflNDOra5r1r1rcZPN9eLSMpzJFp8R6M6+WGXCahpslEZmETFY1GtpyuRK2Q0qS= 3UNloZFZ/L6q0JpaNDuS9w6VUaU1kl9fyQKQzfxjsTUWjEXu1jCERTlwrbcHdXsGaGaF8ml7BmX= wtQ7s5sSurhmHdnJnd35PCmjbdqAHhjuy9UAvAtdIW/FzUPBznQWZBEwPCnTCYrRy4XEe4l4Yef= nrKG42M7+VGYqgD289Vc+JmAz5OyrtP5h1sPl3JsedikUmhtN7A2bwmevjbMbybE9MSPLlS0oJC= JmFKvAf7LtYS7KbG3V7xk9epE53434ROH+R/EAqFAldXV+RyOQ4ODri7u4v/C4LQIaFTEAT69u3= L6dOnKS0t5dChQ3h4eGBra4tMJhMF5urr6zl27BgxMTEIgsCECRM4d+4cRUVFbN26FX9/f5ydnc= WQjcViwWw2U1VVhVwuFyXm20MWRqORkpISzGYzarUalUqFra0t7u7uojYQ0GGuJpOJ2tpacU4Aq= 1ev5ty5cyIRoYuLC25ubuI8bGxsRM2Zdtjb22NjYyPq0bTr4wiCIIohCoKAg4MDMpmMBx54gJMn= T/LOO+/w/PPPi9pPCoVC1LmSSCTY2NhgsVhEz4pUKhX5Kv74xz+ybt06HnvsMQ4fPnxP8sF2htB= 2BAUFUVlZyb59+5g4cSJWq5Xa2loMBgMSiURknd2zZw/du3dn+vTp3Lx5U9zfycmJ1atXi7T1yc= nJODo6itegXR/nXsjMzGTp0qXMnTv3Ls9Inz59OHDgALt37+a9996jqalJTIxuZwltbW0VOYhCQ= kJQqVTiPWi1WkXBxfLycj7//HP0ej0yWdvbva2tLQaDge+++05kvY2KisJoNIqaRu2htHatnXvB= SSNHIW8LVFt+JEHb3V6BnVqOrUqGRilFKZegUcl486EQknu7Me7dq+y7WCu2N1kE6lpMdPfVkHq= jgbiQNq+XVYD8qlYsVgEfJyUuGjkutnLaJYkSujjw3TMxlK5O5Nuno3G1leOokeFmL2+r9RTAah= UobzSikEnwcFBgr5bhfcfQKK03Mun9axjNAo8kthmwepMVuVSCTCpBIZPQbLDg6ahErWw7R8886= M+pW42MXHWZxFAHfJyUeDko7woR1baYeGzzLfKqWlkywv9HzydAo87C7Vq9GPZSyCW42MpxsGk7= Vm8nJQqZlPhXzqNWSFky0u8n++uSkU8eAAAgAElEQVREJ/63oTMs9R9ES0sLBw8e5MKFCwQHB7N= 7926Rfnrfvn0kJSVRXl4uUsNXVFSQlZVFdXU1Bw4coKqqikuXLolU4ra2tuzbt4+mpiZGjBiBQq= Fg+/bton7JhQsXyM3N5eLFi0RFRbFr1y6qq6uZNGkS77zzDra2tqSlpeHr68tXX31Fbm4uY8eOJ= TU1leLiYm7fvo2NjQ3du3dn69atqFQqampq2LVrF3FxcaK3xNnZmXXr1ok6MM7OzqSlpREYGEhJ= SQk3btzAarWSlZVFcHAwx44d4/LlywQFBfHtt99iMBiIjY0lOztbzMlRKBRERESQkpKCo6Mj0dH= R7Nu3j4aGBpEa/urVq2RmZtK9e3cEQaB3796ikGG70rhOp+PYsWPMnTsXg8HA119/jVarpaSkhK= SkJP785z8jlUpxc3MTldp37NjBwIEDycnJobKyEkEQOHLkCNXV1YwaNQq1Ws2pU6fQarUkJiYil= Uo5efIkt2/fprCwEIPBgJeXl6hKbGNjQ3h4OD4+PkgkEpqamtixYwcNDQ2cOXOG8vJyDh8+jJ2d= HWazmd27d9OlSxfCw8ORSqXcuHGDbdu24eXlRUVFBVarVcy9iYuLE6UaPv74YzIzM0Va/8GDB7N= u3TqUSiVXrlxhxIgR9OzZky+//JKamhry8vIoKCggJyeHK1euMGrUKHJyckhPT6euro4jR44QGh= rKnj17aGpq4uDBg5SUlNDa2kp0dDS1tbWcPHmSkJAQsrOzyc3NJT8/n4MHD+Lq6opUKqWsrEz0Q= JksAp+fqeRamY5AVzW7smpQK2SolVKuFLdgq5KhNwlcLm7GzV5BWk4DNU0mDGaBQ9fqefQBH1Yd= KMZWJcNsFejmq8FqhbxqPecKmnCzV9Ddx5aDV+uY2McdlVyKxSrwZUY1VgEuFjVzpbSF7HId18t= 09At14EppC6X1BioaTWw5U4nOaOVCUTPdfGzZfb6GxlYzA7s68eHRMjwclOy/VIetUsbXl+sorN= HjYqugoEbPiChnzuQ10Wq00t3Plo/SylEppHx9qY7sch2xAXbsOl+Dr5OKby7XEeCqZt5Ab1ztF= FiBgho9ey/U4ueioklv4XJxCzKphLwqPQO7OnK5uJnyRiNOGjm7z9fgaq/Aw17B1VIdfi4qimr1= nMlrollv4XpZC1PiPdiVVYPFCgPDHSmpM5BZ2MSiIT70DLCjvNFIiLvNf2op7EQn7js6jZv/IAw= GAy0tLaIXxMHBQdR2GTZsGC4uLsTHx6PX6/Hw8GDUqFE0Njai0+n4/e9/L+p6hIeH4+DgIKqGBw= QE4OvrK+rAlJWVYbVaiY2NRaPR4O/vj4eHh/j37373O8LCwkThuXbtoKioKCIiIhg/fjxFRUVIJ= BLGjRsnemmCg4OxWCw88MADODo6ito/bm5uBAYGUlVVhb29PUOHDsXDw4P6+nr8/PxEjZSwsDB8= fHwwGo3ExcUhl8sJDg7Gzc2N+Ph4PD09KS8vx87Ojnnz5lFTU4OPjw8ODg4MGzYMNzc3ampqUCq= VzJgxAycnJ5qbmzEajQwfPlxMcm43biQSCQ4ODsTGxvLAAw/Qu3dvGhoa0Ol0xMbG0rdvX7y9vW= lsbMTd3Z0hQ4aQm5tL37598fHxoWfPnrS2tqJSqfDy8sLNzY1evXqhVquxtbUlICAAHx8f7O3tC= QkJoaqqitbWVsaMGYOvry82NjZUVFTQrVs3+vXr18Hj5uLiQl1dHTY2NiQlJWFraysmIvv6+hIY= GIifnx8ymYy6ujox32fIkCE0Njai0WiIj48X7yFo86xIJBIsFgsjRowgJiaG8PBwioqK8PPzY9S= oUTg6OuLv709NTQ0Gg4Hhw4djNBpxc3MjLCxM1DozGAxMmjSJyMhInJycaGhoYPjw4YwdO5YHH3= wQvV5PS0sLvXv3pkuXLowePZq6ujocHR0ZO3Yso0ePpqysDJPJ9P11EaC80Uiohw2OGjkh7jZ09= bahu68tvs4qLFaBoZFOGM0Cdmo5WYVNeDgocLSRMy3Bgxh/O2xVMkwWgWA3NdMTPSmuN9BisOBs= K6dPsD0apQyVXIqXkxKZVIKfiwp3ewW1zSZUChk9/GzRqGR089HQxcOGB7o5o221oDNa6B/uiJ1= aRoibDc4aOU4aOeGeNozs4UKEt4b6FjO+ziq6eNigN1rpFWRPDz9bgt3UaPUWIrw1BLiomRLvgb= 1ahlIuJT7EnvkDvdGbrfg7qwhwa0uKDve0wWC2YjBbOZWrJdTDBn8XFQGuanoG2OFiK8fLUUnPA= DtaDBZCPGzo6qVBIoFeQfZ4Oylx0rQdVxcPNUlhjmj1FlqNFh6O9yDAVYUggKejkig/W5oMFi7c= bsbRRo7BbCXrdjPhnhocNZ2ZCp34v4F/A0NxJzrxn4XJZGLVqlUEBgYybdq0//R0OnEHzXoL8a+= e/9ntyxuM2KpkONj830p6rWsx42L7vVFR22zG1e63NTJMFgGDyYqduu1cBrmp2flYd1Sd1VKd+D= +CX2/cCAIWaxvxnlRiuSNuKadeb+DbjCz8/ELw9HDC20aBRmrBLJUjQ4rih5IKgnCHDE1CbW0dV= 65cpay07I5ag4CAFW9vT4YMGUpdXR0SiRRnZyfk8vZF7oc8yHdNkHaZh45tO7Zvm4MFo9FCk7YZ= q2DB1dUNmaxtP0ln7fr/WhQWFtK/f3/c3d05fPhwh3yZTvzvwNvflrDmcCmRPhpWPdyFbj6af77= T/xK8e6iU1d+VAODrrOLLP0bi66z6TcfMLtfx0PvXaTZYAFg5OYTJfd1/0zE70Yl/J+6D50bAIl= iRCFIECVgEC4JESlWTjsfe+JDaVnu8Pb2Ij/QmqYcnPYK8USFHLpWIBkP7FAoLi/hw3cfk5+dhN= JrE/q1WC7GxMTz9zBKWL1+BnZ0dS5Y89Q8JlD/FcCrQZtxI7vx9LwNHQBCs3LyZy4cffkRzczOr= Vv0Ve3sHQEDSwbrptHQ60YlOdKITnfhvxa/2feqMZm7Xa/F1dkCtlANSrIIEq0SCDDWtBiXZpXp= ult3i5JXLrHlqCl52HUsOJRIJer2BlJQt5OTkoFarCAsLvGO8CFitVoKCA5HJZISGhqLR2IgEaD= /oRfxLEO5ljPwMg+ROJU2XLl3Q61vv5ER07PvHx+hEJzrRiU50ohP/DfjVAdaSmiaeXPsdf/rwW= z4+cIHq+hZUEgkCYJTaYZbZIJFJMSOjrkGPYLK2GQz/YBfk5eVx9cpV5HI5PaKjeGrx4zz2+CIe= e/yPPPHk/5CcPA6ZTEZQUCD+/v7I5QoEARoaGkhPP8XevfvZvXsf33zzLUVFxZw4kc7OnXvYvXs= vu3fvY+/er7l27QYWi/VOuEtCQUEh3313iD2797F7915SjxxFAgQFhRAS0gWQcuHCpTt97GXXrr= 3s33+A7Oyc+6IplJWVRc+ePQkJCWHBggW/ur+fgk6nY82aNZw6deo3HefnwGKxsGLFCk6cOEFlZ= WUHTpqfg/fee48PPvjgN5rd99iyZQvr1q37yTZZWVmEhIR0+AwePJisrCyxjVar5emnn+bChQuY= TCaWLl1KXl7eL57P8OHD79K4asfKlSs5dOjQXd/X1tYydepUQkJCmDZtGtevXyc9PZ2srCz+8Ic= //OI5/CMmTJhAY+O99ZEAzp07R2xsbIfzM2zYMJH7pqGhgeXLl5Ofn3/P/evq6li6dCklJSX/dC= 4vv/wyx48fv+e28ePH89BDD911rV577bUO7dLT01mxYgVms5mDBw+yatWqfzruPyI9Pf1Hz21xc= THTp0//0X2vXLnChAkTfvGYvxYXL15k+fLl6PX6e24/e/Ysr776KgaD4b6PbTAYWLt2LceOHbsv= /dXV1fHyyy93eAbvF1asWME333zzs9quXbuWkJAQ4uLi2L59O1u3bhW3vfjii7zxxhv3fX4/xIU= LF+663/v3709GRsZvOm47rFYrmzZtYvPmzf+W8e7Cr9VvuF5cL/R4dJsQtegLoeuc94R3tn0nmA= RBKNC2CL9f9qkQ9diXQrcndgkRj+8QBiz5ULhd1ySYhbu1pQ59lyqMHTNRmDF9jvDtt98JFotFs= FotgtVqFgTBIgiCIDQ0NAizZs0RHnvsCaGyslIoK6sQnn12mTB+3CRh/LhJQvL4ScKM6bOEw4eO= Ci88v1wYMyZZSE6eJCQnTxLGjZ0oTHl4hpCaekwwmUzC118fEKZOmSGMGztBSB4/WRg/boLw+ON= PCsePnxTmzV0oPDRpqlBdVSt8sPYjYfz4SUJy8kNC8vhJwrhxE4Rp06YL6eknf+2pEwRBEPbs2S= O88sor96WvfxV6vV544YUX/m3j7dy5U+jatavw7bffit9ZrVZh8+bNQkFBwU/ue+XKFcHDw0N4/= fXXf9M5Xrp0SYiPjxdeffXVf9r2xIkTwuOPPy7odDpBEAThwoULQmZmprg9LS1NsLW1FU6dOtVh= v5ycHGH16tW/eq7p6elCeHi48NVXX3X4vqWlRYiIiBA2btwozqtHjx7CwYMHf/WYvwS7du0S73G= dTic888wzQkBAgNDY2PiL+ikvLxc++uije25LSUkRAgIC7jq2yspKYdKkScKlS5eE6upqYdmyZc= KFCxcEQRCEsrIy4ZtvvhHb1tfXC3/4wx+EcePGCUajUfzebDYLM2fO/EVzvRd0Op2wePFiITg4+= J7bW1pahEWLFv3o9vuN48ePC0ePHhWs1v9epT+dTicsXbr0F+2zbds2ISIiQjh58v6s0e3YvXu3= 4OjoKHz55Zc/2c5sNgsvvviiMGHCBEEQBKGurk5YsGCB8PTTTwuCIAjFxcVCZmZmh3vst0JmZqa= wYMECoaWlRRCEtnXtzJkz/3J/VVVVwo4dO4Ta2n9N7+3fiV8dlhKQYJGpkWNEotSgFyQYAAuABA= RBgRUlEoxIaVMB/95pY6U9ZGQwGJBKpcgVChwdnZBIpPxjrotEIkGhUCCXy5FIJOzauZubOTfp2= rUrvfv0QqlQIFfICQoKQiaTo1Iq6d27F2HhYWRlnicn5yaZmefx8PBg5849mM0WomOi6d6tO3KF= FEdHB+zsNCgUCpQqOTK5lITEeLx9PAEJgtXKrdxcsjLP8/nWL0lK6vdrT9+PwmQysWXLFgCSkpI= ICwsTt7W0tLBz5048PT1xdnYmICCAAwcO4ODgQP/+/Tlx4gStra0kJCRgMBg4f/48o0ePprCwED= 8/PzQaDbt37yYkJARPT08+//xz9u7dywMPPIC/vz9nz54FoG/fvnTt2lUc12g0kpqaSkVFBZGRk= cTHx5Oenk5lZSV9+vTB1dVVJMOzWCxkZWVx/fp1fH19GT58OM3NzRw5coT6+nqGDh0KtL1lHT9+= nNDQUD766CNu3brFrFmzaGpq4vz5tkqa2bNnYzabOX36NHl5ecydOxdo84h8++23tLS0EBISwsC= BA8W5NjU1ce3aNaxWK7du3SIqKorevXtTVFREamoqCoWCQYMG4efnx+nTp6mvr8dsNjNq1CgUCg= XR0dHMnj2bhoYGTCYTWVlZZGdni/P5MTQ1NeHo6EhwcDAAO3bsoKmpSTxei8VCWloa3t7evPHGG= 5jNZk6dOkVwcDDHjx9Hr9cTGxtLTEwMp06dwmq1iuc3MzOTiRMnUl5ezokTJ9DpdCQmJpKUlMT4= 8eNFcr12rF+/nsDAQHG+sbGx7Nmzh+rqaoqKiigrKyMhIYHy8nJOnjxJc3MzY8eORa/XU1VVhV6= vp7CwkH79+hEQEMDZs2e5ceMGAQEBJCYmYjabSU9PZ9SoUWRmZnL16lXs7e0ZMGDAXRpX7bCxse= Gll17i5s2bvPHGGyxfvlzUSlOr1aSmplJWVga0kSWOGTOGq1ev4u3tzdtvv012dja9evXC1dWVY= 8eOoVAo6N+/PzNmzLjrjdRsNnPgwAHGjx9P9+7dRbLCdrTzFEGbRMc333xzZ+1oO4+5ublotVpy= cnLYvHkz48ePZ/DgwVy5coX8/HycnJwYPHgwSqWSbdu2iSSTLi4uNDY20rt3bzIyMrh58yZyuZy= JEyfy2GOPcfHixbvOi16vZ9u2bURHR5OZmQnQ4To/9NBD2Nraiu1v377NrVu30Ol01NXVMXv2bP= Lz8yksLKS0tJSEhATMZjNnz57Fzs6OSZMmkZuby6VLl0SCz/fffx+NRiOSetbU1NC7d28KCgpEB= m6AUaNG0dLSglarJTY2lvz8fI4fP45SqRRZ09tRV1fH0aNHUSgU+Pn54e7uzpEjR3BycmLAgAG4= urpy8OBBKioqgDa6guTkZK5cuYKPjw9yuZyDBw/SrVs3VCoVmzZtIj09naNHj6JWq7FYLBQXF9O= zZ0/y8/OpqqrCx8eHESNG0Nrayq5du2hubhbXgurqar7++msAcX37IXbt2kVjYyPR0dH06tWLQ4= cO4evry40bN/D29qZfv+/X+HHjxolet+bmZg4fPkxDQwN+fn4MGzZMbJeXl8fVq1dFz4yzszNvv= /02hw4dwmQyceHCBUpKSmhubmbAgAFcv34dq9VKdnY2EomEuLg40tPT6dWrF5GRkdy8eVP0uI8Z= Mwaz2Ux+fj65ubkEBwdjZ2cn3lOTJ09Go7l3sn1zczO2trZER0d3OPaIiAgkEgk3btxg5MiRZGd= n09LSIrLUtz9XM2fO5PPPPxePY9KkSaSmplJaWkpQUBCDBw+mrKyM69evU11dLY5jY2NDSEiIeN= 0DAwNJSkri9u3b1NbW0tDQQFNTEw899BClpaWkp6fT2tpKv379CA8Pv+ex/Bzch7o/CSapHLNcA= lIBpBIkgEwAqSCIabwSLEgR7uwBkntUOAmC0Pa90J7022HrD0JBEgwGEzk5OSLLr1qtRi6Xo1bb= YGtni0Ta1ndUjygmTkxm0KCBCIKAXq+noKAQXYsOBwcHpk+bykOTJzJxYjIPPDAUlUolji2VSvH= 3b+OLkctkKJRK7O0dUChVVFfX8lvi66+/5tixY+Tk5HRwZ0KbS/PRRx8lLy+PlpYWnn32WaRSKZ= cuXeKLL77AZDLxxhtvIJFIaG5uFnWYnn/+eQoKCti+fTsVFRV8+umnnD17FolEgkQiQSqV8v777= 4s/fB9//HEHN/TBgwc5ceIEEomEtWvXkpqaSkZGBjU1Nbz44ovU1n5/TnJyctiyZQsWi4W3336b= EydOkJKSQl5eHhKJhIsXL9Lc3Mzy5ct58cUXO8zBZDLx6aefUlVVRUpKCpmZmZw7d449e/YgCIL= 4oB86dIi0tDR0Oh0pKSlUV1cDbYbhjh07mD17NqmpqTQ0NPDOO++QnZ3N2rVrkUql5Obm8t5777= F3717mz5/P3r17kUql98yjqqys5Msvv0Sr1fLuu+9y7dq1u9ocOnSIBQsWMGvWLNE4/Pzzzzl37= lwHZuC33nqLv/zlLzQ0NIjHq9PpOHToEI2NjZhMJtasWcNnn33GY489xgcffIBUKmXTpk3MmTNH= DJdkZmZSVFR0V1jlh/jmm29ISEjo8F1wcDCBgYG88sorbNiwgaamJnbu3ElpaSn5+fk89dRTrF6= 9mtmzZ3Py5ElOnz7NgQMHyMjIICUlhZaWFjZt2kRubi5z5sxh5cqV1NbWsnr1aqRSKcePHyc1Nf= Un7207OzsSEhI4fvw4+/bt44UXXqC6uprLly+zZcsWpFIpy5YtEwkily1bJp6v9s+bb77J7du3y= crK4ptvvunAkN2OlpYW8vPzOxgsJSUlLF++nFmzZvHSSy8B0NjYyB/+8AdRx6y2tpbq6moWLFjA= t99+K94TUqmUy5cvk5WVhVQq5ezZs2zYsIEXX3yR+fPnk5OTQ2lpKc899xxbt26ltLSUnTt30tT= UxJYtW0Sj5V5YsWIFlZWV5OXlodPp0Ol0fPnll5SWlnL58uUO17m2tpbZs2fzyiuvUFFRwUcffc= SGDRtYtmwZq1atwmg0UlVVxWeffYZOp2Pbtm188cUXnD17lqKiIhYuXCjyVrXf87Nnz+arr74CY= P78+Wi1WjIyMsRQ5+zZs9mzZw8NDQ28/fbb4rn4+9//Ls6r/XleuHAhFRUV1NTUsHLlSqRSKRcu= XBDPwQcffIDJZGL9+vVUVFSQmprKc889x61bt/jkk08wmUxs3LiRzMxMcX7Xr1/nqaee4uOPP0Y= qlZKRkcHBgwcRBIE33niDqqoqce1qbW3l1q1bAKxZs4Zr165x/vx5Dhw4gMViEee7Y8cOzp49S2= NjIykpKaxfv565c+eyYsUKrl69yieffPKj1+vEiRMcOXIEq9XKxo0bKS8vF7e1G+ftL3rtfycnJ= 1NQUMCGDRuwWq08++yz5ObmMnv2bJYtW4ZWq+VPf/oT7733HufOnePdd99Fp9Oxa9cuCgsLOXr0= KFu2bGHNmjU8+eSTtLa2otVq2b59O1VVVWzbto0TJ07cNddjx46Ja9Pp06cB+Oqrrzh79iw1NTW= kpKRQWVkphn9zc3NZt24dVquVTz75hIqKCr744gsyMjKQSqXi58yZM5w/fx6pVMrf//539u3bx4= oVK3j99ddpbGzk9u3bLFq0iNOnT1NYWMhf/vIXWlpaxGs7a9Ysli5dSn5+Ps8++ywVFRV8/fXXX= Lx4kcLCQv7617/+6Pn/ObgvZAoCEqzIkAttpowEkCIgESwIEivCnXJsqcQKku8NlB/CxkYNCBgM= JqprarBarXcWlfYKpztj3Unk1bcaaG1tRRAEzpw5y8mTpwABd3d3nnjicSRI7pSlt0Fto0Yqaeu= rVafDarWgVCrx8HRHIhHu0NvfaX9njkaDkd2793DkSCoGgxEBAalEilyu+M2TiYcOHYqrqytPPf= XUXdbrzJkz2bx5M3PnzuXGjRscOXKEo0eP0traytChQ/nwww9F0jq5XM7cuXNpbm4WLXBbW1tWr= 17N3//+d+Li4rh69SrHjx9n8ODB9OjRg9zcXMaPH8+DDz6I2WxGpVKh0+lITU0lJSVFfIMcPHgw= R44coVu3brz11lsdqtdOnDjBxo0bcXR0pLa2lpiYGADmzZsneik0Gg2TJk3i+PHjBAcHExYWxuj= RowkLC+PFF1/k7bffJiMjg7y8PEpKSkhMTGTChAniwjVy5EhGjhxJREQE4eHhNDU14e7ujlwup0= +fPsTHx/PII4/g7OxMdXU1mzdvxs7OjpkzZ2IwGJg5cyYLFy4kMTGRsWPH8rvf/e6e18LLy4uXX= nqJxx57jOzsbMrKyu7KE0pISOCFF16gqqqK4uJiGhsbWbt2Ld9++y2tra2iQTZjxgxOnz6Nv7+/= +Hbq4+PDpUuXmDNnDo6OjlitVkwmE1FRUYwcOZLk5GSio6P55JNPkMlkTJo0ifT0dJYsWXJPMcp= 2ODs73/N7V1dXBg0axJkzZ6itrWXDhg2UlZUhCAKurq4888wzWCwW5s+fz7Zt2ygoKKCiooLf//= 73jBw5kmnTpqHRaFi8eDHLli3DycmJd955h+3bt/PVV1918Pb9FFxdXenZs6folbRYLOJ1WblyJ= QkJCdja2nLixAlcXV0ZOnQoMpmMXr168corr3Dz5k2Sk5P54x//2OFHqx16vR6DwYCLi4v4naen= J1OnTqVbt2589NFHAKIY7MyZM3F1dWXv3r24uLgwduxYrFYrgwYNEgks33zzTeLi4hg6dCi3bt1= i+/btjBw5kjVr1jBv3jykUinV1dXk5OTg4+PD8uXLWbx4MRkZGVRXV99TH+zq1ascO3aMkydPkp= GRwYkTJ2hpaeHdd9+ltbUVs9mMvb09r7/+OtAm1zFt2jRu3LjBnDlzCA0N5a233mL8+PHU1NTwy= COPcOLECd5//30cHR3RarUiWeONGzf46KOPCAgI4MKFCzg7O9OjRw+mTZsm5j0VFRUxdOhQ3N3d= uXr1Kh4eHkyePJna2lpSU1Px8vJi5syZtLa2MmLECPE4NBoNEydO5OjRo8yZM4fTp0+zf/9+9u7= dK5JZdu/enaqqKqZNm8bx48fp3r07UVFR4vrQvjZt2LCByMhIjhw5QmlpKfPmzePatWsMGjSIhx= 9+GJ1Ox4ABA0hOTqapqYkrV66I3kCz2cz169cBeOKJJ7h9+zYPPvgg8+bN65AruWnTJk6ePIlKp= UIikbBhwwbCwsKYOnUqoaGhPPfccz967w4cOJABAwYQGRmJj48PjY2NeHt7A6BUKlGr1ffcLygo= iJdffpnXX3+d8+fP4+Pjw8iRIwkODmbOnDm8//77jBgxAo1Gw9tvv41arWbRokV8+umnrFu3jqC= gIPr160drayvTp09HrVbTr18/3nzzTU6dOsXkyZPvGrNPnz689NJL1NTUiNf4s88+Y/Pmzdja2t= LU1IS9vT329vao1WrxvLe/ZHzwwQecOnWK4uJiEhISqKio4IEHHuDRRx/l+eefJyYmhsDAQNatW= 8eECRPIyspixowZohEK4OPjQ0pKCqtWrSItLY3ly5eTnJxMS0sL8+fP56233qK0tJQpU6Zw/Phx= Fi9eLJJ9/qu4z4xNEjrm2d7LA3Nv+Ae0uXSNRgOnT5+hIP82TU3NaLVNaLVN6HR6RJ+Ptc3VZWO= jQSaTMXToUBYvfpIlS55iwYJ5eHl7ImAFifUfxm9767PRaJBI2jwEtTX1mM0WLBb4Xr6n7Tjq6x= u4cOESCoWSmTNn8vSSp5k0adKPuv3uB1pbW9HpdGzatIlVq1bxpz/9SRRZbIe7exsfRftD2adPH= 27cuEFlZSWffPIJDg4OTJgwgYMHD2I2m5HL5dja2orzHjp0KAcOHGDNmjV8/PHH4luv2Wxm+fLl= vPfee6IK9w/h6OjIxo0buX37Nvn5+YwfP56tW7cyZMgQxo0bx+XLl8W2NjY2oqdIp9Mxffp0zGY= zJlNbib/VaqW5uRlHR8e7xtHr9UyfPp2QkBBmzJiBIAiYTCbxB6zdI5WSkkLfvn25dOkSkZGR4v= 4SiQRbW1uUSiU2Np8NDqgAACAASURBVG2U8u1swHl5eeI5UalU2Nvbi21/DEVFRYwfP5758+d3c= D//EPb29vj5+ZGUlERycjKNjY0YDAaMRqPobaipqcHd3f2u8JEgCFRUVIjJnGq1Gjs7OzQajXjN= HB0dkclkmM1m1q9fz44dO3j//fd/dM7Q5sLeunUrdXV14nfnzp1jy5YtODg4iAZ6v379SE9Pp6K= igtOnT+Pr64ujoyMajQZBEMQXjby8PKRSqaj31b6Y19TUMGnSJBQKhegN+TEIgsDNmzdJSUlhwo= QJ2Nraiteoa9euODg4EBYWxowZM+jTpw+2trZ3vKnfw2Kx8Pjjj7N27VrWrVvXIVzzz6BQKPD09= MTf35+XX34ZrVaLTqcTNdYkEgk6nY7W1tZ7GoeCIFBQUACAXC5HoVDg5uaGRCJBpVKhUChE9faC= ggIefvhhpkyZwtSpU390ThaLRby/pVIpZrOZ2tpaEhMTOX36NNXV1Zw7d05sL5PJRDmL9vtarVb= j4OCAWq0W77epU6eSl5eHVqvlzTff5KmnnuKJJ55g2LBhHDx4sMMcfhhaWr16NcnJyaxfv54ZM2= YgkUjE7YIgkJOTg9lsRqFQdLg2UqlU1CVTKNpeAEeMGMHNmzepqKhgzZo19OvXj9jYWGJjY/Hz8= yMuLq7D2vTQQw9x6NAh/vSnP/H555+LxoharUaj0Yjact999x1z584lNTUVHx8fUTS4/RpaLBYa= GxtZunQpK1as4MMPP7yL30oikbBr1y5KS0u5efMmgwcPRq1W4+TkhEwmu6fB3I79+/eTmJhIbm4= uPXr06LDN19eXurq6Dh7euro6nn76acrKypg9ezazZs3C398fpVKJk5OTqI/XrqPXrrHX3NzMc8= 89h8lk4vnnn0cqlWJvby/q5NXW1jJv3jy6d+8uhuv/EXZ2dvj5+dGvXz8mT55MQ0MD0OZdl8vl4= vPXfi+azWZ0Oh21tbU88sgjODk5MW/evLv6NZvNYqJ/u+6go6Oj+LukUCjE9b2goICBAwcycOBA= hg0bhlKpxMXFpcPa255Yvn//fvHF49fgt6XB/AXOjaCgQPrG9eXUyVPcupnL2397B2cXZ0DAYrE= SFhbGxInJd/xCoFTJiYiIoKSkhNLSEvwDfFEq5BhNRpqbmu88FIJobAlCGx0gAncWbwfq6urYvH= krkZFdQSrBydERDw9PECRIkCKRSEXXrcViQafTodcbEATrfamWqqysJC0tjby8PNavXw+0xdLbF= 4SuXbty5coVbty4wdWrV4mKigLawkMGg4FTp04RHR2Np6cnzz77LJGRkTg7O5OcnExUVBTr168n= IiIClUrF9evXuXDhAoGBgWzfvp3AwEC6desmLoglJSV89dVXVFdXM2DAAHbv3k1RURGlpaWEh4e= j0WiIi4vj008/paysDJlMhlwu5/bt2/j4+NCvX78OoYG+ffuyf/9+3n77bZydndFoNMjlcnFOly= 5dwtvbm5s3b9LQ0MClS5dQKpXs2rULo9EoGj/FxcWcPHmSyMhI9u7dS3V1NWfPnsXBwYHKykrGj= x/P5s2bKSgoIDs7m8DAQNF4qK6uJiUlRczTmjhxougRcnBwYMiQIRQVFXHt2jUCAwNJTEwUfyir= q6u5du0aZWVl9OzZE3d3d65du0Z9fT1nzpwhMTFRVP/et28f165dY+PGjSgUCurr6/Hy8mLAgAE= sWLCApKQkcnNzSU1NRRAECgsLuX79OiqVitOnT+Pj44NMJmPTpk3ij1ZAQICY2zBkyBAyMzPFEJ= Jer8fNzU0MCR44cIDc3Fyam5sZNmyY6A6fPn06586d44knnmDQoEFAWx7H/PnzWb9+PdevX6e2t= hYHBwfWr19Ply5dqK+vF3OMLl26RHp6Olqtlvnz5/Pyyy+jUqnQarUkJyezbds2qqqqSEtLE/Ws= 2t3U9fX1ODs7U1FRQVpaGgUFBaxfvx6j0cipU6cYNmwYs2bNIi0tjStXrpCRkUFkZCR6vZ5nn30= WgMOHDyMIAteuXRNzRy5fvsx3331Hbm4uixYtIi0tjerqalGJvN3AbDcO7e3tRePuu+++4+LFi0= ilUs6dO4fBYECr1dK3b1+uXr3K6tWrKSws5OLFi2RkZJCWltZB9POLL76gW7du7Ny5E6vVil6vJ= yIigsuXL2O1WklLS6NHjx6cP3+eGzducOnSJXx9fbl58ybFxcVkZWWh1WopKyvj8OHDoqEcEBCA= u7s7f/7zn7FaraKGXHBwMO+++y6RkZHU1NTw/PPPi8+X1WrlwoULrF+/noyMDBYuXEhqaiqFhYX= U1tYSFRWF2Wzmtddew9/fn9bWVlGA9cEHH8RoNIr3X1hYGIcPH6asrIyKigr++te/itcgPT2diI= gIjh49SkNDA2PHjqW8vFzUonvkkUfEORkMBo4dO0Z9fT1ZWVlERkZiMpl4+eWX8fX1xdvbGy8vL= xoaGsT+MzIycHFx4fz583h7e5OSkkJ0dDRJSUkolUqUSiW3bt1i/fr1XLlyBb1ez+DBg6mqqiI6= OpodO3bQ3NzM7du3USqVrFy5El9fXy5fvkyXLl24cOGC6A2orKykrKxMFKSdPXs2zz//PLNmzaK= 5uZnQ0FBKSko4ceIEfn5+lJaWcvDgQR588EGgLQfr+vXrODo6olAoGDFiBBs3bqS4uJhr167RpU= sXFAoFgYGBPPHEE7zxxhsUFRUBbaGqefPmkZeXR1BQEIWFhbS0tLBhwwYyMjKoq6vD3t6empoas= WqssLCQ06dPiy81ubm5lJWV0dLSwo0bN7h16xbOzs7Y2tpSW1tLUVERJpOJMWPG4OrqSlVVFbt2= 7SI7O5uNGzeiVCppbGzEycmJGTNmsHTpUqZOnYrVamX06NGidp/VaiUnJ4eMjAz0ej0Wi4WCggI= MBgNubm4UFRWxY8cOZs2axdatWykrK0Or1fLoo4/y3Xffcf78eSoqKrCzs+PMmTMEBASgVquJio= qiqqqKgoICPv/8c7Kzs5HL5ezfv5+Wlha++eYbBEHAxcWFM2fOUFVV1eF375fiV2tLVWsNfHGqG= CkWpBY90cGOJHQPptVg4sDJq9Qb1FglCsCEg6yFcYNicVQrO9g9VqsVqVRCly7B1NXWU1NTi1bb= RE1NDfX19VRXV6PR2BCfEMehQ4dQqVQMGNCf0LAulJaWkZeXz+XLl7l06Qo52Tfx9w/g9u3b1FT= XEhMbQ9euYRQWFpFx9hxe3p4MHjwQF2dn8vILKC0pJftGDjeuX6e6ppawLmFcuXIVg9HIuHFjaG= 5uIS83l2vXrnH58mXy8vIwmU1IJBIeeujXlWy2trZisViIiIgQH2Q/Pz8SExOJiYnBbDbj7+9PT= EwMvr6+YgiioqKC4cOH4+npSVBQEElJSRiNRmxsbEhISMDT0xOFQkFAQABBQUGi5pKrqyuhoaHE= xsZiZ2cniin6+fnh4eGBl5cXCQkJWCwW3N3diY+PJzg4WHwTDQ4Oxt3dHbPZjKenJ4MHD8bNzQ2= dTkdUVBSJiYmiYeHi4kJoaCgmkwmVSiWGVuRyOTKZjClTpjBs2DDkcjkDBgzA19eXnj17AhAYGE= ivXr2wWCwkJCSICXu+vr5YrVZ+97vfMXbsWIYNG4YgCGg0Gvr27UtAQACenp5IpVIaGhq4du0aQ= UFBuLu7M2rUKMLCwkhKSqK+vh4XFxeGDh2K1WrF09OTsLAw/Pz8RP4kg8GAWq0mJCSE6OhogoOD= EQSBIUOG4OfnR1BQEEqlktbWVlpaWkSNKaVSKRo27cfn4uLCkCFDmD59Og0NDURHRxMUFESPHj2= ws7PDx8eH0aNHo9frkcvlJCYm4ubmhre3N/7+/oSGhqLT6YiLi8PFxYV+/fphtVrx8fERRVO7du= 2Kt7c3kZGRHTigBg4ciJ2dHVarFaVSydy5c8XtERERhIWFMWDAAFHFOy4uDi8vL1HLyt7enp49e= 5KUlETPnj3R6/UEBgbStWtXqqqqGDJkCN26dSMkJASLxUJkZCTh4eEEBQWhVqvR6XQIgiDe4zY2= NgwZMoQ5c+Ygl8tpbW3F29ubgIAAbG1tKSsrw9vbG6VSSVZWFvHx8fj6+uLn50dUVBT29vb4+/s= zfPhwWltbCQ4OJjIyEnd3dwIDAwkPD8fPzw+lUolCoaC8vJy6ujoxHNKlSxfc3NzEufTu3Zt+/f= oRHx+P0WikW7duTJ06ld69e2M2m4mOjiYiIoKYmBg0Gg39+vUjODgYnU6Hn58fQ4YMQavVMnLkS= Nzc3HB3d0cqlRIVFUV0dDSBgYFYrVYSEhIICgrCxcVFTL5v/5G1sbERE7S7du3KmDFjmDhxIt27= dxc9M8OHD+/gecjJyaGoqIiePXsSFxdH//79EQSB4OBgwsPDcXd3JzIyEqPRiFKpZMyYMXh4eGC= 1WvH19WXMmDF4e3uj0Whwc3PDzs6Onj17EhwczPXr1wkNDUWpVFJVVYW7uzsqlYqYmBhiYmJ48M= EHaWhowN3dnZEjR4ohGKvVilarZeDAgXh7exMcHEx8fDw6nQ57e3v69OmDxWKhvr4eT09PUcC1V= 69e4nrRniPm7e3NwIEDCQwMxMXFBaVSSWxsrBjODQgI6OAdCg4O5sEHH0QikeDk5MS4ceMYNWoU= gwcPxmAwEBwcTEREBCEhIaLxHxERgaenJ1arlcjISDw8PIiIiCAwMBAvLy969eqFs7OzqNWm1Wr= x8PCga9euJCUliS9sCQkJBAQE4O3tLT5H4eHhdO/enaamJpRKJYMHD6Zbt274+vqKcxwxYgRKpZ= LIyEi6du2KjY0N8fHxovZf7969CQwMJDo6GovFQrdu3ejatSteXl706NGD4OBgfHx88PT0xGKx0= LdvX0JCQggKCsLGxkbMyenTpw82NjYolUrc3d0ZNGgQ/fr1Ez2NoaGhhIaG0rdvXyQSCREREUyY= MIFhw4YRFBQk9u3r60tMTAyenp6oVCrGjBmDm5sbBoOBPn36iNp7oaGhhIWFoVKpkMvbnBDtLxy= Ojo707dsXe3t7unTpQkxMDGq1mkGDBuHv709SUhISiQRfX1+SkpLw8fH5ydD7T+FXMxRfL9Eybt= Up5IIBubGB6UP9efKhodRoW3j8r5+T1+iEWWoDgg5fZTWfLJ9JgKNdR25goT3nBVpb9ZSWlFFVV= Y3FakYiafO6ODk5EhkZSWZmJjKZjNiYGFRqFY2NWopul1DfUI9gFZDL5YR0CaGyopJGbSNduoTg= 7+9LeXkV2dnZOLs4EdE1HIVCTnl5NaUlZej1rUBbzNg/wJ+C/ALMFhNxcX0wGo3k5eXT0KBFKpE= iYKWd12/gwAG/5tR14jdEQUEBf/vb33jppZfEMF4n/rvxyCOPsGjRIpKSkgB44YUXxDyTfxUGg4= H58+fzzDPPiHkd/xewa9cuMjIy7jtXyr59+zh06BDvvvsuAB988AFz5869KzT4r2LKlCksXryY+= Ph4AF577TWWLVt2X/ruRCd+iPsclvrxHJt/FqGSSCQIgoCtrYauEWF0jQi7q40gWElK6tchJOTo= 6Eh0zN15Gz4+nnf2aauy8vLywNvb486+bYaUn583fn7eHebf1taNtrwb4c4bw/+dRfH/BxiNRvb= s2cORI0ewtbVl5cqV/+kpdeJnYOnSpUyaNEn8/8iRI7+6T5VKRUpKCpMnT2bbtm2/ur//BpSXl/= PCCy/g6enJmTNn7qqI+zUYM2YM69atE3PYFi1adN8MG2irCps4caL4//79++9b353oxA9xnzw3J= 5FjQm6oYcYDATwxaRjVTS08sXIruY3OWKU2SKw6PFXVbFw+E/87npt2g6fd4BAEyZ08l38c5Xth= zbZqKb7f+yc0M9u9Pm37SGnXjxIEAan0h6Kb4h4dxvzBDBEEKxKJ7AfzRXRBdqITnehEJzrRif8= e3J9f53YbQGLhJ6ujftR98z2Hzdmz59ixYxc7d+5m5462z65d+zh9OgOttulOhYdAQ0Mj5eUVND= U1t3X9Aw6M9k97dZTZbKayspLKyiqMRhOCAGlpx9m5cxfZ2TlYrW2Jxx335wf9gEQi5dixNHbv3= ivyGNxPWCwWPv744w4VR/+IwsJCnnnmGSZPnsz8+fM7bGsnAcvJyeH8+fOsWbPmvs/xl+Ctt95i= 8uTJYlVGY2Mjq1atYvLkybz55ps/u5+LFy+ydOnSn93+8OHD96zYuXjxIgsXLmTy5Ml8/PHHnDx= 5Emjj9KitraW8vJyPPvroR+nn/xG3bt1i06ZNYjg1JyeHxx9//GfPsx2TJ09mxYoVYtKrwWDg9d= dfZ8WKFdTX16PVapk8eTJLliyhtrYWrVbLZ5999ovH+XehQWfmvSOl5Fe3YrEK/P1QCZeLW9h7o= Za/H7q3dEQnOtGJTtxv/Je4Hr43iE6dPM3WLV/yxefb+eKLts/nW7/kndXv8dpf3qS0tAyQsmPH= V7zwwoscPvzThGEAdXX1vPXW33j11dfIz28r4zx8+DBffLGN69ezf8b82jxKhw6lsu3Lrygvr7j= vPDc7duxg5cqVVFZW/mgbPz8/kaHyH0MtKpWK0aNHI5FImD59+r9NP+THsHDhQoKDg3nooYeAtl= LpyZMnk5SUxKOPPvqz+qirq2PBggUcPnz4Z4/75Zdf8sknn3TQKmpsbGTv3r1MnjxZLHXs06cPL= 7zwAp999hmtra14eHgwbdq0n+2CDw4OZuLEiaL3rra29hdpNV29epW+ffsyatQolixZgpOTE9DG= g6HX61myZAmOjo4sXryYtWvXolAo2LFjByqViry8vP+cXss/wbZz1by2r4j6FjMyqYS5A7ypaTb= x3PZ8zuRr/9PT60QnOvH/CX7bUvCfibaQUZugpVQqRUJb3byNjQoBMBlNtLbqycvLZ9u27SxcuK= CtVBvJHYLANrQH2O5td0hA+OG2tnLvNgbMe4XC7u5Eeqcs/Ody9/wcmEwmCgsLCQ8PZ/jw4eL3V= 69eRSKR4OPjI/JtyOVy7O3tUalUd3E2tFcqBAQE8NZbb7F161YKCgrQ6/WEhoYiCAK3b99GEASx= WqSwsBCALl26dOA6gLa4fm1tLU5OTvj6+mI0GsnPz8diseDr64uTkxOVlZWoVCrKyspQqVQEBwe= L1VIODg4MHDiQxsZGBgwYwP79+7Gzs8POzg4HBwcMBgPFxcXo9XpcXV1FzpR2tJfMLlmyhL/97W= 9AmwFRWVmJRCIhLCxM5IJox+XLl5kwYYIo8xASEgK0lXAWFhYSExNDSkqKyAT8+uuv8/HHHwNte= TrNzc1oNBqxtBQgNDQUtVpNTU2NSBkfFRWFXq9Hp9Nha2uLXq9HqVRiNBqprq7G3d2dyspK1Go1= xcXF2NjYiNUd0CYWuWbNGubMmUNcXJzIbbJgwQIWL17M6NGjgbZn4dVXX8XJyYnevXsTGRmJSqV= i0aJFrF+/npKSErEEu6rJRE2TEXu1HEGAJr0ZL0clggCVWiMAMqkEL0clpfUGbFUyAlzV3ChrEc= 9foJuakjoDEsDfVUVlowkBCHH/npCsrMFIfYsJG6WMEHc1BpOVojoDRrMVX2cVY2JcSb/ZJqQpC= FDXYiKhiwNzB3iRdbuJW5WtWAWBIDc1Jsv/Y++846Mq0/59nZlJL6SQQghJIIU2CSGhBem9iLCA= gIj6CoooIE0UOyBiBBTFhktZEJAmvUMIhBQCAUICARICBNJ7L5Mpz++PSQbz4q7uyu76+juXn+D= MmXOecur33M/93Lcgu0SDJEk42qhQSpBbbmyrn5sVFqqm714ZRXVUa/RYminwbm6JEHC/uA69QW= BjocTOUklWycOI2i525rjaP5w5llmioaJWRzMrFS0dLajXG8goqkOnF7RwsMDJ5g9xO5SRkXkM/= Eev5obIM7/4m9Gh2PjZIAx07RrCuPFjMRgM5ObksX37TjIzM7mTfpesrGxCQ0NxcXHD398PkKiv= 15H54AFlZWVNarC1tcHd3Y3hw4ai0+mxt2/GrVupVFVWAxLZWblcunQJPz9fDAbR8MB/6Gtjb2+= Pt5cXFpYWpnY2xr/5veh0Og4dOkRUVBQGg8EkNo4cOcLmzZuxsbGhbdu2zJo1q0ko718iOjqatW= vXmmJhpKWlsWHDBmJiYli0aBEpKSls3ryZQYMG8Ze//IXz58+TlZVFXl4efn5+TWal3Llzhy+//= JLq6mpKSkrYtm0bJ06cICIiAo1Gg06nY968ebzxxhu0adMGS0tLbt68yfr1603TWxtZsGABb7/9= NsuXL2fmzJnGvdqQQuHw4cNotVoyMzNZuXIlfn5+gFHwrV271hQsDIxxZzZt2sSDBw948OAB06d= PZ+TIkU3qSktLM+Vw2rNnD1OmTMHKyopTp06RlJREfX09CoWCb7/9lnnz5pmiq2o0Gnbs2MG5c+= f45ptv2Lp1K6dOnaK0tJT58+fTs2dP1qxZQ35+PqdOnWL37t1ERESYwsufPXuW48ePYzAYuH//P= u+//z7Lli3D0dERW1tbMjMzCQ8Pp127doBRbDXGqoiMjKR9+/YMGzaM3Nxc/Pz8WLx4MW3btmXR= okW4uLiwc+dOzp07Z4r86+HhYcon0yhuEu9XMe/HdMZ1dcHRWsXG6DxWTWyD3gAbzuVSXa+ntt7= A6md8eWv3XTp72fLxuNbM234HDwdzLt6tZNdrHVh7JoekrGq+fc6fz05kEdzKhrlDjHWk5taw/M= gDzJUKbuZWs+u1jpy5WcrpG2WU1+qwt1SxfHxr0/E4dLWYz05kEv50g8jMr+XzE1ncKajlpb4ti= E4r53hyCcOCnBjVyZn9V4qwMFNwO7+GAe0cmT/M01TWtaxqVh3PxMnGjHtFtbzQ0538inq+jsim= p38z+rRtxu38WpIzq6mt15NRVMcXk/0YFmiMTnz1QRUrjmVia6GkqErLyom+xN4uJyKllJwyDUG= etnz+jO8/vMZkZGT+7/AHfVUR2Nja4OHRAiEELVq4k37nDvfu3qO6ppaiomJu3rzJuagYRo8eha= 9fG44dPcHp05FUVFSY/HeUSiX+/n6Mf3osR48epbZOg6WVBadPR5KbmwdIxMbGERsby5y5s9HrD= az97nvTzC1JAgcHR/4ydgx9+/aiaX6r309RURHnz59nxowZ+Pr6MmnSJCorK1m1ahXm5uaoVCrS= 09OZOHHir4obW1vbJiG/nZycmD9/PqGhoezcuZP+/fvTqlUrFi1aREVFBYmJiWzfvp2SkhLGjx/= P3bt3TZaO3bt307lzZ5555hkuXryImZkZ69atY/fu3SiVSmbPns3Fixexs7PD29ubRYsW8eyzzz= YJkPVz1q5dy2uvvca+ffuwtbVFr9cTERHBjBkz8Pf3Z/Xq1Rw4cIAFCxYARgtMYx6o7du3k5KSw= vXr19m+fTseHh7k5OSwe/fuJuKmvLycc+fOsXnzZrRaLYWFhaboodOmTaO0tJQXXnjBFOn05ygU= CmxtbU2WlSeeeAInJydWr15NcnIy9vb2KBQKvv76ay5duoS9vT22tramRIx79uxhyZIleHh4sGD= BAqKiorC1tcXZ2ZkVK1YwZ84csrOzTeKmpKQEe3t7li1bRmVlJW+88QZOTk706NGDadOmUVZWxu= rVqykuLsbDwwMfHx8OHDjAl19+ycaNGwFjSoi0tDRTH4aqHRmsdkQhQd+2zTh+rQR7KxVVdXrmD= vGkWqMn/MgD2rWwpmtrexpSrzFU7cT0fi2YtjEVjV7w6gAP5m2/gyRBi2bmJmEDsP1CAZ6OFrw3= ypuLdyuwUEl8fzYXnV5gppQ4klTMqwM8TOs726pQKR6+BNhZqlj6Fx8OJBZx+Goxvq5W+LpasvQ= vPly6V0lOmYb9r6vJKtUw6dsbPBXijJ+r0aK49kwOfQIcmNbHnZ8uFbIpNo/nwtxwtTfn9cEtUb= e0YcyaFJ4Nc6VKo+fH+AKTsAH4W0we59MrCPS0IeFeJXG3y9kal8+KCW1oZqUi82cWHxkZmf/7P= BZxIwmpwSzzS9aMf14M/G/9oFAocHVxBUmBtl5LWWk5tTW1VFRWoKmvJ/XWLQ4cOEBFRZUptHpF= RQVpaanU1tWh1xuoqqqmpqYGCwsLevToQX5eAWVlFfj7B+Dr1xp3d3f0eoMpEJSkkLidZsyie/z= 4CcLCuj3Srt9LY9C2xnDV7u7u1NfXm6I1Nvb914QNYArc1YibmxtOTk54eHjQrFkz09CQtbW1KR= srGEWQm5ubKSQ3GId/WrRogaWlpSm7bmZmpilPT4cOHUxDQ6GhoSgUClM+pF+iefPmLFiwgLlz5= 9KrVy/AGIiwMbx5cHAwZ86cMa1fUlJiys/SOFyl0WgYNmwYs2fPxsrKqkmgOjBGAJ0yZQoBAQHU= 1NTw4YcfkpSU9Eho9DZt2pisHY2YmZnh6+vbJOFlcXExo0aNQqlUUlZWRm1tLWZmZoSFhQFw9+5= dioqKAMjOzjZZmLp27UpeXh6+vr506NABeBjSvJHGkOuNYfQbhxorKyvx8PDAYDCYAu+pVCqT2P= roo4+atPt/Oz8/092Vt3bdZZjaCWdbM7bHF+Bqb8bbTxoF53t77hGXXoHOILhbUMuP8YX4ulpiZ= 6mkk5ctJ66VYGWuwNnWjKwSDXVaQ5PyS6t12FopsTJX0Led0UfI1lLJ7EEtCfM1Bnqs1jwMWd+t= jT02Fg9TTbg7mONiZ4aTjRm2Fkp6+tlzLasKR2sVGcV1aHTGC8zT0QJLMwWl1Q/3WWGlltqG9ng= 4WFBXb6CHnz3bzudjZWasY9k4H3p9fBUQXF4c2qTt5bU6poS5smCYMSu0lbmCb05nozdAaxdLWr= v8ci4gGRmZ/5s8lqzgCqFEISQQSh5GkWmsQCAkgUHRkB+8USAIA6A35oAyLmgorXGqt/G7EMbfl= UrFw6ndDf81rvMgM4vaWmNI+kVvv8mitxcw/um/oNPpkRpmTCEpQJKwtbVh2LDBuLq6AIKQkE48= //xk1Xf7ngAAIABJREFUvL1b4enpQZ++TxDaJZjQ0GD69uuNjY011VXGdA7SY576bWdnR0FBAQc= PHiQxMZFTp04RGxtL165dmTVrFvfu3WPfvn0mJ+Pa2lru379PaWkpiYmJJCYmcujQIdatW0d+fj= 4FBQUUFRWZxFBiYiI//fQTo0aNIj09nbKyMsrKyujataspU3FiYiKSJBESEmJq1/Dhw/nmm29IT= Exkx44dZGRk8MQTT/DDDz+QmJhISkoKffr0oaCggPv375OZmUlZWRkFBQVNhpHu3r1rSnLZvXt3= Jk6c2BCNWoG3tzd79uwhMTGRy5cvM2bMGFP93t7epKamsn//fs6cOcOdO3dITEzk5s2bXL58mZs= 3b5oyGIMxjUVMTAxVVVXY29vj5uZmStdw7do17t27R35+Punp6eTl5VFYWGgKA67X60lLSzMtKy= goIDk5maeeegqtVktubi6enp5kZmZy+PBh0z4pKCggLy+P0tJSgoKC2LlzJ4mJiVy5coX+/ftTW= FhIRkYG+fn5FBUVUVBQYBJ//v7+1NbWcvbsWY4ePYqFhQXPPvssKSkpHD16lJiYGFq1aoW9vb3p= OMfExDSJAVNXV2eKnNpID197qjV6jl0r4dkerqRkV6NQSKga/nq3bcaWuHz6BDSjmZWKs7dKGRN= ijP7ZrY0d+68UoTcIxndxYWN0Hn3bNkNnEGQU1ZFTVs8QtRORN8o4fq2E9VG5HL5aTOvmlkSklJ= JRVMdbu+9y9UE1pdU67hdruFdUR0WdnsIKLU42Kuq1Bq4+qCI6rZzBakfuFNRRWaunuEpLnwAHH= hTXseFcHsevldC2hTUh3rbczq+ltFrHwA4ObI/P5+qDKi7dq2R0SHPuFtRRXquntNo4A/LTo5ls= faUdZxcFU1lnLPdeYR355fUM6uDI4aQSYtMr2BKXz7HkEjp52fLTpUKuPqhi7o/pj+uylpGR+QP= wGNIv1LOzIf2CZKglsE0zunVoQ3W9luOx1ymtM8egUGIArJX1jO2txtbKHKSGzOFIYJCMukdAfE= ICD+4/oG2Af0M4fmO8mcQrV7l6NbkhBHp3CgryuXv3Hu3btUejqeXGzVt4e3kyctQIlAoFeXm5n= Is6h5ubG4FBgZw/H4+2XkuvXj1p3tyFs1FRFBWVEBikpl27ACRJ4nTEGdav30hERATR0dFcuZxI= bW0ddnZ2DB4ykOjoWMpKSwkL64GHh8ev7Jlfx9raGj8/Py5fvszVq1cZN24c48eP58UXXyQmJob= k5GQCAgLo1KkTSqWSwsJCoqKisLKyIjk5meTkZDIyMhg/fjx37twhNzcXZ2dnBg0ahFar5fjx44= SFhTFkyBB27tyJvb09bdq0wcPDg759+3Lw4EGSk5P57LPPmswSat26NRYWFpw8eRKAQYMG0b17d= 6Kiorh06RJz5szB0tLS5Mei1WrRaDQ4ODgQEBCAhYUFiYmJnD9/nuLiYvr16wcYEyO6uLjg5eVF= u3btuHnzJjExMQwYMMBkEQFj1mNnZ2eioqLw9vamd+/eLFy4kFatWnH69GlSU1MZNmwYrq6uACQ= lJXHu3DmcnZ0JCAhAq9WSkpKCTqejsrKS7Oxs6urqKC4uxtzcnPz8fOzs7MjKyqJly5bk5+djY2= NDaWkpDg4OBAUFcfbsWSwsLNDpdKbUDpGRkSQnJzNy5Eju3LlDeXk53t7eDB48mMuXLxMfH8+zz= z6Lo6MjN2/epKysDEdHR/Lz83FwcKBt27amBIeOjo6cPn2arKwslixZgr29PV27dmX37t0YDAYm= TZqEhYUFX331lSlPzqhRo0wpC06cOEH//v1N+6AReysVPs0tGRXsTGmNjl7+zWjlZDy2LZqZU1a= jY0xIc9wdzHGwVtHZyyiEfV2seFCsYXBHJwLcrdBoDTzTw416nYET10spq9YxspMzKqXEhbuV1G= oNTO/rQaiPHXcK64i/U0mIty0eDuYUV+mo1xkoqtRirlTgYK3i6a4uFFVpib1dQYi3LU8GO7P3c= hGeTha42ZvTqZUNwV52xNwuJ7esnkUjvVAqJfZcKsLWUsmoYGcMAs7eKsfFzoznn3Dj0NVi7CxV= tHAwx8fFkiNJxRRW6LiWVc21rGoyijXkltdTpzMwKtgZO0slF+5UYqaSeK6nGz187bmcUUni/Wr= C/Ozp2PK3J+CUkZH5Y/NYgviNXRmHknoU9SVMHtSKWeMGUlRZzZxPd3K3rBkoVAi0OFmWsfndSX= g2BPFTocdkpJEEBoOCr774jqjos4wcOZyp06ai0+nIy81n7fd/JS01DWdnJ2a/PpPIyEhOnz7Dh= AkTsLKyYMeOnbRs2ZIlSz7Ezs6OxMREli75mKCgICY/+wyfffYFNdXVvLXoDdq3b8+HHy4hLfUO= kydPZMxfRqHV6nj/vcU8eJBJ7969aN3Gm4rySo4cOYa9vT0rVy1n+ccruHP3DvPnz6FLl9B/vGN= kZP4NGAwG9uzZQ1FREdOmTTNl1P0qIpvIm2W/svWfm7S8GgLcrf/u919j3+yO/45mycjI/Bd4LD= 43BkmgaJyG3TDTSAIU6FAJDfoGGSMJHWBAL0AlDCAkhKTAIOkADRJmKIQehaTk/PkEbt++g15vo= Ly8gvLyckCihYc7LVs+tJpISLi6umCmMiMnJ5fNm3+gY4eOZNzPRKFQ0RjVGBqGs4Txk0KSEMJA= SsoNXN1c8PbyQqOpb/CDcMLV1RWV0rxhanPjENljdrqRkfknKS4uJj4+nvDw8CZ+R9P7tuDF3u7= /xZb99xmzJoUjSUZfsv7tHbjwQcivbCEjI/Nn5THNljIKGiFAGB5aYySDHoWoR4sKAwo0OjMyi6= txsrLATNUwFGVQYpAUGCQzzFCib3DNqagop6yszBQpWKlU0dzFmdGjn8LBwQFJklA0RCsODAwkJ= DSUhIRLnD1zjtMRZ5EkhSkOihCGBl8e4/oqlYqQ0BBSb93m6tWrXLqSwMIF81GrO3Dq1Gl++mkP= kkKAMDrK2tgaZ2xICmGMrNOQwuFxB/KTkfk1XFxcTHF/fo6FmYLHlwHo/yYRC4P+202QkZH5g/D= YE2dKkoQCMFNIuDe3oF4pqNLpqK6uQ1tXxVdbTtI/qA1hwQEEeDtjqdChQAkoMQjo2LEDFpaWKB= VGjxyjlUWBc3NnOgUF0rqND0IIOnRoj4SCNr6tsbOz48UXXyAoSE1mZhbCIMgvKOTypcsYhAErK= 0t69XoCTX09jk4OCGGgb98+GHRQWFyIwaDF1c2Fdu3b4+jkSFFRIUgNuawMYG9vi0KhIDS0M15e= njg7O8viRkZGRkZG5g/K7/a5uZlVzriV51AILVJ9MaN6evD6pKHYKhXkFxRSrTVQqhHkFJZSXFH= Bnfs5FOSVIukNdA30YmTvzrR2a44CPQaDQKf7peEfCTMzlSn6rRACrVaLXm9ApVIiSRJZWTloNP= XodXokSeLChYscOHCQ0NAQZs1+FStLCwyAZKbCHANICnR6YyA9gQGluTkqSYlep0VvMDxM7CkAS= UJpZoZeV48wCFQqMxQKBUrlHyR7hYyMjIyMjIyJ3225kQz1WNVmoJQUqCQt8ReSyLqbjpONNQ72= dni2bIG3pxv+LZvRO8QPK/Pu1Gq03M/KJ/7iZb7dvIe+YaEM7N4ZKzMVKpUChYJ/aBWRJMnkSAl= QUVHFF6u/5N69DBQNU74RAoVSgVqtxs7+YdAyvTAgGcCgVKJHwkyhQEJPTlklDva2aA16zCQF5u= YKzFAhCQMGFIAeMzOJyho9OrRYW8hxMWRkZGRkZP6I/G7LTXW9luTsAsxQYI4C0FGvrafeYHT21= Wvrqa2upq62GoVSgUKpwtbWGlsrcxwdnanVGki9excleoL9/Wjh5ISywRrzW6mtrWXnjl0UFBaZ= EhlKksDPz5/BgwdhbWWJAeOMc4VBT2ZJGUdjrxDUwRcvB3tsrGxYt/8kDg6umJtBW68WuDlYY2l= mTr3OOM3Z08UZrUFPfPIN/Fq1xLtFC8xVyn/cMBkZGRkZGZn/OL9b3AgEBhqC5SHRGMJPNMQHlA= QYI9qAXgh0Bj21dbVUVNeg1wNCYGNnjdDrqCwtwcG2GQ4OzVCpVCah8qttEAKdTofBYDCJIklSY= GamahjiEhgkAwahAGEg4nIqMZdvMXZYd8oKCimuqiM1rxjnZo7o6jV4t3DCzdGW23dzUFqZYa5S= 4mBpTnFpMUpzG/qGqHGwscbsMQf1k5GRkZGRkfn9/P5hKUASxnTbBkAyxiRGgR6EoiElg9H5ViV= JqJQqLG3scLSxQysZ0As9Cj2Yo8LdzoE6XT0GYczh9FuddiVJeiQc/89+NE7/FkqQ4EFhOWnZBf= i0csJMaCitqeFBYQVo66mvq6S+Tk9FWSktXR0prtJQVVyBUqHH0cGB4oJiQto5YWVhdHiWkZGRk= ZGR+ePxu8WNQMIgmaEQDbaaBjFiQDJ+NImTxjQLEpKQkBCYG0BIEigkozgSxrw7CMPPklc+jhlJ= EgphnKqek1eKUlIQqvbGztwMn1aeuLsaUOh1WDezQKcDGzMVrT1ckXQCpZkSbb2GeoMSywBvPBx= ssTRTmgSdjIyMjIyMzB+Lx2K5UYmGjFKSAVA2WG8UCAEShsYwOE1oyLiAhNEBWA8mp1+DaBxaej= ziQZIMGAfKlPi3cqOwqARRY8DcypJgX2cUCAzC6KfTWLcSQYi/NwKDsY3GCDdIkjEQYMNMcRkZG= RkZGZk/GL/b50ZGRkZGRkZG5o+E7DgiIyMjIyMj86dCFjcyMjIyMjIyfyoec/oFmd9KZGTkf7sJ= MjIyMjIyf3h69erVJHDvb0EWN/8lYmNj/9tNkJGRkZGR+cPTrVu3f1rcyA7FMjIyMjIyMn8qZJ8= bGRkZGRkZmT8VsriRkZGRkZGR+VMhixsZGRkZGRmZPxWyuJGRkZGRkZH5UyGLGxkZGRkZGZk/Fb= K4kZGRkZGRkflTIYsbGRkZGRkZmT8VsriRkZGRkZGR+VMhixsZGRkZGRmZPxWyuJGRkZGRkZH5U= /HYcksJIaivrwdAkgCkpr//bMnP8z00Xevvlg5ICNOWkunfpkseLR8EUpNtQfqNtf4+GuqTJMxU= ZiD9p+qVkZGRkZH5/5vHIm50Oi37D+wnOy8XKxsr+IV0VZJoeLSLnwkS6WfyRIBB8StprgSYZMz= PlJIESD8r1yA1/Cz9UnkSkmj4SQIDP2/PL1b4aD9+tu3DUnnYP0kY/4REVXklw4cOp0OHDv+4bz= IyMjIyMjKPhccibiorK7lw4TxBoSFYWlsixMPHvoRR6wgUCAGSQkIhSUb9I4Ew6JEkMBgEikbdI= j0qK0y2GiEhhASSwIBAq9MhIWGmUjVsKFDAQ0tNg8AxaSEBkqRAIKHT6dDr9aiUZihVShBGqSMh= ISTR1N7TKKwkYz8MBj16IRDCgEqpQqGQEEIgSRIKhOlzdlY2CQkJ/1Dc1NXVUVNT02SZvb09KtX= /P0nbG/tvZWXVIHr/ONTX11NdXY2dnd2vHpPq6mp0Oh22trYolcr/UAt/O1VVVQghsLGxQaH474= 9KCyGorq6mvr4eSZKwt7dHCPGHOPc1Gg3V1dUAODk5UVdXh6Wl5X+5Vb9OTU0N1tbW/9K2Op2Oi= ooKrK2t/2N9NRgMlJWVYWVlhZWVFUIIamtrTfv7X+1L43ULD+8rFhYWj7Pp/xZ0Oh3V1dVYWFg0= OQaN/bGysjItr6ioQKfTYWNj86t9Ky0t5ed5sv/szxjl4sWLF//eQurqarmYcAmPli1RqhRISEh= Swx8SkqSgvraOnMwsbqbc4ErCFZISE0m7mUp+bh71mnoszS2wtLZ8uN3/+kMyWn6EAfLycok9F8= OZiEhio6K5eD6eG9dTKC0qxs7WruHGrURSNN0eJKqrq0m5lsLpkxGcizxLzLkYkhITuZt+BwkJh= 2YOmJmZG3XM/24HErlZOcRERRMZEUF0VDSXzl/g5vUUSouLsbe1w9bGFkmhQEigVCgoKynFxtqO= zp2D/+7+O3LkCCNGjCA6OpqTJ0/yzjvvMGjQIFq0aNFkPZ1OR25uLhYWFv+WkzI3N5fU1FRcXV0= fefDpdDoKCgpQqVSPpe7KykrKysqwtbVFq9WyZMkSsrOz6dix42PtW0pKCq6urr9pXY1Gw9GjR3= Fzc2tyU4mLi+OFF14gODiYli1b/sMyvv32W959912GDh1Ks2bN/u56GRkZ3LlzBw8Pj9/WkcfEB= x98wMaNG+nduzdRUVGP9PX3kp6eTlZWFs2bN/9V8aTX6zl48CDfffcdO3fu5MSJE5SVlaHVamnV= qtW/VH9xcTEajQYhBBEREXh4eGBubv5PlxMXF8e6devYtGkThw4dQqFQEBMTQ9euXf+ldv2nyMj= IIDw8nKFDhwLGczojIwMnJydKS0upqan5xReIEydO4OLiwr179+jUqRMBAQF07NjxH9aVm5uLQq= FAo9EQFxeHu7s7ZmZm/3Sby8vLGTNmDFlZWfTo0QODwcB3333Hu+++i42NDZ06dfqny0xPT2f9+= vWsW7eOY8eOkZqayt27dwkKCvqvv3SUlpaSnJyMs7PzL+6vW7duMW7cOFxdXZu8FF+5coUZM2aQ= mZlJr169UCgUvP322yxZsgQ/Pz/atGnzD18MJ02axAcffEBiYiIbN24kJyeH4ODg33T9l5eXc+z= YMVq3bv2b7886nY4HDx7g4ODAyZMnsbKyws7O7jdt+zh47E/In49INdpv7qTd5syp09y6eYvS0j= KT8tTpdNTUGBVq6zat6d2vN8GhnbGwtDRaPhq2l4Txk0IouHAhnuNHj+HQzIGwsDC8vb3R6/VkZ= GQQFxfHhbh4ho8aSefQzkgKUDQcbEmC4uIS9v+0jwf3HtClSxe6hnTB2dmZoqIiUlJS+PGHbXQM= 7MiTo57EwdnBZO4xGpkUXIyP5/jhYzg7NyckJARvb28MBgP3M+4Tdz6O+JjzPPnUKDqFdkZSSRg= AgzAg/eLw2ENGjx5NeHg433//PUIIvvjiC3x9fR9Z7+7duyQkJDB69Oh/yxuIRqOhrKysibpvJC= cnhxMnTjB58uTfXY8QgosXL6LX6xkyZAiSJDFgwAAGDx78u8v+ORkZGRw4cOBXb9KN6PV68vPz0= Wq1TZa3atWK8ePH06ZNm18to1OnTtTV1f3qw7mmpoby8vLf1K7HSUhICG5ubjg6OpKXl/dIX38v= 1dXVVFVV/aZ1jx49ytdff81nn31Gp06dqKqqYvny5QwYMOBfqlur1RIdHU3Lli1p164dBQUF6HS= 6f7qcxMREnn/+ecLDw1m+fDkAL730ElOmTPmX2vWfoqKigq1btzYRc0ePHsXS0hIfHx/OnTuHi4= sLYWFhj2xbWFhoEpWBgYGMHDnyH9ZVWVlJREQEffv2xc7OjuLiYvR6/b/UbgcHB8LDw/nss88oL= S3Fw8ODfv36ERQURP/+/f/p8oqLi1m5ciU+Pj5s27YNgE2bNtGiRYs/hKVCq9VSWlr6d/eXk5MT= PXr0oFevXk2Wd+3alenTp3P27Fny8vLw9PTk5ZdfpmfPniYx+4+YP38+hw4dYtWqVWRnZzNlyhT= c3d15+eWXf1Ob8/LyMBgMv7puI7du3SI+Pp6XXnqJoqIi6urqfvO2j4PHbJd+qBqFEKiUZlxOuM= Lar7/jXFQ07dq154svvuDAgQMcP36co0ePsnHj3xg9egypt9L4/pu/snPbTmqqah6WJAAhoZRUJ= Ccns33rjwwZPITNmzfz/vvv4+3tTdu2bfnwww/Zvn07ffv0Zee27dy6cQOl8mH36mo1bPzrBgrz= Clm1ciVffvkl8+bNY8SIEcyePZvvvvuO1atX8+DeA3bv2m26KRpFlkTC+Qts+dsWBg8eyoYNG/j= oo4947bXXmDlzJss+XsauXbvo17c/27dt5+b1GyhQ/mb34fPnzzNo0CDKy8tJSkri/fffx9LSkl= dffRW1Wk14eDgxMTEMGzaMHTt2UF1dTXl5OX379uWFF1545GYVFRVFSEgIy5YtY/78+eTn51NUV= MSYMWNQq9Xs3LmT4OBg1qxZQ3FxMb179yY9PZ0NGzYQERGBwWBgypQpqNVqVq5cybFjxxgwYAD7= 9++npKQEALVazfjx43nmmWd+8QE5YMAA1Go1CQkJCCFQq9Wo1WpOnDjB9OnT+Z//+R/i4+Opr6/= nyJEjzJ49mylTprB27dom5ezfv58uXbqwdOlSevTowaZNm4z7ul8/vvvuO5555hkAIiMj6d69O2= q1mtzcXE6dOsWoUaNYs2YNAMePH6dbt26o1WrTPurXr5+pXcuXL+eHH37gm2++MV3As2bNQq1Wc= /LkSQwGA05OTnzyySeEhYXxzDPPsGvXrkeE4Pfff8+NGzcYMWIE6enpANy8eZNhw4Yxd+5cQkJC= OHv2LPPmzQOMJvkNGzagVqt/8eFZWVnJuHHj2LlzJwDh4eGsW7eOgQMHcuzYMbZv386ECRO4ffs= 2AIsWLWLAgAGMHz+es2fPPlLe6dOnGTx4MFu2bDH1NSMjg4kTJ6JWq4mNjQVgx44ddOrUiaeeeo= ro6GjGjh3LkiVLSExMpGfPnly9ehWA119/HbVazbFjxzAYDMydO5fr16+jVCrRarWo1WomT57M0= 08//UhbZs2axaxZs0xv5jY2Nrz99tscPnyY4OBgzp07x5w5c8jMzCQqKgq1Ws3TTz9NWloaANu2= bUOtVjNt2jTWrVvH1KlTmTVrFomJiSxevJiNGzeydOlSxo0bR1VVFQcPHjSJla1bt6JWq3n11Vc= pKCho0q6VK1fy0ksvMX78eNOyzz//nB49epCens7o0aNRq9Vs2bKFK1euMHToUJYtW8aXX37Jwo= ULuXDhAsHBwfz000+8+eabDBw4kLS0NIYMGcKFCxcYN26c6fifP3+evn370rVrV86cOUNcXBy9e= /dm27Zt/PDDD4wZM4bCwkK++OIL1Go1U6dO/bui+NKlS5SWltK2bVvq6upYsWIFM2bMIDIykjff= fJPXXnuN3bt3ExoayrRp01i2bBnnzp0jPDyc3bt3U19fT3R0NO3ataN79+589dVXAIwYMYI333w= TgFWrVnH58mVGjBjBW2+9RX5+Pm+++SaHDh1CCEFcXBxqtZohQ4YQHx9PbGwsnTt3ZteuXXzyyS= cMGjTokXZrNBpqa2vx8/MjJycHvV5PZWUlLi4uKJVK0zV68OBBwHjvWbx4Mfv27aNLly7cuHGjS= Xlnzpyhurqa6dOnY2ZmhpmZGZMnT2bQoEFIksS8efNQq9WsXr0ag8HAnDlzmDp1Khs3biQwMJD4= +Hjmz5/P119/zYYNGxgwYAAbN27kySef5NixY2zevJkZM2aYBOFrr72GWq1mz549rF27lqFDh7J= mzRrmzZuHwWBgx44dqNVq3njjDXQ6HXv27GHHjh1oNBpqampYuHAhvXv3Ztq0aZw5c4bU1FT8/P= ywt7d/ZF8VFxfTqVMn7t+/D8DFixfp0aMHV65coWvXrvTq1YuTJ0/+4vmxYcMG/vKXvwDQsmVLh= gwZQlRUFADHjh1DrVYzevRodu3axdChQ/noo49YvXo1x44dY/ny5axdu5ZPPvmEZ599lpycHA4e= PEjjwE9sbCxqtdrU97lz5/Lkk08SERHB7t27+frrr9m7dy/9+vUjOjqalJQUBg4cCEB0dDQ9e/a= kd+/eXLt2jf3795v60ng/+ld4TOJGevh/YRQECoWCa0nJfPfVN2CAr776iuPHjzNt2jTCwsLo0K= EDwcHBjB07lrVr13Lw4EH8fH2JOBnBgb0HqNdoG6xAxiGhktJivv36O4YNG8b777+Pj48PBoOBp= UuXsmbNGjQaDT4+PnzwwQf069OXLZs2U1tVbRpOOrz/IOmp6Sxbtoyhw4ZhZ2dHXl4eS5cuJTk5= GVtbW0aMGMEnn3xCelo6MTExKBQKFJJEbnY2679fx6hRT/HRR0vx8PDg9OnTzJ49m3feeYf4+Hj= c3d1ZvGQxA/oP4Kedu9HX1xsdl4Ffckz+OadPn+avf/0r48ePR6/X4+Liglarpbi4mKSkJBYtWk= SXLl2YPn06y5Yto6ysjMDAQDZs2MDkyZPp2bNnk/L8/PwYNWoU9+7dIycnB41Gw9ixY3n77bd5/= fXXcXV15csvvyQ+Ph5zc3MmTZqEr68vfn5+dOzYkby8PGpqakhKSmLhwoUMHz6c0aNH8+mnn5Kf= n0+LFi2IiIjg5ZdfpmPHjk2GH2pqanBycuLLL79k/vz5lJeXs3//fqZNm8b169cZOnQoX3zxBZ0= 7d+bdd99lxYoV7N27l5s3b9KiRYtHLB5PPvkk5eXlFBYWEh4ezvXr1wkKCiIsLIz4+HiEENy5c4= fw8HB27drFihUreOutt+jWrRv9+vXj6tWrXLt2jU2bNvHTTz/RqVMnrly5wpEjR1i3bh2XL19Gq= VTyzjvv0LNnT/z9/bGysmL27Nl0796d5ORkTp8+TdeuXXnllVewtrbmxIkTtG7dGk9PzyZm4Pv3= 73P8+HGmT59Ot27duHr1KqWlpUydOpU1a9YwfPhw2rRpQ5cuXRg6dCheXl6sXbuW06dPc/36dRw= dHdm7d2+T/m/ZsgUvLy8qKiqor69n7dq1JiFy+/ZtUlJSCAsLIz8/n4EDB9KhQwd+/PFH7OzsaN= ++fZOy0tLSyMnJQa1WExYWRkBAAAAffvghM2fOJDw8HI1Gw65du7h58ybR0dH07t0blUpFaGgoY= WFhvPfee4wcOZKioiKGDx9Ox44dWb16NQ4ODkiSxNixY2ndujXnz5/H09OTyMhIxo8fT0hISJO2= nDhxgqqqKsaMGfPwLiJJ2NnZMWnSJNM51KxZM06ePMmGDRs4f/48Q4cOpbi4mEWLFhEfH8+1a9f= Q6/UEBgby3nvvMXr0aKZPn86YMWPo2LEjb775JuXl5VRXV9OjRw+6devGt99+S3JyMieWgGhoAA= AgAElEQVRPniQoKMjklwFGIZqamsrcuXObtNfe3p78/Hw++OADPvjgA65fv85PP/2Ei4sLffv2N= R3/8vJy1qxZw+uvv05paSkTJkwgMDCQDz/8kH79+rFgwQJefvllLl68SEJCAt988w1bt27l6NGj= rF69Gnd3d7y9vbG2tubKlSt4e3tTV1fHkSNHOHnyJBs3bvzF4c7bt28THx9Pq1atUKlUWFpaMmD= AAN58800++ugjXnrpJZ577jnmzp3LvHnzkCSJ2NhYlEolY8aMwcrKCnd3d/bt24eDgwO7du0iJy= eHZcuWMWnSJAoLCyksLCQ+Pp7Q0FDmzJnD4sWL6dq1K+PHjzcd88Z98/bbb3P06FFcXV3p2rUrd= +/excHBgbKyskfa3uhjMnjwYI4dO4ZGo6G+vh5LS0sCAgLYunUrO3bsIDY2luvXr7Ns2TKKiooo= KCigS5cu5OTkPHJu9e7dG2dnZ9MyGxsbVCoVo0aNwtfXl7i4OA4cOIBWq+Wll15CkiQqKytxdXV= l27ZtWFtbo9FomDp1Ku3atePevXt4enqyf/9+EhIS8Pb2pqysjHHjxjF06FBWrFiBRqNhwIABeH= t7c+XKFcD4crZnzx6OHDmCi4sLKpWKgIAAQkJCUKlUTJw4kdDQUPbs2UNUVBS9evUiJSUFLy8vr= KysmvTrzp07tG7dGgcHB27dukV9fT1CCLKzs/nggw84ffo069ev5+DBg6aX0Ea0Wi3Xr1/niSee= aLLcw8ODQ4cOERERwaVLlxg+fDiOjo488cQT5ObmkpSUhIWFBQMHDmTw4MHMnDkTCwsLioqKGDR= oEJ06dWL79u188803XL9+nVdeeYWysjKWL19uEna9e/fGxsaGOXPmMHDgQG7cuEG7du2YMGECsb= Gx7N27l7179zJlyhQKCgo4duwYu3btIiYm5pH2/jP8GzwKFUgouJd+j+/WfIOLc3M+XfEpzz//P= JIkPfKm2+h426tXL/bt20f/fv05G3mGhPiLqJQqhMLoOHzq1CksLS1ZuHAhzZo1QwhBeno6ffv2= JTg42HSCOzs7M3PWTAxaQXRUDEqlGbk5eUSfjUalUrFlyxYOHDjAzp07eeaZZ4iPjzcJFEmS6N2= nN6NHj+bowaPUVtdiMAjOnY3GycmZ999/H0mS+Pzzz3n22WeJj4/n1KlTvPDCC6xcuRJra2umvz= LdNOyiUBodl/8RZWVlJCQkkJeXx9/+9jcsLS0pKCjA0tKSF198kfPnz6PT6UwPeA8PD1atWsWeP= Xvw8fEhJSXFdHNtxMrKioiICCZOnMiOHTtYu3Ytbdu25erVq6YbQuvWrbG3t+fSpUt4e3tTVVVF= ZmYmPj4+eHt7M2XKFGJiYtDpdBQXF5OTk4O3tzebN2/mxIkTNG/enPv379O+ffsm4mbJkiU899x= zXLhwgYKCAtRqNWPGjEGlUpksGfv27ePpp5/m8uXLZGVlsXnzZgoLC00X/s+Jjo4mKCiIZcuWUV= lZiZOTE0qlktTUVBYuXMiOHTtYvXo1CxYswNvbm/Lycpo3b86DBw9o164ddnZ2vP322wQFBbF16= 1b69OmDm5sbNTU1xMXF8e6775qsP8ePH+fJJ5/k0qVLNGvWjAkTJpCdnY2lpSX5+fn4+/sza9Ys= ysvLsbCweMRfZs+ePRw9epTu3btja2uLh4cHL7/8Mp9//jkBAQGcP3+eCRMmkJGRgbm5OWZmZmz= ZsoUVK1ZQX19PfX09jo6OTcp87rnnkCSJLl26sGrVKiZNmkReXh7V1dUIIZg2bRq5ubnExcUxdu= xYnn/+ebKzs/H19X3EEfPHH39k9OjRgPEBMGLECG7evIm/vz99+vThySefpEOHDpw9exY7Ozu+/= /57lEolnTp14vTp05w7d8607MGDB/j4+PDKK68wePBgwsLCEEIQExODh4cH69at49y5czg4OJCR= kUFw8KM+Zz9/+PycpKQk3N3d+fTTT5k1axZnzpyhW7dubNq0ifLyctO18NVXX5GdnY2DgwO+vr4= m8QPGYYiRI0fi5uaGh4cH6enpxMXFodPpOHPmDB07duSHH37A1taW1q1bN6nf3t7+F30Xrl+/jl= qtJjAwkMLCQmxtbRFCEBsbi0ajYeDAgRQVFfHhhx+yZcsWhg8fTnR0NPn5+YSHhxMXF8ecOXOIj= 49n9uzZxMfH8+STT9KqVStyc3Np0aIF9fX13Lp1i5ycHCZPnoy3tzeOjo6sWLGC2NjYJkKskZKS= Enbs2EFycjLfffcd7u7uGAwGbt++jZ+fH+bm5qSmphIYGIibmxtbtmwhJCSEY8eO8cQTT7B582b= TuRAYGEh4eDhCCJo3b878+fPZtm0bzzzzDBEREXTo0AEhBPfv36d79+4ArFu3ju7duxMdHc1777= 1nchJv1qwZdnZ2bNmyBR8fH/z8/JpYwxrJzc3F2dmZbt26ER8fz4MHD6ivr+fw4cN88MEHBAcHo= 9FosLCwwMvLi61bt+Lp6Unfvn1JTEx8xBqkVCqxsbF5pJ6YmBgsLS2ZNWsWWq3WJBKvXbtGTU0N= vXr1IjU1lZ49e+Ls7ExQUBBFRUXEx8fTo0cPCgsLcXNzY8KECVhaWhIZGYlOp6O0tJTY2Fh69+6= NEIKioiIWLlzI8uXL+f777/niiy/w9vbmrbfeQqvVcuPGDVxcXNi4cSO9evVi0qRJ3Lp1i5EjR1= JVVUV2djZ+fn6PtD8hIYEuXboQEhJCRkYGZ8+epXXr1ly4cIHnn38eW1tbysvLsbe3f8TPbN++f= UycONH0vaCggJ9++ong4GBOnDiBm5sb69ato6CggG7dupGamkqXLl3YtGkTAwYMYNeuXYwfPx4n= JydsbGwoKytj+/btuLm5cfXqVZYvX45WqyU7O5ugoCDOnDnDzJkzAaP/Wr9+/TAzM6Ndu3YUFxd= z+PBh2rdvz5EjR7C2tmbv3r0ma84bb7zBiRMnHhFo/yyPVdwYp19L1NVqOHr4GCXFJcydO5ennn= oKMzOzh869DRgMhibLWnl58d577+Ht5c3B/QepKCtHQqKqpoqrV64yZvRo00HX6/UsWLCAAwcOs= Hv3bj7++GNTOYGBQXTt1o2EC5eoq9OQmpqGSmXGhx9+iE6n45133mH+/PlkZmYye/ZsFi5ciL+/= PwCWlpaMGDGCkuIS7j+4T3VNDbdvpzNp4iQ8PVty/fp1duzYgY+PD5s2bWLjxo2EhoayatUqLl2= 6ZDKhxsbE/qZhqZiYGJPfibe3N3FxcaSnp7N3717atm1LQkICJSUlREZG4uPjQ35+Pubm5oSEhH= DkyBFOnz79yIMjKiqKcePG0bt3b8BoMnRxccHW1tYkDM3NzSksLOT48eMMGDCAsrIyamtradGiB= ZGRkfTo0cMkUHbs2EH//v25c+cObm5utGvXjiNHjhAZGUlAQECTY3r58mWaN2+OUqmkZcuWpKSk= cPfuXcLCwjhw4AB1dXWsWrWKgQMHcuHCBYYPH45Op2PFihUoFArc3d2b9GXfvn28/vrrVFRUkJC= QwMiRI4mJiWHChAkmIXTx4kXatm1LSkoKGzZsYOrUqVy7dg0HBwcsLS05f/48FhYW+Pn5odfrcX= BwoEOHDuTk5ODv78+iRYsoLy8nKyuLwYMHc+3aNZ544glu3LjBK6+8gpeXFw8ePCA0NBSlUmky0= f/c4bukpISsrCx69uzJhQsXKC4uxmAwkJ+fT5cuXdi+fTsnTpxg2LBhpKWlYWVlRVFRESqVCk9P= T44cOUJ5eTldunRp0v+8vDyqqqrIyclhy5YtzJgxg9u3b2Ntbc2LL75ITEwMXl5epKen89RTT1F= UVMSSJUto1apVE3FTWVlJdHQ0Tk5OZGdnm/qampqKp6cnFRUVfPTRR1RVVVFYWIheryc4OBitVk= tKSgpBQUE899xz3LlzB4VCQXFxMYGBgVRWVnLixAkKCgq4dOkSLVu2pLq6mtatWxMQEMC+fftIS= Eigbdu2TfrVoUMHampq+PHHH03LLl68SFJSEleuXOGVV17Bz8+P4uJiJEmirq4OT09PnJyciIiI= YMqUKVRUVBAeHo6bmxt2dnZs3bqVHj16kJ+fT05Ojkn0e3l58emnn6JQKLC0tMTMzIzKykqTs2Z= jfK7GY2pnZ8eSJUtMy9LS0jh58iT37t0ziYWXX36Zzp07k5WVRVhYGAsWLCA5OZmXXnqJ+/fv4+= /vj52dHeXl5SxcuJDMzEzatm1Lt27duHXrFgMHDqS8vBwvLy9KS0tZtGgRQ4YMITk5mX79+jF27= FjTsTl9+jRt27alsLCQlJSUJvuxsrKStWvXMn78eHbs2METTzxBmzZtTA/Jli1bolAoOHToEF27= diUtLQ0fHx9eeOEFwOinExUVxciRI0lKSjK9rPzwww/4+vpSVlZGdnY2rVq14scff6R79+4UFhZ= y48YNfH19ycrKoqCggICAAIQQeHp6otFo+OGHHwgMDCQiIsJkrT9//jz9+vXjfxMdHU3nzp2xs7= Nj2LBhvPPOO6YXtw4dOlBdXc3+/fvx9fWloKCA2tpaRo4cycWLF3nppZceKS8oKIgjR46QlZUFG= B14z5w5w6VLl+jbty8ajYYtW7bQtWtXVCoV169f5/XXXyc2NpaFCxcSGhqKRqPB39+fLVu2MGvW= LKytrQkICGDBggWkpKQQEBDAzZs38fT0RKlU4uzsjMFgYPfu3UydOpWOHTtSXFxMamoqLVu25PD= hw6SmpqLRaCgqKiIkJIRt27Yxc+ZMkpKSWLJkCePHjyc3N5f79++j0+ma+LdUVlai0+lwdnbGy8= sLrVbLtm3b8Pf3p7KyEm9vbxQKBStXrqRTp07Y2tqatq2trSUyMpJJkyYBcOPGDRYuXEj//v1Rq= 9VUVlaarncLCwvi4uIIDQ1l6tSpAGRnZwPQo0cPzM3NcXFxYcWKFXh6eqLT6XBxccHNzY0vv/zS= tO369euZMGECGo2GpKQkhgwZAhj9q6KiosjOziYwMJDc3FyUSiXt2rXDxsaGpKQkzMzMUCqVHDh= w4JFj+08hHgMlJSXi3ffeFTv27BY/HdonPl75iWjh0UL06t1LVFZWCiGEqKurE9euXRNXrlwR5e= XlwmAwCCGEyMrKEpcuXRK5ublCCCFqa2vF0qVLhY2NjZj1+kyx78he8f3f/ipatvIUG/+20VRnX= V2d8PLyEjR45XTp0kUIIUzlLl26VLi6u4lNP/4gJk6ZJLp06SI0Go0oLi4WERER4oUXXhAuLi6i= ffv24p133hG3bt0ylX3//n3h5OQk5r45T3y94VvRxt9XHNi3XxgMBnH27FmhVqvF4sWLhU6nE3q= 9XqxevVoolUqxevVqIYQQr776qvBq4y12H9gjPvrkI7Hxbxt+cb/t379fuLu7ixYtWoiAgADh5+= cn+vTpIw4fPiwcHR1FmzZtxHvvvSeqq6vFqFGjRPfu3cX+/ftFSEiI6NChg5g2bZoICwsTH3/8c= ZNyu3XrJtLS0kzfN2/eLLy9vUXPnj3F3r17hVarFfn5+WLRokUiOTlZGAwGERkZKRwdHcXixYuF= j4+P8PX1FfPnzxcajUb07NlThISEiJ07d4ohQ4aIgIAAMXv2bBEWFibCw8OFXq831fX999+LNm3= aiLCwMLF7927x+eefi1atWolOnTqJzZs3ixs3bghJksTkyZPF+vXrRVBQkFCr1eL9998XTk5O4t= q1a6ayHjx4INq3by/atGkjBg8eLKKiooROpxMBAQEiMzPTtN769etF69atRb9+/URCQoKorq4Wc= +bMER4eHiInJ0e8+uqrwtfXV0ycOFHcunVLFBQUiDFjxohu3bqJsrIyIYQQSUlJolu3bmLRokVi= z549wtPTU8ycOVNMmTJFhIWFiffee0/4+/uLgIAAsXTpUhESEiJSUlJMbdBqteLFF18UAQEBYsy= YMaKgoEDU1tYKGxsbERgYKGbMmCHatWsnFi9eLFatWiViYmJEXV2dmDJliggICBDTpk0T6enpj5= wjmzdvFg4ODuK1114Tnp6eokuXLuLrr78WkZGRQgghRowYIZ566ikxadIkERAQILp37y5mzJgh+= vfvL0pKSkzlJCQkCBcXF7F+/Xpx5coV0b17d/HWW2+Jy5cvi3bt2onu3buLlJQUUVpaKmbNmiXa= tGkj+vTpI+7fvy9Wr14tDh06JIQQIjw8XISGhor9+/cLV1dXERYWJvb8v/beOzqqcu3fv6ZlMi2= 9k4SWhIQaOlJCkCJFhKOIHAXEgoJiQQUUeQUB9auIiiIqICKKKKEIBAQTwNBbQgstCYSQkIT0ZD= KZvp/fHwOjCFjOQd/zO+9ca81aSXaeMnvvNfue576fz2ftWmG1WsXkyZNFp06dREpKiujRo4eIj= 48XTz/9tOjcubP48MMPb3hvJ0+eFDExMSIuLk7ExcWJGTNmiBMnToiXX35ZXL58WQghhNVqdV+/= rl27iuzsbPHZZ5+JhIQE0bVrV/Hss8+K4OBgsW3bNqFSqcTzzz8v1q1bJ8LCwsTChQuFEEK88cY= bYtmyZe77ftiwYSI2NlYMHDhQlJSUXHf/CiFESUmJSEhIcM9r7Nixory8XBw8eFB07dpVxMXFiW= +++UaYTCbxxhtviPT0dGG328XQoUOF1WoV06ZNExEREeKzzz4T77zzjqipqREPPvigOHLkiNi1a= 5eIiYkRb731lvj+++/d93dGRoaorq4WL730kjh9+rSor68Xjz76qEhOThaNGjUSsbGxYsSIEeLS= pUvueZ49e1YMHTpUGAwGYTabxdtvvy0MBoNo3ry5OHTokOjWrZsYM2aMyM3NFVqtVkyaNEmMHz/= efS2FEGLfvn1Cr9eLuXPnitTUVNGlSxcRFxcn0tLShMViEevWrRM6nU707dtXDBs2THTu3FmsXb= tW+Pj4iE8++USkpKQIHx8fsXz5crFo0SLRpk0b0bp1a5Geni6sVqtISkoSRqNRFBcXi2HDhol77= 73XPXZBQYHo06ePaNq0qft+zs3NFf/4xz+Ew+EQ27ZtE+3atRPt2rUTn376qTCZTOLNN98Uq1at= EkIIMW7cOBEZGel+dlyjurpavPDCC6Jx48YiLi5O9OrVS+zdu1dUVFSI6OhoERMTI1566SVRU1M= jCgsLxQMPPCAqKirEgw8+KIxGozhy5Iho3ry5+OKLL4S/v7/7Om/fvl3Y7XaRnJwsJk6cKDZs2C= AiIiJE27ZtxUcffSQuXrwoIiMjhdVqdX8mjBw5UsTFxYlZs2aJmpoaUVZWJvz9/cWHH34o7r//f= hEXFydGjhwp+vbtK3r06CGWLFkiunTpIo4dO+Z+lmVmZoq+ffuKiIgI93tNSUkRixYtEk6nU6xe= vVq0b99exMXFidTUVGGxWNznory8XDz22GPCYDC4P7+6desmNm7cKEwmkzAajeKFF14QzZo1E3F= xcSInJ0dMmTLFfT2EEGLLli0iLi5OLFvmev6+/fbbYunSpUIIIY4ePSp69eolYmNjxcqVK4VOpx= Nz5swRMTExonPnzuL48eNiyJAhYsSIEUIIIXbu3ClmzZolqqqqhNVqFW+//bZo0qSJiIuLE6dPn= xavv/66iI6OFo0aNbruWfCvcNuDm5Tv14qnnn1a6HRa8fnnrod6cXGxePzxx4Wfn58IDg4WQ4YM= EWfPnhVff/21iI6OFoGBgaJ58+Zi9erVwul0ip9++klER0WJzt06iTWpa8VnyxeLRpGNxBdffOE= e02KxiPj4eCGTyYRcLhe9evUSQvwc3MyZM0eEhoWIFd9+LUaN/qfo1KmTsFis7uNOp1OcOHFCTJ= gwQQQEBAg/Pz8xadIkkZmZKXJzc0VAQIB4bsrz4uPPPxHNYpqLjRs2CEmShMlkEvv37xc1NTXuv= hYsWCCUSqV45513hBBCTHxqgohuGi1SNqwVs9+8dXDj4bfZsmWLeO+99257v3PmzBHHjh0T5eXl= Ij4+XsyZM+e2j/FrbDabMBqNorq6WowePVrU1tb+5WN68ODBw/9Vbuu+OBngdDooLS7By8uLTp0= 6YbfbWbt2LWvXrmXq1KkkJCRw6NAhsrOzee6552jbti3PPfcce/fupaamBkmSiIqKwj8ggLLSMs= zmBtRqb/R6PVlZWYwZMwa5XI5KpeLtt99m3Lhx6HQ6pk2b5p7HtaX0iIhI1zJaSDB7M3ZTUuKqG= 3E4HPz4448UFxczaNAgsrOzKSkp4dixYzz00EM0a9YMm91GcHAwGo03Or2eQ4cOc/fQoRQUFPDR= Rx8RGBjI1KlTMZvN7Nq1y50qamhooLqqmrDwMBRy+R/1l/DwC8TVeqply5bRtm3b297/tVx1dnY= 2L774IkFBQbd9jF+Tl5fHokWL0Ov1DBs27KY7ITx48ODBw+3htgY3EhIICaOxDp1OT3h4OFarlX= PnziFJEo8++ijBwcEMGjSIXbt2UVlZSY8ePbjnnnvo378/Xl5eyOVy/P39CQgIoKikCJvZiq+fP= +06tGPjxo1MnDiR+Ph45HI5HTt2RK1Wo9FoaNWqlbtY+eTJkxw8eJB+A/qhVquJjY3FZnewatUq= pk2bhsPhIDs7m2+++Qa73Y6/vz/vvvsubdq04ccff+S9994jMCiQxo2j8VJ7EdciltUpqxn/xHh= CQ0Px8/Nj+fLl7or106dPM378eLp168bJkyc5ceIEA+8ejFwuvyqQ7Ilw/ixOp5OBAwfetDDw3+= XNN9/k5MmTgKt49Jc7dv4qoqKi6NOnD0II7rvvvr98PA8ePHj4v8ztM87kqtWCHBRKpVsqWq/Xo= 9VqcTgclJeXYzAYyMnJwWw2Az9LQufl5SGTyUhISMBut2OxWFB7eaFQKJDLoF+/vmTszODdd99l= 3rx5BAQE4HA43C9xdddVeVk5Hy74EIVKSc/k3jiddsIjwunb/04+Xvgx3bp2I7lPMk899RSDBw/= mo48+4sEHH6RHjx7IFXKaNmuKJEkMHjoErV6LkAS9k5PYmb6DuXPnMn/+fF5//XViY2PZtGkTBo= OB9957j2HDhmG1Wlm8eDEypZwOnTthlxwIT1zzp5HJZMTHxxMfH/+X9N+lSxe6dOnyl/R9K/R6P= ffee+/fOqYHDx48/F/ltov4yWVyQkNCMJlM5OTkuPUWoqKiuPfee7n//vsZNWoUFouFgQMHsmbN= GoYMGcLdd9/N+++/jxCCkpISKioq8PPzQ+2txik5CQgM4OlJT7F161ZmzZpFQUEBBr2BKVOm8Nx= zz6HRaCgsLGTmzJns+Gk7Yx8Zi86gRcLlknn3sHuIbhbNCy9O5ocftiBJEs2bN2f69Om0b98ek8= nExo2bePHFF4mLb0FSchJOuxNJSERENeLJpyeyfv16Xn31VYxGIxMnTmTbtm2sX7+e++67j9raW= l5++WXS0tMYNWoUarUX0u/4gP6avLw8vv766+u0ICRJIj09ncjISIYMGcKFCxeua7N7925iYmKI= jIxk9erVN+3X4XD8YdXYP4q46v9yzYumoqLi3+7zq6++Ijg42K0R8WssFgtFRUWEh4fTpEkTXnn= lFV544YU/NUZNTQ2VlZV/qs2xY8cICAi4pTgWuOTJ+/Xrd9Mtz78mPT0dX19fsrKyqK2t/be3PP= 4au91OWVnZH1aMdUqC77MqiJ126IZjdWYnNofrRq4w/nE1Y7NdYsp3rnt1++katp++Ud/kX8Fil= 7DYXbtIpq/N58u9pbel3/8W1mZWsC27mjGLz7AkowSAgfNPkH66+m+fy4+nqkk5XE7M1IP8dPb2= XP9/FYtd4umvcpnwpUsA0ikJPt5RjMMpkASsz6pgwpc5N3xmV9bbGfDuCeJfOcSOMz+/h8P5Rr4= 7VP53vgUPf5LbsnLjspcUyGQgVyiJaNQILy8vl25Nnz706dOHBQsWkJqa6tbmuOuuu+jRowfLly= +nsLCQfv36MXbsWORyOcePH6eqqoqk5CTUam+cTidCCFq1asXYsWPYtGkTR44cITk5maioKCQh8= f7777Njx3asdisPPTyaFi1b4HQ6XCadCFTeKh594lHWp6zjxRdfpFOnzu4tc9XVNRw5coRjx4/S= pm1bht4zFIVc4Q79HJKT9p3b8+gTj7N5YypZR7PondSb0LAwEMKlOZDxEw6HgzFjxxDXIg5JOF3= +VlfP0O9RU1PD3Llz6dq1K35+fu6/Hzt2jPfee4+jR4+Snp7Ojh07rrMB6NWrFwMHDmTAgAHcc8= 89N+178+bNKJXK35VU/zNUVVWRlpbmFsq7cOECTz311L/VZ2JiIoMGDbpB8A1cKqZLly5l69at7= N27l2bNmpGamvqntwumpaVRX1/PI4888ofbhIeHM2PGDLdcwM3w9fXljjvucCsg/xaNGjVi8uTJ= REREuNOz48aN+8Pz+T2uXLnCd999x+OPP/6b/lbXMFqcZJyrxeG8UVr91bX5PNIrDH+tkmdW5pH= 6/O+/P4ANWRXc2zEIm0NQbbLTpfm/X2NkcwhWHiijSZCavgn+vHlf099v9H8Is12ixuRABpwqbi= CphetzZOuLt79u7fewOSSqTQ7OljRQb/3XbBluJxfKLZwpaSA21CWMd7bETISfF3I5lBttbDxai= dl24zwf/fwcw9oH0a+VH9PX5NMmUkewQUVxjZWuzf4+nyQPf57bEtxce4BLwhXgNG7ahEYREaSk= pPDQQw/Ro0cP+vfvT3JysltjBX6WW7fZbHh5eSGTySgtLSU1NRWH00H3pJ4u520ZIJMhCejQpRP= hkREcP3GC3fv2uG0SvLy8SOzcgbbt2hISHnLVKPOav5UMIUn4+vsx8sEHOHf6HCeOn2TdhvVug8= zg4GAeGvMQcS1aoNFqkGSSOySRyVzu3526diAiIpzjx46zZ/9e7HY7QhJ4azR0uaMLbdu2JSQkB= EnBVZOtX75uTXV1NdOnT0cIcZ0eiM1mY/Xq1YwcOZKgoCC3TPkvMRqNlKxIR7MAAB9cSURBVJWV= 0b17d+bNm0dQUBB33HEH77//PsOGDePs2bMsWrSImTNnYrFYWLx4MVlZWXTv3p3w8HDWrl3La6+= 9xqeffkqPHj1Yv349CxcuZMWKFQghePjhh9Hr9UyePBm9Xk9DQwOPPvooM2bMQKFQ0KpVK1JSUt= xCWikpKWzevJno6Giee+450tPT+eGHH5g6dSrbt2/H19eXsWPHUlxczGeffYZSqcRsNvP0009z8= OBBBg8efNNzlJOTw549e5g9e7Y7uOvXrx+xsbFIkkRaWhqrVq0iMDCQ+fPns2fPHpYuXcqYMWP4= 5ptvGDRoED179iQjI8M919zcXObPn49CoaB3794kJSVdp7OzfPlyMjIyuOuuuzAajTRq1IgPPvi= AY8eOceeddzJq1Cj3vXxN6PCaBs769evZsGEDffr0wWazuf1bhBDk5+cTHByMXC5n/fr1DB06FI= AVK1awY8cOOnbsyDPPPAPASy+9REVFBWPHjuXixYtu87zNmzfTtGlTt8rnkiVLaNGiBVOnTuX48= eNUV1ejUCiwWCx888037Nq1i549exIXF4ePjw+HDx9m7NixqNVq/LRK7kkMZPPxSr7ad4Wfztbw= XP9IvjlwhbVHyimsslBncXK2uIGZ6y/SoYkBk9XJ9tPV+GqVPNwjFLlMxoIfi3j+rkhaN9Jxudr= KqK4hXKyw4KWUE6RXcbq4gflbC/FWyXnl7mhqGxx8vqsUL6WMHrG+6LwUrDxwhcgANc/1j0SlkD= F9zQUabBL9WvlTbXLwYVoRzUI0tIvU892hMpqHaDhT0kB2kYm7EwMJ9/Vi+Z5S3r6/GZtPVLH9d= DUtI7Q83bcRdWYn834opMpkZ/QdofRJ8OPH7Gq+O+SyX3i2fyRBeiUr95fRrbkPX+4tZUi7QMrr= bBzKN/JoUjjBehWbT1QSE6Ih9VglIzoHk3nRyPkyM88PiKRVIx3LdpeyN7eWAJ2KcT1DadVIx8Q= VudyTGMiaI+UM7xDEXa39Wbi9GIO3y8RxfO/rTXInf5NHncVJYmM9j/YM42ypmW8PXHHd960CqG= 6wk5b982rM03c2QqGQER2opk+CH9uyf14NfHZlHi8NisLHW8GnO4vJvWKmdSMdk++KZMeZGlYdK= MNXq+CxpHBqGxykn64mMkDNoQtGJg+IJDZUw4urztMk2Js2kTp6t/Djw/TLnCisJ6mFH2O6h5Jy= uJy8Kw3461Q8dWcERdU2tF5ypg6OYuW+K+w6V8tX+65wZ4I/FrvEvrxaBrQOoGNjPe/8UMjANgH= c2/Hnwv7Mi0bOlpg5W2KipsHJY0lhJEbrmb2hgIJKC4nResb1DHOfP4CMczWcLDKhkMvIKTXzZH= I48eFavtp/hf25dXir5MivlgkU11hpEaZFLpOx82wtOrUCxa/yGJerrWScq2HGPY1pEabF5pDYl= 1dH9xgfbA6B3vt/14DTw29zm1ZuwJWSkqGQKwgKCSG5Xx8WfbSI1157jaVLl9K0aVO3kN8vuSas= JVzb0lmxYgVbtmyhd5/eNG3WDCEkFDIFMhnIkIFCRnSTxkQ2juauwU6ckhMEKFQKFHIl8murSLe= Yq6+PD526dqFDl844nRKSJCFXuOatkLkczUFw7ScXClcEJ5MR1bQxkU2ikZwSTsmJkARKhQKVUu= EKqIQAIZDJZSCXIZcrr+vpZkybNo0ZM2Ywf/786wwzrzkcd+vWDYfDQUFBAY0bN76ubWZmJv379= 8fX1xdvb28uXbrE/v373TLejRs3ZuTIkW7bg4CAAGbPns0jjzzCW2+9RXh4OA8//DByuZwRI0YQ= FhbGG2+8QWRkJGVlZZw/f55//vOfLFiwAEmS2LBhA1FRUSQkJNClSxdiY2MRQqDX61mxYgVZWVm= 8/vrrrF+/nnXr1pGUlMTLL79Mz549qampoaioCLvdzqRJkxg/fjze3t4888wzTJ48mcuXL1+non= kNSZLcFhe/VDD29vamRYsWbN26leXLlzNz5kyWLl3KypUr6dixI+Xl5aSkpDB+/HhWrVpF//79K= S4uJigoiEOHDvHJJ58wZcoUSktL+frrrxk4cCDgCiqvWXrMnDmT+fPn06NHD2bMmEFMTAzjx4/n= 8OHDmM1md3CTlZVFYmIiBoOBL774guzsbF599VXef/99t5IruAqlz549S5cuXQgMDHSfu4ULF1J= QUMDLL7/sNvsbMGAAzz33HGazmYKCAjp06MAHH3xAq1atkCSJgwcP0qxZM9577z1effVV5s+fj1= wuR6vVotVqkclkvPbaa4SGhjJ79mySkpJIS0sjMjKSqKioG1RMK4x2jhXWExem4fusCp7u24jtp= 2t4MjmC8+UWvjSXMqC1Py98e568K2ayXu/IB9sus2x3KTOGNmbm8CYEG1QcOF+Hwdv10VLT4EAS= Aq2XnKEfnGTpIy3YerKKz3aWsGx3Cf46Fe8+0Aw/rZKHl54lfUo7FvxYxEfpl9Gq5agUcnrH+/D= V3it8PCaWjHM1/KNDEMt2l/JBWhFvjWjK6DtCGfjuCd77Z3OKqqw83COMjHO1rNhbypJHWjDlu/= N8e7CcfXm1dG5qoMqk5P9tuUSTIG8yztXw/IBIMs7WMP6Lc7SL0vPtwTK6NPPhxYGRPLUih0n9G= uGUBJ9sL8ZLKWPNkXIGtwvkvo5BPPTZGZY/Hk9GTi2bjldSXGPjQrmFWcObsDunljmbLlFvdpB2= upqaBgedmhj44UQVyfF+FFdbCTKoOHCh7rrg5rX1F2kZoaNLMwOzNhSgksuYvaGAcD8v3nmgOV2= aGugyO4vF4+JYn1mBU0BChJY9ua6HtFL+8+fN9DX5LM0o4bGkcNKyq7A5Bf9zT2NGLjqNUilnb0= 4tc+9rwsajlUz97gJX6mycLm5gUr8IfDUKdp6pYVt2NUE+Ko5dqqey3s6JIhPnShsY3zuc5785T= 3y4loPn62jfWM+CH4t46s4Iqk2uFKZGJcfmkCissnBnS39e//4iO6e141B+HWqljKhANV5KGX1b= /rxaXVlvZ+KKXPLKzMx/oDk7z9Zw4HwdGedqMVqdPHVnBG+kXqJzUwPdrq4IniwyMWPtRU4U1TO= hTwQWu0TuFTM5pWZSDpUzc1gTJq/KQ5Kg2uTgQrmFpsHeV9vW0yPWh+2/St3VNDgx2yUSo12CeG= qlHKPZQUmNDblcRqDuzzuge/j7uE0rNzKMdXXs27cPL6WKsPBwevTqxYX8fH5K38n06dPdtuxyu= fyGAEeSJOrq6liyZDFz586lSdMmDB12DxXl5eTl5KC45uyNDEnmCj5Ahvy6at2rqyNXV3pkt1gt= cdlgyrh+B5MrIBLIrhYAi6u+UMLd5pf/L7uhLUgy4T4mE+Jqqk5GUeFlgpNuvtXY4XAwbdo0Bgw= YwLlz5ygrKyMkJMR93GQy0ahRIwICArDb7RQVFbmVHsH1oNyxYwd33XUXkiThdDopKChg3rx5vP= LKK0yYMIG0tDTuv/9+6urqOHXqFFOmTGHkyJG89dZb1NfXc/ToUTZs2EBAQAA7duygoqKCwYMHE= xUVxXfffce6deuYO3cu/fr1Y/PmzSQmJrrVjZOTk92rD88//7zbAbZx48aEhoZSXV3NhQsX6NGj= BwqFgvDwcPz9/ZkxYwbDhw9n0KBBrF27luHDh7sN824lyX9NLv3XD2SHw8Enn3zCrFmzSEhIICQ= kBJvNRn5+vttvqKioCIVCQVlZGcePHycxMZH58+czevRoWrZsyfnz54mPj3dvzz5z5gyXL19m5s= yZeHt74+XlhRAChUJBcnIyH3/8MUlJSe6Uz7XgKyEhgfr6en744QcWLFhAYGAgubm51/kUWSwW9= u3bx4MPPojD4SA1NZVJkyZhNBrdqao5c+awYsUKd63awoULGT9+PPn5+bRv356goCBMJhMDBgxg= 8eLF/M///A+JiYmsXLnS7bXl6+vL7t27KSgo4J133iE/P58mTZq4U2u/9q0BCDKomP9Acxb/VEJ= mgZEwXy+8lDJCfb2oMTvcKywT+0RwvNBEdIA3Y3uE8kHaZcw2iehAl1N9udFOv1b+SAIuVliIDv= Rmy4kqGvm7VhX6JLgeZEktfPnsp2IGtglgya4SSmtt9J93AoBBbQN4fkBjdp6pYfbGAuQyGf46J= Tq1gmAfFaO6hnD4ohG5TEawQUVcuJYThSb03gp8NAo2HqvkyMV6d3+dm/lw6rKJqYOjiAnRMG1w= NN8cKMNLIaNNpI42kToO5htpE6Ujv9zA5hdac+pyA4nReu7rFIzdKbhUaeXBbiGUGe18OyGBn87= WkNzCj05NDDQL8sZqFxwtqKdpkDdRAWq6NDOwO7eWN+5tQsdZmcwc1pj95+vYm2dDJoMTRSaGtA= tg4UPXpzvXZVaQOasDaqWcEZ2C2JdXx6KxsWw6Vknfq+cuSK/iSq3rIeslB0kIahoc7gf2Nd4c0= ZRlu0uoMtk5XdzAPe2DaBLkzaHXOrDhaCUfFRgZ8v5JZMhIjvelXyt/Vh8q4/+NaMabqZfIr7Bw= f+dgnliew4Q+4QxrH8QTX+ZwIK+OHVfrqC5XWTFZnew8U8PiR1rglASXqqzuuahVch66I5TkeD9= W7Cnl4Hkj93YMYm9uHVovBZ2a+qBWyrlUacUhSWi9FLw8JJpd52q4v3Mw+/Jqqax3kFdmZsbQaJ= qHaFg3qRUWu8TFCguSEIQYVIzpHsqPp1TMHNaE19blc7q4gWOX6uke40PHJnq6NvOh3uqgzuIg1= EdFTIiGoQuyWfBgc7aerMZocXK52kpUgOs+VillKOQy7E6BSiHDKblWaxySIFCnRPbb31k9/C9z= W4IbuVzOpYJCNm/eDAiax8Ty5NMT+efo0YCMrdu2UlRUxNixY+ncuTMhISF4e7tqaaqrqzlx4gQ= pKSmsX7+elm1aMeqfo9DqdXzy8SccOXBjkaOLa/uzbgNC8Gfu1Jt5ZN0KuVxOxw4db3qstraWiI= gItm3b5patzs/Pd8vCK5VKDAYDCoWCbdu2IZfLrytYLSwsRKVSERMTg8ViISsri/vuuw+j0UheX= h7h4eFUVVURERHBnj17OHnyJB999BFz5swhJCSE/fv3M27cOPz8/HA4HOTn52MwGBg8eDDvvvsu= rVu35tSpUwwcOJAzZ86wevVqHnvsMQ4cOIDBYMDPz4+0tDTGjh2LUql0BzAXLlxg48aNvPLKKyx= btgytVsvw4cNZuHAhiYmJPPnkk1RUVHD48GEWLFjAsmXLOHPmDFarFZXq5t+GQkJCyMjIoKioiG= bNmrm1jLy9vbl48SLt27cnOzub1NRUvvjiC3bs2OF2S1+4cCHDhw8nOzubiRMnUllZSUNDAx06d= GDHjh0sX76cGTNmuMc6deoUiYmJWCwW5s+fT2FhIfHx8Rw4cIDy8nKGDh16Xd1TeXm5WzL822+/= pW/fvnh7e7No0SK3bPs19u7dS6NGjXA6naSlpTFu3Di3q7rBYODEiRP4+vpy5MgRcnNzKSoq4r7= 77iM0NJSFCxcSHBxMr169yMzMpG3btjz++ON8+OGHbrsJf39/amtrSUpKYu7cubz11lsUFhYyb9= 68P1Vn9HvUml3p4DKjHR+Nwr1Eb7Q4sTsF3io5khBcrrYyvEMQJ4tM5JdbuFBuoVmwN8cLry9wD= 9Z70TxYw7pnWhGoV3G2pIF3thRSUGnlieQI1hz+7eLN8b3DWbj9Ms/2jyQ0yJsgvYruMT4sfaQF= khBcqbOxMauCM8UNxIRoOHihDj+tkosVFqpMDgJ0Smx2iQg/9b91XrRqOZkXjTyWFIbdIfBWyvF= S3rhvw0sh57VhjSmqsnL3gmyOvf7zZ4S/TsnqQ+WM6R5KvVUiMuDGOXWP8SH9dDVBBhXTBkdjsj= pxSIKYkBuDVnCtOngp5Zy6bKJnrA9mu8SVOhvx4Vo+HhNLoF5JfrmVAxfqbmgrl8F7o5qTerySl= 9dcIFivYmSXYN68rynFNTaEcAXGRouDx5adY+WTCZTW2vhHh+u/1F2utgLQvokehUzGpmOVrNhX= ytdPJJB7xcwXe0qpqrfTOlJ30+tg8FawNrOCqYOiuFJn43yZhZTD5ZhtThKj9VgdN9aMabzkXKy= wAFBndpB7xczp4gZ0atf92jhQzTtbCsmvsFBUZeWrfVeYfnc0AHGhGjo2NrD2SDm9W/hhdQiGJg= by2U8l/LNbyA1jefjPQjHrmmf5v4HVamX9+vWcPXsWSZKoramhrr6e9p060Lp1a3QaLZmZmWzcu= JGMjAzS09NJS0tj3bp1rFy5klWrVpGXl0evO5MYOWokoWFhbPx+IzvTtrs9Nq69fH19GTFiBHfd= NZD4+HiEELRs2dKd0jAajVRUVFzX5tpLLpfTvXt3QkNDqa2tZfjw4Vy5coV7772XYcOGYTabKSw= svGlbSZJQq9UMHDiQYcOG4eXl5fZMatmyJbm5uTdtA670wrUH7S/RarV0796de+65h08++YSVK1= ei0+mYNWsWAwYMQK1Wu2tHLl26xNSpUwkNDQUgPz+fp59+mszMTDp06EBdXR2lpaWMHz+elStXc= uTIEdRqNdu3b8dut9O5c2f27dvnTg2GhYWRlZXFgAEDCAoKorq6mt27dzN69GjCwsIYN24cISEh= XLhwgU2bNnH27Fny8vLQaDTs2LGD/Px84uPj2bBhA4cPH6Z///5kZWXx1VdfkZaWxhNPPEFUVBR= paWksWbKE/Px8li5dir+/P1lZWRw8eJDc3FyOHTuGRqMhJyeHy5cv069fP5555hk6derkXkmRyW= SEh4eTk5PDl19+SWpqKqmpqW636szMTNatW8fJkyeZNGkSTZs2Zf78+ezfv59NmzYxYsQIBg0ax= MKFC9m/fz99+vRhzZo1bN26FY1Gw5IlS2jTpg0dO7oeMOXl5bz//vtcunSJS5cuUV1dTYcOHSgs= LEQIgcPhoE2bNgQHBwNw4cIFt9O5j48Pn376KefOnSM7O5vCwkJ69erl/t/Zs2dTW1tL7969+fz= zzzlz5gzJycns3LmT1atXY7fbad26NWazmfPnz7vvE41Gw4EDB1i8eDEnT55k5cqVREVFUVtby5= o1a6iqqqJdu3Y4HA7mzp1LVFQUpaWlbNmyhZycHPbt28f58+fp06cPy5Yto1WrVqjVrgdITYODT= 3YWc+B8HWa7xE9na8m6VE/rRjp+OFlFXpkFP62SzccruVJnx2SVOFpQz86zNezPq2Nk5xBkwLSU= C8iu1sZ1bGJgf14dDTbXsn6ojxc5pWY+31XCzqu7Tj7fVUpOqZm2UTq6NvfhTHEDy3aXsi27ihb= hWi5X2zh2yUhRlZVTl02oVXIKq6yknaqmpMbGpmOV2B2Czk0NJEbr+SCtiDAfL/ok+BHpryb9dA= 1rjpTzY3Y13Zr7EhOq4cP0y/x0pobTJQ080iuMIxeNLNtVytaTVSQn+FFtcrDhWAV1ZleR9d7cO= ix2ic3Hq7hUaeVihYXMi0ZkwJrD5WReqqfB5uSHE1VUNdi5q1UAB/PrSD1WycF8I31b+rP9dA07= z9ZQb3VytsTMkXwjOrWcBT9epsJoRymXMbxDEG+mXkKvVpAc78ecjQXsyanFZJMY1zOMGesuklt= qplMTPY381bz03XmC9CrqzE62nKgi2OCqWYwP17rTfiark+wiE7tyapHLYGhiIIszSkg/Xc3e3D= q6Nfehst7O8j1XSD9dTUGllf15dZwsMuFwCjYfr+TUZRNGq5MtJ1wptzaROh7uEcaqA2X8cKKaH= Wdq6NvSn1nfXyTvihmbUxBs8MJbJaddlCudY7Q4Wbn/CttOVvPPO0Lo3cIPX62S7MsNNNgl7m4X= SKBeRd+W/tydGEh8uI63Ui9x8HwdCoUrDVjT4GB4xyA+3VnMvtw69p2vo3uMLw/3COXuxEACDSq= +2F1K5sV6VEoZKYcryCk18/KQaD7fVcq+vDpOFZvQeCmw2CVGdglB4yVncNtA7k4MROslx+KQeH= tkcy6Um1mQdpnYUA09Yn35MP0yP5yo5IFuIWhUcs6Xm+ndwo9Lly7x/PPP/y06WR7+PDLxR5cgf= oPa2lrGjh3Lpk2b3CsaCqWCth0SmThxIkGBAZQWl3Lw0EEOHzxERWUV9fX1KOQKQsNCSWiZQM+e= PWka0xy73cba1Sls3byVhoaGG8aKjY11u4Y+8sgjfP/993To0IHc3FwGDRrEqFGjqK6++bZHtVr= N9OnT6dy5M9OmTWPevHl8//33REZGcvToUfr27ctrr712y23NzZs3Z/bs2Wzbto2EhATeffddZs= 2aRfPmzbn//vtv6tirUCiYN28ekydP/s1zeM0V2Ol0UllZ6U5P1dfXYzQa0el016na2u12ystd3= 2b9/f2Ry+XY7Xb0ej1GoxGTyYRWq8VsNqNWq/Hx8aGystKd3vH29qa+vh69Xo9CoUCSJBoaGtBo= NCgUCoqLi9FoNDidTmw2GxqNBiEEcrkcSZLc/VgsFsxmM0FBQZjNZurr61EqlYSEhOBwOGhoaMD= Hxwe73U51dTUajca9hVyn02Gz2VxaRledxX18fCgrKyMoKAil8vqFRbPZTG1trTtQ9fX1RaPRYD= QaMRqNaDQafH19KSoqYvr06bzzzjsAbvfu6upqzGYzwcHB1NXVYbVaCQgIoKqqCp1O504zXTu31= 1JSDQ0NGAwG6uvr3ef419eisrISf39/ZDIZFRUVbtfvhoYGAgMDrys8vnbNampqsFqtBAYGYjKZ= MJvN+Pr6otPpsFqtbsVuX19fVCoVZrMZHx8f9zG9Xo8kSRiNRgwGg/v3iooKtFotQgjq6+vdNW1= Wq5WQkBCMRiO+vr7uc+6UXCkNm0OgUsqQJIFTAl+tEpPViSQEOi8FRqsTpVzG91kVHCs08erd0a= gUMvy0SiQhqKp3YNC4aj68VXIabBIymavuAqDBJlHb4Frx8dUqqW1wIJOBj0aJ1kuOyeqkzuzas= RJsUGF1SNSZna5SNsBbJQfh2tarVsmw2l3pAl+tEpVCRpXJgZdC5l5FqjM7MFkl5DII9vFCEoIK= ox0hXN/o/a6+v2tjBupVmO1OGqwSKoUrKe1wus6J3eHaLCGTgSS55mJzSEgCvJQybA6BQu56X2a= bhNkmobw6t3qLE6tdQiGXIZO5+tR6ybE6BU6nwNtLjq9GSZXJjl6twFsl50qdDUlyzdNXo6S01p= XK8tMq8VbJmfLdeV64KwqA1OOVBOpVDGkbgFr183lUKlwJdLtToFTI8NcqqWlwuH8P0Cmx2CXqL= E5kuMayOQQOp8BL6UrHCOFajbr2dx+NAp1aQZXJgdXueo/BBhWV9XbsToFCLkOnVlx33a0Oiap6= 17UO0qtQKlyr5IszSkhu4Udc2PWrTa7r5MApCTRecsw217nz0yqoaXDglFwpIz+N0t2X3em6hx1= Xz6fF5vpiGerrRWW9HYdToFDIUCtdZQk+muuLga9JDPhpldidgtoGB35aV//lRjtOSRCoVyEE2J= 0SOrUCu91ORUXFdQa6Hv5z+MuCm6t1uTSJacrIBx6gbbs2aPVanA4nJlMDDWYzMpkMXz8/1Cov7= DYbpYUlrFu7lv3797uX6n9NTEwMs2fPprCwkK5duzJ9+nRiYmJ46623eOCBB9izZ88t56lWq3nx= xRe58847OXLkCO3bt+f48eOkpaWRnp5OWFgYVVVVWK3Wm7YPCAjg2WefJTExkX379pGens6TTz7= pdkTduXPnDW3+aHDj4fZQUVHB0qVL0el0TJgw4ZZpLg/X8+zKvOt0PG6FzSFRXGPD5pAI8/XCR3= NbRc49/EHOl5lxXhVlCdApCTJ4/U6L/xxqGhyU1dkI8fHCT/v/3/vnmycTaBt1+xXUPdwe/ro7S= 7jSCRfz8ln04ce0btuaVq1bERkVicHgg5dajSQ5OX8ll9KSK5w7c4ajmVl/SGDNZDKRnZ1NSEgI= 8fHxHDlyhJMnT7J3797frIeRyWQ4HA5SUlLo378/3t7e5Ofn061bNwwGAz179uSNN964ZXCjVqu= pqqoiIyOD4cOHo1Kp0Ol0VFVV8dBDD7Fnz55bBmUe/h72799PQUEBsbGx1NXV3bJA2cP1fPhQzB= /6v9JaG0sySrhSZ2P0HaHu3Soe/l5eSbmA8ap+TN+W/jfUt/wnk3GulpTDZTzQJYRecb+vw+TBw= 7/CbVu5GT16NJs3b/7NQlu1Wo3Bx4BGo0GlUuF0SljMZupNJhpMpj9UpOvn58egQYMwGAzU1taS= kZGB0+mkT58+t1TovYZSqaRz585UVlai1+tp1aoVaWlpJCUlER4ezv79+8nMzLylsqtWq+XOO+8= kIiKC/Px8lEolhYWF1NbW0r9/f1auXHlDYCSXy5k3b96fVtL14MGDBw8ePPxr3Jbgxmg08uSTT1= 7dLXWLgf7EDqM/y7V+f73F/Nfj//J/f/3z77W/dvyaHs+t+v81CoWCN998kwkTJvxm3x48ePDgw= YOH28NtCW6cTifl5eVYLJZbD/QXBje3i79ijjKZjICAAHQ6nbuA04MHDx48ePDw13FbghsPHjx4= 8ODBg4f/FDxLCR48ePDgwYOH/yo8wY0HDx48ePDg4b+KP7UVPDs72+3C7cGDBw8ePHjw8L+BRqO= hRYsWtzz+p4Kb77777qYqvB48ePDgwYMHD38X4eHhTJky5ZbHPQXFHjx48ODBg4f/Kjw1Nx48eP= DgwYOH/yo8wY0HDx48ePDg4b8KT3DjwYMHDx48ePiv4v8DkrKy3KIORuIAAAAASUVORK5CYII= =3D" width=3D"567" height=3D"140" alt=3D"" /></p><table style=3D"width:437.= 1pt; margin-left:0.25pt; margin-bottom:0pt; border:0.75pt solid #000000; pa= dding:0pt; border-collapse:collapse"><tr><td style=3D"width:73.75pt; border= -right:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0p= t 5.03pt; vertical-align:top"><p style=3D"margin-bottom:0pt; text-align:jus= tify; line-height:115%"><span style=3D"font-weight:bold">Palabras claves:</= span><span> </span></p><p style=3D"margin-bottom:0pt; line-height:115%"><sp= an>Educaci=C3=B3n de personas adultas; fracciones; simulaciones PhET; andra= gog=C3=ADa</span></p></td><td style=3D"width:5.3pt; border-right:0.75pt sol= id #000000; border-left:0.75pt solid #000000; border-bottom:0.75pt solid #0= 00000; padding:0pt 5.03pt; vertical-align:top"><p class=3D"Title" style=3D"= margin-top:6pt; margin-bottom:12pt; text-align:justify; line-height:115%; f= ont-size:12pt"><span style=3D"font-family:'Times New Roman'"> </span><= /p></td><td style=3D"width:324.9pt; border-left:0.75pt solid #000000; borde= r-bottom:0.75pt solid #000000; padding:0pt 5.03pt; vertical-align:top"><p s= tyle=3D"margin-bottom:0pt; text-align:justify; line-height:115%"><span>Resu= men</span></p><p style=3D"margin-bottom:0pt; text-align:justify; line-heigh= t:115%"><span style=3D"font-weight:bold">Introducci=C3=B3n: </span><span>el= aprendizaje de fracciones en adultos exige estrategias did=C3=A1cticas act= ivas con tecnolog=C3=ADas digitales. En este sentido las simulaciones son u= n recurso valioso al proporcionar un entorno interactivo. </span><span styl= e=3D"font-weight:bold">Objetivos: </span><span>esta investigaci=C3=B3n tuvo= como objetivo dise=C3=B1ar un sistema de actividades mediante la integraci= =C3=B3n de PHET Interactive Simulation para fortalecer el aprendizaje de fr= acciones matem=C3=A1ticas en adultos de 40+ a=C3=B1os en la modalidad noctu= rna de la Escuela de Educaci=C3=B3n B=C3=A1sica PCEI Rumi=C3=B1ahui. </span= ><span style=3D"font-weight:bold">Metodolog=C3=ADa: </span><span>El estudio= adopt=C3=B3 un enfoque mixto, aplicado y de campo, con alcance descriptivo= -propositivo. Emple=C3=B3 m=C3=A9todos te=C3=B3ricos (anal=C3=ADtico-sint= =C3=A9tico, inductivo-deductivo, modelaci=C3=B3n) y emp=C3=ADricos (prueba = diagn=C3=B3stica, encuesta a estudiantes, entrevista a docentes). </span><s= pan style=3D"font-weight:bold">Resultados: </span><span>el an=C3=A1lisis de= datos se realiz=C3=B3 mediante distribuci=C3=B3n de frecuencias. La evalua= ci=C3=B3n se centr=C3=B3 en cuatro dimensiones con sus indicadores: compren= si=C3=B3n conceptual, procedimientos-operatividad, representaci=C3=B3n comu= nicaci=C3=B3n, actitudes y metacognici=C3=B3n. El diagn=C3=B3stico inicial = mostr=C3=B3 una comprensi=C3=B3n global reducida tanto en procedimientos, r= epresentaci=C3=B3n, comunicaci=C3=B3n y una baja autorregulaci=C3=B3n. Se d= ise=C3=B1=C3=B3 un sistema de actividades con PhET que incluye objetivos es= pec=C3=ADficos, orientaciones, trabajo con el simulador y evaluaci=C3=B3n. = </span><span style=3D"font-weight:bold">Conclusiones: </span><span>tras la = implementaci=C3=B3n en el proceso de ense=C3=B1anza-aprendizaje los resulta= dos mejoraron significativamente todos los indicadores evaluados a excepci= =C3=B3n del promedio simple que se mantuvo con el mismo valor. Adem=C3=A1s,= se reflej=C3=B3 alta aceptaci=C3=B3n y factibilidad por parte de los estud= iantes. </span><span style=3D"font-weight:bold">=C3=81rea de estudio genera= l:</span><span> educaci=C3=B3n. </span><span style=3D"font-weight:bold">=C3= =81rea de estudio espec=C3=ADfica</span><span>: Tecnolog=C3=ADa educativa. = </span><span style=3D"font-weight:bold; background-color:#ffffff">Tipo de e= studio:</span><span style=3D"background-color:#ffffff">  </span><span = style=3D"background-color:#ffffff">Art=C3=ADculo original.</span></p></td><= /tr><tr><td style=3D"width:73.75pt; border-top:0.75pt solid #000000; border= -right:0.75pt solid #000000; padding:0pt 5.03pt; vertical-align:top"><p cla= ss=3D"Title" style=3D"margin-top:6pt; margin-bottom:12pt; text-align:justif= y; line-height:115%; font-size:12pt"><span style=3D"font-family:'Times New = Roman'; font-weight:bold">Keywords:</span><span style=3D"font-family:'Times= New Roman'"> Adult education; fractions; PhET simulations; andragogy. </sp= an></p></td><td style=3D"width:5.3pt; border-top:0.75pt solid #000000; bord= er-right:0.75pt solid #000000; border-left:0.75pt solid #000000; padding:0p= t 5.03pt; vertical-align:top"><p class=3D"Title" style=3D"margin-top:6pt; m= argin-bottom:12pt; text-align:justify; line-height:115%; font-size:12pt"><s= pan style=3D"font-family:'Times New Roman'; font-weight:bold"> </span>= </p></td><td style=3D"width:324.9pt; border-top:0.75pt solid #000000; borde= r-left:0.75pt solid #000000; padding:0pt 5.03pt; vertical-align:top"><p sty= le=3D"margin-bottom:0pt; text-align:justify; line-height:115%"><span style= =3D"background-color:#ffffff">Abstract</span></p><p style=3D"margin-bottom:= 0pt; text-align:justify; line-height:115%"><span style=3D"font-weight:bold"= >Introduction: </span><span>The learning of fractions in adults requires ac= tive didactic strategies with digital technologies. In this sense, simulati= ons are a valuable resource by providing an interactive environment. </span= ><span style=3D"font-weight:bold">Objectives: </span><span>This research ai= med to design a system of activities through the integration of PHET Intera= ctive Simulation to strengthen the learning of mathematical fractions in ad= ults aged 40+ years in the night modality of the PCEI Rumi=C3=B1ahui Basic = Education School. </span><span style=3D"font-weight:bold">Methodology: </sp= an><span>The study adopted a mixed, applied and field approach, with a desc= riptive-propositional scope. He used theoretical (analytical-synthetic, ind= uctive-deductive, modeling) and empirical (diagnostic test, student survey,= teacher interview) methods. </span><span style=3D"font-weight:bold">Result= s: </span><span>Data analysis was performed using frequency distribution. T= he evaluation focused on four dimensions with their indicators: conceptual = understanding, procedures-operability, representation, communication, attit= udes, and metacognition. The initial diagnosis showed reduced global unders= tanding in procedures, representation, communication, and low self-regulati= on. A system of activities with PhET was designed that includes specific ob= jectives, orientations, work with the simulator and evaluation. </span><spa= n style=3D"font-weight:bold">Conclusions: </span><span>after implementation= in the teaching-learning process, the results significantly improved all t= he indicators evaluated, except for the simple average, which remained with= the same value. In addition, high acceptance and feasibility by the studen= ts was reflected. </span><span style=3D"font-weight:bold">General area of s= tudy:</span><span> education. </span><span style=3D"font-weight:bold">Speci= fic area of study</span><span>: Educational technology. </span><span style= =3D"font-weight:bold; background-color:#ffffff">Type of study:</span><span = style=3D"background-color:#ffffff"> Original article.</span></p></td></tr><= /table><p class=3D"Default" style=3D"margin-bottom:10pt; line-height:115%">= <span style=3D"font-weight:bold"> </span></p><p class=3D"ListParagraph= " style=3D"margin-bottom:0pt; text-indent:-18pt; text-align:justify; line-h= eight:115%"><span style=3D"font-weight:bold"><span>1.</span></span><span st= yle=3D"width:9pt; font:7pt 'Times New Roman'; display:inline-block"> &= #xa0;    </span><span style=3D"font-weight:bold">Introducci= =C3=B3n</span></p><p style=3D"margin-bottom:0pt; text-align:justify; line-h= eight:115%"><span>La reintegraci=C3=B3n de adultos mayores de 40 a=C3=B1os = en la educaci=C3=B3n formal, especialmente en programas de educaci=C3=B3n b= =C3=A1sica y secundaria para aprendices con escolarizaci=C3=B3n discontinua= , es un fen=C3=B3meno educativo cada vez m=C3=A1s importante en Am=C3=A9ric= a Latina (Salinas & Negri, 2020). El regreso a la escolarizaci=C3=B3n r= epresenta mucho m=C3=A1s que un objetivo acad=C3=A9mico: es una transformac= i=C3=B3n personal multifac=C3=A9tica, un logro de metas postergadas y, en m= uchos casos, una postura desafiante frente a adversidades sociales, econ=C3= =B3micas y estructurales que hist=C3=B3ricamente limitaron sus oportunidade= s educativas (Banco de Desarrollo de Am=C3=A9rica Latina y el Caribe [CAF-b= anco], 2024). Estos estudiantes que durante mucho tiempo ejercieron roles c= omo trabajadores, madres y padres, o cuidadores, regresan a clase motivados= y con ricas experiencias, pero tambi=C3=A9n con brechas en su formaci=C3= =B3n, temores respecto al contenido acad=C3=A9mico e influenciados por fact= ores externos que impactan directamente en sus procesos de aprendizaje (Org= anizaci=C3=B3n de las Naciones Unidas para la Educaci=C3=B3n, la Ciencia y = la Cultura UNESCO, 2024). </span></p><p style=3D"margin-bottom:0pt; text-al= ign:justify; line-height:115%"><span>A diferencia de los estudiantes m=C3= =A1s j=C3=B3venes, los adultos enfrentan un entorno de aprendizaje que se r= ealiza de manera paralela con obligaciones laborales, familiares y sociales= . Todas estas responsabilidades, combinadas con la ansiedad acad=C3=A9mica,= posibles dificultades respecto al uso de herramientas digitales o software= y otras preocupaciones crean desaf=C3=ADos muy distintos que un educador d= ebe abordar con estrategias especializadas (=C3=81vila, 2018). M=C3=A1s rec= ientemente Terhune et</span><span> </span><span>al. (2021) y Stojanovi= c (2022) comparten la opini=C3=B3n de que los adultos mayores que regresan = a estudiar a menudo se enfrentan a barreras significativas: baja autoestima= en sus habilidades cognitivas, ausencia de rutinas de estudio, actitudes i= nflexibles hacia la tecnolog=C3=ADa educativa, marcos curriculares insufici= entes que se alineen con sus intereses y contextos de vida. </span></p><p s= tyle=3D"margin-bottom:0pt; text-align:justify; line-height:115%"><span>Desd= e una perspectiva latinoamericana el </span><span style=3D"text-decoration:= underline">Banco de Desarrollo de Am=C3=A9rica Latina y el Caribe</span><sp= an> (CAF-banco, 2024) se=C3=B1ala que estos problemas se ven agravados por = las inequidades estructurales del sistema educativo, como la inadecuada for= maci=C3=B3n de maestros en educaci=C3=B3n de adultos, falta de herramientas= tecnol=C3=B3gicas pedag=C3=B3gicas adecuadas e infraestructura, y el acces= o persistentemente desigual a la tecnolog=C3=ADa y al internet. </span></p>= <p style=3D"margin-bottom:0pt; text-align:justify; line-height:115%"><span>= Un enfoque educativo para adultos requiere un cambio en la metodolog=C3=ADa= aplicada y, por lo tanto, debe sustentarse en un marco te=C3=B3rico que co= nsidere sus particularidades. La andragog=C3=ADa, se define como la ciencia= que se encarga de facilitar el aprendizaje en los adultos, por lo que cobr= a gran importancia en este punto. Desde los a=C3=B1os 70, la andragog=C3=AD= a propuesta por Malcolm Knowles (2020) se aleja de los modelos de ense=C3= =B1anza infantil y se enfoca en el aprendizaje centrado en el alumno que, a= dem=C3=A1s, valora su experiencia vital, demanda autonom=C3=ADa y busca res= olver problemas que le son =C3=BAtiles. Esta manera de ver la educaci=C3=B3= n no solo implica el uso de una metodolog=C3=ADa activa, participativa y si= gnificativa. Adem=C3=A1s, transforma la figura del docente en un mediador f= acilitador y no solo emisor unidireccional de informaci=C3=B3n (Note et</sp= an><span> </span><span>al., 2021).</span></p><p style=3D"margin-bottom= :0pt; text-align:justify; line-height:115%"><span>En t=C3=A9rminos pr=C3=A1= cticos, la implementaci=C3=B3n de la andragog=C3=ADa en entornos educativos= reales requiere una adaptaci=C3=B3n precisa de las estrategias de ense=C3= =B1anza. El dise=C3=B1o de actividades debe tener en cuenta la diversidad d= el grupo adulto, incorporar sus experiencias previas como recursos valiosos= y fomentar la colaboraci=C3=B3n activa y la reflexi=C3=B3n cr=C3=ADtica (M= elliofatria et</span><span> </span><span>al., 2024). El aprendizaje de= los adultos se potencia por el compromiso del aprendiz en definir sus obje= tivos, la relevancia directa del contenido para la vida cotidiana y la perc= epci=C3=B3n de un entorno educativo seguro, respetuoso y motivador (Knowles= , 2020). Los contextos europeos desarrollaron a=C3=BAn m=C3=A1s esta perspe= ctiva con enfoques socio comunitarios que enfatizan la importancia del apre= ndizaje como una experiencia colectiva, transformadora y liberadora, expres= ada mediante los t=C3=A9rminos =E2=80=9Caprendizaje para la vida=E2=80=9D y= =E2=80=9Cmomentos de comunidad=E2=80=9D (Efgivia et</span><span> </sp= an><span>al., 2021).</span></p><p style=3D"margin-bottom:0pt; text-align:ju= stify; line-height:115%"><span>El aprendizaje de la matem=C3=A1tica en los = adultos requiere atenci=C3=B3n de los aprendices debido a los altos niveles= de ansiedad que este contenido puede inducir, m=C3=A1s a=C3=BAn en individ= uos con trayectorias educativas interrumpidas. La ense=C3=B1anza de la mate= m=C3=A1tica desde una perspectiva andrag=C3=B3gica requiere romper modelos = tradicionales que se centran en el aprendizaje mec=C3=A1nico de f=C3=B3rmul= as a trav=C3=A9s de la aplicaci=C3=B3n de algoritmos, hacia uno centrado en= la comprensi=C3=B3n, la resoluci=C3=B3n de problemas, la identificaci=C3= =B3n de desaf=C3=ADos significativos y la conexi=C3=B3n con experiencias re= ales (El-Amin, 2020). </span></p><p style=3D"margin-bottom:0pt; text-align:= justify; line-height:115%"><span>Estudios realizados por S=C3=A1nchez-Domen= ech & Cabeza-Rodr=C3=ADguez (2024) y Perry et</span><span> </span>= <span>al. (2025) indican que los adultos tienen una mayor eficacia en el ap= rendizaje de la matem=C3=A1tica cuando el contenido se conecta con su vida = diaria, actividades profesionales o comunitarias, as=C3=AD como cuando se l= es permite explorar, cometer errores y construir conocimiento de manera seg= ura.</span></p><p style=3D"margin-bottom:0pt; text-align:justify; line-heig= ht:115%"><span>En este contexto, las tecnolog=C3=ADas digitales emergen com= o aliados fundamentales para transformar las pr=C3=A1cticas educativas. Int= egrarlas en los diversos entornos de ense=C3=B1anza y aprendizaje ayuda a a= mpliar la variedad de formas de acceder a la informaci=C3=B3n de manera vis= ual, interactiva y con contenido atractivo para ofrecer experiencias format= ivas m=C3=A1s contextualizadas (S=C3=A1nchez-Domenech & Cabeza-Rodr=C3= =ADguez, 2024). En particular los simuladores digitales educativos ganaron = prominencia como herramientas innovadoras que permiten la representaci=C3= =B3n de fen=C3=B3menos abstractos o complejos a trav=C3=A9s de entornos int= eractivos, seguros y controlados (Almadrones & Tadifa, 2024). Al permit= ir la manipulaci=C3=B3n de variables, la observaci=C3=B3n instant=C3=A1nea = de resultados y la toma de decisiones independiente, los simuladores foment= an un aprendizaje activo y significativo de acuerdo con los principios de l= a andragog=C3=ADa y las expectativas del siglo XXI (Diab et</span><span>&#x= a0;</span><span>al., 2024).</span></p><p style=3D"margin-bottom:0pt; text-a= lign:justify; line-height:115%"><span>Entre estas herramientas, vale la pen= a destacar las simulaciones interactivas desarrolladas por el </span><span = style=3D"text-decoration:underline">Proyecto de Simulaciones Interactivas P= hET</span><span> de la Universidad de Colorado. Aunque estas simulaciones f= ueron dise=C3=B1adas inicialmente para apoyar la ense=C3=B1anza de la cienc= ia y las matem=C3=A1ticas, demostraron ser muy =C3=BAtiles para comprender = conceptos abstractos dif=C3=ADciles, fomentar la participaci=C3=B3n activa = de los estudiantes y el aprendizaje autodirigido (Kumar, 2024). Numerosos e= studios como los de Garc=C3=ADa (2019) o Acquah et</span><span> </span= ><span>al. (2024) documentaron el impacto positivo de PhET en el rendimient= o acad=C3=A9mico, la motivaci=C3=B3n y las habilidades de pensamiento cr=C3= =ADtico, especialmente en situaciones donde los recursos educativos tradici= onales disponibles son inadecuados o mal adaptados a las necesidades de los= estudiantes.</span></p><p style=3D"margin-bottom:0pt; text-align:justify; = line-height:115%"><span>Por otra parte uno de los temas m=C3=A1s complejos = relacionados con la ense=C3=B1anza-aprendizaje de la matem=C3=A1tica en la = etapa adulta, son las fracciones. Sin embargo con las simulaciones PhET es = posible mostrar con ilustraciones el proceso de manipular y trabajar con fr= acciones, as=C3=AD como sumar, restar y comparar valores de forma intuitiva= . Para estudiantes adultos, especialmente aquellos mayores de 40 a=C3=B1os = que regresan a la educaci=C3=B3n formal, estas representaciones din=C3=A1mi= cas suponen un lazo entre el saber abstracto y la vivencia concreta, por lo= que ayuda a otorgar una comprensi=C3=B3n m=C3=A1s profunda. La utilizaci= =C3=B3n de PhET puede potenciar el rol del aprendiz en el desarrollo de hab= ilidades, calmar la ansiedad y construir una experiencia accesible, motivan= te e inclusiva.</span></p><p style=3D"margin-bottom:0pt; text-align:justify= ; line-height:115%"><span>Un ejemplo representativo de esta situaci=C3=B3n = se observa en la </span><span style=3D"text-decoration:underline">Escuela d= e Educaci=C3=B3n B=C3=A1sica PCEI Rumi=C3=B1ahui</span><span>, ubicada en l= a ciudad de Guayaquil. En su modalidad nocturna dirigida a personas mayores= de 18 a=C3=B1os, se identific=C3=B3 una problem=C3=A1tica concreta: estudi= antes mayores de 40 a=C3=B1os presentan serias dificultades en el aprendiza= je de las matem=C3=A1ticas. Estos alumnos manifiestan desconexi=C3=B3n con = los contenidos curriculares, inseguridad frente a conceptos b=C3=A1sicos y = bajo rendimiento acad=C3=A9mico, lo cual influye negativamente en su perman= encia dentro del sistema educativo. En este contexto, el problema cient=C3= =ADfico que gu=C3=ADa la presente investigaci=C3=B3n radica en =C2=BFc=C3= =B3mo mejorar el aprendizaje de fracciones matem=C3=A1ticas en adultos mayo= res de 40 a=C3=B1os?</span></p><p style=3D"margin-bottom:0pt; text-align:ju= stify; line-height:115%"><span>En este sentido, el objetivo general de esta= investigaci=C3=B3n es dise=C3=B1ar un sistema de actividades mediante la i= ntegraci=C3=B3n de </span><span style=3D"font-style:italic; text-decoration= :underline">PHET Interactive Simulation</span><span> para fortalecer el apr= endizaje de fracciones matem=C3=A1ticas en adultos de 40+ a=C3=B1os en la m= odalidad nocturna de la </span><span style=3D"text-decoration:underline">Es= cuela de Educaci=C3=B3n B=C3=A1sica PCEI Rumi=C3=B1ahui</span><span>. Esta = propuesta no solo pretende mejorar el aprendizaje, sino tambi=C3=A9n contri= buir al desarrollo de una educaci=C3=B3n m=C3=A1s inclusiva, adaptada y ori= entada a las necesidades reales de los aprendices adultos.</span></p><p sty= le=3D"margin-bottom:0pt; line-height:115%"><span style=3D"font-weight:bold"= > </span></p><p class=3D"ListParagraph" style=3D"margin-bottom:0pt; te= xt-indent:-18pt; line-height:115%"><span style=3D"font-weight:bold"><span>2= .</span></span><span style=3D"width:9pt; font:7pt 'Times New Roman'; displa= y:inline-block">      </span><span style=3D"font-w= eight:bold">Metodolog=C3=ADa</span></p><p style=3D"margin-bottom:0pt; text-= align:justify; line-height:115%"><span>La presente investigaci=C3=B3n adopt= =C3=B3 un enfoque mixto ya que combina el an=C3=A1lisis de datos cuantitati= vos a partir de la aplicaci=C3=B3n de una prueba diagn=C3=B3stica y la medi= ci=C3=B3n del progreso acad=C3=A9mico de los estudiantes mediante un an=C3= =A1lisis cualitativo de necesidades y percepciones. Asimismo, es una invest= igaci=C3=B3n aplicada y de campo, ya que responde a la necesidad de observa= r el objeto de estudio en la modalidad nocturna de la </span><span style=3D= "text-decoration:underline">Escuela PCEI Rumi=C3=B1ahui</span><span>. </spa= n></p><p style=3D"margin-bottom:0pt; text-align:justify; line-height:115%">= <span>En cuanto a su alcance, la investigaci=C3=B3n es descriptivo-proposit= iva, ya que primero se caracterizan las dificultades en el aprendizaje de l= as fracciones en adultos de 40 + a=C3=B1os y a partir del diagn=C3=B3stico = se dise=C3=B1a un sistema de actividades sustentado en simulaciones PhET.</= span></p><p style=3D"margin-bottom:0pt; text-align:justify; line-height:115= %"><span>En la investigaci=C3=B3n se emplearon varios m=C3=A9todos que perm= itieron guiar cada una de las fases investigativas. Desde el punto de vista= te=C3=B3rico, se aplicaron los m=C3=A9todos anal=C3=ADtico-sint=C3=A9tico = e inductivo-deductivo para el an=C3=A1lisis de los conceptos relacionados c= on el aprendizaje de fracciones, la andragog=C3=ADa y los simuladores PhET.= Mientras que la modelaci=C3=B3n se utiliz=C3=B3 para el dise=C3=B1o de la = propuesta. </span></p><p style=3D"margin-bottom:0pt; text-align:justify; li= ne-height:115%"><span>Para la recolecci=C3=B3n de datos se emplearon m=C3= =A9todos emp=C3=ADricos. Se aplic=C3=B3 una prueba diagn=C3=B3stica que eva= lu=C3=B3 el aprendizaje de fracciones (parte-todo, equivalencias, operacion= es y representaci=C3=B3n) con el fin de identificar errores frecuentes y fo= calizar la intervenci=C3=B3n. Asimismo, se implement=C3=B3 una encuesta a e= studiantes para recabar percepciones sobre actitudes, niveles de comprensi= =C3=B3n, uso pr=C3=A1ctico y comunicaci=C3=B3n de las fracciones. El tratam= iento estad=C3=ADstico de los datos se realiz=C3=B3 mediante an=C3=A1lisis = de distribuci=C3=B3n de frecuencias. Adem=C3=A1s, se aplic=C3=B3 una entrev= ista a docentes, que permiti=C3=B3 caracterizar el contexto, documentar dif= icultades observadas, el uso de estrategias did=C3=A1cticas y de tecnolog= =C3=ADas digitales. </span></p><p style=3D"margin-bottom:0pt; text-align:ju= stify; line-height:115%"><span>La poblaci=C3=B3n de estudio son los estudia= ntes de la modalidad nocturna de la </span><span style=3D"text-decoration:u= nderline">Escuela de Educaci=C3=B3n B=C3=A1sica PCEI Rumi=C3=B1ahui</span><= span>, ubicada en la ciudad de Guayaquil. La unidad de an=C3=A1lisis estuvo= compuesta por adultos mayores de 40 a=C3=B1os matriculados en este program= a educativo. </span></p><p style=3D"margin-bottom:0pt; text-align:justify; = line-height:115%"><span>Para seleccionar la muestra, se aplicaron criterios= de reclutamiento basados en inclusi=C3=B3n, tales como: ser un estudiante = matriculado en el turno nocturno, tener un m=C3=ADnimo de 40 a=C3=B1os y as= istencia regular a las clases de matem=C3=A1ticas. Como criterios de exclus= i=C3=B3n, se consideraron a los estudiantes menores de 40 a=C3=B1os, o aque= llos que indicaron dificultades cognitivas severas que obstaculizan su capa= cidad para participar activamente en la recolecci=C3=B3n de datos o en la p= ropuesta de intervenci=C3=B3n. Los participantes que no presenten el consen= timiento informado o se retiren antes de finalizar la recolecci=C3=B3n de d= atos fueron eliminados de la muestra. En total, la muestra estuvo compuesta= por 10 estudiantes que cumplieron con los criterios anteriormente descrito= s.</span></p><p style=3D"margin-bottom:0pt; text-align:justify; line-height= :115%"><span>Con respecto a los aspectos =C3=A9ticos, la investigaci=C3=B3n= se llev=C3=B3 a cabo observando los principios de respeto, confidencialida= d y consentimiento libre e informado. En este caso, se realiz=C3=B3 una sol= icitud de autorizaci=C3=B3n institucional al director de la </span><span st= yle=3D"text-decoration:underline">Escuela de Educaci=C3=B3n B=C3=A1sica PCE= I Rumi=C3=B1ahui</span><span>. Se elabor=C3=B3 un formulario de consentimie= nto informado que fue entregado a los participantes donde se asegur=C3=B3 u= na participaci=C3=B3n voluntaria, an=C3=B3nima y desvinculada de cualquier = repercusi=C3=B3n acad=C3=A9mica. No se llevaron a cabo procedimientos que c= ausen da=C3=B1o de ninguna naturaleza, ya sea f=C3=ADsico, emocional o psic= ol=C3=B3gico a los involucrados.</span></p><p style=3D"margin-bottom:0pt; t= ext-align:justify; line-height:115%"><span>Como se observa en la </span><sp= an style=3D"font-weight:bold">Tabla 1</span><span style=3D"color:#ee0000"> = </span><span>para realizar la operacionalizaci=C3=B3n de categor=C3=ADas de= an=C3=A1lisis se parti=C3=B3 de los resultados te=C3=B3ricos planteados po= r </span><span style=3D"text-decoration:underline">National Research Counci= l</span><span> (2001) quienes se=C3=B1alan que el aprendizaje de fracciones= se articula en cuatro dimensiones fundamentales: la comprensi=C3=B3n conce= ptual, que posibilita reconocer la fracci=C3=B3n como relaci=C3=B3n parte= =E2=80=93todo, raz=C3=B3n y operador, estableciendo conexiones entre repres= entaciones y significados; los procedimientos y habilidades operativas, que= implican dominar algoritmos, transformaciones equivalentes y estrategias d= e c=C3=A1lculo exacto o estimativo para resolver problemas; la representaci= =C3=B3n y comunicaci=C3=B3n matem=C3=A1tica, orientada a expresar ideas fra= ccionarias en registros num=C3=A9ricos, gr=C3=A1ficos, pict=C3=B3ricos y ve= rbales, argumentando y socializando razonamientos con precisi=C3=B3n; y la = actitud y metacognici=C3=B3n, que fomenta la autorregulaci=C3=B3n, el monit= oreo de estrategias, la reflexi=C3=B3n cr=C3=ADtica sobre el propio desempe= =C3=B1o y una disposici=C3=B3n positiva hacia la resoluci=C3=B3n de situaci= ones novedosas vinculadas a las fracciones.</span></p><p style=3D"margin-bo= ttom:0pt; text-align:justify; line-height:115%"><span> </span></p><p s= tyle=3D"margin-bottom:0pt; text-align:center; line-height:115%"><span style= =3D"font-weight:bold">Tabla 1</span></p><p style=3D"margin-bottom:0pt; text= -align:center; line-height:115%"><span style=3D"font-style:italic">Operacio= nalizaci=C3=B3n de categor=C3=ADas de an=C3=A1lisis</span></p><table style= =3D"margin-bottom:0pt; padding:0pt; border-collapse:collapse"><tr><td style= =3D"border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; pa= dding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text= -align:center; line-height:115%; font-size:10pt"><span>Categor=C3=ADa princ= ipal</span></p></td><td style=3D"width:74.6pt; border-top:0.75pt solid #000= 000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:= middle"><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%;= font-size:10pt"><span>Dimensi=C3=B3n</span></p></td><td style=3D"width:215= .7pt; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; = padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; te= xt-align:center; line-height:115%; font-size:10pt"><span>Indicadores</span>= </p></td></tr><tr><td rowspan=3D"4" style=3D"border-top:0.75pt solid #00000= 0; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:mi= ddle"><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%; f= ont-size:10pt"><span>Aprendizaje de fracciones</span></p></td><td style=3D"= width:74.6pt; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #= 000000; padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom= :0pt; text-align:center; line-height:115%; font-size:10pt"><span>Comprensi= =C3=B3n conceptual</span></p></td><td style=3D"width:215.7pt; border-top:0.= 75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; = vertical-align:middle"><p class=3D"ListParagraph" style=3D"margin-left:21.9= 5pt; margin-bottom:0pt; text-indent:-18pt; line-height:115%; font-size:10pt= "><span><span>=E2=80=A2</span></span><span style=3D"width:14.5pt; font:7pt = 'Times New Roman'; display:inline-block">      = 0;    </span><span>Reconoce y explica el concepto de fracci= =C3=B3n como parte de un todo.</span></p><p class=3D"ListParagraph" style= =3D"margin-left:21.95pt; margin-bottom:0pt; text-indent:-18pt; line-height:= 115%; font-size:10pt"><span><span>=E2=80=A2</span></span><span style=3D"wid= th:14.5pt; font:7pt 'Times New Roman'; display:inline-block">  &#= xa0;       </span><span>Comprende la equivale= ncia entre fracciones y la formaci=C3=B3n de la unidad.</span></p></td></tr= ><tr><td style=3D"width:74.6pt; border-top:0.75pt solid #000000; border-bot= tom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p styl= e=3D"margin-bottom:0pt; text-align:center; line-height:115%; font-size:10pt= "><span>Procedimientos y habilidades operativas</span></p></td><td style=3D= "width:215.7pt; border-top:0.75pt solid #000000; border-bottom:0.75pt solid= #000000; padding:0pt 5.4pt; vertical-align:middle"><p class=3D"ListParagra= ph" style=3D"margin-left:21.95pt; margin-bottom:0pt; text-indent:-18pt; lin= e-height:115%; font-size:10pt"><span><span>=E2=80=A2</span></span><span sty= le=3D"width:14.5pt; font:7pt 'Times New Roman'; display:inline-block"> = ;         </span><span>Realiza oper= aciones b=C3=A1sicas con fracciones (suma, resta, multiplicaci=C3=B3n, divi= si=C3=B3n).</span></p><p class=3D"ListParagraph" style=3D"margin-left:21.95= pt; margin-bottom:0pt; text-indent:-18pt; line-height:115%; font-size:10pt"= ><span><span>=E2=80=A2</span></span><span style=3D"width:14.5pt; font:7pt '= Times New Roman'; display:inline-block">      = ;    </span><span>Resuelve problemas pr=C3=A1cticos que invo= lucran fracciones.</span></p></td></tr><tr><td style=3D"width:74.6pt; borde= r-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt= 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:ce= nter; line-height:115%; font-size:10pt"><span>Representaci=C3=B3n y comunic= aci=C3=B3n matem=C3=A1tica</span></p></td><td style=3D"width:215.7pt; borde= r-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt= 5.4pt; vertical-align:middle"><p class=3D"ListParagraph" style=3D"margin-l= eft:21.95pt; margin-bottom:0pt; text-indent:-18pt; line-height:115%; font-s= ize:10pt"><span><span>=E2=80=A2</span></span><span style=3D"width:14.5pt; f= ont:7pt 'Times New Roman'; display:inline-block">    &#= xa0;     </span><span>Expresa fracciones mediante diver= sas representaciones (dibujos, modelos manipulativos, s=C3=ADmbolos).</span= ></p><p class=3D"ListParagraph" style=3D"margin-left:21.95pt; margin-bottom= :0pt; text-indent:-18pt; line-height:115%; font-size:10pt"><span><span>=E2= =80=A2</span></span><span style=3D"width:14.5pt; font:7pt 'Times New Roman'= ; display:inline-block">        &#x= a0; </span><span>Comunica razonamientos y estrategias para comparar y opera= r con fracciones.</span></p></td></tr><tr><td style=3D"width:74.6pt; border= -top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt = 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:cen= ter; line-height:115%; font-size:10pt"><span>Actitudes y metacognici=C3=B3n= </span></p></td><td style=3D"width:215.7pt; border-top:0.75pt solid #000000= ; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:mid= dle"><p class=3D"ListParagraph" style=3D"margin-left:21.95pt; margin-bottom= :0pt; text-indent:-18pt; line-height:115%; font-size:10pt"><span><span>=E2= =80=A2</span></span><span style=3D"width:14.5pt; font:7pt 'Times New Roman'= ; display:inline-block">        &#x= a0; </span><span>Muestra inter=C3=A9s y persistencia en el aprendizaje de f= racciones.</span></p><p class=3D"ListParagraph" style=3D"margin-left:21.95p= t; margin-bottom:0pt; text-indent:-18pt; line-height:115%; font-size:10pt">= <span><span>=E2=80=A2</span></span><span style=3D"width:14.5pt; font:7pt 'T= imes New Roman'; display:inline-block">      =     </span><span>Utiliza estrategias para autoevaluar y corr= egir errores.</span></p></td></tr></table><p style=3D"margin-bottom:0pt; li= ne-height:115%"><span style=3D"font-weight:bold"> </span></p><p class= =3D"ListParagraph" style=3D"margin-bottom:0pt; text-indent:-18pt; line-heig= ht:115%"><span style=3D"font-weight:bold"><span>3.</span></span><span style= =3D"width:9pt; font:7pt 'Times New Roman'; display:inline-block">  = 0;    </span><span style=3D"font-weight:bold">Resultados </s= pan></p><p style=3D"margin-bottom:0pt; line-height:115%"><span style=3D"fon= t-style:italic"> </span></p><p style=3D"text-align:justify"><span>En l= a presente secci=C3=B3n se exponen los hallazgos obtenidos de los instrumen= tos de diagn=C3=B3stico, encuesta y entrevista, as=C3=AD como la implementa= ci=C3=B3n del sistema de actividades dise=C3=B1ado con el uso de las simula= ciones interactivas PhET. Se presentan los datos organizados de acuerdo con= las dimensiones de an=C3=A1lisis previamente establecidas, con el prop=C3= =B3sito de ofrecer una visi=C3=B3n clara y estructurada del desempe=C3=B1o = y las percepciones de los participantes antes y despu=C3=A9s de la interven= ci=C3=B3n.</span></p><p style=3D"margin-bottom:0pt; line-height:115%"><span= style=3D"font-style:italic"> </span></p><p class=3D"ListParagraph" st= yle=3D"margin-bottom:0pt; text-indent:-18pt; line-height:115%"><span style= =3D"font-style:italic"><span>3.1.</span></span><span style=3D"font-style:it= alic"> Prueba diagn=C3=B3stica</span></p><p style=3D"margin-bottom:0pt; tex= t-align:justify; line-height:115%"><span>En la dimensi=C3=B3n de comprensi= =C3=B3n conceptual los resultados evidencian un dominio muy limitado: s=C3= =B3lo el 20=E2=80=AF% de los estudiantes reconoci=C3=B3 la equivalencia num= =C3=A9rica de fracciones, mientras que la representaci=C3=B3n gr=C3=A1fica,= la identificaci=C3=B3n de partes y la noci=C3=B3n misma de fracci=C3=B3n m= arcaron 0=E2=80=AF% de aciertos. El porcentaje global de =C3=A9xito en este= bloque es apenas del 5=E2=80=AF%, lo que indica dificultades severas en la= s ideas b=C3=A1sicas sobre la fracci=C3=B3n y la relaci=C3=B3n numerador</s= pan><span>‑</span><span>denominador, requiriendo intervenci=C3=B3n p= rioritaria y actividades manipulativas.</span></p><p style=3D"margin-bottom= :0pt; text-align:justify; line-height:115%"><span>En procedimientos y habil= idades operativas el desempe=C3=B1o muestra contrastes marcados. Los estudi= antes resolvieron con soltura la suma de fracciones con denominador com=C3= =BAn (80=E2=80=AF% de aciertos), pero cayeron a 20=E2=80=AF% en la resta y = 0=E2=80=AF% en los dos =C3=ADtems de promedios, elevando s=C3=B3lo hasta 25= =E2=80=AF% el =C3=A9xito global de la categor=C3=ADa. El patr=C3=B3n sugier= e que las destrezas algor=C3=ADtmicas b=C3=A1sicas se activan cuando la ope= raci=C3=B3n es directa, pero se desvanecen ante c=C3=A1lculos que requieren= interpretaci=C3=B3n o elaboraci=C3=B3n de representaciones intermedias.</s= pan></p><p style=3D"margin-bottom:0pt; text-align:justify; line-height:115%= "><span>En la dimensi=C3=B3n de representaci=C3=B3n y comunicaci=C3=B3n mat= em=C3=A1tica presenta un perfil mixto: la notaci=C3=B3n simb=C3=B3lica y la= comparaci=C3=B3n de fracciones resultaron familiares para la mayor=C3=ADa,= con 80=E2=80=AF% de respuestas correctas en ambos =C3=ADtems; sin embargo,= ning=C3=BAn estudiante consigui=C3=B3 justificar su ordenamiento por escri= to, lo que reduce el promedio de la secci=C3=B3n a 53,3=E2=80=AF%. El contr= aste revela que los alumnos pueden aplicar procedimientos aprendidos, pero = encuentran dificultades al explicar sus razonamientos, evidenciando una bre= cha entre hacer matem=C3=A1ticas y comunicar las ideas subyacentes. Los res= ultados se aprecian en la </span><span style=3D"font-weight:bold">Tabla 2</= span><span>.</span></p><p style=3D"margin-bottom:0pt; text-align:justify; l= ine-height:115%"><span> </span></p><p style=3D"margin-bottom:0pt; text= -align:center; line-height:115%"><span style=3D"font-weight:bold">Tabla 2</= span></p><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%= "><span style=3D"font-style:italic">Resultados de la prueba diagn=C3=B3stic= a aplicada a los estudiantes</span></p><table style=3D"width:100%; margin-b= ottom:0pt; padding:0pt; border-collapse:collapse"><tr style=3D"height:16.5p= t"><td style=3D"width:20.36%; border-top:0.75pt solid #000000; border-botto= m:0.75pt solid #000000; padding:0pt 3.5pt; vertical-align:middle"><p style= =3D"margin-bottom:0pt; text-align:center; line-height:115%; font-size:10pt"= ><span>Tipo</span></p></td><td style=3D"width:7.94%; border-top:0.75pt soli= d #000000; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vertical-= align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-height= :115%; font-size:10pt"><span>N=C2=BA</span></p></td><td style=3D"width:32.1= 6%; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; pa= dding:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text= -align:center; line-height:115%; font-size:10pt"><span>Criterio</span></p><= /td><td style=3D"width:12.92%; border-top:0.75pt solid #000000; border-bott= om:0.75pt solid #000000; padding:0pt 3.5pt; vertical-align:middle"><p style= =3D"margin-bottom:0pt; text-align:center; line-height:115%; font-size:10pt"= ><span>Correcto</span></p></td><td style=3D"width:14.38%; border-top:0.75pt= solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vert= ical-align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-h= eight:115%; font-size:10pt"><span>Incorrecto</span></p></td><td style=3D"wi= dth:12.24%; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #00= 0000; padding:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0= pt; text-align:center; line-height:115%; font-size:10pt"><span>%=E2=80=AF= =C3=89xito</span></p></td></tr><tr style=3D"height:4.8pt"><td rowspan=3D"4"= style=3D"width:20.36%; border-top:0.75pt solid #000000; border-bottom:0.75= pt solid #000000; padding:0pt 3.5pt; vertical-align:middle"><p style=3D"mar= gin-bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>= Comprensi=C3=B3n conceptual (CC)</span></p></td><td style=3D"width:7.94%; b= order-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding= :0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-alig= n:center; line-height:115%; font-size:10pt"><span>P1</span></p></td><td sty= le=3D"width:32.16%; border-top:0.75pt solid #000000; border-bottom:0.75pt s= olid #000000; padding:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-= bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>Repr= esentaci=C3=B3n de una fracci=C3=B3n</span></p></td><td style=3D"width:12.9= 2%; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; pa= dding:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text= -align:center; line-height:115%; font-size:10pt"><span>0</span></p></td><td= style=3D"width:14.38%; border-top:0.75pt solid #000000; border-bottom:0.75= pt solid #000000; padding:0pt 3.5pt; vertical-align:middle"><p style=3D"mar= gin-bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>= 10</span></p></td><td style=3D"width:12.24%; border-top:0.75pt solid #00000= 0; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vertical-align:mi= ddle"><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%; f= ont-size:10pt"><span>0=E2=80=AF%</span></p></td></tr><tr style=3D"height:18= .95pt"><td style=3D"width:7.94%; border-top:0.75pt solid #000000; border-bo= ttom:0.75pt solid #000000; padding:0pt 3.5pt; vertical-align:middle"><p sty= le=3D"margin-bottom:0pt; text-align:center; line-height:115%; font-size:10p= t"><span>P2</span></p></td><td style=3D"width:32.16%; border-top:0.75pt sol= id #000000; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vertical= -align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-heigh= t:115%; font-size:10pt"><span>Identificaci=C3=B3n de partes de una fracci= =C3=B3n</span></p></td><td style=3D"width:12.92%; border-top:0.75pt solid #= 000000; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vertical-ali= gn:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-height:11= 5%; font-size:10pt"><span>0</span></p></td><td style=3D"width:14.38%; borde= r-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt= 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:ce= nter; line-height:115%; font-size:10pt"><span>10</span></p></td><td style= =3D"width:12.24%; border-top:0.75pt solid #000000; border-bottom:0.75pt sol= id #000000; padding:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bo= ttom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>0=E2= =80=AF%</span></p></td></tr><tr style=3D"height:4.25pt"><td style=3D"width:= 7.94%; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000;= padding:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; t= ext-align:center; line-height:115%; font-size:10pt"><span>P3</span></p></td= ><td style=3D"width:32.16%; border-top:0.75pt solid #000000; border-bottom:= 0.75pt solid #000000; padding:0pt 3.5pt; vertical-align:middle"><p style=3D= "margin-bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><s= pan>Equivalencia (num=C3=A9rica)</span></p></td><td style=3D"width:12.92%; = border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; paddin= g:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-ali= gn:center; line-height:115%; font-size:10pt"><span>2</span></p></td><td sty= le=3D"width:14.38%; border-top:0.75pt solid #000000; border-bottom:0.75pt s= olid #000000; padding:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-= bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>8</s= pan></p></td><td style=3D"width:12.24%; border-top:0.75pt solid #000000; bo= rder-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vertical-align:middle"= ><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%; font-s= ize:10pt"><span>20=E2=80=AF%</span></p></td></tr><tr style=3D"height:3pt"><= td style=3D"width:7.94%; border-top:0.75pt solid #000000; border-bottom:0.7= 5pt solid #000000; padding:0pt 3.5pt; vertical-align:middle"><p style=3D"ma= rgin-bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span= >P4</span></p></td><td style=3D"width:32.16%; border-top:0.75pt solid #0000= 00; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vertical-align:m= iddle"><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%; = font-size:10pt"><span>Equivalencia (representaci=C3=B3n)</span></p></td><td= style=3D"width:12.92%; border-top:0.75pt solid #000000; border-bottom:0.75= pt solid #000000; padding:0pt 3.5pt; vertical-align:middle"><p style=3D"mar= gin-bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>= 0</span></p></td><td style=3D"width:14.38%; border-top:0.75pt solid #000000= ; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vertical-align:mid= dle"><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%; fo= nt-size:10pt"><span>10</span></p></td><td style=3D"width:12.24%; border-top= :0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 3.5p= t; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:center;= line-height:115%; font-size:10pt"><span>0=E2=80=AF%</span></p></td></tr><t= r style=3D"height:16.5pt"><td colspan=3D"3" style=3D"border-top:0.75pt soli= d #000000; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vertical-= align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-height= :115%; font-size:10pt"><span>Subtotal=E2=80=AFCC</span></p></td><td style= =3D"width:12.92%; border-top:0.75pt solid #000000; border-bottom:0.75pt sol= id #000000; padding:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bo= ttom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>2</spa= n></p></td><td style=3D"width:14.38%; border-top:0.75pt solid #000000; bord= er-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vertical-align:middle"><= p style=3D"margin-bottom:0pt; text-align:center; line-height:115%; font-siz= e:10pt"><span>38</span></p></td><td style=3D"width:12.24%; border-top:0.75p= t solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; ver= tical-align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-= height:115%; font-size:10pt"><span>5.0=E2=80=AF%</span></p></td></tr><tr st= yle=3D"height:3pt"><td rowspan=3D"4" style=3D"width:20.36%; border-top:0.75= pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; ve= rtical-align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line= -height:115%; font-size:10pt"><span>Procedimientos y habilidades operativas= (PHO)</span></p></td><td style=3D"width:7.94%; border-top:0.75pt solid #00= 0000; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vertical-align= :middle"><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%= ; font-size:10pt"><span>P5</span></p></td><td style=3D"width:32.16%; border= -top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt = 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:cen= ter; line-height:115%; font-size:10pt"><span>Suma de fracciones</span></p><= /td><td style=3D"width:12.92%; border-top:0.75pt solid #000000; border-bott= om:0.75pt solid #000000; padding:0pt 3.5pt; vertical-align:middle"><p style= =3D"margin-bottom:0pt; text-align:center; line-height:115%; font-size:10pt"= ><span>8</span></p></td><td style=3D"width:14.38%; border-top:0.75pt solid = #000000; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vertical-al= ign:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-height:1= 15%; font-size:10pt"><span>2</span></p></td><td style=3D"width:12.24%; bord= er-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0p= t 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:c= enter; line-height:115%; font-size:10pt"><span>80=E2=80=AF%</span></p></td>= </tr><tr style=3D"height:3pt"><td style=3D"width:7.94%; border-top:0.75pt s= olid #000000; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vertic= al-align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-hei= ght:115%; font-size:10pt"><span>P6</span></p></td><td style=3D"width:32.16%= ; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padd= ing:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-a= lign:center; line-height:115%; font-size:10pt"><span>Resta de fracciones</s= pan></p></td><td style=3D"width:12.92%; border-top:0.75pt solid #000000; bo= rder-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vertical-align:middle"= ><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%; font-s= ize:10pt"><span>2</span></p></td><td style=3D"width:14.38%; border-top:0.75= pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; ve= rtical-align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line= -height:115%; font-size:10pt"><span>8</span></p></td><td style=3D"width:12.= 24%; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; p= adding:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; tex= t-align:center; line-height:115%; font-size:10pt"><span>20=E2=80=AF%</span>= </p></td></tr><tr style=3D"height:3pt"><td style=3D"width:7.94%; border-top= :0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 3.5p= t; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:center;= line-height:115%; font-size:10pt"><span>P7</span></p></td><td style=3D"wid= th:32.16%; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000= 000; padding:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0p= t; text-align:center; line-height:115%; font-size:10pt"><span>Promedio simp= le entre fracciones</span></p></td><td style=3D"width:12.92%; border-top:0.= 75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; = vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:center; li= ne-height:115%; font-size:10pt"><span>0</span></p></td><td style=3D"width:1= 4.38%; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000;= padding:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; t= ext-align:center; line-height:115%; font-size:10pt"><span>10</span></p></td= ><td style=3D"width:12.24%; border-top:0.75pt solid #000000; border-bottom:= 0.75pt solid #000000; padding:0pt 3.5pt; vertical-align:middle"><p style=3D= "margin-bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><s= pan>0=E2=80=AF%</span></p></td></tr><tr style=3D"height:3pt"><td style=3D"w= idth:7.94%; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #00= 0000; padding:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0= pt; text-align:center; line-height:115%; font-size:10pt"><span>P8</span></p= ></td><td style=3D"width:32.16%; border-top:0.75pt solid #000000; border-bo= ttom:0.75pt solid #000000; padding:0pt 3.5pt; vertical-align:middle"><p sty= le=3D"margin-bottom:0pt; text-align:center; line-height:115%; font-size:10p= t"><span>Promedio contextualizado entre fracciones</span></p></td><td style= =3D"width:12.92%; border-top:0.75pt solid #000000; border-bottom:0.75pt sol= id #000000; padding:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bo= ttom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>0</spa= n></p></td><td style=3D"width:14.38%; border-top:0.75pt solid #000000; bord= er-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vertical-align:middle"><= p style=3D"margin-bottom:0pt; text-align:center; line-height:115%; font-siz= e:10pt"><span>10</span></p></td><td style=3D"width:12.24%; border-top:0.75p= t solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; ver= tical-align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-= height:115%; font-size:10pt"><span>0=E2=80=AF%</span></p></td></tr><tr styl= e=3D"height:3pt"><td colspan=3D"3" style=3D"border-top:0.75pt solid #000000= ; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vertical-align:mid= dle"><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%; fo= nt-size:10pt"><span>Subtotal=E2=80=AFPHO</span></p></td><td style=3D"width:= 12.92%; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000= ; padding:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; = text-align:center; line-height:115%; font-size:10pt"><span>10</span></p></t= d><td style=3D"width:14.38%; border-top:0.75pt solid #000000; border-bottom= :0.75pt solid #000000; padding:0pt 3.5pt; vertical-align:middle"><p style= =3D"margin-bottom:0pt; text-align:center; line-height:115%; font-size:10pt"= ><span>30</span></p></td><td style=3D"width:12.24%; border-top:0.75pt solid= #000000; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vertical-a= lign:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-height:= 115%; font-size:10pt"><span>25.0=E2=80=AF%</span></p></td></tr><tr style=3D= "height:3pt"><td rowspan=3D"3" style=3D"width:20.36%; border-top:0.75pt sol= id #000000; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vertical= -align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-heigh= t:115%; font-size:10pt"><span>Representaci=C3=B3n y comunicaci=C3=B3n matem= =C3=A1tica (RCM)</span></p></td><td style=3D"width:7.94%; border-top:0.75pt= solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vert= ical-align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-h= eight:115%; font-size:10pt"><span>P9</span></p></td><td style=3D"width:32.1= 6%; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; pa= dding:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text= -align:center; line-height:115%; font-size:10pt"><span>Notaci=C3=B3n</span>= </p></td><td style=3D"width:12.92%; border-top:0.75pt solid #000000; border= -bottom:0.75pt solid #000000; padding:0pt 3.5pt; vertical-align:middle"><p = style=3D"margin-bottom:0pt; text-align:center; line-height:115%; font-size:= 10pt"><span>8</span></p></td><td style=3D"width:14.38%; border-top:0.75pt s= olid #000000; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vertic= al-align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-hei= ght:115%; font-size:10pt"><span>2</span></p></td><td style=3D"width:12.24%;= border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; paddi= ng:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-al= ign:center; line-height:115%; font-size:10pt"><span>80=E2=80=AF%</span></p>= </td></tr><tr style=3D"height:3pt"><td style=3D"width:7.94%; border-top:0.7= 5pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; v= ertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:center; lin= e-height:115%; font-size:10pt"><span>P10</span></p></td><td style=3D"width:= 32.16%; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000= ; padding:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; = text-align:center; line-height:115%; font-size:10pt"><span>Orden de fraccio= nes</span></p></td><td style=3D"width:12.92%; border-top:0.75pt solid #0000= 00; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vertical-align:m= iddle"><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%; = font-size:10pt"><span>8</span></p></td><td style=3D"width:14.38%; border-to= p:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 3.5= pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:center= ; line-height:115%; font-size:10pt"><span>2</span></p></td><td style=3D"wid= th:12.24%; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000= 000; padding:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0p= t; text-align:center; line-height:115%; font-size:10pt"><span>80=E2=80=AF%<= /span></p></td></tr><tr style=3D"height:16.5pt"><td style=3D"width:7.94%; b= order-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding= :0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-alig= n:center; line-height:115%; font-size:10pt"><span>P11</span></p></td><td st= yle=3D"width:32.16%; border-top:0.75pt solid #000000; border-bottom:0.75pt = solid #000000; padding:0pt 3.5pt; vertical-align:middle"><p style=3D"margin= -bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>Exp= licaci=C3=B3n</span></p></td><td style=3D"width:12.92%; border-top:0.75pt s= olid #000000; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vertic= al-align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-hei= ght:115%; font-size:10pt"><span>0</span></p></td><td style=3D"width:14.38%;= border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; paddi= ng:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-al= ign:center; line-height:115%; font-size:10pt"><span>10</span></p></td><td s= tyle=3D"width:12.24%; border-top:0.75pt solid #000000; border-bottom:0.75pt= solid #000000; padding:0pt 3.5pt; vertical-align:middle"><p style=3D"margi= n-bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>0= =E2=80=AF%</span></p></td></tr><tr style=3D"height:16.5pt"><td colspan=3D"3= " style=3D"border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000= 000; padding:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0p= t; text-align:center; line-height:115%; font-size:10pt"><span>Subtotal=E2= =80=AFRCM</span></p></td><td style=3D"width:12.92%; border-top:0.75pt solid= #000000; border-bottom:0.75pt solid #000000; padding:0pt 3.5pt; vertical-a= lign:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-height:= 115%; font-size:10pt"><span>16</span></p></td><td style=3D"width:14.38%; bo= rder-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:= 0pt 3.5pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align= :center; line-height:115%; font-size:10pt"><span>14</span></p></td><td styl= e=3D"width:12.24%; border-top:0.75pt solid #000000; border-bottom:0.75pt so= lid #000000; padding:0pt 3.5pt; vertical-align:middle"><p style=3D"margin-b= ottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>53.3= =E2=80=AF%</span></p></td></tr></table><p style=3D"margin-bottom:0pt; line-= height:115%"><span style=3D"font-weight:bold"> </span></p><p style=3D"= margin-bottom:0pt; text-align:justify; line-height:115%"><span>En la dimens= i=C3=B3n actitudes y metacognici=C3=B3n se observa un contraste llamativo. = Ocho de los diez alumnos declaran que les resulta interesante aprender frac= ciones, lo que refleja una disposici=C3=B3n positiva hacia el contenido; si= n embargo, ninguno manifiesta un entusiasmo =E2=80=9Ctotal=E2=80=9D y dos e= xpresan completo desinter=C3=A9s. Por el contrario, la autopercepci=C3=B3n = de resiliencia es muy baja: el 100=E2=80=AF% se sit=C3=BAa en la zona de de= sacuerdo respecto a detectar y corregir sus propios errores (</span><span s= tyle=3D"font-weight:bold">Tabla 3</span><span>).</span></p><p style=3D"marg= in-bottom:0pt; line-height:115%"><span style=3D"font-weight:bold"> </s= pan></p><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%"= ><span style=3D"font-weight:bold">Tabla 3</span></p><p style=3D"margin-bott= om:0pt; text-align:center; line-height:115%"><span style=3D"font-style:ital= ic">Resultados de la prueba diagn=C3=B3stica =E2=80=93 actitudes y metacogn= ici=C3=B3n</span></p><table style=3D"margin-bottom:0pt; padding:0pt; border= -collapse:collapse"><tr><td style=3D"border-top:0.75pt solid #000000; borde= r-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p= style=3D"margin-bottom:0pt; text-align:center; line-height:115%; font-size= :10pt"><span>=C3=8Dtem</span></p></td><td style=3D"border-top:0.75pt solid = #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-al= ign:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-height:1= 15%; font-size:10pt"><span>TD</span></p></td><td style=3D"border-top:0.75pt= solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vert= ical-align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-h= eight:115%; font-size:10pt"><span>ED</span></p></td><td style=3D"border-top= :0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4p= t; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:center;= line-height:115%; font-size:10pt"><span>DA</span></p></td><td style=3D"bor= der-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0= pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:= center; line-height:115%; font-size:10pt"><span>TA</span></p></td></tr><tr>= <td style=3D"border-top:0.75pt solid #000000; border-bottom:0.75pt solid #0= 00000; padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:= 0pt; line-height:115%; font-size:10pt"><span>Me resulta interesante aprende= r sobre fracciones.</span></p></td><td style=3D"border-top:0.75pt solid #00= 0000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align= :middle"><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%= ; font-size:10pt"><span>2</span></p></td><td style=3D"border-top:0.75pt sol= id #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical= -align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-heigh= t:115%; font-size:10pt"><span>0</span></p></td><td style=3D"border-top:0.75= pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; ve= rtical-align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line= -height:115%; font-size:10pt"><span>8</span></p></td><td style=3D"border-to= p:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4= pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:center= ; line-height:115%; font-size:10pt"><span>0</span></p></td></tr><tr><td sty= le=3D"border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; = padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; li= ne-height:115%; font-size:10pt"><span>Cuando cometo un error con fracciones= , puedo darme cuenta y corregirlo.</span></p></td><td style=3D"border-top:0= .75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt;= vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:center; l= ine-height:115%; font-size:10pt"><span>2</span></p></td><td style=3D"border= -top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt = 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:cen= ter; line-height:115%; font-size:10pt"><span>8</span></p></td><td style=3D"= border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; paddin= g:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-ali= gn:center; line-height:115%; font-size:10pt"><span>0</span></p></td><td sty= le=3D"border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; = padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; te= xt-align:center; line-height:115%; font-size:10pt"><span>0</span></p></td><= /tr></table><p style=3D"margin-bottom:0pt; text-align:justify; line-height:= 115%; font-size:9pt"><span style=3D"font-weight:bold">Nota</span><span>: TD= =3D Totalmente en desacuerdo, ED =3D En desacuerdo, DA =3D De acuerdo, TA = =3D Totalmente de acuerdo. </span></p><p style=3D"margin-bottom:0pt; line-h= eight:115%"><span style=3D"font-style:italic"> </span></p><p class=3D"= ListParagraph" style=3D"margin-bottom:0pt; text-indent:-18pt; line-height:1= 15%"><span style=3D"font-style:italic"><span>3.2.</span></span><span style= =3D"font-style:italic"> Encuesta a estudiantes</span></p><p style=3D"margin= -bottom:0pt; text-align:justify; line-height:115%"><span>Los resultados de = la encuesta a estudiantes aparecen en la </span><span style=3D"font-weight:= bold">Tabla 4</span><span>, </span><span> </span><span>donde la dimens= i=C3=B3n comprensi=C3=B3n=E2=80=AFconceptual predomina una percepci=C3=B3n = positiva de las ideas b=C3=A1sicas: la mitad del grupo (50=E2=80=AF%) se de= clara completamente seguro de que una fracci=C3=B3n representa =E2=80=9Cuna= parte de un todo=E2=80=9D y otro 10=E2=80=AF% adicional lo confirma, de mo= do que 60=E2=80=AF% respalda la afirmaci=C3=B3n. Aun as=C3=AD, un quinto de= los alumnos muestra dudas (20=E2=80=AF% en desacuerdo) y 10=E2=80=AF% la r= echaza frontalmente. El reconocimiento de fracciones equivalentes exhibe ma= yor solidez: 90=E2=80=AF% acuerda, 70=E2=80=AF% de ellos con un tono modera= do y 20=E2=80=AF% con convicci=C3=B3n total, dejando solo 10=E2=80=AF% de r= echazo. El reto radica, pues, m=C3=A1s en afianzar la definici=C3=B3n intui= tiva de fracci=C3=B3n que en la equivalencia entre ellas.</span></p><p styl= e=3D"margin-bottom:0pt; text-align:justify; line-height:115%"><span>En proc= edimientos y habilidades operativas los estudiantes se sienten relativament= e c=C3=B3modos con los algoritmos: 80=E2=80=AF% afirma realizar sumas y res= tas sin ayuda, repartido a partes iguales entre acuerdo pleno y moderado, a= unque un 20=E2=80=AF% reconoce dificultad. Al trasladar esos procedimientos= a situaciones cotidianas, la seguridad desciende: apenas 10=E2=80=AF% se d= eclara completamente capaz de usar fracciones en recetas, medidas o compras= y 50=E2=80=AF% se siente =E2=80=9Cde acuerdo=E2=80=9D, mientras 30=E2=80= =AF% permanece neutral y 10=E2=80=AF% admite problemas. Los datos sugieren = que la destreza mec=C3=A1nica no siempre se traduce en aplicaci=C3=B3n pr= =C3=A1ctica, demandando tareas contextualizadas que consoliden el c=C3=A1lc= ulo en la vida diaria.</span></p><p style=3D"margin-bottom:0pt; text-align:= justify; line-height:115%"><span>La dimensi=C3=B3n representaci=C3=B3n y co= municaci=C3=B3n matem=C3=A1tica revela un =C3=A1rea fr=C3=A1gil. Ning=C3=BA= n estudiante expres=C3=B3 completo dominio para graficar fracciones, y solo= 40=E2=80=AF% se siente razonablemente confiado; la mayor=C3=ADa (60=E2=80= =AF%) permanece neutral, evidenciando inseguridad al pasar del s=C3=ADmbolo= a la imagen concreta. Para explicar estrategias de comparaci=C3=B3n, 60=E2= =80=AF% muestra acuerdo moderado, pero el entusiasmo firme es nulo y aparec= e un 10=E2=80=AF% de desacuerdo rotundo, acompa=C3=B1ados de un 30=E2=80=AF= % neutral. El panorama indica que los alumnos manejan procedimientos intern= os, pero carecen de herramientas y vocabulario visual</span><span>‑<= /span><span>verbal para externalizar su pensamiento, lo que exige actividad= es de representaci=C3=B3n m=C3=BAltiple y modelado de explicaciones.</span>= </p><p style=3D"margin-bottom:0pt; text-align:justify; line-height:115%"><s= pan>En actitudes y metacognici=C3=B3n la disposici=C3=B3n es alentadora. Si= ete de cada diez estudiantes se sienten motivados a seguir aprendiendo frac= ciones, con 40=E2=80=AF% en acuerdo pleno y 30=E2=80=AF% moderado; solo 10= =E2=80=AF% muestra desinter=C3=A9s absoluto. Respecto a la autorregulaci=C3= =B3n, 80=E2=80=AF% cree identificar y corregir sus errores; dividido equita= tivamente entre convencidos y moderadamente seguros, mientras 10=E2=80=AF% = permanece neutral y otro 10=E2=80=AF% lo niega. Este perfil sugiere un clim= a emocional favorable y cierta confianza metacognitiva, pero todav=C3=ADa e= xiste margen para fortalecer estrategias expl=C3=ADcitas de autoevaluaci=C3= =B3n y reflexi=C3=B3n que consoliden la resiliencia de forma generalizada.<= /span></p><p style=3D"margin-bottom:0pt; text-align:justify; line-height:11= 5%"><span> </span></p><p style=3D"margin-bottom:0pt; text-align:center= ; line-height:115%"><span style=3D"font-weight:bold">Tabla 4</span></p><p s= tyle=3D"margin-bottom:0pt; text-align:center; line-height:115%"><span style= =3D"font-style:italic">Resultados de la encuesta a estudiantes</span></p><t= able style=3D"margin-bottom:0pt; padding:0pt; border-collapse:collapse"><tr= ><td style=3D"width:12.65pt; border-top:0.75pt solid #000000; border-bottom= :0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p style= =3D"margin-bottom:0pt; text-align:center; line-height:115%; font-size:10pt"= ><span>N=C2=BA</span></p></td><td style=3D"width:64.75pt; border-top:0.75pt= solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vert= ical-align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-h= eight:115%; font-size:10pt"><span>Categor=C3=ADa</span></p></td><td style= =3D"width:138.15pt; border-top:0.75pt solid #000000; border-bottom:0.75pt s= olid #000000; padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-= bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>=C3= =8Dtem (enunciado abreviado)</span></p></td><td style=3D"width:29.55pt; bor= der-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0= pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:= center; line-height:115%; font-size:10pt"><span>TA%</span></p></td><td styl= e=3D"width:29.35pt; border-top:0.75pt solid #000000; border-bottom:0.75pt s= olid #000000; padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-= bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>DA%<= /span></p></td><td style=3D"width:23.1pt; border-top:0.75pt solid #000000; = border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middl= e"><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%; font= -size:10pt"><span>N=E2=80=AF%</span></p></td><td style=3D"width:14.75pt; bo= rder-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:= 0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align= :center; line-height:115%; font-size:10pt"><span>ED %</span></p></td><td st= yle=3D"width:26pt; border-top:0.75pt solid #000000; border-bottom:0.75pt so= lid #000000; padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-b= ottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>TDA %= </span></p></td></tr><tr><td style=3D"width:12.65pt; border-top:0.75pt soli= d #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-= align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-height= :115%; font-size:10pt"><span>=E2=80=AF1</span></p></td><td rowspan=3D"2" st= yle=3D"width:64.75pt; border-top:0.75pt solid #000000; border-bottom:0.75pt= solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margi= n-bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>Co= mprensi=C3=B3n conceptual</span></p></td><td style=3D"width:138.15pt; borde= r-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt= 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:ce= nter; line-height:115%; font-size:10pt"><span>Entiendo que una fracci=C3=B3= n representa una parte de un todo.</span></p></td><td style=3D"width:29.55p= t; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; pad= ding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-= align:center; line-height:115%; font-size:10pt"><span>50</span></p></td><td= style=3D"width:29.35pt; border-top:0.75pt solid #000000; border-bottom:0.7= 5pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p style=3D"ma= rgin-bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span= >10</span></p></td><td style=3D"width:23.1pt; border-top:0.75pt solid #0000= 00; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:m= iddle"><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%; = font-size:10pt"><span>10</span></p></td><td style=3D"width:14.75pt; border-= top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5= .4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:cent= er; line-height:115%; font-size:10pt"><span>20</span></p></td><td style=3D"= width:26pt; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #00= 0000; padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0= pt; text-align:center; line-height:115%; font-size:10pt"><span>10</span></p= ></td></tr><tr><td style=3D"width:12.65pt; border-top:0.75pt solid #000000;= border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:midd= le"><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%; fon= t-size:10pt"><span>=E2=80=AF2</span></p></td><td style=3D"width:138.15pt; b= order-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding= :0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-alig= n:center; line-height:115%; font-size:10pt"><span>Puedo reconocer cu=C3=A1n= do dos fracciones diferentes son equivalentes.</span></p></td><td style=3D"= width:29.55pt; border-top:0.75pt solid #000000; border-bottom:0.75pt solid = #000000; padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-botto= m:0pt; text-align:center; line-height:115%; font-size:10pt"><span>20</span>= </p></td><td style=3D"width:29.35pt; border-top:0.75pt solid #000000; borde= r-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p= style=3D"margin-bottom:0pt; text-align:center; line-height:115%; font-size= :10pt"><span>70</span></p></td><td style=3D"width:23.1pt; border-top:0.75pt= solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vert= ical-align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-h= eight:115%; font-size:10pt"><span>0</span></p></td><td style=3D"width:14.75= pt; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; pa= dding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text= -align:center; line-height:115%; font-size:10pt"><span>0</span></p></td><td= style=3D"width:26pt; border-top:0.75pt solid #000000; border-bottom:0.75pt= solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margi= n-bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>10= </span></p></td></tr><tr><td style=3D"width:12.65pt; border-top:0.75pt soli= d #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-= align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-height= :115%; font-size:10pt"><span>=E2=80=AF3</span></p></td><td rowspan=3D"2" st= yle=3D"width:64.75pt; border-top:0.75pt solid #000000; border-bottom:0.75pt= solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margi= n-bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>Pr= ocedimientos y habilidades operativas</span></p></td><td style=3D"width:138= .15pt; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000;= padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; t= ext-align:center; line-height:115%; font-size:10pt"><span>Realizo sumas y r= estas de fracciones sin necesidad de ayuda.</span></p></td><td style=3D"wid= th:29.55pt; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #00= 0000; padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0= pt; text-align:center; line-height:115%; font-size:10pt"><span>40</span></p= ></td><td style=3D"width:29.35pt; border-top:0.75pt solid #000000; border-b= ottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p st= yle=3D"margin-bottom:0pt; text-align:center; line-height:115%; font-size:10= pt"><span>40</span></p></td><td style=3D"width:23.1pt; border-top:0.75pt so= lid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertica= l-align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-heig= ht:115%; font-size:10pt"><span>0</span></p></td><td style=3D"width:14.75pt;= border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; paddi= ng:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-al= ign:center; line-height:115%; font-size:10pt"><span>20</span></p></td><td s= tyle=3D"width:26pt; border-top:0.75pt solid #000000; border-bottom:0.75pt s= olid #000000; padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-= bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>0</s= pan></p></td></tr><tr><td style=3D"width:12.65pt; border-top:0.75pt solid #= 000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-ali= gn:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-height:11= 5%; font-size:10pt"><span>=E2=80=AF4</span></p></td><td style=3D"width:138.= 15pt; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; = padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; te= xt-align:center; line-height:115%; font-size:10pt"><span>Utilizo fracciones= para resolver situaciones pr=C3=A1cticas de mi vida diaria.</span></p></td= ><td style=3D"width:29.55pt; border-top:0.75pt solid #000000; border-bottom= :0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p style= =3D"margin-bottom:0pt; text-align:center; line-height:115%; font-size:10pt"= ><span>10</span></p></td><td style=3D"width:29.35pt; border-top:0.75pt soli= d #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-= align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-height= :115%; font-size:10pt"><span>50</span></p></td><td style=3D"width:23.1pt; b= order-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding= :0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-alig= n:center; line-height:115%; font-size:10pt"><span>30</span></p></td><td sty= le=3D"width:14.75pt; border-top:0.75pt solid #000000; border-bottom:0.75pt = solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin= -bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>10<= /span></p></td><td style=3D"width:26pt; border-top:0.75pt solid #000000; bo= rder-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"= ><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%; font-s= ize:10pt"><span>0</span></p></td></tr><tr><td style=3D"width:12.65pt; borde= r-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt= 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:ce= nter; line-height:115%; font-size:10pt"><span>=E2=80=AF5</span></p></td><td= rowspan=3D"2" style=3D"width:64.75pt; border-top:0.75pt solid #000000; bor= der-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle">= <p style=3D"margin-bottom:0pt; text-align:center; line-height:115%; font-si= ze:10pt"><span>Representaci=C3=B3n y comunicaci=C3=B3n matem=C3=A1tica</spa= n></p></td><td style=3D"width:138.15pt; border-top:0.75pt solid #000000; bo= rder-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"= ><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%; font-s= ize:10pt"><span>Me resulta f=C3=A1cil expresar una fracci=C3=B3n mediante d= ibujos, diagramas o barras.</span></p></td><td style=3D"width:29.55pt; bord= er-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0p= t 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:c= enter; line-height:115%; font-size:10pt"><span>0</span></p></td><td style= =3D"width:29.35pt; border-top:0.75pt solid #000000; border-bottom:0.75pt so= lid #000000; padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-b= ottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>40</s= pan></p></td><td style=3D"width:23.1pt; border-top:0.75pt solid #000000; bo= rder-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"= ><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%; font-s= ize:10pt"><span>60</span></p></td><td style=3D"width:14.75pt; border-top:0.= 75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; = vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:center; li= ne-height:115%; font-size:10pt"><span>0</span></p></td><td style=3D"width:2= 6pt; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; p= adding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; tex= t-align:center; line-height:115%; font-size:10pt"><span>0</span></p></td></= tr><tr><td style=3D"width:12.65pt; border-top:0.75pt solid #000000; border-= bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p s= tyle=3D"margin-bottom:0pt; text-align:center; line-height:115%; font-size:1= 0pt"><span>=E2=80=AF6</span></p></td><td style=3D"width:138.15pt; border-to= p:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4= pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:center= ; line-height:115%; font-size:10pt"><span>Puedo explicar con claridad los p= asos que sigo para comparar dos fracciones.</span></p></td><td style=3D"wid= th:29.55pt; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #00= 0000; padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0= pt; text-align:center; line-height:115%; font-size:10pt"><span>0</span></p>= </td><td style=3D"width:29.35pt; border-top:0.75pt solid #000000; border-bo= ttom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p sty= le=3D"margin-bottom:0pt; text-align:center; line-height:115%; font-size:10p= t"><span>60</span></p></td><td style=3D"width:23.1pt; border-top:0.75pt sol= id #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical= -align:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-heigh= t:115%; font-size:10pt"><span>30</span></p></td><td style=3D"width:14.75pt;= border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; paddi= ng:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-al= ign:center; line-height:115%; font-size:10pt"><span>0</span></p></td><td st= yle=3D"width:26pt; border-top:0.75pt solid #000000; border-bottom:0.75pt so= lid #000000; padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-b= ottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>10</s= pan></p></td></tr><tr><td style=3D"width:12.65pt; border-top:0.75pt solid #= 000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-ali= gn:middle"><p style=3D"margin-bottom:0pt; text-align:center; line-height:11= 5%; font-size:10pt"><span>=E2=80=AF7</span></p></td><td rowspan=3D"2" style= =3D"width:64.75pt; border-top:0.75pt solid #000000; border-bottom:0.75pt so= lid #000000; padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-b= ottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>Actit= udes y metacognici=C3=B3n</span></p></td><td style=3D"width:138.15pt; borde= r-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt= 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:ce= nter; line-height:115%; font-size:10pt"><span>Me siento motivado(a) a segui= r aprendiendo sobre fracciones.</span></p></td><td style=3D"width:29.55pt; = border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; paddin= g:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-ali= gn:center; line-height:115%; font-size:10pt"><span>40</span></p></td><td st= yle=3D"width:29.35pt; border-top:0.75pt solid #000000; border-bottom:0.75pt= solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margi= n-bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>30= </span></p></td><td style=3D"width:23.1pt; border-top:0.75pt solid #000000;= border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:midd= le"><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%; fon= t-size:10pt"><span>20</span></p></td><td style=3D"width:14.75pt; border-top= :0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4p= t; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:center;= line-height:115%; font-size:10pt"><span>0</span></p></td><td style=3D"widt= h:26pt; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000= ; padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; = text-align:center; line-height:115%; font-size:10pt"><span>10</span></p></t= d></tr><tr><td style=3D"width:12.65pt; border-top:0.75pt solid #000000; bor= der-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle">= <p style=3D"margin-bottom:0pt; text-align:center; line-height:115%; font-si= ze:10pt"><span>=E2=80=AF8</span></p></td><td style=3D"width:138.15pt; borde= r-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt= 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:ce= nter; line-height:115%; font-size:10pt"><span>Cuando me equivoco con fracci= ones, identifico mi error y lo corrijo por mi cuenta.</span></p></td><td st= yle=3D"width:29.55pt; border-top:0.75pt solid #000000; border-bottom:0.75pt= solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margi= n-bottom:0pt; text-align:center; line-height:115%; font-size:10pt"><span>40= </span></p></td><td style=3D"width:29.35pt; border-top:0.75pt solid #000000= ; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:mid= dle"><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%; fo= nt-size:10pt"><span>40</span></p></td><td style=3D"width:23.1pt; border-top= :0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4p= t; vertical-align:middle"><p style=3D"margin-bottom:0pt; text-align:center;= line-height:115%; font-size:10pt"><span>10</span></p></td><td style=3D"wid= th:14.75pt; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #00= 0000; padding:0pt 5.4pt; vertical-align:middle"><p style=3D"margin-bottom:0= pt; text-align:center; line-height:115%; font-size:10pt"><span>10</span></p= ></td><td style=3D"width:26pt; border-top:0.75pt solid #000000; border-bott= om:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p style= =3D"margin-bottom:0pt; text-align:center; line-height:115%; font-size:10pt"= ><span>0</span></p></td></tr></table><p style=3D"margin-bottom:0pt; text-al= ign:justify; line-height:115%; font-size:10pt"><span>Nota: TDA =3D Totalmen= te en desacuerdo, ED =3D En desacuerdo, N=3D Neutral, DA =3D De acuerdo, TA= =3D Totalmente de acuerdo. </span></p><p style=3D"margin-bottom:0pt; line-= height:115%"><span> </span></p><p class=3D"ListParagraph" style=3D"mar= gin-bottom:0pt; text-indent:-18pt; line-height:115%"><span style=3D"font-st= yle:italic"><span>3.3.</span></span><span style=3D"font-style:italic"> Entr= evista a docente</span></p><p style=3D"margin-bottom:0pt; text-align:justif= y; line-height:115%"><span>Contexto y caracter=C3=ADsticas del estudiante a= dulto: la docente se=C3=B1ala que los estudiantes adultos mayores de 40 a= =C3=B1os suelen centrar su aprendizaje en la resoluci=C3=B3n de tareas inme= diatas, m=C3=A1s que en la adquisici=C3=B3n de conocimientos transferibles = a su vida cotidiana; desde su perspectiva, esta orientaci=C3=B3n restringe = la aplicaci=C3=B3n de los conceptos matem=C3=A1ticos a situaciones reales. = Asimismo, comenta que estos adultos =E2=80=9Cestudian solo para el momento= =E2=80=9D, lo que le plantea el reto de motivarlos hacia un aprendizaje m= =C3=A1s funcional y significativo, conectado con experiencias y necesidades= concretas de su d=C3=ADa a d=C3=ADa.</span></p><p style=3D"margin-bottom:0= pt; text-align:justify; line-height:115%"><span>Dificultades espec=C3=ADfic= as con las fracciones: desde la mirada de la docente, las fracciones genera= n confusi=C3=B3n porque los estudiantes encuentran dif=C3=ADcil comprender = y diferenciar las =E2=80=9Creglas=E2=80=9D que rigen sus operaciones; esto;= afirma, provoca errores recurrentes en tareas como la suma y la resta. A= =C3=B1ade que la sensaci=C3=B3n de no dominar los procedimientos alimenta l= a inseguridad y afecta la actitud de los alumnos frente al aprendizaje.</sp= an></p><p style=3D"margin-bottom:0pt; text-align:justify; line-height:115%"= ><span>Estrategias pedag=C3=B3gicas empleadas: la docente menciona que recu= rre al =E2=80=9Cm=C3=A9todo de la tijera=E2=80=9D para simplificar la b=C3= =BAsqueda de denominadores comunes en sumas y restas de fracciones, y subra= ya que adapta su ense=C3=B1anza a los adultos mediante metodolog=C3=ADas ac= tivas enfocadas en la participaci=C3=B3n y la resoluci=C3=B3n de problemas = cercanos a su realidad.</span></p><p style=3D"margin-bottom:0pt; text-align= :justify; line-height:115%"><span>Uso de tecnolog=C3=ADa y simulaciones int= eractivas: seg=C3=BAn la docente aunque todav=C3=ADa no utilizo el simulado= r PhET, emplea otras aplicaciones digitales para reforzar los contenidos, l= o que; afirma, mejora la comprensi=C3=B3n conceptual. No obstante, advierte= que algunos estudiantes no dominan las herramientas tecnol=C3=B3gicas, lo = cual limita el aprovechamiento de los recursos disponibles; por ello, sugie= re trabajar primero la alfabetizaci=C3=B3n digital para optimizar los resul= tados.</span></p><p style=3D"margin-bottom:0pt; text-align:justify; line-he= ight:115%"><span>Evaluaci=C3=B3n, motivaci=C3=B3n y proyecci=C3=B3n: desde = su perspectiva, el progreso en fracciones se eval=C3=BAa eficazmente con ap= licaciones interactivas que permiten monitorear el desempe=C3=B1o y ofrecer= retroalimentaci=C3=B3n inmediata. La docente concluye que resulta indispen= sable capacitar a los estudiantes con mayor frecuencia para afianzar los co= nceptos y procedimientos abordados.</span></p><p style=3D"margin-bottom:0pt= ; text-align:justify; line-height:115%"><span style=3D"font-weight:bold; fo= nt-style:italic"> </span></p><p class=3D"ListParagraph" style=3D"margi= n-bottom:0pt; text-indent:-18pt; text-align:justify; line-height:115%"><spa= n style=3D"font-style:italic"><span>3.4.</span></span><span style=3D"font-w= eight:bold; font-style:italic"> </span><span style=3D"font-style:italic">Si= stema de actividades</span></p><p style=3D"margin-bottom:0pt; text-align:ju= stify; line-height:115%"><span> </span></p><p style=3D"margin-bottom:0= pt; text-align:justify; line-height:115%"><span>A partir de los resultados = del diagn=C3=B3stico se elabor=C3=B3 un sistema de actividades, entendido p= or Burgos-Posligua & Samada-Grasst (2023) como un conjunto de acciones = interrelacionadas que integran una unidad orientada a un objetivo com=C3=BA= n y estructurada por objetivos, procedimientos, recursos y evaluaci=C3=B3n.= En este caso el sistema integra las simulaciones interactivas de PhET para= fortalecer el aprendizaje de fracciones en adultos mayores de 40 a=C3=B1os= . Las simulaciones de PhET como =E2=80=9CConstruyamos una fracci=C3=B3n=E2= =80=9D y =E2=80=9CFracciones: Igualdad=E2=80=9D, permiten a los estudiantes= manipular representaciones visuales, experimentar con equivalencias y oper= aciones, y recibir retroalimentaci=C3=B3n inmediata, lo que fomenta un apre= ndizaje activo, contextualizado y alineado con los principios andrag=C3=B3g= icos de autonom=C3=ADa y relevancia pr=C3=A1ctica.</span></p><p style=3D"ma= rgin-bottom:0pt; text-align:justify; line-height:115%"><a id=3D"_Hlk2086487= 57"></a><a id=3D"_Hlk208648791"><span style=3D"font-weight:bold; font-style= :italic">Objetivo general del sistema de actividades: </span><span>fortalec= er la comprensi=C3=B3n conceptual, las habilidades operativas y la comunica= ci=C3=B3n matem=C3=A1tica sobre fracciones en adultos de 40+, asegurando pe= rtinencia, motivaci=C3=B3n y seguimiento del progreso.</span></a></p><p sty= le=3D"margin-bottom:0pt; text-align:justify; line-height:115%"><span style= =3D"font-weight:bold; font-style:italic">Contenidos del sistema de activida= des</span></p><p style=3D"margin-bottom:0pt; text-align:justify; line-heigh= t:115%"><span>Las actividades del curr=C3=ADculo de educaci=C3=B3n b=C3=A1s= ica superior se enfocan en la comprensi=C3=B3n de las fracciones, utilizand= o un enfoque pr=C3=A1ctico y vivencial. Los estudiantes trabajan con el con= cepto de "parte-todo", fracciones propias e impropias, equivalencias y simp= lificaci=C3=B3n. Se abordan las operaciones de suma y resta, con y sin deno= minador com=C3=BAn, aplicando a problemas cotidianos. Seg=C3=BAn el curr=C3= =ADculo (O.M.4.6), los estudiantes practicar=C3=A1n la conversi=C3=B3n y co= mparaci=C3=B3n de fracciones, justificando procedimientos mediante metacogn= ici=C3=B3n (OG.M.2). Usando simulaciones PhET y herramientas interactivas, = los estudiantes traducir=C3=A1n entre representaciones gr=C3=A1ficas, num= =C3=A9ricas y verbales, mejorando la capacidad de detectar y corregir error= es, seg=C3=BAn O.M.5.5.</span></p><p class=3D"ListParagraph" style=3D"margi= n-bottom:0pt; text-indent:-18pt; text-align:justify; line-height:115%"><spa= n style=3D"font-weight:bold"><span>a)</span></span><span style=3D"width:8pt= ; font:7pt 'Times New Roman'; display:inline-block">    = ; </span><span style=3D"font-weight:bold">Actividad 1</span></p><p style=3D= "margin-bottom:0pt; text-align:justify; line-height:115%"><span>Construir f= racciones con el uso de PhET I.S (</span><span style=3D"font-weight:bold">F= igura 1</span><span>).</span></p><p style=3D"margin-bottom:0pt; text-align:= justify; line-height:115%"><span style=3D"font-weight:bold">Objetivo espec= =C3=ADfico:</span><span> Reconocer la fracci=C3=B3n como parte=E2=80=93todo= , comprendiendo numerador/denominador y equivalencias mediante representaci= ones visuales interactivas. </span></p><p style=3D"margin-bottom:0pt; text-= align:justify; line-height:115%"><span style=3D"font-weight:bold">Orientaci= ones: </span><span>El docente reparte material que puede fraccionarse, tale= s como pizzas o tortas de papel, barras, tiras, recipientes con marcas. Com= ienza con una escena cercana: =E2=80=9CImagina que compartimos esta pizza e= ntre cuatro. =C2=BFQu=C3=A9 porci=C3=B3n recibe cada uno?=E2=80=9D. Se invi= ta a mostrar la unidad, la mitad, el tercio y los cuartos coloreando o sepa= rando partes iguales. Mientras circula por el aula, el docente modela el le= nguaje: =E2=80=9CEl denominador indica el total de partes iguales; el numer= ador, cu=C3=A1ntas tomamos o coloreamos=E2=80=9D. Se pide verbalizar con la= estructura: =E2=80=9Cde ___ partes, tomo ___=E2=80=9D. </span></p><p style= =3D"margin-bottom:0pt; text-align:justify; line-height:115%"><span>Criterio= de dominio antes de avanzar: cada estudiante exhibe correctamente: (a) una= unidad entera, (b) =C2=BD y =E2=85=93, y (c) =C2=BE en su material, y expl= ica con sus palabras numerador y denominador. Solo entonces se pasa a la si= mulaci=C3=B3n.</span></p><p style=3D"margin-bottom:0pt; text-align:justify;= line-height:115%"><span style=3D"font-weight:bold">Trabajo en el simulador= : </span><span>Presentaci=C3=B3n de PhET I.S. (Build a Fraction): El docent= e proyecta la pantalla y gu=C3=ADa el acceso: ingresar a PhET =E2=86=92 sel= eccionar Build a Fraction. Presenta la interfaz: elegir forma (barra/c=C3= =ADrculo), ajustar el n=C3=BAmero de partes, colorear segmentos, leer la fr= acci=C3=B3n que aparece y usar reset. Luego realiza un ejemplo guiado: =E2= =80=9CPara =C2=BE, divido en 4 partes y coloreo 3. Leo: =E2=80=98tres cuart= os=E2=80=99=E2=80=9D. Anticipa el prop=C3=B3sito: =E2=80=9CEl reto ser=C3= =A1 reproducir fracciones que pida el simulador y justificar equivalencias = observando qu=C3=A9 cambia (el denominador) y qu=C3=A9 permanece (la cantid= ad coloreada)=E2=80=9D.</span></p><p style=3D"margin-bottom:0pt; text-align= :justify; line-height:115%"><span>Actividad del alumno (interacci=C3=B3n + = trabajo colaborativo): Primero, de forma individual, cada estudiante elige = un objeto de la interfaz y lo modifica con el cursor hasta construir las fr= acciones solicitadas por defecto: =C2=BD, =E2=85=93 y =C2=BE. Debe ajustar = partes, colorear y leer en voz alta la fracci=C3=B3n lograda. Luego pasan a= parejas con roles rotativos: A manipula la simulaci=C3=B3n mientras B expl= ica y registra en el cuaderno con el esquema modelo =E2=86=92 fracci=C3=B3n= =E2=86=92 explicaci=C3=B3n (p. ej., =E2=80=9Cc=C3=ADrculo en 4 partes; 3 c= oloreadas =E2=86=92 =C2=BE; el denominador 4 es el total de partes iguales= =E2=80=9D). Cambian roles en cada nuevo reto.</span></p><p style=3D"margin-= bottom:0pt; text-align:justify; line-height:115%"><span style=3D"font-weigh= t:bold">Evaluaci=C3=B3n: </span><span>Lista de cotejo o r=C3=BAbrica breve = con los siguientes componentes: (1) representar 3/4 en un diagrama; (2) dec= idir si 2/4 =3D 1/2 y justificar; (3) describir con una frase una situaci= =C3=B3n real donde usar 1/3.</span></p><p style=3D"margin-bottom:0pt; text-= align:justify; line-height:115%"><span style=3D"font-weight:bold"> </s= pan></p><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%"= ><span style=3D"font-weight:bold">Figura 1</span></p><p style=3D"margin-bot= tom:0pt; text-align:center; line-height:115%"><span style=3D"font-style:ita= lic">Actividad 1 en PhET I.S.</span></p><p style=3D"margin-bottom:0pt; text= -align:center; line-height:115%"><img src=3D" GgoAAAANSUhEUgAAAfgAAAFVCAYAAAADqv1PAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAA= ADsQBlSsOGwAAIABJREFUeJzs3XmYXFWZ+PHvuffW2t3V+5pOOt3p7GQBSQgJhCUQBAQBFVFEBU= UZRFwHYXAddUZn5ocyuIvIMCrigAKyQwgJkCASwEDInk56Te9b7VX3nt8f1d0kpJPe6SXv53n66= VTVXU51qu57z/YepbXWCCGEEGJKMca7AEIIIYQYfRLghRBCiClIArwQQggxBUmAF0IIIaYgCfBC= CCHEFCQBXgghhJiCJMALIYQQU5A13gWYLGKxGJIyQAghJiav1zveRZhwJMAPUlVVFd6cnPEuhhB= CiHeIdnUxd9YslFLjXZQJRQL8EKRJgBdCiAknGYuNdxEmJAnwIzbUZnu5wxRCCDH2JMAPk9Y2Oh= HEcSIMLWgrlOnDtPygzLEqnhBCiOOcBPhhSkYaMDufw6saAReDDfIa6Ojswjv9U7j8hYPeT4jDa= A3H6G/UWkt/pBDHOQnww6TiDWT7DuJy9gI2gw/UmoRTR3vTEnLKLpCL8BTVUFeHz+8nKzt71I/t= OA779+0jKzubnNzcw16LxWK0NjfT3dVFXkEB2Tk5GIbMhhWDp7WDbdtoxxncDsrou/ppBr4SHra= NUpimKdfBMSIBfpiUE0Y5tZB8BZyWoe2cjJJMdDD0/nsxGTiOw0033MCZ557LJz/7WUzzyK6Yod= awD90+mUxy0w038KGPfpTLr7qq7/lEIsFjDz7Ir+64g2gkwqzZs7ntV78iIyNDLqBiULTWBLs7e= eHZR6mueuuw51OfIAVotFKgwTT9uFyZKGUd1qrU+3nt26/38/eOlqeyWbNYtmoVaWlp79I7PL5I= gB82DcRAd4Bu5NBgnbQhHIF0P/RbeXI0MMi7YzEpVe/fT1vLkTd+tm3T2tJCZ0cH6enp5BcWkoj= HaW9rIys7G39aGtFolJamJnLz8rBcLpoOHiQaiZCZnU1OTg5oTV1NDV1dXYcdu66mhl/+939zwp= IlnH3eefzmpz9lz44dLD35ZAnwYlCikTAbn7yLVcvCXLTGg1ImWtP3o1TvTyp4h8OdJBIrKChYP= eRzaa1paWlh/eOP895LLsG0JByNNvmLjiKtobkNHl2naW2H6z6mSPO//bpcY49v2nF47e9/57//= 4z/o7u7G7/fz8WuvpbC4mNt/8APOe9/7+OCVV/LsE0/w+7vv5mvf/CZVe/dy7//8D7FolILCQq7= /8peZt3Bhv8c/sG8f+3bv5sMf+xjNjY185vOfZ/bcudJELwatu6uTdG8nFeV+gsG3SE9PEgpptm= 6NUF0dY/p0D4sWecnKMtFa43IHqT6Qid9/HsMZT+R2u8nw+QiFQgQyM0f/DR3nJMCPEtuG19+Cb= //IYf1mh5NOUFSUGfi9QM9db2WZomLGeJdUjJdIOMz//f731B44wE/uvpuf/+hH/MsXv8hdf/oT= 4XCYP993H+deeCH3/PrXJJNJDNPkWzfdxFlr13LVpz/Nd26+mQfuvZebvvnNI46ttaajo4NoNMq= dP/sZefn5tDQ388dHHiEtI0OCvBgUx7ExzDiJRDu//e1mTjihg3vuSfLYYzGSSYfsbINLL/Vwyy= 0WeXka0Nj23GGfTymFy7JwBtvfL4ZEvvUjpDXU1MOPfqN539U2jz/nEI7A5i2aj95oc+lnbC691= uYDn7W5/zEHyXZ7/Ors7OStN97AdLl46P/+j66ODmLRKHYyyfkXX8z+fft48L772PbGG5z//vfT= 1tOU33TwII89+CBer5famhri8Xi/xzdNE5fLxde+/W1uv/NOsnNyuPMnPyGZSLzL71RMbhqtk+z= cGeX97+/gD38I4vMl+MIXHB580Oa008KsW9dFZ2c3EObd6m6UVOFDJzX4kej5vIWj8Po2TSR69A= 9gbx+WOH7EYjE6Ozr6Rgk7to3f70cpxQlLlpCZlcXJp55KSWkpufn5/OanP+Xnt9+Oy7J470UXc= bC+HsuyyM3PZ+HixQQyM5k+cyZuj+eIcymlKCgsxOvzYds2hlJYlkVHR8c4vHMxuaWa2h0HIhEw= TfjIRxRf+5rC54NFi6CjI/X6u8VOJvnHa68xa/ZsApmZMqZkkCTAj0RP0/vcCvjlDwz+537Fz+6= x2XMAZk5TnLVS4XGnNjUUnLRIST/8ccIwTZ545BF2bd+OMgxM0+SiSy/l1NWruevnP2f7m2+y6f= nnsW2bj159NXn5+Vx2xRXc/sMf8snPfpaS0lICmZnMnjuXvbt2UTpjBo/8+c988CMfweg5nvGOD= 1PF7NksX7mSO374QxafdBIH6+u59Xvfw3K5xumvICYlrVEKCgqgoiL11O7dEI+Dz5caONwz1pNQ= eOzHFiWTSV7fsoVPfvCD/O+f/8zSk08e2xNOIRLgR0maDz7zUcXyJSb3/VWTtOFbXzTIOGT2hzJ= koN3xQCnFx665hpampr7nDNOkcNo0Vpx+Omnp6RyoqmLV6tVccMklfXPVL7n8cgAu+uAHUUqRnp= HBT+++m4fuv5+WpiY+8olP8L7LLsPt8fCJa6894kKXk5vLV269lUf+8heC3d3887e+xYknnyz97= 2IIFLbjIpmET3zCw8UXudBoDANCQXXERPdY3MLlyh+z0sTjcR79y1+49+67aWtpkb76IZIAP4os= E96zWHHCXEVbB2SkpZq3xPFFKcXV1113RJ+hYRgopfjU9dcTj8WwLAvTsvqaG2fOmsUXbr6577F= SivLKSm746ldJJhK43O6+OfWfuv56VM/xDj3+wsWLmbtgAbZt43a7JbiLIVHKxOtbTG3tTtra5h= KLFdHbF9nd/c6tDTIDFcyddyVjlZEzGonwp//9Xy689FJe3rx5TM4xlUmAH2UK8HqgpHC8SyLG0= 7ECq2EYeH2+I55XSvXbt2hZFtY75ggbR7lzVErhcrlwSbO8GCaft4S5c69Aa5uBknEpZaHU2N1E= pmdk8Mvf/56uzk6+c/PNY3aeqUoC/DBpFI6jsW16EtcMfgSdoxXKsJA89EKIiUgpY1CB23EcYrE= osViMWCyEy2Xh86Xhcnn7zeA4VIZhEMjMpLuzc8THOh5JgB+mpMqm5qAi0mERjfgGPYVDKQVWNv= kzFslIUCHEpJRIJGhubqahoYHOzk4yMzOprf0dgcB6gsFp5Oa+l7KycygomIXL5R7v4h63JMAPk= ydzAXH7c+i083E59qD3UxhkFSzGF5iB1OCFEJNJIpGgpaWFjo4OXC4Xixcv7htbUl//fVaufAvL= 2kYyuY5t2/Job/8kmZkfoLh4IZYlgf7dJgF+mJRhEchbSEbugqHvqxQS3IUQk0kikaC6ujo1+LO= 8HI/Hc1grpN/vxzQVpmljmg5Llx4kEvkvqqqeIhy+hVmzLpQg/y6TIbYjovoGRg3lR4K7EGIySS= aT7N27F8MwKC8vx+v1HtHFGItFOHQskmFo0tISzJ+/hUTiRqqrt5BM9p+FcSCWy8X0sjI8Xu9I3= sZxR2rww+TYURKh/ehkF0MO2GYG7owKDEPuZoUQE5vjONTU1KCUoqys7Khjh5Qy6e9aaJqwYEE9= L710BXAvM2eegmEMbQBebn4+v3/wQfKLimTs0hBIgB8mJ7SPzOQmXDQDQ/uwdra3Eop9iPT8k8Z= 0iokQQoxUMBjEtm1mz559zOmftp086mBjw4BTTqlj586fEw7PIz09Z8Dzaq37jmcYBiXTpwOpG4= 6jTSkVh5MAP0wq2YxXHcC0d6J4ezEPx4ZYPDVzzjLB5epZE/6QDFBWvI3u8CzS85am0tsJIcQEp= LWms7OTtLS0AZMmRaORY75umhqf7zkaG18jPX3NMbeNx+PUVlcTjUT6ynFoQPd4vUwvK8PtllbQ= Y5EAP1w6jrIPQvINcFoBTWsHPP28ZvOrmmAICnJh1TLFiqWKN3dpTlyoyMwAkjZax8b7HQghxDE= 5jkNTUxNLliwZcNucnNwBa9X5+Y3s2fMsyeQZRyRvOlQ0EmHdE0/QUFubyu+t9WF5vnNzc/nYpz= 8tAX4AEuCHTQNJ0BEgSHdI89XvOfz1GQevR5GRBp3dmrvug4VzDfZVa/78S5MTF/buKzmVhRATm= 9Ya0zQHlbSmrb11wG38fpt4/G9Eo2HS0wNH3S4jEOCqT3/6qLnnDaVkwN0gSIAfBdGY5vt3pIL7= hy8y+JfPGQTS4c1d8E+32mx4ycGySGW9E0KISUBrTUdHB+np6Yc9dzQF+cU4joHjHN6Ur5Tqa2J= P7V9FMhkGjh7glVJ43xHA7WQSDX3LL4uBSYAfKQ37a+GJDQ5rViq+caNBYV7PSz03n1mBVF+8pA= cXQkwmwWAQy7Joa2sjOzub9vZ2MjIy6O7uxu/3Ew6H8fl8xONxXn01RE7O6bjdJslkAo/HQzQaJ= RDIpKurk9zcPFpamgkGc4nHk0Mqh23brH/6abo6O7nosstwSdP8oEiAHykF+Tnw42+ZzChRFOa9= 3WU0ayb819cNdM+Au7kVslysEGLy6B1YFwgEUEqRmZmJYRh9v10uF4Zh4Ha7OeOMr1Fenhppn+o= yVziOg2WZ5ObamKZJIGCTSOzC5Uob4Mxv01qze8cOvvSZz3D62Wdz/sUXS4AfJAnwI6UhmUz97N= ynOVALK05S+LxQmAd52YpdVdDYDG6pwQshJgmlFNnZ2dTV1WH1LGvcOzCuN/Af+nvu3Hn4fL5jN= p+n+vStIa122NrSwj133snsefNk+eMhkgA/Qhp4dpPmlv9wiMU0s2cqHrrTxOdN1eIbW+A7P7bp= 6FKcfop8OIUQk4ff7ycUCg1q27q6OmbNmnXMAG/bNkopPB7PoI6ZSCR45tFH8Xo8nHnuuezZtWt= Q+4kUiTgjpDUEI9DUomnrhJOXKFo74GAT7NgLP77L4dlNmo9dqjDlry2EmER6a+3RaHTAbadPnz= 7g4LdQKITH4xlUDd6xbfbv3cvDDzzAB6+8ctA3BeJtUoMfIaXAbcGcCkXlTMW9Dzs8u1mTHYCmF= mjv0nzmIwbvXyud70KIycUwDIqKimhpaaG0tPSYAbyxsXHAIN/Z2Ul2dvaA59VaU19Xx7/ecgsX= XHIJZRUVrH/qKexkkkQigfcdiW9E/yTAj5BSsHa1YtXJJnnZsO5FxZ8e1XR1a1aforjyEoMTFyr= S/ONdUiGEGLrs7Gy2bt1KYWHhMRPLFBcXHzPohsNhmpqaWLp06YDn1Frz1COP8MpLL5FMJHj6sc= fYv3cvXV1d/PgHP+Cfv/ENfH65qA5EAvywKRwHcCA/N/WjgIvPVZx/lkLrVIpay0z9PnQOvOMol= CF/eiHExOd2u6moqKCqqooZM2bg8/n63a6hoeGoNfhQKMS+ffuYN2/eMTPY9VJKccLSpVz3pS+B= 1mggFo/jbm6mvLJSRtEPkkSZYUqqLA62eYh2+onHAxy6TOKxKBQ2ftJmL+5ZfUkIISa27OxsYrE= YBw4cYPr06fj9/iMCeXZ29hHPaa3p7u6mrq6O0tJS0tIGNz1OKcWyU0/lPaec0vdcmt/Ptjfe4L= IPf3hQNwlCAvywuQKL6U58hpjrfGw7iepnmUSNPvJ5pUjPqSQjZ75MihdCTApKKYqLi3G5XLz11= ltUVlaSnp7eN30OoL29nfT09L6MdYlEgu7ubvbu3cucOXPIysoa8jkPTZG7cMkScvLycMtgu0GT= AD9MhuUhs/AkMgtPGu+iCCHEuyIvLw+/38+BAwdwuVw9yWsCuN1ulFJ0d3eTSCTo7OxEa00ymWT= JkiWjMgL+1NNOQ4PMhR8CCfBCCCEGze/3M2/ePCKRCJFIBKUUkZ5lXROJBKZpkpWVhd/vx+v1jt= pod2UY/bSTimORAC+EEOJtx1hQppdSCr/fj3+EI9l1zwA6MTakrUMIIQSQGjEfikSIx+Njfq7eJ= vxgKCTruo8RqcELIYQAIJCVhen388jjj1NaUpIaMNfzmupdRYu+J1K/+6nxH/qM6nn8zuZ1R2v2= 799PYVmZzGkfIxLghRBCAKm11k9esYJQMEh3V9fbL6SWh+v/8dH+fTS92yjF8spK/GlpkpVujEi= AF0II0ce0LAJZWWRkZo75uSSwjy0J8EIIIQ7jOA56EIPtRsowDAnyY0gCvBBCCCA18K2zo4M927= fjJJOppvTeQP/OJvpDHau5/hj7my4XcxYuJCMQGIN3IyTACyGEACAWi/HaSy9x4vz5+H2+twP0O= 2vZQw3w/eyvtSYUDrPp2Wc596KLMExJ3T3aJMALIYQAoKuzk0y/n9mVle/K+RKJBNt27CDY3U1g= iKlsxcBkHrwQQggAtOMclv99rCmlsEwT513o7z8eSYAXQgghpiBpohdCCDEh2bZNfU0Nyd4Bf0B= WdjbZOTnjXLLJQQK8EEKICSkUDHLTDTeAUpiGgTIMLrviCi65/HKZXjcIEuCFEEJMOI7j0FBfT0= NDAz+4/Xby8/NBKbJzciS4D5IEeCGEEBOOY9tsXLeOoqIi8goKUEqRX1hIWnr6eBdt0pAAL4QQY= sJJJpO8vGkT+/bs4aYbbiASibBg0SK+cNNNTC8rk1r8IMgoeiGEEBOOozUej4dzzj+fH/3yl/zs= 7rupr67mf371KxKJxHgXb1KQGrwQQogJx+fz8W8//jGWy4W/ZznZy6+6irt/9Ssi4bCsIT8IUoM= XQggx4QS7u3n2iSdoaWrqe643CY80zw+O1OCFEEJMOI7jcN/vfsfW11/nU9dfj+M4/G3TJlauXt= 1XoxfHJgFeCCHEhJOekcGNN93Eb372M/7tG98gmUySnZPD5VdeieVyjXfxJgUJ8EIIISYc0zRZc= dppLDnpJBrq6rBcLoqnTcMlwX3QJMALIYSYcHTPkrJen4/yQ1a30z0L00g//MAkwAshhJhQ7GSS= rq4uEvF4v6+73G4yAgEsS0LYschfRwghxITS0d7Od//lX9i1cye99fTeBWUVUDJ9Ov/+ox+RV1A= wTiWcHCTACyGEmFCyc3P57m23YSeT/b5umqakrB0ECfBCCCEmFMMwyMjI6HustZY+92GQAC+EEG= JCSiQS/OPVV9m/Zw/KMJi7YAFzFyyQkfSDJJnshBBCTDi2bbNpwwa+f+ut7N+3j/379vH9W29l2= z/+Md5FmzQkwAshhJhwEvE4v/3lL5k5axZfvPlmvnTLLcycNYu/bd483kWbNKSJXohh0Wgnjtb2= wJsqE0O5QMn9tBCDZRgGMysqOLBvHw319ViWRXtbG0uzssa7aJOGBHghhiEZa4HoC7itLlJfo6M= PAIomLJR3NS5v0btWPiEmO5fLxdXXXcf3b72Vf/r4x9FaM7OigtPOPHO8izZpSIAXYjiSByjIqg= P2YxgGoIhGHWIxB7db4fOZ9A76bW9v42BrgrxpV45niYWYVGKxGL/9xS9oqK/nS7fcgmma/Nf3v= sfzzz7L5Vdd1fO9E8ciAV6IYVCEUaqOu+9+jlNOcdi9W/PYY0Fqa2OUlLi59NJ0zjrLxO8HrRMk= 4nOOeTytNclkklg0QiwWIRGPo7XG5Xbjdnvxen1YLpdc1MRxo6mxkWeffJJ/+e53OWvtWpRSNNT= X88Qjj3DRBz4g8+AHQQK8EMOhbbTu4ne/q+L//b8QLS3Q2WmzZIli2TLF+vUKy1KsWaNIfc1iRx= 5Ca5KJBK3NDRyo2krd/ueJht7E4z6Ix2NhJ10YZjfdwXwsdyUlM85gevlJFBaX4fF6ZV6wmNK01= jha43G7+25s3W438VhMPvuDJAFeiBGIxWD7dhulYM0axc9+pigrg0RC8+qrmlAINIq3E22CdhxC= oS5q979KW+NTtDb+mVWnNnPGe2K43A6moenqyiIS8VFY2IDj7CKZ3Ex7xx/ZtDmDXVvXUDTjEkq= mn0JWTiGmaY7fH0CIMVJQWMjpZ53FnT//OUnHwTQMnnn8cdacdx4ej2e8izcpSIAXYpiUAq8X/H= 4wDMjPh0AAXK7Uz6mnQjwOduTtfRLxGHt2vs7BA3dRnP80py9vJCPDxrI0h1ZKotEgXV1hSksBN= B6Pjd9vc9klUaLR/2PX7qfY9fqpJI2P8J5T34vPly61GjGleH0+vvr1r/PnP/6RjevWgdacfvbZ= nHfhhZiyyMygyF9JiGHQSqE1fPnLPpqaQoDG7YaODsjLS22jFHg8EAorFCbRaJhXNv2FaPutXPy= +g/j9hwf1Ix3+olJgWZCebnPSiW2cEH+ULVvW8czD13P6uV8gK6dQgryYMpRS5Oblce0NN2Dbqe= mohmHIZ3wIJMALMQwOedQ2uKick0PZTIfeJvh4At7a/s5ti0iaFbzw9G2UFf2c5We3MFAFJCMjg= MvlB2qPuo3bDStWRMnL/xmvba6lYsG/MH3mHAxDmuzF1CLdUMMjAV6IYbB8c7D157E8H8Wwk4d2= sR8hHEnywlNPcuLCB1m+rHXA4A4QjUbo7k4y0GqYSkHlrCgZGc/w4kuFOM41zJw1X2o5YtI4xld= HjJAEeCGGwTDc+NJn4WPWMbdLJhNsfe2/WXP6nfj9ZVRXB5g5s5OBZrtFo1GCweigyhKLucjOms= fZq+/h6Q315OTdQWZW7mDfihB9LMsiFo9j2/a7MiXTtm1i8TiW9KmPCfmrCjFGHMdhy0tPkpfxM= +bM6SSReIPNmxWWlcv06W0odfS6S1paGuABWo95Dq0DNDYmyMt7mawsm6ULHmXTugrOvvDreLze= 0X1DYsoLZGVheDxsfPFF0vz+I14/fD7IwM8PJBgKkZGb2/N5F6NNArwQY6TpYC0H99/C2ZfX4XJ= pXC7NqacaHDw4h8bGOgoKajCM/i+Lbpcb2+s75vEdJwOlzqGk5AksK4lSMGtWlKaWX/DypuWcdt= b7UJL/XgyBy+Vi8bJlBLu60HrsG88DSpGZlYWSBE5jQgK8EGMgFovy0nM/4bKLqvD53r5Q+v0OM= 2e+zEsvZdLWppg3j36DfGdXBx0dXUftg49ETOrrobz8UVyueN/zpgmnLAty3wN30NaynNx8yX8v= hsbtdpPTOxVETGoS4IUYA40NVcwuX09WVuKIqXCGYXPCCe3s21dAc4tFfl4DhuEcto1pWliWCST= fcWSF1gFsu4TCwp1H7AdgWZr3LN1K3YFN5ORdKgPuxJA5jpOqwY9lLV4pDKWk9j6GJMALMcq01t= Tv30R58Q6ONrsnENAsWtTGvn0r6ersoKIidNi26ekZWJYfqDlsv2hU4TiLSU9/AzgyuENqZP20k= k62vvVXEosuxC1Zv8QQxGNRqqt20dzUABo0GoXq+/02DZgYhgdQKKXe7ofX+rAby97nFanvh1IK= lKKouJii0lLcbve78daOOxLghRhtWtPW9BjnrHpn7ftwppmgrOx5NmwwcbsDzJjR3TfwLhaLEgo= 55Of3bq1IJv00Nhrk528Cjr0OfXq6xmVsIBrtwu3JP+a2QvSKRaO8tOFPZFivUZwTA1J3nVqngr= SCw1qkEkkwjbPIzl465HM5WlNbU0N1VRWnnnmmzHUfAxLghRhlwe4uDOdFPJ7+a9iHcrsdVq0ya= G4up7GxlYKCWgwDwuEwnZ3hvu20TsMwVlJSsgmX69jBHVKpcxfMa6S6ajsLFufKKnRiULo623Fi= eznnvGlo9mKaMRwHurpsmpvj5Oa6yMy0sKxUTTwUClJTs4c5cz7EOzMvDsasigoeevRRwsEgGZm= Zo/+GjnMS4IUYRY7j8PqWV1i4oHuANLRv8/uTTJu2jY0b/bS0KBYu1KSlpZOaJtdCJGKwf7/N3L= kv4HKFBzpcn6KiJL+97ffMnr8cj0emzImB2XYSy4qRSHbw0EPPs3hxF489ZnPHHV20tSWZPt3ix= hsDXHmlRVoaoBySyenDPp9SCrfLhe0MfDMshk4CvBCjSWv27nqTNacMlGf+cJaVZPnybvbsKaS1= 1cSywrjd7p4BdQXMmLEfwzh2k/87ZWRAd/tWEomYBHgxBBqt42zc2Mm3v93EgQMav19zzTWKU05= xCAZbWLdOsWYNPe31A7coifEhAV6IUaTRJBO1+P1DH32cnq5ZuLCDAweWsGvXP8jLDePznUIg8A= ZKDf0iapqQl3sQx04MeV8hkknYudPBNOHTn1bceqsiLQ1sG1pbNcEgpGe8OzM0tNa0tbSQkZkpA= /KGQAK8EKMsFgnT2jqN7u42IpEweXn5KKVobm7Gn5ZGVmYmXV2dhEJhCgoKsG2H1tYWPB432dm5= xOPbefzxJB5PDldeeZBp0xYQj8fo6GgnIyNAeno6ra0t2LZDfn4BsViUjo520tLSyMgI0NzchNa= a3Nw8fN4Eti3ZvsVQKJSCnByYPj1VSW9pSQV2pVJLIRcWpgbehSMDH22kbNtm986dXHfVVdz+61= +z+MQTZernIEmAF2K0KYPULCCNYaQGvClFz791z2upfxtGqnaSGgOXei2R8JKdvZySkvOJRhei1= CyUigPtKBVAqXSUagWSKFWIUlGgHUjreb2Z1JjnXLy+BzCUjE4Wg6VwbIXWmiuusFi92gA0lgXR= aGpJ5EPFYwrLyhiz0iQTCTa/8AJ3/uQn7HrrLZIJaY0aCgnwQowytyeN7Jw6Cgt7Bw41AalaDwS= BILl9a8E0AFBUBGATi3Xh9X6Va6+9irS0dPx+P263G8MwmDbt7XPk5JQdds6Skv5fi0RsDFO+5m= JwlDIwzFns3buFUCiA2x3vy3Xz5puHbqlRgNeXz/z5lzCcEfSDEQ6F+OZXv8oZ55yD5XKNyTmms= uP2m9/R0cGbb75JWVkZxcXFspqRGBVKGXjTyunqhNxcBj3QTmtFa6uHffs+wsKFn8Pvz+w5nqKr= qwvbtsnKyhpS02QymaSto0M+22IIFBkZc5g796PEYp09+egPTVPTKzUr3uMJ4HaP3fQ2r8/Hj3/= 9a7Kysrjn178e0bGi0Shbt25l1qxZ5OYeH6stHpfffK019913H08++STl5eV8+ctfZtqh1SMhhk= kpxcJFS9m+3WTVKmfQAT4Wy2D79o9TUXEjfn8m0WiURCJBIBDA4/HQ3t7+dgawQerq6mIQ/AbtA= AAgAElEQVRaWZnUfMSQKGXgcgVwuQIDbqu1RmuN49hoDYahej6jalT6yd0eD0tOOom66uoRH+v2= 229ny5YtFBcX86//+q9kHgfz7o/LAB+JRNiwYQPJZJLGxkZCodB4F0lMEUopFi09kcf+mM3KlU2= D2icYTKeh4UssW/ZVvN7UEp22bZPo6W/0eDwUFRXhOA6JRALLsgZ18Wxubub0NWuwJEOYGGXJZI= JwuJXOzipee+1JIpE3ePPNZubPLyIzcyknnriWjIwZ+P05mBOki6i+vp5oNEpVVRWPPfYYV1xxx= ZQfrHdcprf61a9+RTAYBGDp0qXMmTNnnEskphLL5cabfi6h0MBfr0gkjb/97UICgY/1BXcAr9dL= Rsbhg5e01hw8eJBweOBkN7Zts2P3bvILCmQxDzFqbDtJQ8MOtm37IdXVl6DUe1m79t/54Acfpqz= sb1x66YOceeZ3SCbXUlX1QbZt+2+amvbjTIBENtdeey2ennUZHnnkEWpra8e5RGPvuPvmB4NBNm= zY0Pf4Ix/5yDiWRkxFSilyi97L7j3HTi4TjWayf/8tLF36Q/LzZx72mmEYR+TmNk2ToqKingQ4x= 5761tXVhdvvl4VmxKjR2mHv3g00NX2a8vJ/Z/78VygtDeL1JjFNB8NwME2btLQk06d3snDhJsrK= vkV19aeorn5l3IP8CSecwKJFi4BUHFi3bh22PbWT9BxXAV5rzZNPPtn3nzp79mzpexdjYnr5Ctq= 7lnK0WT0tLV5efvlyystvICen9Ihc8eFwmI6OjiP2c7lcuFwuuru7+30dUp/zuoYGMnJzMWWAnR= gFtp1k9+4NdHR8jgUL/kYgEMU0j36TqRSYpiYzM8yiRRtpbr6e6urXcZzhBVTTspg2ffqIb1gvv= vhi0tPT0VqzadMmWlpaRnS8ie64CvAdHR28/PLLQOpCKbV3MVZy84pp6riEhgYvh1ZctFbEYgGq= q6+hvPwLeDzp/fYDWpbV15zYH4/HQzweP6JWpEmNFn5r1y6KS0unfB+jGHtaa/bv30Io9E+ceOJ= eXK6h1cQ9HoclS/5BXd1nqa/fMWDrU3+yc3O57Re/oHzWrBF9pufOncvcuXMBOHjwIA8++OCwjz= UZHFcBfuvWrWzfvh2AOXPmUFlZOc4lElOV5XJxyumf4K575hMMvb3kZjDopqrqi8yb9++Uls476= sXK6/WSnp5+1ON7PB4KCgpQShGLxfoumo5t89Qzz1A0cyYZgYFHQQsxkFCok7a2H7Fo0Z4hB/de= brfD8uWvUld3B7HY0Ac1ezwelp16KukZI0uq4/P5uOqqq/oeP/roo7S3t4/omBPZcRPgY7EYjz/= +OJDqIz3llFPIysoa51KJqSyQmcW57/8FL26eRzhs0NWVzgsvnE9Ozqfw+/uvufeKxWKDnt1RV1= dHKBTCcRx27NyJ43Yzb+FCqb2LEdNa09LyKoWFG7GskaU8drmgoGA9TU1vDLhtMpmkvraWqr172= d/PT31NzbCz2lVUVLBixYq+x7/4xS8GNXB1MjpuOug2b97MW2+9BUB2djZnn332OJdIHA8q5y5i= S+s/8/ct36Mg70re855PkJ8/8LiPeDxOLBYjLS3tmNsppSgtLQWgvqGBrTt3smrNGgnuYlQ4jk1= 9/V95z3uaR+V4ubnVVFWtp7T0lCPGnRyqu6uLu3/5S/bv29fv64XFxXzpllvIGWbCmmuuuYbq6m= rq6+v5xz/+wd///nfOOOOMYR1rIjsuAnwikeDuu+/ue3zZZZcRkOZL8S4wDJMlyy7j6ccU6Wlzq= cwuGVTwTUtLw+fzDeoclmXR2NjIo08/zbkXX4zP7x94JyEGwXESwHO43aOzYFFaWpx4fBOxWASf= 7+g3r1nZ2Xzl1luPOvLeMM0RrSqXl5fHqlWr+Mtf/kI4HObll19m1apVUy7r43HRRL9p06a+ee+= lpaVcfPHF41wicTxxezycc8GlNAUjvPjSS3R3dw+4z2AHIiUSCba++SYvb93KWRdcMOI+SiF6aa= 3p7GwnI6Oat9PVjkxqcaWdxOPH7n5SSuHxevH5/fh8PjxeL16vF5/Ph8/vx+PxjKiVyrIsTj/9d= PLz8wF4+eWX+fvf/z7s401UU+t2pR/xeJytW7cSj8cBpGlejAuPx8OSZcuoqari/gcf5KzTT6e0= tPSoNYZIJEI8HicnJ6ff17XWdHR08NzGjXizs1m6YgX+AZrzhRiqjo4Okski6urSyMjIoLu7G5/= PTyQSxuv1EI3G8HjcJBJJ2ttjNDZ6cLsNbNvGslzE4wl8Ph/RaIS0tDRCoSDxeCaxWHxQ508mk+= zdtYt/bNmC4zicvGIFM2fNGpWadllZGeeeey733HMPsViMP/zhDyxatOiYg1snmykf4Juamnj++= eeBVO195cqV41wicbxyuVzMrKyksKSElzZsoKS+nuKCAqaVlODxeDAMo69WYprmYRex3pzfyWSS= 1tZW6hsb2bZjB8tWryYrJ2fKNS2KicE0ffh8/4PXm4NpevF6o7hcbiDe85lLYlkWhmHzoQ9F8ft= 9GIZCa6cnWZPdt71pevB6Y3g8tZjmwPPZk4kELzz3HD/49reZNXs2Sike/L//4/Nf/SorzzhjxO= NMlFKsXbuW9evXU1NTw4EDB3j++ed573vfO2XGsEz5q8KGDRuIRqMATJs2jcLUmp1CjAvDMEhLT= 2f1uefSdPAguw4coLqhgUQ0SmlJCdNKSvB6UxnwLJeLSCRC0rZpaW6mav9+bMAxDNKzsznzggvw= +nxT5mIkJp6cnBwOHoyTm1uOUoqjVW611uTkMOBnUWtNXV0Qt/vYWR4h1Yr1i9tv5+IPfICPX3s= tyjD4+W238fjDD7N81Spco7CIUiAQ4EMf+hB33HEHiUSC9evXs2LFCrKzs0d87IlgSgf49vZ2/v= SnP/U9Pv/8849I/ynEeHC53UybMYOS6dNJJBJ0trdzYN8+/r51K4l4HKPnQqm1Rpkm2Xl5lFdWk= ltQgE+CungXpAJ6+qCmkA328+g4DkqpQQVnt8fDV77+dWZWVPSNLSkoKqK2pgY9imlvTzjhBGbM= mMHevXvZuXMnr7/+OmedddaoHX88TdkAb9s2Dz/8cN9gpfnz53PSSSeNc6mESNHaIWkn0I6NYZr= kFeSTX1iI4zg4jpP63GqNMoy+pnulFI7jYCeTQKoZXxaSEWOp93MXi8X6WpZGIhwO4/F4jpmlsZ= fH42FZz3x1rTXVVVU8/eijXHDJJaO6BHJeXh5nnnkm+/btQ2vNE088wcqVKwdVxoluyl4dGhoa2= LRpE5DKCnbNNdeMc4mEANDE4xF273+e2sbnaWh7gR37/8ruAy+SSMYwDAPLslI5593unv5NA7Qm= 2NFBe10ddlcX8fZ2mg4cIBIKDSv1pxCDYRgGBQUFtLa2jsrxOjs7CQQCQ2qB0lqzc9s2Pnf11RS= XlrL2fe875hz64TjrrLPI7ZlTv337djZv3jyqxx8vUzLAa6154YUXaGhoAFJNMGVlZeNcKnG809= qhtaOGvbVPYlsHaIz8jd1tj1MbfI59nffz3Ou30Rk8eMR+djJJe0MDVjRKhtuNjsdRySQZbjehh= gaaa2txpviqWGL8ZGVl0d7eTmKYmeN6JRIJ2tvbjzozpD+O4/CPLVu4+YtfZN7ChXzj3/6tLxCP= pkAgwCWXXNJ343DnnXdOiRS2UzLAO47Dxo0bgVTt/eyzzx6V5iUhRiIc7aCtcytRVc2+9o3saX2= Bv/39Be6/52n21r/KwfgLbNp2J9FYsG8frTXh9nbSLAutNbW1tdTW1hKPx7FtG7fLRbyri7bGxn= F8Z2Iq8/l85OTksGvXrmEH+Xg8zhtvvEFRUdGgB8fZts3fN2/me7feyrnnn8+3f/hD/GlpozQj/= 0gXX3wx8+bNAyAUCvHcc8+N+xK3IzUlA/yjjz5KbW0tkLr7XL58+TiXSBzvHMempW0PUV1HbdcW= GoM72fNGHX/8/k6q3mgnkQwTc9rY1/IM++te7dvPTiRQiQRoTSIeJxwOs3v3burq6vqWPXaZJo0= 1NSOuYQnRH6UURUVF5Obmsn379r6cIoMVi8XYsWMH5eXl5ObmDrp5vr21le9//et0d3djuVw8dP= /9/PGee9jwzDNj9lm/4IILcLlc2LbNM888c9QlmSeLKRfgY7EYDzzwQN/jK6+8ckQpDYUYDUk7T= nPHDtpj1bSFq6nZ0cFjP68hLdPkrKuKSct2ARqbMG/uWd/Xrx4Nh7GU6gvmJSUl5OfnU1NTQ2Nj= I46Tmm8c7u6me5JfjMTE1dsXn52dzYEDB2hvb8e27aOO/9BaY9s2zc3N7N+/n7y8PDIzM4fUd97= W1sa0GTMoKi7m5Rdf5NknnuDZJ57gtVdeGa23dYSTTjqJOXPmAFBTU8Nrr702Zud6N0y5UfQvvf= RSX99JWVnZYasGCTFebDuOTZBgvJmEHWXTA820H4zzse9WUFDmRanUcrK27XCwvapvv1B3NwHL6= msqtCyLmTNnEg6Hqa6uJjc3F601sWiUYFcXOT2pN4UYbYZhMG3aNDo6OmhubqaxsZFAIEBeXl7f= aHutNY7j0NjYSCQSQWtNSUkJGRkZQ57aOauykv/8yU+OuImwLGvMEjulp6dz3nnnsW3bNgDuvvt= uKisrJ+0YrikV4OPxOC+++GLf4yuuuGJKTHUQk59hmMQSERJEAFh0ZhYH3gyy+S/NXPC5UvwZFt= rRxMIO6VZm334enw/nkPXetda0trYSDAYpKSnBsiyCwSDBYBCXtFSJMWYYBjk5OWRnZxONRqmrq= 2PLli1HBO/i4mLKyspGlDPetKxxWVvhjDPO4G9/+xsvvvginZ2d3Hvvvdx8883vejlGw5QK8DU1= NezatQuAzMxMpk0beFlOId4Npukh4C+jPfQGylDMXp7Jmk/YPP3bBjb87iBnXFmEMqC7xWH1itV= 9F0V/ejqhYBDLMNBa09TURFVVFYWFhZSWlqK1prmlhaTWZI3B6GIh+qOUwufzUVlZyaxZsw4bjH= ZoyuXBmGiTPBOJBFVVb7eiLVmyZBxLMzJTqg/e7/f3LRQQjUanxDQHMTVYpotp+SeiY+kY2sJ0K= Rafk8OlX5lBsD1Bd1uCtro4ud4TWDh3dd9+Lo+HpGGQSCZTI+rDYaZNm0Z5eSp1aEtLCwcOHGDm= 7Nl4B7m8rBBHY1oW8Xh8SLkVlFKYptn3M5Tg7jgO0VhsQmUY3bx5M/X19QBkZGRwzjnnjHOJhm9= K1eCLi4tZvnw51dXVxGIx7rrrLm6//fZRT4ogxHDkZs5kVv77eGVfPXFVjzI00xf4yZ3moavZRo= ULOe+izxJIz+vbRylFem4uDXv3YgH5+fkopejq6qKlpYV9VVXkT5tG5cKFkr5WjFhmVhad4TBb3= 3iD4uLiMT2X1pr6+nr0ODXF9yccDvPYY48Bqe/ehz/84VHJeT9eplSAB3j/+9/PY489Rjgc5sCB= A2zcuJEzzzxzvIslBIZhMr/sbNI8uWyreoLGtj0kwkHSnHQqZi5g2eILKS2ed0Sg9vn9lFRW0lR= XR1trK6FgkGgkgqMUC5ctY9bcuZLnQYwKl8vFqjVrqN2/n21VVQM2n/d+UnXPv/Uhzx/tub59lc= Lr93P6OedMmJvTt956q2+KdVFREatWrRrnEo3MlAvwmZmZXHfdddx2220A/P73v2f27NnSHy8mB= MtyUz7tZKYVLCAc7SKZTOCyPPh9AVyWt/8LXc+FsLSignhpKcmeJlRXT05vyUcvRpPP56OyJ+HL= u2GiBHeA559/nu7ubgzDYPXq1ZN+VbkpeWVYvXo1y5cvRylFc3Mz69at65tHLMR4U0rhcaeRHSg= mP2cGWYFC3K6BV4gzTBOvz0d6ZiYZWVmppWIluIsxorUe85+JpLW1lfXr1wOpvvfly5dP+u7dKV= eDh9QozjVr1rBt2zZCoRAvv/wya9eupaioaLyLJoQQE1osGuGtra/S2tL0jld6G90PpVDKjVJDD= 4RKKfIKCpi3cOGEmOL505/+tO/fK1euZPbs2eNYmtExJQM8pKY2zJ8/n1deeYXq6moef/xxrr76= 6vEulhBCTFiJRJznnvwDpbnbOXmBCVj99rP3/k7EIS3tUtIz5hwR+gfiOA47d+9m47p1nP3e945= rU/0rr7xyWNa6z372s+NWltE0ZQO83+/nwgsvZOvWrcTjcZ555hnOPPNMysvLx7toQggxIXW2t+= FWNZy2qgRHV+FyOSSTmubmJK2tCbKzXRQUWLjdqax1oXA3tTUbKCs7hSNr9wMLBALU/PWvhILBc= RtJ7zgOr732Wl837qWXXjrpm+Z7TdkAD7B48WKWL1/OCy+8QHd3Nw888AA33nij5KYXQoh+JJMJ= LCuG7dTw8MPPs2JFF/ff73D//RFaWxPk57v46Ee9fOpTJqnZYw6JxPCn0xmGgd/rJZlMjtp7GKr= 29nZ27NgBQFpaGieffPK4lWW0TY3blKNwuVx88pOfJBAIALBjxw6qq6vHuVRCCDGRaRwnynPPtb= JyZS0331zPa6+1UVkZ5Atf6KCzs5H//d964vF6oBGY3AOYt23bxu7duwGYM2cOFRUV41yi0TOla= /CQmja3fPly1q1bR1NTExs3bqSysnK8iyWEEBNUanS7bUN9vUYpuOoqxX/+pyIjA2xbU1cHHR2Q= lj62/eZaayLhMK0tLbjdbnLz8rBGMfFMJBLhoYce6nu8fPly0tLSRu34421K1+ABPB4PK1eu7Ft= 05sknn6StrW2cSyWEEBObywU+X+qntRUMA0wTPB4oL4e8vIGPMRJaa9pbW/nO177GV6+/nhuuvp= rf3XUX4VBo1M6xadOmvtp7Tk7OpE5L258pX4MHOPnkkznhhBN45ZVXiEQi3HvvvVx33XUTKv+xE= EJMBI6jMAzNP/2TxWWXGYDGshTxOMTjh2+bSChMc2zWQIjHYvznd79LU1MT3/rBDwiFQnz3lluo= qKxk9Zo1Iz5+e3s7f/jDHwAwTXNKrj56XAR4gKuuuoq33nqLcDjM008/zerVq1m0aNF4F0sIISY= MpUxMs5z6+n3E4wX4/W838h6ywFrv1qT5SyksumDMynPCkiVc/rGPMW/hQpLJJKUzZlDfk0p2pL= Zs2UJHRwcAFRUVnHvuuaNy3InkuAnw5eXlnHvuuTz00EM4jsNTTz3FvHnzJvVCAkIIMboU6WnzK= C39OMXFUbR2jrmtabpxuQIMZ4rcQDxeLx+9+mocx6G5sZEXN2yguqqK2aOQRjcSibBx40YSiQQu= l4v3ve99U7JF97gJ8ABr1qxh06ZNNDc3s2XLFvbs2cP8+fPHu1hCCDFhKMPE5crA5Rp4XrrWGse= xse0EjuNgGAaWZaHU0NaEP2pZlCIaifDn++5j3eOPk5WTg9fnQ2s9ouM3NTX1TY0rKCiYsnFgyg= +yO9T06dNZunQpAMFgkIcffnicSySEEJOP1ppwuJuXXnqCRx65hU2bPs5TT32dF164hocf/gavv= baBSCQ0KvnmfX4/V33qU9xx111Uzp3L7+66i8Q7BwMM0W9+8xui0SiQWrtkqqYxP65q8KZp8oEP= fIANGzYQj8d58cUXWb9+PWeeeeaEWtFICCEmIq01oVA7W7c+gG3/mIUL97NsWQKlNE88MZeVK/d= gWQ7t7f/N5s2zycy8mQULLsDrTR/yNTYWi7Fz2zZmzJxJVk4O6RkZLDnpJP5w993E43HcwxwQ19= TUxOuvvw6kEu2cf/75wzrOZHBc1eABSkpKuPbaa/uy2d1///20tLSMc6mEEGJicxyH6uoX2bXrG= mbP/gorV+4iOzuKZdmYpkM0GsQ0bSzLJi8vwurVb1JS8lm2bfsMdXWvDdCff6RwKMS/ffOb/M+v= f01nRwcd7e1sfe01Zs+bN+xspMlkkvvvv7/v8WmnnUZWVtawjjUZHHcBHuDss89mxowZABw8eJD= NmzfjOEP78AkhxPFCa01tbQ11dT9i3rynyMsLYZoOh1bKMw7JJa8UWJZDUVE38+c/xL59X6epqW= ZI19mMQIB/+tKXePrRR/nn66/nxk99iqo9e/jwxz427AB/8OBB3njjDSC17v3ll18+rONMFsdlg= O8dNen1ekkkErz44otEIpHxLpYQQkw4WmsaGxupr2+grOxquroq6C90NDc30ZsF7+19Fe3tJjNn= bmLz5g/Q0rJ/0P3ylmWx6owz+Mlvf8uFl13GFZ/8JP/xk59wwtKlMMwu1U2bNlFXVwfAsmXLKCg= oGNZxJovjqg/+UEuWLGHmzJns2LGDhoYGEonEeBdJCCEmnGg0SktLC+95z3vQOklb2w+pqbmJ0t= JdGMbbNfK8vAKgjbdT3SqqqtLw+SxKSjrIy9vK9u0/IxD4Fl7v4FaOsyyLsooKZvSsAqqUGtF4q= fr6egDcbjennHIKXq932MeaDI7LGjxAbm4un/70p8nPz+e0007D7/ePd5GEEGJC0VrT2dlJZmYm= LpcLt9tHfv55OM6PaG6ex6Hz3xsa6vpq546jaGjIxuWKUVLSgWWB328TCDxMY+P2Ac/rOA7RSIR= QMEg4FCISDhMJhwmHQoSCQaKRyLC6VdeuXUt5eTlr165l1apVQ95/sjlua/CQWjnoN7/5zXgXQw= ghJiStNQcPHmTeIcllTNNi+vSzOXjwezQ2fo2Cgj0opZk5swKltuI4mtpaD5YVp6QkeVhren5+D= QcOPMv06Scfc8317q4u7vn1r6nrWf1Tk6q9985/z8vP59rPf57MIQ6QW7BgAbfffvuQ9pnMjusA= L4QQ4uhSiWycI3K0m6ZFYeH5tHdkUV9/HSUlu9i/fx8rVjg0NOTi8UTJzQ3yzhienh4nFnuRWCy= Kz3f0VtO09HQu+/CHicViqeDeW56ef7vc7im16ttYkQAvhBDiCFpruru7SU/vfw67ZbnJzTmNmp= rbaWz8PHPnFtHQsBWlOikoSPY7Di6VDXYH8XjomAHesiym9cx06i0LIPlKhkgCvBBCiH51dnbi8= XgIhUL4/X7C4TBer5doNIrb7SYej1NQsJIDB77Ogw9+h8sum8X06SEOHkxgWRaJRAKfz0c0GsXv= TyMUChKP5xKPxwZ1fsdx2LNzJ7t37gRg4eLFzCgrw5iCeePHggR4IYQQ/dJaY5omlpUKFb2/XS4= XSiksy8I0TbKzz2HJkjglJQtJS/OjtYNhmFiWjdvtRqkEluXC54vj89VjGANnoXMch907dnDzjT= cys6ICO5nkz/fey83f+c6oLDhzPJAAL4QQ4ghKKQKBAK2trX198L2/e1desyyLSCRCbm4+l1zyE= SzLwrZtfL7+14j3+zUul4HbPfD0tEQiwU/+67/Izc/nWz/8IaZpctPnP8+mjRslwA/ScTtNTggh= xLEFAgGCwWC/yWm01iSTSWzbxjRNWlpaMAyj7/n+9nEcB6XU4Jbp1hq3x4PVczNhKIVpGKhjjL4= Xh5MavBBCiH4ppXAcB9u2+5rne3V3d2MYBunp6QDk5+djmiY+n4/u7m5M0zxipHskEsHlch0xKr= 8/LrebG77yFb5y/fX88+c+h2PbJBIJTjvjjNF7g1Oc3AoJIYTol2EYFBUV0dTU1PdcaqnYMD6fr= y+4A7S3t/fNU8/IyMDtdhMOhw87XkdHBxkZGYMaDZ9MJHhh/XoMw6By7lwq581Da82+PXtk7ZBB= kgAvhBCiX0opsrOzaWpq6mt2dxwHwzCOqNEfGriVUpimiWEY2LYNgG3bNDU1kZubO6hzNzU2ctc= vf8mVV1/NV269lX/+xjc4a+1a7rvnHmI9a7mLY5MmeiGEEEfl9/vJz8+npqaG7OxsTNM8bOW4Xu= 3t7YfV6A3DwOPx9PXh79mzh/Ly8kE1z0NqPfhYLEZRSUnfzUReQQGdnZ0kk8nReXNTnAR4IYQQx= 1RcXMzu3btpbW2ltLS03236GznfO6CuurqavLw8MjMzB52spqCoiJOWLeN3v/kNhmFgmibPPvkk= p55+Ot6jjNIXh5MmeiGEEMdkGAaVlZVYlsWuXbsIh8NHjJLvbYrvpbUmFAqxY8cO0tPTKS0tPWb= ++XdKS0vj5m9/m8LiYn7x4x/z09tuY/qMGVzx8Y8PbhS+kBq8EEKIgZmmyfTp0wkGg2zZsqWvuT= 0zMxPLsojH49i2TTKZpKuri0gkQnV1NSeeeCJpaWlDTjNrGAbTpk/npm99i0goBErh9/txD7KJX= 0iAF0IIMUiGYZCRkcGKFStob2+npaWFUCiEYRg4jkN9fX1qqddolLy8PFasWDGi2rZSCq/XO+XX= bR8rEuCFEEIMWm+/ekFBAf+fvTePk7Oq8/3f51lq7+p9z9bp7AkJJAjKCERBAggRQZ1xARcYHWe= 74wzcn+P1zo+5o+PMvHTQ0fGn4igjyuA2enUYQZCwhLAESELIns7S+1a91vps5/dHdVV6T3fSnU= 465/16dTpddeo5p+qp5/mc7znfpby8PO9Zn0PTNIQQqjDMeYASeIVCoVAAoA8ttedC4U5HTsins= 7c+HCklacvKp75VzCxK4BUKhUIBQEE0StJxeH77dpYsWQJSghBn/huy/wdG14+VnsfhI0cwQyFC= qrb7rKAEXqFQKBRAtpjM2669lq7OTjoSiVnvr3LZMiqqqpQFP0sogVcoFApFHp/fT3Vt7bjFYmY= SAXAWy/uK06MEXqFQKBQjUKI7P1BnUaFQKBSKeYgSeIVCoVAo5iFK4BUKhUKhmIeoPXjFvMPzPB= KDg7iuy2y6CQkYc/zxHpvKczNx/Nnq80xfowlBMBzG5/NN84gKhWImUAKvmFcMDgzw5K9/zdpVq= ygqLBwTe6s4d1iWxTO7d7PhiitYXFeHUI5bCsU5RQm8Yt6QTibZtWMH77nxRkpLSlSqzPOAVfX1= PP/SS/gDAapra+d6OArFRYUSeMW8oa+nh9qKCirKy1WYz3mCruusWraMg0CKZQYAACAASURBVCd= OUFVdrax4heIcoq42xbxASonnulQqcT+vEEJQUV6OZ9s4jjPXw1EoLirUnVAxP5AS6Xkq5eV5SG= 7CNduZ0RQKxUiUwCsUCoVCMQ9RAq9QKBQKxTxECbxifqA85hUKhWIESuAVCoVCoZiHKIFXKBQKh= WIeogReMT9QHtoKhUIxAiXwCoVCoVDMQ1QmO8X8YAac7MaL0z4X6W4nig9XqXYVCsXZoARecVEj= pcR1XXp7e+np6cHzPIQQeJ6HYRjU1NQQDAbRNG3GBTfXd3d3N319fUgpEUIgpcTv91NVVUUgEFC= Z+RQKxRmhBF5x0eJ5Hu3t7Zw8eZLi4mLKysowTRPP89A0jUwmw9GjR7Esi2XLllFUVDRjYus4Dg= 0NDcRiMcrLyykvL8cwjLw1n0wmOXjwIKlUivXr1xOJRJRFr1AopoUSeMVFSX9/Py0tLWiaxsaNG= /H7/UDWqu7u7qasrAwhBOXl5SQSCU6cOEEsFqOmpoZwOHzG/Uop6erqoqOjg+LiYurr6zGM7GWY= yWRIJBKUlJRQVFREVVUV6XSahoYGIpEItbW1qra6QqGYMmrtT3HREYvFaGhooLa2lpUrV+bFPUd= hYWHeWhZCEIlEWLNmDSUlJTQ1NZHJZM6oXyklx48fp6+vj7q6Ompra/PiDmCaJgUFBfm/NU0jFA= qxevVq/H4/e/fuxbKsM+pboVBcfCiBV1xUxONx9u3bx9q1a4lGo2OWvaWUxGKxMY5vmqZRWlpKT= U0Nr7zyyhlVRuvu7qa/v5/KykrC4fCYvi3Loq+vb8zrdF2nuLiYRYsWcfjwYTzPm3bfCoXi4kMJ= vOKiwbIsGhsb2bRpE36/f9w9bSEERUVFE+53FxQUsHz5co4cOTItoU0mkzQ1NeVXDFKpFK7rjmh= jmibRaHTEY1JKLMvCdV2Ki4sJhUJ0dHRMuV+FQnHxogRecVEgpSSRSBAMBgmFQpO2i8fjk4auVV= ZWous6sVhsSn17nkdjYyOLFi0iGAwSCATw+XwkEokR/TiOQyKRGPFa27axbZtwOIxhGNTW1nL06= FFVW12hUJwWJfCK+cFpMtl5nkdTUxMVFRWTeqMLIcZY0eO1KS0tJZ1OT2loqVSKVCpFcXFxvm/D= MIhEImQymbxYG4aR34OXUpJOp9E0bcRyvs/no76+nhMnTkypb4VCcfGiBF5xUZDJZBgYGJjUes8= Rj8dPG5JWUFBAIpGYkiUdj8fzVv9wNE1D0zQcx8HzPFzXza8euK6LlBJd10eMRQhBRUUF/f39ai= 9eoVBMihJ4xfzgNIJsWRaLFi2aUiz5cE/2iTBNk87OzikJvGVZE4bW+Xw+NE0jFouh6zqRSIREI= sHAwADBYHDc8WqahmEY2LZ92r4VCsXFixJ4xfxgkiV6KSWZTIZIJJK3jB3Hyf/2PC//t+u69Pf3= 47pu/idnXQ+3rF3XJRqNnjZsLdfHcEt9eN9SSjRNo6SkhMHBQdra2vD7/USj0Xy/nueN+L/ruvj= 9/jMO11MoFBcHSuAVFwWWZSGEyHuuDxfLnIDmxHe4wA9/brTA57LenQ4pZf41nudh2/aIY+WOMT= AwQFNTU759rs3on1waXbVEr1AoJkNlslPMe4QQhEIhPM/DNE2EEPh8PoQQ+dSzuf1xn89HdXU1p= mmOe5zhr0+lUmP21SfqX9O0fJ+5ffXc3zmxrqioyIfoaZqGrutjUuPm8uRbljUiSY5CoVCMRlnw= ivnBafbWDcOgu7t7RIa63O/RP67rjvv48NdJKbFt+7SpY3OTAtu2x+07t1SfmyxompYP6csVnxk= 9BsiuSIzOwKdQKBTDUQKvuCjw+/2cPHlySsvaOeGdDMuyqKmpmZIV7ff7GRgYGPe5ZDKJ4zhEIh= GAvKUfCoXo7+8fdxy5pXplwSsUislQAq+YH5xGkE3TZPny5RMK7XBGh6aNR19fX34Z/XREo9ExH= ve5FQDTNAkEAvll+dFx8o7jjHnd8ePHqaysPG2/CoXi4kYJvOKiQNd1SkpK6OzsPK0Vb1nWpBZ8= ruJcUVHRlPrO7esfPXo0f1zXdfNL/Ll99pyTXw7DMBBCjBhPLoSupqZGlY9VKBSTogReMT+Ygth= FIhFs22ZwcHDSdjnnt/GQUnLo0CHC4XB+Wf30Q8smp3Fdl76+Pvr7+0mlUgSDwRHtNE0b49xnGA= Y+n49YLIbjODQ1NbF8+fIZq0uvUCjmL+ouobho0HWd+vp6Dhw4QHd394RWejKZHPc5z/Noa2vDt= m0WL148LQva5/OxcOFCmpubcV2XSCQy5vWu646b/lbXdcLhMMePH8/HyCsUCsXpUAKvuKgIBAJc= cskltLa20tzcPK6Qh0KhccX3xIkTpFIpVq9efUYWdEFBAbW1tTQ0NNDV1TWmb13Xx1j1kN0yOHD= gAIFAYMrZ+BQKhUIJvGJ+cBonu+GEw2FWr15NJpPhhRdeIB6P55POSCkZHBzM/99xHHp6enj22W= cJh8MsWbLkjL3XhRCUlJSwYcMGOjs72bdvH5lMJt93bvsg17dt2/T09LBz506WLFlCbW2t8pxXK= BRTRt0tFBclpmlSV1dHeXl5ftk9Eomg6zqu69La2opt28TjccLhMFdeeSXBYHBG9r59Ph+rVq2i= r6+PI0eOYJrmiFWD1tZWLMsikUhQWFiYr1+v9t0VCsV0UAKvuGjRdZ1oNEpBQQGWZZFKpfIpaTV= NIxKJ5GPdZ1pcDcOgtLSUkpISMpkM6XR6hHd/NBplwYIFeU96hUKhmC5K4BUXNbkMcYFAgEAgMC= d9B4PBcffeFQqF4mxQa36K+YGychUKhWIESuAVCoVCoZiHKIFXKBQKhWIeogReoVAoFIp5iBJ4x= fxgGnHwCoVCcTGgBF6hUCgUinmIEnjF/EB50SsUCsUIlMAr5hWTlXlVKBSKiwkl8Ip5g6br2LY9= 18NQjMJxnGxSH5VqV6E4p6grTjEvEEKAptHY3Dwi5ati7jnZ2Ijm86lCOQrFOUZdcYp5Q2lFBU3= Hj/Pq66+zZPFigsEgamd+7rAdh87OThoaG1l56aUqp75CcY5RAq+YN/h8Pja85S00HDrEsbY2FT= o3xwghSGUyrNq4kcKiorkejkJx0aEEXjGv8AcCrF6/HtdxspXh5npAFzGaEOizUIlPoVBMDSXwi= nmHEALDNOd6GAqFQjGnKIGfBpl0eq6HoFAoFIpReK4710M4L1ECPw22vvOdEz4nADns90ww+lhT= PfaZvm46xzyXfU+njzPt70xfV1hURFV19VmFgCXjcVpbWnAc56zGknstQlBUXIyu66OeFGP9EnK= PDX9OCKTnER8cxMpkzmosw18bCoUIhcNj+hrXVyLnkDfqOSuTYTAeR04zUmI2rqWZ+m5Pdpxzfd= 2d9fsTIOTM3QMmuq+O/vvuj32M5Z/+9Bn2Mn9RAj8Ndr366lwPQXGeceMtt/BX/+t/4Q8ERoolj= BTOiYQMePmFF/jsn/85sVhsRsak6zrv/9CHKC4pyT4wNJ78TXHYOIQQ2eRAo8ZuZTJs++1vOd7Q= MGMTtPWXXsoll16anQyN+pzGG4dgbOKio4cP8+b27ViWNUOjUswEQoDfhEhYEOuT59y/NXbLLee= 2wwsEJfDTQXllK0YRDIcpr6oiFAqd8TGKS0tPid4MIIBgKESkoOCMj5ExTXTDmNHMgKZpEo5ERj= rdDbfkRzN8EkBW7AN+/8jXKeYcQ4cNawR/9jGdZ1/2+MHPJe45TkWhMliOjxJ4hWIG8KSkqb0bR= +gEdSgvCI0QKAn4AgEAbMuiva2NhYsXn7PxySErebLHpJRIst7vs42TTGJ3dOANDKCFwxgVFRgF= BQghcDMZrPZ2vIEBhM+HUVGBWVio6g2cB+RPgQShwdoVGh99n2DzWzWWL4FHf63mXucTSuAV8x5= N0/D7/aTTaQzDIBAIkMlkZnSZ17YdfvjCflIFVSzzZfjUVSuzAkpW3Dv7+/EFAkgpsWybA3v3Ur= tw4TkJIUulUsQHBiirqMgLesqyiQ0kqC0tzD8WT2eIp22qiiKzOh4nncZ6+RWMzk5M10VqGnZJM= e6mTeiBAM7uPegtzZiuB0JgFRQgN16Gr6pqVsd1MWOGwpiBMMMzQ3mui50cxB26TjQN7rxdo6IU= 2rvgp495mAYcOylZsgAW1UoaTgp8kSI00zdJbxPvykspsRODOBnl0DwTKIFXzGt8Ph933XUXd99= 9N//0T/9EMBjkr//6r/ne977Hv/zLv+DOkPetJyHhaiREAEtIIqEQ0vOye8tA9+BgfhkxEAhQUF= g4xqKeaXp7ekglk0SLirLvU0pcz+PAyTb6LElKmLT0xgkLFweNfgdsdJq7+6gMzc6tQbou8T17i= LS1oeVMPddF646R3LsXu6SEQFMT+rDz4u/vJ3noMEZZ2ayM6WJHCI31H/wTVt/2MYQ4NeGUnkOq= L8aeH36dY9t+hSEt/vhOjbUr4PV98KsnPXbt8zhyXPDi6x7/52se3ZkK3nH/v1C2YsM4HeUOzPg= aLwSeleGlb95Pw5P/mX94wYIF3HffffzqV7/imWeembFr9mJACfxZYBgGGzduJBgM4jgOJ06coL= W1dcR+kKZpVFdX09vby6JFizh06BBSSoLBINXV1Rw/fnzS/SNd11m1ahVlZWVIKRkYGGDv3r1T+= pILISgqKiKZTFJfX8+BAwcumr0qIQQ1NTXcc889bN68maamJv7qr/4Kx3FYsWIFZWVlsySwYoxV= LgA8j8bjx/H5/Wi6TkVVFel0mmAwOAtjyFpCmVQq6wXveWiahmXbeJ6HMHwMWOA6No7hY3GZn9a= 4RcqTFOggdINoxD874/I8fH39p8R9CCEloq8fF3AdB1dKPE3DLCtD03V0Q8dVhYRmBwH+SCGRyg= UIIXDSSTzHRvcHiVQu5Kq/+CJC02jc9jP8fggGIeADXc9+t+NJyRsH3azvR7lBsLicSNUC8DzsV= GL8iAcBui+A7vODlDipBK5j4+o6mnEqh4UQgssvv5yPfOQjXHbZZbzwwgtK4KeBEvizIBQK8alP= fYpt27bhui4333wzX/7ylxkYGMjeSIXANE3KhiyPj3zkI9x///158dm6desIK1LXdQzDwHGc/GP= BYJCtW7fS1NREPB7H8zwMw8iLU+5vIF9JzTRNpJSYpsk999zDD3/4w/zkQgiBPqzqmhBZQZJS5s= O05gP19fV8/vOfZ+nSpRw/fpyVK1eyZ88e3va2t2GaJpqmzaIFPc5xhaC8shIhBM2NjfT29lJdW= ztL/WfPayQaxbJtEALbtvMTD8vzEDJruWl4DCRTOC6UmDprSoNoSCxn9sTUnWhbwtARuoEYGr8N= aIWFhNauAc8Dlbxo9hACIQSeY7HnkW/QdXA31RuuYt37/5BIRS0r3/1Bmrf/CsjeI0qL4aPv03n= pdcmufR6GDokkSJk9jhCCdLyfl77+N6T7xkaHCF1n+Y0foG7zLTjpFLt/9A0697+GdB16jh3Mt5= NSsm/fPn70ox+xfft2Je7TRAn8WaDrOqZpcvDgQeLxOJs2baKiooLPfe5z3H///Vx11VUMDg5SU= lLC4OAgRUVFLFmyhDvvvJNoNAqQF5lgMMjHP/5xVqxYwcmTJ/nWt75FKpVC0zQ0TWPv3r10d3fT= 39/PqlWr2Lp1KydOnKC9vZ0bbrgBKSVf//rXqaio4H3vex+9vb0cOXKEm266iePHj7N06VJ27tz= J7bffziWXXML27dt59dVX+ehHPwqAZVl85StfIX2BJ/PRNI01a9bw93//90QiEXbv3s2HP/xhCg= sLWbx4Mb/5zW8AWL9+PXV1dRw5cmRGVzUEMpsiV55yYpNkz3MoHEZKSXFpKS3NzWTS6bPyvj8dg= WCQmtpaHMdBSpmfQK6oKqYiadHYk2BNTTGmJqiVEte2MTWyVpU9O74BQtfxltXj9MQwnFM3a1fX= kYsWoUejyM5OzHQax/MwTpwgGQ6jLatHGx3Xr5hxXNum482dnNz+BG27XmTJNTdTtHgZ0dol6IZ= JTuAX1cL//CPBH/yJxzuv0rj5nYL/50vuiLmtk0nRvuclEl2tQNb5zk5mcxhohkH5qktBSjzbom= v/q5x8/vFxx9TQ0MBnP/tZLMuaV0bIuUAliT5LCgsL2bJlC7fffjt+vx/TNNm4cSOBQIDa2loWL= FjAokWL8A2Vy/zgBz/IY489xi9/+csRTl7hcBjHcdixYwd33XUXJbkY5qE+brzxRrZu3cqSJUuo= qalBCMGzzz5LZWUlL7zwAqWlpdx0003cfPPNPPjggzz11FN0dHRw7NgxDhw4wNq1a1mzZg26rvP= FL36RyspKNm7cyJo1a3jkkUdYtmwZdXV1c/ERzigLFizgm9/8Jo7j4DgOn/jEJygeSvpSWVnJ1q= 1b2bt3L0II7r333hlbItc02FBTyIZCyZJCg/5Ukv50mr5Uir5kEjGsVGo6lcI0zVnPvmUYBsZQu= FtJaWnesgoH/FREQ6yrKSQa9BEK+AgH/YRDATAMDJ8PfZZKuwpNo2DhQpx160gVF5MxTdLRAqyV= KwitWEFwwQK8dWtJl5Zi+X2k/X4s18ED5UV/jtBNP4Y/QOHCpRjB7ATUtTIjvOMF8PxOyZuHJdd= cmfWkv+MmHWPYHMwfLebKP/1brvnrr3HNX3+Nq//nlwmVVY7f6SRz7MrKSu688042b96s6hpME2= XBnyU9PT088sgjxGIxPvnJT7J69eq81W2aZv6mClnrsqCggMbGRkKhEAMDA0DWuqusrGTTpk1s3= 749b23liMVi/PjHP6azsxPLsli0aBFHjhwhmUyyadMmjh49SiwWo7i4GIDu7m5isRilpaWkUiks= y8re2MNhYrEYnZ2dtLW1EY1G6ejooK2tjZ6enlnbDz6XdHd383d/93e8/e1v57777su/p5yVXlp= ayvvf/34eeOABHn300RmzCHymyXvfumYozAzsUTei8FD8thCCispKikpKZtV6H45pmpijlrdNQ8= c0Rp5v3TBmTdiHoxkGwdWrcevqcFIpTL8fPRhEDH3ngytW4C5ahJ5KoxkGeiiINsMx+YrxMQJBL= v/k51j7vnsoqF5MuKwKKT3adr+I55wySNIZeOp5STIF61ZAKAAf3Cp4/PVTxzIDIZZcfVNeuz07= w64ffJVEV9uUx6NpGtdccw1f+cpXOHjwINdccw3JZHKG3u38Rwn8WZAT4uuvv55EIkFVVRXbtm2= jvb2dLVu2sG7dOrZt20Ymk8F1XQYGBnj99de54447sCyLwsLC/DJuVVUV/f399PT0kEwm8zNVKW= U2zCkez3+xbdsmk8kQiUQIBAKcPHmSpUuXkkgkSCQSXH/99ZSUlNDU1EQqlaK+vp5UKkVLSwvvf= ve7ue6661i2bBkvv/wyq1evzvcxH/a3kskkTz31FFdffXXeF+GFF17g+eef59Zbb2XdunWYponr= urz55pt5X4SzRQA+c2qXk8/vx+efHSe2CwWhaRihEMY4kxwhBEYwiDEPJpwXGppuUFq/Glm3CpA= 4mRSd+17jwC//Hde2gOwk7EQLPPtSVrprqrL3sFAwO7nNYSfjHP7vH2Mns4aM5zike7unFSgvpe= Tw4cM8+eSTvPLKK/PiHnUuUQJ/FiSTSb7zne9QUFCA4zh8+9vf5sSJE9x///0sWrSIhx9+mLa2N= nw+H93d3Tz88MMcPXqUyy+/HF3XeeWVV5Ayu2e7Y8eObIy0ZXHffffR09MDQDqd5je/+Q2Dg4P5= ft988000TaOrq4tvfetbVFRU8L3vfQ/Hcejp6eGyyy6jra2Nffv20dTUhK7rfOc73+Hw4cPouk5= 1dTX/+Z//SVdXF93d3aTTaR555BFaW1vn6qOcUYZbelJKduzYwT//8z+zZMkS1q1bN267M6Xh4E= G+9cADZyXYxxsaSM2gVeJ5Hnt37SIUiYzn7jclHMehd+g7OFN0tLez88UXz9i5UUpJV0eHKiwyi= 3i2xZEnfkrs6D48NyvInftfp7/5GKaevV6khN37JI2tEk1AYcH45zMz2Meuhx8g0dGSf8ydpvOm= lJI33niDu+++m0QioVIUTxMl8GeBZVls3759zOOHDh3i8OHDYwRkz549ADz77LOncm8PkUqlePr= pp8ccy7Ztjhw5MuKxtrZTS1x79uwZc6wnn3wSyF4c+/fvH/Ha3bt3s2fPnnz73t5egDHtLnQsyy= KTySCEwLKs/N+ZTAYg/3sqBHzZPXbLgdyKvhDZMKFDB97kyOFD6LoAyZgUnZoAv5+hcUgcd2xBD= 9d1cRwLXcs+PpU6KrmtH8/z0HU9m4Vu6MfzPHa/9lpeSHO/pZRompaP8Mg9Nu7xNQ1nhsPSWpub= aW9rGzHpyI1n1JsbNw89ZCcvyoqbPRwrw7Ftv6Zxx2+Rnof03FNhbkO7hrYN23dml+lDQdC08RP= X+KNFvO3P/g47FQey10fbnh0ceuyRcWPgC6oWEqlaSPehPdipRP6pYDDI5Zdfzq5du+ju7p6V9z= 1fUQI/S5zOOpzJ/cTRxzqXfZ+vPPTQQzzzzDNompbfqviHf/gHvv/97wNw5MiRKQmFrsH73p0Nq= SsskPzwFx7xJNQtFAT9gmiBR1Nrmg1rBM+/4pFOw8JqgZTQ3CYJBODDW3UaTkrePCQxTchY2UlD= d6+kvESAyObyfn1vdoJgGjAYB8OAaASONUlGz0cWLlxIJBLhyJEjbNy4kY6ODrq6uvITmlAohOM= 42LZNRUVF/nNYuXIl/f39JBIJwuEwLS0teefQ3JaGbdssXbqU5uZm+vr68itUUkoMw0DTNFzXZX= BY8p6p4HneGDGvr6+npaWFTCZDQUFBPgS0qKiI9vZ2EonEBEdTzCwy+yM9PMfCtSaeAA/E4dU3s= gVlPA8GBkcWl5FDxzICIZZcczNSnjrnnmNx5PGf4A3NlLPpkSWaYVL7lmuz24W9XfSdzBo1Qgg2= b97Mgw8+yN69e9m6desFH+lzLlECr5iXtLS05Lcccpbt4cOHOXr0KMBQKNsUxElAcaHANCAcEqx= eJjjUAFuuERw6BsEA1FQIiosEPjMryBtWC8pLBf+9zSORkpSVQHsnFBXCmmWCeFJQGJVIT9DaIX= GlYHGt4ESTZOVSwYGjkmuv1OgfhN4BD8cVHDk+dqw1NTUMDAzgui7RaBTLsli6dClHjx6lrq4Ox= 3Hy20O59+o4DosXL6a1tZWysjI6OzupqakhGo0Sj8eJRLJpagOBAOXl5ei6nj9WzmEzGo3S399P= PB4/68liIBBA07R8lENZWRkdHR2Ew2Fqa2tpaGhQFvtsIyV9J4/QsvNZnEyadN/4WzOeBy/vkvh= 80NiSPe+uC799XtLVA3v2QyaZovPN13DSKcZLV9fX1JBdGZAe/U0NtLz6HE4qQTLWQaq3CzMUwY= oPjHhNe3s7b775Js8///xFYZzMJErgFfOSnKiPfuxMxKJ/UNLUJlm7XKOiTJBKyyHRlxh6dvm+f= +ieVFkmWLpIMJjMehYnknDgiOTJ7R4LqgWtnZLNbxMcb4SiYjh6AhwXkqmsxR7wQyoNBRE40Sxp= 68yW4RxdbdZxHOLxOCtWrKC9vZ1AIICu6wQCAXy+bB7wvr4+li5dSnt7e35J3rZt9u3bx2WXXUY= ymaSwsJCCggI8zyMej6PrOoWFhflkS8FgEM/z6O/vx+/309/fjxCC6upqWlpaztqaklLmJyfV1d= V4Q1n30un0LCcjUuSQUnLovx+l4Xe/RHpZx7rxcBy49wsuEkgNNbEduP8BF9/QylTG7uXlb/4t2= ohojFNV3V0rk3XWk5LDj/+EY0//ConESSWzZYM1Ddc9FdkipWT37t38/u//PslkUu3BTxMl8ArF= JEgPjjVKykvhhZ0enoSyEnh6h0d7V7ZNWXHWck8kwbLh4DFJMinpHYB0Gl7dKxmIQ1sn9A1IfIa= HBF7ZnU0Y0j8o2b1f0tuXtZAW1cDzr3h0dkMqk70xjjZcBgYGOHr0KH6/n9RQXL2Ukl27duG6Lo= ZhkEqlePHFF6moqKCvrw8pJbFYjHg8zr59+7JJd4qLicVipNNpkskkmUyGgYGBfLa/3OQgk8nQ0= 9NDOp3Oh3rORARCV1cXpaWlDA4O0tTUhKZp9Pb2Ul5eTnd3t7LezxFuJo07hQIvg6N2TKTMfu9P= PezhOvEz73Oc051zHlZMHyHVmseUOHjwIKtXr57rYSjmACHGOsbl/j+8ZHnuSsqVdh/vyhJD/0x= cT2uYtT5UlONMrtDhTnSjnTAnajfZ64e3OZ2D3pmONcfpxqxQjOb+++/nb/7mb9SKzyiUBT9Fwu= Ewx44dm+thKBQKhWIclLiPRVnwCoVCoVDMQ1RiX4VCoVAo5iFK4BUKhUKhmIecdg9ereDPX9Sel= UKhUMxfJrXgR3vNKi58hle3U5M3hUKhmL+M62Q3uljHeL8VFx7DxT3393j/VygUCsWFz6RL9Lnc= 0cMLWSguXIYXH8llCRtellaJvEKhUMwfxgh8Tshd1x3xk6tSpUT+wmW4qOu6jjGUTnK0Za9QKBS= KC5+8wA9fgs+VZMyV2bQsC8dxxlSDUmJ//jPaas8Ju8/nw+fzYZrmCKFXKBQKxfxgXAs+J+6pVI= pkPE46nSaTOSXyciiPptL385+sdQ4gMAwd0zDxB/wEgyFkJJy33g3DUMv0CoVCMY8wYHzr3bZtU= qkU2jv/hhAQmstRKmYc9x2XkP7inRiGga7rI/J/K5FXKBSKC5+8BZ+7uedE3rZt0uk0QaDgozcQ= vuXKORymYibp+NCXcDwXL5PJlxdV2y0KhUIxvxizBw+M2IMPAsaiCvxXrFK1eC9whBCYpgmayG6= 1DNtyGU/gc1syigsTwzDyURJTQV3fFzY+n2/KbaWUM1LuVzF36LqOruuTthmxBz88HM51XRzHGd= G44fhxAoWFjC10qZZ0LwS8RIL6+noApHcqUiIn4qOX55ubK6AnCwAAIABJREFUm5GBwNBfw8+5O= t/nO65tUxqJUFxcPOXXHD5yhHBpKer6vvBIDwywesWKKbe3LIsTLS34QqHsqq07rBB7brI/fKtu= tAEw3nO5OsdinBrH020/2Wtmc0yjn5tqHzM1psmOlwtv1jSk5xEUgurq6rGvH8a4cfATxb3rPh/= hQoGZfp38RS/BNpcigvWTdnSumWwveXQinwstTCzn5Jj9g5FfiCHGez8DicSpYzC1sMdIaTEitR= fd7codGdvxoPCdCG1uqg1PmmFRyqGPZMifINvwXA7vvMBKJmH4TXsKaLpOuMiHkXoNQW5yL7BFO= SJ8CYjZKV1xuoyZw32E5vJancp1NxtM5f06mcy0j+sPhwmXlpJKJLAHBzFOYw0q5h5bCKKlpUjP= w+vpOW37Se/Q4938desE0fj/pru7F8+DUFhDRu6BwF8iZukGcCZsf+YZKiorWbRkCY0nTxIKhTB= Mk/jAABI42dDApiuv5MF//Vfe8773sWrt2rke8pRIJgbpa3+M9vZOgkEoKS7CNN+OpgXyM0IPKK= 6qQky2PCunmNxGWgSTP0EM/oLWDo/SEoFPQCKwHV+wbEbf21SwLItHHnqID3/84zQ3NqJpGp7nE= QgEGOjvp621lSuvuoq+3l52vvgit95xh7I/p4HmtFGQ+EcG+46TTEE0KnD81+EFv4KmB05/gDPg= xLFjdHd1sWHjRk4cO0YwFCIUDBLr6kJoGiePHeMtV13F//fAA1x7/fW87eqrZ2UckyGlpLnhd/T= 3HMRxPKqrI5jm76FpBbMq9JZtU75w4axNaqSU6FJSXlaGaRgjtuRy0TUXkvEzn5FS0tHTg+e6Uz= 4nEwr8xJnrHLpj7dz3hTb6BmD9ap27/yxOeMyy3tzS2dGBY9skEwn+/Tvf4e3veAcNR44ghMC2L= BYsXEjNwoU0nzxJf1/fBeM93tvTTqrn1/z6p89w112wpHoNpnkLPl95vk1zW1vees2k0+iGkY91= P8VUUw9LMpkBHnq4kZ/9t82aZYL7Pu0nsmBuzrfnujQcPkxzYyM/+t73KCwqQjcMli5bxm8fe4z= S0lI2XXEFO557jt2vvspNW7diTmNv8uJGgnQZHOzk8/94nONNsLxO4zN/1TerUTSJeJzmkyeprK= ri21/7Gm9561vpaGujt7cXn89HeWUlazds4OC+fazdsGGOrlVJ+8nH+c1//Yz3vMeiPLqYoqLN+= HwLZ7XXltbWCZ/L+chMZ+99PASAlKRSKQzXxY7F0KNRRCiUz52hmHtyq1fTufOe0RprcRQ+/gGN= VBrqFmgEzsP754aNGzm8fz+VNTXc9oEPsHLNGhYtWYJhmqQSCUrLy6mrr+fm225jwaJFF4S4Awh= 0CgsD3HhjkIpyj8HBAsrLfePmlfc8j28+8AB/cNddVNfWjjiOZOqJinym4PYbBcWFgnUrNYoLBX= PlnmOaJu+4/nqaTpzg9669lpLSUqJFRUQKCjBMk8KiIvyBAFtuuYW169ejj5nYKCZFQDgs+PgHN= FraYVmdRnB2DPc81bW1tDU309LUxK23387KNWs4tH8/peXlxLq7qaispLCoiD/46EdZtmLFHF2r= glAoxLve5WfxYg3HiSBEYNbHoo06/vDJzfZnniEYCHDFVVeddT9SSoTnYe/cCYcO4ZaWol13HdL= vzz/vybHeGZCdIGiayK+USSlxhzXUOLXIMfrzGt5WEyO9PcZr6w1ryxTajm53tm09mc3/MtW2yP= EXeMb73kx0Pz6b79i0736eiJIUG7n08j6yO7k6GV8d4jxbCF22YgX1y5cDsGbtWhAiL3LDL5Ibb= 731ghF3AF0PsGLlg6xc5WFlLKSUpNNvomlxdP0t+P2nnKqEELx98+bJl+pP3yOWWEph1Vu57TYH= 0LAc36wt1552NIbBO7ZsOXUz4dQFcN2WLfn/+3y+C2bb5fxBIEWYlFzPsjVRlq3JPpY2VyPE7Fl= xpWVlXH/zzadGMcG1uuWWW+b0Wq2q/hjX/N79ZL91GpqWTQ7V0RAj1jCA57oU1hZQvaoM02/gOi= 4dDTF6Tw7iuZJoZZDqNeX4AtmwVMuycCyHlt3dBAt91KytmNBa9jyP3z3+OLZtU1xSwhVXXcXyl= SvpicVmbu1UStzGRgzXRQ4M4MZiUFICgO24/PSNRjrTY6NqIprLu1dUUFOavfekLYv/eKOFfssD= CYsCLu9aUYOua7ium90uHZp4J1JpfvhGKynH49KIyxXLF+J5HpqWbRuJRPKRIH2DCX60r4NSmeS= W9XUIst+VnC9RNBrNj6kp1s+vDrZzY10xVYXhEUbP6LYHWrvZ2RTjvWtrR0xSNE1DSklBQUG+7a= vH2+noT3DtssoxbQEikQgArufx3OEWAkKyprooP9bcODRNIxQK5ceUSqXGPSWpVIpoNHrGKzXTN= 2/8S8iUfQUpT51ozSydNQecs2Gim8GFXkVNCAPbsnBdDb9fI51+FNP8OanUO4EvD2snKCouxj80= Cz8jNBO78MPI8K35h6TQMczwWbyDs2PE+ZvgccUZYlaRKb0f6Z1aoxFGFG2WHSovhGtVoCE034g= b+8EdR3npgcOkeyw8JIGIyfq7l7DplrU0vNTEjq/tIxXLTsR9YZP1H6lj4+2rSGVSWVGQ8Or3D5= Hqtqi7rZRr77wC3Rwr8ulUitbmZq74vd/jwa9/ncvf+laCwSCRSGTmPhddx1y7Fnf3bqiqwqyqy= j/leh57+zxOZsb2FbTSbCyP5wXecVx290u6LAESOnvj3LhGJ+D3k0gkcBwnL/CWbfN6Pww6Gm5P= O1evW4bruhiGweDgYF7sITtxeLUPArEu7njLKpASXdexbZtkMjliTANpixe6HN5abbOw3JdfCfE= 8j8HBwRFtO5M2L3ek+cBlfpAe+tDkwjAM+vr6Rgh8U9zmQHeCd63xwdDk0/M8dF2nr68vL/BSwt= F+i4hw2LAw66ukaVr+vQwODuYFPhfJlPt7OL29vfT39zMwMMCaNWumeibzTPuqFZljRPofoL0zQ= zIFxUUCo/RGZNkfnFdOdvOdVCpFYWEhYGMYNqbZhZT/hW3fipRXI6Wk6cQJ0uk0sa4uIsO+pNNC= 2gQGf0am72Wa2z0KC6CoUJCp/CpmoGRG39PFQzZE8VQIzOQ36FxozLlA2G2E+79GrLubvkEoKRT= 4iy/DK/9jNP0sJorzkERvkpf/9SDxpuxkSOiQjNu89JVDRCvDvP7IYQYbM/nTm0rY7PnxUWouLS= VaEyYcDpNOppEZSHZYHH6kgxVXdLJg3djQp2AoxIc/8QlefO45Lr38cqxMhvb2dlzbpqe7m5lYX= 7FsG7FsGU5VFXoohBQC//DJg8j/M4YxgZVi2BqbEPmY7VzBq7FtT7WTQ8I97sRFCCRD7YaE1Z3A= 6UwyVH9jmLAOr6A5oq3IRpEIj7zlPt5Yc5+Bruv563ey8Qpxqu/c+x/5+WSZyNdB07R8vZDp5LT= IMX2B9/qw+x/n6ae6OdkCpqFx958uxIdHdrdFMdsMj1vPJqyoR4hrkFIQjw8MLWtCeWVlPnbyjB= 1lpAuZN3jm6Z/R3OrS0gF/+Yd+ZNmXZvAdXVzEB1oZ7HqSvr40lVU6uraCQGA9iOxG14ibpZS4Q= uAvKDgHzk4S4Q3iJbbxxOMHae2AwUG49z4LIT8JKIEfTqy1j1SHk73pC4krs9amcARHnmuic38f= mjCRQiKRCE0j1e7QerST0sUrssW7XI/iFWF8BQboEO9N5kOkR7PtiSc4cfw4t73//QSCQSqrquh= sbycSjZLq7j6r9+J5Hi0trac6jifQBNTX159zJ7vprkicvv00jncGYZhT6f9sFllqa2upra09Nw= IvgZ5+ie1IPvkhjR/+QmIoJ8tzSm65KXvCfQSDn0LX70ZKienLkHEkIPD5/Tz31FOsuuQSahYsO= LPOJKTS8OZByQffA7v2Cfx+SXrG3s1FhpTYySa+961/pKS4nS1bNJYu/QuKi6/h5Mls2N/ixYuH= NZf0xOPYrjvmRus4Dv/1fx9l63s/iKbNzEUoJQwMSjq6JHfdrvHgo2AYkulF1F8c6IZGPjRegtB= E1hSUYJh6dqImc95JAuEJPOFhmKcsWX/Qzzs+swmkQEoPy7PGFYOTx4/zv++9l9qFC3l9506+8b= 3v0XTiBHt372bF6tVn/V5s2yZlWbyeieAIHVNAnZ5goWURGJ7sajxHMDlqq2zoseFT1dG5R8Y9C= NnDTxTBJYb95J6dzFE4528uhwqjTbgNNGzM0vOQk6hxvv/sQPP5NiZqi8j2zyTvazjjRYiMu5Iw= RaZvwUswdIFtazz2O7j5HRrKcj/HDFnl7tBNX9PCaFp2LyoYcEim+wDY98YbJFIpBgcGzqKv7I1= rQbXGsy9LFlYLdF2d8zNGACLIli1rqaqsoK5OA+poaWnh61//OrfccgtLliwZcUGP9qTOcfjEi3= RGf8SRE8tYUXfFDGyRiawFowkiIY0nnoXbbxSAzrSsoIuEsgUllK0P0/FiHBB5R+NArc66m5dh9= bo0/jaGzD0joHRNhIVrakilUpimidAE/ogPTdOIx+MEjPFXSaqqq/mP//qv7LK0YZBKpTje0EBP= d/eYjKNnjNB4MeZi6wY+IYkUnBIjU9fYUACFcuzUPhCAovApp1ufabIh4tCRsAFJpc/EymSQnof= jOCOcxYJ+PxtCFv0ZhyWBCKl0Cm/ovuZ53ojrIBwMcGkwjVYeJp1KjdgDHy2cJSE/Gwtc/MIjk0= 7njzOewFaGfawrEGTSKUCiDR3Ttu0xVvPCiEkmopPJZPKTHW/ofQ0PRdaEYGnUBMfGGkpCNHx7Y= HhbIQSu6xKPx/PHyW07nG2NkGkLvONbglb1P3jPh9MgQNcEbngz+ix62SrGEgyFSKVS+S9BTvCH= O2osX7WKwqIi5Nnkkxc+3IJbuPH9tbieRNdgUAvg8089BapiOAJdr+Haa76LYeQu9jDBIGzZsmX= Ky3CD8V4Otf+GQNThaOcTLKhaTThUeNaj8/QqZOknuf2uGFKCrkMmtB6f2n8fQyDs59r/sZGXwm= /SvqcX13EpXV7IWz6+itoVlRh36khnP21vxPAcSenSKBs/soLSmiIs2yKRSIwQHinlhA6xgWCQu= vpT2UI9z+Oa667j2JEj4+S4ODOEEBT7NGxdYAqJf1gsmGEY3HFpHfY49xINgW+YY6DPZ/LhTUtx= htrqQmBo2aVvv98/4jseDPj5xBX1uFJiCIGhn3rO7/ePWLUqCIf41NuWZx0WT7NsXFUc5U+vXo2= haWijYtqCweCIv1dUlbKkrBBD10Y4UAohxji+bVxUySW1ZdlxypEVOIe31TTBNStqs06CQ+d4Io= dRwzAIh8P09PTQ3t5OTU0N3d3d+P1+qqqqzm2YnOavwV9778jdOOW9fE6RUmIYBkY4jOt5+S+lp= mkgRDb+EggEAixasuTsOhMGZunNmCU3D3ss/4/iDBAITLMwW/hnCJ9PEggEppQ5TErJkcYd9PM6= mpC0DG7nZMtmVi+75qw9qoWvDH/1p0cPGHW+x19iLV9cys33vx075SA9iRnQMXzZ22pFfSm3/J+= 3k0naICVmwEA39KzV7vdjmuaINL054RtR+GsCC07TNErLyigtm5lskkIIcG3+atOi/IrDYGykBe= 0zDaYaqOU3jSl7bAR85ukbTbOtJgRB/9RGq2liysfVdW1oBfP0GLqenSFPaQxZAy2ZTOJ5Hul0G= sdxztr/4QymfkJd63NISXk5TT09Wa/NcZ6XgGOaBGbU61qd89nEsiwaGhryMb/9/f1DERLjk0ol= OdTxK7Rwdmc8EJXsafoJi2s2EA4XctYnS03YxyCEwCgspKW3d/KGyaGf8UhM8PgkWMbUhfJMkWT= zRhQVFtLddCL/eDAYHLb/rphNhBCUl5cTjUbxBwL5e8Hw1Zmp7OGPRqX5usCwLYtkX9+kMztbSi= KFhepGfYGg6zrl5eXEYjHC4fCkN1Xbtnlyx3fIBI+hDXNiyviO8NLuX7D5rXep1KKzgJSSRF8f9= kThW7NExrIoKC6etT6FELhAR08PgYICAkNx3ENP0h6LzUq/ikmYyGdKStJSEi0oGN/ZcRyUwF9g= DPb3s2rpUvRJLPRcLnqkJBGP4/P7zzpftWL20HWdrq4uvvSlL/GZz3xm0nPV3L6PwdDzaMbIC1z= zebRkfk1j81tYskhl8JsN/JrGyqVLz2mfra2tE07UXcfBk3LEVs+ZEAiHcfz+s/PVUZwToqaZLb= A1xUqRSuAvQE5XMjP33EB/P4/+4AfccPPN1C1bdq6GpzgDamtr+fSnPz2pk13GSnO49Xd42vhrv= dKMc6x7G7XV51fp5vlC1hXh3CblHn6dD1+eFUJwcP9+AFavW3fWfZztJEFxfqJineYxAwMDLFux= goP79uHOVCiNYlYoKCigpKSEcDg84eTtRONejvc8heM4uJbEsSTu0I9jSVzH5Wj7U7R1HD/r8Br= F+YWUkv/+5S/5yhe+wKH9+/E8j2hh4YjyrgrFaJQFP4/RhCCVSlFcXHzOUp0qTo8UAstxRmSsk1= KyfsMGILvvOjx8ynFdMAxKCmu4Yd0XGZHrLpf2bOi3lBAKqBDG+YZj23S0t3PVtdeyfds2lq1cS= TAUwrKsuR7aCKSXjTs/m4mHbhj4lXPfjKAEfp4ipaS/tzebNMIwsO25KvCqGE0gEiaWTJ7KwT16= 0XcoMUYeXcdnGJSX11LOyLK/E2ElJ3LlVlyImD4fd95zDz/54Q+xHYf44CD733gDK5PB7/cTOU8= cK5OJBCKVwj/FJf9swruhCevQpLavtxffggWndyyU2ZoOrm0jNA3D55v0NVJKXNvGcxw0w0A3zc= nbex6ObSNdF93ny+aqn6S953k4mQwIgeHznVFq2ZlGCfw8RQjBqnXrKC4ry9ZI9/vJnP5lillHk= k71cvLQz3EcG8MQCBbjMxcPPTuWgpISqhYuPLfDVJxX2JZFV2cnN23dyr2f/jSf+KM/YsOmTdnS= p4WFDLS1zfUQgexKQ3lBAYVTKG4lpSSVSrFjxw4KCwvZtGkTmqZNWDp1OJ7j0HX4MF2/+AWBkyd= xgkHkVVex5MYbCRYUwChxtdNpmnbuJPnYYwR6esgUFRG+6SYWvu1t6H7/CEdGKSV2KsWJxx7D27= 4dI50mvXgx5XfcQXl9PZquj2zvefS3tdH085/jP3AAIQTp1atZdPvtRKuqEHM4+Zp/Au8lkDIxt= GKpIfQSTrkaTK1613yhs72dX//sZyxbuZJ33HDDXA9HMYRrNbLnlYewrHbe+16d0tI/prDwNg4d= PkI0GmVB7UgrPTYwgOW62RvLMKx0mqO/+x0r3vUujAsxSkJmkN6p4khoRQgx7H2Ms7hxseJJyfe= //W0W19Vx+VvfipSS5sZGfvf44/zJX/7lXA9vJMPEz3EcmpubaW9vp6ioiKVLl46IEvnxj3/Mjh= 07aGpq4nOf+xxXX3315MeWkoG2NpI//SmB7dtZlUjkvyL20aMMPPccA3fcQfm11+avl/79+0k/+= igVr79OMLd10NxM8tAhOp96iuAHP0jhmjUITcO1bXq3b6f3kUcobmqiZGii4DU1kdi5k85rr6Xg= /e8nPHSN2pZFIhYj8atfseK3v8UYOr59/DjNL75I4tZbKbvtNnyBwJyELc8zgXfp6/wte197lP5= +l3deFyJY8a9AmFSij57YMZBQUraUYLhoXpe3lUBrUxNl5eWk0+kph1VciLiuS6y7m0gkQig8d3= Xqp4QE6fqpXVBAeVkSn09DykqOHTvGvz/0EDfccAMLamunVAe9d9cuCh78Lt1lZVReccWc10ufH= hIvc4BXnvsyJ06k2bJFx1/8GYIFV5JJZWg/0UY6kaZ8YTnF5SVoE2QPk1KSTCQY6OtDCEFRcTH+= YPAC+yxOj9/v5w//9E+JdXWxcPFiDNOkrLwc27JInafbMbZt85Of/IRvfOMbtLe3Ew6H+dSnPsU= 999xDcOgcbdmyhcsvv5z7779/Sp78mYEBEv/+75Ts2IE56p7mk5LSEycYePBBuqNRyjduJDUwQO= LBByk/cgR9lF9A2LYJ7tpFLB5n4C/+gsK6Ovpeew3toYdY1NlJv+MgTRNNCHQgmskQePppeqQk9= Od/DppGoqeH2rIyUu9+N10vvEBxTw8SSNo25d3dGD/+Me2OQ83v//6cTMLnl8JJSXdnM1/6wm+4= YtMTmNrTpBPNNB78fwnZ9ayqeScrqq+nQNbRcvR+MqkWxl8UvfARwOL6elpbW4kWFo6x/uYLruv= yHw89xJ3vfS9/fs89JOLxuR7S5AiBaS7gtvc8xebNB1i8eB9lZXezfPlyrr/++inv22Xicawnnq= DGtpBPP42dOIM0aXOMY/fzhb99ggU1T1BW/ATJvlZe+c9X+OFtP+alT+5lz2eO8vj7nuOXn/2/d= DZ0jqlIlkmlaD58mALX5ZLFi1m3aBFmKkVvezv2aD+GeXCdV1RWsnrdOiJDy99v7NpFKBwmeJ5O= ag8cOMDnP/95+vr6+NjHPkYymeQLX/gCO3fuBLLnMBQK8e1vf5u1a9eyadOm007MMkeOULB79xh= xzyGkJNrfT+Y//gMnneb4979P+eHDY8Q9hwYUNzRgbduG57q4Tz1FYXc35lDK79ToSYTjEH76aZ= r37aO/p4ficJhQMEhJXR2+D30I2zRxpSRm20QMg6BlUbRtG+mmpul/gDPA/LLghU5t3bV8/d/+E= bNQ0pNogr7/ydplzxIIZEildKQUFBc5hMNfpSP2OrHBL1NasZILZS1Q0zQsy5o8Va3rYgIlpaX8= 8Wc+c9q4+QuZTDrNi88/z8bLL2fR0qUXTHiYEBpiWIEmKSUF06j5Htu+negbb4CUBF59le6dO6m= +9toLKFpCoPmX8y/f/XsiEZvWriSvfTdDx4sNiKQJRrbMpo5B5kXJc40vs+bT9ay6ZhWappFJpT= AyGdavXDkinWdVZSXFmQzd/f0kLYtgJMJAooXe+DGKC+qJhms400h2d6jC2Lm8kmzXHfcmbRgG1= 914I9fdeOOE1QbnGr/fzyc/+UkuueQSbrjhBizL4qtf/SpdXV35tKvf/e53eeyxx7j11lvZu3cv= GzdunPiAUpLYt4/S00ziBVDU2Ejjyy9Tu3cv2mnuCbrnIQ4fxrMs2L8fMdS+2DTpzGTw6zrGsM8= 44rqcfPhhIp/5DJGiomyfQlDzjndw4rnnSL/6KguGFbQx+/rINDVB/bnPTzG/BB5BsGA99WsuIZ= NJYvT+EdW1z5DJZEsa5lsNOS9Xlz9Lc/tfkkn9AH9wZoo2zDYlZWUc6+jAmcgrXgj8oRChoRrC8= 1XYc7iuS6yri0suvZSXX3iBt2/ezCWXXjrXw5oWiUSC5557ju7ubgzDYMGCBdTU1EzY3nUcup56= Cp9h0BcOI4HYb39L8eWXZx2MLhAMXw1LV9+D50le+cFO+p9vI+AJ+r0eXBnMV6gUnsBpkuz75lE= q6ioori0i3tnJigkyOvr9fipLSmjs7MTyaezY9y22v/gU69+ykndf9s9EQqXTHqsQAiMa5cDJk2= f9vqeD4fMRnOC588FLezKWL1/OvffeSzwe5+GHH+bf/u3fuOyyy7j00kvzVdg2b97MunXr0HWdi= oqKSY8npSTd2IgxhUm8YVkk9+8nmEhg2faI1K62lJij7ouDnZ0UOA6ipyfvoGdqGlHTpDmVIjK8= Yp8Q6CdPokmJf9iye6CggIIPfICBgQFSrkvOVdCSEn2OtkjnmcDnEAz2vEB19GmCQQvPizIwIPH= 5sqUDHcfENEHTUlSW7aYzsQd/8Lq5HvSUcBwL6R6kNxYjEJBEImF0fR1CnNq/0ofS1F4MuegNw6= B+5Urqli9n92uvEZ8oj/N5TDgcZsuWLXR3d5NOp6murp6wres4vLFzJxs++1nKy8oQQ2krg83Nd= Hd2UhMKXWC56AV9nb20betCeNkba1APk3aThIzICGvb7ZA0vdKCc2WKdfX1k05eDcOgOBymfbCb= l7e/yvZfN4Cnc+2KvjMSeKQE151y+JciOwHRNI3e3l5+/vOfY1kWy5Ytw+/343kehw4doqWlJd9= +165dk6fUFgIRCEzN91LT0MJhQj4fvlHXQ0s6Te2oOHsnEMhOmEwTholxxDDosSwMIQgMO0633w= +ahud5I663qo0bKfnyl2HYlkDGsuifo5XFeSnwUkoC5j7Cod5s4o/QAMmkQX9/MX6/hd+fRAgLK= TV0LYmQx4B3/v/tvXmcXFWZ8P899966tVd3dfXeSXdnJQlbwiaJCaCiLBEUBhR9kXl1XMZ3dERn= cUYcxxnGAfXnMsy8vxl1FNEBZXHYJgIjIIghCbJNkEC2Dkl3eq/uqupabtVdzvvHrap09RI6gaS= 7Q335FOmqe+vWufcszznPeRbmg5o+PnSQ3OBPuP/Op7j2WuhsXoHuuR1drwcEEujp7XUtk3F9M0= +Ulbxj53CsOCARwoPiieH1+bjqQx/id1u3cun73sdph1PxzWGklNx0002sWLGCT37yk9Oel04mW= bNqFV6Ph6xhEAqFyGYyxOrr0bNZEvE4sddZCc01Rl9LkOvPo+AKT6/qw7JMCtLApx7KsS1tyeie= BO3nzkxAezSVoDfKJZd8iFhzHevO+CD10aNzN5SAk81y0rJlx3WUONjbO+0x27ZByjltXyOlpLm= 5mW9961s8+eSTfOUrX2Hp0qV86UtforGxESEEu3btwnEcVq5cSSgUIjPJfsJFCEFwxQrMp55Cf5= 3InNlwmNjataSffZaWkZGy2h1AF6Ii26YUAn3BAlRdhwULYJyWRgDNPh9pyyp/xwbstWuxpCRnG= ITG2UComoY/Eql8BrkcimHM9JG9qZywAj5vSHp7IxhGFr/fj23bDA8vR1GupqbGh9frRUpXABbU= lQRqZ7vUM0VB07KcdNIotbWSsVSW+nqV0uR2mhcHAAAgAElEQVREcMjq2nEc/u+3vsWV11xD27z= 3o3YopLew+Vc3MTKS4dKNMbyxvyMxtpCGpiYuvfxywA20EThMuNe5iJSSH/7wh+zbt4+GhgZM05= xyJWNZFrZhUNvWhiIEqZTrYuY4DuFwGL/fT25gwB345xF2zsbOOxUWv6GaIE0X+YkurCkLVCkkT= ljMeM/Z9ZIRnLX4ak6LvQtvrAlFO/oV+Gy0qel+MW8YPPrwwzz/zDP8xd/8zXEt00yQUjIyMsLe= vXtpbW1l5cqVRKNRvvnNb/Liiy8ipaSuro6XX36ZP/uzP0PXde69914CgQAcJoOdf+VK8g0N6If= x+3eEIHPO21i4dCm7P/hBjK9/Hf9hVtA5jwd79WoUTcM580ys7u6yuxuAriiYjoMtJaoQDNbWsu= KjHwVVJZ5IEAwEpm0bUkrSuZyrGZgFTkgBrwiBpodojGbw+Qo4jkMqtY5o9HuoajOBgL+4fyUom= AUGxsaYD6t3AFX1c/Lqn7F6tY1tD2FZXYyNPU0g0IiirEDXD+3BCiE4d8OGCiOk+Ysgnc7z7HP7= +PjHx/AFsli2ye9feIGhvV2lmQ31Cxaw/j3vmXfJM1asWMHIyAiapk1rKDjY14eTSpEIBEAIMuk= 0I6OjCCHc8LZAcniYvJQzCjQyV/DW6XgiHhh230shaV1byyWffTv+wCFVqm3b9AwPk53hashxHK= RtcfBn/8LQ5ofwLz+dZdf/I57g/Hk2JaTjsPXppzGyWWINDZx86qmsOfNMhgcH0eZoW3/qqaf49= Kc/zbp16/jTP/1TtmzZwtDQEMuXLy/vwf/iF7/glFNOYeXKlTPKPe9rb2f4yiuxf/pTalKpSaN2= QdMYWb2a2Ac/gFAUlq5bR/8VV+Bs2kRwQruRgKFppC65hNiGDSAEwUsuYbi7m/rnnisLeQFEdZ3= uXI5Iayv6H/4hms/nBrTxeOgbGqKxrm7SOGvbNoPxOJlSitdZ4EQY+ScjBLZYz1i2A13vIpV6L3= 7/N1DVhcWgGgqGkcfn82FaNihzV8U1FULRKeR7MM2/xuP5LbadQVFqyOcvRsobK84NzLs92ekQ1= DacxSc//0O8PhNbC+DxruSCC3xwzjmgKIhCAZHN4szx+y2J7/GCfMOGDZxzzjkUCgV0Xa90CSv+= 6/X5kJpGvKjClIqCYZr4fD4Kxc+8tbWomjavnMIalzQSXupjbNiNq67XC9Z+7FQCwUrzMsu2kaq= KNxhkOB6nof7whrHpXA7HyDKw5Vcc7NpLZDRO02AfsUXzT8Bns1le2LaNdeefz09/8ANu+NrX+N= lttzE4MFCu+7mEEIL169fz/ve/n7vvvpvf/e53jI6Osm7dOj784Q+jKAq2bTM6OorX66Wrq4vNm= zdzzTXXHPa6mq7TeNFFxGtrGfrlL9F37ULP5XAUBSMaxVm/ntrLLiPQ0ACAoqrErr6aRCxG5le/= wtfbi1EokPJ6MRYsgHe8g9iFF+ItCuBQayt86lPEN21C3boV39AQiuNQCAZxTj0V67LLqB8XcyJ= UW0smleLg0BBBXcdfnKRk83my+TxS16mpqTmGT/rwnJgCHqhrWMFI7/9GOJsIh2/G51vszuilRF= EUfD4fOcPgQH8/0cNYLM9VsrkfUlvzC4SwsW2BricR4ucUCheCXIuUkvjQEMFgkIJpYp0A2eQ0v= YFo4/mUQ5xJifpaFzISwWloQJaStMxx9bzq9fLirl0Vlr1lSoljxuELhWhsbSVWHLTKjDeknGBU= OZ9i0fuDfpZesYjntu9A5AVL399Cy5JKOwLLsugbGkKPRvHoOsMHDxIOh/F5vVNeM5vLkbFMwo1= N1J+yBrWQpnDq+dQuWHQ8bulNJxgK8cef/zy/27KFZStWoHu9fODaa7Fte8727fr6ev7pn/6JD3= /4w2zdupW2tjYuvfTSssATQrB06VKGh4dxHIe+vr4ZubkqmkbDunXYZ5/N2NAQif5+NL+faHs7u= t8/KTSsNxKh8X3vw7n0UkZ7evDG45h1dcRaWtAmBkUSglBrK8E/+iPyH/wgie5uLMMg1NLC4oYG= hKZNCkIVqqlxAy7lcgyOjAAQjETwx2Kz7rZ6wgp4UAjF/pjhwfeiemLoulP2vXQch7FMhsFkkmh= r67xTYTuOA3IvQpyC48jiZ7IYx7kXR0rXICUYJDE6il9VT5BVfIlDHcwJh8s+kMJxIJuDKHN6x0= UIwaKOjhm7ORmmOfXAN2FgmrcIWLp2KZnPZhh4ZoDVG1cChzQcmWyWoWQSLRJBLwr02sZG+uJxY= pEIoXF7oLZtk8vnGUgkCMZiKIpK+5/cSGsuixYMo3rmV18vIaVk8xNP8OLzz3PVhz6ErutoHg+m= bRMIBEjP0QBPuq6zfv161q9fD1TaMSiKwnXXXcfPf/5zdF3n2muvnbmdgxCouk5tWxs1ra1udz/= Md0Xx/PrFi4ktWvS6vyMUBV8kQvPJJ8/II0kIgT8QwB8IHPa84838bO0zRPeGqGtdRtYw6OnqYq= inBwnUt7QQa24m3NAwLwWfEAJF+XsgiKKA319qfxJFOeQfPzoyQiqZZH9XF++86KLZKu6xRVUrE= ksIOffzY1uGQaS4Z/d6A40E4qaJaduT2qrjOPzywU1cevl752ywk5miaiprLltDekOKUcvgxd/8= BgXwh8O0LerEF41W7DVruo6vro6kYXBg3z7ifX1Ytk1jWxt1jY2E6uvLz0v1BVB9c2vgPVIOdnf= z15/7HAs6Oti3Zw8333ILZqHAA3ffzWf//M9nu3hlJO4ka6aGngsWLOD6668HQPN4cBwH5whdyo= 7U+PGIjSXncd86oQU8QMFK0TX0NDkjy/IzzifgiVIYG8PKZlHm6crWdXurQ8rKyGeWZeL3W2TzC= QBiDQ107d5NU0vLvLIqPxJEvgCFguu7appIRZnTq3c45OkwkxW8gGmF90tdPfx3oYVFXT2sWjyD= 9JpzHolHBTtvc9Lq1Wg+jd6hF9nRu4m2plNprj2l4mxN09BCIXyhEE0dHbNU5uNDQ1MTd/7yl0g= pUYvjlmma2KY5p3LCB8Nh+gcH6R0ePuprqLo+17vwvOEEF/CSrr4nuf0X36SmzSKV62fdoo+Qic= cZHR0l3NBAU2fnvBwYA4EAmUymbJAlhCCbzRIZ54M50NfHwZ6eE8BFbhqEQEZrEek0ophiUkYi8= 3rGPVPG0hm27B+FSD1be1J0tuYJ+l/fCnkuk89kGDpwANuy8KSSqDGTzbu/w5bHf885a9fxv979= byd0gqjD4fV6K/qxZVlk0mlWnnoq6hzaYvR4PDRMyIZ47Bi/0j/x+/zRMHdaxjFASjDMMQrOGEM= HbQoLHWzbplAouGEPZ5B3eE4iJR6PB4/HQzabxbZtdF0nGo0WD7sNv72zk/bOTmB2fHiPB9LvR/= qnC+Z5YiKB51/p4tl9A+A32Jwc4rSYxlknL5/X9SwBVVFIZTKY6TT1UT/xRC+mWcAy7UNpZWerf= LMQIXI6ZbWmaZy6Zg2nrlnjTu6PW4mOEUeYGlhacSi8gGEU8Ps1HM+pKNr0ESDfqpzQAl4Iwcr2= y7jyshxGxuGcVR/Co/rx5fM4uk5NQ8O8GxCj9fXs7ukhGPCPs7gWkM9DOg1SknUcvMVY9FVOPAz= D4Om+HFq0GT1UQyEQ5PF9CVYtmd+reG8wSKC+HtvjIRyLEYnWsP7kz3BKex+LGi+Y9dW77fXSHY= 8f17VixrKom+bYidC/RSqFiMfB40HqOkIInIneIlNQyO3nzltvQFUOctFFAWrbvoFQL2curOTnU= r2c0AIewO+t4ZzlH0MgUIr+7tGWFmqL7nLzDce2GBl6kISSQxGge2MEAuejKIcMkAzDKKvtq5xY= 2LbNf/76Gfq1FhRpYubSKELQr9bx5LMvc/Hb18zLdg2uVXVNQwORhobyPZy+6Cocx0ZRXt8g8Vh= jZLPox7lfGfMwDfB4pJTk83kO7NvH6MgI7Z2dNLW0lOtXDA8ja2pcTxghYHR0RtcVio/2RQ10dt= hoPg/P7U6SlF0cEvASx7JQVK34UfFz22LVgnr2DiTIO+7iyDHzboRDoYCU2FYBVfPg2Ba6prGyL= caOnmEsB8BBKBrLQ1ATCU+aTkghCNXWugahgqPOXPhmccILeBCoSuVtzufY7PGhbnQ2871//TWX= XQYXXrgSTXsvun7Ib7inrw+KLoF5w8Cj6/PSmLDKZPYeOMjzuTC2T0VTJadn9nLehvUIRWHgtTQ= jQ8PUN82vWPTjEYpSMSQKoaCqc2PCEtI0lnZ0zJlY9KW4HnO1b0spGYnH+doNN/Bf996LaZrUNz= Zyw403cvlVV6EoCjIcdu1miklelFQKZrCH7wms4LxL/xOQZLNZnt8/zM5sZUS/QsZA9XlQ1UPjv= 5XN4fen+dVBk7Tqbu3lRhJ4a32I4gLQGE3gjUQpZApE/BAMZPhld4G80HAcB49XcHLAYWnJPW8c= 8WSSgUQ3vcltqKqPpW3vwu+dvUA3c6PnVJkxQmgEAu1cfPFJXHDBcixrCUJMnYEpnU7z3LZtvPT= CC/MmT3qV6SmYJs/3pkkXTKRjsTyi8pkr38PKMJwe03nbsnZU28Keo4FPqhw5k1aIxYk7QNfu3e= x69VU3LsYcRErJD/75n7n/7ru5+LLL+MrNN+P3+7npK18hU/TbF7mcG78CXKPZcYlbDocQCoqqo= 6hehKIDCg5iwgvkhM8omlFIKH8mi+eVXo5k3OfFlwRHivK/org2Ly0WSy9HFnhx5738+4+/zu2/= uIk93ZuZ3pLi2FMV8PMMRfWxbNlfc/nl9+D13oGuf458vp9CoRcp7Yqm5PP58AcC7H/ttdkqbpU= 3ka6DA2zty+GtqUdkEqxv9uHzqDjFlVKsrg7VssjNc7VulalxHIfnt22jr7iq9/p8mHPIRW4iUk= o8us7lV1/NH3/+83zkYx9j3Xnn0X3gQPkeUNWixJXgOIiCefiLzgNMdQxfnYnqdZDO7IaNfguo6= E8sBAJFjWCZaVKpbxMI/AtC2BhGiNHRT1FX94XyuSPxOCPxONFoFDlHZ/lvRQ6tCmbW9Uvn+b06= Hz5jAQjQbJ3OWh8D6TR508RRVYYyGfTaWjL5PJ455DpV5c3h0Yce4pf33cenPvc5Wlpb8QcCc8o= HfiKqqvL5v/orJK59RWJkhH179hCLxWhbsACkpJAzYO9epBCor+3HOmMN6jy2H1IVL6d1XoPjSM= J6B8va183qPnx1FJinZLMFvN61SPkgsAdFSaDr3ydfOBPJOUgpsUyTuliMmtraI44OVeXYoQeDJ= E0TxbJet+tLwCwGNuloaaR93LHSd/VQqOI7PuZXLPoqM+Pk007Dtiw3e2A+z8jwMJZlkRwdnQO2= 41OjqCpSSoYGBvjbv/xLnnvmGT726U/j9/uxLIsHfvcM6WTKXeVKh2bb4rwLL8Q/T11fBRCx/aw= 3TsMxNTyzvK6qCvh5iHQchNAIhzeSyy1laOhaGhv34PdnGB5+DumchRCC5pYWaooWnfPVsvpExF= ccvGba98eHaJ2rA3mVY0/bwoXs2L4dhMCr67R3dmLbNl6fj/QMU+jOBiPxOF/78pe5/557eN/VV= /OJz34WRVURisLGK68kMTpKcnQUTdNoWbBgRmlj5yqOWSD+2L30/OL7KIrK0i/oNJ93yawF36qO= +vMUx3EwTRspO/B6f0Yu91vS6W3AdZTEQCKR4F+/+122PvXUvFV5ValS5RCqpqEoCoZh8Mv77+d= nt902dVbCOUIqmeT/u/FGNt17L5dcdhk33Hgj0bq6shuvruv8+N/+jT//P/+Hf/3udzFLGSHnKd= Kxiffs59WBUfYmMmRys6tJq67g5yFCUVAUBcdx8Hq9eL1LXJW8ZaHrMJxwY9Ef7O6mpbWVbDZbt= aKvUuUEYPVZZ+Hz+cjn81imSS6bxZiD+eDBXYTc9R//wc9/8hN8fj/1jY389N//HUVR+MNPfpLm= 1lZsy+LpJ5/EMk0WLV6M9yhX7xIJ0qGs4yoZ7kmnYgLkjoPFV+l86YDjFAOHUTb4q/i+dACneK7= EkW5SnIkrZOHR6bj0A4T9Hoi10nLWhlkNnV0V8POUQCCAYRh4PJ7yjDcej1NfX19W47YuWMDtP/= oRF1588byeFVepUsWlLhYDXA8Zr9fL2NgYPp+PdDI5yyWbzFgqxR233gpA3jC454473DSvisKlV= 1zhCnjH4dIrrqChsZG//+u/5r1/8Afl8NozRde9vC2msNiTxnEcbNN04ymEAZHGKCRAgN8bRYQl= i+qCXGhkMCzXVc8JqihaFiGEm0485L6XtRLdI2mvDXBJSwLTLgASITJkbY2XX3sNUZo8FMdXRVW= pPeVMGk5/mxvoppoPvsoRIYQbbMHjcePpG4abF7pQoKEYAazkF1vf0MA/fuc77n5XVcBXqfKGcI= qrwuOpC5vOOFZRVS676iouKwaMmYtomsYN//AP5A2jaETnxvEXQrCw3TUXNQsFkokE0WiUQCBwV= EF7PB6NM1YsQgK50VGSAwOoHg+B+hhj1j6efPYepCfPupO/QFPdSQghWNBcDxzyUBfj/mbcZyVa= GmMV5x6OuTTWVgX8PCNWX8++wcFy4ouKfEpF1bzq8eArdvq5lGmqSpX5ihACTyTCrpL/9viV25F= sf008v/R+uusoClOHsWLOCvYSwVCId1500ZTHSkLQ7/dz1rnnsmP7dr723e/S2Nx8VL8lhOuMZi= STDA0M0NTUxGBfD3H9N7x64LeMDhgsiJ5Lc+ykCgFcETXx9X7jqEo2u8y70V9KiWPbs/Lbc2Elr= Hk8RBvnbyjSKvOL2exvs4YQU64ka4rq8Soz5/XGS1XTuODCC7ngXe9yhfQbnLTowSChSIThRIKm= RZ0UzCXUBNtoPsXP4ta1zE8xffTMKwHvOA7ZZBLvLMVeLkiJHgxWV8VV3hKYhQLZ0VEC89Qn+Wi= xHYcxx6G2bro8blXeTN5MTUSgro4mrxeAYCRC1LmI6MXLEWg0RDtnfYF2vJlXkiqbTuMXgqZZ6n= iJVIqsZVUF/BtASkmhaAE811E1zfXJfYsNCiXSySSLm5vnbDKTY4aUvLBjx1tewEspsW173kXB9= BYnpKUxJhZeBIBt2djMA22UEGjam5M9cd5JKkXMXuA/RVHmtM/pXEdKydjICFGvt0JoTPVEJyXZ= mOLz6WpiqvZxOGOaiZ+Xvu84DgMDA9Q1Nb3lZv7gqlfVCdnd3mxsy8a2bDRdmzN7ylIIlLdgfU8= km0phZzKo1WdxXJFSkgJiLS1veHEx7wR8lfmLlBKfx0NtTc28GUDjY2OzXYR5h3QkY4k0o0MJmt= ub8Pr0SbMuKSX9e4Z5+YF95FMFIgsDnHnNSgKhqbcDpJQM9cUJR4L4g/43tJVaiglx2EnbPGmfx= wwpUaWkraUFTymSYjYL+TwoCvgDoHsOf40qLtMtCm0bMhn3eaoq+P1uRj0p6TpwADdb/RtjXgt4= x3HI5/Numr5i0Jep1ImFQgG7aCikKAq6rr8lV2RzAXEcNTCmaVKYIjKW4zj4/f63nur5DSClxEj= nie9Pkh8zCdZ7qW+Ponkrh5BsKse2O7fz8h3dkBeotYINf3YqKzcsRtXV8rUGuoe57+u/Ivsi6I= oPIWD3E91c9Z13EmkIl69X6uP7Xurmzusfoa15IRv+9DROOq+zYsVv23a5rm3LJtmXoa61Fl9Qr= zjHMAzS6TQej4dgMIi3uF9bZQqEcIUPuEJq3z5obARHQjIJ7YcyI4yOjpIupoAdT2NjI16vl0Kh= wNDQUEW6WwBd16mvr0dVVdLpNIlEouK4EIJgMEhtbS1CCAYHB8lPCOyjaRqxWAxd1zEMg3g8Pim= FbjAYJBqNAjAyMkJ2Qq4GRVFobGzE4/GUyzrxGqqq0tTUNG1ZAWpqagiHw4fGnIFByGZcAV6aKP= l8MDoKdXXupCkQgMEh6Oxwzyu6Er4ZzA2d2FFQKBRIp9PlB6GqKplMZlJ2pbGxsXKDEEJgmibJZ= HLO5lCu8uZRah+qqmIYBpZl4fF4yOfzczoL11xDSoh3J9j095t58PqneegvtvHgF7bw9E+2Y5mH= 9jQzqQwP//+/4eWf9CAzCtISWMOw7Z9fpW/XcPFakrGxMV57sZueFwcZyQ9jOSZSQm6/ZPfjPTi= 2O2iapkkqlcJxHHY9tR87IzF6bJ68aTt7n+su76kUCgUymYw7Fkh4atNWfnH94zx35w4c2+3n+X= ye0dFRPB4PjY2N1NbWYts2yWSSTCbD4OBgeRFQZRocB+rrIVYHmmfcxw5DQ0NYloXjOOVXoVBg/= /79OI7D6Ogo8Xh80jljY2Nlwb9//34Mw6g4blkWw8PD5PN5pJQcOHCAQqFQcU4mk2F0dBSAZDJJ= NpstH7NtG8dxGBkZoVAoYBgGfX195c9L/+bzeV555RWklGQymfI5peOO41QI9Z07d5LP5yvKYds= 2Q0NDlROQdBraO2DBAmhqcl81NaAXJ561te77YPCYVNm8FfCmaRIIBPD5fOi6jtfrJRgMVgzcpQ= oonePxeMoRoCbOAqucmHg8HrZs2cInPvEJ/uqv/oqBgYHqyv0IsU2bF+7aRd+TSayURBYExoDF7= 2/fz6tP7QVctfyOrbvYcf9+nLwbOrT0X6a/wN6t3UgpyefzeDweTn77cpaeuxDTyRPPDxI3+onn= +kmNpdz4DsVzw+Ewfp8fVSiUoj4URm1e/s99WJYFuBO5YDCIpmmMDiXZfU8/ctjDnl/1kU3lQML= g4CDhcLisvVMUpRxYpbu7m127dk1a1VWZQGCcEDIrJ8hCCBYuXEh7ezt+vx/HcVi8eDF6UZBJKX= Ech/b2dlRVpbe3l7q6OpYsWUImkwEgl8vR0tJCW1sbyWQSIQTt7e20tbWVF2Qej4e2tjba29sJB= ALl3y1pcxzHobGxkba2NqSU5HI5fD4fjY2N5cmFaZp0dHTQ3NzMyMgIAJ2dnRUyQVVVamtrMQyD= bDaLqqosXry4XA4pJfX19bS2tpav0d7eTkNDQ7lduic6oBQ1IaWXEKBq7qv03jw2C455qaIfrxY= pzZ6AcqjBUiID0zQJBoMoikIulysnN9B1nXQ6PW9TElaZOZZlcf/993PFFVfwwAMP8Otf/5qNGz= fOdrHmFUY2z9COxKTPHQP2/aaPVRcsBQkHdw0gawqk6Cue4ZouagGV2IqTAbfv6rqOz6tw1hWnM= Lw/QdbMABbRRWFOe+8yFM2NxqgoSnH7TeKv8eFtUUiJAYQKDW9rR1GUcg6GUt/f99IBbMeCxix2= TdES3HFXYlOp471eL5qmUVNTQ2hC2t0qEzAMVzVfKBxSN0/glVde4atf/SorV67kq1/96qTjXV1= d3Hjjjfj9ftrb2/nCF75QcVxKyZ133sldd92FZVl8+9vfZuHChZOuk0ql+MpXvkJLSwtf/OIXJx= 0fGhriuuuuIxaLcfXVV1f0+ZJ3wK233sqWLVvweDx8+ctfnnSN7du3c9ttt7Fz507OOeccbr755= kll/dGPfsQ999yDpmn84Ac/IBKJVF4kEJjyOZHNQMAPo2Ogae5+/DFgXgr4ElPtU0zcEym9L83w= qnvvby2EEDQ2NvL000/T39/P6OhoNfHOESKEQKhT9xvFoyAQoMDq96zinIvWVPQxiUQKh/q2WFk= IAwhFsPTcDj7y3ShSuho5LaQQa57smqYogjM2rmLV+UsBSGfTLDm5E0VVKupSSsmyMxbRsbwdAd= iKRbA2UJ7wlyYNE2lpacHv91fHhsOQLxTYPjpCvr8PHIdgTQ2nNzdXPM+SCl1V1Wm3O2pqarj++= usZGBjgySefnLRVKoRgw4YNNDU18e1vf7tyNTzudx566CF27txJS0vLlGN+b28vyWSSpUuXsnDh= wkl1m8/nefbZZ2lsbCQSiUyZonbt2rUsW7aMv/iLv2Djxo1Tav5M08Tn82Ga5tTbvlOUHwBFoSe= RYP/u3Ugp0XSdk2MxwuHw1OcfJfNSwI9fqZceeikGe2nWD+7sPFGMc+z1estqIjfr2nQBIKucSC= iKwnve8x527NiBYRhltV6VmeML6DSeUsvw9nSFj6Gj2Zx00UKE4vbH+tY6vF7vIatrDu25e3R3q= CnZyoRCITxejeYlblTGdDpdMciWNHA+nw9FUahpiFDXrBb3bX3lfi+EKPdtKSWxpjpko7uqLxQK= ZQHk9/vLY0Gp/kt7x80TBFWVyXg0jWULFuCkUiAU1PrYpH4khOBd73oXO3bsKO+JT6Suro4dO3b= wxS9+kW9/+9uTtCpCCBYsWIBt28RiMV577TU6Ow8FqJFS0t3dzS233MLq1avp7u4mkUhUCN/SNW= 655Rb27NnDj370I77xjW8QGLeatm2bTCbDlVdeye23384zzzxD84QwuZqmsXPnThRFYf369VOOG= /39/bS3t3Pw4EH2799PTU1N5QnTGXFaFrGGBgItraCpCE3DfwwMPuelgAfX+jKTyeDz+cqCvVAo= VAhuj8dDOBzGMIyKBpBOp6mvr5+NYleZBXbv3s2jjz6KZVmce+651cH8CFE9KmdccxKp3iyju9K= YOQt/1Muy97aw5IwOwB1U/X7/JEGdy+Xw+/3lZ+71ejEMg0wmg67rZSMmKSXauABSQghCoRAjIy= OEw2Fs20ZVVfL5fMVADa7wzmazZQto0zSRUlao3Ovq6hgYGMCyrPKEwDAMmpqaqu1hBiiKQk0uB= wvbXWO7sdSUAk9V1YpF1kT27t3Ll7/8ZVatWgUwaaVvWRY//elPOXjwIOCukCdiGAZnnXUWXV1d= jI2NMTw8TFNTU8U5fX19PPHEEziOQywWm1THuq6zbNkyurq6sCxryhW8lJLHHnuMCy+8sGLSOv5= 4JpMhFosxMDDA2FQutTljyueAx4Mfga+xwXWPGxxEKFPZBkkY2Yc69BLkRrFrFyHbzgZlZpOBeS= 3gVdWd0YuiW8FU2Yh8Pl/ZuEazL/IAABV/SURBVALcgaO+vr66inuLoCgKl19+OWeffTaBQICmp= iZSqdRsF2veEW2q4eK/OZdkbwbLsPBFvNQ0hxDKoX6kqiqhUKgssIUQhMPhSX2ypqamPHBLKcvG= rxNRVZW6ujps2y738WAwOOl6uq6X9+OllOVV//hBvbTP3tvbSzAYLKtUq+PAzBEAtTVF/+3JLnH= gjq/nnXcehjGNYAOuueYaPB5PuZ2MR1VVNmzYwCOPPMLGjRu54IILKpPDCMHSpUu5+eab6erqIp= VKsWTJkkkueh0dHSxbtoxkMsnFF188SUDrus61117Lo48+yjXXXMPatWt59dVXJ5X17W9/O6tWr= arYXhpfls985jM88sgjrFy5kg0bNkze/rOnUdF73NgQIhRyBXwyOaXTu52OE9rzAN5QA3JsL8au= e0iv/gzqkndPfd0JzFsBD25jmIlFtFYNLfuWxOPxcPDgQTcTmMeDaZr09PRg2zZtbW2zXbx5hz/= kw798siAez0z75FQroqmYKKin4/X6uJSSZDLJ2NiYG35VStLpNB0dHTMqRxVcYzA4lP1uHCUbB4= DTTjsNoPycwW0XpmmyaNEiPvnJT076LlDey25vb+fjH/94+ZhhGJPagNfrZcWKFQAV+/RCCGzbJ= hKJcPXVV5c/K3lIaJpW1hotXryYj3/84+XJ48R7cRyHCy+8sHwv4/fYfT4ftm3T0dFRLquiKKTT= 6cr27/W5E6Lxgl9KN8BNOHTo/TRmQerB59CdPM5rv0KO7sS34kPE9/wG/6J3Tv2FCVQlX5UTllA= oRCAQmHLmXVXLvrUQQhCJRMhms7S1tTE8PEwkEpm+HVQNMV3GPwfHcf26CwV31VmkFCQmkUhM0o= iUtmdisRiGYZBIVHpjSClpaGgor8wTicQktbwQory33dnZydjYWNm1zi2WU962iUajpFKpSTYAU= kqi0SiaprFs2TLi8fikum9ubi63k8bGxknXcBynHMRm+fLljI6OTjqnpGUq49HcYDYlF0zbBtOE= xgZ3kjSWdr0TVGXK6ImOAGmMIEKt4PFTSMcxpIeZ+n/NKwFfMpKbLSto23EORXaqcsQIwCxulxw= vATtxdl5iJm2o1N7eqpRWMSfKZCgUCrFkyZKyEVaJqaywzemsn99ClLY8ys9n8WJXCPl87jg47r= mFw+FKwVakpNouPfOp+lNpe8Xr9dLY2DjlhLzUhyORyJTujKXf0XWdWCx22GvU1NRMWY7xZS350= U9XVo/HQ0NDw7S/U/68lNp7YpmFcJ9faWsqHC5/VjHutK8l8+qd+FUHhELfgWfRNnwJIZRpc3GM= 54gF/Gy6GAXDYcZGR8kODEx5fCa7aRNLf7jvjD9XAJaUhOvqDrn6THPNE4k3tb6FQOg6Xf39Rx5= sZgq1ILx+nctx33vdc8dfV0psx8Fb8mstPof5UtdHW2/jv1dTV8cr3d0ESta9R7NfPU29Hc33jq= T+3sj5lm3T1NHhDravc435zMSwsRMRHg89Q0PHJrR0qW5n0k6naj/TfW+6tjbV+YdrlzMt1zGSh= 6KoIRHeMMbaL5Ha8yhGNo163icId54x4z51RAK+a88efnvHHUde2jcRCYd9qIFAgPXveMck/8yX= XnyRvp4eSvO2UvawQCBAa1tbxSrPdhwO7NtXtvAsBf3XNI2mlhZXHTSucpPJJMODg7My+RHCzfl= QMF+/rX30mmuO+Pq3fOMbR1my6ZHFgXP8BOn1JlpTZZcTgKKqnLZ6Nc2trRXH9+zaxZ5du8qDdO= n7kZoaGhobK+rbNE36Dh4sR0EsnS+A1oULJ1ltj8TjjMTjM77fNxNNdcNV518n8FVjfT0f+cAHj= ujaY6kUd0ys78MIuYn1Ml2dzuS8mX7X6/PR2tpakbLZsm36Dx4sG3aVvyMEa848k8ai6tW9HUli= ZIRntmwpt0OK56uKQlt7O7rXW/Gbfb29ZKaIs3488OquZtx8HYXC2jPPZNkR2hP8z/PPc6C3d1K= mxUkLl2M1rs1AQHo8HrdvjxdoUjI4MEB+CkO+UDhMtK6uYgKRz+cZHhyctGr3+f2ccvrp6BPc07= r27KG/aMX/Rst/pLjB7gSWJQ+1WQCpA3Vw4BXY/CqaqnHlxRe/7vWOSMDv2bmTm//2b4+i2G8uQ= giEoiCnUNd3LFrENR/9GIl0jvqAjurzUcjn+edvfpP77rpr0vltCxdy5TXXoGkajuMey+cNbvv+= 98lNCF3p9/u55LLLaHEcRDiMYxgIVeXVwSGeePwx7OOg1hOKWrx3G01xOOs0wcplCj+9V2A74wK= MSAmOfehvjk7Az6n6lnJSbmqfz8c//Mv/pfmkU2mvDSBUlXg8ziu//z3fvemmSZ361NWrueDd73= bru6iOSyYS3HfXXYxOENpCUXj/1VfTqmmotbU4mQzYNs/s3s3vtm079hM6IVAUtTjQ2vg8kg++V= +GZ7YJXu0pTEBcpHVcS4A4IZ5155hEL+FQyOTfqu+hmNVX/bmpp4d2XvQ/d6yPk1VA0jZHhYX71= 0EP09fZWDLhCCL53++2cu349Qig4SKSE57Zt5et/93eVbanoT3/1VVcRyWbR2tuxD/aiNjbw4MM= Ps6+r65jvywuhuO0cicAhGpb83Z9pfPU7kpHU4ev75ptvZuMMBvzxPPzAA9x6661v4h0cJcJNQD= WVujvW0MAHrrsOJKiCsuC+76676N6/f9KlTj/jDDa8851lDaEjJb3d3Tzwi19gTsg/0bFoEbfff= z/RVApPUxNmXx9KNMr3Nm3iP374w+PSv8t/AkJIzjtXwXEEv9nmVGwZSCkrtFqRcPjNF/Allc7Z= Z59djgoWK0bf2bVrF5FIhEwmw8qVK+np6UFRFDKZDI2NjSSTybKla19f31E/vPr6ejZu3MiGDRv= YtGkT9913X8W1bMfBQuFAWrCqMcRANlteiY+36iyfb1kkEwm8gSB7RrL4NYWQcLAta5KPpu04WI= kE2p492IEgimlCQz120TLzWCer8EainP3JL+FYJj7rIP97+a189/s5nu1eyvlfvYHRfbtwHJuF5= 76TPQ/fze5H7mbNqpN48cUXyeVyR/WbJYvzaDRKd3d3Of6/oigkk0kMwygn7igFJ1EUhVAoxNjY= GKqqMjY2NmWmqRnds9fLJZdcwrnnnsvo6Ci33HJLxb3YUjJqOGzpNzlnYZiRbJZs8bcmWr6CW4e= JkRH0QIjedJ6IrpJLZ6esb+E42GNjqDt3YTc0INNplFgdjmlO2ZbebAKxRt59020M79xO4oUH+c= Z1W/nqd2xy0bW862ufZWTP75GOQ2zZKex+5C56Nz9Ce3s7e/bsOSrbgdLe3+mnn046nWZoaIi6O= jd4TX9/P36/n1QqxeLFi+nv70fXdbLZLJFIpBzHW0pZTipyNLS2tnLllVfS2dnJI488wqOPPlrx= nB3bZiRnIhyd+oBKzrZduw7bnjTBFsVc9gd7ejD0EL/rSbK0xktiLIszVdtQVWTXPjx9fRQGBlF= GR5HWctcW4TjUd92Skzjzj/6SQjaN2PqPnLt8gB/fZdL8jo+xYulpZIcHCDW1YRUMdj90J76xQX= LZLIODg0c1+bBtG8uyWLlyJX19fWSzWaLRKOFwmK6uLrxeL6Zp0tnZ6f4GbgS4xsZGRkZGysaqE= w3njoRoNMrGjRtZvXo1t912Gy+99FLFcbNQIJUzURDU+1QypokiREW8g/EYhkFiZATVH+RgykAV= Amssi1koTEowZZom5iuv4Pvxj8kvWoRn717kxo1YhkGhUDjm9R1qWsAZH/1zcok4+vBWPvuOX/O= t75sYNWtY/6U/ZrTrVTeA1LJT2PfkJl574kFWrTyJnTt3zjhZ1rQCfjrjJCEE69ato7+/n4GBAR= obG4lGo/T19fGOd7yD5557jmXLluH1emlvb2dsbIxAIIDjOAwPD5eDYRytL/KaNWu44YYb0DSNr= q4uHnzwwUmDiVdV6Ih6ydg2us+HcxjhJorCSNN1ltRreFSBXchPu8ehhkI4J5+CCAagYCIDAZSB= /uOSAlVRVQL1TaQHeqhfvIKFbRrLFglCi/yk2jpI9uxjz6Z7WHrhFex59D8ppJPU1dVNud8tENP= W8UTa2to49dRT6ejoKPsmlzr8yMgIhmGUjV8ikQjd3d0sW7aMAwcO0NzczLZt28hkMkfVYVpaWv= jUpz7FypUr2bx5M4FAYNJkJerTOK01SNqyQFUJHCamuADCkQiqR6dd19EEZLCmfQ5KIIA8/TTUm= hqcbBahexE7J/vLHgsUzUO4pYNUz2uEGprpaIO3rRE8kwgRae2g78Wn2flft3POH3+Znm1PoBXb= 8hsxihNCcOaZZ5LP5xkcHCQajRIKhXjqqadYu3Yt27ZtY8GCBdTU1NDW1lbOzBcKhRgcHCQYDPL= b3/6WZDJ5xL+tqirr1q3jU5/6FF6vl927d0/pf1zj96D7NMxieQ9nzyGEoLmlBUfRqA2HCesK24= cnr/xK54q2VpxYHZ6mJux4HKWtDfHii0d8L0eD6vPjDdcQqG/G2RWhuWGAD1ymcM9wPcGGVg4+9= xTpwYMYo8MMvfoiJy1d8oa1hkII3vnOd9LT00Nvby+dnZ00NjZy5513ctZZZ/Hss8+yevVqent7= aWtrIx6P09bWxuDgIJZlIaVk8+bNR7WAEEJw0UUX8cUvfhGfz8f27dvZsWPHpIm2rimuTQzuNsr= hRhFVVfEHAqi6TktEwaMIhrPTu2R6Wltxzj8frbMT2doKq1ahPP/8Ed/L0eDxB6hbsoqhV16gdd= UprD3zSU5b4dDjjRFdeQYje3bQ9esHaDtrA73P/xbHsQmFQkcUu+GIjewcx+GOO+4oV27JcjGZT= PL444+TSqXo63OTTbz66qvlcLKmaZYjUR0uCMLrMTg4SC6X4/HHH2fXrl3lxuDR3KiA6WQ/n/vo= B5Go6B6BbTvYNrz80ovouhsa2Lbd/XQhBImREf570yZE0Sq0tIopRc4ab7VfyOd5esuWshWnqqp= YlkVidPS4pJqUUmIZObq3PMrBTS9z2vsy9A5I3vE2yfBYiuSBvVhGBruQR/HoCEVl7969066mZt= pQduzYwb5xNgmKomDbNoqiYBgGpmni8XjweDxomoaUslz3pWhPRzsbHhoa4sCBA+zcuRMhRFkTU= KpvyHPnv/8Tjz1wF6oq0D2CfMGha/cudF3i2K59gqZpKIpCz4ED/PemTRVqQdu2yeVyk+obYMvm= zWwvJiwq+dgODw0d1b0cKVKCmU2z474fI4ZfZvNqiSLAp0tyI0NkB3ux8wbStlF9PsxUjoGBgTd= k+S+l5P777weoiDCXyWR4+OGHSSaTvPbaa2iaxo4dO8qTRMuyUFWVQqFw1FnZbNsmkUjwP//zP4= yMjDA4zq5F13XXd31sjK2P/jeqppV9mi3LIpVKoapqsc05BP3uvXzvn77JvT//CZpWDAsuIJUcx= eOR7t72OI8s0zT59dat+Hw+RNF+w96+/Q1pHI8IxyHVd4CX7/4Bnf49bDMcrrtKQw4USB3cRyGV= QFE1EKB5fcTj8Tcl7fFjjz1WFtClSVomk2H37t2MjY3x2GOPARCPxzEMo5zW1ePxkEwmj1pbA27= /HhkZIZFIsGPHjnLbLcU/yBsG/7P16bK9jXQcnGI7GD9+lSa1A/39vPDss+6xoo3FWDKJlLIiGB= JAYnSU7912G9FICIYH0FRJftN/8fxzzx31/RwJpRY1vGs76cEn+W29jWlBY4skOTLA8K7tGKPD2= GYBx7ZAUk5jO1MOK+Cncy8amMaKfag48JXUdeN9Fd8sfv/73/P2t78d27YrVDR+H5y6QpDP5xjo= ephkWoIURaMkSUMIIkthKC7oHZDU1dWVg59kijnjvV5vOTNVrK6unAO4dB+2bdPb00M4HEbTNCK= RCL29vVOGUzwWmLkMr/7Xf9D/wha8Hps77oN4AnIP9pBu+BkUAzS8cNt3yiq72traqS9WtkGRFf= 9ORTqdfl0V+7HKr57NZrn++uvL5Su1rXAIlnYKBJLcyPPs6XcH8FBI4NPBJyWrlkLBFOzY5frAB= gIBTNNkrJgzumQ8J6WkLhp1j42NlQc7KSW9PT14vd5yqtHh4eHjlku+MJbgdz+4icGXfoeuO/zg= Z4J8HuLWK0SdB4oTUZN9T25CIFCK0RzfCFJKhoeHpzx2PNKpPvHEE2zevLk88SrVeyQSKcctTyY= SOI5TFvBen49wOEyoKJjS6TFOWaHgOCByz7F7OwQDrmGiRwPdIzltBWSygp17JcWU8di2zYHXXi= MSieD3+7Esi5GRkeNmPJvu7+aVe28lvudlZI1kKA6ptM2B4d8QXb4aiWTwledRVA2hauW0rG+kf= LZt88orr0x5bM+ePQDlBVkpLepE3ojHxtatW/nIRz7iTpyHhw+N535/eex6bc+e8nZbSVsT8PvR= ixMM27YrxvPuffswDAOv11tuQw0NDeX+XbqfZCLBrf/2b7Q0CSIhQVsTbH5OYuSPjyu2kYjz+7u= /T9fj91MbtvnXn0hSaaC3Cy35a0JNbQy98gJ7H70XzeujIChHY5wpUwr40t7KRFXf2Wefzb333v= uGbupYIYTbeUtICU7RJqE0TxGA7bgr+Inxksf7+5YMG0qfHy5QynH3yx9nuVm2ehWldyA/9gfFc= 64tl3Wq8gkO1fHhVPVztb4VxbUmV0TZ1qi8DamqxbrHPWbNsL4n+f0WmfX6/pPryn/izlvdDG6A= /JOPVLaJ4n0cTSrkhoaGOVzfh+pvqvopUaofjwaIQ+1D4v5dthgXIKexTi/91qzEQZhgmS0EyGJ= tu9bU5f9VMDEW+0y49tpr52zq5Knkz/iw5CXGaxWn698lpoujoqlukD5Fgc8Yx9yW8hAl4+FP/6= 8KOeU2XA2kxPnYHxSNqj8ERS3EkcSmqBDwpYdXergTwz+ee+65b8ZtVZkDCEWU1dalep8o5Ds7O= +ns7JydAlY57qxZs4Y1a9bMdjGqHAe8Xi/nn3/+bBejyjGmLMHHm+QL4Q7+JZVY9qFnsPZPrZav= Mv+Qlo2qqCgeD6qqHpHRRpUqVapUmR+UBbwcp+JTVbWc4UkC+Wd3kX9212yVscoxQFUVdK+3YhV= fpUqVKlVOHIQsSvaSgHccB8uyME0TwzDIZrNlS+lS2tWZGGZVmRuMV71rRctjXdfx+/34/X68Xi= +ecSv5qqCvUqVKlRODSSp6RVEq/EpVVS2nxhtv1VoV7vODia4kpXSeuq6X3dqqK/gqVapUOfEor= +BLlKyIS5mkSu4J4y0Qq8JgflGq4vEGdSVBP95atVqvVapUqXLiMMlNrjTIl1bxouhbDdVV+3xm= vAHlRG+JKlWqVKly4vH/AHhXG95qv4meAAAAAElFTkSuQmCC" width=3D"504" height=3D"3= 41" alt=3D"" /></p><p style=3D"margin-bottom:0pt; text-align:center; line-h= eight:115%; font-size:10pt"><span style=3D"font-weight:bold">Nota.</span><s= pan> Tomado de PhET I.S. - 2025</span></p><p class=3D"ListParagraph" style= =3D"margin-bottom:0pt; text-indent:-18pt; text-align:justify; line-height:1= 15%"><span style=3D"font-weight:bold"><span>b)</span></span><span style=3D"= width:7.33pt; font:7pt 'Times New Roman'; display:inline-block">  = ;   </span><span style=3D"font-weight:bold">Actividad 2</span></p= ><p style=3D"margin-bottom:0pt; text-align:justify; line-height:115%"><span= >Sumas de fracciones mediante el uso de PhET + Wordwall (</span><span style= =3D"font-weight:bold">Figura 2</span><span>).</span></p><p style=3D"margin-= bottom:0pt; text-align:justify; line-height:115%"><span style=3D"font-weigh= t:bold">Objetivo espec=C3=ADfico: </span><span>Realizar sumas y restas de f= racciones (con y sin denominador com=C3=BAn) y resolver problemas pr=C3=A1c= ticos usando representaciones equivalentes y pr=C3=A1ctica interactiva.</sp= an></p><p style=3D"margin-bottom:0pt; text-align:justify; line-height:115%"= ><span style=3D"font-weight:bold">Orientaciones: </span><span>Se introducen= situaciones cercanas; ajuste de una receta y registro simple de gastos, pa= ra transitar del modelo gr=C3=A1fico a la notaci=C3=B3n. Se enfatiza la ide= a clave: =E2=80=9Cdenominador com=C3=BAn =3D mismo tama=C3=B1o de parte=E2= =80=9D. Se ilustra brevemente un caso con igual denominador y otro con dife= rente denominador para mostrar el papel de las equivalencias.</span></p><p = style=3D"margin-bottom:0pt; text-align:justify; line-height:115%"><span>Cri= terio de dominio antes de avanzar: Cada estudiante: (a) resuelve una suma o= resta con igual denominador usando modelo y notaci=C3=B3n; (b) decide y ex= plica si requiere denominador com=C3=BAn; (c) construye al menos una equiva= lencia correcta y justifica qu=C3=A9 cambia y qu=C3=A9 permanece. Con este = umbral, se pasa a la pr=C3=A1ctica digital.</span></p><p style=3D"margin-bo= ttom:0pt; text-align:justify; line-height:115%"><span style=3D"font-weight:= bold">Trabajo en el simulador: </span><span>Presentaci=C3=B3n de PhET I.S. = (Fraction Matcher) y Wordwall. Se proyecta </span><span style=3D"font-style= :italic">Fraction Matcher</span><span> y se explicita la regla central: emp= arejar fracciones con sus representaciones equivalentes. Un ejemplo (1/2 = =E2=89=A1 2/4) sirve para mostrar c=C3=B3mo las equivalencias habilitan la = operaci=C3=B3n (p. ej., 1/2 + 1/4 =E2=86=92 2/4 + 1/4 =3D 3/4). Se indican = brevemente navegaci=C3=B3n, niveles y reinicio. A continuaci=C3=B3n se pres= enta Wordwall como concurso de problemas contextualizados, con tiempo por = =C3=ADtem y justificaci=C3=B3n obligatoria de la respuesta (equivalencias = =E2=86=92 operaci=C3=B3n =E2=86=92 verificaci=C3=B3n).</span></p><p style= =3D"margin-bottom:0pt; text-align:justify; line-height:115%"><span>Activida= d del alumno (interacci=C3=B3n + trabajo colaborativo): Primero, de forma i= ndividual en PhET, el estudiante forma 2=E2=80=933 pares equivalentes y reg= istra uno siguiendo el esquema: </span><span style=3D"font-style:italic">mo= delo =E2=86=92 fracci=C3=B3n =E2=86=92 fracci=C3=B3n equivalente =E2=86=92 = explicaci=C3=B3n</span><span>. Luego, en parejas con roles rotativos, A man= ipula y B explica y registra una suma y una resta con distintos denominador= es, asegurando denominador com=C3=BAn, operaci=C3=B3n y simplificaci=C3=B3n= cuando corresponda. Se realiza una mini puesta en com=C3=BAn para contrast= ar estrategias y validar resultados.</span></p><p style=3D"margin-bottom:0p= t; text-align:justify; line-height:115%"><span style=3D"font-weight:bold">E= valuaci=C3=B3n: </span><span>R=C3=BAbrica breve en el cuaderno del estudian= te con los siguientes temas: (1) resuelve una suma o resta con justificaci= =C3=B3n; (2) verifica una equivalencia; (3) escribe un caso real donde usar= =C3=ADa la operaci=C3=B3n. Lista de cotejo alineada a los indicadores.</spa= n></p><p style=3D"margin-bottom:0pt; text-align:justify; line-height:115%">= <span style=3D"font-weight:bold"> </span></p><p style=3D"margin-bottom= :0pt; text-align:center; line-height:115%"><span style=3D"font-weight:bold"= >Figura 2</span></p><p style=3D"margin-bottom:0pt; text-align:center; line-= height:115%"><span style=3D"font-style:italic">Actividad 2 en PhET I.S.</sp= an></p><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%">= <img src=3D" PVbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAIABJREFUeJzsvXl8HNWZ= 7/09tfXe2i1Zlm1ZtrENNjYOYBzssCQQbjaYsAx3skwyM3dyJ/OSZUKSmQm5MyFMQt4wWSAL92Z= CyJvJmwUIScgKIQQStsHGBLAhXvBua5da6rWWc+4f1d2WZG22W7Ik6vv5yLKqq7tOdZ361XOe8z= zPEUopRUBAQEDAjEE73Q0ICAgICBhOIMwBAQEBMwxj6B87d+4kFoudrrYEBAQEvKoZGBhg1apVw= 4U5FouxYMGC09WmgICAgFc1+XweCFwZAQEBATOOQJgDAgICZhiBMAcEBATMMIyJdwGlFI7jkM1m= cRxnqts0Jei6TjQaJRQKIYQYdR+lFLZtk81mcV13mltYGXRdJxaLYZommjb6c7d0nplMBs/zprm= FlaF0npZljXk9pZQ4jjOrz9MwjPL1HO88S9dTSjnNLawMpmkSjUaxLGvMfaSU5PN5crncrD1Py7= KIRqMYhjHm9YRJCLNSilwux44dO2Z1B9c0jVAoxPLly6mrqzvuS1FKkc/n2b59O+l0etZeeE3Ti= EQiLFu2jNra2lEvfiqVYteuXbP6RtY0jXg8zvLly6mqqjrudaUUvb297N69m3w+P6vPM5lMsnLl= SqLR6HGvSynp6upiz549FAoFZmu+mK7rJJNJzjzzTEKh0HGvSynp7OzklVdemfXnmUgkOPPMMwm= Hw2PuN6EwO47D9u3b6e3trWgDTweFQoGXX36ZtWvXkkgkhr3mOA7PPfccAwMDp6l1laNQKLBnzx= 6i0SiRSGTYa47j8NJLL82Z8wRYt24dhmEc99quXbvmxHl2dXXhui7r168/7jzT6XT5ITubcRyHf= D6PUoqzzz77uPNMpVLs2LFj1o7YS5TOc/fu3axcufK48ywxoY85nU6TTqcr3sDTRS6XO+5mVUrR= 19c3J27iEgMDA6OeT19f35y6nqlUisHBwVG3z3axGkoqlRrzeuZyudPQoqmhv7//uOuplKKnp2f= WuhdHI5VKlUPjRmNCYbZte9YOA0dDKTXqBS5ZX3OFkt9xJCWrZK6glCKbzR63PZfLzanzBEa9no= 7jzKnzHKvfuq47p87TcZxxHzRBVEZAQEDADCMQ5oCAgIAZxpwS5rk01AkICHj1MieEWSlFoVDg8= OHDc8ofHhAQ8OpkTgiz4zg8//zz3H333YEwBwQEzHomlfk3k3Fdl8cee4wtW7aMmekWEBAQMJs4= ZWFWSk3atyuEGDcN8WTQdZ1169bR2trKr3/964p+dkBAQMDp4JSE2XEcnn95C4Oy49hGAbKg0VK= zkpB5LLVSKUVXVxfnnntuRcVZCEF9ff2osY8BAQEBs5FTEmYpPY7mXyaxoX3YdvdoiKte/1Ea6p= qObXNd/umf/ulUDhcQEBDwquDUfcxCoZvDN+mmhhUKDSvSMZfSKQMCAgKmkhk1+Teav3qyE3rxe= JxzzjknmAAMCAiY9cwoYc7n8xw5cqT8dygUoqmpacwKTHBMzOPxOBs2bChvq/QkY0BAQMB0MaOE= ube3l5///Odlq7mmpobrrrtuTGF2XZeDBw+Sz+eHCXEkEmHBggXjCnpAQEDATGVGKVc0GuXMM88= sW7zxeHxCy7e7u5tMJoMQovy+qqoq5s+fP02tDggICKgsM0qYXdelr6+v/LfjOOMvv2IYnHfeed= PRtICAgIBpY0YJc0NDA1dffXX578kkpHiex6FDh9i+fTuaprF27VqampoCH3NAQMCsZcaFMGiaV= v6ZjLj29/fz3e9+l5qaGgzD4I477phzRe8DAgJeXZy6MEuBZzP8x1HYBZt8Pl9e1XaqVs5wXZcN= GzawYcMGzjvvPDo6OubU0kkBAQGvPk7JlSE0jag7j94nhqdDe1mNe3vvJWQdWwhUKXXcwqCVYN6= 8eVx88cU4jsNTTz3FsmXLSCaTFT9OQEBAwHRxSsJsmRaXbHzTpPdfunRpxX2/Qgg8z2Pbtm08++= yzfOADH8A0zYnfGBAQEDBDOeXJv9M9yZbP5/ntb3/Lrl27eNe73kUoFDrtbQoICAg4FWbc5N+Js= nPnTu69915s2+YXv/gFd999N93d3ae7WQEBAQEnzYwKlzsZGhoaeO9731teuUTTtGHFkwICAgJm= G7NemJuammhqahq2LXBlBAQEzGZmvTAHIhwQEDDXmPU+5oCAgIC5RiDMc5Sx0tmDEUbATGYq1gW= djUwozIZhzKkvSgiBruvHbZ9rsc/jnedcup7g1+0ebdtcOk8hxKh99NVyf+q6PqfOU9f1Uc+zxI= TCHI/HicViFW3U6SQUCpFIJIZtE0JQU1NDNBo9Ta2qPLFYbNQMyJqamjkTtVIqDVtdXX3ca9XV1= VOSaXo6EEIQiUSO67cAVVVVoz6YZivxeHzU+7O6unpcIZttJJPJce/DCYU5HA6zatUqYrHYrH5i= lSyO5cuXjypY4XCYdevWzYnztCyL1tbWUR80oVCIM888k2g0OuvPMxqNsnz58lEXRAiHw7S1tc1= 6y7n08Fm7di2WZR33elVVFa2trbPechZCkEgkWL169ajnWV9fz7Jly+bMeS5dunTcUbpQQyoLHT= 58mAULFoy6Yy6XI5VK4ThO5Vs7Dei6TiKRmLD4fjabJZVKzdrFY3VdJ5lMjvuAUUqRyWQYGBjA8= 7xpbmFlMAyDZDI57gNGKUU6nWZwcHBWn+dE1r9SisHBQdLp9Kw9T9M0qa6uHteKVEoxMDBAOp0u= 5y3MNizLoqamZtSHD8CePXv80hWTFeYSU1Ehbjo40adscJ4zm+A8Ryc4z5nNROdZEuYJ45illGS= z2XJGXTqdxrKsUZ9suVwO13WJxWLlMp8jLRop5XEzr7btV6cb6ylyOpjNw6UTYS6dZ+lmfTVHow= TnOTeY0MecyWS45ZZb+PKXv8yBAwd4//vfX65NIaXEdV2klEgpuffee/nEJz7BgQMHuO222/jSl= 77E4OAgtm1j2zae5/HII4/Q0dGB53nYto3rujz22GM88sgjFAqF8meVXlNKYds2hUJh1j4lA6Ye= pRQHDhygvb096CcBs54JLWbbtvntb39LOBymoaGBRx99lOrqampqajj//PPZsWMH5557LpFIhBd= eeIEHH3yQDRs2cP/999Pa2kp7eztPPPEEmqbxhje8gc9//vPccMMNtLS0sGXLFlatWsXOnTs5eP= AgR48eZdOmTViWxaOPPsqyZctYsmQJjz76KJlMhje96U3HpV8HBIAvzD/72c+or6/n2muvnfMWV= cD0U/JxR6PRSYXX2rZNNpslkUiUI0qUUqRSKUzTHHd+ZFIp2ZZlsXjxYn7yk59w5ZVXEgqF+N73= vkdHRwfPPvssF1xwQXnflStX8qtf/Yply5aRSCQ4ePAgjz32GM8//zzz589H0zRc1+XTn/40mzd= vZuvWrQB0dHRQX1/Pvffey+OPP044HKa/v593v/vdfOc736G6upolS5YEwhwwKkqp8mgrIGAqkF= Jy2223cc0117B27VpSqRRHjx6lsbER27apq6ujvb0dwzDo6+tD13W++MUv8slPfpJkMkk8Hmfv3= r3cdtttbNq0ieuvv35MYZ5U5p9pmpx77rns3r2b17zmNcRiMS699FK+/e1vs3Tp0nIcpRCCJUuW= sGXLFt74xjcSCoXYsmUL0WjUd2gbBgsXLqSpqYlcLsfatWsRQpSXh7rwwgvJZDLs2bOH1772tbz= tbW+jra2Nq666imQyydNPPx0MUwMCAk4b/f395ci073//+9x9993ceuutfPvb32b79u189atf5e= abb+a+++7j4YcfJpVKsWfPHtrb2wHfyF20aBG2bY+rZRMKs2VZrFu3jvPPP59rr72W1tZWWltb2= bRpE1JK1q1bV963ra2N9evXc+WVV7JhwwZWrFhBW1sbfX19JBKJsnDv2LGDq6++mrvuuotUKsWS= JUtYsGAByWSSM844gy984Qu8+OKLdHV1EY1G2bVrF0IIzjvvvGCIOofxPI9cLndarF7P88jn84H= FHTAuUkra29s5dOgQzz//PD09PYRCIZRSfPKTn2T58uUcOXKE7u5ustksQgiWLl3K/PnzAWhpaW= HhwoUT6tiErox4PM5nPvMZTNPknHPOQdd1zj33XL71rW9x3nnncfbZZwN+HeT3vOc95aWeSskcu= q5z+eWXY5ompmmyYcOGctrlNddcQzgcLjdS07RyEPmFF16IaZpYlsUtt9yC67qjZj4FzA1s2+bh= hx/m4MGDLFy4kMsuu2zUxJGpOvaPfvQj+vv7Wb16NRs3bpxTWWYBlaFkHO7evZve3l6uuuoqdu3= axbp166ivr6dQKHDllVcSDofJZrOcc845VFVV0dnZieM45QzqM844A9d10bSx7eITjmMG/6mRz+= fRdR3LsgIrNuCUSafTPPLII1x44YXcddddvO997yMej+N53qTcV1JK7rzzzhOa/CsZCIODgzzww= ANs3ryZ73//+3zwgx+cU2nOAZWj1B9LIb9SSjRNK/9f1/XyXMdQ4R0aIjx0UY+RTDqOeTQ0TZtT= dSUCTj+xWIyLL76YRx55hLq6OsLhMKlUigceeIDBwcFh+wohhsUsK6VQSvHEE08Qj8fp7+8v3wg= j9xtKTU0NV111FYlEgiuvvJJHH32UM844Y9os9YDZx8iR1FBxLb2madq41vB4r5UIemDAjMBxHH= 7xi1+QzWZ5y1vegq7rRKNRNm/ePKkyAFJKOjs7qamp4bLLLpuUxWxZFpZl4TgO99xzD4VCgauvv= joYAQaMipQSz/PQdX1S4joWJUNivM8IhDlgRpDP59m5cydNTU1s3bqVSy65hFAoRGtr66Te73ke= 9fX15WI3J3Lj9Pf3s3XrVtatW8fWrVu57LLLTvIsAuYqruvyxBNPcPjwYVatWsWaNWvK4lqaVyv= 1uZJ4D3VnDB3B7du3j4MHD3LhhReOOZcRCHPAjCAej/PhD38YpVR57mK6qKmp4dZbby0f+1SsoY= C5SSqV4itf+QoXXngh8XicpqYmvve973H22WezdOlS7rvvPs455xySySSPPPIIl156Kb/73e/Yt= GlTuUBTW1sbqVSKT33qU0SjUTZs2DCmMAc9MGBGoGlauRbvdJckPZ3HDpgdJJNJ3vnOd/LAAw/w= 2GOP8elPf5r6+nqUUtx///00NzfziU98gl/96lc0NTXx+OOPc+jQIW655RYSiQS1tbUopbjvvvt= 47Wtfi+u641awnNBiVkpSyHbjuQPFDjvZTqvQ9BihaANCBKFHAZWj5KMbOpknpSxvK/2/hBAisI= IDTolUKsW2bdu45pprOHDgAC0tLRw6dAjwa2IfPXqUlpYWamtrWb58Ofv372f79u287nWvI5/Pk= 8lkiMfj1NfXs23bNgYHB8lkMmMuQjJhuFw+04E7+Hss/SBCaExWmJWCVMom0nAN8arWk/s2AgJG= oa+vj+eee65clRB8Yf7Zz35GMpnkoosuGmb1VlVVsW7dujmzckvA9ON5HgcPHqSnp4fGxkaSySQ= HDhwgmUySTCY5fPgwsViMeDxeXpxh//795ZrhlmWRSCTwPI9CoUB3dzctLS3HGQyTDpfLZzsJi4= NYcjvI3AmdjJvOkw2dHwhzQEVJJpNccMEFw6xiz/PYsWMH9fX1bNq0aViH1zRtRpWUDZh96LpOa= 2srixcvLj/0V69eXX59tOXNzjrrrFE/JxqNsmjRonGPN6Ewa5pCc/vA3Q9eL3ACtSpcC6Vm54oK= ATMXXdePW9HD87xy+Fs0Gg1cFwFTwnTNP0wiKkMBLsg8qNyQbWDbiv5Bybw6Y9j2srtDCU5IyAM= CAgICTiZcTuG4cLjD5Xs/TbFrn82dn25Cccz7rOv+T0BAQEDAiTN5YRb+hJ7twm/+kOHm27t4/u= UCNVU6H/63DkrKrAnB1VckufiCIGU7oLKMjMQYysiojLEYuaxZQMBMZPLCrKBvQPKZr3Vx53/2k= 8n5nf9op8vXvtN/7AN1wRmtFhdfMPaqvgEBJ0oul+Pw4cPD0rOH1r8opWQ7jsPOnTvL4juyRkYk= EqGlpSWohxEwozmh3mnosHp5iFXLLf64I4/jgq5BJKIN28e0TiTeOSBgYkqLAQ9d0mekMFuWRSg= UGpYkMlKYg2qIAbOBE3JlJOM67357FZdcEOWzX+/hnl8O0DzP5GufbvR3ESAQLFlolt4SEFARQq= EQLS0tY77ueR41NTXU1dWxaNGiICojYFZzguM5haYJFi0w+eInG3nbGxJs25HnwnOjw4IvfINED= ZsQDAgICDgVlJIo5aKUC3hI6aCkg9B0NM0CdIQwij+TT4abiZygMPvhb0IIImHBFRfFueiCKJpv= KgcEBARUFH8yt4Dr9pNJ7yCTfRZNO4Bh9KJreRAeIJAyhOdV47rNWNZZVFWtxzQb0LTwrCwJMbE= wKz8ao/zHENNY0yAWGT1WOVgzNWCqGC06Y6KojMC1MbtQysNxesjnXyKbfQx4ikj4CE1NHrquGG= 2aQCmQEvJ5nYGBGjxvHeHwxUQi6wiFmhHCYLZYkBMXMULg2Aplg3SGSPCIXJLjtFmA4+hE9CAVN= qCypNNpnn/++WG1MjzPY/fu3XR2dvLoo48OE+JYLMaaNWuOyxYMmIkoXDdNf99jePInRCIvUVeX= wjBGF+OhCOEbi/G4Rzzejec9TC73OJnMUrq7NzNv3jWYZt2ssKAnFOZIfDEv/ylO79E4AwMOUsr= yrPbICl5DncpKKernv4b1a8+YkoYHvHqJxWKsX79+mGUspeSPf/wjdXV15QV/S2iaFqzhNwtQSm= LbXRw98nnmNf6GSMSbUIzHQ9cV8XiOWOxFPG87hw49TF3dvxKPrypazzOXCVtnhatYfcHHcJwbh= g0CRk7slf4eajgbRgjdCG6IgMqiadqYtTJK4XKB62J24Xl5BgZ+Tz5/B80L9mFZlfOFCgGGoVi4= cCe9vX9PPv8eqqquwrJqK3aMSjOpx4amm4R0c+IdAwICAk4QKW16e+/HMO6ksbGXqXqm6jrU1/e= RzX6dnu6D1Dd8CNOsmpqDnSKT+AoUUjp4bg55Aj+em0N6NkERo4DJUigUePDBB4f5jqcL27Z57r= nn6O7unvZjv5rxvAy9PfcjxBeprp46US4hBMRieZLJ++nu+hKFQiczUaMmtJidwiDZ/mew9H6Ep= jPcYTHSmTHkLwW5PMRqNxGK1FeswQFzEyklTz75JF/72tfYuHEjlmWhlMLzJlc21vM8pJRIKXFd= d9KuDF3Xy0v+bN++neuvv576+tnbXyezAvNMQUqH/r6H0LQvUVObOyV/8okSi3sIcT/9/VHq6t6= HYSSn7+CTYEJhzgzsJcQOIuwDz2WYGKshvuZRvtTBVIo+N0nT4ksr1NyAoYxcSkkIUV7ccbalHQ= shOP/881m2bFm57YODgzz44INkMpkJ3y+lZMuWLcTjcRzHmdT5V1VVccUVVxAKhXjjG99YfhjMR= pRSpFIpXnnlFTKZDIsWLWL+/PkzeoGAfG4PSn2T2rr0tIpyiWjMw/V+RDq9mqqqNxaTUmYGEwqz= wEGXXeD8CeQgoPAk9Kc8Xjnk0J/yiEc1li62qKvRKdgK0wDTEKi8wjFT03Aarx6klOTzeQ4fOcL= O3XvYe+AgqXSGbDpNJBanOhFj2ZJW2lpbaVnQTDgcnhXWkxCCaDQ6rLiQpmnEYrFJtV9KSTgcJh= KJkEgkJiXMpZoaQgiqqqpmdWGjzs5O/tf/+l/09/cTj8c5evQo73jHO7jmmmtmZESK4/TR138HD= Q0HTosol4jHM3R13kHGaCMeP4OZEuc8sTALECoLXj/IPpRSvPBSnpv+vZsXduZxbIVuCM5aHuKm= /6eOB3+f4U0Xx7ngnAhIExi7BGPAieE4Dnv37uPzX76dZ3YdwGs9C6NtLYQaSO17muq1ZyO7B3C= ffgjz0MtcvG4V73vve2lrWzKjLaehJBKJshDH43GuuOKKSb3P8zyOHj1KfX09V1111aQfRkOLHY= 0skjRb8DyPJ554gvb2du644w6qq6v5+te/zhe+8AU2btxIW1vb6W7iMJTy6Gi/h9q6J7Gs06sPm= qaorTvMoUNfJBz+dwxj9MVRp5sTMBH8Id7Bow7v+egRBgYlF74mwsolFnsPOfzu6SyXv/sA4ZDG= uWuCRS8riVKKjo4O7n/gZ9x+7y8QF7yF+Ka/QTMtEALluRiH9mK1LPffsOI1yHyOnz/3B379oX/= mA9e9jT//s7dRU1Nzek9kEtx4443DHiKTdckM3e9kai4LIXj9618/61xA4Ld99erV3HTTTeXFlJ= uamsjn8xQKhdPcuuPJ548Qjf2GSMSZeOdpwDQljY3bSae3Ul29mZlgNZ/Q2M31FDff3kVqQPKFm= +bxpkviWKZgYFDy7huP8MDDDqHyPTU8fTvg5FBKsf/AAf7t9q/zWNoift2HMavqmWj8p4Uj1G54= A87Kc7h9y8M88+y/8i8fu5FFixZOU8tPjtM17BZCzFpXhqZpLF/uP5T379/PT37yE374wx9y3XX= XTbjo5+kgl3uccHjPaXVhjMSyUmTSDyLlRjTt9I+aTsj5mMtLNE3w0ffVccXFcUKWX8Epb/vr/v= 3FlUn++1sTLG+18J86M+ibn4Uopejp6eGmW2/jcWsx1W/4c8zqhtFFebSvWgjM6noSF1/N03Vn8= y+f/wK9vb1T3u7pojT5OdqE3XivzWVeeOEFHnroIXp6epBSDltYYCaglIddmNhatm3F7t0Fnn46= x8GDDq57YtdRSkVPj8fWrTleeCFPOi3Hrd9jGAqlHsXzBpgJBuUJmQjRsMbNH24AIJtTaEIRsgQ= NtQZ3/GsjmazC9RS1VTM/F3020NPTyy3//iW2RpaQWHthMVzxxBG6QezM83nmv/q49ctf4V8+fi= Ox6Oxd+mtgYIDnX3iBw109SKGhFGjSZffu3Rw9ehQpZTnMzjRNli9fzpo1a2bkJFilKD2A3vjGN= 3LppZfyhz/8gX/4h3/grLPO4tprr50hLhrF4OAuDPN5xhO/jg6X227r5p57UvT2eixcaPKhD9Xz= nvdUY5qTO4/f/z7Lpz/dxdatOUwTNm+O8clPzmPt2vCYlnoymaKz85c0N//3015P44SEec8Bm7/= 9p6MUHEUkLPj4++q4fHMMTfNjm2+9s4dDRx3+/RPzaG48/cOB2YyUkgcffpjfdNgkL38Dwjy1yT= thmETXX8J9D9zF2T/+Mddfd92sHbpblkUikeDOB/9Ifl4bCMGCgaO0WiFyuRyf/exn2bdvHwALF= y7k/vvvL4cRzkVc138oKaVYuXIlpmmyceNGGhoa2Lt3L1LKGXP+/X2/pXmBPaY4eh585zv9fPWr= PeRyvni/9FKBf/3XDjZvjrJy5cQP12xW8olPdPDUUzk8z/+Mn/xkgGhU46tfbSaZHN1REApDLvc= L4Drg9H5fk3ZlKKC33+Op53I8/VwOJaG1xcR2YCDt8eMH03z3xynCYUFt9ey84WcS/f39/OB3T2= NtuOKURbmEFo5Rdek1/H8//TVH29sr8pmng3A4THNzM6JmHqpxEapxEWbtPKpraqiqqsLzPDKZD= JlMBtd1mTdv3qx9CE0GKSXf/e53+exnP0t3dzeFQoGdO3fS3d3NwoULZ0y4pFIeBfsRdH3sSAzb= VuzYUSCfV0PeB11dHk89lZ3UcTo6XF54IV8WZfAFf8eOAj097pjvE0IRi+6kkO9mIndGKfmplEN= QaSbdWwX+BEnIEsxvMPjTXpuPfraTtoUWnb0uzzyfo2W+wY1/U1ucAAwm/06Fx598kldEkmh1Q0= U/16pton3eCp546mmuu3rBDBniBpwKpmnyzne+kw996EPceOONNDY2snXrVjZu3Mgll1wyY66xb= fcTiRxmPF3QNLAsgRDDa7prGiQSk3vAWJYY1eURCo2+fSjxRI50ZjfhyPxh20tVNUtrSLa3t/P0= 009jGAYbNmygvr6+ot/zCT1KG+oM3nFVFQ9/dxGXb4rx3EsFvvPjFL97KsuGtRHu+WoLZy4PFRs= YTP6dLK7r8r+/eTei9UxEpS09IVALlvHHP+0etaB8wOxDCMEZZ5zBf/zHf3DWWWdRKBT46Ec/yh= 133MH8+fMn/oBpQZHLtZNMjJ9ib1mCTZuiVFXpZXeHpsHSpRave93kYoybmgwuvzxOKFSKUfc/d= +PGKA0N499P4bDALuwfZgVLKdm3b1+5jsrAwABvf/vb+djHPsYNN9zADTfcQD6fn1TbJsvEhfKH= mOptC02++qkmhID/uHU+vf0eqbQkFtFoqNMxjZFCrBh3KjRgVAYHB3mlo5twbROTfridwDPQqm/= mxWe3kE6nqaqamdW1Ak4MIQQLFizgYx/72Oluypg4TorqqvEL3gsB115bRTot+eUvB+ns9Fi61O= Kv/qqG+vrJGSm6LvjUpxppbDR45pkc4bDg3HMj3HhjfVmsx8IwBIpjkRlSSnK5HJ/73OfYuHEj7= 3jHOxgYGGDTpk385V/+JU8++SR33nkn/f39FV2IYRIrmJik0wryHm7BOU5nk1Hf6O7tPf5JOJiL= kGysq0xLX0V0dXXhxOuIRU4kC2nyyqxHYhxNF0ilUrNGmLPZLAcOHCiHf/WnUji2M+T1HB0dHXi= OPSypolAo8PLLL5NIJACIRCK0trbOaZ/zTEWpPEKb2FALhQT/43/Uct11VRQKilhMEI/rJxT3vG= yZxWc+00gqJdE0qK7WsayJP0AIEMKvbiil5Je//CXf+ta32LZtG9u2beOxxx7jIx/5CLfccgvd3= d38+te/ZsmSJVRXV0++cZNgwt4Zr1nBkf7X0T9YTaGQH1lD7tivUc65qnYp1fPWV6KdryoGBwfx= dBN3sB+ZzwICxGgV/XyU9NDyacLZvkl8ukC6Nj2DA2Szk5tMmQmULJeSMGcymWFfhfT8qnKu4xz= noslkMhiGMcxHOFfIZDLcd9997N+/v7ytVNDtXyb3AAAgAElEQVQK/OSTtWvX8uY3v3kG+JrFpM= VV16G29uQjI4SASEQjEjn5iU8hBNXV1bS1tbFnzx7mzZvHkiVLiMViZDIZPve5z5FOp7ntttsIh= yub7TyhMBtmlJZlb2VB25sYe92Skf/3EZqGdpKxt69mlFJIz0PaeVAT+4GFlGyYF+eda2rKRVnH= K87qOA7//xOzK20+Fouxdu3a8t9d3T2YLz1KyWaOxWMsWNCMUygMu0ksy2L9+vXldPSTSdeeyRi= GwZIlS0gmj5WtLAlzqfznggUzY5JXiBBS+qI7U1EKlPKjoIQQbNy4kXPOOYdCocD555/PddddRz= 6f5yMf+QjPPfccH//4x6mqqsJxnIrWo5ncCiaaDoHAThvhcBhdgFXXhB6eOBFEUx6tsQEuW7dyU= p+fy+V4sql+ViVcjBRUP3Z+6OvgW2TD9yv9PVNCxiqLIhSy2Lx50/hzOcLf93RPxptmFbmcwDAm= rChw2vBcBSQpfVeaphEOh/nnf/7ncpGrZ555hocffphcLsfHP/5xlixZwje/+c2Kpr8HjrYZglK= yeHMp6mqSGANdSLswKWE+UbLZLAJJIhZGSbd4l5QEbYbeMa8a/AlzhUIpiZIe0rORro30Ckg3j/= QKoFz/Bw+BLC+GLISGlArH85NK/MQSDTQdgYZCQ2gGQjMRuoWmh9B0C00zjy2EIaaiLwgikSa6u= nSK7v4ZST6vCIUWH7eYb2NjY/nvFStW8IMf/ADP88pVCefNm1fRdgTCfJpQSqKURHo2np3FzvWR= S3dgZzrJprtIyF6cvk7MZOUrwh06dIiQ6sbteZSewThaqAYrOg8rXI1uxvwiLpoeCPW0UKznoSS= eZ+PaGZxsH7l0O4VMJ16hH+XlARehPMBDEwohFLomMHSBYegYhoVmhBB6iFf293Db13/GR97/dl= YuX4wSOgiNUnSsfzyFVB6O5+K6LtIDpYXRw3VY0QaMUBWGGUVoFkLTKlJE3rJqyOdagD8xU3McB= gYj1NYuG3efuro66uqmNqghEOZpwFOKvOfhSonhFaDQRyHbQzZ1mHTffuxsN1Law/zJb75wMT98= 5Y+EW5YhKuyU27XzZebValRFHVDdSPsobuZZBmwXhyhmdAGhRAuaVQ2hGlw9jC50QrqGoWmnXar= z+Tx79ryC6x7L4spmc3R3d+EUCsOiMmzbZt++fcTj8RlRk9ot9gVPSgwvh8r7fSHTf5Bs/wHsXB= 9KFsoTlKXv2nfJgFZyzejF30IgNNCFhqYJPE/x1W88xE9/+SzvfNtZtNTZaLqBphlouo4Qhi+06= AhNYCAwdQG6RKlBZP4I7mCOrO3haQnMWAtWrBk9VI2yqnH1MIamYWkn3heE0LCsi/G8XRjG5JYM= m06UEmSzy2lqqud0GySBME8xnbk8L6RSZDM9VA/uIZo5ghpsxy6kkZ7HUMtBCFHMsIQL1rXwq/u= fw0u/AaOqcsusZzIZHvrVj7j+jU2keg6haaIYIuR3RYsCKt1HduAFXBUir9fQRQ3dkcWIWCMrEg= mWJhOntdt6nkd/fx9SHvvuXNclm83h2oVh6wRKKRkYGJj02oFThQI6sln+2D+Am+mgKr2XSPoIc= rADx84i5fBU4ZIQC0rXRwz5oeg3HyLWRZ/7Tx98gce3vEIiHmJgMEtfX6os5kKA0AQCgaYN+czy= Nr//aZpAEwpNFlADXWT7n8MlRE6roUPU0xVtJRKtY3VVkuZY7AT6gqCm9nL6+75FXb03oZ/Z88D= zFKZ58kulOY7fRyZT/KhQgEj4zae9gBEEwjylKKX4U9dR+o9upbH3BezBFD2Oi0KNsIRKEw3HrK= BIyOS8+iy/+eNjVG9+W3EoempIKbnrm98krvcyf94ZZLKFIZNGvuVVEgL/ZnexnAxN6hDR1Hb2G= ovZWnsOTaFlxE/jxGEsFmP9+tdgvfQ7SnKWTCZYtGgRrl0gOqRyXjgc5uyzz65o8P/JIKXkiYP7= Eb1/pL53B4V0iozrIUY+mIeIsDZEnMsWsnZMoDVZ+r//GX/a08l/fP9J/vrPL+B7P9mK60lsx0P= TNLShn18sOlbMiwNK3UCV20HxQe1PsgqEcAiJNM3yAPHebewOr+D5urNpbFuOcQIjuni8jcHBtS= j1TLndY3HXXX3ce2+Kz32uadyqcGPR2eny0Y+2E4lofOlLTYTD499DA6kq5jW+aUas/RcI8xTiF= NIkOh6H9hdID6RxPVmeHD9mvajyDSilf+PJ4s24cXUTz/385/Q3tBBbsR4xbmTB+J1cSsnvfvcI= zzz+U/7uL/ywM9eTfni0AIFCeaVPOjaDX7oZwsDSwk4GuwYoNCSJh6am4P7QGNzxmIpZ/cke+2T= Ipztp7HwEr3sv6cEsnhzRF0pWcFmcFbI8ghLFMPaSUB8TT6345nQ6zw9/tpXr37qetkX1KKBQ8M= jl7SGRKcMFv2RJI4reZ1GSauWHjfnfSvEMjol1RMDy3HYyHQPYzfMwYpMf0QmhEw5dTj73R6Kx8= VdXefnlAn/4Q5a///vDfPnLzaxfHz4uGmcsDh1yuOWWLn74wxQXXBBlogGT42ggXoeuJzjdbgwI= hHnKUErSc2gLqvdPZAbSOM6QnqFAlW4wQHIsTVXIY3ZMbU2Uv3zDIr7y4N3kIzEii1eelCJ5nsf= BAwf4/ne+xpWvX4Jp6OTyzjG/ZXEoK4rBz6UbUqpSwXmKM/4Q846Q7niBmupmtAr6vpVSdHV1ce= TIEdra2ia9oGolkFLS19fHoUOHWLJkScWPLaVLqv15YtlDHBlID6t6Vu4LmkAohRSq2C9EWR/KQ= sxwXzPF/zuu5KHfv4xUis0bltHVm0EpRd52jl3n4ogIBJoYMjorWsS6VhwxlfZlaBOH9IXi80TT= IObup33vk7SeecUJ5StEY68ll1tGJLp93O78rndV8/jjGbZsyfM3f3OYr32tmde8JjJuWrXrwpE= jNh/7WAc/+9kgdXUGf//3deMmmigFtp3ENC9D02aGJM6MVsxBPCfPQNdLCFx0TcNhxCNbgfJU0Q= oRoAtMQ8M09OIsu4apa8xvSHJzXZLbf303nblriCw5Cy0UmZRAK6XIZDJs2fJf3HXn57nm8sW0L= apFSlX+AYXjqPJQdqhrpZSk4knlV9cCTFNxZO825re9DkuPV+z7ymQy3H///SxevJiHHnqID37w= g5imOeYqJNLzwwuV8oWstN/IMoylbaP5mEvnmsvluPnmm7nkkkvYvn071157bUUXZfXsLOne3Wg= a6Lp2fFvKfaFoIesC0/T7gKFrGIaOqetYpk44bBKJmBiaQNM1NKGx/3Av9/z8Od7yhtXs3t9DZ/= cgmazNKwe6OfOM+axa6od6SanwpMTzJPmCQ77g4nnS7wtKoZzi79LE4xCL2v+O/b7geRJdF2iap= PPQSzQv3UQ4MvnU/lComZ6e1xMK7SYaHdtqXrMmxB13zOcDHzjKtm153vKW/fzt39bw5jcnaG21= qKrSsCwN11UMDkqOHHF4/PEst9/ew6FDDgsXmtx0UwNvfWuC8QabnqfT07OO5uZzmQnWMgTCPGU= 4doZCto+QpVNfG6M3lSGXc8vDZV0ThEMmiZhFNGoRiVhEwiaWqaPrmu8XLE7uLGttoLEhzv/+yQ= 94amcb4fPfhFk3H2GYo1p2nudh2zaHDh3kxz/6IenuF/jwe9ZyxpIGNE2gFOWb0fMkruuRL7jkC= y4F2yGbd7Adf3JGKw9hfSEYTOfJ2zaunccKV06Ys9ksQgguvvhi9uzZQzabxTRNnnjiCXK53HH7= Dw6mybW344kQCEFf5yvsObobz3GwbbucPOO6Lg899BCx2PF1R+LxOJs2baK/v5+FCxdy0UUX8Y1= vfAPP8yoqzK6Tw871Y5kG9bVxevuzFAouJV+GrgkiEYt4zCIWsYhETCIhC9PUMAxffIXmW7oj05= qVgkQsxJWXrUFoglf2ddKXymI7LoeO9JPJFohGhvcTNeQfqUAN6Qu241Eo9oN8wSWbd3Bcr+jqG= CLWCgYGcyjRSyGTOiFhFkJn3rxr6ex8FsN4YsyVsnVdsH59hLvuauHLX+7mhz8c4Pbbe/nP/+xn= 6VKL5maTZFInn5ccPeryyis2HR0uSsEll8T48Ifrueii2LgWtpSC7q4mamtvwDAq159PlUCYpwj= pudiOg2EqqqsixGMhelNZBtN5qhMRmuYlqU5G0PWJU4Q1Q7BuVTNfXtrIT3/zIl/5wT/S37KB0J= rN6LXz0a0Q+Wya7u5u0ulBDh8+xMO/+TVP/v7XvP3yM/jrd68nGhm68vSQzDlTB0wSxT7pW5iKg= XSezp40A+k8luHHNA+k8+RyDkLT8Ty7ot9XKTtvaC0L27bZuXMnqVSqvL30XSmleGutAfZO/wMS= Hiq6FICVK1cOs5r37t1bPsbQz6itreWCCy7wH5S6f45TUfjck/6DUjcltdVRErEQPX0Z8nmHqmS= EpnkJkomI7044QReKELBoQQ2fv+mq8rY/7elg+86j/M93beK8tcdno4kh/+gCGNIXImETigkgfj= F4RSqdo7M7zUC6QDjkJ6EMpHPkCy6maeM4J15zxTSrqan5BwYGDlFbu29Mi1bXBatWhbj99mb+4= i+q+dznunnuuRxbt+Z5+ukcUhYNHV0QiwnWrg3zV39Vw/XXVxGJaBMOLNPpOKHwB4jHl5/wOUwl= gTBPEVKB43oUlIuma4RDJi1NSTwviWXpGLpGwXYxTR3T8Be1nagTWZbO1f/tbF5/4XKe2rafF3f= fR3enzqBn0p/P8Y3OP+DZaXRhs7qtnr+59Uqqk9FJTZj4kz0K15UUbBfPU0RCJo7jkc3Z5Asutu= OVfc62W9nws1gshhCC73//+2iaRjQaxbIs3v/+91f0OCMpCWE6neaee+5h0aJFFbWWAVDKH4EoF= 03TiIQMFjXXoFBYpo6madi2i2no6Ibm+49PgVDIZPmSecSiJxe3rYr+ZNeV5G0H6SkiYb8v5AoO= +YKD43go6cfo2+7J1fWORJaQz/01fX2fpbY2O27/tyzB5s0xzj8/yu7dBbZty9HV5ZHLKUxTUFW= lsWZNmNWrQyQS2qQecNmsTi77Z9TVb2KmuDBKBMI8RXRmcmQdhSYlmub6fkTLwLT0YpwoaLpAKU= Gu4OE4HpoQWMXha2mSZ6RgCyGoqYry3y5exeWvW4HnSRxH4noSQ9cwTc1PxR1DjEu+5JI7w3U9C= rZLvuBgO9J/mNgetu27M2zbxXY9PE+hinHDUujs7UtRU9cy6VnyiYhEIlx55ZW0t7fT0tJSFsfp= mACMRCL83d/9HZ2dnbS0tFS8JGjGkWRdiaY88ppfdskydUKWXpzI80cwEoGd93AcF13XsEwdQxd= j9oWxaGmq5vM3XUVVfPxCVcP7gt+HcnmXQsF3X9iOxLZdCo7r9wPHw3E9XFeWgzUcoZOSGvM5cW= kTwqC65gp6eiS9vbdQVzf+ytlC+IXsV68Os3p1mKFFBEuRLZMln9Po6X4LTfP/GsNITvyGaSYQ5= ilAKkWHNEgZVYSco2WRlErheh6uo5ctZdMEywwTjoYRmoVUWnmSRUrXr2WBQiuGUAkkfgyqP3Gn= 6QpLU5RsIwW40j+OP4tenOhTEteVRZ+yfxN6nj8Z5P/f9zW7rsRxfYH2PA/X89+vhiRz5KP17M6= 7rJEeoQrNYgshqK+vp66ubkwxrtSKKyMLGk3m2CeLJyV7MwVSZjUh+2j5QVb63k1HxzQ1TFPHMg= WhUJhIPIwQ5rG+4Em/Lyg/IclPycbvC0oV44H9H6UUCJ2qZAyFoOAqUF7Zj6ykf91dTxWvr3/t/= W3Snxx0/T7ieB6u6+G4ckhfOCbKAPlwDT1YJx1qqGlh6uvfQnd3gb6+/0NVVfe4E3XD33vCh0Mp= yGYjDA68lab5H8A0Z2Y98kCYpwBPKlJKo7N+NdFDXQjHK6fWKaXwpMJxJYYu0DQXw7AxjCyGYWA= YFroZwtBDaFYUUaxbATqqFMakFEp5KCRCeihclOf6v6Xr199wPL8+sTtEkL2hv/0bUQ4R5qE/7p= DIjaGiLHWLgYZVOJpFznEIVdi6HOvmPnr0CE899TiOYw/bdyJ/8PH7aFx22RXlMqCTOfap4EjJn= pxHPtFKvP0oQnjD/OT+qEVg2y55zcEwCuhGBsM0MXQL3bQwjBCaHvP7gjBAaOW+oJQE/GJHIEG6= KOn4/UM5eK6N57p4ros77KF8rF/4DwlV/r/nFcW59P9iVI7fF46dm2eESDWsgpyLJ+VJh08KYVF= beyWDgw10tH+Fuvp9WFblMzU9T9DXV4dS76S27kpMc+ZZyiUCYZ4C8q5Lr22TrmrlaG4tdG9DSg= cpdaShYxgKpSukJ9B0heN4COEMqX+g+ZOCmoZe/NF0HUSpfGUpArpYiUzJ4o1TtGxcryzArlu82= Yo3mR8ypZCeLM/Elyxnf+KrGLFR/P+wtc+KojxYvwKhG/Tm8lRPU0bdtm1Psm3bP7BihT82UMW4= 6onm6Ur7+Ak8it//3mHNmjWjCvNUkHUcOj2JrDuTULaXhoFdSOkQsgykrpAGGLrAkxq6VvRFCxd= Ny5cjc/wfrRytI4Renij1x++lwMbidSv3BRfXVeU+4ZYfuMVrXrSApRrSN8p94VgfkMV5heGiHK= av+TUM1q2g4DjkHAfzFOLadT1KVdXrCYVW0dn579TU/IFIJI82iRVPJkJJsG2Tnt4ziMVuJJFYN= 2PilcdiZrduljJgF+izHZRm0Nt4DoVILTV9u6jKdxBzClim8ONTiz/l0DjpVwxzUWiuGtVpVs7N= Ump4IogsxvGWbiTpWzpK+i4Ar+TWUMesn5I17JW3U7xR/f/7E4I6nmmRSyxgsG4F6do2pG6hKUV= 3vkCrUqc8WTU5XDZvNrjoopN/ECgFAwODCDE9i9AqpejK5fB0HSUM2hduJtPfQm3/TpKFTqLCwT= IkpuFHhRhFAdY0gSZBaCWXBcP6QkmGh/aF0vFkMWVPqtI1LbmyFNIbsq0c9z3UGh7aF6Tfl0r9R= IHSdFwj6veF+jPIVC9G6gaupujPF0ie4ioeQggikWYaG/+F3t7fkss9jGFsIx7PoOsT19YY/t2D= UhqZjIVtr8AuvJa6uj/DshpnRMr1RATCPAUMOC520QEmdZPBmqVkEgvpKvST6N9LdeYg8fwAIc3= F1P1QH10r/i5WCSun28KQoW/pCKpszZaiKUp/SzVEqIfcgF5RuJWSRUuJsrVUtqKLN6JCQ2kGhX= A1ueRCBuuWY0dq8PRwWSCUEPQ6NnKahFkpwYsvumja8QkJo1nOo21TCvbtkyg1TRmFCjqyeVTpO= 9NNBmqXk6laRCjfRzL1CtXpg8RyaSzNxTQo9gMNvWQpD8v0KyYjjUiXLvcFjvUJSWl+gWKJWb9P= eEMScYYmGpXmIbxh4i1QCKQewg5Xk61aRLp2KYVwLVK3yn1BCjjQn2JRdSX8tQLTrGLevCtx3Yv= JZrbT3v4rDOMpksk+LMtD04rzLCPiuf2HlMB1DQYGohTyZxGJvol4/Dys2gaEmD1yN3taOovoyG= ZHVK4QSCNEzmgkF51Ht1xPKNdLPH2YiJMi4qYJe1ksp4CBh6Ep36MsilXAjn1M+VdJdMrCLEu/j= 92MpSFo+SYsWcVlARdIdDyh4xphXCuGYyWwI7Vkky0UovXDbsChKKC3YOO4HoY19RbIwoUr2bLl= L3niiVMT1WRSo6amoUKtGh9HenQ7I+K9hcAzwmTj88nGGun0ziWc6yaeOULEThH2MoSdDJZyMPH= Qi32hVA2u+BH+7+JHDusLpYe1GuKGOM5CHm45+yVcSn3BwDHCuFYcN5SgEPb7gh2tQ2rmqH1BKn= ixp4fXLmqp2EoxQmiYZg1V1ReSSF5AodBBqn8rUr6Eabaj6ykgixCeb0ioEEomcZwGpGojmTyfu= rpWNM0a8k3NHgJhrjBKKXb29iGtMaqvCYHULXLxJnLxRoSSaJ6D4WYxnCyGLGBIB8PLY9lpLHuA= kD2I4WbRlYsoRmRolPy/x9Kpj1nNFK2mknALPGHgGlGccAInlMS2krhmBKlZSCOEa0ZxzRhSt1B= +0YQJz3XQk2Qch4hV4bjfUVizZg2rV6+uyGdN1zJTOccl5bpj7yA0pBEim1hANtGMkBJNOphO2u= 8P0in2hRxWYRDLHsBy0phuDk25aMW+IIa4tYaFwA2xpEvBFBKBFCaOGcWJJHBCVdhWAk8P4+kW0= gjjWlE8M4bUTFR5TmMchCAbDpPK5agZJcPy1BBomkEksoBIZAFKvQUpbaQsIGWhuAKPjqZZaFoI= XQ8xE8p2niqBMFeYvkyGfjmkrOe4ewsQ/oSgbYSxw6UqXar8SxQn+ED6Ii5dUB6a8iMyQCKGRE0= oIVBCQwkdpWnl1SukZhSPpx0rOnosBWxkq8bFv/cVA/k8XakU9bHKL381klQqxdGjR06mhtMIBI= sXLyYSmYY25/OkbQd0o3jk8duFpiM1nYIR5pjDZmRf8PuBUNLvB9JDK0ZlaOXlyUpvESitdO01v= 19oOkorLjcl/Mf8cUOy4a0al5L7xPMk7f2pKRDmEe0RGroeRtdn12LCJ0ogzBWmZ3CQTF8fVc3N= RMuTIZUcSh0/Sy1G3Tpyj8odP5fP09/dTe++vXTqq1nVPL+Cnz86f/jDw/z2t/9AW9vJr0KiFGz= d6vCP//hzVq48q4KtG53+9CAD/Sli8+YRMq0Kh+OdSrRCpdqhyGRz9Hd20vPKHrrPXQ8Lmiv02a= 9uAmGuMOlcntzgIFpvL3YketwqJbMeBflslv6OdrJ9vcXzm3p03eXNb9a46KKhLqKh8QnH4hSO3= 3Zskuwb33BgZKW/KSKbK5BJpfAMAysULsaazyEU5DJp+o8eIdPfX7EEoOMPo8i7Nq7yjlW6G2W/= oVe/9LdSYAidsGGNKGY6swmEucJIqXALBfLpNI5tI1234kVxTitK4RRsnFwWz/UmjCOuHAYvvaQ= wjPHTdidi3z6FUtPjY5bSwykUEOk0di6HN56/eZbi5HI4udyU9vPD+S7u7fsdfUaayAlKlkRBQX= F14mJWVLVOSfumgkCYK4yha36WlW37E3FzTZgBzy7gOc60WcsAK1as48iRD7FrV0nchlrIjLNt+= PYlSzTq6yu71PxY6EIgXQfHthGa5n9fc6wvuLafWaimylpWir12Ozvqe9lttONP6x0f013ce8QW= gUKRG0gjDir+qeq9U9LGqSAQ5gpj6jrK84ZZR+MvCTW7KD1svGItjukam7e1LaWt7UPTc7AKoes= 6SIXnOGiavyr1SRV4mKEoKZGug+d55cSWqSArbF7R2vkv8ScKFMMPvWLYkS78dbEUfhhKMQcADx= D+3wYeFzgLpqZxU0QgzBUmbJko6aE8idIkoljnd85QjIdVfobKmFXsAsDSdUQxXV4JgaZNfVjhd= KKEKCYylfrCVD10JBIbhyyuKsDuDDzQBYMerIzBFfWQduHHnfDOZhhw4YFOuKwOlpeiRGbXSCUQ= 5gqTjESQjoPnOIBC2fao01JDGW8Azim8dzKhTpP9vPJrSuE6Nspx0IUgMQ2hcrOViGUhpCwP9V3= 7WLLJZK7PSCbTHyZ6/3jXe6zXxzymlHiOP4+ClCSnoy90FOBDL0O1CZfWwS174FAeXlsNt++Hjd= Vww0uwIgbXT3200FQRCHOFqU4kiBs6g3YelIUsDfnnEG6hgOM4VIUsGqqrT3dzZixVkQgRTSObz= 6Hphj+SmlNdQeHYNp5tYwhBY83kV8s+GQTAC2notOFba6DWhJCA+ztgdRz6XfjkLki58G/LoWb2= jlACYa4whqZx5fnn8eALL9Kby/uTf7NsGDUuCoTjUBsOsWnVShqqZmY925lATSLOhcuX8djOXQz= YBTz31CJKZhxKoTkO8+JxNp9/HvUVqZUxzuEA8hIiGoQ137/cYEFOgq18F4arfLfGriw0hmZjNj= YQCPOUsGHFCta0tpLKZsnm88DwamAj/V2TicRlyHsn3m/4a0PfWwlChkFVNEYsEsascD3muUTIN= Hn9urVsPHMV/ek0ebuy6ySOxXh9YuQ+Y+0/2feGDIPqWJxYJIxxCmU/J82CEGQkbBuAtij8tAsW= hCGhw7wQ/L8r4Mv74Y79cGYM6k8+Iel0EtxVU4CuaSQiEeKnWAZxJjOnJjSnEEPXSUYiJIK+UBl= WxeA9C+AL+8EUENXhb1sgYcDqGMyz4OZl8OGXYesAXF4/fW2rIIEwTyGBeAWUCPpChYjo8D8Xwl= XzIO9BnelPBDoK/s9ZvmtDF/CVVRDSA1dGQEBAQKUpFUmiFCetFOj4Lo2hmALmF7cp5Qs0gFQIN= fv0ORDmgICAGYsQkJQROFrAsG085/iFEiYi6oZZW71iClo3dQTCHBAQMGMRCF6TWMHNuXeyK33A= X427aP8OjXYSI1KxS69rCFqrF/Da+eumueWnxrQI81yL4w0ICJg+LM1iY+M6Lmhce1LvF/hLdFV= ah6Zy3mDKhXlwcJDOzs5pWzViqvE879gKxbOc0tpv+nSEOU0DXrGo0lw4H7/4vIc+R1L651pfk1= Iyf/58otGpyXaccmEuFArU1tYSm+KVDaYDz/M4fPgwzc3Nc+JB4zgOfX19NDQ0zPqbXylFV1cXp= mlSU1NzuptzynieR0dHB42NjXNCzAqFAn19fTQ2Ns76vgYwMDCAbduzV5iF8Jdmt6zZGeg9FM/z= MAwD0zTnxM0ClK/NbL9ZlFLouo5hGHOmr+m6jmmaGHMgiad0PnOhrwFTPpKZ/WZfQABBnHDA3CI= Q5oCAgIAZRiDMAQEBATOMQJgDAgICZhiBMAcEnCBSSvL5fDk8LyCg0sz+6d6AgGlEKcX27du56a= ab+PrXv05zc/PpbtIJUYqPzmYy9Pf3kx4cxHEcTMuiqqqKZFUVkUhk1sRPSymxbZt0Ok1fX1/xg= elihULU1tSSTCYJhUKzLopqxnrbPeMAACAASURBVAqzUop8Pk82m634Z+u6TiKRmHUXaybhui6D= g4PIKVgdORaLEZ6BZTILhQJbtmzh1ltvZevWrTjO7Cl8L6UklUrxxO9/z4tPPUVu1y6s9g5EJoN= 0HZRhoCWrsBsbia1cwdqNG9mwcSPJZHJGCrTjOLzyyis89thj5QQ2wzDoT/1f9t48Tq6q2tt/9q= lTc1XP85D0EDKHJBASQhgCAiIYxouK+oJcRQUH9FURxSui+L6KcL14UfwBClyBVwYDKpMyBQwJh= JCQkHnodKfnTld3V1XXfM7Zvz+aKrqTTnpIdXd1c57Pp5PuGnbtc2qf71l77bX26uH97n8gFIlb= zSPfWUl1yRw+fu6F1FTX4HQ6J7rrwyJjhdkwDP7noYd46pFHcCQHhhDHLv8+2PP9HxMCQ0qceXn= c99BD5OWNbSmcqcyhQ4f4xnXXEe3pSevOXRHD4LpvfpMrP/WpjErikVKyevVqfvnLX1JaWpqRN4= 6jkUgk2Lx5M3f+3//LnAMHOMdqo8xqJctiQfV4EPQVnNZ0Hf/BgzTt38/Lf/s7fz1xATfffjulp= aUZE0stpSQcDvP888/z4osvctlll3HGGWdQUlKCw+HgQEMdf65/j4QSREtEiQZ2sqV5Ky/85AmW= nHAON37z2xQXZX6SS2ac7UGQUtLR0sK/+bo4Ny99mVwR3eB3jU3EYiPfpcrkQ6KRCDNbW/lfVhu= 2NFbK/kvHITo7OjAMI+OEubCwkP/8z//EMAy+8Y1vTHSXhkVPTw8vvvgib65dy/Lp07nkUCf5Fs= ugN1ObELhsNkptNuYZBuu2bOWnV17JBd/8Jp+49NIxy3IbLlJKGhoa+OMf/4iqqtx6662Ul5cPm= PlarSoWVWBYFCxWsLssZBXbKZ6tsfNfz/O9W/fz3Rv+g3lz52XMzWYwMrdn9CUNZFksFFrTl8kV= VnTsU6322gThVCwUWq3Y0iigXoslIyskKorC2WefjaIovPnmmxPdnWERDod59NFHSSQS3PyDH2C= 3Wln7ta9zZkfHkBe+S1E4JyuLWfE4z/zmv4nGYnzm6qsnzP0npaSzs5Pf//73rFixgnPPPReHwz= Esy1cIsLtV5nwsj/a99dz2X9/hO1/8CcuXn5ZRN//+ZGavTEwykMmyIAZ9KdDPPPMMoVCI66+/n= vLycvILC6n6+tdoGOYxKEJQabdzjary8s9+xnN///uYrCkMh56eHr72ta9x2mmnceGFF+J0Okf8= XahWQflcD6UfC/Kre39KU1PTGPX2+DGF2cRkiiGlZN26dbzxxht8+tOfxm7vq+whhGDWkiX0Ll1= KdATteS0WvltUzKO33ca2bdvGptPHIBaL8cgjj3DWWWdx0UUXHbfVnlvmxDW/g9vvuBWfrzNNvU= wvGe3KMMlseqTBPkPHlsZ9btsNg8K0tfbRpLe3l0cffZRrr72WysrKAc85XC5yL15Fz7b3KQ6Fh= 7VwK4Bym43rEgmefewxZs2alRL78WDPnj10dHRw8803p8WVIgRMPymLt3a+yYv/eIGrPvO5jHNp= ZLwwS8BI44VvQEb6MCcdQmA54wxsV1yBzWpNW7OWZ59FTIIwRiFExro1Nm7cSG1tLQsXLjxCcIQ= QzFyyhL8uXszyN9eRNcxrSxGCOU4n/3jtNQ597WtUHCb4Y0U8HueNN97gpJNOSuvio2pTWHBRPq= +tfYHzz7uAwsLMMgcyWpglsDUUwjXIhSo5ssDi4Y8NLDTTR8Qw6MjQC2qykVdczNwlS9K6zeaG7= duJRkcy0R5/cnNzWbFiRcbGxO7YsYNFixYd1aq12e2ccf317Ny7l0XtHQz3NuixWDihu5c1L73E= Z66+elyiGtrb23n77be58847R3AjHN7rvPk2mpUDHKivM4V5JAjgBKeDk73eYQnx0R7rT8QwWJv= hF/5kQgiR1mlgplqh/ZkzZw733HNPRoZbGYZBfX09l1566dHPpRAUl5fTdvnldN1/P4Xa8FLLBX= CSy82tf/gDl3/mM2N+/FJK9uzZg9VqJT8/f/hvHOYQUiwCe2GMhsYDLD1l2eg6OUZklmNlEFyKh= WxVJUdVyT7sZ7iP9f/JsljSGndr8tFDUZSMTfP1+/309vYOWcVFCEH56afTUlPLSHb8KLHZ6G5r= G5dZjWEYNDQ0sGTJkjE71+5Cla07No1J28dD5t3yTSYVuq6ndTOfiQrHOhpSSuLx+DGFSFEU3G5= 3RiwgHTp0CJvNhnUYfv+80lJcl11Kyy9+Sdkw++5QVazRKKFQiNzc3DGd4RiGQXt7O4sWLRr2GN= N1A2mAHKbZbLUrHGyqz7iEJlOYTUZNY2Mja9asOaaPWUo5oot3165dVFVVpaF36cEwDJ544gkef= fTR1LH0r7YshCAnJ4f77ruPrKysCexp37mOxWLDEmXoi8uedvLJ/Gnhiczp748W4kOf4GELNYaU= RNpaiY2DxZy8Ke7cuXPYx9Ta1opTm4NL7bvBi8MF+rA/dV8PwVgoHd1NK6Ywm4yaiooKzjrrrLS= GTjU0NGRUuryiKFx66aWcc845RxXmpMU80QghcLlcwz5/uq6z/8ABrrzpJkpLSgZ/kZQf7jcjBL= quc/ubb2Kz28d8PUAIgcPhYObMmaxcuXJY7zlw4ABFRRfjcjk/EOHDwwEG9nn37t083PpwmnqcP= kxhNhk1QghUVU3rIlAmTSeh7xi9Xi9er3eiuzIs8vPzicfjfVt5DmFlJt0e5eXlwz7vvaFQ31YJ= 4zA7UBSF4uJimpubhz3GksWSrcPcxiHUG6KkpCTjFp0zW5iFoMtmo/mDnbySM6vBQuIGffsgr4n= oOpF4PK3dNPlooOs6LS0tdHd34/F4qKioyLiK3FlZWeTl5dHR0XFMl5Cu6zQ2NlJdXT2im+HBgw= eZPn36sF0Lx4OiKFRXV/M///M/fPGLXxyTKJCmpiZmzJhhCvNIkBYLrmu/QPYg05j+7q/BONrz1= kgE9YEH0tNBk48Muq7zwgsvcMcdd6Q2m1+1ahU33njjhO+61h9FUZg2bdqQvnq/34+qqkNGb/TH= MAw2btw4IM17LBFCMHPmTDRNo7u7O+2xxoZhsHv3bs4///y0tpsOMlqYFYuFvOnTKTvxxLS1GQq= FcObkpK29jzKhUIiWlpa0Wo1+vz/jrFCArq4ufvOb33DFFVdwxRVX8NZbb/HjH/+YxYsX8/GPfz= yjLK45c+bw7rvvctZZZw2aBBMOh3nppZf45Cc/OaIwtEAgwJ49e7jxxhvHLYY7Pz+fM888k5dee= omrrroqree5sbGRYDDI9OnT09Zmusgsh57JRx6ZxvT7dKKqKldeeSVXX301FRUVnHPOObjdbpqa= mjKuzyeddBKNjY1s3LjxiPBDKSW7du3itNNOG5Glr+s6b7/9NkVFReNaYMJms3H66aezfft2ent= 709ZuLBbj3nvvZcmSJRlZMCOjLWaTzMbtdlNWVpbWaW1OTg6RSCRt7aWL3NxcrrvuOqSUtLS0sH= r1akKhELNnz84oaxn6/MxXX301d911F9XV1VRUVKSei0QiWCyWES14SSlpbm7m3nvv5ec///m4b= mAEUFtbS0FBAQ8//DBf/epXj9taNwyD559/nmg0ygUXXJCRiUKmxWxiMgJisRjf/va3+fWvf01t= bS1lZWUZJ8wACxcuZNWqVTz22GMEg0Hgw0KyOTk5I1q8a2pq4u677+aaa65h7ty5Y9Xlo6KqKld= ffTUHDhzgySefJH6ci/dbtmxh48aN3HjjjRkR5jgYpjCbmIwAm83GXXfdxVNPPUUoFOKBBx44bq= EYCywWC5deeinFxcV8//vfp6urC5/PR2dn5wAL+lhIKTl06BC//vWvOfPMM7n44osn7CaUl5fHj= 370I3bs2MELL7yApmkjbsMwDNasWcOvfvUrPv/5z2ekbzlJRrsypJS0tbWxf//+tLUZiUQIhTIv= 02cyEggEqKurS+ti3aFDh/B4PBlnhUajUVpbW5k2bRoVFRWUlZVx6aWX8txzzxGNRjNywdLhcHD= FFVdgGAa33XYbFRUVXHPNNUOeW13X8fv9vPXWW6xevZrzzz9/wqf8yQzL66+/nt/85jfs3r2bVa= tWUVNTg81mO+YxaZpGR0cHr776Khs2bODWW29lxowZGRcz35+MFWYhBDU1NWzYsIHW1laAAZlXy= S9ipCm/uq7jcrkmVZXjTMTlcqFpGn/+85/TKqI+ny/johwA2tra+O53v8t//dd/UVFRQSKR4ODB= g2RnZ2ekjzKJ2+3mc5/7HAsXLuTZZ5/ljjvuYMWKFSxatIjCwkKsViuKomAYBpqm0dLSwoYNG3j= 33XeZNm0aN954I7NmzcqIG48QgtLSUm666SbWrl3LI488gtvt5txzz6WmpgaPx5NKronFYkQiER= obG1m3bh07duxg8eLF3HzzzZSUlGS0KAMI2W9Jubm5mfLy8rR+gM/nw2q1jipTKJFIkEikv3Cqo= ijYbLYRfznJoPzKysqMvhiHSzwex+fzjSrzyTAMYrHYmEQk2Gy2US3wtLa2YrPZRrZF5DDx+Xxc= e+21ZGdnc8MNN7Bu3Truu+8+fvzjH3PVVVel/UJPJrOUlpamJTRNSkk0GqWhoYEnn3ySd955B1V= Vqa2txel0EgqF2LdvH1JKVqxYwec+9zkKCgrSZsBEIhG6urrS5pM3DAO/38+7777Ln/70J9rb26= mqqkJVVbKysgiFQtTX12O1Wrn44os577zzKCwsTFuYX3d3N4qikJ2dnZb2kuzfv5/a2trMFuZMw= xTmzGYshdkwDLZt28Zjjz1Gd3d3Kozrk5/85JgsIKVbmJMkNwYKh8McOnQIv9+PpmlYrVYKCgrI= ysrC4/Gk3UJOtzAn0XWdSCRCMBjE5/MRDAaRUuJ2u8nLyyMrKwuXy5X2TMWxFuaMdWWYmGQSiqK= wYMECfvrTn5JIJFJ7Mmf6lPhwhBDY7Xbsdju5ublHbMg02bBYLHg8HjweD6WlpZP+eJKYwmxiMk= yEENhstozwt6aLySxegzFVjmdy3e5NTExMPgKYwmxiYmKSYZjCbGJiYpJhmMJsYmJikmGM+eKfY= Rj09vZm3A5co8EwDKLRKIFAYNKtxg+GpmlEIhH8fv+UWDQJh8NomjZuW1KOJcmxFgwGp8RYSxa0= DQQCE92VtBAKhfB4PGPW/piP4GTc5FQYXIZhkEgkiEQiU+J4NE0bsgL0ZCIejyOlzMjd6UbKVBt= riUSCeDw+Jb4b+HCsjRVjLswWiyUV6D3Z0XWdeDxOcXHxlEkwsVgsFBcXTwmLWUo5Zgkm442u6+= i6TlFR0ZSYASRvMFNlrCUTTMaKyX8rNjExMZlimMJsYmJikmGYwmxiYmKSYZjCbGJiYpJhmMJsY= mJikmFM/uXeKYKUMrUSbxhGqgCAoiioqoqiKJNqNdswjNTxJMOKksdjsVgm3fFMJZJjLfkdSSlR= FMX8bjIIU5gnGMMwiMai7Nmzh3++9CI7d+2ku9uX2iM3L6+AkxafzLnnnEdVVdWQZXQmGl3XCUc= ivPnmm6x5418caDhIsDeEIQ2cDgfTKio4dekpnL3yLAry87FYLBl9PFMJKSWxWIwD9fW8+M+X2P= r+Nrr8PUSjMRx2O0WFBSw6cQGrLryQkpISrFar+d1MEKYwTyA+n4831q5h9Qv/j9bQbjwVOjmLH= JTnWrHaFOJRnXBPM/+oe5tn3nyA2aVLueSCf2PZ0uV4vd6J7v4AdMOgqbGJ1c+9wHNvbaJRuhCl= NVgXnYzq7oth16Nhdvlaee7Fdyn660tcsHgOl378PGbNmondbp/gI5i6SCnp6elh/dsb+PPzL7G= ptZtYYTX2qrNQs/MRFhUjHmNv9yHWbD7AfS/fyrKqEj7zyQtYdsqSjK0kPZUxK5iMgHRVMJFSsm= vXLu6+91d0Ot6ncK4gq8SO1W5hMANFSkhEdDobIvh2KExTT+F7//tmKioqjsuiSVcFk0Qiwd+fe= 47fPvYXOmqWYauej5qbj1BUBjsgaehogW5iB3eTW7+Jz65YxHX/fu1xJ1KMZQWT8SZdFUyklDQ0= NPDTO+5iXVMXtjOvwF46HYvdCeLIJSZpGBjRELHmOux1mzk9B7799RuYNm3a8RzOmFUwmSjGuoK= Jufg3zkgp2bJ1C9d/+1piM7cw8zwnBVUubI7BRRn6tM3mslA2x8Ocix105K/la9/+EgcOHBjfzg= 9CIpHgL8/8lZv/+BT+i76O++RzsBaUICzWQUUZQCgWrDkFuOcvJ3L21dz50rv89P/8X8Lh8Dj3f= mpjGAZbtm5l1ee+wIbSU1BXXAqKisXuGlSUAYSiYHF5cZ1wIuLsz/BPWw3f+OGtNDQcHOfef7Qx= hXmcef/997nz/h8z+0pJ2WwPFuvIvgLVqlB7ag4FK7v5xW//g7q6ugnbICocDvPI/3ucXzy/Hu+= qL/e5LEaQpioUBdWTRf4lX2J1u+TO3/6eUCg0hj3+6CClZOv77/Pj+x5BvfI7uGedhLt6Lgm/D6= 3XP4wWBIrNjmfBcupnf4ybfvlr6urqxrzfJn2YwjyOHDp0iG9972vY57ZSUO1AUUc3pVNUQclsJ= +GiXfzwxzdPyI5dUkrWrlvH3X97GfXMK7DmFh7VQj4mQqA4PbhWrOLxne0887dn0XU9/R3+iNHV= 1cWtd/wnDaUnYi+vRVhUhMWCq2o28a52kMYwWhEI1YrjhIVsz5vD9374I/z+4Yi6yfFiCvM4EY1= Guf+Pvyd7SRfFM10I5fj8bBZVULnITW/eTv78xGPjLmZ+v5+Hn3sFceansHhzRyfK/VDsTmxLP8= 7P//goe/ftmxLbxE4UiUSC39//ALs8VdhnnDhgFqN6sjESMbRQcNjtCdWKa/4ydnqr+Nvzz2MYw= xF1k+PBFOZxoq5uP+/s/yezz8zHMkpL+XBUu8KMM72se/8f+Hy+tLQ5HKSU/O2553k/4cJWXJm2= xRx7QSnGKRdy/x8eJB6Pp6XNjyL79+/nlT3NeJaeh2IdGO0iFAVHUSW9uzcjdW3YbSpWG85Tzuf= JNW+bVvM4YArzOGAYBu9v34K1IoDFlt5T7s6z4WMfW9/fktZ2j0U0GuV3f3wIMWMxQrWmr2EhyD= rxNN5u6eFAfX362v2Isf6djbTnVaNm5w36vJqVg62glNihlr6Qn2EhUHMK2Rm1Un+w0ZzRjDGmM= I8D0WiUv730JAVV9uOd8R+BokDxLCcvvPTsuF0su3btotPad3GnG8VqI1A8gy3vb0t72x8V1m/b= g7W8FnGUyAsQOMuqSfh96LHhb1wvLBastQv47f1/MGc0Y4wpzONANBqlvmUfnnzbmLSfU2Fn7Tu= vjVslkrc3bMA2bxmK3TEm7RtZBTS1HxqTtqc6kUiEjfsasA5x0xRWG7acQhJdHSNq31lWzVsbNx= GLxY6nmyZDYArzGCOlJBAIENN6sTrHpuqJzaHQG+uip6dnTNrvj2EY7N23D1v5DIQyNsejeLI5F= Og1ozNGgc/nwxfVUWxD3zSteUXEu9oxYsOPH7d4sukOhc2Y8zHGTMkeB3p7g1g9YuwyngRYbILe= 3t6xab8fhmEQiSfAOjbWP4BicxLwx9B1fUqU8BovkqnXWG3DipJRVCvOsiqi77xMXlklApAMfOt= A55gAw0AA4fDUqN2XqZjCPE7o8bENMRrXJFfJMONgj+cDTEZDX/r2MM+fABcJbjx/EUsWnnjE+w= Tig0dk6nfDMPjCC/cj5Yc7IJqkH1OYx4GsrGyMhILUJSJNoXL9kQbocdKetz8YiqLgdjowopG+F= f0xuDCNWJQ8j8u0lkeIEIKcnBxEIg6GAUOdvliE091xLlx5Dk7H8DaRikajxCMRvF6vKcpjiOlj= HmOEEHi9Hhyqh3hkbHymiahOnrdkXDaKUhSFhScuINawCzlGVrMe7KbAFOZRkZubS1mWC2MY0Ra= FiQBXLD4Bl9OBEGJYPz6fD7fbjdPpHIej+ehiCvM44HA4mVu7kKBvbFayDx2IcMayc8Zt68yTFi= 9G370RIzo2C0AWfweVpcVj0vZUx263c8qMSuIdTcd+YSLGqfYQc6oqRtT+9u3bWbFiBTbb2K0xm= JjCPC7Y7XY+vvJiOvfFhx/PP0ykIfHVJTjv7AvGbWpZXV3NrFwH0Zb0725nJOLktu9l8aKFaW/7= o8Ip82aht9QdPXlESpx1m/n0aQtxOYYf8hiLxXjnnXf41Kc+hdWaxsQikyMwhXkcUBSFhfMXY7T= mo8XS687o7U5QyCxOXDB+QuZwOPjRd/83cs+7SC2RvoalxL/5X5xcWUB5WVn62v2IceZpyyk9tI= dEsHvQ50Wgk++tXEBV2cj24W5tbSUYDFJZWYkygl0ETUaOeXbHienTp3PmwlVsea4DXUuP2RwLa= +x8McAnzriCnJyctLQ5HIQQzJs7h1PzrETqtpOuKIpIywFyd77ODV++zpwqHwdlZWVcevopBF9/= +khfs6GzSAmwdO6MEW3AHw6HeeihhzjttNMyrnrOVMQU5nHCarVyzf/6ArmBhdRt6DnuaDNDl+x= +o5vZ3pVc+IlPjrsF4/V4+OK/XYx440nivpFljw2GHg2RWPd3fvat66murjZX/I8DVVX53FWf5v= Qsjd731w9waahBH5+cUUBe1vDFVdM0Hn74YXp7e/nYxz5mWsvjgHmGx5Hc3Fx+8bM7cXfMoWV7C= D0xOktTixs0bAxRazmTH/3gVjweT5p7OjRCCE5evIiff+NLqG88Trzt4Ag2xOmHlGh+H9HXV/PV= lYs4ffmpZjRGGsjOyuJH3/4mC8MNhHdvwkjEkVqcxfEWzlg0f1jiKqUkEonw/PPP09rayk033TQ= hY+2jiCnM40xlZSXf/cqP0XZMZ/tLPmIhffieAAmRQIJ3V3eQ23kSX//S9ygoKJgw69Jms3H+uR= /jPz53Cc43nyS0//0R+ZylYRBtrSfyj//hxhWz+cJnrzLDsNKEEILp06bxo698gRPq3qTntaew1= 73H189bhsflGvL9Ukra29u566672LRpE1/60pcoLCwch56bgCnM444Qgtmz53Dnbb9jnv0i3n7Y= R09LjHhYRxrySJGWfZEX0V6NzoYI7z4S5IqTv8lPf/hLqqsmfspvs9n4xHkf4/+75Vt4XnqQwCt= /JuFrxYjHPsgO7H9AEqREagk0v4/we2/gfumP3PWlK7nms5+ZEgV7MwmLxcKc2bO4746fce2MbH= I2PUciEiIQ8KNpGlLK1I6Eyd81TaOrq4vNmzfz/e9/n+zsbL75zW8ybdq0CR9rHyXMKtkjIF1Vs= pMEg0HWv72Of776HI3BbcTsPhw5EqvLgmpT0BIG0YBGIqjijBVRmT2HVRdcwSlLTsExgjCno5Gu= KtnQl6rb2dnJCy+9zD/f3szusCDkykNk5aHY+6xgqcXR/V04oz1MExFWzKrisosupLq66rgrZIN= ZJftYhEIhNm3axKuvvgpAYWEhBQUF5OXlYbPZUmOhtbUVn89HVlYWK1euZMGCBWkZa2aV7OGRrJ= JtCvMISLcwQ5+lEovF8Pk62X9gP5s3v0vDwXriiThul5sZM2Yyd/Y8aqpryc/Px2q1pm1gp1OYk= xiGQSgUorWtjR27drN1+w5aWtuQUlJYkM/cWbNYMG8O5WVlZGVlpUV0kpjCfGyklMTjcXp6emhs= bGTz5s3U19cTi8VwuVzMmTOHmpoaampqyMnJQVXVtI0LU5iHR1KYzb0yJhghBA6Hg/LyCkpLy1i= x/PQBG94LIVAUZdIMZkVR8Hq9eDweZtTWsurCT6SO5/D0XpPxRQiB3W6nuLiYoqIiFi9ePGCsJR= cEzaiLiccU5gxiKl0QpvhmNkIIM/olg5k6SmBiYmIyRTCF2cTExCTDMIXZxMTEJMMwhdnExMQkw= xi3xT+Z7v0uJ4BkEH7/wPzJTP/kgqnAVPxuDv99KjBVjmcsj2NchDkZtD7ZkVISDAY5ePDglIg4= 0HWdWCxGNBqd6K6khXA4jKIoBIPBie7KcSOlJBwOk0gkpsRY0zSNWCxGPB6f6K6khVgsRmlp6Zi= 1P+bCnJOTM6W2CTQMY0qFtU2lgpr946WnAuZ3k9mkMznqiLbHrOUPsFgsZrykiYmJyQiYOqafiY= mJyRRhgMWc9DmamJiYmIw/SZfPAGF+9tlnefTRRyekQyYmJiYfdb73ve8xY8aMgcLc3t7O+vXrJ= 6pPJh9BFEVBURSklBiGMWVCqUwmL6oFcrMtdHbraa9qPxTJiKIjFv/MC8NkPBBCMH36dC677DJq= ampoa2vjr3/9Kzt27MAwjrMg4mj6w9ELyRzrOZOpgxCQ5bZwzZXZFBdYuP03PiKx8R+LYO4uZzI= BWCwWLr/8cm6//XZqamqwWCxIKbnuuuv42c9+xp/+9KdxjXdVgFluNy2xGH5NO+K5aqeTzkTiiO= dMJjfJyD0pwetW+NRFWXzusmwqS1QefKoHTZ+427EpzCZDYrPZMAwDTdNwOp0YhkE8Hh/17Kq2t= pbbbruNGTNmpGLChRBMmzaNX/7yl3R3d/PMM8+MueVsFQKnxYLXYmFFVjYNsSjvBAJoUhIzDJyK= gkdVOTUrm5CUvB6LohkGvb295swyg7HnFaLYPqi6Ivv+0aMREr1+pK4hgFMWOznnNBfxhGT1C0F= 8XTptnRrPvhLk3z+VQ93BBNLqwpmXC8oIY68/+MxEsAct3Jt6WAiBx+MhEomgDXGTH5Yw9w8KH4= 8BKYQwB34GoKoqCxYs4Le//S1btmzhtttu46mnnqKhoYEvfvGLo84YvPrqa6iuqRn0e87Ly+OKK= 67g+eefH/OMRLuicHF+AV7Vgl0ozHA6mel0sTEYYHsoxAV5+RTabKgWC56SYr5w2mlseOcd1q9f= b47PccBmswF9lXYqKiq44YYbuOeee2hrazvqTVtRbSy6/WFclbUIKUB8kKqfiOPfuYm9f/gF4Yb= dnL7EyS3XFxCKpN2YewAAIABJREFUGGzbFeOfjSFefL2Xnfus/OONEC3tGoVnXM6sr96Koto+8G= dJoK9NoE+AB/NzCZBagv2P/BcHVz8AHyQKzZ07l4ceeohNmzbx9a9/nUTi6IWLhxTm8vJyFi1al= BLndevW0dXVNdTbAMjKyiIej1NYWEggEMDv9w/5HiEE559/Ps3NzWzfvh2LxcJJJ51EXV0dnZ2d= A17r8XiwWCwD2hVCMGPGDOrr64954CbHxm63c8kll/DlL3+ZhoYGpk2bxt133828efNIJBKjTxo= SgnhxNX/f2YyiJNuQCERqfO8Jg2qzwxgLc0TX2RsJszw7mx5Nw6VY0KRkRyhERNepj0YpczgIOh= 14Fy1C03V27949IT7wjxoej4cbbriBt956i7Vr12KxWNi7dy8333wzDz/8MJs2bRr85igEtpx8H= PnFSMNA6w2AEKi5hdgLSrAXlLDl1n9HVWO4HAqGATarQFHAMKC+qU8zpIQKpztlfWvhXozY4ONR= sdlR3R5AoEdC6NEIUjGOyHL0er3k5+endOu4hHnBggXMnTuX9957D+hLSbZaranfk6vqiUQi9Zy= iKGiaxsc//nHef/99pJREo1EURcFqtaJpGoZhYLFYUlZT0rQXQvAf//EfrFu3jltvvZWcnBy+/e= 1v89vf/pY333wz9dm6rnPhhRfS3d3NK6+8kkqPNAyDc889lyeffBK/359q12azoes6mqalshF1X= UfX9aFOwUcOh8PBN77xDT772c/yzjvvcPLJJ9Pa2ooQApfLdXylrqTkye1NvJY1F6EMLu7dBwJE= EmPvz1WEoNRmR0HgsahIKXFZLORbrUSlpMhmw6KqZC1YgGa343a7ycvLw+fzmRbzGCGEwO1285O= f/IS8vDx27dqF1Wrl8ssvJzs7m5dffpmvfvWr3HjjjYTD4aO1AggS/i62/vxrSC3O9E99laLTLi= B3wVJKzr4ElKcAsFoFl5znoarCyp//HsBhE7R06B98vwKEQBo6B/9yHx1rX+RD8/jD8Z+3eAUnf= PlHIBQan/0Tba+sRhoGkbYmkmEdUkq2bt3KVVddRWNj45BrKEMKs6IoxONx2tvbiUQiBAIBvve9= 72G1WlmzZg2LFi0iNzeXbdu28d5773HllVditVpZt24dZ599NsXFxezduxeHw8Hll19OTk4OgUC= AF198kVWrVgF9ovnggw+mNjqyWq2EQiHy8vKoqanB7XZjtVpZtmwZp512Gi6Xi7Vr13L22WfT3t= 5OLBZjxYoVCCF46qmnqK2t5brrrkNKyeOPP87cuXOZP38+iUSCZ555hosuuoj8/Hz+9re/sXnzZ= vMi60dubi4//OEPWb58OTt37uT0009n5syZzJs3j7Vr17J69Wrmz5/PqlWr+Pvf/05vb+/QjR5G= 6xvP4T5pJRbXkXuoSMOga+82jPjYJzo5LRY6E3GCusY8t4cuTaM5FsNrUXEpGr5EnK26zuz8fBK= JBBs3bsTlcpmutjFAVVXOOussysrKOOGEE6irq+Ptt99G0zTKysrYsGEDl19+OTU1NWiaxuLFi1= m/fv0xZy9aJExw9xZiPYeItjdTsOxjKKoNT9VMRKhvbcNhE3z+khxcjgD/fCPE4/eU839+6+Ppf= 3y4EZaUknigh0hHc5/QSkms+xBS00CAvbAEKfss5EjLQbq3vQOG5HAfRzQaZd++fQSDwSFnXUOm= ZFssFqqqqli6dCnz589HURTy8/N54okn6Orqorm5md7eXlauXMnnP/95du/ezcMPP0w4HGb79u2= sW7eOgoICli5dyrx583jggQcoLCxkyZIlFBcX8+ijj5JIJAZU59Z1nfb2dmbNmkVVVRV1dXUIId= A0jfr6ejweDwsWLGDr1q3s27ePa6+9lueee47Vq1djsViIRCI88cQTtLS0sHTpUm655RZisRg1N= TVcfvnl1NbW8vTTT7Njxw7zAjuMSy65hAULFtDQ0MCZZ57JzJkzsVgs2O32VDn7devWcdNNN7Fk= yZJRWc7Bne/iW/sCRiJO/0BRaej0bFrDoVeeQhpjP5MJahrrAwHe9PvZHwnzVjDAG/4etodDBDS= NDcEg/2pvY1ddHWvWrOG1115j69atpitjDHC73Vx11VU0Nzfz7LPP8tBDD6Us4oKCAi677DLuvf= de5s2bx9tvv82qVauGdKcJRcHidGPNyqPorIsQSp8dmvB/6IoVAkIRg3v+p5vqaVZmVdv52tW5l= BZb+rVjofLSa1n00z+y6GcPcuKt9+EqrwIkRwY6y9Ti34C+CMGsWbN44IEH+MEPfpCa+R+NIS1m= TdNYu3YtTz/9dErEurq6aGtr4xOf+ASzZ89m+/btTJ8+nezsbDo7O+np6aGoqIhEIoGu66npSSA= QoLe3l1AohNvtxu/309XVRSQSGXCSpZTU19dz1llnEY1GOXjwIIqisHLlShKJBM3NzQghSCQSSC= mx2+10dXWl/NldXV10dnYSCATIycnBbrfT2NhIe3s7bW1t5Obm0traOmW2u0wnf/3rX+nu7uaee= +6hvLw8tf1kUpznzp1LS0sL1157LXV1daO6semRXhof/w3x7jYKzrgYi9uLTMTwrf8Hrc/8gUSg= a5ABn34koEuJLiWvdHcTlxKj3+fqUmLE47z++usp95vJ2KAoCrqus2HDBnRdJxqNpvbWbmpqQlV= VQqEQ0LflZnZ29pC7PNrzizn5zj+DUHCWVCIUhUSwh7Y1f0We03fjNwxYuzHMpu1RvnBFNqoKM6= pslJdYaf7A5hCKgqt0Gs6iPuPRiMewur19qj6CcVpRUcHZZ59NWVkZv/rVr47Px5wUr+SgFEIQC= AQwDCMVQpWXl0dPTw8vv/wy5557Lqeeeip1dXWEQiFWrFhBe3s77777LhdddBHXXXcdBQUFvPLK= KyxbtgyAUCg0wOfS0dHB/v37Of/889m2bRsul4tEIkE0GsViseB0OvH5fDQ1NXHyySfz9NNP8/n= Pfx4hBK+99hq9vb0YhkEkEiEcDvPggw9SVVWF1+ulvr6enp4e8yI7Ct3d3fh8vtSNsqOjgx/96E= csXryYL33pS9hsNmw2G/v27RuVGyOJ5vfR8vQDdLz0JKonGz3Sixbo7rOiJ4DoUcaDlHLK7CGcy= cRiMVpaWvjWt76FqqqsXr06JdYlJSVs2bKFFStWEAwGOeGEE3jrrbeGXB9SbHZc5bWAROo6oYY9= 1D/xe4L7dyJX9rnRQhGDx58NkEhI8nMtKEJgUUBV+0WiGTqtrzxNz/sb+v7WE4T7+Y+Hg5SSDRs= 28JWvfIV9+/YNuSfRkMK8fv36I6zZRx99lHA4zPPPP8/69etJJBLE43GCwSB79+5FVVV8Ph+qqu= J2u1Mbfm/dupWsrKyU1XzgwAGklPztb39LddQwDK6//nq6urq4/fbbicViCCEwDIP33nsPr9dLL= BYjFouRSCTYvHkzgUCAvLw8pJQcOnSInTt3EgqFWLt2LYZh8K9//Yv8/Hx0Xaezs5MdO3ak7r4m= xyYYDPKXv/yFaDTKF77whVQIUzpcQFJLkOjpJNHTOfSLTaY0kUiEu+++G7fbTXFxMXfeeScvv/w= y27ZtY/fu3SxdupTvfOc73HLLLVx//fX84Q9/GFKY4z1d7PrvW0gEutBCQaIdLUQPNYP24Y229Z= DGtj192uO0KwzmmZO6TtfmtTT9/RGSLorRuNr8fj9PPfXUsLYeGLbFfPgHQJ+le7jAtbe3D/i7v= 1UVjUYHhLYlLZHDK060tbUBDBqWFwgEBhxUJBIBoKWlZdD+JWlqajrieZPB6enpYdOmTRQXF9PY= 2EgikcDn87Fp0yYcDgebNm0aVjSLAMpKVLwuhUDIoLVd6wv97DcDFAKyPRYicQObKugNGwOek3L= EM0agz2cJfZZYVlYWkUgkNVYOx+l0ptxiXq+XQCCA1Wo9ahKN3W5PtW2SHqSU9PT00NPTQ3t7O9= ///vf5xS9+wZ49e0gkEuzevZtbbrmFFStW8PTTT3Po0KEhxU2PBPG9+zoxXwdIo09MpRyQL7K/I= U5bR18EkHGU5oTFwrTL/p3CUz/2wQOgBf3suPuHaMEjtURRrUhpgKEj+83EZsyYwR133MGaNWv4= 3e9+d8wkk0mX+Wcu1o09u3fv5vrrr8dutxOPx4lGo6xdu5ZrrrkGIQR+v39YoqQocMYSF74enfq= mOMtPctITMCgutODr1oknJIV5KvNOsLNxWwQkOB0KwZCBpkuK8i00tmiUlaj0+HW27ooNW6ArKi= pwOBy0trYyY8YMmpubicfjqeMpLCykp6cHVVWpra1l165d6LrOiSeeyM6dO7HZbCQSCYLBIKqqU= lBQgJQSVVXRdZ3s7GyampqQUuLxePD7/eTm5hIKhbDb7bS2tg6Z3WUyOJqm8f7773PLLbfQ1dWF= pmkcOHCA7373u2zcuJEXXnhhCPfSB7UfdR2pxZFa/LBn+/4xJOyrT9AbNkBCb9hAN2Qy8CLVjkD= grZ2Hp3puqo14dzuqw9UnzFL2OauFAkLgqZmDo6iMcNMBeg/sAmQqs/Xss8+mqKiI+++/f2oJs8= nYk0gkaGxsHPBYMBgceS09IXC5BOUldhqaEyxd5OTt9yI4HQorltiJJyTvvh/F61FIJCSfWOnhx= dd7Kc5XmT/LzhvvhFl+khO7TdDSrrF9bxxNG/6NWVVVSkpKCAaD5Obm0tXVRU1NDZFIBCllamE4= GdtuGAY+n48FCxbQ3NyMx+OhpaUFp9NJYWEhkUgEXddTC9ezZs1C0zTC4TDTpk2jra2NyspKEok= EnZ2dpjAfB5qmsXHjxlRoYnt7O3fddRfNzc3HXDSTukbT84/hLCon3tWBHhk81nnj1ij3PNLF86= /2Eo9LJLBuY5j//lM3vWGDlvYEwcg2Glc/gBgkgiIR6EGL9M3IQ437Obj6AYSiENi1mUSgC4vDe= cR6yebNm7npppvYsmXLkMlvpjCbjB1S0u03eGltCF+3Trdfx2kXzJhuIxQ20HSomWblkE+ntEgl= 2GtQU2lDVaHDp3PIp1NSoDOtzMqsGhuvrgsxXK1LrntYLBZCoRBOpxO32000GiUajeLxeFKJIm6= 3O+X3C4VCbNu2jenTp2MYBmVlZXR3d9PT05OaJbhcLrKyslLhXHa7nUOHDqUWxSsqKrBarUd1nZ= gMn+QMORqNUl9fP/TrDZ2Gx+8lmcpnaEcKoJTwxtth1r8bRtNA/8Db8NZ7Ud7dFkVKSGgSKd4js= Gdb/1ySD+nXdu+BXey+96d9besJpGEQTcY8J33SUtLd3c2DDz6YCpw4FqYwm4wZhoR/vhEinpBo= uuTpfwTRdMmeA3HCEflBqKMgHJHYrII3343gdirEE5J4XJLQJL5unSyPQiQmicaHby03NjYihEg= tHCezTHW9L6vL4XCkpsM2m41wOIyUkubmZnRdJxAIIIRAVdWUICdFoq2tDZvNllqYtlqtxGIxdF= 3H7/fT3t5+jKw0k7FmOJE9ui45fJnkyMc0pD60JSB1HXlYY4f/nWpxmJbFAGEuKyvj7LPPHtYbT= UxMTEzSS3Z2NgBC9ltNG7EP0cTExMQkrXi93oHCbGJiYmIy8Qy5V4aJiYmJyfhiCrOJiYlJhqGa= noypw6j3SDYxMckoUlEZpkBPTgYr+2UKtInJ5Ebtv6GGKc6Tj2Ssbv/fTYE2MZncqMmNWpI/JpO= HpBALIVIlvpI/JiYmkxc1EolgGAa6rmMYHxYQNEU6c0laxUKIVP1CVVVTP9C38XjyNSYmJpMLNR= AIkEgkUhUaTLdG5tPfUlZVFavVit1ux+FwYLfbBzxvirOJyeRDld99EMUwUIexebNJZpESX0Uhr= ijI/7oORVFS+0IMVRPNxMQkM1Et79VjK8ye6H6YHAdGbxQjECISiWCz2bBarVgsFqSUpr/ZxGQS= olpnV1L67O0T3Q+T4yBw33N0//wxYrEYmqYNiMowXRkmJpOPVBzzzp07J7IfJqNkzpw5qd81TUs= t4iajbPqLss/no6OjYyK6aXIcFBYWUlBQMOzXm9fy5KT/tZwSZk3TWLBgwXGHzimKkrLUjqcSdT= raSYaRAWlrZziFFI9G8pjS1c7hVUYOF+XDMQyD2traVEFVk8wnkUjQ3d09ove4XC6mT5+e+jt5g= x7u/4NxtNj4kbZ1tOf7j9eRzvSO9/iG6suxXpuuvmzbtm1AO+rhjQYCARoaGoZVbPNwFEWhoqKC= vLw8urq6aGpqGpUYWiwWqqqq8Hq9tLa20tHRMSoRczqdVFVVYbfbaWhooKenZ8TtCCHwer2pihb= 19fWjqrAthKCgoIDy8nLC4TD19fVD1C0bHEVRKC0tpbCw8IjnzMVbkyTJa7m9vX1U16DVaqW8vB= yHw0FnZ2eq2stIcblclJWVoSgKbW1tBAKBEbcBffsUl5SUoGkazc3NgxaJHorkNZiXl0c0GqWpq= WnUOldSUkJWVha9vb20tLSMWufKy8txuVxHPHdEBZPm5mZaW1tH/CFJdF0nLy+Pffv20dPTM+p2= XC4XHo+Hurq6UQkh9B14bm4uBQUF1NfXj7qqcXd3d2pQNDY2jrqWW29vL+Xl5XR1ddHc3DxqIY3= FYiOa2pp8NNm7dy8+n29U701WZqmsrGT37t0Dqt2PBFVV8Xq9OBwO9u7dOypBhb7yXYWFhfj9fv= bt2zcqQQXo7Oxk+fLltLW1ceDAgVFfg36/nyVLlrB//37a2tpG1Qb0zYj6uzCSHLFk31/5h9NpX= ddpamoa8P7jdWP078fxtNN/Sn+87Rze3mg4lpthJBxtUGZi9mZ/19hgfTv83B7rNcP5jJH052jP= D/XeyYCU8riLwabjWu4/5o+3nf7/j5bktZMsMTZakovso71BHN6fwzlqzT/d0ND0BIqwoAjLAD9= rfyKRCGvXruXTn/50xq7+T5aLaSoSi8XYt28f4XCYoqIi8vLycDgcSCmxWCy0tbWRk5PD66+/zv= z588nPz8fpdKZExe/3Ew6HqaioQNd1FEVB1/VUxqOmafzzn/8kNzcXwzBYtmwZUkpUVU0N+uT3r= 6oqbW1tZGVl0dTURHV1NRaLBUVRUgungUCA4uJi4vF4KiY8kUiQSCTYsGEDK1aswG63T9j5HDVS= wrF8o0jEoFVHTSaCowpzs3839Y5XODHvApZXXcKrr75KaWlpqsJrMonB7XZTVlY2nn02mUTE43H= ee+89GhsbWblyJa+88grFxcV0d3cTi8WYNm0aJ554Ivv27aO5uZns7Gyqq6tpa2tj69atLFy4kF= gsxpo1a4hGo5SXl6MoCqFQiPPOO4+uri4qKyspLi7mj3/8I01NTZSUlNDc3IzX6yUajZJIJLBar= ZSWljJnzhzuv/9+Zs+eTUtLC/v37+eUU05h7969nHPOOXR2dpJIJHj99ddRVZWKigrq6urIzs6m= paWFZcuWTTph1np7cW/fTtzrxZg9G/FBun4yzl03NBp63wNNpcwzE4ftSJ+nyfhyVGE2FA1LdoS= sAgfl5eWpKUQwGKS+vp5Zs2bhcDhSftNQKITH4xm3jptMDux2O3l5eRQUFJCTk0NFRQVWqzW1L0= t2djYOh4Nly5YBfRZ2b28v06ZNIx6PM23aNLq7u3G5XIRCIUpLS3E6nezZsweLxUJ+fj7t7e10d= 3ezfPlyLBZLyh9ps9nweDz4/X6sViter5eCggKmT5/OjBkz6OrqIjc3l1gsxuzZs3E4HIRCIeLx= eOoGsX//fgoLC/F4POTl5U2+iBYpUVtameP30xuOsLOyEqvXi8/nw+/390VvKAYBpZGsvByEJY4= w3BPd6488RxVmgQBDQdcMEolE6nG3201tbS1WqzX1WHd3N6WlpWPbU5NJid1u58ILL0z9nVzoOD= wk6dRTTx3wuBCCRYsWpR47PMRo7ty5qd+XL1+OEOKItvtvgZr8G+CKK65IvS55Q0g+t3TpUgAWL= 16MEIL58+dP7m1UhYCZJ+C65mriPT3ILVuAvoillHtSKJQmTqHMXkZZSSUtTW3H7cs1OT6OKszZ= 1hL0wBlE4w429W7C6/X2vUFVB1jGyZ3p+ou3iclQHE3kBnu8/37Tg73u8Pcc67nhftZw+jpZMAy= DtzdsIJFIpCx+t9uN2/2hZVycW0G0N0HDgcajrieZjB9HFeYcVxHZ9MXKBoNBsrKyBn1dNBpF0z= RzwxyTAUgpicViw46UsFqtqVlYcrFtuILocDhS1vFww7EG+8zhRjEIIVK7+E0GkgumQ4lt/1mwy= cRyhDAPsDaGsUpbXFxMUVHREVU0jmfQHl6V43jbSUd/Bvt9tP05XtLVzliiaRrRaBRFUYjFYqiq= imEYKZFIRkwkRbWrq4vy8nKEEMRisVSYlaZpA7Ilkz9JUU0KuMPhQNd1YrFY6jOS03FFUVIzO03= TcLvdCCEIh8OpePBwOJwS93A4nBJew+hz5SULENhsNmKxGLquD7A4TcaWdOjBZOIIYc7Ly6Ozs3= NUIWZCCPLz84E+wR6uxXQ4iqKQlZWVytRpb28fcRtAao9iIQQ5OTn4/f5RteP1elFVNZUFGA6HR= 9VOXl5eKpLF7XaP2v0zmZJLpJQ0NzcDcPDgQeLxODabjeLiYqxWKzU1NQADzkUyYkDXdXw+H3V1= dSlL2G63U15eTk5ODtnZ2SmhTpIU197eXg4cOEB3d3eqverqasLhMDNnzsRqtR4RQ5p83ZYtW1A= UhUgkQiKRwO12o6oqhYWFVFdXD7ixZCrJMR8MBkd1DaqqmvJDJ6NbRtOOw+HAarWiqioul2tUY1= 4IgcvlQgiBzWbDZrONOvMvOzs7dQ1aLJZR+dKFEKlrOSsra9RZkcn+DMYRwuxyuZgxYwYejweLx= UJXVxdutzsV0xmNRnG5XBiGgc1mO8KatFqtCCGoqqqivLx81B1OtjNr1ixqa2tH1U4yRlVKyYkn= njjqgHtVVVOumsWLF496YSQ5VczLy2Pp0qVDtnP4olNy8St5k5gseL1eOjs7KSkpwePx0NvbS0F= BwZDuLyEEkUiE3NxccnJy6O7uxuPxpNwQx0JVVex2O7W1tXR1dZGdnZ1aGxnqc71eLzabDa/XS1= ZWFoZhpOKkJxMlJSXk5OTgcDjQNI1QKJS6mSVnFVarNRU21x+LxZIS5nnz5o3ayLJarTgcDqDv2= hlt9q3dbkdRFLxeL0uXLh21wCcNtWRK9WiFOXmjqK2tpaSkZNQGaPIcH84Rwvz666+zZcsWFi5c= yKmnnsrvfvc7amtryc7OJi8vj127djF9+nQ6Ojq4+OKLB92zIdn5dIQWJaePwyU56JL4/X6i0Sh= FRUWp+NPjWWVPhx8ueeMZiq6uLiKRCN3d3djtdqLRKAUFBakwsslCQUHBqKx8RVGoqqpK/V1SUj= Ls97pcLmbPng1AZWXlgL4ci2QkxmTHMAwef/xx4vE4CxYswG638+c//5kzzzwTIQSFhYXU19dTX= FxMb28v559//lHDXfv74o+HpLU7Wnw+H1arlaysrJTYj5ak1Xy8CCGGFSbc2tqKoiip2XbS2m5v= b6e6uvqI1x8hzIsXL6aqqopEIkF2dnYqo8/tdiOlpLy8HFVVKSsrO+6Tk24ikQj79+9n5syZKXG= OxWJEIpEBU8+WlhbcbndqOpKpSClpaGigs7MTr9eLEILc3NxUXT8Tk6MhhOATn/gEXV1dBINBZs= 2axQ033ICiKKlyZBUVFSiKknIvZRLhcJiOjg4qKytT12g4HMbhcAxIz961axcnnHBCxif9+P1+3= nrrLTweD5qm4fV6qayspLOzc2hhFkJQWVlJZWVlatq8ePHicev88ZJc0GlsbKStrS21w1YsFkvt= 5+F2u3E6nSmhy2SEEFRXVzNv3rzUAlQyCWLSMURK8BBvhtRCdP/fR/bOYb1eSqQ0EOLDbWeT10K= mj5f+KIrCtGnTUrOFpF90MiClJB6PE4lEaG1tTe3C2NbWht1uJxgMAuDxeFKGV6YLs91uZ9WqVT= idTnRdTy2GFxUVDfr6w0wviZ4IoWs99A1pAAuqvQBFyaw76mBYrVbmzp2L2+2mpqaGRCJBZ2cnk= UgklXEmhCAajWachTAYBw4cYPPmzZSXl9PT00M8Hmfp0qXs3LmTSy+9dKK7NzykJNTcTO/27VgL= CvDOm4ceiRDcsgWsVrIXL8Y2yLaHALF4lIZDuxACBBaQAik0JCA1hZmVg7scpJRsaWjFEAogUAU= gBKUuCwqQlZV11Kl5465/gO9lrCUXUjDtNJp3/wNL8C1ctV8hO79iEs1WJHoiiDTC/R5RUG2FGX= +DSc7Qp0+fntpXJR6Po+s6DoeDoqKi1PfndDoH3TYzk5BS8s4776DrOtnZ2YTDYZxOJ7NmzaK9v= Z3i4uIj3nOEMMf9L2ONPEo8rmG1CnTdSjT3B7hyFo3TYYwei8UywN8TiUQIBoNEIhFCoRA5OTkI= IXA6nRPYy+Ezf/58Zs2aNWCzf6vVSm1tbcZfXEn0cJjwf99D0e7dRBwOAl++ju5XXqV6x3YMCb5= PXkTh1VcP+t6eSAdP7vkJqgNEzAEJFbx9QtPbCj8uf2LwzzQMfvjaThLZxQggmwTConL3mdOwJG= KpRa8jkajxA+Qbr6K1vU+8Kxdf7N9YVuCjkzChUC8ejzdNZ2aMkQaxzsewJtaQ0AysqiCWcGCU/= Rq7M/Mt5/5+7eTiZPKnfwJMMvEtkxFCcN5556UCEZLRIFardUCocX+OvP0bAer2buWRZ3xMK7Nx= 6uJcqk8ZXXjYRCGlJBKJAH1TiOSmS8n9PCaLqNnt9oyfog2FjMexHmxAMQwc4TAH33uPwi1bUD+= 4sJwH6jGig6/USymRwsAQEoHBjLyTKS4pBCStevcxXRRStSOtDqQADIFUrTgdLhRVOeb3ryoCIc= AqD+EwutAVD3H7CXi8OUT0yZREJdHj7byx5m1eXRdk/kw7Z68oo6Aks8P8DscwDHp6etB1nVAoR= CC3iw4qAAAgAElEQVTUjVAkbpc3FVI7GcjNzR3R6wedl7mcAk2D3CwFm21yHHh/khEhqqoSiUQw= DOOoYSkTgw5IpNSBpFBYGJk3dJJgtaIVlyDr6kjY7RTPX0D3wYPk1R0AIFZagttuA23w8CfFIrC= oIFSF+cVnsmjGaQDs1nZzzPNl6H0/AqShIwwLuqHBEPvwxvEQV8qwGN3EtRi64iBc8O84bF7i/m= DGT5v7Y1H63Pq79sUozFNJHN/2zBOCoijk5OQgpSQUDvHoWz9jpeMSlhd/MoOu5/RzhDAb0kV2T= jHf+UoeVlWgSyeIzIq+GA6qqhIKhQiHw4TDYaLR6IRby7rei6atR8r1wG6ECCKlFyFmIsRpqOpp= KMrUyiazuFxYv3YDB958E2tZGcUrTsO28EQaXnsN1e0m/4wzUO12GGRBM8dVxMXTfgCKRJEWsq0= ltLX2JRvZ7Y5ULO4Rn6ko/Hh5FYaiggCr8IAQaOFedCmPESYlKJx5BdHw+URb/47j/2/vzaMru+= o7388+452lq6kk1SDVoCrXZLvKrjK28QCYwXiAtBk60AFW6LxkBUgT0i+P8B6E16wOndWPrMfrJ= A0JgaYdIHEnBLCZYhsbD+V5LBc1uCbN85XufM+43x/3nmvNJV1JVZbRdy1VSfeeffY+w/7t3/4N= 35/zKh1N23B9lXQ6u+ZoB3xC3HC4hYP7GohFFWyvDrFGOTAymQzpyTRFO4dll97wXB4zBLNAT9y= ApW5Er2gVqtAxYzsvwdCWjiCdNtBqNE3DMAxc151mrwrCgy6mkPb9CRznb9C0H6GqOYSYWinmKJ= 73IKXSrZjm76KqSd4o2rNQFOq6ukjs2FG933o0SuSDHyx/v8AzCBlh9nW8ael9CsG1OzsufOAcM= M0wphnGT3wMKX2iajmZx/O8tUXuI1SMxn+LF7+ZwOtiCAPTnDvT7PWIqTkJqqqi6RpiSpHm4Lms= tQVzMZilMbulU2j2Y+QKPgIwQxpuqAFNX12uZc/3yRVL5IoWQhHEQiaxkLmkieD7Ps899xxdXV2= Mjo4ihKgmmAQpnOFwGMuyptFGLhZSSkZHRxkbG2PHjh2LjuyQ0qVYvJtw+B4UZXYBViEkmjaBqv= 4DpaJGKPwpxBrcpSyEhRjgXo9QVJWyeamMNTf5paSUPYaTf4VMzsM0BKYZQY/sQlNWP7LEtm2Gh= 4eJxWJLtq8C1Yox27dvr2YLZrNZPNclk83Q09NDLBbjscce44477lg7C+YiMSsqQ9inOfXy3/PK= iTwvnbR4/63N7L7uWohtX7VBOK7Lgy/8ih93ZzgzNIYSjbMjYfIbOxq54fLLUBY5iRVFYffu3US= jUUzTREpJOBymWCzS3t5eTWeeKwV1MZBSMjY2xgMPPFAN51lEK2z7RUzzH1EUG8cp70R0/bVrcl= 2J54Fh+OjGfdj2YUzzRt4oWvM6LgV8ROkpHn3wH/B8j5NnbH7zPZsIN78PTV99O7llWQwPD/Pss= 89yxx13LDnMUNO0avx+MGdVVQUhUEQ5SUbTNK677rrX/SJfC2bdLSk9ikWL/bsUdm0L0Zj0ESw9= D3wpeOylX/GVYxNkY804YdDjjYxLyYuPn+MriuTg/j2LElFBqimUU3JfPH2e5351jtz542zt7OR= d73rXsuOX29vb2bNnzxLKsEtc9weYZg7HkXzykwO0ten88R83E4kILEvyxS8O4ziSP/3TFuLxCX= zvceDNgLq2SdrXcUnhuS4KJa650qQlqWAas3drq4VQKEQymaS3t7cqXJeCgIQJygVLh4aGcGwbK= SWhUJnI6o2MOe6W4HSPS99AibCpcNetCVZTc/N8n4cGC2QjjdMyw6RQsFo6+c6vBrls+1aikaXF= Hvu+z9mC5KeDRVI/+AGdnZ289a1vXZZgllJy6tQpisVilUXvQvC8Ipr2CiCxLMlzzxXZtcvHtn0= iERXXlRw/bqFpgnKCk0TSjee5jI6OMjExwfnz53nb2962JpJipsLzPEql0oLcxVPpOacioAydb2= cTUILOjLBwXbcqCObrM2Ckm9m2WCxWybrm67NWMp9LAduVvHzCxvUk6YzHrh0Xb7s/PDzMwMAAD= Q0NyzYDCSHYsGEDjmNjdBuYlaSTpSgrUkr6R7rxpIP0QSigCRPTMMlbGVRhENHLMdHxePySc1PP= cv5h7ueWd/178gUPQxNEoiHUUG2OlMXAl5Ke8TSuL0GAKGa5vCUOikBISdQzKVnWkgRzQPtYKJX= wJLiuh23bZDKZKhdvLXAcGyEgEgljlUqLSjN23SKqWtZUolGF73xnM7ouSCTKL2skovAXf9GG60= rq68ufCVHAdV0efPBBEokE3d3dvOUtb6lpzJcS+XyehoYGIpEIpVKJUChEsVgkHA7jV8LWhKLQ3= d09TQAHQretrQ3LsqY5boOq1ZqmkU6nZ+1cAsduMpmsFmENHHdCCGzLwgyFGBgYmCUwcrkcnZ2d= 1XqEqqpWncnBuIvFIn19ffMWjni9QCIQ4Wu58702kxmPbTGFgtpIo7l0e++S+5aSnp4efvnLh2l= rbePyyy/HMHRqUfB832dwcJC7776b8+fPkbyuPI9TqdSSuG5cz+Hvj/xn/HiaUsYhnNBRxpvpaN= 3JWedx2rV93HnFJ/Dcctz0fORsFwuzBHOk/hDh+qso30TJa3G2KwfX98Bz8d0SjlNE1wSakQChU= KcL/vLWfaiKgpQ+PedPo7hpPFsF1QBFRxULr/wBh2w0EkFVVFRNxTCMKhfrheBLie85SM/Ccy18= 18L3ikjf5rKOEOMTPo1xi1K2G1UzEYqBUDSEYuArOqpQq/1oWgTHMdG0sgzftWt6wogQsG3bdE1= YygiGYXDXXXfxxBNPzJtP/3pHED+ey2YZrxQ+zWYymKEQVLTPtnkqrAeCemJioswRYppkMhkaGh= oYHx+nsUIbOlN7DfwHxWKRsdFRkg0NTE5MEI/HsSppva2trQtqccNDQ+WoHUWpVuiZSKVoaGys0= o6+3iGESvOWO2jecseq9lPmEnHx7CK+Z+G5RTw7w55Og/a7bsQMhQjJIaxsFlWPVueJUE3EBeYx= lN+DxsZGzp8/z8lTp7jhxjbq6hKL3rFKAN/DsfNk3WGEmqGAjdQMvFKJTF6jEBrB1cqZwY7tkho= bQvoeKMqiioWsBmabMoQo8xKsEvJWnrNnn8EbO41bmsBz8tSndGhsBDMKohyHqiqCUtHixPP3sW= +rSsmMILU60sZGtmy6iqg5twY9lXCmvE32Zm2XF7Lbup7Lq33HsAZexiuM4dk5hLRRhI+mCgaG0= zz0xGk+9N5raEjGUTW1QnhjgB4jpzaRaD1IS10zAoGqhrBKB4GzgGRoyKVU8unoMBCirHQPDDik= Uh7794eQUgDbEUIlFNK5+eab5x3rWkDA252Ix8sctlA1UWiaVk1TnYngOcZisUp0UAjX8whHIsQ= qWvG8BQtkmWIyVunTtm0i0ShahXt4arjVzD4VRSEajWJUnMemYZSJZxIJjEp173WUkc5P0NPzMk= qmh8LEOaRTQFFBVRUGh9P84vGT7NzWxrvecjmGGUJRBL7ngFYH4Y0UIlvY3LwDXZttNpiLi1z6s= vr/1OPmmxu2a3G69xgidY7s2KvYpQxT1SKnmKaY7oEpAVBSuoyfvRe12EHeaKOl5TKiodWNSJsL= F52RpTR+hqGX7sMu5VFVhXBI4+YGwcDI45zecCNIkNInm83xzKPfZ0N0lGxaxfN8fAkeR8lqIaI= dV886dyaToa+vr0qjJ/1yyJ+qqlXyIkVRGB4eJpFIkEwmZz1UOz9C6ugPmRgbQlXANDQiER3d0P= FcydETvUyms0xMpIiFJZ7v43nlH98H1wdRytGy/zdAUQEFTXsvrvszNC2D60q++tUx7rgjwY4dJ= idPlrj77jSf+UxZA3DdesqOv7I2sVYFMpRtdY8//nhVQ01NTMw6pr9CwToVQghyuRzHjh2blZI+= UTlHwFXd1NQ07R4ZhkFvX2+VDyWVSk1rB+VKKpqmVZ1LATRN49ixY/PS2Y6NjTE0PMyOHTsWewv= esJDSJ3XuMbqf+xlC+iBAUxR0XSESNhhLZbli3xYsy2ZoeBhVrRBKaQqKGMXzX8VXozRf9e/Qk5= 0zzl3ORzhx4gQHDhyoLpiqqqJWFvWgws0DDzwwr+8oP/YqvU/cjWOXygqa4lIVeRJ8JE5loZW8J= vwnxvrxCgN4UiUqJNHNh1b1Xs6Fiy6YXTvPhsYQoLOhKUEkYqIIhcuzRb773A/o95s59vw4k0O/= Yne7RyzShON6FIo2w2NZMtki5tgAGzpmW6yy2Sye59HX18fw8DBxx+eDW6M4H/84hqFz7NgxYrE= Y8Xic0dHROWkQLatAfUwhqiVoTEZJxCNomooQZe2vsSHGo0+fZntnE43JKL5fFs7FksN4Kk86W8= Qe7qdjr4eulHceurGXQuE3EeK7bNyY5fd/v5G7757knnvStLfrfOlLLWzebOB7ITzvfZjmxX8RV= hrBRFos6XyweEJZQDY2Nl7QZJBMJquhU0A1HLJ9HvPIVMws5KCqKvF4/IKkOI1NTVX61V9nSOnj= 2Wk2bYhjGhr19RHikRCqWuYaaWlOcPrcKIYe57Ltreh6mbinWHIYn8gzkS5Qclyy2TTxGWZvIQQ= DAwM0NjYyODiIZVnceeedFAoFGjtDRL1Guru7CYfDdHZ2Mj4+Tltb26wxFnLjtDWFESJMLGbS0z= 2OUpLY0idkqSh1Kq2JOvotlXrPY+jc09i2RTSi4bgWmVye+GSKls1LJY9dPi6qYJZAr61iuwqNY= YFtuyiKhm6Y1NXF+N2by55x6R2nqc3Gsl0mMzmKJYdC0SZfdLBcga0k2DPHFqatra2qBY+Pv4hu= DdCoAZXCF647wfbtHyQUCs8bvpPydUaLgmZDxfMkRcvBREfVQyiaSkNjjHfcHEP6NqlUnqLlUrT= K4ysUbIqWh5usJ2u7NGjliS+EQjj8UUolDUP/Bjt2wOc/34LjSAxDoKoC163Dc38Hw3wvQqz9as= WqqpJIJBZtj53q/AuFQouOQJmajbecPgOe7qX2+euKoufT40apkwLd0JC+xHIVdDWKEBqNTTHi8= STSdygULay0S7FUnsO5vEWh5GBpcVKYtDFb7AXl5AI/QkfHFkZG+piYeJqzZ45y5W1/DJRrjM7l= L5BAtxcBR6EhJtBUhd/YeRgzHEeoetmG2GHjeza2VcCyPbK9/0qhZFMoFMkXHUqeRq+rs82XqMo= bWDD7vs8xkaTYeCMt+XMkc2liBQtDlFDwUaiYBlwf2/WxHQ/LA8tXKVFPob6JTONlhGObyVg29a= Hp21xFUYhEImQyaQzjBUKhsl23DIFlxbCsO6mrq581NgAf6PdDHG29hebMKRqK48RLRUJKGo1JF= Pyyhuz52K6H4/rYrqTkCUpEKUY3kmvfSqlpJ2O2Q8OUOH5FiRMO/w6WdQjH/RGqegpdL+B5YVx3= B4LbMUNXvSGEcoBahVcQEbFW+vx1xITtcDKxB6HUs2X8BZLFPGE1g65mUCo2fM/3cVwPx6nMF8e= j6IJFlFxTB6n2qzFEjN1Sos5QsqY+x1IpzwMP/Ge2bHmMgYEwicRvA6K6Q5oLJdflvNHM+MbbaR= 97nhYrRUSzMLMWqhBIJL7n43h+OWrL8bEdF8uVlHyTYqSN0S3XY4Qauc6XqBd5Hb5oglkCectip= GAh4pspRDfS49vobgndK6L5JVTfgUp8qY/AEzquFsLVwrhaBF/VkUKllMkykk5TH5qH/V/TgO3Y= 9nQNqBztMD+NpvR9eibTWGY9/c1XM+i76F4J3S2ieSU03y4zlgXjQ8VVQ5UxRvA1E1/RcG2boYk= Juuqm0xKWHXoHsbxdlPwsSBtUA0WE0UXkDSWU1/HGhQTG8gUKPoj4Zk7ENqE5BcL2JLp0UPAR0k= dKH+lLfCHwZFn1cvQodrgBqej4UnJmYAinrRV1wQQUh1BolJdeynHllbdjmlsv6HuZKBTIWDZOu= Inuze+g17MJWSlMzyorgdIDWZY1nhT4KHgIPNXEDjfiaSEkkEmnGUtPsrGxsazVS1m+A4sNzBGU= g6aXiIunMUtJvlhirL8fZeo2Ndh2CgPkjO1rELFHEShV/pY4k5PkEjHYMF8YWbmkVKEwNmMI0QX= LzkspGRocIOXL6fddShAayNlh3+UD7fJP5WWxslkm2luhc3b8tw/80HmBR9Vj+KLygCVc5+ziA+= Eb0cVaqZCxjl9bSEkmnWG0t3d6/DkACoLpgmi6hdYCBgHwPR8mxvGv3A8LCOZQqJ4bbvgqvb3HO= X36azjOGbq6Di24O8oXi4z091OqRHC8NgaBpMyDMlO0l4/0EZOjlcuUZEdHybZtgIYGEAK77xTe= sz8H6THzyueyQ5dCdSTe9VGEsrTd2MWTAkIQMU38QgHXtms2pUspEVYJQ59/6JFIjJtu+g/MXtY= EFzLih6XEymWXFb/o5POY82WPIXnOP8XfPvtd3LwNBQ9xWQzR8W+4S74Zfe0GYazj1wVCEFIEbi= 6HXEbUkPR94lw4g08IQSgUpavrajo7/zuTk6kLtjFVFWFZWPMUYVjcACWyVCQUZAFKiZIZ46l7/= xcnBkY50BKhztRoCGk8N5yjLWoEehanUkX2N0do2boT3vFblQitxeOiCWYBxCJhPnT1QXKl4uK3= AjMggYius20OL+y0/mrYPqiKwrv376U/NbGsJAJVCHa2tc778kjfx+/L4xVtsH2UeoHc8saLj/V= 9H9edn519agxqUI8x+HxmuvXM+OPgf1VVp9mGPa8ctz7f8QEC++TUPh3HmTWuuTCzz183CGBn6w= Z+Y98erKnPd77ghZmfV/4WEprjUYwl8Gjouk5z8+waeTOxob6eO/bsJrWUwsVzjD+kKLQ3NZbfB= ylBSjpiKk2tEb5/epxNcYNdyTCvDGd51HbJWh4RXSGkKozkirxvc20VYy7qvlkVgis7tqzIuVYj= vlcIQWdLC50rkY453/gkxEWElpu24doOMqygSEGdG3lDccm5rkuhUFiQ6yIo+QXldOggfLFQKCy= 4ME4VnJ7nEYlEqqnXhUJh/gVxSp9B9esgtTqXy00T0lPPMTPZwXVdwuHwmi/7tRzUR6Ncv+v1y9= NuahpXzmFKXBYESM2gsaWVZCLG2yNJ6gyVjTGTvdvge78aYVdjhCtboiiVlceqa66pOvyiBHPAh= 1oLAu2nVlKQYALV6m0PMrVqbT9TgCwVMwnWJZLf8m7mHdp+ZHBKAa00Im0fS0y/177vEwqF1lyi= SXDfpJQMDw8TCoXo6emhrq6OyclJ6urqkFLS2dkJQDqdroY6BiRDvu9XeRECboxEIlFN0w2y+oL= CnUGfUBbu2WyWyclJ4vE4tm0TDodxXbea8FIqlaqCOXhOAKdOnULXdUKhELlcrvr+xWIxWltbsS= wLRVHWnGCWUpJOp2veDa7EXFxOmOFymRaX297zPETdRpy7Pov0PDYDCMgCSAiS36fmoypmiMl0B= io7tMVWUbqgYA5e9loD6oPCqPOX81kYnufhum7NzGqu61bTgmuBlJJSqVRz+2KxWOWODdBhtNMR= v3ASBJRZ1pbKpPV6Q6FQ4OTJk4yMjLB9+3bOnTvHvn37SKfTdHR0LKjhnj17lr6+PrZt28bx48f= ZuXMnhmEQr6RbzwfLsjh27BiapvHqq6+STCbp6OiYd5Gdqi2fO3cOz/MwTZNIJFJ9doEgXgtcGX= NBSolhGDUvKL7vY1lWzVXmL8Q0eCE4jrNgiNxqt89kMiSSrdDSWlP7pSi4ix7hXLwCiz024K6oF= UHJ8lr6D35fiAIy0NYWwlztpe/j2OVoDF3X56ynFlz7XO193y/bNUXZdqbMYRdfywI5QGdnZ1Uz= Brjyyiurv1/IlnvgwAEOHDgAwN69exfdZ319/ZyMfItxNL3jHe9YdD9rDYuN185my4VnZx67HPt= 6kA1a6zvtuu6CtKwXgud5i2o/ODiIlHJWBmnA8VLr+JfSrqalIzM+TveRI8g5VgARj9N1002rmr= I62t9Pz5Ej6HNcqNbWxmXXXruoLZOUkpdffpkHH3yQz3zmM0u6cSNDQ/T85Kcox38FQiB37mTLr= bfS3N5+QZuSlJKBgQHGx8eZzI1xdOLnbEns56YDtxOPLo4Bby1hOddzMSbBSrZ9I+D8+fN861vf= 4jOf+Qx1dWunRuBKwPM8Tpw4QTab5bbbbrtkTt6aBHO+r4/4N/6ORDo9jZNYSkn3xo1kDx5cNcE= spWTy5EmM/++/0WYYU+Kgy17TowcO0HXo0PRY6QWwa9cuvve97y1pDLlcjnNnz9Lc20PDs88hfB= /3qac5/cILhP7TfyJ+AUrCkZERxsbG2Lt3L+cGT/CA/Sy9uSd5+Z5n+IMPfol49PXN9XtxcfF5C= n7d4HkeDz30EIcOHaKuro6Wlhbe/OY3ryqTnlUqkTt7FmXKztePxxGuiygWXzvQNKnburVSg3F1= UCwWuf/++7n99ttRVZXt27fzwgsvLGqBlhLOD4+R9167Dg2fnW0tKMtI465JMEsJBddFrYQXVT8= HSgskcKwY6uvh/e+HZJKpcXdSgnSd+dvNQEBks5RikVJKnnrqKQ4fPozf2kr66FHqR8fQgY3HT/= D8j+7lxo9+ZN4y8Z7nMTAwwO7duys1zMqf62FBru0lHnr+h9zx5g/XFO73eoX0JanBFMm2ZHUnU= yyUQybD0fntlVL6jA89QzjaQTRRtuv5vs/4+Dh1dXUL2v1916U0NoZeX49eURKCKJEL2TkHM8PE= QzFiRrQyDsnk5CSxWOySV7ZYafi+zy9+8Qu++tWv8td//dfU1dURDoepr69fVW1xeHAQ8clPEZ6= iWL1y+DD1kxNsOnWqOq0nNm9G/6u/JHYBcqlaMTY2xn333ccPfvADbrvtNnzf58iRI2zbtm2Rgl= nyXx54gVeM1upcjmeG+NFH34qxxNjlqajNCi5AEwJtpt0XZuW8rwZEIkH0tncTn1L3S1K2+erPP= bfo8BTbtsnlcnz4wx/GcZxFOfhs2yabzZa9q7EYxY98hOJf/RWq7RCSkhPf+Q5v/q1/hzqPYLbL= 9aMQQmDbNo7tIl0FkKganBl9Hs//TbSLnZy/SvA9n76/7yXx5Ti/+oNj7PndvTiuw9CLQzh/YbP= hv7dS1zR7uzzQ301/zyt0Jr5H9/nNlPRbQYnguj7t7W0cfekEhqHTuXX3LMfy6NAQT917L29rbO= SXY2O0v+lNDI2NsXv3bqxsltT4OAeuuWZOP4UrXT4++lk+Uv9v+EDj7SiIahie4zg0t1zayhYrD= SEEhw4d4sCBA9WIGM/z2Ldv36ovQkXHQQRauRA4rovtuBRtB1HZiduu89queBVQX1/Pu9/9bp59= 9tnqZ7fffnv1Xlx4cZJIBJ6iVpPSfKEsu0pqTYJZCIERiWDOSB6QgBZa/RAiKSWFUoncjODxIDR= vscjlchw9ehTf94lEIouqijAtwkMIjMOHsdvaKu+OhAceWPCh+L5fXRCEECiuyb/t+rOKJUbSe2= 74klVNWA2cefAMm//vjchJn13/pYuhxCClay06OjqQeGS/kSP7O1lmZPESDftsjf4/mKLA9qbTp= OwibvxTJOqaUOQEbZt/wnhhK5o+m1bUGRnh9sZGkJKbk0mOdXfzpkrNRNVxSHd3Iw8fntXubOY8= f57/G55u/hXDTopMT4b3xW7FcRx8Ax7Un2Rb90b2Nu5ardt10REUIwiEsOu6HD9+nGw2S3NzM11= dXavGpKcyPYxVCNA2b8acEvWhJZM1xQEvFpqmEY1Gq+OwbZsXX3wRKSX79u1bVFDAu9tNPrTpNf= Pj2EAUdZlDrk1jrqtD+fhvo8wkBJISJT25vBEtAgFJ9lTei0D7WYpdLJFIVAXlYrdtpmniOA6O4= 5THoKq0XHUVihAUikU2j40t+CKbpolhGNWtoud5NDXtgopmZqeOvqGcTxu2tCAdiS89FGmQiCXw= jTR+0sf/C59IMgoGOPkZZjHfImy4aCrlggW6Tcm1MU0Tz0uiJj6LlirCzGo7UiJ8H1UIbNdFVRQ= 0IVAVpRxH29aGtmcP/hxamKmaxJUYUkh0dBq0156Rqeoc8vYhzOVFGL3eYRgG+/bt45//+Z/Zs2= fPqtKbqkKgVZ6DrEQume+5k1hHR1U5sSZSqyqYZ8I0TXzfp1AoLNrxua2pjv1dG6vvxRnVWrZqV= ZNgVkIhwgcPEp1RAUJKiXn69Kq/uEGw/0xS8yBOc7FQVZXdu3dz3333ccUVVyy678OHD1eJutvb= 21EUBdd16evr4/rrr1/w+oMVemBgYAq5t8BxHM6cOUNjY+Mbius30h5l4vA4G15pYXjTCJGdMUL= hEJZvEd4YZnx8nIbw7IIFemgDpfr/hp77WzJWF5Hm24jJOLlcjlKpRC6nz80UKASJ7ds5USzSNj= pKfzTKhr17GRkdLdfxE4KG5uZqUdep2Bht489C/5FUzwTvSbyDO9rehiIUbNtmdHSUhB6jeUMzp= VJptW7XJYGqqtx0003U1dXh+z4PPvgg2Wx2WYllF0IskeD+W25Bka+ZMhp276Z/dJRT589XjwuH= w7xl06ZVGweUF6Nbb721Gtba2NjIiRMnFh2vPjg4yJkzZ6Z9FlRRqhU1CWZN0+jt7WVwcLD6WcB= HUCqV2Lx587IGtRDKhCYhent7q6m7U5MDDMNYtGDzPI9z586xadOmqu13MWhpaaFYLNLf30+x4k= HOZrMkk8lFZfZ0dnZy/vx5XnnlFTzPY3Jyknw+T1NT06Kqb6wlqDEV7SsGw9kxlJCG2WGi+irZb= JZisYhpmnMG/EdjSSLROibV36Uh0k4k2gTMdsTN9dyi8TjbDh8mPTTEtqYm9Er9vkwmU13U54st= 11WD/9ryJ4T1UDWu3DAMIpEIiUTiDaktCyG48cYbEULgui719fVMTk5W3+3VQENjIxcjKkoAABf= CSURBVB/4/P813X48z71d7Xuu6zq33norUN5x9/X1LVoozxf3vtwx1ySYGxoa5lXzLwbh+MaNG2= ltnTv7Zin9K4rCxo0baW5unrM0zXxQVZWtW7fS3t5etRVv3rx50VlNhmHQ1dVV0fxyKIrCli1bq= hrdGwlCESQ7p9vpNLRFhVMKoZBsvnzGZ2JRUTSqqtIwxTkshFjU1lQAjdHZGvxSInfWIqaW9br6= 6qu5/PLLV935J4S4qGaKxUBRFK655hquueaaRcuR1ZizixbMM1eQhQY9kxUs+KkFUzkXVrr/QKD= O1W7mZ3N9Z5rmrPTWmcct1H8oFJoloOZqv451rBSC+bRQGrwQYlb6edAu+FlIGM18Z6fuaIO2Uz= 8Ljpm5+51JJDVzLk1lDpx5jjmrbM+QJfP1FyzgM+VI0HY+ioS5xjwXGdZisGgSo5n2uMVCSlmNH= 61lZQmcfEsxNUxFwJVhWVZN/QfOwaVEe0xFqVSaxZWxFDiOs+bIcubCzMkT/L7YtrW0m6vfpfRZ= 63hfz3Bdd9pcnk9YzBRYgWCybRtN0+ZVdKZi5n2zbXteE9Jcgnnq51CeC0rFibvYvqci4MqYS7D= P7Heu8zuOM00OLUboTj1moSIdM7EoaWGaZs3EJcEDrTW103XdKqFMLXAcB9/3a24fkDAtRJizED= RNK4dp1cgRsJYdTVJKLMvCsqx5X1xVVed8tzzPI5/PLxhlY5rmLH9C4OdYyHEV1IacOSbXdSkWi= /NOoKma5FqFrus1X0OgnCyHBGmuZ7ZYCFFmaazVxBKYOWtVkgICqFoX6KVEjF0UPub5LsS2bVKT= Y7iuQyJeTzw2t3NlvvaO4zCamsTxXJLxOPFYdNaxq6nlFIpFxiczCCFoqq/DDJmzwmQuRKL0Rka= hUEBVVRobG6uUj57nVfmQofyyjo2NzdI+8vk8DQ0N1XZzab5BhEYsFqu2DRaypqamOTXt4HwBle= hUpNNpmpqaqoJDCFEdb9Aul8uRz+drXqjXMubTdpd6jkuFtTT2S1RgTpLL5/iHn32dU9aDaCb44= 3W896pPcfjA4giIxsZTfPFb93Ay3onUTDaURvnf33aQK3ZtX/UbKKXkXE8ff37vI5wJtSJ9nx3F= fj7//nexsb31DZQesjw4jkNrayvFYpF0Ok0sEiFfLBIKhaoZZg0NDXOaGDRNIxwOMzoyglLRcmz= LIhQKUSgWicVi5d8LhWntfN8nHA7j+z65XI5IOFylbXUrZrHm5uY5taaA3jY1Po6qaSiKQqlYJB= qJkMvnqU8maWpqYmJiYlXv2zoWBzm1KKpg+u+89veC8mAK18+SvqNivgi+n8P0AqJm3+YlEcyWZ= fHtB75Mb+gIZsUBriSL/Oj8nyGNT3Pt/rcv2H5gLMWX73+eZ7dcD6oGEnLxZr7wRDeftWzedPlu= lFUUzj1DI/yfDx/nlLkJvb4ZELzotfInD7zCn7/bpK0puS6cp0BKiQB0w0BzypXQVVWt2ivngxA= CpWICMgyDXC5HfTJJLp8vC+oF/A6Grpe3zqEQmWyWaCyGVypd0KSkaRqe52EYBlJKNE1DNwwoFJ= CrSOqzVuD7PqmJiTkTdFS1XODU9/1Z77+iKDWbEOZCJj/JS+cfwfaLIEAgiCkteNKmxGQ1Cs9Uo= hzc+tZZ5jLPdRk7dozUkSPE9+xhwzXXVDlV0uk0/cePE+vvp/Gmm4g2Nc3qv7uvnydGitOyfHdH= JOeKkpKspGRLyba4zuGujiXLo4sumKWU/Pyhe+lVn0CfQnEgBCjJAr84dg/X7H3bgiWJHnj5FM/= 69WBUbE0CUDVGYm187ZmzXN61lVikNpv4heBLydd//DDnY5eh6j5OZhI9kURoOqf9Rr57/yP84Q= fvRF0Gs9QbBbquMzo6SiwWI1FXB0IQiVRKaIkyh3V+nppsrutSKpXKE6oyy+rq6vA8j0Q8ju/7l= EqlWe+JoihYloVhGNXj6urKVKoh0wQhqs7smbZKIQT5fL4cr1w5r1HRioJzjI6OrqiAWUuQUlIo= FvnsT56jZEQRegg3m0KNxFE0jQ3CQhWwvSHGnTtbSaVSRKNRdF2vkuSvhAlISslkdpyfn/gWBTk= OlAVzu3eIrU37CSdfm3tF26FQyE8TzI5lcfoHPyR6zz3Ex8aQsRivvP0Wdn7sY+Qti3yhQKOmIf= /2G5x64gm2/tEfUTclPFdKycmz5/mroTjBEiSQfFic58duCxNqINgk74yMcWjHliWHBV70N8yXP= o8ev5fQgTm8uoqkL3+MXC5LIjG3s9D3JUdHckhz4+wvFYVXLZVsyVo1wWxZFj/vnkS/wkARAkV6= JHBQNR2hhfjpU2f5Dx/wUWemCv+aQQhBOBwmk8kwOTl/mr6iKMTj8WnmDFER2t3d3Qv2EUz0qaG= Tuq5fsE9gTna6aDTK4ODgBR2O8Xj811Y4u57P6aJCUQ0j1BCOpaOZERRUitJDF5KEGiNUlyQpJX= V1daiqSi6XI5fLrdxAhEQzfXSl8qykQC0JuloO0NHRWT0sk8kwk6lx7PRp7G9/m2Q2iyd91HQa8= /vf53ldJ3T4MF07duBMTqLEYjQLwfEjRzj0nvdMO4cvJR4KvhBlYlop8aWkPqSj6oFzVBLSakvS= uSRvlyrm96oKlIVXFwELmaAVVpe9V1DmbghwZZ3Ox/c2ETZ0QPLjnhBiPfS4WukiqMd3IUwlkDJ= Nk3w+Pyvlfi4YhlEVsEGfUz+bD0KIaecPh8MUCoVFlUBbTpTSWkclqAyhaPjFPIKKk7SQRZgSqQ= h+PlCkXu/jzvYQmqYxNjZWc2m2hQcjINiZyqBSkDKDGGm2NIg3t5Db0ALZLGOOS6OmEY8nCF99N= eeyWULhMJORCMrn/oQNl11G+ty52XkTUuI7Nv4UE7NpwhcONFGfbCibvKVkoM+tSR5ddMGsCMEN= e+/kl9mvYMZnhDr5sDGym1g0Nk/r8o3e3xzn4f4cIjxj4krJtpBHbBUZ7kzT5B2bEzzgOZhC8nv= 7mrm8ow2lEiVw8LIdyyLIXn1IfK+I9K0pHPQCRYvP0iyWgyDTrpYwScMw5s3svFCf9fX11M/gcF= lsn0vJ/lw9SKTnlZ/F65AzRdNUrrYHKI4PI30P6TooTj/Sc2mti6IIQWO2RD6ncuScQjgcxrZtQ= qEQV1111coNRAp8Bzzntbnm+2WH89RU8rlqFIaT9Xi7LmPy5Ck2myYp1yXd3MwVV15JNJ1mcHCQ= 5o0b0TSNEydPsmPHjjmjvVTdqOqQZYVNIREySUbKtmopJSmttjDZi68xC8EtN72T7p8/S1/hCEr= IBSGQHqj5Ot6674MLXohAcMvlO3l25AWednR81QAhEJ5DU2GUTx7eTmQVy1oJIfjfbn8bPfcf5f= JNTezZ1FK1vXV3d3PNNde8vkmIpMQa/J+UTj7IUGQLscIoycgoYs/fEq2bwzy0josG38rhnX0E0= v1I30fd916Yg+DpUkEIQTQS4Suf+lhN7VeKe0MIQWNiA3fu/jSOZ1UjMhJGMwmzaVoCjWma08Ip= AVRdx3zLzWQKeYY9HweJee21qLpOMpmsmrOC6IqZ2blCCC7fvYvPN6SrTkYBdCWuwHVdRkdHgbJ= grjV/46ILZoHAMEzef/0nePJEF8cGHsdySrTVdXKw6xb2bT+0sGAWsKGhnj+8aT8/feUczwwMU3= JcdjbFefeVW7mqq3PVNdZNLU187oZdjI2O8PKLL1YTD5qamma9BK8/SEqlPF4qQf0JC02Pku44S= dyvLbNxHSsEKXF7n0MfP4XI9ONlhsh6KpHDv3WpR/a6RDQS46pdN02rPLYUHvPOw4fxr7666lhW= FAWhKOiKwv79+6fFvs+laLW1NNPa0jytf1g5M+olsTELBM0Nrdz2pg9zq/xNJBIFBUVZnNovhGD= LhiZ+p6WRj/uVG6gI1BUIgF8MFEXhss5N+FvaL/gAX4/wUBDbthB5+VXsPa04sQvbVdex+pCpcw= inCL3PILZcS3bgVSLrXCnzQpTj5GprK+YnO1vsPBbVf1YeNZMYLRVz59YrqGJ2Su3Mv+cjAVKEQ= JlRKmA+EqDlkCjN135mJtR8JEjLJXFaaURUm+LxnzN6cDuR/MvUZ4fX464vNQTQsBW39ymUDfsZ= HR5EuexOxCrs/pbzTi3nXV5u3ytxjpWYixeDWGxRgjkgIloOam0f3MhaSYSW2x6o1nyrBQEbV60= kTCv/Egjc8OVYl09gSImknYJyDc3RC5fVWsdqQmBsvY5MscTkySOoe95O6xVvR66wQzaozlELAr= vrctp7nrcsrgkhRM1zabntgzj3Wse/FCK3aYL58ccfB2bT4a0FBKaEpTA4vV5R3kkJfP+1ez8XP= WE4HF5yUYKHf/kIrush5fXBmcue5d5HpvW10HOf7/ta2y2EmW0Cno0LaT61jnEp51pOX0KApgpc= TzLrkPBhGBO8/OBDaJrGlVdeuaTxDg8Pc+zYsWWNb77vL8a7Eczlueh+V7qvpbRbyrkC6JrAl+B= 5C9/HTTOqtEwTzO9///uXNKhLgfkWjD179vDRj36Ub3/72xw/fnz+CQHoioIjJYYQuFLiy0re/U= XEfDSUqgq3vDnKMy8VGZ/0qxQAQgiQ07lgP/vZz3Lw4MEl9fvpT3+a/v7+FbqK1cF8zzgajXLLL= bcwPj7OU089tSAVbVhRMRVBzvPYFo7warFw0ZWMaZNPKGWzhJQoQtK5SWNHp8kDj5d4bf2tcD9U= yi1JKWlububIkSNL6veZZ57hc5/73Ipdx2ogMAPOTOZRVZUrrriC7du388tf/pKRkZF5z6EJQat= hMGjbdIUjnCoVl8TgtvIQlYxRiUCSiAk+8ZEkX/1Wmnwp8BJWHraU1fkM8Itf/GLamaYJ5qGhIT= Zs2IBlWRQKBXzfR9f1Kq+BlOUiqMlkknA4zPDwMLqu43kemqZV6R2D41YSmqZx7bXXsn37ds6fP= 8/DDz9c/U5RFD73/36Nrjddx9ttwaOf+B1sa266zLiq8ub6es4Vi2xuaGA8keD548dXdKwLXUNr= ayuGYeB5Ht3d3Rh1jez65JcoDvdhHfkO//6dBX7yUB8j4StoetdduPkcimEgNJ3hX95LbKwb13U= ZHBysKfwooNJsbGxkYmKiurUM4k0dx6kKhKDgbC6XIxQKoes62Wy2WtZ9vnTqWqGqKtu3b+euu+= 5iYmKCr3/969OE6dY9lyMaWgnpEWzvCbKZzJznEcB/3LqNuKbSbdvc+O7b+MMf30d3T8+Kjne+a= 2hubkZKydatWzl69CiFkkXnB36P2Pa92Ode4Pd3/YS/+PowLxodbPs/voI1MYqUPtEtXYwe+Vd6= /ulvOHzwSp5//vmasuVc1yWXy9HV1cX4+DilUgkpJeFwuMptHji/QqEQ9fX19Pb2Eo1GqzS7rut= WKVRXekFraGjgfe97H+FwmIcffpiXXnqp+l0kFqdh6y6ceB2x5lbOnD07L0fJ25MN/FH7Rr4/Ns= p7b7yJb5SKfP9f/mVFxzoXRIVaoKmpidbWVvr7++nv7ye8cSu7/+DPKA730fD0f2VXu8U/3jtI6= KaP0bTzIH6pgNG0ASc9Sfc/fY09DRFePXWK8fHxWfd4lo35uuuu49SpU7S3txMKhSiVSlUNZmxs= jMnJSQ4dOkQymeTEiRMkk0mGhoZIJBIYhsHw8DDnzp1bcKWrBV1dXXzhC1+gvb2db3/72zzyyCP= V1VFK+MufPEpTKsTQo0/jLrAoOFIyZFlkXY9RXSdzkfiOdV1n586ddHR0oKoqra2t/N3f/R1qOE= L93qvxXZv4zst4y7Un6O63GcpuIty2hcEHv49XKhJu6yB7+ijR+vnrzi2WljGZTNLc3Mx1112HZ= VlVvmnXdVEUhePHj3Pw4MGqTS6TyRCJRKYtzqlUiieffHJFJ20ymeSLX/wihw4d4pVXXuGb3/zm= NHvgqbPnGU2042QmKRQXfm7/mhonoqqMeB65Qp7URWKEa21tZe/evdi2zc6dOxkZGeF8bx9GfRP= 53tO07L2K7R2PcsWeNMqGOkY3bCR19ElGHv0pV/zp3zB4/z/hO9ayfCJQfheuuuoqenp6SCaTVV= Imy7IwTbM6d9va2tiwYQPnz5+nra2Nnp4eNE2joaGBnp4ennzyyZptsvON653vfCef+MQnUFWV0= 6dPTxPMJcvikVdOYTS0MtkzsOD7dapY4DtDQ7yYz6MIePnll1dsnAshFotx1VVXYRgGzc3N7Nix= g+9+73uooQhC1Yhu6SLZv4F9O4fZ3G5wj9WMb5cYevhHNFx9I8MP/YjcuZO48X3zVoOZJZifeuo= pJiYmcBynSqvo+z6RSISBgQGEEDz99NPV1NdAAPf19RGPx5mcnCSdTq/4zejv78dxHFKpFNlstv= rAFAUEPqf/8a/o/sl3cDITSG/2Sx1sK0u+z0u5HFIIBi/AxbCS8H2ffD7Pxo0bGR0drWotAIquk= zn5MvqJF3n5hOCy7SYPvyIojfST7z2DohvosQRuLktem7uCw1IwPDzM2NhYdRJKKaukPlJKJiYm= GB8vk8NomlbVkC3LqoYS5fP5FdekJiYmaGho4Gc/+xm6rk8zVei6TmlsgOGHf1hOh3WdWXY6Qxf= Iij3vSDaNqoAvBa98526klCiiYilYRYtGKpXCsqyqMCtrnCCljz06xJkn7+VXd2U4cdrivdcaDD= sWdmoUr5jDd128UgFkuXDscu6v7/v87Gc/w3EcIpFIlY1PCIGmaYyMjBCLxTh58mSV9yM4JihMk= c/na65cNB+klKTTaR577DF27949TVaUd98uqRceQ9F0PLs0jc0TyqY+TRU4jqTXKvGP40P4Eo7f= 8w/l91ShahparedcLBY5ceIE119/PYZh0NvbW+lM4hZydP/T1zDMczxdUPjkRxv4Xw/6WKkRvGI= e37Zw81mka5PJZOa1LEwTzFJKBgbKq9SpU6fmHVgwaefDatjy8vk8v/d7v4eqqkxOTlb72NKuE4= 8qRMPgywly9T6KYtDd55DNlwWYEIKtW7dWParBouN5XpWDt1Qq4bouExMTqzL+wHTx/e9/n1AoV= DUTOPks5//xa/Tddzd1Uck//dggFlXIjr6KtnEP8a2XkXrpCQC0WIJ4PI7neXMufov1+AZCYyFT= SJC9dDHh+z533XXXlJ3Qa8H/7e3t1TJjAXF9qVSa9rxuPBzBdiQly6dQlBiGQNcEjuuTiKnk8uX= vTp2zsZ3VmbXFYpEjR46gqip9fX1lxcX3GX3ifjKnXkZxC9xzn8nIuMcjv+hheMsP0WJ1CEWl90= f/A0UvZ7IuN1FJSkkqlQLKFdznwoWInlYL999/Pw899BCqqlYLGwghaG5uxnXdasWfoArN6OhoV= YC1Nmvs7TIZS5X/Ltk+dXEVxy0/z7CpkM35jKZcBobdVfEcua7L8PAwP/7xj2lubmZsbKy8Gxkf= oedfvsHEy09xpkllYFCgaTA2+ATRnQfQYglSzz2KZxdRw1Fisdi0IhBTMU0wf/Ob31yFy1hd6Fr= 54g1d4PsVmzpg2RLXnaJNVUhUgqoUwLTKFIEwWGkNYS5Mc24JgVA15LuvKXOyKOXA+fehlLmm/R= 3I991SduP75VU5cJps27Zt2nkVRamG5MwnpL/85S8vWHbp9QpVVae9xMH/UzUO0xBVeongXVDVq= Xzn5UgX25kjEmK1UXHeTv1VCKASDidvPVzWDu962zRVrxbyn4MHD67JuRy8uzOFled51b9VtTzX= Az+p55d5jIJ7qiqvRbo47kV/yBX/3m+X/6r8+RbK81HevO+1Q2e8gDOJvqqCef/+/ezfv3/Vhry= O1YdWqboxXzmr5uZmPvShD12Koa3jIuKGG27ghhtuuNTDWMcyoHmDKSa+9J1LPY51LAP20bNAWb= uaKpyllGsmTXwd61jHa9C8sTSZb/zkUo9jHSuAIKRtqjljrljpdaxjHa9viNOnT0vLKofnBJk2a= yXb79cVgdANPOyGYRAKhQiHw4RCoarzZGq153WsYx1rB1oikah6u9eF8trAVDOFoijTKoUECUHr= Qnkd61i70KLR6LqmvAYRCOZAcw4E9NQq0OtCeR3rWJvQgoyg4Gd9Mq8tTBXCa4kTeh3rWMc61rG= OdaxjzeD/B88CLoDx13zPAAAAAElFTkSuQmCC" width=3D"358" height=3D"330" alt=3D"= " /></p><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%;= font-size:10pt"><span style=3D"font-weight:bold">Nota.</span><span> Tomado= de PhET I.S. - 2025</span></p><p style=3D"margin-bottom:0pt; text-align:ju= stify; line-height:115%"><span style=3D"font-weight:bold"> </span></p>= <p class=3D"ListParagraph" style=3D"margin-bottom:0pt; text-indent:-18pt; t= ext-align:justify; line-height:115%"><span style=3D"font-weight:bold"><span= >c)</span></span><span style=3D"width:8.68pt; font:7pt 'Times New Roman'; d= isplay:inline-block">      </span><span style=3D"f= ont-weight:bold">Actividad 3</span></p><p style=3D"margin-bottom:0pt; text-= align:justify; line-height:115%"><span>Representaci=C3=B3n y comunicaci=C3= =B3n de fracciones con PHET (</span><span style=3D"font-weight:bold">Figura= 3</span><span>).</span></p><p style=3D"margin-bottom:0pt; text-align:justi= fy; line-height:115%"><span style=3D"font-weight:bold">Objetivo espec=C3=AD= fico</span><span>: Comunicar razonamientos sobre fracciones en m=C3=BAltipl= es formas (barras, c=C3=ADrculos, rect=C3=A1ngulos) con explicaciones orale= s y escritas claras.</span></p><p style=3D"margin-bottom:0pt; text-align:ju= stify; line-height:115%"><span style=3D"font-weight:bold">Orientaciones: </= span><span>Se parte de escenas cercanas; indicador de gasolina, barra de de= scarga y reparto de materiales, para transitar de lo concreto al s=C3=ADmbo= lo. El docente solicita identificar numerador (partes consideradas) y denom= inador (total de partes iguales) y verbalizar con la estructura: =E2=80=9Cd= e ___ partes, tomo ___=E2=80=9D. Se registran breves diagramas en pizarra (= barra/c=C3=ADrculo/recta) como puente a la notaci=C3=B3n.</span></p><p styl= e=3D"margin-bottom:0pt; text-align:justify; line-height:115%"><span>Criteri= o de dominio antes de avanzar: Cada estudiante: (a) identifica correctament= e numerador y denominador en un ejemplo del contexto; (b) representa la mis= ma fracci=C3=B3n en dos formas (p. ej., diagrama y recta num=C3=A9rica); y = (c) la lee y describe con precisi=C3=B3n. Cumplido este umbral, se pasa a l= a pr=C3=A1ctica digital.</span></p><p style=3D"margin-bottom:0pt; text-alig= n:justify; line-height:115%"><span style=3D"font-weight:bold">Trabajo en el= simulador: </span><span>Presentaci=C3=B3n de PhET I.S. (</span><span style= =3D"font-style:italic">Fractions: Mixed Numbers</span><span>). El docente p= royecta la simulaci=C3=B3n y muestra c=C3=B3mo seleccionar el modo con m=C3= =BAltiples representaciones (=C3=A1rea/recta). Modela un ejemplo breve: con= struir 3/4, leer la fracci=C3=B3n y cambiar de representaci=C3=B3n para com= probar consistencia; luego compara 3/4 y 2/3, explicitando el criterio: =E2= =80=9Cmismo tama=C3=B1o de parte o argumento visual equivalente=E2=80=9D. P= rop=C3=B3sito declarado: representar y justificar.</span></p><p style=3D"ma= rgin-bottom:0pt; text-align:justify; line-height:115%"><span>Actividad del = alumno (interacci=C3=B3n + trabajo colaborativo): Primero, individual, cada= estudiante construye 3/4 y 2/3 en dos formas (p. ej., barra y recta) y reg= istra en su cuaderno el esquema modelo =E2=86=92 fracci=C3=B3n =E2=86=92 ex= plicaci=C3=B3n. Despu=C3=A9s, en parejas con roles rotativos: A manipula la= simulaci=C3=B3n y B explica y registra la comparaci=C3=B3n (>, <, = =3D) y la justificaci=C3=B3n (equivalencias, =C3=A1rea sombreada o posici= =C3=B3n en la recta). Cambian roles en cada reto y realizan una mini puesta= en com=C3=BAn para contrastar estrategias y vocabulario (parte=E2=80=93tod= o, numerador, denominador, equivalencia).</span></p><p style=3D"margin-bott= om:0pt; text-align:justify; line-height:115%"><span style=3D"font-weight:bo= ld">Evaluaci=C3=B3n: </span><span>R=C3=BAbrica breve con los siguientes tem= as: (1) representa una fracci=C3=B3n a elecci=C3=B3n y explica su construcc= i=C3=B3n; (2) compara dos fracciones con argumento; (3) elige la representa= ci=C3=B3n que prefiere y justifica. Lista de cotejo.</span></p><p style=3D"= margin-bottom:0pt; text-align:justify; line-height:115%"><span style=3D"fon= t-weight:bold"> </span></p><p style=3D"margin-bottom:0pt; text-align:c= enter; line-height:115%"><span style=3D"font-weight:bold">Figura 3</span></= p><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%"><span= style=3D"font-style:italic">Actividad 2 en PhET I.S.</span></p><p style=3D= "margin-bottom:0pt; text-align:center; line-height:115%"><img src=3D"data:i= mage/png;base64,iVBORw0KGgoAAAANSUhEUgAAAacAAAEcCAYAAABj4nsuAAAABHNCSVQICAg= IfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAIABJREFUeJzsvXmcXFWZ//8+52619pLeku6sJC= GBxBBZg0JAIEgwIi4I46AvHVwZ8at+XRAHZ0ZRkPHrvNQMAjozoijq4IzwQ4MIIwgYWRMSErLv6= aTTa3XXfu895/dHdVU6SXeS3rvT9w2Vrq6ue59zt/M5y3OeR2itNQEBAQEBAWMEIYSQo12IgICA= gICAozFHuwAjidaaoKMYEBBwKiCEQAgx2sUYNiacOG3duhXLska7KAEBAQEDRmtNWVkZ1dXVp6x= ATShxAjBNk9NOO220ixEQEBAwYJRStLa2jnYxhpUJJ05jmWDIMSBgeBmJXsZQP8enas/oRATiNM= oopchkMrS3t5NKpY57YwshThkBG4ljGY3z1dPmUNs/mf0N1uZwnLPRum+PtmuaJuXl5VRUVAz50= L5Sis7OTlpbW/E8b8iOVwhBNBqlsrKScDiMlBPHhy0Qp1Gk2DVfs2YNVVVVwVxYQMAwks1mOXjw= IFJKzj33XCzLGpJeied5bNy4kebmZqqqqoZcQJLJJJs3b2bx4sVUVlZOGIEKxGkU8X2ftWvXMnf= uXMrKyiZs9/1UoNhS7q3F3Nd1PdnWdW/b9+ydHc9GwJEUn7lt27ZxxhlnDMk+U6kUTU1NLFq0CN= M0h/xaaK1JJBI888wzXH311YRCoSHd/1glEKdRJJ/P09jYyJvf/GaEECil8H1/1MojpURKWXq4t= NYopVBKjVqZDMM4oqWotcb3/VEb3hRCYBjGEecol8uRzWZLSxWOHtrrjRP9vfidk6nobNsmEokc= UabRPEfQ+3XzPG/UylO8boZh8KY3vYkNGzYwf/78IRGSXC5HTU3NsI18CCEoKyvDsixSqVQgTgH= DT1GIisLU2tqK1npUhve01qRSKWpra3EcByiIZ0tLC+FweFRa5r7v43kedXV1pQo/kUiQzWZLZR= xpcrkckUiEsrIyoDCk88QTT2BZ1qiUyfM8Dhw4wLve9S7Ky8sRQpDNZmlubiYWi43KdXNdF9M0q= aioQEqJ1pqOjg48z8M0R6fKSSaTVFVVDdu93NdxFRssRaE++vf+2hjNhuJIE4jTGEEpRSqVYt68= eRiGMeL2tdYkk0m6urpKlWwul6OyspLq6uoRLw8Uzsn+/fuP6EEkEgnmzp07apVcPp9n27ZtxON= xhBClBsZ11113RK9zpCgOU7W2tpYEM5PJMG3aNKLR6IiWpWeZNmzYQFlZWUmcstkss2bNGrX5kn= Q6TVtbG+FweMRsKqVYu3Ytq1ev5qabbsI0TZ544gmklCxbtmxU7pfxRCBOY4jiiu/RumF7szva5= enN02u0y9STYtlM0xy1iteyLPL5/BEiPpoVX1/nYbSv22jY3rlzJ3/84x+58sorqamp4cknn2Ta= tGlceOGF7Nmzh3w+z5w5c0in00SjUbLZLKZpUllZOeGFKxCngIBRQGvQ6NJPgUAAQgTODacKxcb= CNddcw5YtW0ilUsyaNQshBBs3buSNN96gvb2dAwcO4HkenZ2d7N+/n+uvv57KysrRLv6oE4jTOE= ZrjUajfB+lfJTWCAFSGEhpBMMGYxAN5D1FMueRyHh0Zn0yro9jSuKOQXnYJB4ycUyJDK7duEcIw= cKFC3nllVdIp9PMmDGDffv2UV5eTj6fZ+fOndi2zQ033MDnP/95VqxYweTJk4PnlkCcxi1aa7K5= DPv276Y1vRfsLK6fRQoTS4QRuRinTZtPRXklhjFxL7PWutBNOR4jOOSTybn81+udvHQImrwQrgi= jtEYrjaHzVJtJFldrPrAwzqTYSDpY6O7TVHSJL/TiQHT/H1SW/UUIgZSSUChER0cH+/bt413veh= d79uzhoYceYunSpVRXV3PgwAFef/115syZw6ZNm1i6dOmoOSGNJSZurTWO8TyX5rYDvLLpT5g1H= Thlkp51R16DsuEv216jzlnEmXMWE4uWjV6BRwmtFalkK10duxCid4HSCKLxGcTLaoa9Mih6G760= eS9NznSULRFaIbSmIAqCRF6ydscBLq1KMWnujGEvj688XD+L62XJuznyuSzZfIZsNk88FiXkhLG= sEKbpYJshTMNCipF32BmPCCGYPn061dXVXHLJJaTTaRoaGliwYAEXXXQR//M//8PMmTOZMmUKbW= 1t3HLLLWzZsoUdO3aUPFQnMoE4jSs0rufyxra1NOZfJTw1jzQEHF3xCpAmRGs1ifw6XtjUyNmzl= 1FRPmli3fBa4+cPUBN5gr4cID1P0pV7O1AzQkXSYDpUeq2E3UYc4eFYkphtUBEPk1eSPW2Feajh= QimfdC7JwbYdNB/cTaa1Hb8zi867aN/Hkxq3QhJu0wghEZaBiDg4VXEqauuZXH0alfE6DMMMelT= HQQjBWWedBUBdXV3ps8mTJwNw5plnHuGoIaXkvPPOO+VTYZwsgTiNEwoLYn227d7A3txfCVcUh1= 36RkgwHYUyW3h56x9YcsYKYtH4hLrxhdBYhsI0jxOz0B3JtSMCZYYQZpSQDVUhqI4aTCkPURF12= NOWYX+yFYah0tdak/dy7N7/Bru3rCF7oAMj4yGUhh6nQIdAVtqozjwljRQp8nvbSFh72Vu9ntrT= Tmf2rLMoj1VPmHA6A+F456a4ZKSnN2pwLg8TnIlxgtaaVCbJtpa/EjkJYSohQBoKUdnK61tfwle= jt0o/oCcCpARpIAwDaZpIaXRf2OFoPGhcP8+6rc/xxp//hLu1GbPLRXhHClOpdEfP02kQCoycQu= xPcnD1Gl546fckMx1oPThxL0bZGExEC8/zcF13UOUYabTWuK5LJpOho6ODTCYzpEFjxzuBOI0TP= M/lpbXPEq5y+193CTAsaPY20tJ6KLj5xxgjMTSmlGb//u3sWfMaVpd7zEjwEeVxQbQeP4yW4Wmy= 2w+xduOz5PM5GMQwpNaaxsbGQYU3yuVytLW1DXj7kUYpRTKZJJPJoJTCNE3y+TxtbW0kEokJFQm= iL4JhvXGA1pp0NknK2kncHuBOhCZaBXuatlJbPRkxyEltpRRqqGKlCYExDAEzxwsj0VTw3By73l= iDyJ74mkkf6Dxx5Wj4mtam3SRam6mZPBUhB3b9ijEciz/7ex/03H48oLUmnU6XhvBc18XzPKSUW= JZFIpFASlmKQjJRCcRpHKC1pi3RQrhSMJiqTBiQF+34vl8YQhpoeZSieds28mvWFvY74D0VjsZ3= HKouvoh4VdUg9jR+GYnqx8u76EQSMdlG7c1j+AxKFbUEVWlgZ3zSHe3oyQ2DOo6uri5ee+21Y+Z= cjo4Q0rOy7vl5Pp9n6tSpgyjByOH7Pvl8HsdxyOfzdHV1sWvXLmbPnk0oFMI0TTZt2sTZZ589am= G6xgIT98jHEVpr0pku5HEm9U+WjNuF53tY1kC7YN2Lf1Mpqpubh6RizYRC6Hx+CPYU0BfSMLC1S= TQJ+QYbv8NDJhVC0S+R0hK0I9CTTGwpCbUJHCfEYCU2Go1SW1s74Mo4nU6Pmzknz/MIhULk83k6= OjrYunUrQgi2bNnCnDlzkFKSTCbJ5XKBOAWMdTS+HvwQmhDgq6GZcC1O2w/FpOVwuQCMF0ZiMMo= 0LYxQlEhLF3ZOk58awpMa72Ae2XlYpETPAonD5dMSVAhknY0ZMzH2uYQy4GlJKFY+6OtnGAaRSG= TAEfmLaULGIj2HK4uBcItDe1u3bqWqqoqGhga2bt3K9u3baWhoIJVKjdnjGSkCcRoXCExpnzDQw= YnQGkxhD9pdtTi46AkxJOKkhJjQoXpG4siFIQmVV9J6cB9RYRLZq/Ec8CIO2QqNjggsu4drs6Yw= hyTA9zQq7WPlwEmBeUghfIOM6+HZNnYo1A/30V7KJgShUGhQ8yumaY5aGpXjobWms7OT3/zmN7z= //e8nFothGAbpdBqlFFOnTqWmpgbTNJk3bx5NTU10dHSQTqfH5PGMJIE4jQOEEJTFKtmXEBjWYC= YKIBqqGPxQgZQYNTU0Ljizu5U9ONUUlk3DKKV3mDBoyJl5PKXJeB4hTGwtibiCMiHQaHzho6RGd= XefhBZIJZAaJBKhQWmN6yvSeQ9XKVzh44vBtfDz+TydnZ2Ul5cP+N7M5/O4rnvSCRpHikwmw3e+= 8x3Wr1/PO9/5TmKxGJZl4XkejuMckatMCIHjOOzZs4fzzjsP2x740PupQCBO4wAhBBVlk8hsN7C= meQNrpGrwXQjp6kGHnxFCUF1fT9WUKYPazxH7DBYfDi8CPMtFdYdJ8pUmj8JTGkOCISWWEEhdjE= 6gQQsUGl9pfKXwtUYpja8L438acC2FOp5f+kmQTqdLCTcHimmao5pptzdc1+WZZ54BoKKiovS5E= IJJkybR2NiIUgopJa7rluLv1dfXM23atDElsqNBUCOMA4QQhJ0I9dGFeNmB7UNrQbbFYebU04fk= phdSIg1jyF4T+UEciTknIQQV1XUoWxTmkLqtCgr3hlKFHlHOU2Rdn6yryHo+eU/hq0JQ2NIV6o6= lqwSE6sqw7dCgxibj8TixWGxQPQXHcUqZgMcCvu+zd+9enn32WT7+8Y9j2/YRZbMsi/r6ekIhh3= Q6RXt7G6BZvPgsFi9ePKEdIYoEZ2CcYBgmbzrjXJ5ZtxPtdCJkf1yswMtKZldfQHl87DzAAQVGZ= M5JSBqmzGXvjA2o3V0lgekOOt79nd6XAxdSs/T4HdACvHKL2aefiWOFBrWQ2LIsGhoaBrw9FBwq= Rivzb2+kUim+973vcemllxbCRuXzpFIpKisrS2GLLMugtraM2loHrSu61x5GulPdjG75xwJBz2m= cIIQg5IRYMHUp6UMmJx0xRoOXk9id05kz48xBrW8arxRjfo8Fji6HhhFZPCqEoDxcxaJz3oacXY= 5rUhqa67t0HPNXTaHHlJtkMP28RcyectaEvKdOxIEDB9i6dSsPP/wwt956K6+99hr33HMPqVQKA= K19crndOPY6yuPPUVnxBPHYIwgeIZvdMuiQUKcCQc9pHCGEpGHyDGA5bxx4BlGWwLD7dpRSnsZN= WZT5czhn8SUTboJVA0pJ0q6NafRe8bqegRrRFBAFl2cXFzcv8E2JUgKtFL5SKKXwlY8ehkdTSoP= 6ytlY59hsr3qZzK6DWAkP4cPxzkCxp+QLTT4qEQ1lzJ27gOmTFmKboSEv56nArFmz+MlPfoLv+2= QyGb7+9a/z0Y9+tLt3p3HdJsrL9hAKbUGIHUAS01RYlk1z8y5yuQ8RCk1jIi+yCMRpnCGlpGHyN= CrL3826TS/SaWxHhnJISyMkoEH5Au2ZuG1Rzpp9CXVV9ZjmwNaPjGeklMQq5qL8jyH66BVYgGNE= R2yo05ASR/gIU2KaEtOQGLIw5yYNgZQCSyjMYSqOEJKa+DTKz6iluWEXTV2b6djXgtGSJeRqhF8= I8AoFQdIG+IYkEzeIzKhgSvkMplacSdiOB04sx8G2bWpqCmlYcrkcp59+OlOmTEFKie/nkGIrmc= wbNDW9ypQpGtsWuK5i//4EjtPB/v2/YNZpn8MwJq47eSBO4xApDaKROOctWkpX6iyaWvaT9TpRw= kNogaFDVJTVUjOzjpATmcBh+AWmGYIx0roXQjCpoowbTm9l46EWOlJ5bG0jsHG1RbJTUea6LJ8K= MxqmDWM5JI4Vpn7SPGrKZ5KuSZB228m7SfK5LJ7vglIYpoVlO9hWmLBdQcSuxDHDSBnkcToZig0= e27b53Oc+1+0UAVqlKStz+ctf1nHnnc/z2c/OZsmSSTz88H5++8h+7vjGQrLZLbj5LoywzUTtPQ= XiNE4RQmBZNpMqaqgsrz4m/ljg9DA2sS2LC980l3Ncl0wmRyqdwlcKQwii0SihkINtWSPSoJBC4= phhHDNMBXUFJwlU90+NoPs+EiIQo0EgpSQcDnf/ptF4CJFkyZIQV19dx1duW8+VV9bxxz8e4qu3= zae+PsTa19wJn94mEKdTgECMxhdCCBzbxrFtKsrjo10coDtthwCBMVEb6iOEQAiHXC5LLGbwsY/= NQhrwwx9u51vfXMgVV9TS0uKSSDhYVmy0CzuqBOIUEBAQMIIYRpREog7bDhEOm9z8qdN497X11N= Y6JBIu27Yr5s+7EcuKMJFbCoE4jSGKASJHY45Ia43necf0wHzfH7U8OX3l9xnN3D1HRzEohp5xX= RdjFBYTe55HV1cXkUjkCNujmVG1eM16lqcYAWK0evhjKd+TECbhyIU0Nu6grKwNy3aJRk327Mmy= aVOOaOxK6huWTPjRkECcRpniA2MYBpWVlezYsWPUbkopZcnDCCASidDS0kIikRiV8mitj6l0a2t= r2bVr16iUBwqV7OTJk0tlMk2TqqoqfvzjH5caFT3juxXf91Yx9oypdqLtentf/BmJRLjiiitKgh= CLxWhqauLgwYPDezKOQ21tbel8iO75tO3bt49qhVtdXT1qto9GSodY/Dq6us6gs3MNyVQ7Wk/it= Nlvprp6YbeXXiBOAaOEZVkYhoFSCsMwKCsrIxqNHlGR9VV59fb3wWwDBXEqrl6HQsVbU1NTanUO= JEPpYCojIcQRvZFi9Oq6urp+tYKHMhjo0efIMAwuuOACFi1aVEqFUCxrT/vDQVGMHMc5IjyObdv= U1dX1GqtuqO6X423T23WLxWKEw+HSuejPfXk8TnYbKWVJLItZZ4cKIQS5XK6f5ReYZhll5UuIxc= 9FKQ8pDaS0EOLYshUTFA40pch4JBCnUcSyLGbPnk1zczPV1dVHPECjRW/DVj0r45GmZ4VfZKydI= 8MwiMVGd/L66PMUXLdjKQ6/vvjii5x77rlD1mCJRCIcPHiQ2traAaX+EMLEMMzuMnJMdAitNU1N= TYTD4TEVomm4CcRpFDEMg7POOosXX3yRvXv3HhMc8mQ4mdZazyGgk/3uUNgdyHeHkt56Mcf77mD= LOFS9gaG0P5DvDPd+R+se832fXC7HvHnzaGhoGFJxWrRoERs2bCiNhvRWtoGe+1wuRzgc5q1vfe= uE6jkJPVZmCUcApRQ7d+5k9uzZo12UEsVJf9/3+3Q+6Dl8cjyOnpc42W2K3+vvNj23G4ltTvTdk= Tj249nt7zYnu21vc1Mn+n7P7/XnXPfnWIb7PJ/MvF1/tpFSYprmsIxQFJ9jz/OOyGA72Hus2AM2= TfMIJxOlFK2trVRXV5+SjhNCCBH0nEaZ4s03mkMwAQEBgyN4joeeiRrXJiAgICBgDBOIU0BAQED= AmCMQp4CAgICAMUcgTgEBAQEBY45AnAICAgICxhyBOAUEBAQEjDkCcQoICAgIGHME4hQQEBAQMO= YIxCkgICAgYMwRiFNAQEBAwJgjEKeAgICAgDFHIE4BAQEBAWOOQJwCAgICAsYcgTgFBAQEBIw5A= nEKCAgICBhzBPmcAgICAvrJ0QkDT8WEf6NNIE4BI4LWoLRGU/ipVPdPXfgbgJCFrrwUAilBIpCC= 7gygg7GtS5VJ8X3Pz4BSltGe2UZ7vh9Ou0ApM+vRZRhKu8Xfh8vuqY7WGtd1aWlpoampiXQ6jZS= SeDzO5MmTKS8vL2WsDRg8gTgFDBtFQcp5ilTO5UBHhv1dPs1ZQXtO0uVCzhd4FB5mA4VjQNzUVN= qK2ghMjRtMqQgTdSxsUyJPUqiUUqW02Z2dnaTTaZRSx4hEMb12z0rbNE1CoRDl5eWEw2EMwzjpi= ltrje/7eJ5HKpUimUzi+36vdnu+iplUHcehvLycSCSCYRhIKU/arlIK3/dJp9N0dXXhum7puJRS= R3yv+DsUBMpxHOLxOPF4vJTKPKhkD6O1pquri1/84hf89Kc/ZceOHWSzWQDi8TgLFy7kc5/7HEu= XLsVxnODcDQFC9yeh/ThHKcXOnTuZPXv2aBfllMdXmrZkjlcaM7zW7LMlIekkgictEBKtCw9vb6= 166BYKrTC1S4XIML8SFteavLk+RFXUQcreH36tNZlMhpaWFrLZLEopJk2aRDwex7IsgJJo+b6P7= /slcSqKiOd55PN5UqkUUkpCoVBpH32l4e7Zqk6n03ieRzwep7KyEtu2EUKURKtosygmPYWlaBco= CWRFRQWm2Xs7sljutra2kiCFw2GqqqpwHAcpZa/He/TLdV3S6XRp+0gkQnV1NZZlBRUtkM1mufv= uu7n77rvJ5XJUV1czb948stksW7duJZFIUFdXx3333cfll19OOBwepMXis9D7uVdK0draSnV19S= l5fYQQIhCngCHHV4rX9ib4/npJgggKAUIi5GH/m+Jd17s4HYlAIwUYQlOhu/j0QsXi6VXHCJTWm= kQiwdatW6mvr8dxHEKhUKn3A4eFqadI9BSIvuYSurq6AJg+ffoxQlEUxNdff71k13GcUu9HCFGy= U7TdUxiKtnuzm8vlaGpqYtGiRSVx7WnXdV3Wr19PVVUVkUgE27aJRCIlUenZk+t5zD3F+Gi7RSH= du3cvCxcunPA9Aa01a9as4e1vfzuJRILzzz+fn/zkJ9TV1aGU4o033uBv//Zv2bVrF1OmTOHZZ5= 9lxowZpSHT/qFQysXzMmidR0oHwwgjhIkQh/c3EcQp8NYLGFK0hmTW499fd2nTUVwt8bVA99ECP= Kl9IvC1IK8kbZTx802aZCbH0VLmeR5NTU1Mnz69VDn3dx7l6PkmIQRSSioqKgBobm4+ZhulFLt3= 72bq1KmlXlJv81f9KUPRbjQaZfLkyTQ2NvYq3vv27aOuro5wOFwaihvo3FHPbW3bZsaMGWzbtu0= Y4Zxo+L7PypUrSSaThMNhvvWtbzFr1ixisRjl5eWcffbZfOlLX8KyLA4dOsRTTz2F53n9tqOUTz= K5g3Tqz6B+jxQP47k/obPz12TSu9C6//sczwTiFDCkaDS5XJZcy15QHhwjIQNHoNHKI9e6l2w2f= bj7BaXhuHQ63WuPYLBorcnlcnR2dh7zN9/3aWlpGTa7+Xyetra2Y/ZdnAfxPO8YR4uhsOt5Hl1d= XRNenJRSNDY2opSitraWBQsWHDEnZ5omV155JaZpopRi//79AzhnmkxmH6bxBuHwa0jjOTzveWz= 7JWLRp0kmHySXa0briXMtAnEKGHq0xvCyVLasw8x3IZQHWlEQqv5UoBrR/ZLKw853Ud3yGqbbRV= /1sBCCXbt2kUqljqi0T7biPtrLTSlFNptlz549pTmo3jAMg507d9Le3o7run06X5xsGZRS5PN59= u/fz8GDB/v8rmVZNDc309zcTD6fP8LuyRxnb3Zd16WtrY29e/ceM5Q4UQmFQgghSKVSpSHennR0= dJTO6UDOme/nUGortrUFpV5n377d3H33Wjo6OoF2bPt1Gvc/hlLuYA9l3BB46wUMOVpI3HAlnlX= BpNRutDDwrCjKsHCtOL7hoIQJCBSUekBCFwf/FIb2MP0cEZ0hZng4XgrDz5OsnILOtvVpOxqNEo= vFaGtro7W1lfLyckKhELFYjFAohJSyNN9SnAfqOf/j+z6u65acKTzPI5PJUFFRgZSyT3GybZvJk= yfT2dlJW1sbFRUVRCIRYrFYac6rp92ec11FRwXP88hmsyVR7ezspKKigtra2pKTxNEYhkFNTQ2p= VIo9e/ZQVlZGOBwunQfTNPu0W3zv+z7ZbBbXLVR8yWSSUChEdXU1XV1dp+ScRn8wTZNly5bxpz/= 9iba2Nv77v/+bj3/840QiEQDa29u5//77yeVyRCIRzjnnnD4dWHpHk822YlutKL2LNWv285nPvE= pbe55du1J8/RsLKItbtLe/RH3DezEMe3gOdIwRiNMwMrEX6gm04eDFG7ClIiwUjs5i5fcgsi5oh= Y9ASAO0RhoCx5CEDU08ZFIetiiLRojEy0i6sL8jysGUD1lOOH9lmiaVlZWl9wBNTU3kcrlj3KiB= kiu3lBLLsgiFQlRWVmIYRqnSFkKUKu9jjrTHmqGiO7ZhGBiGQVtbG5lMpiQOxe/3vDeKdh3Hoay= sDNu2yeVyxGKxE/aAinNE4XC4JL6madLV1UVTU1PJ+eLo4y3aNU0Tx3GIxWJUVVWRz+eJRqP4vh= +4k3cjpeSDH/wgTz/9NKtWreKf//mf2b59O8uXLyeTyfBf//VfrFq1ilAoxMc//nGWLFnSp1dnX= 3heEtvsZNvWg9x223oWLSrnk588jc9+di133bWJz332dBKJTnw/6DkFDALXdUkkEmzcuJHNmzcj= pWTRokXMmzePeDw+cR540f3qFiFhRJGhKI6hsSU4BjimJGRC2JJEbJOIYxINWdhmwcvNV5pMVxY= h3e7zdvKuFUXBsW275HF29LyQlBLDMDBNs/QqXp9sNntEBX0y162nUFmWhW3blJeXHzO0V1xPVb= Td02Xbdd2SIELfXox9HW9RcOLx+DGegMX1VEfb7enqHizIPZZoNModd9xBRUUFDzzwAD/60Y948= MEHUUqRy+UQQvDlL3+Zm2++mWg02u9z5ziVeL5H44EMb7+qjo98eAbl5Rb33XcO9/xwB4ea87he= FaYZpvBQnfpO1oE4DTGe57F582Zuu+02Xn75ZcrKylBKkU6nede73sXtt99OXV3dxHvwu4UFIUA= IhAQhBdKQGEb3z+7Kurj4tLRZ4V1pVwN5LHt6wB39WdHm0Ytth+Ia9dxXzwW3RVE8+niPjuAwFH= Z77qs4NNnT7oS7F/uJ1prW1lb+8z//k9/85jeYpklDQwMNDQ24rsvu3btpbW3lgQceYN68eaxYs= YJ4PN4PV3KBY0+ira2CC9/SwEUXhTCMwn0yZ06Mr942n/XrPWbOXI5lRYb1WMcSgUPEEJNMJrnr= rrv4y1/+wle+8hUeffRRfvOb33Dttdfy0EMPce+99w7IzTQgIGB0yGaz3HbbbaxcuZJUKsUnPvE= Jfve73/HII4/w2GOP8eijj7J06VIaGxv55Cc/ya9//es+h4D7QkiDWPxK2tsayGQs8nlIpXwaG3= O8+mqKcORtzJx5CVJOnP5EIE5DiNaavXv38uKLL3LxxRfzsY99jNNPP52FCxfy5S9/mVmzZvHoo= 4+STCZHu6jjmqCdHzDY3Bf2AAAgAElEQVRSKKXYuHEjq1atIpfL8Z73vIevfvWrzJ07l/Lycior= K1m8eDE/+tGPOP/888lmszz44IM0Nzf307Vf4DiTqJz0CTq7rmXr1lmsW1fNrt0LOG325znvvE/= iOLFhO86xyMSR4REiHo9z4403smDBAhzHKX0eDoeprKxk3759E37dSEDAeEFrzYYNG0gkEkQiEW= 6//XYqKyuPGSqtr6/npptuYs2aNbz++uts376d+vr6fg6ZCkKhGiZPvprKygvROoeUNrZdjWmGm= GjNskCcjkN/x/+FEEybNo0vf/nLR4zle57Hhg0b2Lx5M29+85uHIO5WQEDASKC1pr29HaUUFRUV= lJeX9zqXJKUsRSbJ5/O0t7f3e1G0Uj7p1E4QezCNgwiRwPd9UslJOKGLCIXqEWLiVNkT50hPguJ= q/FQqRUdHR2n4LRKJMGnSJGKx2AkDYRYnmot4nkdjYyPf+973APjYxz52RI8qYGTQuuBI4evD74= WgEJ9PC4QGqUEUW6d6aPyhdA/bShXeC9HtbyUAWbCrdNH5o+ihNwTGAwaNEIJYLIYQgkwmQ1dXV= 8mppSfFuI6+72OaJuFwuJ+9Jk0msx/DeAPb3oYUO0F0ARrLcmhr240QH8FxapkoUecCceLwyviu= ri5eeOEFvvOd77B582ay2SxCCBzHYc6cOdxyyy1cccUVRKPRE3riFBc+NjY28tGPfpR169bxqU9= 9iiuvvLLfayAC+kcxDoXShcAUeReyfuHVkROkXYGPwJAC25REbIOYYxB3DOKOxDY0Bhpfd4sZh5= 13T1TdaA0KUErgepBXkPGgMw9JV+BpAykEtiUJW5KobVAWKth1DI0hCiLmdwtWwOgihGDu3LmEQ= iGSySQ//elPue22245wF9dak81mefzxx8nn80yZMoWZM2f2S5x8P4/vb0aLzXR1rSUazWIY4PuK= jg4XIVpp3F/HjJk3BotwJxJKKQ4cOMDnP/95HnnkkZKnTVFEfN9n3759vPjii1xzzTV885vfPOH= N5/s+a9eu5dZbb2XNmjV88Ytf5P/8n/8T9JqGGQ14CvakTHYlDVrzJh2uRGmwJdiGwDEEYUsSsg= RhSxDWkpSWJLVBm9cdPBVNJuuTTlpYSlEf8TH6UKdiL0dpaMpJtnaatOQM2l2Jr8DsYdcxBWFTE= PYFEVWwm9IGHcrsXhamyecVqZSJzpvUhz3CRqBSo4UQgje96U0sXryYZ599lnvuuYfZs2dzww03= lIbnu7q6uP/++/nFL36B7/usWLGChoaGfoiTJpttwbHb+O1vn+eXv3yZO+88k9NOi/K73x3gO/9= vK/fcczb5/AvUN1yLYVQO3wGPISa8OCml6Ojo4JZbbuGxxx5DCMHpp5/Ou9/9bi6++GK01jz33H= P86le/Ys+ePfz3f/83lmXxgx/8gLKysl73mc1meeWVV/jYxz5GJpPh7rvv5gMf+AChUGiEj27i0= ZGXPNsaZlOHBHS3IIHVz5EQX0PaE+xNGTQlLQQG51T4zOr9kpP2Ba8cdFjTauIpjdVt15bQn36y= QpDxBY0ZgwMJi9WeZGGFy8wJ/6SODkIIKioquPvuu/nQhz7E1q1b+cxnPsMDDzzAxRdfTD6f59l= nn2X9+vXk83nOPvtsPvWpT/V7XtnzkthWJ2+/Msrzfwnxtze+yN/cMI37f7STf/zaGdRU22zZ0h= FEiJhIeJ7HCy+8wFNPPYXWmjPPPJP/+I//4Mwzz8SyLLTWXHrppVx77bXcfPPNrF27lscee4xrr= rmGa6+99pghunw+z/PPP8/NN9+MEIKVK1dy2WWXlQJHTihOZhxsCPE1/HG/yeZMISSSKQ7P9/Qf= URoe9DW0ZiWrkhY3zjm2clBas6VDsjproXQh75TZ3xi3RUp5rgo9sURe8vQBk3fXyT6DtQYML0I= IFi1axH/8x3/wT//0T7z88su89NJLvPzyy6XvxGIxPvCBD/ClL31pQLmcHLsS3/eJl5l85db5fP= 0bG/nRj3dy663zeMc7ptDa6pLLTwoiREwkMpkMTzzxBKlUilgsxje/+c1jErtZlsWiRYv4zGc+w= yc+8Qk6OztZtWoVy5cvLwV/hEJFcejQIe68805aWlq4++67OeOMM2hubi6t1Lcsi6qqqn4Ghhxf= aOXTuXczcnoMw7HBGBmF8n3Fzo1rSFctJBSJgTH4iWPd/Y/v+3R1tJPNHnvdtNYcbNxLQllEyqs= xzFLcpkHbVkrRlUySiqd7/U4ikWDv3r1MnTo1iCA+jFiWxbnnnstDDz3E6tWreeGFF0rpU6qrq7= n00ktZsGABsVhsAHPKAtuppKOjgrgRoqYmxJ3fWshLL7dzwfmTyOUUe/bAjOlXdYvTxODUrSFPg= mIG07/+9a/Yts3MmTO5+OKLe33IiwIVi8Vob29n7969ZLPZI8TJ930ee+wxXn75ZZRS3HHHHdx5= 552lv0spqa2t5dFHH2XSpEkjcoyjgtbkUwn2rvoRs95yDXJSNbYMQx+p1YfQMGYowvY//pTp5y+= nrKoWOxIBXawsjgqBpI/XtSu69Wl83yXV3oyXTYPo/bpJKdn55M+pW3ARVTNOx4pG0IbZ7ZLX++= 6P2/jVGu17ZLo6SDcfgMnRXr9m2zarV6+mvr6exYsXU15eHojUMGEYBhUVFSxfvpyrrrrqmKUmg= xkZkdIkErmM1tbNRKMJHEez5IIqEgmPTZtymNZSZs56G4YxcarsU+JIewbU7E93uugmevvtt7Nv= 3z5CodBx54Vc1z3CTm/upBUVFdxwww29LrSVUlJZWXlK95oAhGFSdfo5yGmL6dy/lfYtLzH7gmU= 4fczRDZldIYlPmc1pl8+ga98mOravoWbaaVTVz0REwtiOjS74j3drj+hOM1UUItX9mcL3PdxMkm= yiHTetCEXLsaIVCNnLmL8QOOXVnP6OT9C5bzP7X3mK8qoa6mbNR0YiWCEHLSRaSlDdtrv/K71XC= o1G+T5uJkW2s418ysW0bMqmno4wDvV6zOFwmBtuuIHNmzfzwgsvEAqFWLZsWSBQw8zQB8YtLMAt= K/8orS1P09q6mq5kJ/l8BQ1TL2PGjKU4TpyT7ZH3jOM4XqcTxn0tWVxf8G//9m9kMhk+9alP9Wt= ldjQaZfny5Se8kJ7nsW7dulJ+m2nTph0jZKZpct111/G+972vT3tHBx89VRHSIFI1mXj1FCwUti= VHZPpJCIFTVkX4zCVYKByhMVWWfKIF388SDodRkSjCMZG2iWmb5JWBpQzyygCpkUIiLQczFCVUb= hCSHmYW/Fy2b7sIzHCM6rlnY55+FjYKGxc33U4ykca1bVQ0Bo6FtE0M38D1DVxVsG/kC9WOtBxM= J0SofBKOdrGzkM/7xz1m27Y544wzmD9/finaeMB4RBCJ1BOedgP1De9Da4UQRvfr5AP0KqV4440= 3uOeee7juuutYsmTJuHTGGvd3sed5rF+/nldeeQXTNEthQ06Wk2lZKKVoa2vj3nvvxfd9ysrKuO= qqq7DtI9cbFCNcB3RTjAReerBGZhJXIEoPs5Rg2jGsSIxQd6qOkClwLIltCixLYtsmlmNgORaOZ= SAorFUSbu7witmTtS0KtguRv03sUAjHKHjuOVIQMiWOJbAsgeWYWLaB41jYtknBv5BCvivk4Uju= J7B32O7EaPic2giEMAZdjzz55JMcOHCAe+65h4aGBk477bRxVzeNe3FyXZfHH38crTVTpkzhwgs= vHNJurFKK1tZW/vEf/5H169djGAZXXHEFl1122TEVQX88p8ZrV3tcIkR3po5Cqg7EYfESQhTmwn= o2UoQYOh3tFreC7R62isPCouA8UbJ96jthjRl6ZggeDYqpS4a6LhBCsHz5cl588UVSqRR/+tOfm= DZtWiBOI0lx8eymTZuQUnL55ZcP6QUoroG6//77eeihh9BaM3nyZL7whS9QVlZ2xE2llGLPnj10= dnaeUKSKjhG1tbWBSA2AIau/h8apLmCc4nkeDz/8MC0tLaVntueze7LPZnFKoLewRkf/ved+Gxo= aWLFixZAvzBdCMHv2bM4991yeffZZnnjiCZYtWzYgF/fRZFyLUy6X45e//CVKKWzbZvHixUNW2f= u+T0dHB9/+9re55557yGazTJ8+nR/84AecffbZR1zkYgvsO9/5DqtWrcL3jz9H4DgOn/3sZ/n4x= z8+7lozE41Au05NinE0V65cycaNG0/4zA41Qgje+ta3smzZsmGJGiOl5J3vfCd//etfyeVyPPTQ= Q3zuc58bV0Gnx7U4HThwgK1btyKlZPHixUybNm1IxMnzPPbu3cvXv/51fvWrX5HP55k1axbf+ta= 3ePvb337MhHMx5fbtt9/O5z//+RPuX0rZZ3TjgLFFMMp2alKMmfkP//APtLe3lz4/USaCvnpHff= 39eL2q2traYROLYu/p/PPPZ/Xq1axfv549e/Ywb968YbE3HIxLcdJa43keTz75JIlEgng8zt///= d8PiTC5rsvWrVv59Kc/zfPPP49SihkzZvDDH/6QpUuX9ukJJYSgtra2X7aCIb2AgNHDMAyuvPLK= UYuyMdwOLEIIPvGJT7Bu3To6Ozv52c9+xu23345t2+Oi7hmXTXetNTt27OAPf/hDqdcUjfa+SLE= /+8zn87z44ot88IMf5LnnngPgrW99Kw888ACXXHLJMd55R1OcYD/ZV0DAcNEzMruvwe+OdO71iH= g+8NBOpwZF71rTNEflNRzOEEcTiUS4/PLLMU2TjRs38qc//WnEhzAHyrjrORXnd5566imUUoRCI= S677LJBzd1orXFdlz//+c988IMfpKWlBcdxuPDCC7n33nuZNWtWv1o4vu+TzWY5dOgQyWQS27ap= qamhvLw8mGMKGBYKeaMEni/IuuDlIe9D0oNUXuDqQoPINCRh2yBiS2KOQZmShMxChCmtBJ4WBeF= iYgvX6KFRysX3c4BXcCuXYehe69Rfio5iL730Evv27eOZZ57hoosuIhKJjPlphXEnTkop8vk8L7= zwAgCLFy9m4cKFA95fUZheeuklbr75ZpqbmwmFQtxwww184xvfYPLkyf1q3SilaGpq4q677uIPf= /gDmUwG0zSZP38+X/nKV3jLW94SCFTAkKIoBIjd3GmwL22S9g287myKtiissQqZspCuw5ZEfElE= GSSVQacyMYRACo3nQXtnIVVHraOpcIKkh30xEK++k9lnNnsQN78Ny2pFiE6U75PNVROLvxXLqhi= QQE2ZMoUVK1bw7//+72zatInnnnuOyy677IQjQaPN2JbOXvB9n9///vd0dHQQiUS46qqrBlXZK6= XYuXMnn/70p9m+fTu2bfPhD3+Yb3/72/0WJoB0Os3KlSv5+c9/zrJly1i5ciVf/OIXOXToEDfff= DM7d+4MIkkHDBl5JXipxeKBnRGeOhhiW5dBa1aQ8QtDecUe0NG3nO7xsxB5XZD1BW05yYYOi9/u= cXi+ySLji0CgelBMLNje3k5zczNtbW2kUqkhWCulyWabUP5aotHXcZznsaznCEeeJx5/nPa2n+G= 6iQHtWUrJueeeS319PUopfvvb39LR0THm66Fx1XPSWpNOp3nssceAgrfL3LlzB9xy0VqTTCb5+c= 9/zuuvv47Wmnnz5vHJT36SbDbLgQMHet1OCEE4HCYejx8hjFpr2traePzxx5k/fz533HEHsViMf= D4PwD/8wz/wl7/8hVmzZgW9p1OOkX/QNbAzKXlsv4PWYAhVijIx0OJoCj2xjCd47pBBNmLy5qEq= 8Dgnm82yceNG7rjjDl577TUymQyWZTFjxgw++9nPcvnllxOPxwc0XKaURy67nnh8B7CWjvZmnvn= zIZYtqyMcNrDtNg4enMLUqe9Gyv7HTaysrOTtb387P/7xjzl48CAvv/wyV1xxxZjuPY0rceoZ38= 4wDJYuXTqomFFKKbZt28aPf/xjPM9DCMHu3bt5z3vec9wbTAjB4sWLueeee6isrDzi83g8zq233= kosFqOsrAwpJUqpUmLCTCYz4PKOHzReNokv4xi2NWIpMwC8XAbXk9hOqBDgdSTQoHwPN9uJCEVg= iFJmnNCshkR7Gx1NKWKTajBMY8jMFnoIOdozh9BqztDsdByTyWS49957+e53v0trayu2bROLxch= kMrz66qt89KMf5Z3vfCd33XUXNTU1/YxvqMllWwmHO9F6Ozt2NHLbV19j/foE69Z18Pd/PwfL8m= lteZa6uitxnIp+l19KyRVXXMHTTz/Nli1beOyxxzj//POpqqoas85Z40aciuktio4Q9fX1vOMd7= xjUpJ7Wmtdff51EIlGK4pxMJkkmk8fdTghBXV0dnucd87eKigquu+46tNYopUgkEjQ2NrJq1SrK= ysqGdKHwWCbZtJum5jVUzzqTSfUzwRiZ9PRuKsHeV55i0swFVDXMgmhsUPs72Svl57PsW/0YZQ2= zqZo2B7u8oh9bDxzDtGha9zSpqilUTZ+HOakapMFAw19orVGeRz7dRerQIcz6kbluYxmlFE8//T= R33XUXHR0dnH322Xzyk5/k/PPPZ//+/fzsZz/jkUce4aGHHmLGjBl84QtfIB6P9+s5z7udREIdH= DhwkDvv3Egm7XPbbfP53ve2UV5u8973NtDZ1Yzn5XCcgXWLDcNg+fLlbN++nQMHDvDss8+yYsWK= MRvBftyIk1KKtWvXluLbXXXVVUMSfXnKlClcf/31R4y/9lww13NRXs/38+fP77XX1nO7xsZGPvK= Rj7Bz506SySR33303Z5111gQQJ0H5tDNgionbcQAvkwJnZIYPQpV1TL3gHeQ6msilEsQGKU4nVQ= 0IsEIxpl/0brKtjXQd3EW87CxGRJwsm5mXvJ9syz5SzXvJNe+iaupszIoKtDDQUpRyShXmnvSRw= 36l3zVePke6pZF8SiFlmLIpp2HYTRM+TEYqleLuu++mo6ODqqoqfvSjH3HmmWcipWT+/Pmcd955= +L7PQw89xMqVK7nuuutYsGBBv55z247jqzx/evogUsJ9951NXV2IM+bH+b9fWM/iN1eQydRhGDY= DzYQrpWTJkiX86le/4uDBgzzzzDNceumlVFRUjMk6adyIUzqd5ne/+x1aa8rKyliyZMmgT6hpmq= UgrsejpzAVkVKesNeWyWSYN28e9fX1/PWvf+X73/8+s2bN4qKLLjrl55yElITKqomWV2JLfVIRt= ofErhDY0TJC0TiWGMF5ICEwnDDx+tmYwh/Rh12YFvHJMzGmTMfGx1Q53GQHvpfBtwxUKAS2iXBM= TNvA9Uxc3ySvTExPIgVIw0JKSaR6CiHLxUxrRH7EDmHMorVm37597N69GyklN910E3PmzCk9+8W= ccCtWrODhhx8mmUyyadMm5s+f349RHYFjTyKRiPC+957G+95bQSgkEQLOOaeSX/3yAjZvyTNlyt= uwrME1thzH4cYbb+QHP/gBu3fv5s9//jMrVqwYk/XRuBAnpRTNzc1s3bq11DWtqakZkgrgZERmI= AghmDNnDt/97nfxPI/nn3+em266ia997Ws8+uijlJeXD7nNMUcxGvfoGB6VFn8x+vloGC4s7jYw= rQhOJIItwTE0jgGOIbEtgWlJLLuQqsN2TCzHxOjOUOzmfYRwR6whMR4QQjB9+nQefPBBXnvtNa6= ++upenQh6fjaQRa7SsAmFLyeV3Ewk0oXnufi+pqvLY/v2LK67mPnzVyDl4KpsIQTnnHMOs2bNYv= PmzfzsZz9jyZIl1NTUjLl1T2OrNL1QDFV0//33o7Wmurqa5cuXj8luqNaaXC5HV1cXuVwOwzAIh= UJEo1HOO+88zj33XLZv387+/fvHvBtnwPjh2Cehe76pOzUIQnanCCm+iuItDn93oo/dHYdIJMIF= F1zATTfdxNSpU48J+pxMJlm1ahWe5xGLxZg3b94AKnpBKDSFUPjDHDr0Ft54I87atRZr11ZQVnY= jS5Z8Dtvu3zxWXziOwzXXXINt2/i+z//+7//i+/6Yq5PGfM9Ja8327dtLvaYFCxYQiw2uazucrF= +/nn/5l3/h2muv5frrrz+i+9/zfUDAUNGfKqV06x39M6BPimGOikNfxbVOyWSSnTt38vjjj/Pb3= /4Wx3H40Ic+xGmnnTagXogQBtHobGz7w5SVX4HrprDtCmKxekwzjBBDM/QmhOC8885j7ty5bNiw= gT/84Q9ccskl1NXVjanhvTHdcyqGKlq9ejVKKSzL4r3vfe+Y634W0VoTCoV49dVX+f73v09LSwu= u65LL5diwYQOvvPIKs2fP7lca+YCAgLGFUor77ruPq6++mmuvvZZvfvObdHR08Dd/8zfceuutRK= PRAT3fhZGXdlKp1wiHd1Betg3T/AuJxPP4fgqthy4pomEYXH/99TiOQ3t7Ow888MCYi7k3pntOx= dBCq1evRmvN9OnT+x35eySRUjJz5kze//73s3LlSm6++WaWLl1KW1sbjzzyCEKI0hqogICA8Ynv= +zz33HNs27aNfD6P7xccYPbt28e6deu4+OKLB+RJnMu14HmvUhbfhZQ7gA4cR+HYNm2tO6ic9AE= sa2jmqoUQdHV1lSJbnHPOOWOuwTw2uyDdFPMknX766QDs2bOHxsbGUS7V8YlEInzpS1/iq1/9Kp= s3b+Zf//VfefDBBykvL+ehhx5i2bJlY6rrHHB8xtbjGjAWME2Tr33ta2zcuJE33niDu+66i/r6e= p588kmuu+46nnrqqVJUmJNFKZdk8mVMuY1c7iW03gm0oXU72WwjQjzDwYNPoZQ7JMeQz+d5/PHH= yefzTJo0aUx6EI95cTIMg6uvvhrDMMjn8zz88MNjrvvZEykl8XicW265hccff5zf//73rFq1iv/= 5n//hvPPOG5K1WeOe7lwNWhfX3RxOkV1cczP8RdDdL3qE4O5pV3P0J0Nhk2LE7x629SCtHF7F1I= vNHv8cXuekD5/jsTUHPi6QUrJw4ULq6uqYOnUqn/70p/nP//xPamtrSafT/PCHPySRSPTDwUCTy= 7YRi6ZZtepZvvzl5zh4MI3r+rz4Yhsf+buXOHSog5bmp3Hd9JAcw7p169i8eTMAy5Ytw7KsoOfU= X6SUzJ07l3PPPRetNa+99ho7duwYc54lPZFSEg6HaWho4IwzzmDu3LlUVlZOSGEqVoi+8vF9H89= z8XwPz/fwlYfyVeGlFFortFKo7ugaxVehUu9/8iGtNb5W+J6P53mll+97+L6P8v3DdrvFSmmN0g= qt9IDsFo9XaYXv+922fTy326byu49XH3FsSimULrxKdvvn6nD4GJRfOMeeh186XtXDtipFMNH6y= PNcEs2A41JcgiKlJBQK8Za3vIUbbrgBIQSvvvoqu3bt6lcdlXcTSJngrMWC1tYMX/jiOh599ABf= +OI6Fi0qJxaTdHVHiBhsiyKfz/Poo4/iui7hcJglS5aMSG6p/jLmxUkIgWVZ/N3f/R1VVVV0dXW= xcuVK0umhaUEEDB9aazzXI++6hex2FFybpTRK3k/S7PFeFn9KpCERUiK61+AUxMwvtv9PbNfzye= ddlNIIAVIIDEOWbBndyd4Mw0Aa8ojKRnbbFYiCoJ6sm223A08ul8f3VGntkRQSedQxGtLANORh2= 8WfomBXKYXned1zAic63sI8SD6fL4XUOsZut03DPHyODSmPONcIgUbjeS5K+UGvqhvP80gmk3R0= dPQ5XGeaJosXL8YwDFKpFM3Nzf0SJ8uKonWOGTMcvvnNBezdm+aWz6xlyQVVfPrvZyOkIJ0JdQd= 9HZyIJBIJtmzZglKKt73tbUyfPn3MCROMA3GCwoNWWVnJRRddVAoLtHbt2iEIUx8wPOjuHoqPZZ= k4IQdpGN1iI0vPVp+ra4p/Ly7ilRLLspDSKPRGjjOsW+iZ+ZiGQSjkYJXsFqwd4UF9zAPZ43chE= FJgWhamaaCUwvXcPiscXylcz0cKUbBrmUjRLXKil2Pt65duu4ZpYJlWQSxcr8+hP63B8woVZsgJ= YVt2QVyLto+x1fs5L55rQxqlIR7P9yb8M6aUYvXq1dxwww0sX76cAwcO9HkPZDIZtNZIKfuZCl3= gONWkUjZoi+nTI/zql0v49l0Luf32+ViWYM9uj7q6pdj24DN+33vvvbiuS1VVFddeey2maQbiNB= gsy+Kqq65i8uTJeJ5XmswLGHsIwJAS2yqExBlsjAjR/a+UAsu0MKTsc4+yp92het6EwDBNTGn0u= U8pwLZ6pN4eCttCYBgmpmEg+zwYjWVahSHjk7R7ovZ8cU2eaZqIoPtEPp9n9erVrFmzhl//+tfk= crljvpPNZvnjH/+I7/tMnjy5370Rw7BxQpfRkaghlzOYNKkQ7DWXU7z+epp0ZiHz5r1zQOkyihQ= DXa9fvx6lFIsWLRrTkWrGjTgVe0/Lly8HYPPmzbzwwgsTvmU31hBAxLGYaqWQqCH2KACJYnJYEY= mEjuj5CCFwbJOpRicmLiXPgyM3H7BdQ/tU0EVdxbHLAEzDYE51GFvnelTmQ6OMQiuiZJhed2xqA= ykEU2OCsEoiUCctJCdbMltlmRZVGGN0XeFIIIRgwYIFzJo1C6013/3ud3n55ZdxXbc0R5dKpbjv= vvt4/PHHAbjyyisHsJZREIlMJxS+iX37FvHGJou1azUvvmjhhN7LhRf+X0KhwQVoVUqxceNGPM9= DSsk73vGOMT0PPnZL1gumaXL++efz6KOP0tzczMMPP8xZZ51FRUX/85sEDA9CCMIhhxuXTOX/29= DE7sz/z96Zh9dRnff/c2a9myRrtSRvsi1bGIMddmMMBbs4JCUQmjaBkA3IQylpEhKSH03TlD6Bm= DS0NAmlJE2AsIUQmtVt4rAWBxICxqwGG7zKtmxZ+91nPb8/rmZ8ZctggWRL9nyeR7rSvTNzztw7= 93znfc973tfE0ZKhW22kg7aUEul7CN8h5gxwrFHknGPrSMRi+x1J13UuXjSTxNrtrEsbWEYlAhU= h38kXWmAWr/YAACAASURBVCKlj/BddCdNi8hxxrw4M6ZM3m9LTVU4+z1zyD+/mbW9GmmlAiG0Yd= yGB98uvofm5Gn005wwRTJnxoz9Fp8LASfNbyWdf43fd2bpExWl0iTh+Q7f/rASFgZ/+ChugSqrj= 9MmOZx76nFo6tEtTvX19Xzuc5/juuuuo7e3l6uuuoorr7ySGTNmkMvlWLNmDXfffTfFYpHjjjuO= K6644h3VmRNCJZGYyezWa7GsASwrg2lWYxgpVFV/RyXaA4KSQ6tXr8b3fRYtWkRTU9O4TWgAIOR= 4DnsbBtu2WblyJffeey+6rvPZz36WJUuWHNSbHJRknz179iHo6dGN7/sULZstOztZs76drVkVK1= GPosfQNRVTFRiaQkxXiWmChKESN1QShkrCVNEUAb6HVcixe8c2TGlz7MypTGmsJx4zD3gHKaXEs= h12dfXy/PqtrN9ToJBoAjOJrqoYqoKpCWK6iqlDXFNJmoNtmxqGKkD6uLZF164d2OlejpnRxMzp= zSRi5gHXggQ5ILv60rz0xlZe2ZlhQK+FWBWaFrRb+onpCnFNIWEoJEyNhKFi6ipIH8+16evqJNu= zm5lNNbROn0plKommHXgNiud59GdyrNvYzvObO+lVavDi1WiajjH4Ppta6X2OGwoJXSVuqiR1Fd= NQUYREui6Zvh66d7XTXJPimFnTqamqRNPGXxTX4aBYLHLvvffyj//4j6TTaaB0s+z7pahMVVU54= YQTuPPOO2lpaRnzCrO+79PT00NdXd1BfT6e5/Hb3/6WO++8E4CvfOUrnHDCCePWchJCiAknTr7v= Y1kWX/rSl9i5cyctLS3ccMMNVFRUHNS+kTgdWqSUuJ5HPl9gIJNjoGCTtz3yRRvLcZBS4Lk2qiJ= ImCa6ppCMGSRiBroqiOkayWSCeCw2onDXUvh6SSAH0hkG8hZ5yyNnORQtG4nAdWwUJPGYialrJG= I6MUPD1FQMTSGVSJBIJsKotoNt1/cllm2TzmQZyBXJWR7Zoo1lO3iyFLSB9IkZOnFTx9RU4qZO3= NAxNIVEPEYqmUDTtBHd2fq+j+24ZLI5BrJ5spZLznIoWC7eYPSf9DxMQyudsyqIxwxiuoahld7/= VCqFYejj+o76cGFZFi+//DK/+93veOqpp+jt7UXTNNra2li6dClLly6lsbHxkCxmHak4dXd387W= vfY2dO3cybdo0VqxYQWVl5bi98ZiQ4gSl0M7/+Z//4e677w7DzM8777y33S8Sp8NLcKkNWXwrhx= Z0DMpsKPvMJ41Ku+xdfEu4nqdUa0oRQRbvsoi+UWyXwTVU4aLboKDlYHtisO3Bht/VjFV4Xuxd7= CspW7cVnqfYr8THeB2sxgtBSrXytEW6rqPr+iFdKzQScZJSsmrVKu644w48z+Nzn/scS5YsGbcV= cKEkTuPTpnsbFEVh6dKlrFy5kr6+Ph555BGWLl065qZ0xLsj+BKJ4eKbD0W7exs/LO0eKluk/P2= NxGZ0EUJgGMaEGmscxwkz68yaNStcdDvemZC2u6IoJJNJPvGJT6CqKu3t7Tz88MOHu1sRERER44= 5HHnmETCYDlCIJdX1iuG3Hfw8PgKqqLFy4kOnTp+O6Lj/+8Y9HmM8qIiIi4sjGdV3WrFmD67okk= 0nOOuusCSFMMIHFCaCiooLzzz8fIQSWZfG///u/0bqniIiIiEG6u7tZv349Uko+8YlPYJpmJE6H= AlVVWbRoEWeccQae57Fq1aqoBHpEREQEpfDx73//+9i2TVVVFccee+yEESaY4OIEpYWX55xzDqq= qkk6neeihh6K0RhEREUc1Ukq2bdvGa6+9hu/7HHvssdTX1x/ubo2ICS9OqqrS1tbGokWLkFKyYc= MG+vv7D3e3IiIiIg4bUkqeeOIJXNclHo/z13/91+M6dHw4Jrw4CSGIxWJ89KMfpaGhASHEuC5GG= BEREXEoMAyDWCzGkiVLxn2qouGYkItwh8PzPHbu3IkQgubm5mHj+KNFuEc+5ZfzcJd2tOA04kjg= YBbh5vN5Ojo6aGxsJJlMTqjrfcIuwh0OVVWZNm3ahPoAIkYHGRb5s8hkMhSLxbCuTpB5Iaj06rp= uaG1XVFQQj8fHbT2biIh3QyKRYPbs2RP22j5ixAmiO+GjiUBo0uk0b775JqlUisbGRlKpFNXV1a= FgBT/lZd+DKrNdXV1ks1kymQwtLS00NDSEhfYCgsSenudRLBbJZDIMDAyQy+XCgopCCFRVxTRNq= qqqqKysJJlMhiltApGMiDjUTOTr7ohx6x0MkVvvyMDzPDo6Osjn8xiGQSqVIpVKYZqlbOWl5Ksl= AQoEJLCcvMGS6+WXve/7OI6D4zhomhYWtOzp6cFxHEzTxDRNdL1U1C/YfzjhC9pzHCd8TVVVamp= qQtdKIGZBUT8YmltvIg8oEYeGkSZ+nWgcUW69iCOXQGwCK6azs5P+/n6SySSKooQiEbjsAjdeIE= j7su+8k6qqYa60TCbD2rVrSSQSVFdXU1VVRUVFRRjpFFhsrusOObbnedi2jeM4YT8ty6JQKFAsF= tmyZQuapoWWVDweJ5VKoet6GMATiKBhGOHfqqqG86eBKB7onMp/IiImOpE4RYxLAkHyPI9MJkN7= e3s4T9TZ2UkymQwFQlEUHMcZMijbtk0+n8dxHOLx+JAAmeGCJuRglvBsNks2m6W5uRld15FSYts= 22WyWdDpNLpcLRSiwnoLKog0NDVRUVGCaJtlslv7+fhoaGkgkEiiKgqqq+L6Ppmnhfq7rYts2lm= WRTqdJp9NUV1cTi8WwbZtCocCsWbNQVZW+vj6y2SyFQmGISAVzaKlUirq6OgzDCEWw3DKLiJhIR= OIUMe6QUjIwMEB3dze2bVNRUUFbWxumaQLQ399PX18fdXV1xGKx0OUWiImUEl3XSSQS4cBvWVap= lPugZRI8F7jePM+jUCiwdetWCoUCrutSX19PMpkcYskYhhEKWW9vL93d3VRWVhKPxzFNk0wmQ0d= HB/F4nOnTp1NRUUEsFguXOBSLxVAwgr6aphm6C1OpFP39/aTT6VDUtm3bhm3bNDc309LSMkS4g/= 4H7sQ9e/aEfwd9njRpUmhlRkRMFCJxihh3dHV1sXv3bhoaGtA0LSxREFgepmlSV1dHT08PXV1dQ= 1a+lwcfBHM6wb6O47Br1y48zyMWi1FZWYmu6ziOQzabZc+ePZimGYphTU0NhmGErjLXdUNR6+/v= D8N0dV3HMAx83yedTjN58mQURQktJM/zUBRlP1dg0McA3/fJZrMUi8XQBVgepLF7925qa2tDoSt= 3YQbCU14ePNhuy5YtVFVVhdZgRMREIBKniHFFMNE7efLkA7qignmi2tracG6nu7sbXdfJ5/NYlj= UklBwII/uC+Z1gIllRFKSUxGIx6uvrw7mj8rDz8gE9EJ1UKhW62IJACsuygKFuw0AgXNcNXW0HI= pPJIKWksrKS/v7+/eaQggjBgxGYYD9d15k6dSr5fJ7t27czc+bMyMUXMSGIxCli3JFOpxFChJbN= gSgP4TYMA0VRiMVi4VxQeYZ63/eZPHkyqqqG4hK40rLZLLZth+6+YH4oeAzEJah+GvytKAq7d++= mqqoKz/PQdZ2+vr6w76lUCiitwQuEbl/KgxwCiynoj2maYXuBq++dEMxJ7dy5kxkzZkyIQnMREZ= E4RYw7UqkUtm2zZcsW6urqqKurGxJ9d6BotXKrRFXVcG4oKK0dCJmmaWiahqIooYD5vk9vb284b= xUcs9wCCUqz+L4fVkStqqrCsiy6urrCUPMg1N0wDCZPnkxVVVUodkH/gzkjx3EoFovk8/kw0CGY= K0qn02GUX1VVFdXV1SOyeoLzKBQKtLe3R2m9IiYUkThFjDtUVSWRSBCLxUJ3VDweDyPdent7icV= i+2WACIQICNczlUerBeIwHIqikEql6Ovrw7IsEolEKEjllka5YAWip2kaNTU1aJpGPp/Htu1wAW= 53dzf9/f1hHR3LssI1VUEfNU0LAzgCaw5KK/xTqVRoweXz+SHiPNxjcEzHcejv7w8Fvba2loGBg= bH5wCIixoBInCLGJYEoVFZWoqpq6N4LItECCyawkAJLKBCsfV1XQVBCcAzLstB1PYx0C4IKgoAC= IQS7du0il8uh6zpVVVVhtGAw8BeLxTAKLljIG6xhCqyzWCwWrqESQpBKpUKLLhDMwNUIhH10HId= MJhOGmAdzaYFgla/l8n2fYrEYrqlKJpNUV1dTXV0dWkvBot+IiIlCJE4R45bywTQQHkVRwrDx8m= i8wKVWbtXsa1mUHycQtUDo8vl8KADBGqaKioohrrRAVAzDoLq6mr6+PpLJZBhRGIheeT/K+7Pvc= +V92dcNWe5ODHIADgwMhIIanEtgoVVVVYURfoFw5XK5MFw+ImKiEYlTxLjj7TJq7WsBvBOLoFwg= glDw8vDsWCwWWj37Cl6wjirYLxCXQAQOpj/l4e5vtf2+FlbQ5r7iFlhq5UIaETGRiVblRYw7Dpf= 7aV/BOJCARO6xiIixJxKniIiIiIhxRyROERERERHjjkicIiIiIiLGHZE4RURERESMOyJxiphwuK= 5LsVgckp4oIiLiyCISp4hxx1uFQUspyeVyPPjgg2zbti3MiHCo2o+IiDg0ROIUMe54u3U/FRUV/= OVf/iUvvPACP//5z1m3bt2oWVFB6p+3Er1IvCIixp5oEW7EuKM8wetwQhWkAfrABz6Abdv7JX19= N5SXyAgq3Abph8qRUrJp06awLhQQVu0NsjZERES8cyJxihh3dHR0sHPnThYuXEgqldpvoC9P7RO= Uy3i3lNdxCnLzBemADkQ8Hmf16tXU1tYyZ84ckskkL730Epqmceyxx1JbW4tpmgdtaUUWWUTEXi= JxGiFBuYMDlW44UgkG7EORHaG+vp7+/n5+9rOfceqppzJ16lSampresm9vx75Zy/fFsizWrVtHU= 1MTuq4PSWV0oDabmpqYM2cOu3btYtWqVZx99tmcdNJJ9Pf38+tf/5rW1laWL19+0OIppcS27TDP= XkTE0UwkTiMgmI9Yt24dO3bsOKpS2niex6JFi6irqxs1F9qBME2TE044gVmzZtHe3s7OnTtpbGx= 818cNkqDG4/H9XIbxeJw5c+awceNGurq66O7u5pxzzhn2OOVpjRKJBHPmzGHu3LlhEcJJkybxyU= 9+MhSa4RjOZRm4EC3LCjOMR2XV96e8JtZwBO/5kf6dPNKJxGkEWJbF6tWrqUrGOGn+MaEloeg6y= Uk1wJH5ZZBSks/nefHFF2ltbWX69OljLlBBpu0FCxYMKbc+UsrnrgIXW7FYDJO7llvAiUSCtrY2= mpqawtIWwTGGO2ZAYFWWD5a6rhOPx4cVp3JhKk8mCyWBMk0TIQSu676jcz6SCSoXP/bYY+zYsWO= /zyGZTHLBBRfg+z7V1dVhKZKIiUf0yR0knuexc8cOWmdMw77tcmLprQgkUqj06NUY//IkFZNqjs= i7NSkl8XicxYsX8/jjj9PU1BTWNhqr9oYrpBfULgpcbsCQUurlhQUD12t5vaZARAzDwPd9bNvGd= V0KhUL447ouqqpSU1MTthcct1xIymspBcfdt9/7Ck+5O7i87lR5iYzyPgeVcm3bxvf90KIK+hTM= i+1bIqT8fTvScByHe++9l1deeYULL7xwv5skXdfZunUrn/70p/mbv/kbPvWpT4Xl7stvcsrdvCM= JqAk+n+CmI7ghKS96Wf7/wRyv/MYkYi+ROI2AbCZDdUUcM9/FJD8/eDFKcG1cyzrc3Rszgi+ZaZ= rU19dTLBbflTgFX0jP83BdF8dxyOVydHd309vby5YtW0IBMk0zrKsU1DLq7e0NB2bTNENBAcIBq= FycysPC9y19EfSn/LH8nMeafQVl35+g/8H7lM/ncRxnSBmNQHB1XQ/PPyiImM1msSwLVVUpFovk= crmwzEd5ccaJQrFY5Mknn+Tqq69m0aJFwN5B3XVd/vCHP/DRj36Ujo4OnnvuOT72sY+xe/duvv7= 1r/O5z32O4447Dtu2uf7667nuuut44oknWLp0KTU1NUPEarhrQUpJb28va9as4dxzz0UIwfr16/= nhD3/Il7/8ZRobG3nwwQeZP38+8+fPH2I1H+hmIZvNcuutt/L5z3+eeDw+5EZo37b37c+RTiROB= 0l4sQDCSCAu+CeEmUT0diB+czujmaugfFACwgFotClvJ7iLf6u7t7crdf5WBJZKNpulp6eHnTt3= smHDBjZu3MjWrVvp6uoik8mQz+eZPn16KITNzc1MmzYtnN9RFAXHcQDCCrTBuYSPQiABSenRL/0= D4Rd9xN0fFxzIMioX3OCasW2bQqFAOp0ml8th2zbpdJr+/n4Mw8A0TWpra6mrq6OioiKsXTXexS= qwVnVdZ+3atezatYtly5YRi8V49tlnueaaa9i+fTvnn38+N9xwA7FYjHQ6zaZNm3juuedoa2vjt= dde44knnuCzn/0sc+fOpVgssmHDBqZPn8727dtpbm5mYGCAbdu2UV9fT0tLCwMDA2zevBnHcdi0= aRPLli1DVVV6e3tZvXo1c+bM4fLLL2f9+vXU19dTUVFBXV0dmqbR3t5OVVUVAwMDdHV1UV9fTza= bRdM06uvreeaZZ1iyZAmpVIq5c+eGyxRs22bWrFnouk57ezuFQoGFCxeOqddiPBGJ0ztA2nnk//= wbKCrSH90qo8GcyNq1a/njH/+I7/ucddZZvOc97wlLiI9WO5ZlsXbtWp5++ml0Xee8886jtbV11= P30vu+za9cufv7zn7Nq1Sq2bdtGb2/vfimIAkugrq4OIQSe54WD0YGiIwPx8SRYHvgIHCmwPAVX= gu8rSF9FVSS6IoihgtBQUBBSDN5UlETsSGC4iMR9K+9CSbx27drFrl27wnVZTU1NtLa2jkpo/lg= zMDDAV7/6VXbs2MGXvvQlTjvtNK655ho2btzI8uXLuemmm5g8eXIotK2trbz55pvk83lWrlzJqa= eeCsDPf/5zLrzwQu655x4WLFjAc889xxe+8AVuv/123vve9/LII49w3nnn8ZOf/ISzzjqLTZs2D= fl+KIpCW1sbL774Is8//3zojn3ggQe48MILicVi3HzzzSxbtownn3ySc889l1tvvZVPfvKT/PKX= v+Tyyy+nr6+PzZs3UygUaG9vJ5fLkc1maWho4Mc//jEXX3wx//Vf/8WHPvQhHMeJxCliGAQIVaO= vchpO9yaQEqkaFCqnMs00GY0bzkKhwH333cf3vvc9zj77bDzP4wtf+AKf/OQnufLKK0fNL23bNr= /+9a+58cYbWbZsGZZl8d///d/ccMMNnH322aN29yylpFAocNM3v8mP77+fXC4HMGTO5Z0uovUQ9= Lgm23IJ7GKMfs/A8hU0BTRFYKgCUwNTFcR1hbihkkQjgYbmCTQJimcx4BbJ+DFUCsOKlCx7DMSw= ZJXt/QlE7nBzsFWEg/e83BrevmMHqVQF06ZNHdfWE0AymeSjH/0oK1as4Bvf+Aa6rpPP51m+fDl= XXnnlfnM+yWSSRCIRZhOZNWsWUPoepFIpPvaxj3HZZZfxox/9iPb2djo6Omhvb8dxHB577DG6ur= r48z//c04++WR+97vfDelLZWUll112GXfddReapoVr5jzPw/M8CoUCjuOwcOFCzjzzTJ599lnOP= PNMfv/735NOp2loaOD888+nv7+f+++/n4GBAaZNm0Zvby99fX309vYya9YszjnnHOLx+CF9nw8n= kTiNACEU9FiS2f/0EL7rhK4iRTeIVU7i3Q5OQSTSnXfeyQ033MDSpUvxfZ+7776be++9l49//OM= kEolRGThyuRz3338/f/d3f8fHPvYxLMvi6quv5q677uLMM88cNeupNG8U4+OX/x3pguDJx35DNj= OAbVn4B2F17nuuUpaso7Rv8lK2mW6ZQlE1TE3B0ASmIogNekBVReAPbi+lwGfvj4eCLwWWb7LdT= tFhK+SLKWYqnVTJzF4hQqBIgQxdZyJ8XgKeFIiSsxcfBoWq9EzgVkSI0o3M8GfIoCcSBvd6N7zV= Wq59KbkBfSzbpT+do7M3z/ELTxj3wgSl+c/PfOYzOI7DzTffTDab5f3vfz+33HIL3/zmN9E0bUh= UqaIoLFmyhO9+97tceumlbN++PTxP27Z5+umnWbBgAatWreLP/uzPaG5uZtmyZWzduhUpJS+99B= KZTIa+vj5s2x7SF0VRmD9/PosXL+a73/0uy5cvB0rfsf7+/tDVGkRvBpZq0Ld8Pk82myWdTlNRU= QHA4sWLaWpqCtN1maY57l2uo00kTiNBCFAUYlW1Q2VolC4YIQTxeJzrr7+eJUuWEIvFcByHmpoa= LMsa1SzcQSh1f38/sDeSbCzmtlRV5bh5s7nyC9dz4Uf/ls6Odjq2b6Z9y5t0bN9E955dZNIDWMU= C0vfRNK30xQ3f19LgLxF4CPr8GL8vziQvYuiqIDYoPFLutW4OFjloBTko9PpxdllTOFbtoFlo+E= INBUaUHVQytB0JuD4UPcGAJcAHKQQxXZBUVDSpYPsCxxfYXskFqQgFTRUYmkpMV4hpgpgmUPER0= gV8/GFudoJzFIP9kvLAc2hyUBA938f1PCzbJZ0tYNkumbxNf6ZIX6ZIOlckV3Q489QFVFdVjuDd= O/QEg7PrusRiMT772c9imiYvv/wy//AP/0B9fT2WZQ2xEFOpFK2trcybN49Zs2axcOFCpJTEYjF= mzZpFOp3G931uvvlm7rvvPmpqajj++OO5//77SSQSXHLJJVxxxRXccccdxONxWltbQ6Goqqpizp= w5GIbB+eefz+rVq6mvr+ecc85h5cqV1NTUcOyxx9LY2Ijv+xiGQUtLC6qqMnPmTGpqapg/fz4PP= PAAjuNw8cUXUygU+NnPfoaqqhxzzDHU1dUxffr0oy4llpBHaszpMPi+z5YtW5g9e/aI93Vdl9de= e43JkyfT0NBw0HcwruuGkVZBCLFpmmEI8HCUT+53d3fzxS9+EdM0uf3220dtPqBYLPLwww/z93/= /93zoQx+iUCjw3HPPsWLFChYvXjxs33zf5/nnn2fOnDlMmjRpRO35Ejbvsensc/EGgzA818G2La= xigVx2gN6uXXTtasd3bWwrj2kaVFWkqK6pJlbThK1XkJM6O7oGeE3MQNM1YookpgnimiCmCgwVY= hoYCuGAb2oQ1xTipkrS0EiYGurg4FJ0PLb35GjvLbA769FTcJlit3PR8XVMqqxA1XUcX8GR4Hky= FEHfd9m5eQOTahvo8ww6bZPOgSK6nSEej6HpGlIzsTAp+Bo+Ak0p9cvUBsVIV4jrCklDJW6qxHU= VTREo+EjPIZfuxy1kUewcvmMxkM5QWd+EqhkoQqCqSsl9qZUeVSHxXQfLsslk83R199DT20/fQI= b+dJ7+bBHLkTiuj+v5eJ6PPxgUk4ybXPe3H+E9x81GHcchzcVikdtuu42BgQGWLFkCEKad0jSNf= D7Pf/3Xf/Hd736XOXPmhEEzQdDPvoufy9fBqaoa5lMMQvdVVSUWi4UBPQCapqHrejgvGnyvFUUJ= 9wmyfQTbl7tQPc8Llz9A6XsVRGAG88rBMofAYgKGzBn6vk9PT084P3ukIYQQkeU0RgQX58svv8z= 3v/99tm7dim3bJJNJFi9ezNVXX82kSZOGvRsKQqHT6TT//M//THt7O9/73vdGLVtAEKW3ZcsW/E= FLRdM0isUiW7du5fTTTx/1C14RUJ1Q2NM/+L+iIHQDVdOJxZNUVNUwubmFtuNPK1lxvocvfaQv8= aWPLRVUH3TfJ16v0ugXkaqB54MHpQg9IUCAIgWqVFClgvAF+AJfSqQn8X0P3xMIufd99n1ZCqrw= fXKd28jHbV4ZMMindRyUQTedQBEMzmMJDEWhv2Dw+O5qsp6GAiRdi4SnsjlfgS10VCGI64KYKjF= VCSqoEjwh8YSCJ3xcoeAIiSp8hO+hAJ7n47oOnf0+Hb2SdFYiLBsll8ft6ABf4rs2eC7Sd5Geh+= +6+J6Da9vYtoPtuLiuh+d7ZWH1QzMr+GVBJse0TmfOrCnjWpig5M67/PLLefzxx3nppZf2c2EmE= glWrFhBS0vLsIP621F+81f+t6Iow7q69/3+lgcrHOj7Wt6v4fYDjqq5pQMRidMYEGRUuPXWW/nO= d75DOp2msbGRyspK1q9fz+rVq1m5ciW33HILZ5xxxn5C4HkeHR0dfO1rX2P37t3827/9G21tbaM= apPDqq69y55138p//+Z8sXrwY13Vpamrijjvu4H3vex/V1dWjLlAVcZWYIcgVhne9BZPYQhEIoY= H0kYpE+JKYlEhF4vuCVDJBtS+ReOGAK2VJxKQE6ftITyJtiUQiJbhABsgIOTgjVMKXEsv1qHR8D= NthcrWGqhj07EkD2VIQjJRQ8tZhC3CFpIAknXFIsJMEEgUfzbdxPZ8qcgh8VOmjIFGQCOnj4VOQ= kgI++P6gT84vnadf+vF9b9Cq9HE9tyScvo8c3MYf9OOVznvvWq7ydVEy2EbK0O1XPoaXXIJ7n1C= E4NSFbcRj4z9KTwhBdXU1H/zgB0PLY9/X325JRMTEIBKnMcBxHF5++WX+9V//FU3TuP766/nIRz= 6CYRh0dnbyla98hSeffJKvf/3rPPTQQ1RVVYX7ep7Htm3b+PSnP019fT0/+MEPaGpqGlV/s5SSP= Xv2IKUMQ4d1XWfJkiXcc889ZDIZqqurR629AE0VTKnReXOXX5p4eReIwdgBRQQRdBIFSmIE+MGs= kJQQWAzhgF2yyCRy0DKT6FKiCZ+EOZjpwSuUHv3S8WSZALiDQmj4kmrZN3TRrPSJ+YE4+CUrBxk= +lguJ9MtFde9zvvQp7VLqJ8iwfQa3CSafQsthBG9nuTAJIUgmTBYeOwtVmThzGmO19i9i/BDdXo= wBhUKB733ve6TTaT74wQ9y1VVXMW3aNBobGznuuOP4xje+QUVFBWvWrOGZZ54ZMseUTqe56Qcd9= AAAIABJREFU/vrr0TSNa6+9Nlzo19vbO+yd4jtBCMHMmTNRFIVnnnmGTCZDf38/v/rVr6itrQ3r= E402ioCqhIKpHU4f+TALWctMC8H+MZcCScljWBYKIWXZdnufD0I3hrxe3g4MERU5XH/2eX60Kbc= cFSE489TjqK2pRFGOvLmLiIlLZDmNMlJKXNelp6eH1tZWzj//fJLJZOhm0DSNmTNnMmXKFN544w= 1effXVMBWKlJI333yTP/7xjySTSa677rrQ1VVfX88Pf/hDUqnUu+6joii0tLRwzTXXcOutt/Loo= 48ipaS9vZ2rrrqKysrKMZtk1VVBVUIlb43u4uWDZkShfD5xQ9BQU4HAJ5PNk84VKdh+mRQNPeCB= FguPR0pWU4zzl56GGWU/jxhnROI0ygghqKys5O6776ZYLFJTUzPE/x1kZkin0wghqK2tHSIEc+b= MYeXKlfsNcLFYbL9J0yFzDPv04e3WRAQhsueccw6vv/46mqYxf/586uvrx9RdoghBXaVK5wCMki= E4ZghpU19VwbxZTeTyRTq7lcHw7Ty5vAXK0IwdUkpsq0h35w4mN88cD2tyhyWwyoQQtM5spqFuU= mQ1RYw7InEaA3Rdp7a2dtjXfN/n4YcfpqOjg8bGRs4+++zwNUVRqK6uPmCY9r4hsL29vTz88MNh= rrkATdM488wzmTr1wCv9g6Sq06dPZ/r06fsdf6wQAirjKpVxlb7sYSgJMYJ1rkKC5xTJ5zIgobo= yzqSKGHu6+ti808be5zh2scAfH/8VhXyGZR+YjjJO50SCgAhVUTj5+LmYpnFEhiNHTGwicTqEOI= 7Diy++yI033oiiKFx66aU0NzcPSePvuu6wllCwFiNcoAr09PRw7733ks/nh2xvGAbTp09nypQp4= b7BOqt9jzkc5a8FbsXRzLenKILJVTr9OffQJ2EdSXtCoKoaqlJaU5RKxtB1g3yhOJj1YejmmmEw= 7z2n8+Izj49ql0cbOeiQrJmUYtGJ88argRdxlBOJ0yHCsixeeeUVPvOZz9DR0cHSpUu58sorw7U= QwZzPt771LYrF4n6LBaEkOtdccw1tbW0AzJgxg7vuumu/QAlFUZg0aVK4fzqd5p/+6Z/IZDLDLk= LcP0XQ3ueEEEyfPp3rrrtu1NZZCQFVCRVTUyjYh9i3964yBAX52sSQ54IDqqqGGUuMVsKQMUNQE= tszTz2eSZXJyGqKGJdE4jTGBFnGn3jiCb761a+yceNGzj33XL7zne+Elk1AKpXi/e9//365u4DQ= eqmrqwufS6fTrFq1ar/tNU1j6dKlobtO0zTe+973UiwWR9x/IUS4WHi0BjEBGLqgMqFQdLxDaz2= NoC3PdXFc5212GfqqqqqYsfj4HvCFJJWMc9oJbeja+HQ9RkRE4jSGBBm5V61axec//3n6+vpYvn= w5t912G5MnTx4SKCGEoK6ujr/4i794y2OWuwC7u7u58847w0zfAaZpMmvWrLAOUjKZ5H3ve9+7O= pfyKp+jgSIE0+pMejMutn8I1WmEllMhlxt2BzHkr8E1R75PLJ7kpDPOA94+Q/jhQgiFpoZqpjQe= malvIo4MInEaIwKL6bbbbuNb3/oWjuNw1VVX8eUvf/ktc/MF8z1BLaMDrXhXFIW5c+fym9/8Ztg= 5qvKcXMFzw/UxaAcYMp811ggBCVOhMqHSkx7NUo2jh6ppVFYlGS7sTu7zl+vabFr/ElaxAEh0w6= RlzgKUcbiw1dA13vtnJ5OIHR11gSYMUu6NpESMWkLpiUokTmNAYDHdfvvtfP3rXycWi/HVr36Vq= 6+++m1LXvi+T1dXF3fffTd/+MMfSCQSfPjDH+a9733vfvm2VFUlmUy+oz56nsfu3bv50Y9+xJ/+= 9Ceqqqq45JJLWLZs2SErZqYqgtoKnd6M8/YbjxYjNGZcqVDwFBQU4pqKGMy1t69gqapGS+t8PM/= FlxIhDj6f26Gmsb6a9xw7c9z27+hC4jk2drYHN9eNdPIIFNREFXpqMlqiEiGOzs8pEqcxwLZt1q= 5dyze/+U10Xefb3/42559/PrFYbL9FmvsWRcvlcvz7v/87L7zwAtdffz19fX3cdNNNZDIZPvaxj= 42KG0ZKSS6X41/+5V/YsWMHX/nKV+jt7eXGG2/Etm0uvPDCQ+buqU6pGJqC6x0i6+kg3XoSyPgG= 63OTmdwZpy6pMWWSSa1usI06MnRj4O/dWgg83+MPj/8KgWDR0gsQijKYfmj8IITg9JPmkUzEj/Y= b88OO9H0KfTtwdr2MXtiJnt0JxT6kZ+MLnZxZh11/CrXzlqLo5lEnUpE4jTLlZS56enqYNm0aL7= /8Mps3b95vwNc0jcWLF3PmmWeGrwVVNFesWMGCBQvIZrPMnz+fZ599lksvvXTURCObzSKE4Prrr= +fYY48lk8kwZcoUVq1axQc+8IFDlrfM1BXqqzS2d3mlpKZjzQiaGCjYdDpFTNMgoQtsV2L7kPcV= BmxJnTb0gNl0H7OPOYGO9o107d5B8/TWUe/+uyURNzmurQVNPboGuvGG9FxynRuQHc9h9r8GfRu= g2Ae+jfAcVOmhqDGUPc/Tm97KpBMuRktWH1UCFYnTKOP7Pps3b2bTpk3EYjG6u7u57bbbhhUV0z= S59tprWbJkSfh6KpXihhtuwDRNbNumu7ubjo4OTj/99FHroxCChoYGvvGNbwxpp7+/n5NPPvmQT= pIriqBhksHuPhvLOQTiNJJFuHoMNV4Bqo5Q1MFs6QpC0UDVACc8oBBQ29CMbVns2LKBmW0Lxu4c= 3iGKImibPZWZUycfVYPcuENKiv0dyI5nMbqeQ/asQ6k7FnXBpxDJBvy+zXgv/xAyOzGKPfjrO9n= jQ9PiyxH60VNKIxKnUUYIwdSpU7npppv2W38UDPqBW0/XdU488cQhYqBpWliI7LbbbuOXv/wlNT= U1XHTRRaMqGpqmkUwmKRaL3HTTTTzyyCPMmDGDiy+++JCKkwAShkIqrmI5h8C1NwL9E4iSKIlgc= jqozlv+/gRJe6FnTwcVldX82XkfZs+udmobpoxmz98VpfB9nfeedRKmqUcuvcOIa+UotD9Lsm8d= 9G9CP+kzKC1LwbPBzqLoSTxFA1UH38Vwe0mv/xm51rNJNc87am4sInEaZYKkqldcccVBbb/vnFP= wnKIoXHDBBcybN4/vfve73Hbbbdxyyy2jVgk3aEdVVT7ykY9w8skn8+///u/ccsst3HzzzaPazt= uhqgoNVcahCYwYUSi5xPc8LFviOBKvrNzFYK30IQeUvs+ra3+P9CUtc457yywchxohBE0NNcyd2= TzuCwoe0UiJle4kbncie15DnbYYZeZyvK2P4L1wO9gZQCBdC+3Ev8Pb+UeUPS9gZHfSsfYXtDa0= oupHR5RlJE5jQDDovxOC0G5VVZkzZw4tLS34vs/XvvY1BgYGRq0ss+eVitoFCV/nzJmDbdvcfPP= N9PT00NjYeMgsKEVATYVOTFfIjXVgxMG69IC4cDGsNJhJpC/wPQ/PcaGYJS7tIUX7hBDUNU6jsr= oO6Us0bXwV7lMUhTkzJpNMxKK1TYcRicTL7EHL7kA6adTW85GFHtw134HcnlLxSaEgao5Bnfdh1= GP+CucPN6JveJiBLc/hFnOo+vi6tsaK6BZqHCGlpKuriy996Ut0dHSEFlQgdKN1Fx6U5rj22mvp= 6OgA9hZvO1x3+4YmaKoxxj7P2wgaqDJUjle6acxsQ92zla6NG1i/di3Wzs1UhDWpymojKQqmGce= IxRHjyDoRAhJxg7MXv2dCFRQ8UpFWGgrdID1EshG550WwBkrCFNw9GQnkwDbwLGTvxtI8VaYb1x= l5lpeJyvj5BkUApbmgN998k1tuuYVNmzbxxhtv8MADD3D88cePap2liooKXn/9de6++262bNnCG= 2+8wb333sv8+fPHpAru26EIQXVKR1HEkGJ4hxMhwFRVkqqC5rrY+QLFgh2OH8P2chxaJUIovGf+= bGZMOfDi74hDiQ9uEaSHdIsQqwFF23tBSR/Zsx58G2lnkMVeHMel6Knj8voaKyJxGkcIIaiqqmL= FihXs2LGDSy+9lMsuu4y6ujq+9rWvjdri2KB44YoVK1izZg2XXHIJl112GW1tbVx//fXEYofe9S= MEpOIaFYkx9jS/C6NQMJxwjo85pbfCNDROWTCXmGkcTWPbuEQAwqxEKjp4DnLXsygNC1GmnAGKA= YoKqok6Yxmipg2/4zmknSNdlFAxDc0cPmPJkUg05zTO0HWd448/nh/84Af09fWhaRrV1dXE46Ob= TNQwDE466STuuusu+vv70TSNmpqawyJMAaoCLQ1x8paDZcuxGfffVVbyQ3LAUUMAhqExa1ojbbO= nRFbTuECgV03BVlMYgPv6g+iTT0A//R/wmk5FZrajTJqN0rIMObAN75W7sKwiu7IqU05bjm5Eoe= QRw3Co5mJUVaWyspLKykpg7IoAqqpKVVUVVVVVY9rOwVKqkqtzypxqdvUW6egpULQ9HFkKyR+Vt= 3/UP8LxJUxCCHRNJREzaG6s4b1nnUTbrClUJI+eQW1cIwTmpCYGqo5H630ZpWc9ziOfRz/jH1Fn= vw8UveTO61mP8/TXcdO72NnrkEst4KQTliPUo2fIPnrO9F0y2gX3Dqa98daO7/vk8/kxfR8URZC= IqcxsTDCtPkbB8kjnHbIFl1zBJVNwKNouruvh++D5e6PlDurmYYJbTkKIwcXApZpbqiIwTZ3aSS= kaaifRUFtF8+RapjbWUJlKEIsZqIpy2G88IvaiqAY1Cy6kr+dVEsV+tIEt2I9eg6icUXL5FbrxM= 7uw8mk6+mxeH6jixI9eTbyy9qj6HCNxOkiEEDQ2NvLqq69SWVkZzv8cDReLlBLf99mzZw+e5415= YlhBKSmsqqiYukpV0kAi8X2J60ksxyNfdMkWHHJFh4LlUrRcbMfDcX1cz8PzfDy/9ON7pf77EvA= Fgw8og6Hg4WcoJXJQaw5ecg5UTXivpVdeyRhZysOnCIH0QRFKqV0pURQxmKZPQRkUIVUoKIpA1x= QMQyMRN6lMxqmuTFJXU0l9TSU1kypIxE0MXUUbjLg8Gq7LCYsQGBX1VCy+hq4nPWKdv8dw0qi5l= 5BIXA9ylmRnWrCbFk7++D8yZd4ZqNroFPucKAg5XlYJHgJ832fLli3Mnj37He3vui47duxg7dq1= HHPMMSQSCWBv5djy0uZv93zw/3CVaMv33Xf7d9NewNv1Y9/9Pc9j586dFItFFi9eTDI5fqqnSgm= +lEhf4vo+nidxA2Hygud8CpZLwXKx7LIfx6VouziOi+f5+L4c3G9Q1AZ/SuIs8aWP9OVgez4SGS= 7KDd4z6Usk/qBmld7T4J1SBpNLqIqCqWvETJ2YWXqMmwbJuEkqFSNm6Oiaiq5paJqCrqkYho6ha= +iaWrKElJLARUxgpMTO9zOw5Tm2P3UHVtd6HMsi5ygU1BpaTv8IM0/+Cyrrp+0nTL7v09PTM2rr= HscbQggRidM7OIZlWaTTaRzHGTcZAMYSRVFIpVIkEgk0TZswXwY5KBDh/4O/ZFAcsGy70ucoCZI= /lASHkiBJykRo72tBmgghBqOwhBiMhhMoyt7sH8FrlG83+E+wfZBsIny+7Dwmyvsd8c6QvofvWj= jFHHYhi6IbGLFKNCOGomrDho8fDeIUufVGiKIoxONxYrHY4e7KIWeifQmCgT/8f+ivESH3++NAj= Q55iIh4W4SiohoJVCNOrKJu8Mnw11HLUSVOUkps26avr+9wdyVijHk3QnrQ1rAY+XLhkVja7+Qc= jgZLPqJ0beybWPpI46gSJ9/32bFjB5dddtnh7krEGCKEYMaMGcydO3e/UvUHmuMLsG2bF154gb6= +vrcc6Gtqa6msqirLWE4Y7FAWCTF0JynxPI+OHTtwXfct+z+ppoZJkyaVPznkOGE7+zx6nsfuXb= uwLeuAx48YOwKDZ6zvETRN4/777x/bRg4zR504ZbNZ/vSnPx3urkSMIZqmcfLJJ/OlL30JXd87k= XwwASi9vb1cfPHFPPvss/j+8ElohRCctWwZc6ZNG1mCXynJ5/P8btUqMun0AcVPVVUWn3UW8xYs= GCp8pcb3O2b588VCgf/7v/+jq7Pz4PsV8a4I5hxVFVJJiMcEu7skB7h8RoVYLIbjHIIs/oeRo0q= cIHJ7HC2oqoppmhiGcdDuMSklsVhsiLV1IBRFQVNV1JGs+ZLyoANKFEVBHdzWcxzcXB7F0NEHI0= QBfNfFzedB09ATiTAb/kSbG5zoCAEtUwUXnSf40HkK3/gPn9+tHltxOho46sQpYuJRPtgqihKuu= 3o7pJRks1ni8fgQCyeTyQwKl4bn7UFVGygW7Xccfek4DtL3MQbXf/lSUrQd4oZeEhffJ1uwqIiP= fH2Y1d2N/dwaYtksnqZhzTuGxOzZuJkMxT/9iXgujy8EuXnzSMwZf2XhJyqKpg+57qSUSM8trUc= TMLke4jEYyICqCv7+aoXGesHUZti+C1B0VH1kNwlSSnzPHXuf4AQhEqeIcYsQgng8zkUXXcS8ef= O45557uOKKK1i3bh333XffQQlUPp+ns7MTIQSu66LrOtlstlSe3smzKfsT5lRdjCriNDQ0jKh/R= cvC6u9HUVVcx6G2vp6+TJ7OgSy9NtTGFFIqDDiSHkdQp2eYpB/8wOM7Dv6LL5Lo7wffR3Ec1FfX= YcVi+Fu2kuwfKD0PKK++ihUzYYTnELE/qmFy+mdvIDm5OUz067kOvRtfY93P7sAv9PGv/6hw0nF= w5099bv2Rz/9b4bFgnsL0Zuh2mjnzur/HqKjeN1a0DLnff5ld21nzgxXYuQyKEMybN49ly5Zx33= 330d/ff1DX+5HEUS9OhmHQ1tZGIpHA933Wr19PNps94B10kMYoWIjq+z4DAwMjbjcWizF37lxef= /11PM9j5syZZLNZDMNgx44db3kHrygKU6dOZc+ePViWRU1NDTU1NWzZsoWKigpUVaWnp+ctj6Hr= Os3NzWzfvn1cXvSKolBTU8PHP/5xLrjgArLZLLfeeivHHHMMv/zlL7nvvvsO6ji6rjN58mQURQn= FKZ1OY5omQvGwds6muXka0lNGXMvKKhTIZjJUVFUhFIVCPo/t+bQXFVzbxsOgpsZkT6aAKj0Kik= Z9/CDnqKTEKxRQ0hlE8PlIiWLbOLt3I7q7cTwPXwiM6moUw0CxbcbfJznxUDSNKaeeTfWMubh2E= beYR4snmb54ObVtC3j2li/QWN9HyzRoqBNoGmRy8Me1Ps+shcqWSqaetoxkfTOeXcQp5PezhhRN= Q09WAAInm8ZzLIxUZWldE6Xr/yMf+QiXXnopTz/9NC+++OJheCcOL0e9OCWTST7xiU+wevVqcrk= cpmnieV646FLTNBzHwfM8dF1HURQmT57MhRdeyK9//Wtc16VYLKLrOrZtD/H7W5aFpmlomoZlWa= E7yvd9KisrueGGG/jCF75AR0cH1157LatWrWL37t10d3fjOE4491F+PEVRSCaTXHLJJdx///10d= HRw/PHHc9VVV/G5z32OefPmkUgkeOKJJ8JjBIIaDNCKohCLxfjwhz/MD3/4Q3K5HL7vh6XZLcsK= 52p83w/777ruIZmzU1WVmpoabrzxRmbOnElnZyczZ87klVde4ZRTTkHX9fD9frv+GIZBLBbbr5C= ipmnousZJlZ8EdCzLxvM8isWDL+YWSyQoDG7vOA6VVVV4VgFN+viKivQ9coUiMQUWTq5CkT7ZQu= Ggjy9UFb+0mnfI4CZ0HUXTUG0bF/BrakguOJ6iENjj8EZj4iFKxSKF4I3fPMAbv32Q1uV/xbEXX= caMxcvZ8rsTEeJxhJCcfLzgs59SufNBH02Dzj0SGe4Pmx77Jet/dU+YUST4HCe1zOXM//dveJbF= Ezf+HdnO7Tj5LE4+B4PjxMqVK3Fdl507dx6Vc+VHvTgpioKmacRiMTKZDABf/vKX2bBhA83NzWQ= yGVpaWli5ciWLFy+mWCziui7z589n06ZNuK7LFVdcwbZt20gkEvT19TFlyhSKxSJPP/0055xzDr= 29vezatYvt27eH4iOEYMuWLVx44YU89NBDCCGIxWKcdtppmKZJdXU1kydP5ve//z3nnnsulmWxd= etWqqurSaVSnHDCCTz44IPhefT19XHJJZewYcMGEokEl19+OQ899BB/9Vd/xfr163nf+97HwMAA= juOQz+fZsGEDra2t/PVf/zWe54Xt+L7P888/z5//+Z/T3t5OY2MjfX19VFZW8h//8R+HJEJo7ty= 5/PM//zNCCEzT5IMf/CCaplFbW8tvf/tb5s+fz0UXXcTPfvazt+yP67qsWbOGU045JUw1BSVXXz= weR9d1hDCRUtLT04Pv+8TjB5+92zAMGpuaKOTzeK6Lpmk0VqWYlIixszfDtLoqNEXQ7HnY+RxGK= kXsoOvEC9R4HGvqFLRNmxGeC0LBSiYwW2biahqs34DiOCjt7aQrUuitrdF8xSgipU92Twd71j1P= vns3ref+JWZFFbGKvSH+i06Enj7B754U3P4Nhcu/7NEVFg2U+J6H59j4notTyJHevgXfd/F9D8+= 28Jwi/ds20Ldlw5C2fd/nxRdfZP369eHN49HGUV9sMLCQCoVCeNe8bds2HnnkEd544w2SySQLFy= 5k+fLlPP744/z4xz9m7dq1bN26FSklxxxzDPl8ngcffJBYLEZTUxMvvPACTz31FM3NzaRSKerq6= ujs7OS1116ju7s7tKDefPNNqqurufjii3n11VcBqKysZOPGjVx++eXk83kaGxuZPXs2NTU1XHTR= RTQ1NfHQQw/x0ksvhRdscCFXVVVx+umnhy4xXdepra0lkUiwc+dOnnjiCfr7+3nssceoq6ujvb2= dn/zkJ5imyVlnncWsWbOoq6vjxBNPBGDlypU4jsO0adNYv379Ifk8hBCcdtpp7Nmzh7a2NhYvXo= xhGCiKwsyZM1m+fDmvvfYa55577hDBGQ5N01i0aNGQWlhCiP3qYwkhqKurG3EqmFL4sEoylaJmc= F9VVUiYBq2NNcQMLcyLl6yqKkXfjaB8u1AUEgsWYJ10Ivmp08i3zUU/5xz06knE5s3DOeVkitOn= k29pQZ02DXXQ8o0YHYRQqGyeQdMJi3nPxz+PkarC9zwKA73hNukM3PJDn7mzBPPnwhc/rZIYvL8= Rqkbb+y/m/Nt+xQW3/w9/9g/fwaw6uCrTmqbxqU99iv/93/+lra3tkFZEGC9E4iQl/f39PPXUUz= z77LOhm66yspJzzjmHV155Bd/36ezsZMGCBZxyyinMmjWLiooKNE2jv7+ftrY2WlpaaGxsJJ/PY= 9slF5GiKGQyGZ5++mnOOOMMmpqaSKVSoXvJsixef/11pk6dyq5du/B9H0VRmD59Ok8++STNzc1Y= lsX27dtZu3Yt69atQ9M0Zs6cyezZs4ckai0UCvzgBz9g9uzZpQEzmaS1tZXZs2fj+z65XA7XdbE= sK1xZXldXx7Rp06ioqKC9vZ033niDl156KUzy6vs+nufx2GOP8bd/+7eh22+sP4+f/vSnrFy5kp= aWFgDWrVvHY489huu6VFZW4vs+X/ziF0NL90AE1ui+oeGqqu73nGmaI7Ka9m1n6GJfBsvND319M= O/riFAMg8SsWSQXn05q4UL0VAqhKCiGQbylhUmLT6fipBMxKiqiEPJRRiiCtvdfwnnfup9jLvg4= SMm2369iz7rnCZIzPvuSZMNmn5apEk2D2S0Q6oj0yffsoXv9S3S9/iL9Wzbgu/ZBt19dXU1tbS2= GYURuvaORQqHAo48+Sj6fx/d9isUiL7/8Mnv27GH16tVMnjyZ2267jVdeeYVFixbR0NAQDpQ7du= xg3bp1vP7665x22mnccccdGIZBX18flmWRz+fp6emhra2NRx99lIqKCgqDcw75fJ41a9bQ09PDu= nXrKBQKqKrKnj17cF2Xe+65h9bWVjo6Oli/fj319fX89Kc/pbKykjPPPJPf/OY39Pf3I6Vk69at= 9PX10dvby7e//W3y+TwbN27kuOOO44EHHmDz5s3s2rWLPXv2UCgU6Onp4ZVXXiGdTnPyySfz8MM= Ps2nTJlKpFPF4nMcff5zOzk4sy2L16tWccsoprFixAusQZR0oFAq4rosQAsdxuO+++/j5z3/OCy= +8gK7r4WLqA7k6fN9n48aN/OpXvzrgHee+GdmDvzOZzNsGkwB0dXby5oYNJVEK0hhJidw3Q8Q+W= SMsy3pb16iUku6uLt5cv37/jBP79qu8DcCxLKwRzJtFHBgpoW/rBrrWv4TnWPRtXs/GR36GzA8g= pcDzYfWfJJYFNVUCRZQyz4dePd9n8+O/5KX7b8X3PHzXwS0OP+cohDLYZuma9jyP22+/nV/84hf= s2LHjqHTrHfXiVCwW+cMf/jDk/9deew2AX//610O2/cUvfgGUBo9f/OIXQwa1Z555Zr8Bbffu3b= z55ps89dRT+72Wz+fDCJzt27eHz5e7z3p6egDYsWNH2G5XVxebNm0K/w/2D46xZs2asE/PP//8k= O0AOjo6wmOvW7duyOvl59fV1QXAK6+8wquvvjqkLMRYI6WkWCzS09ODpmn09fUxMDBAT08PhmGQ= yWTesi++7/Poo4+yevXq0up9IdC1/8/em4fbVdUH/5+19nTmc+58c+/NTAJJmCdFFKEICIpU0BZ= 9rcW+VKy11g5q1fZttbbaamtbrdahKjzoD4sD6mt964CgAiIJM4RAEkLmO9975rOHtX5/nLN37j= wkNwNwPjx5Es5ZZ+21p/Vd6zuC30hFZsh6kcJ6F4d2n2HG8dB5Za7xPfXEEzy9dWvdZmlZoHWUk= kgzYYKaIpy01vPGUymleOrJJ3lmW90OIWjEd1Gf8EJhKKUkUGqSwAr7b3LkaBWw82ffrwsX30P5= PlopHFsDJtUaPPpU/bmaMVGIEPSeexF2KoNWCuV5PHnHVxh++vHJzaSk/ZR1xScIAAAgAElEQVQ= zqI4PUzy4D63qD2omk2HDhg0cOHDg6J/sCciLXjjNxXwT1GLbLcU4FtrfQtpNbTPTb46lUJrIQw= 89xOWXX45hGAwODpLP57niiisQQkTOC3NRq9Wo1WoIUVezXHhOfWVaLGu62gTP7dMIAckE7NkP+= wc0iznNUBDlcjlaW1sJgoDR0VGy2SxjY2Nks9loHEopLMtiYGBgwSvgwPcJGscQQtDT00O1WmVs= bIyuri4AOjo62LNnDyMjI3N11WSxaI0OAnQQEHg1/GolEhhQX3woBQNDsPM5TRDAaL4upOprBR2= 1b1mzgdzqk0GDX6uw99c/Y/iZx+vHUAFaKQw7RsuaDbjFcSrDg/i1CqZp8q53vYu3vvWtXHfddW= zevHnOfIwvRJrCqckJSaVSYfv27dH/a63Ztm3bHL+YHQGkU3D5RYJfPwyeDyevre9tRsfhZefC9= 36sqS3cHFDvVwhyuRzj4+N0dHQA9dVuNpulVquxfPly8vk8AKVSiWKxSLFYPKxzMAwD0zQjT85k= MkkQBLS0tLwoAzSPJoHn8vjtXyCWa+fAQ/eCnnxtgwBu/pbCtuDAQL1y7f+7S6GUYM9+GN43wCN= f+wx2Kjvpd8r3GN31NFprSgP7eeiWf0EHPsWDewncGn61TOC5jWMEfP/736dcLrNr164X5f1tCq= cmJywL2dnN3wcoDcUS7NmvGRrVGFKglOaZXfCaSwQPP6kJDuPd11rT39/Phg0biMVi7Nu3L9o5F= YtF8vk85XIZwzBIpVK47iKl3wSCIGDjxo0MDg6Sy+WoVCo4joNpmi9KY/nRRAU+W797S90e2aiE= PPl7+Mb3GrYhVd8tPfiY5tGt9Xx6gR5h7PYvTvfMDNNuaU15uJ9H/7/PIgAVBFTH6yp8PcED91e= /+hVbtmzB87wXpXB6UVXCdV2X//mf/+H6668/3kNpcgwRAizzkOknnDOCAGyrro5Z7K7pUN8iSu= YaeluqKRNa6Ml3JEHM4c5p4jHCY77Y1D1N6jF2Dz74IKtWrXpBemm+6Mq0B0HAU089FXnMNWnSp= MnzESklPT09dHV1NYVTkyZNmjRpciwQInSub9KkSZMmTU4gmsKpSZMmTZqccDSFU5MmTZo0OeFo= CqcmTZo0aXLC0RROTZo0adLkhKMpnJo0adKkyQlHUzg1adKkSZMTjkPpiwKFv3+Y8X/99nEcTpO= pGL3t5N79+noq7SZNmjR5kRAJJx0o1EiB0h334rzklKg+TJPjhNb4uw4iW9Jk//AaRFM4NWnS5E= XE5MSvUiASDp23vL9eNavJ8UNpxv7xG1Tv2zpns2aCj+PLQlLHNO/R8WWh6X2a9+n4M/FeTc9Kr= jVaK7Y99QwtLS3NG3uYzHXd5rtWnufR1SjBMBdKKbZt27bg+6S1JgiC5r1qIKWsl0+fcu3CGlZh= OfuZfieEIAgCent75732Q0NDFD1vhhrtzQXg0URrjVsqsX7t2ij57mwopdi+axdWPI6u//iYjPF= FT6NwZq1QYN3atRgTqjbOWjJDSklnZ+eCJr1arcbu3bsXnB15YmnspWwbspi+jwZCCDo6Omhra5= v0eVjhdffu3bMW9mtra4sK1S0EKWVUfG4utNYUi0X6+/vnPe+ZJuuFtl/Ktofb92xCZSpSSlasW= IFlWZM+931/ztLYQRCwfPnyqFLxvAhBsjWFWb4bIxioH0OZ+JnXIszMkogoDXiNkhxhZd7w3Qkz= lwshcF2XZDKJkPIFLxq11uQXWhVYCOxEgkRrK2NDQ+ha7QWZUPVEQgN2KkUyk8GrVqd9P6twEkJ= Ef+Y8QGPCjcVixOPxedv7vh+tYuZbzYSrVyHEJIk6G67r4rounufhOM60vsKXVQhBrVYjk8kAzN= v3xFW0ac5fAsv3fQqFAq2trdPO8eDBg7S2tlIqlXBdl1gsRiwWi9rl83lisdi8x4BDk/FCX6JKp= UIymcS27Xl/U6vVolpB851zeI+CIJg20U/lcK5lONb57pPnebiuS7VaJZ1Oz3mO1WoVwzCoVCrY= tj3pO9d1o2u0Z88e0uk0uVwOKSWGYaCUolarzTv2iQhdwyp+nace+ynVGqxYHkee9FJi6QxLsYM= SwLatdRWw7/vsePppTj3jDJ549FEMwyCTzXLKpk1871vf4sZ3vhNzAe/TixENZGIxnESC3c89hw= 4CEIJMNsvyFSsw5pmzmiwcDQyMj0e7p6l+DktSbDBc0SaTSaSU9QlIeVTdEkIYxJ0kUtRfhlKph= FIK27anCZCpKKXI5/OYpkkikWhMNnW1I2gEEibkrh0dHUUpRUdHB5lMBqU1Y5WAwQpYUrMsZRC3= 6uMLV72O40Tj0DrsOxTOMhpHoVBAa00qlZr3WhSLxVknxnAif/bZZ3n66afp7Oykvb0d0zRZv37= 9UV+tCSHqK2ch0FpR9UrUvDKGtEg4GQxZfyS8xoozFovNe59c16VWq2HbNolEovGpQisf0CAMhK= j3G14fILqnSsNYVVHxwTagLS4jk2elUsF1XRKJBJZlNe5RENUzksJASAEIKpUK+Xye1tbWeXf9+= Xye4eHhSIU30w6tUqlw//3309XVRalUIhaL8YpXvALHcQ5DNaqoVMp87dsjDAwrXn9lmpeuXdo6= TIZhsH/PHoYGBxkfG+NHP/gBmUZV3ta2tvoir/F+NpkdAZSLRVa3tODefz9GZyf7hUD5PlZj4ai= 1JqhU8AsFjHgcM5FATF1saU3gunhjY0jLwkqn622maiaCAHd8HO372NkswrKmFSqsl35XuIUCpm= VhxGKIGRYYWmtU0Cj/LmW9zQyakPD9ETQWt7Ootml8P5PwAKLaZTOpx2c63sTFutYaOcc7umSVc= CfusqpeiUd3/xjPHkEKg07zdNYuOxOBnLQjW8xEHJ6UVgH5wZ9hyCqIJIncyzDM2LTiblJKgkDx= vccG+fWIQ9rUvGWD5IwVbdF4o99ojefXGB8bYHh4D77vkcm20962klg8FY114s060mvV19dHLpf= DdV0qlQqtra1H1Odij6/RjJeHeGLgRyizjNAmy5wzWdN5JlIak85xMecbtvXdYbzCj4EAZawhkb= 1wWj/hdfX9gIf25Ckoi6T0uHBViqRjTbqnQtQrlBYKw+zbvZX86BCWbdPWvZKennVYdnxSv/O9L= As5p1Qqxete9zoqlQqFQoFUKjXvznB2DBIJh4+8N41SGi0SlI3D7Wtm1m/YwOq1ayetRGWjIKHR= KIj4OzfeWFf7NZkbpRj53H8Qf+xR/EwG/Xu/17DH63ol2/37GfjnfyY+MEAtmSL7rj8ku2lTJFS= 01vilEgduvhn7vvvwTRPxhjew7LLLkBMWe0opnv31r7G++EWsWg33Fa+g581vxkqnJwmDSqXCyM= AAxc9+FkdKuv/4j4l1dk4SUL7vMzI8jPY8Rm69lc5XvYrWM8+cJKCCIGB4eBgpJdVCAbF/P93nn= IPhOFEbrTXj4+NUq1XQGscwyKTTyFgsem9CjVk+nwfAlJJsOo1hWZPG5HkeIyMjUaHMidqk+ZZI= S16mXWmfJ/f9nIq9H4QCBPvdB3AGE/R1nDy5cWM1MCOzbp89UvYTxO08vu7A5xxgZjWY1uAJm3U= Z2NCVwJTTy51qrSmV8jz0s/9Lcf8BCBTaAKEEVjrJKa+4lGV9J036TajykhNWoUEQRDvC+RBC0N= 7eTnt7O0opqtXqMV/NBoHLU/1341mjjUHV2FfdTGw4TV/H+klttdaomeyJQiBnUQ8JXSUd24fAo= 6KyCDSzqa+0BsO06InZSCzEDO201uze+STP3PdzglIFJTQCwaB4mt3dj3DWb7wW04pPal+pVIjH= J39WKBRIp9PzXJ06lmVhWRbpdJp0Oh3d4/nU0TOeo0xQyPwVKv4uQIAwsWK9LKVThGma86pKF6J= KbQIIgXPWmehtT0FrKyKRiCbv/MGD9H/0o2Seew4RBMTEIMV/+iesj3+cRGcnQkq8cpnnPvMZUn= ffjQgCLEB95Svke3rInnVWtNgtFAq0LltGv+uSGxrC+e53GTEMOt761kiI5fN5HMehq72dSqFAf= OdOBj7+cZZ9+MPY2Sw0zBS1Wo32jg4qe/dSefxxKo89RvVTnyLW1oYwjEhr0draigD2/exniP/6= L0bf9jbaLr8c0VDjj46OkkqlSKVSuIUC+z7xCcbTafre8x7MWAxEXUuhtaa9vZ3A9xm45x7y99x= Dz7vehZPLQWNRVKvV6OjoiObKYrGI7/sMDw/T19c35y1Y0idVoylVihTEroZgqn+qpMdQbQe9at= 3k9p5H4a67kIXipFdUWxb2BS/FWIrdhACkRM7iGq+1ppIfo1wYBKM+gQoNmOCrKuP9++nuXTvpN= 77vRzaLEM/zoslsIYRb3WKxyL59+5BSsnLlysM8ycWhtaZQzFM1hiZ/Ln1G3d306sn3yR8fp/I/= P0JMEVDatom9+go40pV4XbfQ+MfMQlprTXlkCC19cAQyEOEcj+/mcUslzFx80m9GR0cZHx+f1If= nefOqZie2r9VqKKUYHh6mWCySTqcX5IAy7RR1hXjxWxzY8wRjeehdZqOXfwQntYIXqtde4HuoUE= 2OQM9xnlPv/OxPwqHvgWhHuKQIAVJSPO00apkMRi5HzTTru6IgYPCXvyS9ezciXFhrjTU4yMgvf= kHi9a8HKSkPDOA/8QQlw6gLBgDfZ/wXvyBz+ukI0yQIAqSUpHt7GbvsMorf+Q74Pjz1FK2eh3Qc= lFIopTBNk8B1cS2Lom3D3r0U9uymNXNqQ/vgk0qlCHyfwaefplouY3oe/Q8+yIpLL0UYBtVqFdu= 2kUIwPjDA0I9+RMZ18R5/nJZLL8UwDHzfj+ytnuuy/eabiT/9NH4sRm1sDLO7O5q74vE4ge9zcP= Nmal/4Avg++eeeoz2bRQhBoVCITD31yyqIxWIMDg5GZpK5WPJllGlYaN9AGIc8pgQCQ9vTdZZSI= nt6kNXJxmVhGIgFOgUsBYZl4XgSO+6AQT3GK9AoHyxzhnEDtm1PclzwfR/XdRfs0j04OMiOHTs4= 7bTTyGQyjI+PYZrmog3th4vtxMA3wD4kcOr3KT6trYzFMU8/HVRwaMYQAgwDw3HwZ9v9Um++NHt= CgWk5JLWBETdAgtACFWi8msCYQUAahhGt2oBoVbjQyaxUKnHLLbdw/fXXY5oGhrEwx5wZUT5ecQ= tPPvpjhkY0o70JNnW/lzk2lM9rlHLZv/3zHNz/HKtXm2Szb8KyVk/aFc926vN9Hj5Pvu8TJBKY8= 9hEF4sAWlpasB0H3dYO1HechmGA1kjfR+m6qA3HqYVAZjLRXGG1ttL5wQ9iQPSZUooglYpUf0op= jIbwWnbNNVRf+lJQipqUk1R/4fNrxGL0vuc94LoUy2WSq9dMm5uEEGROOYXsxz6GW62SXL48UrO= Fx9OAYduseu97EUrhWRayYQub6gDV85rXYLz61Yzm8zitrfXjTRQqQuD09JD+8IcpFApk162b5D= U7kyo/m83S0dFRv55zzHdLKpwEgpgdZ3nyXPa7m1HCQwiJpdP05U6bZvwShkFy48bpMQUNW0Qw4= 6QnCbRDoOIobOZLDygaOmKtZ37ghRDEU2lSy5YRDA1i+vWxaCnwEw6Z7u5pFzj0SpwUMLYAlUpI= EAQ8/PDDxGIOsZgCnqWtLcuxcqASQhB3EvSlzmJ/9SG08BBIYnSwsu20aedrxBzip5w8vZ96Z/g= zPGBaGPgqicBH6wVMHlo3VH8zizIhBC29vYzv3YEolZFBXWUcmAbxnmXE0xmmPi5tbW2TbE9CiE= XF7g0PD2MYBp5XpbVliGxmP6Z15kxrlQVRrSqe3uHzkrMgkVSznusLAa00P7/zLor5e1m32iKXe= j3xeJalTOdZc13Gg6A+f0y4KeVSiQP79rFi1arD71xKthc1ZSUxBGxsabychkHreeex/7//m9zw= MCIIwDBw16+n9+Uvj54tJ5mEFSuIx+ORSis0B4TCybIsyuUytm1jplJks1l838es1erCAhq28yD= yhE03tCs6n8dpODaF7crlMolEglxPT6TWTiQS0fESiUTkYJbM5VCZDEEQ4CgVCTDLshgcHKSlpQ= XLtmlZswbf99GlEkbDZBHOfaG2qLWvr+7wUKlgxuPRvcjlctEYQlzXXfBcueQ7JykNVnedTmK4l= e1D92OJGKetuJhUIje98SKcIiIjtjCxsm8hQAEWhoxNajNpLAI6bZeaJzF8SFrGtHZCCJxYijN+= 43X0D23n4O7HUF5AuruHVb3nEoulpsnOmWwOEw2F82EYBpdccjGFwjil0mM49tfZt9dl5apPLuh= aLAVSGKzuOIvUWDsHxneQcnIsb99AzE7O2H6xqhNpduDzJkBjSGfaCm8ihhS02T6BDkhIjWVMtw= kJIWjvWknq8t9kaOhZiuP9mJZDS/tKWnK9GIZNpVIBDj0rM6lYw4liIfepr6+Pa665hkzGY8eOr= zI2tpd1636TXMsbFn4hGmhhEE/Gect19Rg2JxanZsZfkLsmACEkr7vmA6STHoZpYFonN1R8S7SP= FofitEJ1rVur4cRiGIbBE48+Sld392H3rzUcKAeMa7AEnJRt7NyEILtmDeqDH2TbRz5CslBgbNU= qzn7f+zAm2KVCB4Dh4WFaW1vJ5/NYljXJ81UIQSqVYmBggLa2NjzPo1qtkm2oxUJyuRxjY2M4jo= OUkvHxcdrb2ye1icfjlMtlxsfHSafTkYCZ6tgUi8UYGBigs7OTUqlUF1TJ5KQ27e3tDA0NReEYh= UKBtoa3Z0gikWBsbCwKDRocHKSnp2dSGylldA1yuRzDw8Nks9lIbXjM1HrhC6+1xpAWPR2r6elY= PWubhU4Q4e8O/S0R8pDNIIzmnthXqKeVAq4+Yxmu6yGliB6Yia6NdQSm6dDbvYne7k1MVSxoraa= MYf6xzoUQAtt2aG1txXMTPPNMHik70doAFhZAeiSE222BpCO3go7simhcE6/PxFXbfP1BQ20RtT= UQRnZCGxW1mehEIoRAAhuXpVAN11IhiDJZTIyhEkLgOCl6ek6DntOivsPvQx1+uVymVCrNKVBDg= +5cGIZBd3c3So3R3p6hVosjZA+HJVGMNN6y/0B21neZnjCIxVoPr6/nA8IgIMfDB39BoGpoHqqr= 5DQ4OocyK3iqVo80aNgcV2dfwrOjm9HUQxBEww6ZMjsp+gN14abANC02dbwaqW1kNovredz21a8= STyRo7+zklE2bGOzvx/O8w766UsDpXSlcLZACEpaOVJLCMGjduJFzb74Zr1LBSaUwZtgJ2LZNW1= sbtVqNdDo9427BNE16enqo1WoYhkEul5tRFdbS0oLruiilZg2TSCQSOI6D53l0dnbOqIJ2HIdly= 5ZRq9VIJpOzLuA6OzupNQKRpwrCiWPyPI8gCFixYsWMY5JSMjQ0FIUFxePxeUNTomuzoFbzIKXE= 930GBwcX1N62bcrl8oLamqaJ7/uUSqUFjUMIwfbt2+dd6YeZFRbqKRc+WAMDAwsax2zuyo7jUKv= VGrsvjdLr6Op+N6bZhVIWWk/X0y4VRsMoevDgwQW1NU2TUqm0oMwMjuPguu4kB4TZsG078lRayD= gsy1pQ23BluH//foaGhuZt39HRUVezTFVjGgZBENRdaQFwiMVvYsXKEvF4F67rTvICXBgC08kx3= ez/wqVYHWVb8f/iBqWGrUiDNrAryxCpAjVVaDhK1N8VW6d5cvS7CCtotFYIBFl1MmM8gyZABfXY= uzP6rsAt+thobMviDW95C7d84Qt0NAz2r3zVqwiCAPMwvWANKelNTJwe9TSnKtO2MefxzpVSLii= o3p6gMpurzXxhEIZhzOtNGr6vSzEmy7JmfIdCwo1CLBZjdHQ0WnQuZI47YuEUbk1DT4+FsviXe2= ForcnlZlAhTuFoBruGD+RMq42enh7K5fKE1DhxEomXEk5Ura1tUQDsUhKudOLx+KxpeU5kwmweS= 9nWNM0Zn8NYLEZnZ+eU+3CoT8MwsG17QQJzOi9sgTQVrRVK13fTdVu6RqEQBGh8lBYNW6MEVL29= 8hFCU3ebrQeLaxGgdIBqBMprrRCNwP5arcaOp5/m4ssu41tf/zrnnH8+tWqVWDxOsMh3SQhByXW= jVFCTaMT0NFk4WmvSLS3ky2USmQylWo3yhE2Mb5rMJgmWZOdkGAapVKoZed5gLsFnmuascTahHv= ZoCCeo36eJ+uUmMxPuwOZa8T4fBfxxYaJdWUxYMeu6A9UhW+QEW4WohwnoKer1uvYvdG45tDswT= ZNHH3wQrTVXXH01tWqVX997L1dfd91hDFeQaGkhWMRCu8nszLcUi8+x61pab72juBt5IdG8Tk1e= DEhh4IiGR5loOIFLgW2kwdCIANACpEYIiS2TOEYaZJj2qp6izBEpHJ1BaR+lwZaxhpNS3SZlmCZ= vuuEGVBBgGAYPbdlCoVDAc93D2qdKKZELCKY/HqiJNuCJXopT3Lsn0VCjGRM8BZ8PNMPFmzQ54Y= iCyY7rKI6U9uxyrm79GJpDAfkgMIRVtx/pybvPZCzH2u5zJ7SvYxoOfnAoXEEgSFgt6IygSv0qG= YYROQCcc/75bNi0CScWo9jw4HwhoLUmPzxMi+PMucDV1PP1BQ2nL0NKKp5HkErhHCVzytGgKZya= NDmRUCWEHkWgUcTAaOf5KKQE4CKxmJ6NQ+mZM0AUqwpITfvcC0AzwQUbKLgegdJYpjlj8tBEMvm= CMzMI6irPlpaW6JwnetaGAqtWq/GNb3yDRx99FM/z+Ju/+RvSySTzu5SdWJxQwklpCBoBs1B35z= QarsUTmeqGPlMS2ZnaTPw7bDPx79n6WgrClEdQd/k8nPxsTY4eYR4w27ajFXgQBNRqNRzHOfzME= IsbBePD93LnDz5GZ0eJl198ISr+9wh57LKlLBUaGBsdxT9M1dqCEIJlq1ZNC8J9oVN3ydfs2LGD= v/3bv2Xz5s1cdNFF/OVf/iXd3d3Yts21117L6Ogoa9euJZFIUD1KduyjyQkhnAKlGakE/HSPYl8= JhqsapSBtarpSkpd1a05us0HXS1fYto3v+9Rqtbq7aMOoFtbcCctySCmp1Wp4noeUMgo4C92ei8= Vi9G/XddFaY9s2lmWRSqWWTEh5nsdPfvIT7rjjDkzT5Morr+TKK6+cMOFptK6hdQ1m9V1pcrTwP= I9t27bxwQ9+kH//93+nrxHx/sgjj/De976Xr3/963R2dgIBQVBAShtY2pQ5IVobIMqcenqFodF+= RgZ/DVjR5kkrEDKcjwWWmSCX6mZwbGfDRTfs55CZByEwpE3CaaFQ6W98pye1C/uT2CQTWQrlQUw= RoyXRg5QmWilEGCJBPV1PZp5sG70dHbROCSiF+cNwo2HP09Z1XQoz7I6UUlQqlQXXRXs+UqvV+N= M//VN27tzJa1/7Wu644w4GBwf58pe/TCaTwbZtDh48yI033ohlWdReTMJpYh2cI53EfaW584n9f= KO/C2FYdZ2pUgg0xojmwEiJ919oMT46EsWYhIXwXNeNDISlUol4PB5FJIduwmEwp+/77N+/n1Wr= VpHP51FKkU6no7gk3/fxfZ+xsbGo5tFS4Ps+P/3pT3nnO9+JEIIvf/nLXHbZZQ3hVHeNLRb+m/H= xX5LN/SZwxpIcN2SpSn28ENFas3PnTj71qU/xyCOPRIle8/k8t9xyC9u2bWssXBS12pMM9N9GOt= 1CMvV2lj79kCTb8XKuecuPUcrl6b3382D/PzYEU8NBIIihZRWhTbQMiKuVrGt5PY+M/gsSAy186= q5uEmQAygChkLV2umLncYAfNj7zG7O/ASJAKAMlFO5QC2tXnMveyo/oMDdx7ekfwbYS9bQ6jfgv= wzB47sCBeXcsYXHGo/XcBYYBvh+Vb/BcN1Ln3XPXXVz8qlcdleOeCBSLRSzL4kMf+lBU1uX222+= nUqmQyWTo7+/HNM0oq8TzkcMSTmGZh61bt3LyyScf8USulMb1fHL+GEkUccsgnTBoSxgopVHVEk= pno4dwaGgocrsOa/eEgiksST0+Ph4FkIZt3AmxC2FG8DA2KyyYBfWV9FLqq4UQnHnmmXzsYx8jm= Uzyspe9bErRLZ8nt/4PgwNPs2pVOytWnjZHb4sjCAL6+/tJJpOLKv/+YqKrq4sPfehD3HfffQhR= L2V+yy23sHr16gnxaoqR4QfYsuU+WlrSnHPOdcDSe3QJYSMMG4SPkHbDccBvyACNChTS8NGBj5A= ahVf3YsNDKQ9hKNACrQRCKrRuqMV1o51w65/JsJ2PMBRaS4SY3F+gPISsB6SqxjuktUYaxpxF4o= 41fhBwyxe/SCKR4NQzz+TUM85g+THK8H+8aG9v51vf+hZaa4aGhnjwwQc57bTTcBqZzNPpNDfcc= EOUWeX5aH07LJFarVb55Cc/yUMPPcRHP/rRCZH0h0kjfYlpSjKOSW/GYGOnw+m9KZal7Uk1g0Kv= nHBVkMlkSCaTUQYHIUS0WjNNE8uyoonZsqxIiIYGxLC/eDxOLpcj1sjNtZSrPd/3eeyxx7jsssu= 45JJLePDBByfFMglhsHHDJZxzzkvo6r6csGrsUlAsFvnkJz/JE088sWR9HiknkqF6YpbkcPJ9+O= GH2bp1K+vXr8f3fQYGBlAKWtsu5GUXXsKKFdcST3RzrBwVJhq7bauuTpwpXY5hmFFcUagyltKYN= sxInSyIyo4bcrpNzTQb74EgeieklCece4ZpGFz/1rfWc7z19zNw8GC0+z2RnrUlpfE8HDhwgLe9= 7W3s3buXD33oQySTSXbu3Mltt93GD3/4Q770pS+xZcuWeVOQnYjMKZxC3e2+ffvYuXNnlNnAcRz= +7M/+jAsvvHBCKp6loyGrpr0EGgi0wA2g6kPVF/haEOjJCpZAg6egGkDFB08LgnparuOyggg9aq= 655hpe+9rXUqlU6pl+J7w4hpEgl3NJxH1gcQGe9YKJJR599Jr2pggAACAASURBVFHuuusuhoaGo= l3mN77xDWKx2IIfTq015XKZsbGxBb/YIyMjC16gKKXYuXPngkuDhOe2mPGMjo4uKlvJ1IVImL/s= zjvvpFar8eSTT1J/chSppKa1dQStG7E4xwCtw4DUQ8G/Wk0/9sTrEzn7zDBGFf52Qr8ztpvgVDT= NeUhrtO/h58fQnls3hh0nlNbYjsN5F1zA/b/8JW0dHaxZt45MJvPCVWVrzcDAAFdeeSWbN2/mc5= /7HBdccAGmabJq1SrOOOMMvva1r7Fx40ZOO+20aBHyfGLOJXq1WuW73/0u27ZtY+XKlfzwhz/kr= //6r1m3bh1PPfUU99xzD+9///uPoHR1A9146PXcxW0qPtzxnIUvJClL0pEyWd5qgtZsO2jzqqRA= Wppf9pvsLRskbUFL3KCvxaQlYbF70CKpXFYyOQHp0ca2bdasWcNf/MVfYFlWtP0WkcVasfWp/8d= 99z7EZZd3smzZKQvuO7S73XbbbWzfvp22tjY+97nP8Xd/93ekUim2b99OEARs376dCy+8cN6FRC= jUisXivGrA8PqNjdVrUS3EAB3aeLq6uubJ71UGHkXrs6lUKpRKpQVNNmHNpkQisaiqr4Zh0NfXh= +M4vOQlL+Hcc89leHiYzZs3c+mllyKloFR8gF/e83OW97Wwfv3rgWNT7rzujFD3v/Y8F8OAQAXT= ikUHKkAKXRcqSiNl+NvJ7erOQnWBpJVCzNKfioI9iWxN4T1Xgc/Q925m+Me3I0+7gJN+/4MYzvF= xQFBBwBc//WlKxSIvefnL0Urxkx/+kEtf/erjMp5jQa1W4//8n//D/v37efe7300mk+GJJ55g48= aNAHz1q1/lrLPO4pOf/CS33Xbb89Kbcc63V2vNrl27uOmmm8hkMjzzzDNs2bKF5cuX85WvfIWTT= z6ZLVu2cPnllx/x7smvlqkVfYi1zDIYKFQ9Nu8YoLOjg66kQcqRVDyFr2DXiMt4X0AqrnlwZz9l= M0t3No5j2FR9TdlT9JcCdLnKpY3dwdDQUL3eyVG8cVprLMvibW97G5dffjlBELBq1arIoaN+aMF= Jay+gvS1JLPaKwxrPgQMH+OM//mMcx2HXrl08/vjjXHXVVfz1X/81d91117R09vONOfwT1ogpFA= okEokom7tpmlE5gFDQB0GA67rEYjFc143UqKVSiWQySalUIhaLzdh/qVSK+g9UgO8PMTD0NTra1= kUTou/7BEFALBZjeHiYtrY2XNeNVLOFQuGw0mhprXEch2984xskEomov87OTu64447IpppIns4F= Lz2PoaEOnFgHFMYWfZ8Oh3pUf33fb1k2igqGlOgpGewNaURJVKWUaPxGmh81pZ2MkqrWJVLQ+O2= U/qao0+FQii2UYsfDW3j80a0sq8Ha/3381EaGafL2d7+bSrlMKp3m/nvuYef27by8Wl3C6lEnDh= rYvn07P/zhD/F9n3/913/ls5/9LPF4nAceeIBUKkVPTw8PPfQQvb299d22lM87ATWncEokErz//= e9Ha82+ffvYsmULV199Nclkko9//ONAI9XHkW4ZBVjxJE5q9rxvGhDSINHegxB+Y5d1aBIynThS= GAghSbT14NY0aNXIhFxvJw0LrHptoVQqNaVsxtISqqMmqtPa2toAorpDUH/pE4kEmez/Ip15EyA= XlIE9pF5+w+Z973sfQgj27t3Lo48+ytvf/vZIiFx88cWLvke+7+N5HsViEdM0GR8fbxTe86LEtk= NDQ2QymahtrVajVCphGMakcwxr2RQKhSiDved5dVfgQgHTNKM2YT/fv+u/OCCeoqP6VV5zyZujW= jeu60b1YzKZDOVyOYpDGhsbi1SYCxVQYUiC1hrDMKjVapNUjuFntm0Tj5+Oba+nvcNq2AXnz8B+= 2AiBwEDioHU9SzdohLKRQoE2EFojsTGkhdQxJBKEWXei0xK0iUY2CqQ7GNLGULG6J59uvPphmRZ= toFEYOBjCxtAxtDIJAo0nA4KGGjoIAqRhoKXk5GvfSrajja4r34S0pu+CF1MW53AI+5ZTciG+7K= KLOO2MM0imUpSO1B5+gtLV1cU3v/nNSbbrMFTG932eeeYZzj77bH7yk5/UiwIucbXgY8Gcwims7= 7N9+3Y+/vGP88Y3vpFzzz2X/v5+br/9dlzXxXEcrrvuOvr6+o58NAsQFEJIpGUjLYEwTKRhMM0X= RQikYWDYAsMw62XfpTGt/6MpmKrVKrfeeiv9/f2zvqBSSlpaWrjhhhsahb3kYb3MoQF827ZtfOI= Tn+Ad73gHGzduZHx8nCeffDKKBTvzzDNJpaZH7E9FKcWOHTvI5/Pk83kymQwjIyORIJJSYts2e/= fupVqtsmfPHoaGhqKCZ+l0elKcydjYWFQwLZPJsHv37sjVP+x/bGyMbDZbL1VRq7B7cCvWGo+9B= 7aydetWarUaw8PDuK5LKpVi79691Go1KpUKlmVhGAbDw8OMjIwwMjLC8uXL5z3PUMX461//ek6b= nJSS8847j/Xr12OayegaHU0EkrU9L6O3/TRKlUEOjmyjNbuCbKKHA0NPoqVLV8upOGYKy4qxqve= sufsTElPaeMFvz3K8KLkQhmFydvC/kMIkrw1E6OUanrNSJDq7MHv7aD3rZQ1N/PR3qVAu4/n+UX= Og8IMAI52eVC4d6vcr29LygnWGENS99drb26d/19jZ/sM//AO33347//mf/0lLSwul52EapzmFk= +u67Nixg3e84x38+Z//OVdddRWGYdDR0cGb3vQmhoaG6OvrW9CEd6LhKch7kv48jHmSdMygT0gM= X+CpIzN1h1mtb7zxxkmGZN/3J3kThm0NQ6JUERWUkTNUgZ2PIAiigNE/+ZM/4YorrsA0TbLZLD0= 9PWzfvp329vYFZySXUrJ+/Xr6+voiwRJW1py4c0qn06xatYpkMklHRweJRIJisUgul6NcLkdu2E= NDQ7S3t0fxZ0NDQ2zatIlUKsXo6CgtLS2RirAea+bR05vk7vs+xm+89s+Jx1ool8t0dXVRq9XIZ= DKkUinWrFlzqMy1adLf309nZye7du1a0MJDCMFJJ53E2rVrD9lSGvVnIs+0hvdbvb8anrsfRArD= aFv0fVoMQggsywEUW7Z/mf+67Wtced2ruPDkP+AnD36KsdFR3nD5R1jf90qkNCIvvvmIkZi/EQJ= ITvj34aCxswZ+UEZKA0OmEMI6gv6m9l6fvOqL0xcJQqC0puK686orW9vauPHtb0cKgev71Hwfjt= Q34Bgzq3AK7QF/9Vd/hRCCe+65h82bN3PVVVdx9tlnc/fdd9Pa2so3v/lNPvCBDxxZepeGQ4RWi= rkdCDVaBcDsx9JaoYOgnu14lsdWa9g2qvnOdpu0LehICHpzAuEYjBZNdu6FNWvAOAJtZahSg7rq= aPPmzdx6662Ypsk73vEOTj755KjgoNY+u5/7D+655+dcfvkbcWJXs1Bju9aaSqXC3//937NixQq= effZZbr75Zl75ylfS19fHZz7zGTZt2sSKFSsWPf5wZyelpL29HdM0owJkUkqWL18eFTerT6YW2W= wWKeUkW15bWxuGYdDa2jqpbylllNWjtbU1svXYts2qlatZ3vtKpFzB6GgJKSWO40RBhStWrIhKg= ITH6ejoiAT/QnfFobozXDx89rOfjUpi/+7v/i49PT2N7xXF4j08uOXLnHRSO62tH+BYeOsJKXGD= Gq3LHFQtDtRtQ4Zp4hgTHUSWeoo+wv60z53f/wAH9jzEb77eprf30zjOOZNKXRxZ/5qa61JUCqY= 4vkSVrpfmSCcUmfZ2RmeqNTUbDfugdJwjd1w7xsy5c1JKcf7550cqD8uyIhXK1VdfzXe+853IsH= +kKN/FrwLxOXYOGiqjA2S7544xqY4OEMTaIDFzKiCtYaxcY2RoFKs1i2eZBL4k8H08P2CksrSef= Eop7rvvPm644QZGRka49dZb+fCHPzzBDqQYGHiOU0+FAwdHWLVqcf1rrXlVo/KnlHKSg0Ko5vrZ= z37GySefPO+kPTE+LBQiQPRgT/x96G0XPhOT42sm19sJ/w6CIMotOFGAT/Ssqx8ji2G/HaVMTLO= GaZqT4n3CY088TjhG27YXrbINbYQ7duzg+uuvJ5PJTClaqCnkD+LESmzbpjnv/EYmhqOMIW1esv= 73Scv1rF95IZlEF686+73oQNDXddrSTfZHgUQszVlntdDVaWGZMSzT4DBDK2ckUAr8uv1ZQ7TjV= Uqx5f77Oeu885bsWEuPQgVl0EHdDCETDXvh9HygE5FS4jSciuZqF7LU7Y4lswonIQStra28733v= m/ad67rcfffdXHrppXzhC1+IkmMeNgIMy8FKzKMeFIJE27I55wQhJPH2ZXjuHC+BACuWIt5iY9p= gmBJhWEjTRBgBhuWwlBOPaZr8wR/8Afl8nl/96lfkcrkpws9k48a3MTT8IJ2dryEIFr4LFUKQTq= e56aabpn1eKBQ499xzefOb38znPve5KN/gXGit5y20N5Wurq4F75yFEJx11lkLWMUZjT+KeDy+q= CKJXV1di3YA0VqTz+c5cOAA//Zv/8ZFF13ESSedNGncHZ1XYFlxDHMV8Xgn+fz8peCPFCEE2VQ3= F5x5yFa0YfUlR/24R4wwueiVH6Qtl0FKgRAOoWDSOsDXPlqrSXn0GhGOSGE0nJsW6F0KlMtlvnP= bbVz3pjdh2TapdDpyhDoR0arEyHOfYGjoIKeeZlHW78Y0VlIcHqGaz5NqbyeWTiMsa1INJq0Uyv= MoDQ9TzedJtrURz2SmtaPRrjgyQnlsjHR7O/FsFjG1ppPWBK5LaXiY8vg4qdZWErnc9P6OA/MGg= sz2gPi+z7e//W1e+tKXkkgsRI+9UPSEmKf6/09roRuZy7We8/mLvIWiNlMbz5dacmkIHQgGBgbY= vXs3tm0TBMGECVoxPv5LHPsh8vk0yeQVLDaGZqb7ZNs2bW1t/OQnP+GVr3zlvAJEa02xWOQ73/k= OPT09XHLJJfPGCiml+NWvfsWGDRsayVHnxvd9nnjiCYaHh7nsssvm7D9ULd977710dnZy+umnzz= thhbvUTZs20dbWtuAJLlRLXnvttZxyyil86Utf4tvf/jZvfvObIyNzfvwJxsd+jOcnSCT+guMT0= v18QSBlDCmnh2oMFfbxP9v/gbI3EgkmISWbUtfx5OgPePmK/82qjjOxTCdStzpz1DDSSvHAffex= a+dOPM/DtCzaOzpOmB3AjGiPX/z8F6xY/hhu2Wb0qXNQ3/8yqed241QqkEpxYN06sjfcQLKvD2E= Y6CBg5LHHGLn1Vpbt24dTLqNTKUY2bcJ64xvJrF1bT84bBAw98gji29/G2bEDv1AgyGQY3LAB+7= d+i9y6dfV2SjH2+OPUbruN5M6dUbu969aRe8tbSJ900nEVUIeVJ8e2bV796ldH7rdLlSFCKV0vQ= KblJIESxgMJEQbPTl8UKaUORbsrhVKglGh8puv/aT3Bs0+jtI/WMvo8+maJo91d12XPnj2sWbOG= D3zgA/zRH/1R5OlYf38U4+Pb+PGPn+TKKzexVLLetm2uv/76KL/gQl7WSqVCLpejUCgsyCNNSkl= nZ+eingHHcSblMpwLy7JYu3YtO3funHfnp7VmbGyMu+66i7a2NlpbWxc1Qfm+z8UXX0xLSwtnnX= UWTz311KTvTWs3P7nzMV52wQpct8wJktT/eUegPIreIJVghHqOc4UIJFWvSMEbQMm6u3qYTmo+F= buQkgsvuohnn3kGgKHBQWqVCkXbPmHjnITMcPm1nyfw8ux++hmyn/kWmWIVlEZojR4dpeuBByg8= +yzVD38Yp6eHsaeewv6nfyI7MIApJXEhYGyM2L33Mrp9O9W//Vucjg5KO3YQ+5d/ITE6im4kvE6= MjZG8/37G9+yh9tGPYre2Ui4UyP/oRyzbtg1RreJ7HsnxceJbtrB3xw70Rz5CZuVKxCKC2ZeSw7= p3E+0SSyGYTCnY2J2i3faxhMCQIIVGorGlZlVaY0pBVy7N+pRLzNBYEiT1NpbUdJgV2pMWjmVwW= qsmYSpsWVcMCTSmgLThc1p3AilgedogZ3hYBhiiLpwkGseATe0W5hI+1Vprbr75Zj796U/z+c9/= nmXLlk2wiwjAZOXKG/it3/5Tenp+e8nsCKHNaDELiFwuRxAE9Pb2LlhVl81mF6zWVUrx2GOPRRn= j50IIQRAEPPzwwwsSgEIIEokE1157LS3zlHOYiXK5zCc+8QnuvPNOfvGLX/CGN7xhglelJB6/gm= uu+ROW9fwJiWOYW++FitIK3bCP6jBuUdeT29btSAvbmQoaGdAbdsm29naee/bZE7vqqzBJZtbhs= Irk1+8hXaggAoVoCGKhNVIp0oODHLjtNirDw9S+8AXio6NkhKDcSM8Vtmvt72f4lluoDA5S/vzn= iY+OIoKAcCUvAKEUmX37GPzUp/BLJcwgYOM73kHt4ovRlgVCUAsCxmo1ekdHKd92G2qJk2AvhhN= i6WdKyekr21m/zGPPwSHGqzVitkvKL7JpeY5kvBdDClrSCf74ohgDI2McHC0hDY+UrtCSivGyl6= /EMureb288exlXlCrsOjCIj0nSqJFSktM3teJYFlIINi5L8eGOOLsPDDFW8XAsn1RQZmN3htSaH= owjcdWben6mybvf/W5uvfVWpJTcdNNNkdcb1BO/JpLnkEieA0CxeHxqVoYBvVdfffWigqu7u7sX= LAgsy+K3fuu3JjlbzEU8Hufqq69ecDLeWCzGqaeeCizOsCuEYM2aNbzuda9j9+7dvOc974lSwTR= aYNuddHdfC5zQ5oznAQKBRGiz4VXb2NlrA4EBuqFFCRp5BBdwsYWUvOI3fgPbcdi/Zw/79uzhnE= XkVzw+CLyBQRJDw6hAzZxRU2ty997LgbVrWX7wIFIpbCkZ8zzKQYATvkNaY2/eTP6888j099dTW= EmJol7ANWgk7NVA27PPMrh9O2s3bSKeSLDs936Pfa5L6e67qdVq5GIxBOA8/TTV0VES3d3HJbvE= CSGchADLEFhxm42re2ZtZwhB3DZY2d3Gyu7Z4kwEtilozyZpz85uRDcNiWlINqxadoSjnx/DMGh= vb+c973lPpGKbSrhbOt6Bg6HtZTEsZvccuosvZjwTBflCf7NYwvO+5JJLZr1HcEg1utSq3xcisz= 3LjpGmq/IbVNzSJIeI9s519PRfzvjBgO357dE70d7ePvNOe0L/UkpWr10LQE9fH2eddx6mbXOi5= +IuFAo8NjCALBSAeqKpvOeRsawouFjHYnTu2FH3TGzQZts8MDZGqeFJLQBVLJIbHMQ9aR2G7zcE= isZVCktIZMN2qi2LXKmEY9sIKYlnsyx/17v4aSpFbfduDF2v0+VKyem+h10qIE0TaTsI49iJjBN= COL2YOKGNtE2A5j1aCgQ08iSqabWfssk2XnfRjTP+btPamd2/p9qe6hUKZhZ+tuOw4dRT0VqzsN= z3x49MOs1FnZ3YDbW4Ag5WqwRAj+NgCEHRcRhcuxYeeCD63bDrsiqRIGOaxBuByKPxOPL881n+x= jcSn8PbtuZ5PLNvHzXPi0JGnGSSq/7wDye1G8vnGXjmMXb9x18S+C59f/BhkqvmD0dZKp4XwimM= 2QkN9J7nRQb+MMZGax1VMZVSToq9adKkybFFSEmQTDJwNHPbhXFyz+N33OrqotDRgZXPR/YmR0o= ylsWQ69LmOAy89KX0XHQRw3ffTeezz+L7PraUpE2Tg7UalhCYUlI97zzaWlsZHhujZxYbrVKKXX= v20NrdzXixSDIen3GO1FozXi5T2/0MWzY/gNaK3OBBkivXH7PrfcIKp3CV5HkeIyP18uzZbBbDM= HBdN8pQHbZpb2+nWq1SKpXwfR/LsiiXy1HmAdd1MU0zyg+nlMKyLEzTXFRGgSZNmiwM83mWkeB4= YGWz6BtvpPDP/0x6aCjKX2gIQc622ZHLsfJNbyLW0kL8ppsoffKTVPbto9U0kULQbtvUgPG+PnJ= veQtOOk2lXKZQLpNOJiftWrXWDI+Pk2hvx7QsKqbJeLFINp2e1q5/aAgRi9FywaWcN7CPWixNyy= lnHNN58oQWTkNDQ5HwcF03Ko9QLBYJggDP8xgcHIwq2bquS39/P7FYjHg8zrJlywiCgFKpRLFYp= FQqkcvlojIPxWKRWq1GNpslnU4vedHEJk2aNJkLYRi0bdrEyDvfSfF734P9Byjmx4m1tFBe3kfP= 236P+LJlCMMgd8op9L/rXXjf/CbVwUGCchkznWagu5u2N7+ZRFcXwjCIp9PsPXCAbqWwDAO/Eft= VcV0KnkcmlUIIQTydZnhkBE8pYqaJ7/uYpknZdfFsm1giAckkq3/3T0FTdylvCqd6MtOxsTHS6T= SWZaGUolqtRgGRyWQSy7IYHR0lnU5j2zbVapVarcb4+DjpdJp4PI7jONFnYSaLIAgib7Gw9IPjO= IvKitCkSZMmS4EwDFrPOYfS2rVIoDPw8HARukqita2e5FMIhGnSfc45qDPOwK9UUK6LtG3WxGL1= jA5h2APQ2dNDoBS1IEA3XOyNZJJsGDBKI/tIWxtKKUq+jzLrVR6MVApngjZJmMdnB3zCCqfQS8t= 1XfL5PNVqlVgsNimxZ2iDKhQKFAqFui7WtiNB43kenucRi8VYs2YNlUqFsbGxqLBdqPqzJtzYJk= 2aNDmmaE11bIyDO3eSzuUwWg3u2f7PPLzlIS48/zouPutdmEbDY1UIpGVhL0BlKqTEknLebORSS= uQiPWKPBSe0HmtiEOlEoTTRRjTRKcIwjEmOEFLKKFh4YvbsMDtBmOW6KZiaNGlyPPEbmRxGx8bw= A4+xUj/lahmv8uKdm07YndNEplYnXSqaQqlJkybHHSFItLTQvW4ddiyGE3e46uyP8/J1w/R2bcK= Qz4tpeslZ1FkvdfXPubzkwiSk8Xgcy7IYGxuLDHYTYx7Cyqzhb8bH66WzE4kE6XR6Un/HO8D1WB= HVxloi4ftC8WYM7/8L4VyaHFu01qggOKpzSCqbrR9LQUtyBbnkcgSCwA/ghA8nnhsh6tXJF/PuL= Vg4aa3JDw8wuOdZnEwLMnZk1W+DICCdTkcF6MJjhJVIa7UaQRBQqVSwbZt0Oh1lsFZK4boulmXh= eR6VSoXe3l4AkskkfiOSelLQXiO7cXiMiccKY6hmzwwwO0opCoVC1EfohKGUmhZnFR5v4ufhOI6= oWOMEtFIUxkYZ2LkVkjmkc2RZZKWUdHV1LSgX3olMaLsMr3XonRkmLw7vR/gcAJPUwBOT5y71BK= XCHGjPI7RS9RIzLxIP1/zwMCnTxJyQLgh4XsdYHVWmXJ9AKSpSkkinF3zNFi6clGL8uW10ffdvC= S76HVou+90pY6lP/p7nEZ8hsGvi96FX3MjISPTSh98/8uij3HvPPfT392OaJqeffjrt7e0IaWDH= Eli2wnM9HMdGNc4/lUpFu7qwPIVl22jNpNLoQRBQLpejtkEQMDo6yoEDBxgdHSWby9HX27uodDm= 1Wo0f/OAHxONxNm/ezGtf+9rI03DFihWYpsng4CCZTIZqtcrevXtZu3Yt7e3t7Nu3D8/zeO6559= i0aRNBEGDbNqtXr17w8aeilM/gjifo/sUX8M6/luwFr4MpiWRDITlTuYowdmyiw8nBgwcXXUn3R= GP//v08+OCD2LbN3Xffze/8zu+Qz+eRUtLb24uUknQ6zWOPPUZ7ezt79+5l48aNSCkZHx+PdvFh= eZiOjo4lGZdWiurYGJkFJM7VKAJVL3JoCOO4FhoMlKIQBKRaWo7bGI4VWmssrelobcWQEopFGBo= CKaGrC46klt1x5nAW5BN+PPOiqlSC8fH6dUlnwLFRwP6RQyVSFsLC1XpCYGTa4KyrsFedOmWMGt= d1+d73vsfg4CC///u/Py0/m+u6/Nu//RuO43DTTTdN85DTWjM4NMQ/fupz7NqxnWqlwNrVq+ha1= oMfa2G3zuHWYiRsi45kkl4zhhkodnk5Vjk+CoGvBb6WVH2NgcBzBSCJI4kLA08LlNL4gcL1fCzP= o1yucKB/kGf3HkRrg40bxjn/7DOQcuE3zLIs7r77bjo7O1mzZg2PPPII+XyeoaEhDhw4QK1WY+X= KlViWRWtrK/v27WNoaAghBMViEdM02bp1K0IIzjnnnCNSOwkhMVNZWP8SYss3NFa2h5xHtNYMDg= 7ywAMP8JrXvGbSjs11Xe688042bNiAaZrcfvvt04oYPl8Ja0PdeeedXHXVVaRSKR566CE6Ozt55= plnaGlpwTAMKpUK3d3dHDhwgHg8Tn9/P14jzYthGAwMDESlSJYCAdimSS6bnfO+a63YP7yDO7Z+= iFpRcNnJ72bDypfUd33HODt6uNsvjYwc0+MeLwQcWu1rDZVKXSj9/+2de5CcZb3nP8/7vv32/TL= dc8vkNuRGAgQiCZxDIjFCTMgiSKkbWfbIClqsAssfgnL2WFK1p1wXPXq03OIo4sFSC6IclQDFzT= XcFANIIDmHyX1ymcxk7t090/f39uwf3e+b7sxMkoEEUPKt6prpft9+37ef2+/53b4/x4FCEXQdS= bXcTLFYnLCupVIpisUihUKhYb5JKYlEIui6TjqdntD/LmnAyEi1qGV9HqaUkmQyiWma5HK5Cd+N= RCJomuaN13rLgK7rRCIRcrmcx7bj/VYhSCQSFItFSqVSwz0dxyEWi1WvJyXs3++VgScUAs0HlTJ= Eo5CqcZ+WiuA/Fmk4nZE6LZ+TFmkicu0dIKrlBR566CHeeustbrnlFhYsWMAVV1zB888/P+kks2= vRKIBnkquHEIKW5lbuvufb9I/mMSoVHNtCqCp5W0E1NQK2g2ZWsMoq+ZyDRLBvTGMwZ/FWsYJPS= EZyPsZLJhWhENbLxHyQCAhiPkEun6e3fwynUkaaBma5SG48x3ihiGlaxKMhNqy/Ylqauq7rLF68= GNu2SSaTxGIx1qxZ45WMrvdz1IfA1+9Y6s1EjxUdgQAAG8pJREFUmqZRKpWm0y2NEApaNEn4qi+= ColIuV/jtb3/L0NAQ11xzDalUigcffJBFixZh23bDZHG1CNu2efHFF1EU5YwEorwXiMfjpFIp1q= 1bx8yZM5k9ezYbN24EaDDjuRrl7NmzG8x57oLsnjddctyToX7xON63Wx03ILGw1DFydpFf/eEb/= J34JvNmnoeiqN5zuaZKyzaxHQtFaCh1GpaqqjiO7WlgilC9NjjV0iofeJ9dpQLJJNg2GIb3cbFY= JBgMouu6N3aKxSK2bZPP58nn88yaNath7g8PD9Pe3k4+n2fmzJkNYyyfz3vntLa2EovFvOu66TV= uzqbLfOOuL6ZpYlkW/f39XFDjGXRN2nv37mXJkiWMjY2RTCbRNM2jfSuXyziOQzqdxu/3E4/HG5= 5pdHSUdpelvKWlKojqTZ19fdU2ca0y72CsTC8MRFERqorjOPT39+Pz+fjsZz/Lj3/8Y+655x5+8= pOfEI/HsWuOQzdk22V5aGtrm/LS1RpRKjOao+RNDcMwPYGmWBYh1cayK1XqoTGb4bSFadm02ybS= tEiURxnJjCOLFrphoNgWjpSkbZthy8K2LUzTqnWaiW3ZmJaBZdkendHcWe0kE7FpTT5FUTjvvPN= YvHixtzi8k8l7WvwZQoEae/DAwACapnHZZZfx05/+lLvuuouVK1dy9OjRBs5C99ndpOeFCxeybd= s2b0Pxl45EIsHatWsBvPSEdyJgTndwEBwrlhiJNPpzbdv2NHkpJFI65CojbN76ff7HdfehKtJ7p= mAwiCMtXt2/mX2jL/LpZf8bpVZVWUpJMBikd3Q32wceY+Wsm4gEm7wxNzY2Nq3qwR9YqGqVIdy2= q//XQVEUMpkM999/PzfccAMtLS0Nc3rv3r088MADJBIJ7rzzTm8cuQFg3/3udzEMg6985Sv4fL6= GjZNt29x///1ceOGFLF261PueEIK9e/fy/e9/n7lz53L77bd7JntXQP7oRz+it7eXO++8syE4zH= Ec7r33Xvr6+li1ahXXXnut96xCCLZu3cqmTZuYP38+t912W+P6VCxBPH5MODlOtT1UFUzTbZC33= cxvu9jgnDlz2LhxI6Zpkkwm8fl8fOpTn2Lt2rUUCgUOHTrEz372M55//nnK5TKZTIYrrriCNWvW= kMvlyGQyExdiAU0RFU1p3J0JqgK4SiFftXNKp6pOClktSLiwI8I5bREUaVHOZxkbPgqOjWNXBZN= t2bVom7riZnW311SFlRcvwadNLzDB9We9X4lmZ8yYwYYNG7Asi3A4TCAQYNmyZaxfvx7bttm5cy= cPP/wwXV1dVCoVotEofr+fc889l8985jN/NawZrrbj9tP7Ee7u1ufzoeu699I07ViVZkfUTP0OF= auAz6d559Vr4gUjTdboQdVUL5/PJUg27CIFexDVdyzXz93tn8WJIYExIeg/cID+7m7GDcPrG1dr= 2bRpE6+//jrj4+ON35WSdDrNxo0bef311z1zXT3Wrl1LNpulv7+/oT8cx2HHjh088sgj9Pf3e75= h99jOnTspFoucf/75E/px165dbN++ncWLF1MulxuOK4rCLbfcQjAYnNSv/Oqrr9Lc3Mzjjz/uaX= IeJlkrpaKQtiz6u7vp37ePfC0I7e3gbQsnx3HYsmULmzdv5gtf+AKKolAoFMjlcpRKJUKhEHPmz= CGVSlGpVBgdHSWdTpPNZhkZGSFXq1/ScF3A71OY0aRPyzbpamihYNUxKSeh6T8RFEWhozXF8qUL= 3wN+PQnSBscC5/RGbbmJyC+++CJPPvkkN910E5ZlMTIyQiaToVQq4VY1FkJQKpXIZDKMjIwwPDz= M2NgYpVLp7KIFNeevXXu9++0hgLA/ich0kB+1jj3CKQzzydIoJMciEz9IaRbvFFJKCuPjjOzbx8= ihQxRyuWraRg2KovD5z3/eC6aphxCCSy65hBdeeIFVq1bR2tracCwajbJgwQICgQBjY2MNfZJOp= /nGN75BW1sbBw4c8CKP3e8uWLCA6667jieeeMJLp3GRyWQoFovs2LGD1157rUHrd82H4+PjLF++= fFJ3SzabJRAINFpRpARnYkCEtCxy6TQjPT2MjIxQyuVwJoyt49a8KSoev63sLtM02bNnDw8++CA= 333wzfX19xONx+vr66O3t5eabb0ZVVTo6jhUOPPfcc/nd737HwMAAN954I6qqks1mJ1xbEdAS1+= gdEZinaFEqOhr/PqYTROBQ446aRiSTqgguW76EcOhd1hKkxDEKVA4+jzPWgxJM4Ju/Hjg90T+O4= 7Br1y42bdrE9ddfz/DwMPF4nKeffppFixYxb948mpqaWLJkiecPC4fD/OAHP2Dp0qVceeWVKIry= znxgfw2QDsbQLpyBN8A2UOZ8BK2p811+CEE83MJ/WfmP/PTZf6CvvOuUtfTqaY3nCmjYwL3fNP7= 3KxQh6IgnmHHVVWDbiGIRFKVBe6qvdlAP27Z57LHHeOaZZ/jc5z5Hua6ciJSSnp4eHnjgAWzbnu= DrdRyHD33oQ7z55psTNCcpJfv37+fQoUOehlyPBQsWeL6jySKRd+7cydq1az3Kt3qUSiWampo88= u2G75fLjT4lIVACAea2tyPPPbcqc4qFqjLjPisg8kOoR7ZC/ih2ajHMWcVkAuptCSdVVUkkEtx1= 112oqurx1K1evZrvfOc7k4YnaprG6tWrue+++7Bte9IwZhdBXSUW1CiVzSnPcSGBolQZzWt0hDQ= cCZZpUMyNEU1MVS33GIQQRMNBVq04b1oReqcD0rEoH34VfyCCM1bCemsz+WIOZcn1wOlxuKfTaS= 699FIOHz6M4zjMmTOHgwcPUiwWWbNmTYPZTkqJaZocOHAAwzBYvXo1/r/gMNnTBWNsAKf7KdTUf= JwDfyC/+3Ei1/zradegXC326NGjEz5vbm5GUQQtTTP54jXf589dW9AUncGBIS+owTXbKkLlnMTf= olspRobSDQwD7e3tNIVmM8+3gfFsieJ4v3ePvxYT7hlHuYxQVUAcc/zXQdM0/v7v/x5N0xqEjKq= qXH311axduxZN0wiHw56AEkIwe/ZsvvrVr+I4DpFIxNsUSilpaWnh61//OuVy2QtccNdYRVG47r= rrGB0dJRQKoet6g5bT2dnJfffdh2maRCIR9u7d6x0TQrBhw4ZquHwtb7Qed999N9lslrvvvhu/3= 99oijQNJiAUgtFRhJtioKoNAkxaBoE9vyU0YxlO9i0qf/pHsr5/RtoJjhdQb0s4KYrCrFmzvMRX= IQSmafLYY4/R1tY2qbPYsiw2b95Mc3MzlmWdcNFTFGhv0hkaO3mhMgGEsFDTRyhlbBQBsUSKUCQ= +hbLYCJ+msnjBLFqbE+/+7lE6ONn9OMYQdveTqBffSv7QTmKLT4+zXQjB5ZdfzqpVqwA8LWjp0q= WYptmw+3LPB1i2bJkXLHEWEjtzENUq4Gy/H5KLUYRDJT8CvLNE9OMhhCAejxOLxSZ8XvsPRQji4= SRXXPJJ95OG86ovhQWzLmT+rAsmPZ6KtZE8b/2k9z+rQZ0CqmV+q1QOdVqKruv09vY2nCqlZN68= ecRiMdLpNENDQ96x0dFR4vG4F6Bz6NAh71gmkyEYDBKPx2lvb2d4eJhMJuMdN02T+fPnoygKQ0N= DpGth/fl8HiEEra2tBINBotEoPT09Ddf1+XwoikIwGOTIkSMN5kc3UjWVStHX1+f5zVw3TJMrdI= SoCqKjR6vEsqVSdbMWDFYXcFcGHFfWXdgVNGlj79qEHHwTreNvyPdsR+1YPaGZpyWcjs+Urx/Iq= qry8Y9/nFKp5FEM1UNRFD7xiU94/qgT2bgVIUjGfHS2BRnJCgolKJUdcARSUZCKg6II7+VzJMI2= sGyr+r6WQ2XZFqqiIFWlVmVSRVHApyr4wiqhoI+ZbUnWfngZuu894K8SCmqiE2doGLHoUxQObkW= 0rwblnTvs3X5yCXFdBAIBrrzySgD8fv+EfvD7/XzsYx/zBu9ZX4RAjc3ALmVQZ38UyywzWAoyJ5= SE3CQ7x7cBKSWOlJ7h7USUXi5cbWmqc4QQCCZxWMtqGuRUMuhU+lvWvT4okFJWf7OU1RDqYrEas= VcXWRkOh5k7d261Xer6ASHw+/0sXLSounGvO+YKho6ZMxvpkerYSJqamhpCuqHKOK4oChpVzajh= WO26iqIwf/78BtYTOJYvlUylSCQSE48JQTAUYt68eY3+SCGq66n7vqNj8kRcy4Jcrvp5PF4NYHP= bTg1QqeQIJRYgEvMZ3L8N/2U3YjkT3TBTrsgurU99ro6u6wwMDJw02mmyKJR6DA8Pe2qke4/joQ= qY1xZgboufiulQMSzKhl37a1GuWJQNg0rFxKiFiNuOg2071Yg8xwFRvY6mKvh1jVBQJxTwEw37i= YaDRMIBAn4dRYj3REuQEtSZl5LL9JHr60LMWE3reRswnVPbvboD53j7s6ZpDA4Oen13fPu6WuvI= yEhDHo97nktV5PZTMBicdvscv3lxx9CJMtJPxH33XgpJNTaLyrxrye5+mrII07ruf6EF48jc8Kl= dwM2RmuQ3SCkpmCZHBgZO81OfHA3JpcceyMvin0BN5AZPUGXRVkOhY4ti7fP3Fepy007l3CmtBV= JiAn2Dg56fzmu1Om3mjMFNXj0+L1LKhtpMkx2rr97gCk05mUA5Q5DpNAKwpYPj09GEirXkBrI7f= kUpcxT1/BuJti4gNzg8YbczpXAqlUo8/PDDEzr3+MieyRJJp/rs+PfTNSGoqsrMmTPp7OwkFBAQ= kJimw44d/0GxWERVVVrb21G0Y4mF2XSaXKGAEAqJZBNGOEy2tqZYlsXI0NC7nsuj+8BoMO0KkBf= AeAVl72Mkmpq4at26k17HZeZ46qmnGoRM/fETCYL6fqoXUFMJiVO5lnteZ2fnMRMAVbNAd3c3ju= MQCoeJRKPHEk9tm2wm42WrJ5ub0Wq2aiklhVyOQqEw5f3ezvv63zPZcVV1k2LrJ/yq6pzfthdF7= fZyTU4G23HY/G//NsGeL6Gm0R/bmb9bEEA4EiGVTB7jP7NthoaGMGtJ8hcsW4a/5oeSUjIyOMiB= 7m6klCRTKcLhsNdu5UqF0eFh7Np6MdlIORF1Tf0xdxF1F1QxxXeFqEYzm1atj2qLuCdcheCChQt= ZMHfuSdtDSsnuri66jxw5tpGqf6b3KKJRqZno3NI+EjAqFYaGhrAdB7/fT3Nrqyc0HSkZHhiosp= roOhddfDFqraS7BIaHhjiwbx/Scd618aaIqvXTtmvBalIiaQXZgtjWB2/8mmWLFzNvzpwGxWdK4= ZTL5bjtttu8jPXjF7OGm9exgk+2INYvBtPpYFVVCYfDOI5DsVhE13VuvfVWvva1r1WDF4TNWLbA= N7/5Tfbs2UM4EuGGm25C9/uxnarw+eNzv2f3W2+haRpr1qxhYSCI0tKMk05TaWnhkV/+ctKw9tM= F1afjjyYAG83K0tHi8OHLAvzydzGkVIFqmxm5LGrt/5UrV56ScHIch/HxcW644YaGkOCpNgf17X= 8iwXX8d08GTdMIBALYtk25XEbXde6//36uueaa2nOadHV1eRFKy1as4G9XrUIoKo6UVCoVnt78K= P19ffj9fv7zJz9JBIEaDmEVi2zr7mbbcSGwpxNCUdD0AFogiGMUCOsGn1iv8Mwfg2QLx6hX7EoZ= x6xATTt99dVXT+n6lmny9S9/2ROw3u9w279+MXQ3bXWLoWsaatjx1s5xcbLecs20fl1nbHwcKSV= Lly5l3bp11cRxJOO5HL/59W8YHh4m0dTE5i1baJ3RgeGAY1u8/NJL3FNL4ly3fj2duo7a3Izd18= eQrvPEU09h1OX9nG6omo4/lgBp4ZdjLJ4nKZkBugeiOCgIBI5jYYxncWObvv2tb7F65cqTXttxH= J579lnu+5d/8d5TL/AmWfM8U1WdBuPhbfaTT9M8S0WpXEbTNK6//nra29pqwslhcHCYR371K8qV= CjM6Orj2059G81W5Rg2jwm8ffohMOk1LayvPPvss2htvoC9YgNHTw2sjI3zt7rur/XQGhK0AVN2= PP5rAsQxCao5Lljr0Dvs5OBynalIW2KaJWRhHRWKYJj/64Q+55OKLG0LZpxROLnPA8uXLKRaLGI= aBViv36worwzAYHBzkwgsvpFwuUygUPCbxQqFAW1ubVwa9paWFUCjE8PAwhUKBWCzGzp07J+wmX= fh8PlasWMEdd9xBV1cX9957L4ZheOSxmqbhyLJH01GpVNB1nUI+j2E59Ocr6DiUSiWP4dwcH4fD= PRjDQ6iFIuVQiIphnFGKnmiyjb/58r2UR3o4J/OvJOUBXj7YyaV3fI39W55Aj8RASg6/+CQdzQm= OHDkyLU3OZWi/+OKLq7veWtvouk6pVEJVVSqVCtls1kvQGxgY8ARTPp9n/vz5jIyMUC6XCYVCJJ= NJBgYGPIaOkZGRKQWDqqpcfvnlXH/99bzwwgs89NBDOI7jsW5IKTHMEpZlUS6Xq/1RLpPNZKmoO= vmKiW5XmeVLpVKVkX7PHkLjOcxwGMfvxzAq3rEzAUXVmLfqKgKJZqJ6jlsv/Q0PbILUh2/EP17C= LpeYuWI1ux79KWK0l3JtTJ3q87jmokWLFlEsFolEIliWRTwep1gsemPY5TpbsmQJuZq26DgOqZp= v4PDhw4yOjjJ37lwURSGbzeL3+zFNk4MHD05IsPR+n6Jw/vnnc/vtt5NKpfjSl75EOp3GNAyMSq= WWPO5QLlXnk2EYmJZFNpNBj8Z5c6DI7JCCUTGqi5rjYBSLsG8/lUQCkc9jzezAPMNzKdbSwdK/u= 4NIKskVxv/kz1sH2F1ewZKP/CcG33qDmStW0/On/0fvK7+nJZVkdGRkWuZox3HQfT5mzJhBNBol= n8+TSCQoFAoN7Xro0CHWrFnD6Oiol1MUiUQ4cuSIR3odCAQIBoNomkaxWPTWre7u7imfSdd1Nm7= cyLp163jhhRd48MEHcWwbo1KprZMShMQyTSqVCkalgmEYjGWzyECYkmGjOZbXr0algrl/P+Gnn8= bs7EQXAru52fveGdEEhWDGeStYtOEzRJpTXKd9mWeeGUXM/giLL/8wQzvfYO7lV9H9u19z9PWXS= LY0c/ToUY9VqB4njQKQUhIKhUilUuRyOS/Lfvfu3Vx00UX09vZ6JdRTqZRXGn3Xrl1omkZrayua= pnllJObMmcP4+LiXBT+VcFIUhUWLFhGLxbjggguq0ta2GRjop6vrP9A0FSkhmx2jWCwCVTt4bnw= cvVwhLCXSsTFr3FeO4zBmmvR3zkUJh3FKJcrj42fc16RoGoFEivLQQexynjFTsn6Nn90zOwm3zK= B/+ysoqkolP8asZRdMCCM+FQhRLWm/YMECfD4fhULBE1BdXV0sX76cl156iXA4jKqqzJo1C8Mws= G2bHTt2EI1GaW1tJZ/Pe6aatrY2KpUKuVyO0dHRKe+tqirr1q2jpaWFhQsXAtW2Pnr0KAcOdCME= 2JZNb2+vNwBL5TKGUUEoFlEpMcwydk0gO47DWDyOE4sjwiGscplS39iU9z8tEAI9EsMfTSBKaUJ= BuG69yhO5FvRUiN2P/4IZyy4j27OPtkQMyzQbclSmAykl0WgUXdepVCrEYjHy+TwdHR0cPHjQS7= 5saWmhpaUF27YpFAoeM7xbp6xSqbBo0SLy+TzZbBZd10/4THPmzOGiiy5CVVUv0KVYLDI8POwFM= OXzeW/RMk2Twf4+bMekTQpKeYuBo71Vc5CUjBUK9J/TiRqOYI+Pka5UPJPemYKiaoSSrVSyQzi+= ChUD2mcECC28gJG9XZTHM4x270Q6NqlkkvQJxu2JYFkWkUiE2bNnMzQ0RFNTE4FAgN7eXjo7O71= Ui0AgQCwW89am7u5ubw5A1TUSiUSIxWKedebgwYNTrjmaprFu3To6Ojo81nspq6wSLu+hlLJhs2= iaJuVSCc008SEwaxt499hu00Rf8xH0VBIjm6Vnz74ztsmDmubk8xFqbqc43IOVMojHBC2RAPqSZ= Qz8+yuYhRyj+3ciHYdkMkl/f//k7THVTdyGeO2116o3ncRUt2XLFhzHYdu2bROOO47D6OgoXV1d= E65db1o6Ub7Tk08+yUsvveTZIaWUPProo/x561Msmi/IZCV7Dthkx6oagmmavLRlC7Fo1DNbHT1= yxKMV2v7mm3RHo9UFWFEY6O/3ChieMdgWA9tfpuvhH2DMK+JIDV+qQiHYQyieRBpF/M0zCMYSpF= IpNE2bFr2O2+6vvvqqF5JavwOxbZvnnnsO0zR55ZVXgGN1itygl61btzaYZt3/Xc3nRHyBQgh+/= vOfY1lWA3HoP/3Tt/n90/8XgMyY5NCRskc0e2DvXvJjY/h8Pk+jymaz3rM/98c/Eo1GCQaDXrkK= N/roTEBRVYyxNP3b/oDfGORZIWlvV7AK40Q6zyEQjmDmMkTbZhLRq+1Sn2dyMrimup07dwJw5Mi= RhuP1vj4pJVu3bp10vrnfPx7u96YaN0IIXn75ZW666SaPqVpRFA4fPkwmk6GlpYVSqeRp3qqqUi= 4WufcfbmFmh4IQMD4OO/ca3nNt+/Of2ROJEA6HMS2LTC2U+YzOJcvgyB+f5vCLTxBYUWJoWMXvy= 6Hnxwg3NVMaPko42YyRHvTqdU1nzAghKJfLHD58eEIfQbWd9+/fj+M4kxJcO47T0HdTmdinaiPT= NLnnnns8th13TGzZsoXm5maPSdwtNaSqKuPZLH968UWCgQCWbVMulSjV/O/5XI7/fvNNzJ6h0NY= i6DkKA4NVZeBMUXgJIbBLeQ49/xg9Lz1O+BIDw1QoJcdQCzkiyVYK/T1EmtuwcmkikYi3bkzwcc= taq0nDwtxzhMEbvsnMN3/I62+8waZNm953uS5CgE+DYEBgO5JSucq/6ELTNI8w0R1s9bZ7t96Tb= duYpnnmnZxCIBQFadueWVpRBFKoIEE6tmeXdhexuXPncusXv0jhe49S3rqL9l/fg9AnDmjLsti+= fTu/+MUv3hNnrYvJgw0gEaumQBgGjOXqzfDC43Rz863qzQyuWURVVcrl8pkPWBECRfMhbQuBxKd= JhCKwhR+h6tiVatKlY5oo4pgAv+222zjnnHNOKqT6+/v53ve+97a1rTMJdz64Zvr6ceTXIRQUOE= 41MCRflA1BXu5csyyrgU7nTMHzvTlOtR/czxS15qMDZOOGau3atWzYsOGkQsqyLB555JEJ9D7vF= 2ia5rGH169b9YwU9RpT/TwMh8CnCYoliWGc+RSA4/sJl6FEqW2cj+snx3G4+uqr+ehHP+oxUAgh= xETh9F//D7Pe/BEO0wjDPIvTCkVRUBBkv/2rEwond8f8fttA1MONnvprQ30uycng9tF7uYH4oMK= 1JpwMfwlz6a8Zx1d0EEKIxhXPkchShaH/9i2mDvo8i3cHEuvgAEpTdMozXE3r3SerPYvpQAhxZs= 1dZ/GOcXYuvf/gzRihKijJKOFPnDzs8izeHWjtSdSOZoR6dsKcxVmcxQcLnlnvLM7iLM7iLM7i/= QAhhPj/Ckm55Za1nXoAAAAASUVORK5CYII=3D" width=3D"423" height=3D"284" alt=3D"= " /></p><p style=3D"margin-bottom:0pt; text-align:center; line-height:115%;= font-size:10pt"><span style=3D"font-weight:bold">Nota.</span><span> Tomado= de PhET I.S. - 2025</span></p><p style=3D"margin-bottom:0pt; text-align:ju= stify; line-height:115%"><span style=3D"font-weight:bold; font-style:italic= "> </span></p><p class=3D"ListParagraph" style=3D"margin-bottom:0pt; t= ext-indent:-18pt; text-align:justify; line-height:115%"><span style=3D"font= -style:italic"><span>3.5.</span></span><span style=3D"font-weight:bold; fon= t-style:italic"> </span><span style=3D"font-style:italic">Alineaci=C3=B3n c= urricular</span></p><p style=3D"margin-bottom:0pt; text-align:justify; line= -height:115%"><span>El sistema de actividades se alinea con las =E2=80=9CAd= aptaciones curriculares con =C3=A9nfasis en competencias para la educaci=C3= =B3n de personas j=C3=B3venes, adultas y adultas mayores en situaci=C3=B3n = de escolaridad inconcluso para B=C3=A1sica Superior y Bachillerato (EPJA)= =E2=80=9D del </span><span style=3D"text-decoration:underline">Ministerio d= e Educaci=C3=B3n, Deporte y Cultura del Ecuador</span><span> (2025). Al des= arrollar los ejes de n=C3=BAmeros y operaciones, representaci=C3=B3n y comu= nicaci=C3=B3n y resoluci=C3=B3n de problemas en reconocimiento y representa= ci=C3=B3n de n=C3=BAmeros racionales en contextos cotidianos, relaciones de= orden en Q con recta num=C3=A9rica y simbolog=C3=ADa (=3D, <, =E2=89=A5= ), operaciones en Q; adici=C3=B3n y multiplicaci=C3=B3n, aplicadas a ejerci= cios y problemas con fracciones y formulaci=C3=B3n y resoluci=C3=B3n de pro= blemas con racionales, explicitando procedimientos y valorando la validez d= e soluciones. La integraci=C3=B3n de PhET y tareas situadas se ajusta al cu= rr=C3=ADculo priorizado y a la autonom=C3=ADa escolar para atender a la pob= laci=C3=B3n EPJA con experiencias motivadoras.</span></p><p style=3D"margin= -bottom:0pt; text-align:justify; line-height:115%"><span> </span></p><= p class=3D"ListParagraph" style=3D"margin-bottom:0pt; text-indent:-18pt; te= xt-align:justify; line-height:115%"><span style=3D"font-style:italic"><span= >3.6.</span></span><span style=3D"font-weight:bold; font-style:italic"> </s= pan><span style=3D"font-style:italic">Resultados post aplicaci=C3=B3n</span= ></p><p style=3D"margin-bottom:0pt; text-align:justify; line-height:115%"><= span>Como se observa en la </span><span style=3D"font-weight:bold">Tabla 5<= /span><span> en comprensi=C3=B3n conceptual se observa un avance significat= ivo claro desde un punto de partida bajo hacia una base funcional. El subto= tal pas=C3=B3 de 2 de 40 a 14 de 40, lo que equivale a un incremento de 30 = puntos porcentuales, se=C3=B1al de que la reconstrucci=C3=B3n de significad= os fue transversal. El dato m=C3=A1s representativo es que los cuatro crite= rios avanzaron homog=C3=A9neamente en 30 puntos, desde representar e identi= ficar partes hasta reconocer equivalencias num=C3=A9ricas y gr=C3=A1ficas. = </span></p><p style=3D"margin-bottom:0pt; text-align:justify; line-height:1= 15%"><span>En procedimientos y habilidades operativas el patr=C3=B3n es mix= to pero consistente con la l=C3=B3gica de la intervenci=C3=B3n. El subtotal= subi=C3=B3 de 10 de 40 a 19 de 40, es decir 22 puntos, impulsado por la re= sta con un alza de 30 y por el promedio contextualizado con un salto de 50.= La suma creci=C3=B3 solo 10, probablemente por efecto techo, ya que part= =C3=ADa con 8 aciertos de 10. La media simple no mostr=C3=B3 cambio, lo que= revela ausencia de significado y no solo de t=C3=A9cnica. Las actividades = favorecieron el uso de equivalencias y denominador com=C3=BAn, aunque persi= ste un vac=C3=ADo en la noci=C3=B3n de representatividad.</span></p><p styl= e=3D"margin-bottom:0pt; text-align:justify; line-height:115%"><span>En repr= esentaci=C3=B3n y comunicaci=C3=B3n matem=C3=A1tica se observa el salto cua= litativo m=C3=A1s contundente. El subtotal pas=C3=B3 de 16 de 30 a 30 de 30= , un incremento de 46,7 puntos, y el indicador de explicaci=C3=B3n avanz=C3= =B3 de cero a dominio pleno, lo que equivale a un cambio de cien puntos. No= taci=C3=B3n y orden tambi=C3=A9n alcanzaron el techo con aumentos de veinte= . Estas evidencias muestran que el sistema logr=C3=B3 cerrar la brecha entr= e hacer y explicar, habilitando justificaciones claras con apoyo de m=C3=BA= ltiples registros.</span></p><p style=3D"margin-bottom:0pt; text-align:just= ify; line-height:115%"><span> </span></p><p style=3D"margin-bottom:0pt= ; line-height:115%"><span style=3D"font-weight:bold"> </span></p><p st= yle=3D"margin-bottom:0pt; text-align:center; line-height:115%"><span style= =3D"font-weight:bold">Tabla 5</span></p><p style=3D"margin-bottom:0pt; text= -align:center; line-height:115%"><span style=3D"font-style:italic">Porcenta= je de =C3=A9xito post aplicaci=C3=B3n</span></p><table style=3D"width:100%;= margin-bottom:0pt; padding:0pt; border-collapse:collapse"><tr><td style=3D= "width:20.3%; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #= 000000; padding:0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacing" st= yle=3D"text-align:center; line-height:115%; font-size:10pt"><span>Tipo</spa= n></p></td><td style=3D"width:7.98%; border-top:0.75pt solid #000000; borde= r-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p= class=3D"NoSpacing" style=3D"text-align:center; line-height:115%; font-siz= e:10pt"><span>N=C2=BA</span></p></td><td style=3D"width:25.88%; border-top:= 0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt= ; vertical-align:middle"><p class=3D"NoSpacing" style=3D"text-align:center;= line-height:115%; font-size:10pt"><span>Criterio</span></p></td><td style= =3D"width:13.72%; border-top:0.75pt solid #000000; border-bottom:0.75pt sol= id #000000; padding:0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacing= " style=3D"text-align:center; line-height:115%; font-size:10pt"><span>Inici= al</span></p></td><td style=3D"width:15.76%; border-top:0.75pt solid #00000= 0; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:mi= ddle"><p class=3D"NoSpacing" style=3D"text-align:center; line-height:115%; = font-size:10pt"><span>Despu=C3=A9s</span></p></td><td style=3D"width:16.38%= ; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padd= ing:0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacing" style=3D"text-= align:center; line-height:115%; font-size:10pt"><span>% mejorado</span></p>= </td></tr><tr><td rowspan=3D"4" style=3D"width:20.3%; border-top:0.75pt sol= id #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical= -align:middle"><p class=3D"NoSpacing" style=3D"text-align:center; line-heig= ht:115%; font-size:10pt"><span>Comprensi=C3=B3n conceptual (CC)</span></p><= /td><td style=3D"width:7.98%; border-top:0.75pt solid #000000; border-botto= m:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p class= =3D"NoSpacing" style=3D"text-align:center; line-height:115%; font-size:10pt= "><span>P1</span></p></td><td style=3D"width:25.88%; border-top:0.75pt soli= d #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-= align:middle"><p class=3D"NoSpacing" style=3D"text-align:center; line-heigh= t:115%; font-size:10pt"><span>Representaci=C3=B3n de una fracci=C3=B3n</spa= n></p></td><td style=3D"width:13.72%; border-top:0.75pt solid #000000; bord= er-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><= p class=3D"NoSpacing" style=3D"text-align:center; line-height:115%; font-si= ze:10pt"><span>0</span></p></td><td style=3D"width:15.76%; border-top:0.75p= t solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; ver= tical-align:middle"><p class=3D"NoSpacing" style=3D"text-align:center; line= -height:115%; font-size:10pt"><span>3</span></p></td><td style=3D"width:16.= 38%; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; p= adding:0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacing" style=3D"te= xt-align:center; line-height:115%; font-size:10pt"><span>+30</span></p></td= ></tr><tr><td style=3D"width:7.98%; border-top:0.75pt solid #000000; border= -bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p = class=3D"NoSpacing" style=3D"text-align:center; line-height:115%; font-size= :10pt"><span>P2</span></p></td><td style=3D"width:25.88%; border-top:0.75pt= solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vert= ical-align:middle"><p class=3D"NoSpacing" style=3D"text-align:center; line-= height:115%; font-size:10pt"><span>Identificaci=C3=B3n de partes de una fra= cci=C3=B3n</span></p></td><td style=3D"width:13.72%; border-top:0.75pt soli= d #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-= align:middle"><p class=3D"NoSpacing" style=3D"text-align:center; line-heigh= t:115%; font-size:10pt"><span>0</span></p></td><td style=3D"width:15.76%; b= order-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding= :0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacing" style=3D"text-ali= gn:center; line-height:115%; font-size:10pt"><span>3</span></p></td><td sty= le=3D"width:16.38%; border-top:0.75pt solid #000000; border-bottom:0.75pt s= olid #000000; padding:0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpaci= ng" style=3D"text-align:center; line-height:115%; font-size:10pt"><span>+30= </span></p></td></tr><tr><td style=3D"width:7.98%; border-top:0.75pt solid = #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-al= ign:middle"><p class=3D"NoSpacing" style=3D"text-align:center; line-height:= 115%; font-size:10pt"><span>P3</span></p></td><td style=3D"width:25.88%; bo= rder-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:= 0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacing" style=3D"text-alig= n:center; line-height:115%; font-size:10pt"><span>Equivalencia (num=C3=A9ri= ca)</span></p></td><td style=3D"width:13.72%; border-top:0.75pt solid #0000= 00; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:m= iddle"><p class=3D"NoSpacing" style=3D"text-align:center; line-height:115%;= font-size:10pt"><span>2</span></p></td><td style=3D"width:15.76%; border-t= op:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.= 4pt; vertical-align:middle"><p class=3D"NoSpacing" style=3D"text-align:cent= er; line-height:115%; font-size:10pt"><span>5</span></p></td><td style=3D"w= idth:16.38%; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #0= 00000; padding:0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacing" sty= le=3D"text-align:center; line-height:115%; font-size:10pt"><span>+30</span>= </p></td></tr><tr><td style=3D"width:7.98%; border-top:0.75pt solid #000000= ; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:mid= dle"><p class=3D"NoSpacing" style=3D"text-align:center; line-height:115%; f= ont-size:10pt"><span>P4</span></p></td><td style=3D"width:25.88%; border-to= p:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4= pt; vertical-align:middle"><p class=3D"NoSpacing" style=3D"text-align:cente= r; line-height:115%; font-size:10pt"><span>Equivalencia (representaci=C3=B3= n)</span></p></td><td style=3D"width:13.72%; border-top:0.75pt solid #00000= 0; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:mi= ddle"><p class=3D"NoSpacing" style=3D"text-align:center; line-height:115%; = font-size:10pt"><span>0</span></p></td><td style=3D"width:15.76%; border-to= p:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4= pt; vertical-align:middle"><p class=3D"NoSpacing" style=3D"text-align:cente= r; line-height:115%; font-size:10pt"><span>3</span></p></td><td style=3D"wi= dth:16.38%; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #00= 0000; padding:0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacing" styl= e=3D"text-align:center; line-height:115%; font-size:10pt"><span>+30</span><= /p></td></tr><tr><td colspan=3D"3" style=3D"border-top:0.75pt solid #000000= ; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:mid= dle"><p class=3D"NoSpacing" style=3D"text-align:center; line-height:115%; f= ont-size:10pt"><span>Subtotal CC</span></p></td><td style=3D"width:13.72%; = border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; paddin= g:0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacing" style=3D"text-al= ign:center; line-height:115%; font-size:10pt"><span>2/40</span></p></td><td= style=3D"width:15.76%; border-top:0.75pt solid #000000; border-bottom:0.75= pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p class=3D"NoS= pacing" style=3D"text-align:center; line-height:115%; font-size:10pt"><span= >14/40</span></p></td><td style=3D"width:16.38%; border-top:0.75pt solid #0= 00000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-alig= n:middle"><p class=3D"NoSpacing" style=3D"text-align:center; line-height:11= 5%; font-size:10pt"><span>+30</span></p></td></tr><tr><td rowspan=3D"4" sty= le=3D"width:20.3%; border-top:0.75pt solid #000000; border-bottom:0.75pt so= lid #000000; padding:0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacin= g" style=3D"text-align:center; line-height:115%; font-size:10pt"><span>Proc= edimientos y habilidades operativas (PHO)</span></p></td><td style=3D"width= :7.98%; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000= ; padding:0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacing" style=3D= "text-align:center; line-height:115%; font-size:10pt"><span>P5</span></p></= td><td style=3D"width:25.88%; border-top:0.75pt solid #000000; border-botto= m:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p class= =3D"NoSpacing" style=3D"text-align:center; line-height:115%; font-size:10pt= "><span>Suma de fracciones</span></p></td><td style=3D"width:13.72%; border= -top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt = 5.4pt; vertical-align:middle"><p class=3D"NoSpacing" style=3D"text-align:ce= nter; line-height:115%; font-size:10pt"><span>8</span></p></td><td style=3D= "width:15.76%; border-top:0.75pt solid #000000; border-bottom:0.75pt solid = #000000; padding:0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacing" s= tyle=3D"text-align:center; line-height:115%; font-size:10pt"><span>9</span>= </p></td><td style=3D"width:16.38%; border-top:0.75pt solid #000000; border= -bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p = class=3D"NoSpacing" style=3D"text-align:center; line-height:115%; font-size= :10pt"><span>+10</span></p></td></tr><tr><td style=3D"width:7.98%; border-t= op:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.= 4pt; vertical-align:middle"><p class=3D"NoSpacing" style=3D"text-align:cent= er; line-height:115%; font-size:10pt"><span>P6</span></p></td><td style=3D"= width:25.88%; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #= 000000; padding:0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacing" st= yle=3D"text-align:center; line-height:115%; font-size:10pt"><span>Resta de = fracciones</span></p></td><td style=3D"width:13.72%; border-top:0.75pt soli= d #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-= align:middle"><p class=3D"NoSpacing" style=3D"text-align:center; line-heigh= t:115%; font-size:10pt"><span>2</span></p></td><td style=3D"width:15.76%; b= order-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding= :0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacing" style=3D"text-ali= gn:center; line-height:115%; font-size:10pt"><span>5</span></p></td><td sty= le=3D"width:16.38%; border-top:0.75pt solid #000000; border-bottom:0.75pt s= olid #000000; padding:0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpaci= ng" style=3D"text-align:center; line-height:115%; font-size:10pt"><span>+30= </span></p></td></tr><tr><td style=3D"width:7.98%; border-top:0.75pt solid = #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-al= ign:middle"><p class=3D"NoSpacing" style=3D"text-align:center; line-height:= 115%; font-size:10pt"><span>P7</span></p></td><td style=3D"width:25.88%; bo= rder-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:= 0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacing" style=3D"text-alig= n:center; line-height:115%; font-size:10pt"><span>Promedio simple entre fra= cciones</span></p></td><td style=3D"width:13.72%; border-top:0.75pt solid #= 000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-ali= gn:middle"><p class=3D"NoSpacing" style=3D"text-align:center; line-height:1= 15%; font-size:10pt"><span>0</span></p></td><td style=3D"width:15.76%; bord= er-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0p= t 5.4pt; vertical-align:middle"><p class=3D"NoSpacing" style=3D"text-align:= center; line-height:115%; font-size:10pt"><span>0</span></p></td><td style= =3D"width:16.38%; border-top:0.75pt solid #000000; border-bottom:0.75pt sol= id #000000; padding:0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacing= " style=3D"text-align:center; line-height:115%; font-size:10pt"><span>0,0</= span></p></td></tr><tr><td style=3D"width:7.98%; border-top:0.75pt solid #0= 00000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-alig= n:middle"><p class=3D"NoSpacing" style=3D"text-align:center; line-height:11= 5%; font-size:10pt"><span>P8</span></p></td><td style=3D"width:25.88%; bord= er-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0p= t 5.4pt; vertical-align:middle"><p class=3D"NoSpacing" style=3D"text-align:= center; line-height:115%; font-size:10pt"><span>Promedio contextualizado en= tre fracciones</span></p></td><td style=3D"width:13.72%; border-top:0.75pt = solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; verti= cal-align:middle"><p class=3D"NoSpacing" style=3D"text-align:center; line-h= eight:115%; font-size:10pt"><span>0</span></p></td><td style=3D"width:15.76= %; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; pad= ding:0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacing" style=3D"text= -align:center; line-height:115%; font-size:10pt"><span>5</span></p></td><td= style=3D"width:16.38%; border-top:0.75pt solid #000000; border-bottom:0.75= pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p class=3D"NoS= pacing" style=3D"text-align:center; line-height:115%; font-size:10pt"><span= >+50</span></p></td></tr><tr><td colspan=3D"3" style=3D"border-top:0.75pt s= olid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertic= al-align:middle"><p class=3D"NoSpacing" style=3D"text-align:center; line-he= ight:115%; font-size:10pt"><span>Subtotal PHO</span></p></td><td style=3D"w= idth:13.72%; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #0= 00000; padding:0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacing" sty= le=3D"text-align:center; line-height:115%; font-size:10pt"><span>10/40</spa= n></p></td><td style=3D"width:15.76%; border-top:0.75pt solid #000000; bord= er-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><= p class=3D"NoSpacing" style=3D"text-align:center; line-height:115%; font-si= ze:10pt"><span>19/40</span></p></td><td style=3D"width:16.38%; border-top:0= .75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt;= vertical-align:middle"><p class=3D"NoSpacing" style=3D"text-align:center; = line-height:115%; font-size:10pt"><span>+22</span></p></td></tr><tr><td row= span=3D"3" style=3D"width:20.3%; border-top:0.75pt solid #000000; border-bo= ttom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p cla= ss=3D"NoSpacing" style=3D"text-align:center; line-height:115%; font-size:10= pt"><span>Representaci=C3=B3n y comunicaci=C3=B3n matem=C3=A1tica (RCM)</sp= an></p></td><td style=3D"width:7.98%; border-top:0.75pt solid #000000; bord= er-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><= p class=3D"NoSpacing" style=3D"text-align:center; line-height:115%; font-si= ze:10pt"><span>P9</span></p></td><td style=3D"width:25.88%; border-top:0.75= pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; ve= rtical-align:middle"><p class=3D"NoSpacing" style=3D"text-align:center; lin= e-height:115%; font-size:10pt"><span>Notaci=C3=B3n</span></p></td><td style= =3D"width:13.72%; border-top:0.75pt solid #000000; border-bottom:0.75pt sol= id #000000; padding:0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacing= " style=3D"text-align:center; line-height:115%; font-size:10pt"><span>8</sp= an></p></td><td style=3D"width:15.76%; border-top:0.75pt solid #000000; bor= der-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle">= <p class=3D"NoSpacing" style=3D"text-align:center; line-height:115%; font-s= ize:10pt"><span>10</span></p></td><td style=3D"width:16.38%; border-top:0.7= 5pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; v= ertical-align:middle"><p class=3D"NoSpacing" style=3D"text-align:center; li= ne-height:115%; font-size:10pt"><span>+20</span></p></td></tr><tr><td style= =3D"width:7.98%; border-top:0.75pt solid #000000; border-bottom:0.75pt soli= d #000000; padding:0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacing"= style=3D"text-align:center; line-height:115%; font-size:10pt"><span>P10</s= pan></p></td><td style=3D"width:25.88%; border-top:0.75pt solid #000000; bo= rder-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"= ><p class=3D"NoSpacing" style=3D"text-align:center; line-height:115%; font-= size:10pt"><span>Orden de fracciones</span></p></td><td style=3D"width:13.7= 2%; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; pa= dding:0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacing" style=3D"tex= t-align:center; line-height:115%; font-size:10pt"><span>8</span></p></td><t= d style=3D"width:15.76%; border-top:0.75pt solid #000000; border-bottom:0.7= 5pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p class=3D"No= Spacing" style=3D"text-align:center; line-height:115%; font-size:10pt"><spa= n>10</span></p></td><td style=3D"width:16.38%; border-top:0.75pt solid #000= 000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:= middle"><p class=3D"NoSpacing" style=3D"text-align:center; line-height:115%= ; font-size:10pt"><span>+20</span></p></td></tr><tr><td style=3D"width:7.98= %; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; pad= ding:0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacing" style=3D"text= -align:center; line-height:115%; font-size:10pt"><span>P11</span></p></td><= td style=3D"width:25.88%; border-top:0.75pt solid #000000; border-bottom:0.= 75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p class=3D"N= oSpacing" style=3D"text-align:center; line-height:115%; font-size:10pt"><sp= an>Explicaci=C3=B3n</span></p></td><td style=3D"width:13.72%; border-top:0.= 75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; = vertical-align:middle"><p class=3D"NoSpacing" style=3D"text-align:center; l= ine-height:115%; font-size:10pt"><span>0</span></p></td><td style=3D"width:= 15.76%; border-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000= ; padding:0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpacing" style=3D= "text-align:center; line-height:115%; font-size:10pt"><span>10</span></p></= td><td style=3D"width:16.38%; border-top:0.75pt solid #000000; border-botto= m:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p class= =3D"NoSpacing" style=3D"text-align:center; line-height:115%; font-size:10pt= "><span>+100</span></p></td></tr><tr><td colspan=3D"3" style=3D"border-top:= 0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt= ; vertical-align:middle"><p class=3D"NoSpacing" style=3D"text-align:center;= line-height:115%; font-size:10pt"><span>Subtotal RCM</span></p></td><td st= yle=3D"width:13.72%; border-top:0.75pt solid #000000; border-bottom:0.75pt = solid #000000; padding:0pt 5.4pt; vertical-align:middle"><p class=3D"NoSpac= ing" style=3D"text-align:center; line-height:115%; font-size:10pt"><span>16= /30</span></p></td><td style=3D"width:15.76%; border-top:0.75pt solid #0000= 00; border-bottom:0.75pt solid #000000; padding:0pt 5.4pt; vertical-align:m= iddle"><p class=3D"NoSpacing" style=3D"text-align:center; line-height:115%;= font-size:10pt"><span>30/30</span></p></td><td style=3D"width:16.38%; bord= er-top:0.75pt solid #000000; border-bottom:0.75pt solid #000000; padding:0p= t 5.4pt; vertical-align:middle"><p class=3D"NoSpacing" style=3D"text-align:= center; line-height:115%; font-size:10pt"><span>+46,7</span></p></td></tr><= /table><p style=3D"margin-bottom:0pt; text-align:justify; line-height:115%"= ><span> </span></p><p class=3D"ListParagraph" style=3D"margin-bottom:0= pt; text-indent:-18pt; text-align:justify; line-height:115%"><span style=3D= "font-weight:bold"><span>4.</span></span><span style=3D"width:9pt; font:7pt= 'Times New Roman'; display:inline-block">      </= span><span style=3D"font-weight:bold">Discusi=C3=B3n</span></p><p style=3D"= margin-bottom:0pt; text-align:justify; line-height:115%"><span>Los resultad= os muestran mejoras sustantivas tras integrar PhET: comprensi=C3=B3n concep= tual, procedimientos y representaci=C3=B3n=E2=80=93comunicaci=C3=B3n. Esto = sugiere que la visualizaci=C3=B3n y la manipulaci=C3=B3n guiada favorecen c= onexiones parte=E2=80=93todo, equivalencias y justificaci=C3=B3n de procedi= mientos, en l=C3=ADnea con el enfoque de educaci=C3=B3n andrag=C3=B3gica me= ncionados por Note et</span><span> </span><span>al. (2021) centrados e= n la experiencia y la resoluci=C3=B3n de problemas. Estos hallazgos son coh= erentes con evidencia sobre simulaciones interactivas que elevan desempe=C3= =B1o y participaci=C3=B3n, y con marcos que recomiendan m=C3=BAltiples repr= esentaciones en el aprendizaje de fracciones como los de Kumar (2024) o Gar= c=C3=ADa (2019).</span></p><p style=3D"margin-bottom:0pt; text-align:justif= y; line-height:115%"><span>El nulo avance en =C2=ABpromedio simple=C2=BB re= vela un vac=C3=ADo de significado m=C3=A1s que de procedimiento. Cuando la = media se ense=C3=B1a solo como =E2=80=9Csumar y dividir=E2=80=9D, los estud= iantes no activan ideas de reparto justo, ponderaci=C3=B3n o punto medio; e= n cambio, las tareas de modelizaci=C3=B3n en contextos reales ampl=C3=ADan = ese significado y hacen m=C3=A1s accesible el =E2=80=9Cpromedio contextuali= zado=E2=80=9D, tal como reportan estudios recientes de Shahbari & Tabac= h (2021) que coinciden con evidencias de que el contexto de reparto justo f= avorece el razonamiento proporcional frente a situaciones descontextualizad= as. Es decir, los resultados son coherentes: hubo progreso donde hubo mayor= contextualizaci=C3=B3n y practicidad y estancamiento donde falt=C3=B3. </s= pan></p><p style=3D"margin-bottom:0pt; text-align:justify; line-height:115%= "><span>La mejora en suma y resta con y sin com=C3=BAn denominador y en pro= medio contextualizado sugiere que el anclaje situacional facilit=C3=B3 el t= raslado del algoritmo a problemas, pero no sustituy=C3=B3 la instrucci=C3= =B3n expl=C3=ADcita sobre promedios. Esto se explica a trav=C3=A9s de la in= vestigaci=C3=B3n de Landtblom (2023) en su revisi=C3=B3n sobre media en pri= maria muestra que muchos estudiantes =E2=80=9Csaben calcular=E2=80=9D la me= dia, pero carecen de significado conceptual (representatividad, punto de eq= uilibrio), por lo que requieren ense=C3=B1anza expl=C3=ADcita y tareas que = visibilicen cu=C3=A1ndo y por qu=C3=A9 usar la media; el mero algoritmo no = basta. Esto aclara por qu=C3=A9 al dar un mayor contexto en la actividad fa= voreci=C3=B3 llevar el procedimiento a problemas (mejor=C3=B3 =E2=80=9Cprom= edio contextualizado=E2=80=9D), mientras que el =E2=80=9Cpromedio simple; t= ratado de forma descontextualizada, no progres=C3=B3. Como complemento Shah= bari & Tabach (2021) muestran que tareas de modelizaci=C3=B3n contextua= l expanden el significado del promedio m=C3=A1s all=C3=A1 de =E2=80=9Csumar= y dividir=E2=80=9D. </span></p><p style=3D"margin-bottom:0pt; text-align:j= ustify; line-height:115%"><span>El patr=C3=B3n observado converge con el es= tudio de Acquah et</span><span> </span><span>al. (2024) que reportan g= anancias en comprensi=C3=B3n y motivaci=C3=B3n con PhET y tecnolog=C3=ADas = educativas, as=C3=AD como con la literatura andrag=C3=B3gica de Note et</sp= an><span> </span><span>al. (2021) que prioriza la relevancia y la auto= nom=C3=ADa del adulto. El uso de simulaciones como =E2=80=9CConstruyamos un= a fracci=C3=B3n=E2=80=9D y =E2=80=9CFracciones: Igualdad=E2=80=9D encaja co= n recomendaciones de aprendizaje activo y </span><span style=3D"font-style:= italic">feedback</span><span> inmediato. </span></p><p style=3D"margin-bott= om:0pt; text-align:justify; line-height:115%"><span>Entre las limitaciones = de la investigaci=C3=B3n. El estudio se realiz=C3=B3 en una sola escuela, c= on una muestra peque=C3=B1a (10 personas adultas de 40+ a=C3=B1os). Se us= =C3=B3 un dise=C3=B1o transversal, sin grupo de comparaci=C3=B3n, y la medi= ci=C3=B3n se aplic=C3=B3 de inmediato al terminar la intervenci=C3=B3n. Est= as limitaciones evidencian la necesidad de continuar la investigaci=C3=B3n = y aplicaci=C3=B3n de este sistema de actividades en contextos educativos si= milares. Adem=C3=A1s, es importante considerar el nivel de alfabetizaci=C3= =B3n digital del estudiantado y las competencias digitales del docente en l= a utilizaci=C3=B3n de estas tecnolog=C3=ADas digitales</span><span style=3D= "font-weight:bold">. </span></p><p class=3D"ListParagraph" style=3D"margin-= bottom:0pt; text-indent:-18pt; line-height:115%"><span style=3D"font-weight= :bold"><span>5.</span></span><span style=3D"width:9pt; font:7pt 'Times New = Roman'; display:inline-block">      </span><span s= tyle=3D"font-weight:bold">Conclusiones</span></p><p style=3D"margin-bottom:= 0pt; text-align:justify; line-height:115%"><span>La integraci=C3=B3n de sim= ulaciones PhET transform=C3=B3 la din=C3=A1mica del aula al sustituir un mo= delo transmisivo por uno exploratorio. En este nuevo enfoque, el error se c= onvirti=C3=B3 en un insumo formativo, mientras que la retroalimentaci=C3=B3= n inmediata de las simulaciones fortaleci=C3=B3 la comprensi=C3=B3n, la com= unicaci=C3=B3n matem=C3=A1tica y la motivaci=C3=B3n en estudiantes adultos = mayores de 40 a=C3=B1os.</span></p><p style=3D"margin-bottom:0pt; text-alig= n:justify; line-height:115%"><span>La propuesta del sistema de actividades = demostr=C3=B3 ser viable y curricularmente alineada con las necesidades de = los adultos que retoman sus estudios. Adem=C3=A1s, se configura como un mod= elo replicable que articula coherentemente el procedimiento, la representac= i=C3=B3n y la justificaci=C3=B3n en el aprendizaje de las fracciones.</span= ></p><p style=3D"margin-bottom:0pt; text-align:justify; line-height:115%"><= span>La intervenci=C3=B3n super=C3=B3 las dificultades iniciales y consolid= =C3=B3 aprendizajes clave: se afianz=C3=B3 la comprensi=C3=B3n desde la rel= aci=C3=B3n parte=E2=80=93todo y las equivalencias, se ampliaron las formas = de representaci=C3=B3n y mejor=C3=B3 la capacidad para explicar razonamient= os en distintos formatos. En conjunto, la visualizaci=C3=B3n y la manipulac= i=C3=B3n guiada, integradas con teor=C3=ADa andrag=C3=B3gica como el aprend= izaje desde la experiencia, resoluci=C3=B3n de problemas, roles y practicid= ad, se confirman como estrategias eficaces para cerrar brechas y sostener a= vances en contextos de educaci=C3=B3n de personas adultas.</span></p><p cla= ss=3D"ListParagraph" style=3D"margin-bottom:0pt; text-indent:-18pt; text-al= ign:justify; line-height:115%"><span><span style=3D"font-weight:bold">6.</s= pan></span><span style=3D"width:9pt; font:7pt 'Times New Roman'; display:in= line-block">      </span><span style=3D"font-weigh= t:bold">Conflicto de intereses</span></p><p style=3D"margin-bottom:0pt; tex= t-align:justify; line-height:115%"><span>Los autores declaran que no existe= conflicto de intereses en relaci=C3=B3n con el art=C3=ADculo presentado.</= span></p><p class=3D"ListParagraph" style=3D"margin-bottom:0pt; text-indent= :-18pt; text-align:justify; line-height:115%"><span style=3D"font-weight:bo= ld"><span>7.</span></span><span style=3D"width:9pt; font:7pt 'Times New Rom= an'; display:inline-block">      </span><span styl= e=3D"font-weight:bold">Declaraci=C3=B3n de contribuci=C3=B3n de los autores= </span></p><p style=3D"margin-bottom:0pt; text-align:justify; line-height:1= 15%"><span>Todos autores contribuyeron significativamente en la elaboraci= =C3=B3n del art=C3=ADculo.</span></p><p class=3D"ListParagraph" style=3D"ma= rgin-bottom:0pt; text-indent:-18pt; text-align:justify; line-height:115%"><= span style=3D"font-weight:bold"><span>8.</span></span><span style=3D"width:= 9pt; font:7pt 'Times New Roman'; display:inline-block">   &#= xa0;  </span><span style=3D"font-weight:bold">Costos de financiamiento= </span></p><p style=3D"margin-bottom:0pt; text-align:justify; line-height:= 115%"><span>La presente investigaci=C3=B3n fue financiada en su totalidad c= on fondos propios de los autores.</span></p><p class=3D"ListParagraph" styl= e=3D"margin-bottom:0pt; text-indent:-18pt; text-align:justify; line-height:= 115%"><span style=3D"font-weight:bold"><span>9.</span></span><span style=3D= "width:9pt; font:7pt 'Times New Roman'; display:inline-block">  &= #xa0;   </span><span style=3D"font-weight:bold">Referencias Bibli= ogr=C3=A1ficas</span></p><p><span> </span></p><p style=3D"margin-left:= 35.4pt; text-indent:-35.4pt; line-height:115%"><span>Acquah, I. K., Gyan, M= ., Appiah, D., Ansah, B. O., Wilson, R., & Mensah, C. E. (2024). Improv= ing students=E2=80=99 performance in resolution of vectors using PhET inter= active simulations. </span><span style=3D"font-style:italic">Schr=C3=B6ding= er: Journal of Physics Education</span><span>, </span><span style=3D"font-s= tyle:italic">5</span><span>(3), 107-116. </span><a href=3D"https://doi.org/= 10.37251/sjpe.v5i3.1078" style=3D"text-decoration:none"><span class=3D"Hype= rlink">https://doi.org/10.37251/sjpe.v5i3.1078</span></a></p><p style=3D"ma= rgin-left:35.4pt; text-indent:-35.4pt; line-height:115%"><span>Almadrones, = R. D., & Tadifa, F. G. (2024). Physics Educational Technology (PHET) si= mulations in teaching general physics 1. </span><span style=3D"font-style:i= talic">International Journal of Instruction</span><span>, </span><span styl= e=3D"font-style:italic">17</span><span>(3), 635=E2=80=93650. </span><a href= =3D"https://e-iji.net/ats/index.php/pub/article/view/632" style=3D"text-dec= oration:none"><span class=3D"Hyperlink">https://e-iji.net/ats/index.php/pub= /article/view/632</span></a></p><p class=3D"Bibliography" style=3D"line-hei= ght:115%"><span>=C3=81vila Correa, B. L. (2018). Perspectivas de transforma= ci=C3=B3n digital de las universidades del Ecuador. </span><span style=3D"f= ont-style:italic">Revista Ciencias Pedag=C3=B3gicas e Innovaci=C3=B3n</span= ><span>, </span><span style=3D"font-style:italic">6</span><span>(2), 1-11. = </span><a href=3D"https://doi.org/10.26423/rcpi.v6i2.233" style=3D"text-dec= oration:none"><span class=3D"Hyperlink">https://doi.org/10.26423/rcpi.v6i2.= 233</span></a></p><p class=3D"Bibliography" style=3D"line-height:115%"><spa= n>Banco de Desarrollo de Am=C3=A9rica Latina y el Caribe [CAF-banco]. (2024= ). </span><span style=3D"font-style:italic">Desigualdad 4.0: a cerrar la br= echa digital</span><span> [Institucional]. </span><a href=3D"https://www.ca= f.com/es/actualidad/noticias/desigualdad-40-a-cerrar-la-brecha-digital/" st= yle=3D"text-decoration:none"><span class=3D"Hyperlink">https://www.caf.com/= es/actualidad/noticias/desigualdad-40-a-cerrar-la-brecha-digital/</span></a= ></p><p class=3D"Bibliography" style=3D"line-height:115%"><span>Burgos-Posl= igua, M. O., & Samada-Grasst, Y. (2023). Sistema de actividades did=C3= =A1cticas para el desarrollo de la preescritura en ni=C3=B1os de 5 a=C3=B1o= s. </span><span style=3D"font-style:italic">MQRInvestigar</span><span>, </s= pan><span style=3D"font-style:italic">7</span><span>(3), 766-793. </span><a= href=3D"https://doi.org/10.56048/MQR20225.7.3.2023.766-793" style=3D"text-= decoration:none"><span class=3D"Hyperlink">https://doi.org/10.56048/MQR2022= 5.7.3.2023.766-793</span></a></p><p class=3D"Bibliography" style=3D"line-he= ight:115%"><span>Diab, H., Daher, W., Rayan, B., Issa, N., & Rayan, A. = (2024). Transforming science education in elementary schools: the power of = PhET simulations in enhancing student learning. </span><span style=3D"font-= style:italic">Multimodal Technologies and Interaction</span><span>, </span>= <span style=3D"font-style:italic">8</span><span>(11), 105. </span><a href= =3D"https://doi.org/10.3390/mti8110105" style=3D"text-decoration:none"><spa= n class=3D"Hyperlink">https://doi.org/10.3390/mti8110105</span></a></p><p c= lass=3D"Bibliography" style=3D"line-height:115%"><span>Efgivia, M. G., Ermi= nawati, Fitriani, E., & Herni. (2021). </span><span style=3D"font-style= :italic">Analysis of Andragogy Theory and Practice</span><span>. Published = by Atlantis Press. </span><a href=3D"https://doi.org/10.2991/assehr.k.21102= 0.027" style=3D"text-decoration:none"><span class=3D"Hyperlink">https://doi= .org/10.2991/assehr.k.211020.027</span></a></p><p class=3D"Bibliography" st= yle=3D"line-height:115%"><span>El-Amin, A. (2020). Andragogy: a theory in p= ractice in higher education. </span><span style=3D"font-style:italic">Journ= al of Research in Higher Education</span><span>, </span><span style=3D"font= -style:italic">4</span><span>(2), 54-71. </span><a href=3D"http://dx.doi.or= g/10.24193/JRHE.2020.2.4" style=3D"text-decoration:none"><span class=3D"Hyp= erlink">http://dx.doi.org/10.24193/JRHE.2020.2.4</span></a></p><p style=3D"= margin-left:35.4pt; text-indent:-35.4pt"><span>Garc=C3=ADa Aretio, L. (2019= ). Necesidad de una educaci=C3=B3n digital en un mundo digital. </span><spa= n style=3D"font-style:italic">RIED-Revista Iberoamericana de Educaci=C3=B3n= a Distancia</span><span>, </span><span style=3D"font-style:italic">22</spa= n><span>(2), 9-22. </span><a href=3D"https://doi.org/10.5944/ried.22.2.2391= 1" style=3D"text-decoration:none"><span class=3D"Hyperlink">https://doi.org= /10.5944/ried.22.2.23911</span></a></p><p style=3D"margin-left:35.4pt; text= -indent:-35.4pt; line-height:115%"><a href=3D"https://www.taylorfrancis.com= /search?contributorName=3DMalcolm%20S.%20Knowles&contributorRole=3Dauth= or&redirectFromPDP=3Dtrue&context=3Dubx" style=3D"text-decoration:n= one"><span class=3D"Hyperlink" style=3D"text-decoration:none; color:#000000= ">Knowles</span></a><span>, M. S.,</span><span> </span><a href=3D"http= s://www.taylorfrancis.com/search?contributorName=3DElwood%20F.%20Holton%20I= II&contributorRole=3Dauthor&redirectFromPDP=3Dtrue&context=3Dub= x" style=3D"text-decoration:none"><span class=3D"Hyperlink" style=3D"text-d= ecoration:none; color:#000000">Holton</span></a><span>, E. F.,</span><span>=  </span><span> </span><a href=3D"https://www.taylorfrancis.com/search?= contributorName=3DRichard%20A.%20Swanson&contributorRole=3Dauthor&r= edirectFromPDP=3Dtrue&context=3Dubx" style=3D"text-decoration:none"><sp= an class=3D"Hyperlink" style=3D"text-decoration:none; color:#000000">Swanso= n</span></a><span>, R. A. & </span><a href=3D"https://www.taylorfrancis= .com/search?contributorName=3DPetra%20A.%20Robinson&contributorRole=3Da= uthor&redirectFromPDP=3Dtrue&context=3Dubx" style=3D"text-decoratio= n:none"><span class=3D"Hyperlink" style=3D"text-decoration:none; color:#000= 000">Robinson</span></a><span>, P. A.</span><span> </span><span> (2020= ). </span><span style=3D"font-style:italic">The Adult Learner: the definiti= ve classic in adult education and human resource development (9th edition).= </span><span> Imprint Routledge. </span><a href=3D"https://doi.org/10.4324/= 9780429299612" target=3D"_blank" style=3D"text-decoration:none"><span class= =3D"Hyperlink">https://doi.org/10.4324/9780429299612</span></a></p><p class= =3D"Bibliography" style=3D"line-height:115%"><span>Kumar, D. (2024). PhET: = an interactive simulation technology for learning outcomes-based teaching-l= earning science. </span><span style=3D"font-style:italic">International Edu= cation and Research Journal (IERJ)</span><span>, </span><span style=3D"font= -style:italic">10</span><span>(5). </span><a href=3D"https://doi.org/10.212= 76/IERJ24501797296604" style=3D"text-decoration:none"><span class=3D"Hyperl= ink">https://doi.org/10.21276/IERJ24501797296604</span></a></p><p class=3D"= Bibliography" style=3D"line-height:115%"><span>Landtblom, K. (2023). Opport= unities to learn mean, media, and mode afforded by textbook tasks. </span><= span style=3D"font-style:italic">Statistics Education Research Journal, 22<= /span><span>(3), Article 6. </span><a href=3D"https://doi.org/10.52041/serj= .v22i3.655" style=3D"text-decoration:none"><span class=3D"Hyperlink">https:= //doi.org/10.52041/serj.v22i3.655</span></a></p><p class=3D"Bibliography" s= tyle=3D"line-height:115%"><span>Melliofatria, Mahdum, Hadriana, & Purwa= nti, I. T. (2024). Models For Andragogy: A Systematic Review and Meta-Analy= sis. </span><span style=3D"font-style:italic">Evolutionary studies in imagi= native culture</span><span>, 583-616. https://doi.org/10.70082/esiculture.v= i.757</span></p><p class=3D"Bibliography" style=3D"line-height:115%"><span>= Ministerio de Educaci=C3=B3n, Deporte y Cultura del Ecuador. (2025). </span= ><span style=3D"font-style:italic">Adaptaciones curriculares con =C3=A9nfas= is en competencias para la educaci=C3=B3n de personas j=C3=B3venes, adultas= y adultas mayores en situaci=C3=B3n de escolaridad inconcluso para B=C3=A1= sica Superior y Bachillerato. </span><a href=3D"https://educacion.gob.ec/wp= -content/uploads/downloads/2025/09/adaptaciones-curriculares-EGB-BS-BG.pdf"= style=3D"text-decoration:none"><span class=3D"Hyperlink">https://educacion= .gob.ec/wp-content/uploads/downloads/2025/09/adaptaciones-curriculares-EGB-= BS-BG.pdf</span></a></p><p class=3D"Bibliography" style=3D"line-height:115%= "><span>National Research Council. (2001). </span><span style=3D"font-style= :italic">Adding it up: helping children learn mathematics</span><span> (1</= span><span style=3D"line-height:115%; font-size:8pt; vertical-align:super">= st</span><span>. edition). National Research Council Press. </span><a href= =3D"https://doi.org/10.17226/9822" style=3D"text-decoration:none"><span cla= ss=3D"Hyperlink">https://doi.org/10.17226/9822</span></a></p><p class=3D"Bi= bliography" style=3D"line-height:115%"><span>Note, N., De Backer, F., &= Donder, L. D. (2021). A novel viewpoint on andragogy: enabling moments of = community. </span><span style=3D"font-style:italic">Adult Education Quarter= ly</span><span>, </span><span style=3D"font-style:italic">71</span><span>(1= ), 3-19. </span><a href=3D"https://doi.org/10.1177/0741713620921361" style= =3D"text-decoration:none"><span class=3D"Hyperlink">https://doi.org/10.1177= /0741713620921361</span></a></p><p class=3D"Bibliography" style=3D"line-hei= ght:115%"><span>Organizaci=C3=B3n de las Naciones Unidas para la Educaci=C3= =B3n, la Ciencia y la Cultura [UNESCO]. (2024). </span><span style=3D"font-= style:italic">El derecho a la educaci=C3=B3n</span><span>. </span><a href= =3D"https://www.unesco.org/es/right-education" style=3D"text-decoration:non= e"><span class=3D"Hyperlink">https://www.unesco.org/es/right-education</spa= n></a></p><p class=3D"Bibliography" style=3D"line-height:115%"><span>Perry,= R., Neumayer DePiper, J., Tsinnajinnie, B., Jackson, B. E., & Thornley= , L. (2025). Numeracy education for adult learners: a scan of the field and= principles for course and materials design. </span><span style=3D"font-sty= le:italic">Adult Learning</span><span>, </span><span style=3D"font-style:it= alic">36</span><span>(2), 84-95. </span><a href=3D"https://doi.org/10.1177/= 10451595241245146" style=3D"text-decoration:none"><span class=3D"Hyperlink"= >https://doi.org/10.1177/10451595241245146</span></a></p><p style=3D"margin= -left:35.4pt; text-indent:-35.4pt"><span>Salinas Villacr=C3=A9s, D., & = Negri Cort=C3=A9s, M. I. (2021). =C2=BFPor qu=C3=A9 volver a la escuela? Un= estudio de caso sobre Educaci=C3=B3n de Adultos en Ecuador. </span><span s= tyle=3D"font-style:italic">International Journal of New Education</span><sp= an>, (6). </span><a href=3D"https://doi.org/10.24310/IJNE3.2.2020.10248" st= yle=3D"text-decoration:none"><span class=3D"Hyperlink">https://doi.org/10.2= 4310/IJNE3.2.2020.10248</span></a></p><p style=3D"margin-left:35.4pt; text-= indent:-35.4pt"><span>S=C3=A1nchez-Domenech, I., & Cabeza-Rodr=C3=ADgue= z, M.-=C3=81. (2024). Andragog=C3=ADa digital: necesidad de saber y papel d= e la experiencia en un m=C3=A1ster universitario en l=C3=ADnea. </span><spa= n style=3D"font-style:italic">RIED-Revista Iberoamericana de Educaci=C3=B3n= a Distancia</span><span>, </span><span style=3D"font-style:italic">27</spa= n><span>(2), 357=E2=80=93382. </span><a href=3D"https://doi.org/10.5944/rie= d.27.2.38799" style=3D"text-decoration:none"><span class=3D"Hyperlink">http= s://doi.org/10.5944/ried.27.2.38799</span></a></p><p style=3D"margin-left:3= 5.4pt; text-indent:-35.4pt"><span>Shahbari, J. A., & Tabach, M. (2020).= Making sense of the average concept through engagement in model-eliciting = activities. </span><span style=3D"font-style:italic">International Journal = of Mathematical Education in Science and Technology</span><span>, </span><s= pan style=3D"font-style:italic">52</span><span>(8), 1143=E2=80=931160. </sp= an><a href=3D"https://doi.org/10.1080/0020739X.2020.1740803" style=3D"text-= decoration:none"><span class=3D"Hyperlink">https://doi.org/10.1080/0020739X= .2020.1740803</span></a></p><p class=3D"Bibliography" style=3D"line-height:= 115%"><span>Stojanovic, M. (2022). Book Review: The adult learner: The defi= nitive classic in adult education and human resource development by M. S. K= nowles, E. F. Holton III, R. A. Swanson, & P. A. Robinson. </span><span= style=3D"font-style:italic">Adult Education Quarterly</span><span>, </span= ><span style=3D"font-style:italic">72</span><span>(2), 216-217. </span><a h= ref=3D"https://doi.org/10.1177/07417136211045695" style=3D"text-decoration:= none"><span class=3D"Hyperlink">https://doi.org/10.1177/07417136211045695</= span></a></p><p style=3D"margin-left:35.4pt; text-indent:-35.4pt"><span>Ter= hune, K., Conwell, S., Danzo, A., Graf, A., & Kim, S.-H. (2021). Suppor= ting educational needs of older adult learners: strategies for virtual tran= sitioning and student engagement. </span><span style=3D"font-style:italic">= Innovation in Aging</span><span>, </span><span style=3D"font-style:italic">= 5</span><span>(Supplement 1), 385. </span><a href=3D"https://doi.org/10.109= 3/geroni/igab046.1496" style=3D"text-decoration:none"><span class=3D"Hyperl= ink">https://doi.org/10.1093/geroni/igab046.1496</span></a></p><p style=3D"= text-indent:36pt; line-height:115%"><span style=3D"font-weight:bold"> = </span></p><p style=3D"text-indent:36pt; text-align:right; line-height:115%= "><img src=3D" EBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBA= QEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEB= AQEBAQEBAQEBAQEBAQEBAQH/wAARCABAAHoDASIAAhEBAxEB/8QAHgAAAwEAAgMBAQAAAAAAAAA= ABwkKCAQGAAILAQX/xABLEAAABgIABAMBCA4GCwEAAAABAgMEBQYHCAAJERITFCEVCjFBUXeRtr= cWGSIjJDg5YXFyc6HB8BcYN0KB0RonUlNVWGeGpbHS1f/EABwBAAIBBQEAAAAAAAAAAAAAAAAHC= AECAwUGBP/EADsRAAIBAwIDBAYHBwUAAAAAAAECAwQFEQASBhMhBzFBUQgiMjdhkRRxc3ahs8EV= I0JDgbTwJzaTpOH/2gAMAwEAAhEDEQA/ALGsJ8xjTPYOTawGM87VJ5ZpBVNuwq9j9p0mxyLpYe1= NpFRNyYwjqYcmEQKCMOV8fu9AAQD1wDzzM25ewXjTX61YcyNbMczjvJc+0fPqrMOY0sm0QrPmEm= cs1SP5OXYlcFKsDKSbu2hlAA3giPURlQ1wKA7E4CH4RzXiz17jB795gw98Pzfz8PFMPuiIvTCWu= oh8OUbGI/41E/X5x6fMA8Svl7KrJwH2wdntqpqia8Wy+m4TTUt2gpajaIKaoiMUoWJIahG3BsSQ= LtwCN/RhGCHtKvHGnZdxzcKqCG13Cz/s6GKptctRAW59TTScxd0rSwOu0KCkzArnrjoRlyvebBs= dnDPtF1yzUhWb01uLaxC0viUenX7PHLQVekp8oPWsSmlCyqLgIw7UeyOYLJC4BYy6nh+GpTmn16= dBD16dR6e9+j4f8B+EPzdOITuTl+UPwT+ZLIX1d2YOLsyj17v1hD1/N0/n+evHBekFw7ZOG+Ooa= WxW6mtdNU2OkrZqekUxwNVS1VbHJKsWSkW5IYxsjCRjb6qDJ12/YXe7tfeDpqm8V89xqKe7VFJF= PVPzJhBHTUkiRNKQXk2tKx3SMX69WIwAh3nacw/IWpFRo2JcIyxK5lHKjSVlpC4Ebtnb+o06MUR= ZGWiEnZFm6EzNP3CjZm/VbreSbMXqrcqbwW7hBRuHtLedVn+g1/LsJnPKsHAXuNa2KA+zTZq7QE= xKwsokV3HzHsZlLv1I9nItlU3LJJ6Ri4UaqJLlaEQUSMbm+6L0XxNyMYrrlUCOWwBAEZiPd4Qro= Xe7jIETHp2+IUqzMVOgiPRRIDAHUOLDsXv69J42oEhUlGqtXfUqrvK4oxEgsjwTiFZKxJmopfe/= LiwM38ECfcgn2gHQADhLZ5cUZVVJfJYsAe4jp/nl8NOjU/iOMeY9qpoPKQdv2loePc/yeyrCSY5= NzLnOGlIA2M3tFctlKk3uOWGUpHoyLqdjfaLSBQblcGRaPXjdQpRdAd0+uVxmY/V7E1wzZkuk2S= xExzBSd+yhF2WuOKLMyYsSKSViYWeNCOrTiHdKdV0ZFiRtHHTHvSKQgdAVv7of9NE6wIdOv9Yeg= +v/AGfkjhIHMPzfbU9SOWprshNSsRjp5rJUcnW9nGGEQsEi+frV2I841Mu1SkArjWvyrqPZOV0m= p3ssKqxiqJILIUVOaE9lSzNlgoycKPLwx3DRqwVnulqBISDWJj9pdeX0q+eIRzKNZZmx26fPH7p= cjZsyaNW9iUWcu3DhQiCDdAiiqyxyJplMYxQHmWLcHVCoTstV7Zstgas2WBfLxk5Xp/LdCiJuHk= WxuxywlIt/PN3rB63UASLNnKKayRwEpyFMAgEhWtspyepTKGDKjD4t3Tf5Jk8g46hYe0T8rQ2EG= tcXlkiWsbLSrCJuyxW0OWXUbrum7Fk4UIxKYhEXCgdD9ogtT8d7lc5na3C+UH9mjqsrdcyWYzmp= yDOOlQfwczHkZplcPo+Tb+XOV6r4xPL9xxAglUL0ETUMIBOSwAUsSwwe8DoOvn56NWFY5zdhzMC= T5fE+VcdZNQizppya1Autat6caot1FIj80BJvwZmVAphSK48MVAKYSAYAHpw8h5+wbiNy1Z5VzH= i7Grt8QVWTW+X+qVJy9SARKKrRtPSzBdykBgEplEkzEKICAmAQ6cSX69YnZ6J87eHwXiW0Wp1QU= Yywx8ilOPW60hOwEpg+ZvJ4abNHNmDKRRYWBkzesDmZJmSVYMlO0V0zKnFugeqLfm47ObKZQ2Py= BbkGNdCNsci2rck1Rm3sld5mcQrUMwdzDSXSjqxW4muyDMjNu18QhQim6CqKRVhOcpQCxYhQqtn= Z19Y4AxnA885/po1TDtbsfEZE1ey/KacbVYBjMm1IKYcuQRyzjVxVKMWatTNBM1qm3zidgIILBH= MpuOhxmWoBIvE1G7ARcp96fN1FzurQ9QMW3fcTZbCM3cJqVt8VK5ebZMx4XHlqfpXK0+xY2Btka= eCqko9ja8zbRztrGJg4QdRT9JyQ7hq5VFX+53LqwloXy59yHOHpa9Sh8oJYRSsIXSYjJUES0zJK= R4sY32dDxQoCqNpkAd+N5gFATa9gpeGfxATRZjSyP5LOpyW6C18e1n+kLKknR6njF2RvdbLZ2eT= 8mtFyMQXdR7II+PjZJZeQcSUiwZIiq2KK53KzVutQKpVSuSDIB7I3eyCcEZ8D3dR46NUawe4+pN= nlmMBW9nNf56ck102sbDw+YcfSMpIuljgmi1YsGthVcu3KpzARNBumoqoYQKQhhHpxowFAMACUe= oCACAgHUBAfUB693r1D4ePna7OT/Ldm6Gy/qnUTaCk5KbzbNRZxlR9UZOov4A6S5X6J1I21y8oz= k0VvKrR6zZuKBwBwk4DqdFRI11LnN7pVCq1mps7c3etKvX4autXsn4r2SdtoSNbRqDqQeLgos7f= OEmxVXblZQ6q651FVDmOcTDkFNuGQxHmHXB/An46NZa1v/GJwF8teK/pzBcUw+6I/7EddflQsX0= RNxM9rf+MTgL5a8V/TmC4ph90R/wBiOuvyoWL6Im4nr2g++/sh+yvP5MmoNcD+6TtS+1sv5kGk5= 8nH8ofgr9jkL6vLLxdkX+9+sP8ADiE3k4/lD8FfschfV5ZeLsi/3v1h/hwjPSe94VF92bf/AH1z= 06fR1/2PW/eCr/sbdpM/OB5cVi3gx9U7biheLRzTiosqWEjJdyVgxudalSoryNaGTU/B4+VI8Zt= ncI5fCnHeMZ01eOGaTrzaCUMZUHn44NqMXjLHkLmeIqFYRLHwcR1olmZRbFL7lJjFv5RSVUTjUA= ACNGrd15NumAEbJkTEChV/tbsbW9TcE3bPdug5ux1yikhFJKIrvkfbDss5YIuutwZ+0nLRn1RdS= qK63jOE/vCSnZ3H7SGS9/pIGsnQf9R+bg/xpHp197qA2b/3xHtHlKBVjEihuhI3YPQ4xkeefq6D= Pg/NATOODuZbs3y0XlFzvQr7fNg2m2cFYYuCfsqwxmE8YxuOphmSRTSiTMY4zBCflHSHiKCLsVl= zAPVIExL2PbHlX52zppNpPO4+gkozY/XfD8JSLZjmceMo1/NxPhMX4x7GRcKjFpWCqTqDtw2aO3= bdlIs5eSAHgO2rNu7ZdptzfNWtyrqnjGsmtOPckvUXDiBqeQGkazPZ02aCjp6nX5SLkZKNePmzV= JV0eNWWbPlGyKy7dBciKokPz3mAa5MNqkdNHM5YS5ycOWTRKHLWZE8IKr+sp25uA2AC+RApoVUi= xhEehVhFAfuwHigeVCFCbSpZyAvgQB3eA6+Hx8tGkZYgsnOCgLRjSFtGjGFwhoqx1KPn7sthKlt= rEjFNZVihKWIZSFsjFmhLN2JFn5X8dHt003SYOEW3oBROeqOpexVH5xmwmwtsxZYYbDttf5jVr1= 8deR9kSpLDKxDiHO3BJ2d10fpILHSFRuToBBA/aPQOKMePww9oCPxfv+IOLDLuz6iqSMHGcnODn= vPj/nTJNTm2vUXYWV54kBscXFdgXwMRdMj3IQeR9hkQNgmWqqveAuwedvttySNH8G9Vjh06kEDc= Y4d6KczTl37M5HvGjVdG946vJ5BvFrxyVcsDRxVHkqrKRlct9Xn3bd4hM1lbtSaTDQnaomZRVrI= gm/kGJaJcG7+66bEZqyNgDGU3YJDJGKwsg3BhI1qRi45oFUszeozAtJNyUG73wpp0ikl4I/fkTC= uQRTKI8DDCfMsxlm/cPI+msFRbxE3fGhboaWs8qMF9jD4KRKR8W/8AIeUk15P8LVkU1GnmGSP3t= M/i+GYSgN++Qfy1KiNQ6n+Jem1iCR4Y/wDe7RpYFsYc1TbDSTcfGOzuGV0bm8Qwf/QtXoOs1+vP= rEunfZGSyABBZSrhF37MjoivuRK6VQ8FNQ4oiqdc5SZrzJywNssi8tjTGuQOPZJPMWAJ3OaVuxJ= IOotnOLwmRslSk8wlWRl35I906aNo6KWFgV15hywljKJAY7cyJq9+POLBKRjaqAB94ABxkgDuye= mPL5jRqLvPOKebPsNiVDD9t0Vx5XK+k6gnvtvHmKKrUbYZWAIYjUnthlZVEUkHPcIv2yDFFFbqB= UyJEKUoYM+1O8w7/ldyD/4X/wDV4sTvnMqxrQN3Klo3I0S8Pb9cHNabsLYz9hfYm1GzQ68y1M58= aTSlxBBBAya4JR6g+KYAS7yfdcMg6m+I37v/AJ4yiokQAbEXIDYGeoOOvtHyI/Tpo183rW/8YnA= Xy14r+nMFxTD7oj/sR11+VCxfRE3Ezut34xOAR/61Yr+nMFxTD7oiEBwjrr8qNjD5qib+fTie3a= D77+yH7K8/kyag3wOP9Je1H4y2XH/LCNJ05OP5Q/BX7HIX1eWXi7Iv979Yf4cQmcnIwBzD8Fdfg= RyD+/Hlm/y4uyKYo9egh6j/AADr+8f8ve4RnpO+8Ki+7VvHyrbkf1H46c3o6MDwTXDyv9Wf+lbx= +mlb86P8m5sR+wx99Z9O4WzyPdQtYM7ah2S25jwRjLJNoSy7aYVGwW+qRczLIxTaErSrdgi+doH= cJNkFXLhRIiZygmdZQ5BKY3Xhk3Oj/JubEfsMffWfTuEzcoTma6laf6wz2Ms326ywdwe5Osdpas= YikWSxIKREjEwDRop5+KZLsyLKLsHJBQUWKoQCAY4FKYB4j2u4wnZuzzD7Pf3IP10/tYd5iGDK3= oDzG6ktgtJWq1ps/wAcZhpMQ0fPV/sYWUnDFfRTN07WWdmZFlYZ8Zsk4XW8Ni6I0E5kSAQG9v8A= ZRk652FdxIXAevSy8k5qTkuZHNAcKZsSLJYTY2IqhbmE6VAqzYi3sduf2QPZDkK0EBMHjcJr2az= O95pPMfpCmKa9OlgbPPUbHFHj5NoklMI1ODfGdzFjmW7Rd0jHtyFXm596JnKhI+NJ1cKlMicCMB= tkaCHuh2LiGh/AKkvVo5scB6Cl4eurFqifqHvCToU3UA98OvTjI4OFVj6whYHJyehXGfHp4aNHH= O3Os2UuWx1pwJoZgKLyqWoSs1DHlpGvWa6zNqUrrkWUzORcNWJaHRh6yg8TUSaSEg8c+bbi3dKi= yM4TbB/O165sO/1g3Zw7qnshiHG2MnF3tEdG2mEWpNsgrewh5SGkJRi8ZjIXaSQbHdEbIqIKrs3= BDoiYfD+6A3GHuU3sNiTRvc3Y2t7RyyeOXckwsFELaZqMlHaMJZK9dgdvoqQNGMH7xk3mUmx1Sv= TolaHWZNiqrACyRhKVszRi3P3PpwNknDlxjL5R5Cdx3HMrHEEeJsXL2Kocm0kG5Cv2rNx3tHBTJ= KCdApRMA9pjB68W7VyUCAgRk7zuySFBOMdPP+oHfnRo96m7R5CntseYfX8I6x65xOX8Z0PYGUoE= xQ8dO4e9ZJt9cypHRkNFXWZNakwnULDIKISM0kkeIF9LkSclctSF7BVXrbmLe6scwfMOR8PYVg7= XtXNlySGQcYu4hZ1EwRZSah1bcKEeS2xqqXsqSSj2yPdYXnhlXEDC5E3iFZXygOn22ffDr/u89D= 8XXpn2D+H5/wCQ4D2s2csVa5c7XaC4ZuuEbjmpyUxnCspWCxg5bxSErLT0NKxqD5ym3VKxSfNYx= 0KDt2CTY6hkEfGBRwkU9wODIAgb91GfEk9FGMeXj9fho02nZHZHmx06va+OsDaxVW7zdsw3C2HN= jJ/XXbslNym5XVLK1hiVPIkOLVo1QKmcjdRWWOTu9ZFX3gw8HON351tzBjur7260VWgUS8O0SqO= YmAnIGbThgft2EpPQcgvbbRCy54AzpJxIw4gi7FM6BTLNBdt1Dinmp7lZUyBuhijCmOdpZXX7XO= bpGO7FG5Uqk7YYauScfkNFWTd5Dl5CruY6Vn4Vo1BtGxzPziccgpHuVRFqo5duSKy3uqDKrOcUm= Z8wZLeoXytl8bw5WzSY428E9fEvX7IrjbPB+ygVTejTyPf7C+/eY7U/BpHGCF3KvrgnAD5A8euc= KR5fMDGjTeNi1Sr+6FcELEEBIs/xEoQQ94SHocgJR9OvXqAgPX4h4q/4kxzqHT3QBrr0/wBnCn1= dO+KzuMMpysQ8RGM/HJJH4dDo189TEOuOy1Hyri68yut+d14Wm5DpVsliR+Lba4eKxldssbLviM= klo1BJZ0dozVBukqugmooJCHWTKInLSNuDdNQd+qTSanmhXbPBIUuefWCJB7r7fmLoz5/GezFSS= blKj3SFO1TRMJygjINjgoHcZYUx7RfF4ZA94oB+jj0MgmID1KUevxgHQf09A68OfirtnruK7vZ7= 9UWf9lXewx1EdsrbNdHgkhFTjmsy1lFXRuxGVB2KNrEEHOdJrhzshp+G7ZdbNBeFuNsvbQNcaO6= WtZo5jT9YwGpaykkRdx3EB+pCkYAxqR+C5YmI4GyRl61V5j0DUcgwy5nVWQvUIpSLA1cqJKJHIp= Lt5qMlmnitlFG7pMaiuRdBVVBZAyaihDNQw1sJv7gdBpD7S4nhtlMZNippDsBrHJx9usEagY/aD= qz48bpxM5Ot26IlVeP4OAZOmzchlAQmVzCHDe39cgpVI6MnDRMgioUSnRexzR2kcpvQwGI4SOU4= GD0EDAIevxcD0+CsUpqLOIqlRFcerG7zSFSIrUZEpx9O9OQrasY7TU9A6nTWKYQ9OoB7+ivPaZW= 8SxCn4opor+iKUhqLjS0RulKnfinu1thtNSoViWCTJU0zMSZqeTrrbWns5g4el+kcO1ctmd2DzQ= UNRVi3VBwAfpNrr5blTyZACs0b08wXokyEAgbWyD193rwZO0WUk0L9iq6hGJWFhDysjCSiK8TKs= Jxqwk00TMJ6vSjOSj2pnka/RZP0DpKNnbYvVVMMU/aM+XQIemKrP69ffyRdP0f8V4ZKbEdYQk0L= JEJOYS3t00kFLXHKFTl5ZugQySDSyqdvg2lqmmcxCknk3yqYiDlBZvIETeplBsVUqKZVzFMqBQB= QxCCmQxugdxiJmOoYhBHqJSCooJQEAE5xDuFbTNEJWNI9QkJOVjmKtJH3YVpVVUl7vbVEJwSyJk= AsemNTy1WqERmUANJDkRyHA9ZUZneMnrlGd9vTDt4Y31p5fuqGpMi/ncI4rjK9Z5Judm6tkk8kb= FZgYqdoqsWkxOO3rqPZriQouG7AzZNz2l8cFAKHHu+0L1wfbPpbhuarKHzq3cNHSdkCyTYR4KMK= 2SqNxGAB6EQPbCpEbCHlehjgKxgFYe8NmceCHUBAfhDp8/GEknqWJPcST1I78fh8sjx16NSocw3= Z/lTS2zOR6bsNqZl+0ZZx9OBVrRfcer1+sp2dwzYslEHDp00v0I6lwQaqoNkXctHFekSRBHu8FN= MAxhy9seUDOvNPxtfNSsSXvH2u+MXyVwfJXJ8aakYFCKpzxi5cTcuL6TZkd2C2O0m0dFtpR+uRm= r5gAKm3d+Xs5k8QYompB1LTOM6DLyr9UV30nKVCvv5B4sIAUVnTx1HquHColKUoqKqHMIFAOvpx= 2Gu06pVBsozqlZgKy0WUFZVtAQ8fDt1VhAAFVRGObtkzqCAAXvMUTdAAOvGYSgKVAfONvrOSvcO= oAwPq+WjWWMLaI65a9ZkyDnzGNWlIfJWUS2MLnLu7LNyjSQC02Nva5kEIt+8XYsfMTTZFwmLZJP= wEyign2pGEvALzDy4uX5ttk+1ZIuFRibNkYy6Mfc39NvkrFOVZGOSTaAM9H1+WTbElUECJN3Cyz= dN4YpEiL9xigHGsdtMtzuDNfMnZSrNbPbJ6qwCasXDD5vynmpOTYQpJWV8iUzwIKvhIjPTxmopu= Aho18KS7cwAuktLF+Cs2VHEtLg8Tzb+/WKvWC1IyVviLNWaq9Wxzd4mfu3sVvM1+bdRyylmzHV6= DLWSWWmJy9R1EmfKoyqovZFoXd22zLV0ElwnuEVEprFoabmkbJSkPPqXkf+WsAelVFkZBM1QeVv= aF11ztzvstFcIqCmoZq1hSNWVPJB5kaPMsNNHGuP3jTFKlmK7+UIQHCCVXUwZV055a2cqzjGiZA= aUqULiFNHCFEeIZBdQ9uYBXl3kWlQ3MuylmsrLqMX0XJETZSXmzpPW8ks37FVXJz9JHkmctdBs1= fnx3NpNXKrQjR2plO3FQcLPFCJsk0FTTBU1TOlVEk25SHMK51CkTAxjFAQnT9JNmoKYipV5TIM6= 0TaFbCEwpK1J7Y15KwyUHTrBYivnC6hlptGmRFjt7Uzt1+CWHLNzfR4hMVuuISBvyZr/u00tM2f= G862lYlOOqkygq+lmxICbyBWqdKmGzMajZp2cJDvFbCetIN26rsGp5Kkxkk7WVTssrIwu1qeHrQ= KhIaTiekZGikkeSolQJuSSNeWGTeil1fepJLNh1KgIW1qaXiW+GCSar4brVZZUjSGCNy5V0J5hE= veA67WAIAUoScsF1pi9ab6mr7O432buUYu1z0EvBQOPZde2zLNCRl6xWpEYyOaV8jwI1+6bV2Ok= 3KxDtjCdBouuqJhT68bvAw9A9R+cR/f8ADws/AWDdhS5xSuuZlptzSaQ+uz/GUfbriheJGLGe8K= nslhdJSjxdKecVSAa2F0+OKjBo9vtshWDVq2QbDwzQCB0D3w+b/LjmrlSQUUsUENbHXEQq800BD= QrI7OyxRsM7jHFyxIdzDmFlUkAa6S11lRXwzT1FFLRKJ2jghqVKztGiRhpJFPRQ8u/YB/AFJ9Yn= H//Z" width=3D"122" height=3D"64" alt=3D"editorial1.png" /></p><div style= =3D"clear:both"><p style=3D"margin-bottom:0pt; line-height:normal"><span st= yle=3D"height:0pt; display:block; position:absolute; z-index:-65535"><img s= rc=3D" ABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAABxJREFUSIntwTEBAAAIwKDZP7= TG8AGm2gAAgA9zmTsBAl+AgmQAAAAASUVORK5CYII=3D" width=3D"740" height=3D"1" al= t=3D"" style=3D"margin-top:-37.82pt; margin-left:-63.3pt; position:absolute= " /></span><span style=3D"letter-spacing:3pt; color:#ffffff">|</span><span = style=3D"letter-spacing:3pt; color:#ffffff">     &= #xa0;           </span><s= pan style=3D"letter-spacing:3pt; color:#ffffff">Nombre</span><span style=3D= "width:134.78pt; letter-spacing:3pt; display:inline-block"> </span><sp= an style=3D"width:63.4pt; letter-spacing:3pt; display:inline-block"> <= /span><span style=3D"width:27.7pt; letter-spacing:3pt; display:inline-block= "> </span><span style=3D"width:35.4pt; letter-spacing:3pt; display:inl= ine-block"> </span><span style=3D"letter-spacing:3pt; color:#ffffff"> = </span><span style=3D"width:32.4pt; letter-spacing:3pt; display:inline-bloc= k"> </span><span style=3D"color:#ffffff"> </span><span style=3D"color:= #ffffff; background-color:#ffff00">1</span></p><p class=3D"Footer"><span>&#= xa0;</span></p></div></div></body></html>